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Abstract

Synchronization is studied in an array of identical oscillators undergoing small vibrations. The

overall coupling is described by a pair of matrix-weighted Laplacian matrices; one representing the

dissipative, the other the restorative connectors. A construction is proposed to combine these two

real matrices in a single complex matrix. It is shown that whether the oscillators synchronize in the

steady state or not depends on the number of eigenvalues of this complex matrix on the imaginary

axis. Certain refinements of this condition for the special cases, where the restorative coupling is

either weak or absent, are also presented.

1 Introduction

Consider the dynamics [8, Ch. 11]

Mẍ + Kx = 0 (1)

where x ∈ Rn and the matrices M, K ∈ Rn×n are symmetric positive definite. This linear time-invariant
differential equation, being the generalization of that of harmonic oscillator, plays an important role
in mechanics. It emerges as the linearization of a Lagrangian system about a stable equilibrium and
satisfactorily represents the behavior of the actual system undergoing small oscillations [1, Ch. 5]. Among
examples obeying (1) are the n-link pendulum (Fig. 1) and the mass-spring system (Fig. 2). It is possible
to find relevant systems outside the domain of mechanics as well. For instance, the LC circuit shown in
Fig. 3 is also described by the form (1); see [15].

Figure 1: 3-link pendulum.

Suppose now we take a number of identical n-link pendulums, each obeying (1), and couple them
via passive components such as springs and dampers as shown in Fig. 4. Or, we gather a number of
identical LC circuits and connect them through inductors and resistors as shown in Fig. 5. What can
be said about the collective behavior of these arrays? In this paper we attempt to answer this question
from the synchronization point of view. That is, we investigate conditions on the coupling that guarantee
asymptotic synchronization throughout the array, where all the units tend to oscillate in unison despite
the initial differences in their trajectories.
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Figure 2: Mass-spring system.

Figure 3: LC oscillator.

In studying synchronization stability the workhorse of the analysis is the matrix that describes the
overall coupling, the ubiquitous Laplacian. The classical Laplacian matrix is a very useful representation
of a graph with scalar-weighted edges. This matrix often appears in various network dynamics and
its spectral properties have proved instrumental in understanding or establishing synchronization; see,
for instance, [10, 9, 3, 4]. Although a single scalar-weighted Laplacian turns out to be quite able to
represent the coupling in many different networks (which have been thoroughly investigated in the duly
vast literature) significant exceptions do exist. One such exception we find appropriate to point out has to
do with the case where the coupling can only be represented by a matrix-weighted Laplacian [15, 14, 17].
Another instance of deviation manifests itself in the array of harmonic oscillators linked simultaneously
by both dissipative and restorative connectors [16], where two separate scalar-weighted Laplacians are
required to account for the coupling in its entirety; one for the restorative, the other for the dissipative
links. The particular problem we consider in this paper happens to fit to neither of these instances and
instead contains them as special cases. Namely, the coupling of the array we study here cannot be properly
described except by a pair of matrix-weighted Laplacians. To the best of our knowledge, the problem
of synchronization of small oscillations has not yet been investigated under such direction and degree
of generality. It is, of course, worthwhile to ask whether the suggested generalization is meaningful. In
short, is it (in some sense) natural? We believe that it is; for two reasons. First, as we mentioned already,
the dynamics we study can be realized by some very basic building blocks from physics and engineering:
pendulum, spring, damper; or, capacitor, inductor, resistor. Second, some of the methods we develop in
our analysis bear strong resemblance to classical tools from systems theory and graph theory, such as
the Popov-Belevitch-Hautus (PBH) test for observability and the positivity check of the second smallest
eigenvalue of the Laplacian for connectivity.

Somewhat imprecisely, we now give the statements of the three main results of this paper. Our setup,
the array of q oscillators, is described by three parameters (matrices): P, Ld, Lr. (The precise problem
statement and notation are given in Section 2.) The symmetric positive definite matrix P ∈ Rn×n models
the individual oscillator, where n is the number of normal modes or characteristic frequencies. The matrix-
weighted Laplacians Ld, Lr ∈ Rqn×qn represent, respectively, the dissipative coupling (e.g., dampers)
and the restorative coupling (e.g., springs). Inspired by how the conductance (g) and susceptance (b)
are brought together to form the admittance (y = g + jb) in circuit theory [2], we construct from
our three matrices the single matrix [Ld + j([Iq ⊗ P ] + Lr)]. In Section 3 we establish the following
equivalence between this matrix and synchrony: The oscillators (asymptotically) synchronize if and only
if [Ld + j([Iq ⊗P ] +Lr)] has exactly n eigenvalues on the imaginary axis. To develop a somewhat deeper
understanding of this result we then dissect the matrix-weighted Laplacians Ld, Lr using the eigenvectors
v1, v2, . . . , vn of P and obtain the collections of scalar-weighted Laplacians G11, G22, . . . , Gnn ∈ Rq×q

and B11, B22, . . . , Bnn ∈ Rq×q through Gkk = [Iq ⊗ vTk ]Ld[Iq ⊗ vk] and Bkk = [Iq ⊗ vTk ]Lr[Iq ⊗ vk].
These matrices are employed in Section 4 to show: For weak enough restorative coupling (‖Lr‖ ≪ 1) the
oscillators synchronize if every [Gkk + jBkk] has a single eigenvalue on the imaginary axis. Finally, in
Section 5, we study the pure dissipative coupling scenario. There we find: In the absence of restorative
coupling (Lr = 0) the oscillators synchronize if and only if every Gkk has a single eigenvalue at the origin.
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Figure 4: Coupled 3-link pendulums.

Figure 5: Coupled LC oscillators.

