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Abstract

The role of restorative coupling on synchronization of coupled identical harmonic oscillators is

studied. Necessary and sufficient conditions, under which the individual systems’ solutions converge to

a common trajectory, are presented. Through simple physical examples, the meaning and limitations

of the theorems are expounded. Also, to demonstrate their versatility, the results are extended to

cover LTI passive electrical networks. One of the extensions generalizes the well-known link between

the asymptotic stability of the synchronization subspace and the second smallest eigenvalue of the

Laplacian matrix.

1 Introduction

Studying the collective behavior of coupled harmonic oscillators has been a rewarding enterprize for
researchers who try to enhance their understanding on a much-encountered phenomenon in nature: syn-
chronization. For instance, it has been observed that two or more identical pendulums1 connected by
means of dampers eventually swing in unison even if initially they are not synchronized; see Fig. 1. This
outcome is not difficult to reach by intuition. Since the energy of the system can only leak out through
the dampers, the pendulums should eventually settle to a constant energy state where there is no leakage.
No leakage implies that the relative velocities are all zero. In other words, all the pendulums are moving
at equal velocities at all times. This is only possible when they are synchronized.

t→∞

Figure 1: Damper-coupled pendulums.

The simple example above has served as a starting point for many significant generalizations. In [8]
Ren studies synchronization of coupled harmonic oscillators allowing time-varying oscillator dynamics as
well as time-varying and asymmetrical dampers. The case where the damping between a pair of oscillators
becomes effective only when the two are close enough is investigated in [10]. The effect of nonlinear
damping is analyzed in [3] and of impulsive damping in [14]. A sampled-data approach is adopted in
[13, 11]. Adaptive damping is covered in [9] and synchronization in the presence of noisy damping is
considered in [12]. Note that all these works consider only dissipative coupling (e.g. dampers). From
the engineering point of view this choice is not surprising because introducing restorative coupling (e.g.
springs) will in general deteriorate performance by causing longer and more oscillatory transient behavior;
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1We restrict our attention to the small oscillations, where the pendulum can be represented by a linear model.
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for instance, the simulation results show that the three pendulums in Fig. 2 synchronize much less rapidly
than those in Fig. 1. Perhaps this may partly explain why collective behavior of spring-coupled oscillators
has attracted more physicists than engineers. While for the engineer spring is an option to couple two
units, for the physicist it represents an inherent characteristic of interaction. Relevant investigations
in the physics community goes as far back, if not further, as the work of Fermi et al. [4] where chain
of nonlinearly coupled oscillator-like particles were studied. Due to the richness of the subject and the
increasing variety of applications in both inanimate and biological systems, the area has maintained its
livelihood throughout many decades. See, for instance, [6], [7], [1], [5] for recent progress.

Figure 2: Damper- and spring-coupled pendulums.

Through this paper we aim to provide a comprehensive analysis of the collective behavior of identical
harmonic oscillators coupled by both restorative and dissipative components. To the best of our knowledge
a detailed treatment of synchronization has not yet been reported for this setting, where two different
interconnection graphs are simultaneously at work: the graph representing restorative coupling and the
graph representing dissipative coupling. We present a necessary and sufficient condition on the associated
pair of Laplacian matrices, under which the individual systems tend to oscillate in unison. We also point
out a certain sufficient-only, yet easier-to-check set of conditions guaranteeing synchronization and exercise
them on some simple real-world examples for clarity. Later, we attempt to extend our approach to the
analysis of linear electrical networks of identical oscillators (of arbitrary order) coupled through passive
impedances. For such networks we establish a link between synchronization and the eigenvalues of the
(complex) node admittance matrix. This seems to be a natural extension of the well-known connectivity
condition in terms of the second smallest eigenvalue of the (real-valued) Laplacian matrix.

2 Coupled harmonic oscillators

Consider the array of q coupled harmonic oscillators

z̈i + ω2
0zi +

q
∑

j=1

dij(żi − żj) +

q
∑

j=1

rij(zi − zj) = 0 , i = 1, 2, . . . , q (1)

where zi ∈ R and ω0 > 0 is the frequency of uncoupled oscillations. The symmetric weights dij = dji ≥ 0
and rij = rji ≥ 0 respectively represent the dissipative and restorative coupling between the ith and
jth oscillators. Note that without symmetry, i.e., either dij 6= dji or rij 6= rji, the solutions are not
guaranteed to be bounded unless some extra assumption is made. We take dii = 0 and rii = 0. In
this section and next we search for conditions on the triple (ω0, {dij}, {rij}) under which the harmonic
oscillators (1) synchronize, i.e., |zi(t)− zj(t)| → 0 as t → ∞ for all i, j and all initial conditions.

Let D, R ∈ Rq×q denote the weighted Laplacian matrices associated to the topologies described by
the dissipative coupling {dij} and the restorative coupling {rij}, respectively. That is,

D =











∑

j d1j −d12 · · · −d1q
−d21

∑

j d2j · · · −d2q
...

...
. . .

...
−dq1 −dq2 · · ·

∑

j dqj











, R =











∑

j r1j −r12 · · · −r1q
−r21

∑

j r2j · · · −r2q
...

...
. . .

...
−rq1 −rq2 · · ·

∑

j rqj











.

Note that these matrices are symmetric positive semidefinite since dij = dji ≥ 0 and rij = rji ≥ 0.
In particular, we can write zTDz =

∑

j>i dij(zi − zj)
2 and zTRz =

∑