2 Problem statement and notation

Consider the array of q coupled oscillators (each of order 2n) of the form

Mẍi + Kxi +

q
∑

j=1

Dij(ẋi − ẋj) +

q
∑

j=1

Rij(xi − xj) = 0 , i = 1, 2, . . . , q (2)

where xi ∈ Rn and M, K, Dij , Rij ∈ Rn×n. Recall that M = MT > 0 and K = KT > 0. The
matrices DT

ij = Dij = Dji ≥ 0 represent the dissipative coupling (due, e.g., to the dampers in the array
of Fig. 4 or to the resistors in the array of Fig. 5) between the ith and jth oscillators. The matrices
RT

ij = Rij = Rji ≥ 0 represent the restorative coupling (due, e.g., to the springs in the array of Fig. 4
or to the inductors in the array of Fig. 5) between the ith and jth oscillators. (We take Dii = 0 and
Rii = 0.) Let σ1, σ2, . . . , σn be the roots of the polynomial d(s) = det(sM −K), i.e., the eigenvalues of
K with respect to M . Note that these σk are also the eigenvalues of the matrix P := M−1/2KM−1/2.
Hence σk > 0 for all k because P = PT > 0. Our analysis will assume that these eigenvalues are distinct:
σk 6= σℓ for k 6= ℓ. Under this assumption we here intend to arrive at conditions on the set of parameters
(M, K, (Dij)

q
i,j=1, (Rij)

q
i,j=1) under which the array (2) synchronizes, i.e., ‖xi(t)− xj(t)‖ → 0 as t → ∞

for all indices i, j and all initial conditions x1(0), x2(0), . . . , xq(0).
The identity matrix is denoted by Iq ∈ Rq×q. We let 1q ∈ Rq denote the unit vector with identical

positive entries, i.e., 1q = [1 1 · · · 1]T /
√
q. Given X ∈ Cn×n, we let λk(X) denote the kth smallest

eigenvalue of X with respect to the real part. That is, Reλ1(X) ≤ Reλ2(X) ≤ · · · ≤ Reλn(X). The
2-norm of a vector v ∈ C

n is denoted by ‖v‖. Recall that ‖v‖2 = v∗v, where v∗ denotes the conjugate
transpose of v. Likewise, ‖X‖ denotes the induced 2-norm of the matrix X . Let  L(q, n) ⊂ Rqn×qn denote
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the set of Laplacian matrices such that each L ∈  L(q, n) has the following structure

L =











∑

j W1j −W12 · · · −W1q

−W21

∑

j W2j · · · −W2q

...
...

. . .
...

−Wq1 −Wq2 · · · ∑

j Wqj











=: lap (Wij)qi,j=1

where the weightsWij ∈ Rn×n satisfy WT
ij = Wij = Wji ≥ 0 with Wii = 0. Observe the symmetry L = LT

and the positive semidefiniteness x∗Lx =
∑

j>i(xi−xj)
∗Wij(xi−xj) ≥ 0, where x = [xT

1 xT
2 · · · xT

q ]T ∈
(Cn)q. Also nullL ⊃ range [1q ⊗ In], where ⊗ is the Kronecker product symbol.

All the positive (semi)definite matrices we consider in this paper will be (real and) symmetric. There-
fore henceforth we write X > 0 (X ≥ 0) to mean XT = X > 0 (XT = X ≥ 0). A simple fact from linear
algebra that we frequently use in our analysis is

X ≥ 0 and ξ∗Xξ = 0 =⇒ Xξ = 0

where ξ is a vector of appropriate size. Another fact that will receive frequent visits is the following.

Fact 1 Let both X, Y ∈ Rn×n be symmetric positive semidefinite. Then Reλk(X + jY ) ≥ 0 for all k.

Proof. Let λ ∈ C be an eigenvalue of X + jY and ξ ∈ Cn the corresponding unit eigenvector. We can
write

λ = ξ∗(λξ) = ξ∗(X + jY )ξ = ξ∗Xξ + jξ∗Y ξ (3)

which yields Reλ = ξ∗Xξ ≥ 0 because X, Y ≥ 0. The fact follows since λ was arbitrary. �

3 Steady state solutions

Consider the array of coupled pendulums shown in Fig. 4 under arbitrary initial conditions. Devoid of
any external interference, this assembly is unable to generate mechanical energy. Moreover, some of its
initial energy will be gradually lost through the dampers as heat. The outcome is that in the long run
the array has to settle into a constant energy state, the steady state. One way to show that the array
synchronizes (if it does) therefore would be to establish that no steady state solution admits asynchronous
oscillations. This is the approach we adopt for our analysis in this section.

Let us employ the coordinate change zi := M1/2xi for i = 1, 2, . . . , q. In the new coordinates, the
array (2) takes the form

z̈i + Pzi +

q
∑

j=1

M−1/2DijM
−1/2(żi − żj) +

q
∑

j=1

M−1/2RijM
−1/2(zi − zj) = 0 , i = 1, 2, . . . , q . (4)

Recall that P = M−1/2KM−1/2 whose eigenvalues σ1, σ2, . . . , σn are distinct and positive. Let z =
[zT1 zT2 · · · zTq ]T and the matrices Ld, Lr ∈ L(q, n) be constructed as

Ld := lap (M−1/2DijM
−1/2)qi,j=1 ,

Lr := lap (M−1/2RijM
−1/2)qi,j=1 .

These Laplacian matrices allow us to express (4) as

z̈ + [Iq ⊗ P ]z + Ldż + Lrz = 0 . (5)

Note that the array (2) synchronizes (only) when the array (4) does. And the synchronization of the
array (4) is equivalent to that every solution z(t) of (5) converges to the subspace range [1q⊗In]. Consider
now the Lyapunov function

W (z, ż) =
1

2
zT ([Iq ⊗ P ] + Lr) z +

1

2
żT ż

4



which is positive definite since [Iq ⊗ P ] > 0 and Lr ≥ 0 imply [Iq ⊗ P ] + Lr > 0. The time derivative of
this function along the solutions of (5) reads

d

dt
W (z(t), ż(t)) = −ż(t)TLdż(t) .

Note that the righthand side is negative semidefinite since Ld ≥ 0. Hence by Lyapunov stability theorem
each pair (z(t), ż(t)) is bounded and by Krasovskii-LaSalle principle [7], every solution converges to some
region contained in the set {(z, ż) : Ẇ (z, ż) = 0}. In other words, every steady state solution zss(t) of
(5) should identically satisfy żss(t)

TLdżss(t) = 0, which (thanks to Ld ≥ 0) is equivalent to

Ldżss(t) ≡ 0 . (6)

Combining (5) and (6) at once yields

z̈ss + ([Iq ⊗ P ] + Lr)zss = 0 . (7)

Let p ≤ qn be the number of distinct eigenvalues of [Iq ⊗ P ] + Lr and ρ1, ρ2, . . . , ρp > 0 denote these
eigenvalues. Note that ρk > 0 because [Iq ⊗ P ] + Lr > 0. Now, the solution to (7) has the form [1, §23]

zss(t) = Re

p
∑

k=1

ejωktξk (8)

where ωk =
√
ρk are distinct and positive, and each ξk ∈ (Cn)q (some of which may be zero) satisfies

([Iq ⊗ P ] + Lr − ω2
kIqn)ξk = 0 . (9)

Note that the (6) and (8) imply

Ldξk = 0 (10)

since ωk are distinct and nonzero. Combining (9) and (10) we can write

ξk ∈ null

[

[Iq ⊗ P ] + Lr − ω2
kIqn

Ld

]

. (11)

Suppose now the following (PBH test like) condition holds

null

[

[Iq ⊗ P ] + Lr − λIqn
Ld

]

⊂ range [1q ⊗ In] for all λ ∈ R . (12)

Then (11) implies ξk ∈ range [1q ⊗ In] for all k. By (8) this readily yields zss(t) ∈ range [1q ⊗ In] for all
t. Therefore (12) is sufficient for the array (2) to synchronize.

Let us also investigate the necessity. We begin by supposing that the condition (12) fails to hold. Then
we can find an eigenvalue ρk = ω2

k and an eigenvector ξ ∈ (Rn)q satisfying ξ /∈ range [1q ⊗ In], Ldξ = 0,
and ([Iq ⊗ P ] + Lr − ω2

kIqn)ξ = 0. Using the pair (ωk, ξ) let us construct the function ζ : R → (Rn)q as
ζ(t) = Re (ejωktξ). This function satisfies the following properties. First, since ξ /∈ range [1q ⊗ In], we
have

ζ(t) = ξ /∈ range [1q ⊗ In] for t = 0, T, 2T, . . . (13)

where T = 2π/ωk. Second, since Ldξ = 0, we have at all times

Ldζ̇(t) = Re (jωke
jωktLdξ) = 0 . (14)

Third, since ([Iq ⊗ P ] + Lr − ω2
kIqn)ξ = 0, we can write at all times

ζ̈(t) + ([Iq ⊗ P ] + Lr)ζ(t) = −ω2
kζ(t) + ([Iq ⊗ P ] + Lr)ζ(t)

= ([Iq ⊗ P ] + Lr − ω2
kIqn)Re (ejωktξ)

= Re (ejωkt([Iq ⊗ P ] + Lr − ω2
kIqn)ξ)

= 0

5



which together with (14) leads to

ζ̈(t) + [Iq ⊗ P ]ζ(t) + Ldζ̇(t) + Lrζ(t) ≡ 0 .

Hence ζ(t) is a valid solution of (5). But it is clear from (13) that ζ(t) does not converge to range [1q⊗In].
This means that the condition (12) is not only sufficient but also necessary for the synchronization of the
array (2). We have therefore established:

Lemma 1 The array (2) synchronizes if and only if (12) holds.

We now convert the condition (12) to another form, which will prove more suitable for later analysis.
To this end, we construct the complex matrix

Γ := Ld + j([Iq ⊗ P ] + Lr) .

A few observations on the spectrum of Γ are in order. Note that Ld[1q ⊗ v] = 0 for all v ∈ C
n thanks

to Ld ∈ L(q, n). The same goes for Lr. Letting v1, v2, . . . , vn ∈ Rn be the (linearly independent) unit
eigenvectors of P corresponding to the eigenvalues σ1, σ2, . . . , σn, respectively, we can thus write for
k = 1, 2, . . . , n

Γ[1q ⊗ vk] = Ld[1q ⊗ vk] + j([Iq ⊗ P ][1q ⊗ vk] + Lr[1q ⊗ vk])

= j[Iq ⊗ P ][1q ⊗ vk]

= j[(Iq1q) ⊗ (Pvk)]

= jσk[1q ⊗ vk] .

Therefore each jσk is an eigenvalue of Γ with the corresponding eigenvector [1q ⊗ vk]. Since σk 6= σℓ

for k 6= ℓ and the open left half plane contains no eigenvalue of Γ by Fact 1; we can list, without loss
of generality, the first n eigenvalues as λk(Γ) = jσk for k = 1, 2, . . . , n. It turns out that the next
eigenvalue in line is closely related to synchronization:

Lemma 2 The condition (12) holds if and only if Reλn+1(Γ) > 0.

Proof. Suppose Reλn+1(Γ) ≤ 0. This implies Reλn+1(Γ) = 0 because Γ can have no eigenvalue
with negative real part. Let therefore λn+1(Γ) = jβ with β ∈ R. There are two possibilities. Either
(i) jβ = jσk for some k or (ii) not. Consider the case (i). Without loss of generality let us take
jβ = jσ1. That is, the eigenvalue jσ1 is repeated. Then there should be at least two linearly independent
eigenvectors of Γ corresponding to the eigenvalue jσ1. To see this suppose otherwise. Then [1q ⊗ v1]
would be the only (unit) eigenvector associated to the eigenvalue jσ1 and there would have to exist a
generalized eigenvector ξ1 ∈ (Cn)q satisfying (Γ − jσ1Iqn)ξ1 = [1q ⊗ v1]. This however would lead to the
following contradiction

1 = [1q ⊗ v1]T [1q ⊗ v1] = [1q ⊗ v1]T (Γ − jσ1Iqn)ξ1 = ((Γ − jσ1Iqn)[1q ⊗ v1])T ξ1 = 0

since ΓT = Γ. Therefore we can find an eigenvector ξ ∈ (Cn)q corresponding to the eigenvalue jσ1

satisfying ξ /∈ span {[1q ⊗ v1]}. Then it follows that

ξ /∈ span {[1q ⊗ v1], [1q ⊗ v2], . . . , [1q ⊗ vn]} = range [1q ⊗ In] . (15)

As for the case (ii), i.e., jβ 6= jσk for all k, it is clear that an eigenvector of jβ, call it ξ, should again
satisfy (15). To sum up, whenever Reλn+1(Γ) ≤ 0, there exists a nonzero vector ξ ∈ (Cn)q and a real
number β satisfying Γξ = jβξ and (15). Without loss of generality let ‖ξ‖ = 1. Then (3) allows us to
write

jβ = ξ∗Ldξ + jξ∗([Iq ⊗ P ] + Lr)ξ

which implies Ldξ = 0. Then we can write jβξ = Γξ = j([Iq⊗P ]+Lr)ξ, yielding ([Iq⊗P ]+Lr−βIqn)ξ = 0.
Hence ξ satisfies

ξ ∈ null

[

[Iq ⊗ P ] + Lr − βIqn
Ld

]

. (16)

6



Finally, combining (15) and (16) yields that the condition (12) cannot be true.
Now we show the other direction. Suppose (12) is not true. Then we can find β ∈ R and a vector ξ /∈

range [1q⊗In] that satisfy Ldξ = 0 and ([Iq⊗P ]+Lr)ξ = βξ. This yields Γξ = jβξ. By (15) we see that ξ
lies outside the subspace spanned by the linearly independent eigenvectors [1q⊗v1], [1q⊗v2], . . . , [1q⊗vn]
of Γ. Recall that the eigenvalues associated to these eigenvectors are jσ1, jσ2, . . . , jσn. Hence, together
with ξ, there are at least n + 1 linearly independent eigenvectors whose eigenvalues lie on the imaginary
axis. This implies Reλn+1(Γ) cannot be strictly positive. �

Lemma 1 and Lemma 2 yield:

Theorem 1 The array (2) synchronizes if and only if Reλn+1(Γ) > 0.

To develop some insight on Theorem 1 we bring up some of its consequences concerning a number of
special yet important cases. We first regenerate some known results on harmonic oscillators; then (in the
following sections) we proceed to novel implications. Synchronization of coupled harmonic oscillators (i.e.,
the array (2) under n = 1) is a thoroughly investigated problem; see, for instance, [11, 12, 18, 13]. Many
interesting results have appeared recently, each of which studies a certain generalization of the nominal
setup: an array of identical oscillators (e.g., 1-link pendulums) coupled only by dissipative components
(e.g., dampers). In this simplest case synchronization is easy to understand. It is intuitively clear that
if a pair of pendulums are connected by a damper then their motions have to have synchronized in the
steady state. Consequently, the entire array synchronizes if its interconnection graph (where each node
represents an oscillator and each edge a damper) is connected. This well-known, fundamental result
makes the first corollary of Theorem 1 since the algebraic condition for a graph to be connected is that
its Laplacian has a simple eigenvalue at the origin, i.e., its second smallest eigenvalue (also known as
Fiedler eigenvalue) is positive.

Corollary 1 Suppose n = 1 and Rij = 0 for all i, j. Then the array (2) synchronizes if and only if
λ2(Ld) > 0.

Proof. That n = 1 renders the matrix P a real scalar. In particular, P = σ1. We can therefore write

Reλn+1(Γ) = Reλn+1(Ld + j([Iq ⊗ P ] + Lr))

= Reλ2(Ld + jσ1Iq + jLr)

= Re (λ2(Ld + jLr) + jσ1)

= Reλ2(Ld + jLr) . (17)

Now, Rij = 0 yields Lr = 0. Also, Ld ≥ 0 implies that all the eigenvalues of the Laplacian Ld are real.
Hence

Reλ2(Ld + jLr) = λ2(Ld) . (18)

The result follows by (17), (18), and Theorem 1. �

Corollary 1 has the following generalization covering the case where the 1-link pendulums are coupled
by not only dampers, but also springs [16].

Corollary 2 Suppose n = 1. Then the array (2) synchronizes if and only if Reλ2(Ld + jLr) > 0.

Proof. Combine (17) and Theorem 1. �

4 Weak restorative coupling

In this section we study the synchronization of small oscillations under weak restorative coupling. To
investigate how the strength of restorative coupling effects synchronization let us replace Rij in (2) with
εRij , yielding the dynamics

Mẍi + Kxi +

q
∑

j=1

Dij(ẋi − ẋj) + ε

q
∑

j=1

Rij(xi − xj) = 0 , i = 1, 2, . . . , q (19)

7



where the scalar ε > 0 represents the coupling strength. Our assumptions on the matrices M, K, Dij , Rij

are same as before. A slight addition, however, is that we assume throughout this section that not all
Rij are zero, i.e., Rij 6= 0 for at least one pair (i, j). The case where there is no restorative coupling (i.e.,
all Rij = 0) is studied in the next section. For our new array (19) let us define

Γε := Ld + j([Iq ⊗ P ] + εLr) .

We infer from Theorem 1 that the array (19) synchronizes if and only if Reλn+1(Γε) > 0. Recall that
v1, v2, . . . , vn ∈ Rn denote the (linearly independent) unit eigenvectors of P corresponding to the distinct
eigenvalues σ1, σ2, . . . , σn, respectively. Since P is real and symmetric the matrix V = [v1 v2 · · · vn] is
orthogonal, i.e., V TV = In. Let Λ = diag(σ1, σ2, . . . , σn). Note that Λ = V TPV . Let us now construct
the matrices G, B ∈ Rqn×qn as

G =











G11 G12 · · · G1n

G21 G22 · · · G2n

...
...

. . .
...

Gn1 Gn2 · · · Gnn











, B =











B11 B12 · · · B1n

B21 B22 · · · B2n

...
...

. . .
...

Bn1 Bn2 · · · Bnn











where Gkℓ = [Iq ⊗ vTk ]Ld[Iq ⊗ vℓ] ∈ Rq×q and Bkℓ = [Iq ⊗ vTk ]Lr[Iq ⊗ vℓ] ∈ Rq×q for k, ℓ = 1, 2, . . . , n.

Lemma 3 The matrices Gkk, Bkk are Laplacian, i.e., Gkk, Bkk ∈ L(q, 1) for all k = 1, 2, . . . , n.

Proof. We can write

Gkk = [Iq ⊗ vTk ]Ld[Iq ⊗ vk]

= [Iq ⊗ vTk ](lap (M−1/2DijM
−1/2)qi,j=1)[Iq ⊗ vk]

= lap (vTk M
−1/2DijM

−1/2vk)qi,j=1 . (20)

Likewise, Bkk = lap (vTk M
−1/2RijM

−1/2vk)qi,j=1. �

It is not difficult to see that the matrices G, B satisfy

G = ΠT [Iq ⊗ V T ]Ld[Iq ⊗ V ]Π

B = ΠT [Iq ⊗ V T ]Lr[Iq ⊗ V ]Π

where Π ∈ Rqn×qn is the permutation matrix that yields ΠT [X ⊗ Y ]Π = Y ⊗X for all X ∈ Rq×q and
Y ∈ Rn×n. Hence G, B ≥ 0. Define

Ωε := G + j([Λ ⊗ Iq] + εB) .

Note that Ωε = ΠT [Iq ⊗ V T ]Γε[Iq ⊗ V ]Π. That is, Ωε and Γε are similar matrices. Therefore they share
the same eigenvalues. Since the array (19) synchronizes if and only if Reλn+1(Γε) > 0, we have the
following result.

Proposition 1 The array (19) synchronizes if and only if Reλn+1(Ωε) > 0.

Remark 1 Although we assume ε > 0 here, it is not difficult to see that Proposition 1 still holds for
the case ε = 0. This observation will be useful in the next section when we consider the pure dissipative
coupling scenario.

Let {e1, e2, . . . , en} be the canonical basis for C
n, i.e., ek is the kth column of In. Note that we have

[ek⊗1q]
TG[ek⊗1q] = 1T

q Gkk1q = 0 because Gkk1q = 0 thanks to that Gkk ∈ L(q, 1) by Lemma 3. Since
G ≥ 0 this allows us to claim G[ek ⊗ 1q] = 0 for all k. Likewise, B[ek ⊗ 1q] = 0. We can thus write

Ωε[ek ⊗ 1q] = (G + j([Λ ⊗ Iq] + εB))[ek ⊗ 1q]

= j[Λ ⊗ Iq][ek ⊗ 1q]

= j[(Λek) ⊗ (Iq1q)]

= jσk[ek ⊗ 1q] .

8



Hence each jσk is an eigenvalue of Ωε with the corresponding eigenvector [ek⊗1q]. Since by Fact 1 all the
eigenvalues of Ωε are on the closed right half plane, we can let, without loss of generality, λk(Ωε) = jσk

for k = 1, 2, . . . , n. Define the positive numbers σ̄, µ̄ as

σ̄ :=
1

2
min
k 6=ℓ

|σk − σℓ| ,

µ̄ :=
1

2
min
k

(

min
λi(Bkk) 6=λj(Bkk)

|λi(Bkk) − λj(Bkk)|
)

.

Lemma 4 Let ξ ∈ (Cq)n be a unit vector satisfying Ωεξ = jβξ for some β ∈ R. There exist an index
k ∈ {1, 2, . . . , n} and an eigenvector w ∈ Cq of Bkk such that

‖ξ − [ek ⊗ w]‖ ≤
[
√
n− 1‖B‖

σ̄

(

1 +
‖B‖
µ̄

)]

ε . (21)

Proof. Let ξ be a unit vector satisfying Ωεξ = jβξ. We have jβ = ξ∗Gξ + jξ∗([Λ ⊗ Iq] + εB)ξ by (3).
Since G ≥ 0 and [Λ ⊗ Iq] + εB > 0 we have to have ξ∗Gξ = 0 which in turn implies Gξ = 0. Thence
Ωεξ = jβξ yields

([Λ ⊗ Iq ] + εB)ξ = βξ . (22)

We have by [5, Cor. 8.1.6] for all i = 1, 2, . . . , qn

|λi([Λ ⊗ Iq] + εB) − λi([Λ ⊗ Iq ])| ≤ ‖B‖ε .

Since λi([Λ⊗Iq]) ∈ {σ1, σ2, . . . , σn}, we must have β = σk+h for some k ∈ {1, 2, . . . , n} and |h| ≤ ‖B‖ε.
Without loss of generality let β = σ1 + h. Let ξ be partitioned as ξ = [uT

1 uT
2 · · · uT

n ]T with uk ∈ Cq.
Since ‖ξ‖ = 1 we have

∑n
ℓ=1 ‖uℓ‖2 = 1. Let us now rewrite (22) as











σ1u1

σ2u2

...
σnun











+ εB











u1

u2

...
un











= (σ1 + h)











u1

u2

...
un











which we decompose into n equations, the first of which is

(

B11 −
h

ε
Iq

)

u1 = −
n
∑

ℓ=2

B1ℓuℓ (23)

and the remaining n− 1 are

(σk − σ1)uk = huk − ε

n
∑

ℓ=1

Bkℓuℓ , k = 2, 3, . . . , n . (24)

Using [5, Eq. (2.3.13)], ‖ξ‖ =
∑n

ℓ=1 ‖uℓ‖2 = 1, and |h| ≤ ‖B‖ε we infer from (24)

‖uk‖ ≤ 1

|σk − σ1|

(

|h| · ‖uk‖ + ε

∥

∥

∥

∥

∥

n
∑

ℓ=1

Bkℓuℓ

∥

∥

∥

∥

∥

)

≤ 1

|σk − σ1|
(|h| + ε‖B‖ · ‖ξ‖)

≤ 2‖B‖ε
|σk − σ1|

≤ ‖B‖ε
σ̄

, k = 2, 3, . . . , n . (25)
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Let ζ = ξ − [e1 ⊗ u1] = [0T uT
2 · · · uT

n ]T , for which we have ‖ζ‖ ≤
√
n− 1‖B‖ε/σ̄ by (25). Letting

α = h/ε and using (23) we obtain

‖(B11 − αIq)u1‖ =

∥

∥

∥

∥

∥

n
∑

ℓ=2

B1ℓuℓ

∥

∥

∥

∥

∥

≤ ‖B‖ · ‖ζ‖

≤
√
n− 1‖B‖2ε

σ̄
. (26)

We have B11 ≥ 0 by Lemma 3. This means we can find m ≤ q pairwise orthogonal eigenvectors
w1, w2, . . . , wm ∈ C

q with corresponding distinct eigenvalues µ1, µ2, . . . , µm ∈ R such that B11wi =
µiwi and u1 = w1 + w2 + · · · + wm. Using the pairwise orthogonality of the vectors wi we can write

(

m
∑

i=1

|µi − α|2‖wi‖2
)1/2

=

∥

∥

∥

∥

∥

m
∑

i=1

(µi − α)wi

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

m
∑

i=1

(B11 − αIq)wi

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

(B11 − αIq)

m
∑

i=1

wi

∥

∥

∥

∥

∥

= ‖(B11 − αIq)u1‖ . (27)

Without loss of generality suppose |µ1 − α| ≤ |µi − α| for i = 2, 3, . . . , m. Note then that |µi − α| ≥ µ̄
for i = 2, 3, . . . , m. Hence we can write by (26) and (27)

‖u1 − w1‖ =

(

m
∑

i=2

‖wi‖2
)1/2

≤ 1

µ̄

(

m
∑

i=2

|µi − α|2‖wi‖2
)1/2

≤
√
n− 1‖B‖2ε

µ̄σ̄
. (28)

Recall ‖ζ‖ ≤
√
n− 1‖B‖ε/σ̄. Hence (28) yields

‖ξ − [e1 ⊗ w1]‖ = ‖[e1 ⊗ u1] + ζ − [e1 ⊗ w1]‖
= ‖[e1 ⊗ (u1 − w1)] + ζ‖
= ‖e1 ⊗ (u1 − w1)‖ + ‖ζ‖
= ‖u1 − w1‖ + ‖ζ‖

≤
√
n− 1‖B‖2ε

µ̄σ̄
+

√
n− 1‖B‖ε

σ̄

=

[
√
n− 1‖B‖

σ̄

(

1 +
‖B‖
µ̄

)]

ε

which was to be shown. �

For k = 1, 2, . . . , n define the nonempty compact sets Ck ⊂ Cq as

Ck := {w : ‖w‖ = 1 , (Bkk − µIq)w = 0 for some µ ∈ R , and 1T
q w = 0}.

Then define the nonnegative real number

γ̄ :=

[

min
k

(

min
w∈Ck

w∗Gkkw

)]1/2

.
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Lemma 5 If Reλ2(Gkk + jBkk) > 0 for all k = 1, 2, . . . , n then γ̄ > 0.

Proof. Suppose γ̄ = 0. Then there should exist an index k ∈ {1, 2, . . . , n}, a real number µ ∈ R, and a
unit vector w ∈ Cq satisfying Bkkw = µw, 1T

q w = 0, and w∗Gkkw = 0. We have Gkk, Bkk ∈ L(q, 1) by
Lemma 3. Hence Gkk1q = 0 and Bkk1q = 0. This allows us to write

(Gkk + jBkk)1q = 0 . (29)

Since Gkk is Laplacian we have Gkk ≥ 0. Hence w∗Gkkw = 0 implies Gkkw = 0 and we have

(Gkk + jBkk)w = jµw . (30)

Since 1T
q w = 0 the vectors w and 1q must be linearly independent. Then (29) and (30) imply that the

matrix Gkk + jBkk must have at least two eigenvalues on the imaginary axis. Also, due to Gkk, Bkk ≥
0 all the eigenvalues of Gkk + jBkk must be on the closed right half plane by Fact 1. This implies
λ2(Gkk + jBkk) = 0. Hence the result. �

Theorem 2 Suppose Reλ2(Gkk + jBkk) > 0 for all k = 1, 2, . . . , n. Then there exists r > 0 such that
the array (19) synchronizes for all ε ∈ (0, r). In particular, one can choose

r =
γ̄σ̄µ̄

(

√

‖G‖ + 2γ̄
)√

n− 1‖B‖(µ̄ + ‖B‖)
.

Proof. We prove by contradiction. Let Reλ2(Gkk + jBkk) > 0 for all k = 1, 2, . . . , n. Then γ̄ > 0 by
Lemma 5. Let the coupling strength

ε <
γ̄

(

√

‖G‖ + 2γ̄
)

c
(31)

be fixed, where we let

c =

√
n− 1‖B‖

σ̄

(

1 +
‖B‖
µ̄

)

.

Suppose however that the array (19) fails to synchronize. This implies, by Proposition 1, Reλn+1(Ωε) = 0
since all the eigenvalues of Ωε are on the closed right half plane by Fact 1. Let therefore λn+1(Ωε) = jβ
with β ∈ R. For this eigenvalue we can find a unit vector ξ ∈ (Cq)n satisfying

Ωεξ = jβξ (32)

and ξ /∈ span{[e1 ⊗ 1q], [e2 ⊗ 1q], . . . , [en ⊗ 1q]}; see the argument employed in the proof of Lemma 2.
Without loss of generality we assume the orthogonality

[ek ⊗ 1q]T ξ = 0 for all k = 1, 2, . . . , n . (33)

Generality is not lost because using the symmetry ΩT
ε = Ωε we can write

jβ[ek ⊗ 1q]
T ξ = [ek ⊗ 1q]TΩεξ = (Ωε[ek ⊗ 1q])T ξ = jσk[ek ⊗ 1q]T ξ

which allows us to claim that if jβ 6= jσk for all k then (33) must hold. If, on the other hand, jβ = jσℓ

for a particular ℓ then we can apply Gram-Schmidt procedure to construct the new unit vector ξnew =
(ξ− [eℓ⊗1q][eℓ⊗1q]

T ξ)/‖ξ− [eℓ⊗1q][eℓ⊗1q]
T ξ‖, which indeed satisfies both (32) and (33). By Lemma 4

there exist an index k ∈ {1, 2, . . . , n} and an eigenvector w ∈ Cq of Bkk satisfying (21). Without loss
of generality let this index be k = 1. Also, let µ ∈ R be the corresponding eigenvalue, i.e., B11w = µw.
Therefore we can write ξ = [e1 ⊗ w] + ζ for some ζ ∈ (Cq)n satisfying ‖ζ‖ ≤ cε. Whence

‖w‖ = ‖e1 ⊗ w‖
= ‖ξ − ζ‖
≥ ‖ξ‖ − ‖ζ‖
≥ 1 − cε . (34)
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We now consider two cases.
Case 1, µ 6= 0: By Lemma 3 we have B11 ∈ L(q, 1). Hence B111q = 0, i.e., 1q is an eigenvector whose

eigenvalue is zero. This gives us 1T
q w = 0 because a pair of eigenvectors of a real symmetric matrix are

orthogonal if the corresponding eigenvalues are different. Note that (32) implies Gξ = 0 (see the proof of
Lemma 4). Using this, the lower bound (34), and the fact that w/‖w‖ ∈ C1 we have

γ̄2(1 − cε)2 ≤ γ̄2‖w‖2

≤ w∗G11w

= [e1 ⊗ w]∗G[e1 ⊗ w]

= (ξ − ζ)∗G(ξ − ζ)

= ζ∗Gζ

≤ ‖G‖ · ‖ζ‖2

≤ ‖G‖(cε)2

which contradicts (31).
Case 2, µ = 0: Since [e1 ⊗ 1q]T ξ = 0 by (33) we can write

|1T
q w| = |[e1 ⊗ 1q]

T [e1 ⊗ w]|
= |[e1 ⊗ 1q]

T (ξ − ζ)|
= |[e1 ⊗ 1q]

T ζ|
≤ ‖e1 ⊗ 1q‖ · ‖ζ‖
= ‖ζ‖
≤ cε . (35)

Construct the vector w1 ∈ Cq as

w1 = w − 1q1
T
q w .

Note that B11w1 = 0 (i.e., w1 is an eigenvector of B11) and 1T
q w1 = 0. Also, by (34) and (35) we have

‖w1‖ ≥ ‖w‖ − |1T
q w| · ‖1q‖

≥ 1 − 2cε .

This inequality, G[e1 ⊗ 1q] = 0, Gξ = 0, and w1/‖w1‖ ∈ C1 yield

γ̄2(1 − 2cε)2 ≤ γ̄2‖w1‖2

≤ w∗
1G11w1

= [e1 ⊗ w1]∗G[e1 ⊗ w1]

= [e1 ⊗ (w − 1q1
T
q w)]∗G[e1 ⊗ (w − 1q1

T
q w)]

= (ξ − (1T
q w)[e1 ⊗ 1q] − ζ)∗G(ξ − (1T

q w)[e1 ⊗ 1q] − ζ)

= ζ∗Gζ

≤ ‖G‖ · ‖ζ‖2

≤ ‖G‖(cε)2

which contradicts (31). �

It is not difficult to see that λ2(Gkk) > 0 implies Reλ2(Gkk + jBkk) > 0. Hence:

Corollary 3 Suppose λ2(Gkk) > 0 for all k = 1, 2, . . . , n. Then there exists r > 0 such that the
array (19) synchronizes for all ε ∈ (0, r).
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Consider now an array of coupled n-link pendulums where the springs connect pairs of pendulums only
through a particular link. And likewise for the dampers, see Fig. 6. This configuration makes a special
case of (19) where the coupling matrices are commensurable. That is, there exist matrices Cd ∈ Rmd×n

and Cr ∈ Rmr×n such that for all i, j we have Dij = dijC
T
d Cd and Rij = rijC

T
r Cr where dij , rij are

nonnegative scalars. This leads to the dynamics below, where the coupling enjoys a type of uniformity,

Mẍi + Kxi +

q
∑

j=1

dijC
T
d Cd(ẋi − ẋj) + ε

q
∑

j=1

rijC
T
r Cr(xi − xj) = 0 , i = 1, 2, . . . , q . (36)

Such uniformity makes the synchronization analysis significantly simpler, yet not too simple to be inter-
esting. Define the Laplacian matrices ℓd, ℓr ∈ L(q, 1) as

ℓd := lap (dij)
q
i,j=1 ,

ℓr := lap (rij)
q
i,j=1 .

Figure 6: Uniformly coupled 3-link pendulums.

Corollary 4 Suppose Reλ2(ℓd + jℓr) > 0 and both (Cd, M
−1K) and (Cr, M

−1K) are observable pairs.
Then there exists r > 0 such that the array (36) synchronizes for all ε ∈ (0, r).

Proof. We begin by proving the implication

Reλ2(ℓd + jℓr) > 0 =⇒ Reλ2(αℓd + jβℓr) > 0 for all scalars α, β > 0 . (37)

Given α, β > 0, consider the matrix αℓd+jβℓr. Note that ℓd, ℓr ≥ 0 thanks to ℓd, ℓr ∈ L(q, 1). Therefore
all the eigenvalues of αℓd + jβℓr are on the closed right half plane by Fact 1. Also, since ℓd1q = 0 and
ℓr1q = 0, we have (αℓd + jβℓr)1q = 0. Hence, without loss of generality, we can let λ1(αℓd + jβℓr) = 0.
Consider now the situation Reλ2(αℓd + jβℓr) ≤ 0. This implies λ2(αℓd + jβℓr) = jγ for some γ ∈ R. Let
ξ2 ∈ Cq be the corresponding unit eigenvector:

(αℓd + jβℓr)ξ2 = jγξ2 . (38)

If jγ 6= 0 then clearly we must have ξ2 /∈ span {1q}. If jγ = 0, on the other hand, then we can choose
ξ2 /∈ span {1q}. For if we could not then 1q would have to be the only eigenvector for the repeated
eigenvalue at the origin. This would require that there existed a generalized eigenvector ζ satisfying
(αℓd + jβℓr)ζ = 1q which, because αℓd + jβℓr is symmetric, would lead to the following contradiction

1 = 1T
q 1q = 1T

q (αℓd + jβℓr)ζ = ((αℓd + jβℓr)1q)T ζ = 0 .

Hence we let ξ2 /∈ span {1q}. Now, left-multiplying (38) by ξ∗2 yields αξ∗2ℓdξ2 + jβξ∗2ℓrξ2 = jγ implying
ξ∗2ℓdξ2 = 0. This in turn gives us ℓdξ2 = 0 because ℓd ≥ 0. Therefore we have to have ℓrξ2 = (γ/β)ξ2
by (38). Consequently, (ℓd + jℓr)ξ2 = j(γ/β)ξ2. We also have (ℓd + jℓr)1q = 0. Since ξ2 and 1q are
linearly independent, this means ℓd + jℓr has at least two eigenvalues on the imaginary axis. Therefore
we have established Reλ2(αℓd + jβℓr) ≤ 0 =⇒ Reλ2(ℓd + jℓr) ≤ 0, which gives us (37) because α, β
were arbitrary.
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Recall that v1, v2, . . . , vn are the eigenvectors of P = M−1/2KM−1/2, the corresponding eigenvalues
being σ1, σ2, . . . , σn. Define now the vectors ṽk = M−1/2vk. These ṽk are the eigenvectors of M−1K
because we can write

M−1Kṽk = M−1KM−1/2vk

= M−1/2(M−1/2KM−1/2vk)

= M−1/2(σkvk)

= σk ṽk .

Define αk = ‖Cdṽk‖2 and βk = ‖Crṽk‖2 for k = 1, 2, . . . , n. Recall Dij = dijC
T
d Cd and Rij = rijC

T
r Cr.

Starting from (20) we can write

Gkk = lap (vTk M
−1/2DijM

−1/2vk)qi,j=1

= lap (ṽTk C
T
d Cdṽkdij)

q
i,j=1

= ‖Cdṽk‖2lap (dij)
q
i,j=1

= αkℓd .

Likewise, we have Bkk = βkℓr. Hence, for all k = 1, 2, . . . , n,

Gkk + jBkk = αkℓd + jβkℓr . (39)

Suppose now Reλ2(ℓd + jℓr) > 0 and both (Cd, M
−1K) and (Cr, M

−1K) are observable pairs. By
PBH observability condition [6] we have to have Cdṽk 6= 0 and Crṽk 6= 0 for all k = 1, 2, . . . , n. This
means αk, βk > 0. The result then follows by (37), (39), and Theorem 2. �

5 Pure dissipative coupling

In the last part of our analysis we dispense with the restorative coupling (e.g., springs connecting the
pendulums) altogether and focus on the special case of (2) where all Rij = 0. This is the case where the
coupling is purely dissipative:

Mẍi + Kxi +

q
∑

j=1

Dij(ẋi − ẋj) = 0 , i = 1, 2, . . . , q . (40)

The next result is closely related to [17, Cor. 1].

Theorem 3 The array (40) synchronizes if and only if λ2(Gkk) > 0 for all k = 1, 2, . . . , n.

Proof. Define the matrix Ω0 = G + j[Λ ⊗ Iq]. Note that the array (40) synchronizes if and only if
Reλn+1(Ω0) > 0 thanks to Remark 1. Some of our earlier arguments on Ωε are valid also on Ω0. By
those arguments we see that Ω0[ek ⊗ 1q] = jσk[ek ⊗ 1q] for k = 1, 2, . . . , n. That is, each [ek ⊗ 1q] is an
eigenvector, the corresponding eigenvalue being jσk. Also, all the eigenvalues of Ω0 are on the closed right
half plane by Fact 1. Therefore we can let, without loss of generality, λk(Ω0) = jσk for k = 1, 2 . . . , n.

Suppose the array (40) fails to synchronize. This implies λn+1(Ω0) = jβ for some β ∈ R. Let ξ ∈ (Cq)n

be the corresponding unit eigenvector. We can write jβ = ξ∗Gξ+ jξ∗[Λ⊗ Iq]ξ by (3). This tells us (since
G ≥ 0 and [Λ⊗Iq] > 0) that ξ∗Gξ = 0 and, consequently, Gξ = 0. Therefore [Λ⊗Iq]ξ = βξ. That is, ξ is an
eigenvector of [Λ⊗Iq] and β an eigenvalue. Now, Λ = diag (σ1, σ2, . . . , σn) implies β ∈ {σ1, σ2, . . . , σn}.
Without loss of generality let us take β = σ1. Then ξ has to have the form ξ = [e1 ⊗w] for some w ∈ Cq.
Again without loss of generality we can further assume w /∈ span {1q}. Generality is not lost; for,
otherwise, [e1 ⊗ 1q] would be the only eigenvector of Ω0 for the repeated eigenvalue jσ1, which would
require the existence of a generalized eigenvector ζ satisfying (Ω0 − jσ1Iqn)ζ = [e1 ⊗ 1q]. This however
yields the contradiction below because ΩT

0 = Ω0

1 = [e1 ⊗ 1q]
T [e1 ⊗ 1q] = [e1 ⊗ 1q]

T (Ω0 − jσ1Iqn)ζ = ((Ω0 − jσ1Iqn)[e1 ⊗ 1q])
T ζ = 0 .

14



Note that we have

w∗G11w = [e1 ⊗ w]∗G[e1 ⊗ w] = ξ∗Gξ = 0

implying G11w = 0 because G11 ≥ 0 thanks to G11 ∈ L(q, 1) by Lemma 3. Furthermore, G111q = 0.
Since the set {w, 1q} is linearly independent the eigenvalue of G11 at the origin must be repeated. This
means λ2(G11) = 0 because G11 ≥ 0.

To show the other direction let us suppose this time that λ2(Gℓℓ) ≤ 0 for some ℓ. Being a Laplacian
matrix, Gℓℓ ≥ 0 and Gℓℓ1q = 0. Therefore the eigenvalue at the origin is repeated and there exists a
vector u /∈ span {1q} satisfying Gℓℓu = 0. Construct now the vector η = [eℓ ⊗ u]. Clearly, this vector
satisfies

η /∈ span {[e1 ⊗ 1q], [e2 ⊗ 1q], . . . , [en ⊗ 1q]} . (41)

Moreover,

η∗Gη = [eℓ ⊗ u]∗G[eℓ ⊗ u] = u∗Gℓℓu = 0

which, since G ≥ 0, implies Gη = 0. This allows us to see that η is an eigenvector of Ω0 because

Ω0η = (G + j[Λ ⊗ Iq])η

= j[Λ ⊗ Iq ][eℓ ⊗ u]

= j[(Λeℓ) ⊗ (Iqu)]

= j[(σℓeℓ) ⊗ (Iqu)]

= jσℓ[eℓ ⊗ u]

= jσℓη . (42)

Now, (41) and (42) tell us that Ω0 has at least n+ 1 linearly independent eigenvectors whose eigenvalues
lie on the imaginary axis. But this implies Reλn+1(Ω0) = 0. Hence the result. �

Consider now the scenario where the coupling in the array (40) is uniform. That is, there exists a
matrix Cd ∈ Rmd×n such that Dij = dijC

T
d Cd where dij are nonnegative scalars. Under this condition

the array dynamics take the form

Mẍi + Kxi +

q
∑

j=1

dijC
T
d Cd(ẋi − ẋj) = 0 , i = 1, 2, . . . , q . (43)

The coupling of this array is represented by two parameters: the Laplacian matrix ℓd = lap (dij)
q
i,j=1 and

the output matrix Cd. How they are linked to synchronization is stated next.

Corollary 5 The array (43) synchronizes if and only if λ2(ℓd) > 0 and (Cd, M
−1K) is observable.

Proof. The demonstration is similar to that of Corollary 4. �

6 Conclusion

In this paper we studied the problem of synchronization in an array of identical oscillators subject to both
dissipative and restorative coupling. We presented a simple way to combine the pair of matrix-weighted
Laplacians (one representing the dissipative, the other the restorative coupling) in a single complex-valued
matrix and established an equivalence relation between a certain spectral property of this matrix and the
collective behavior of the oscillators. Also, we projected this method to generate more refined conditions
for synchronization applicable when the restorative coupling is either weak or absent altogether.
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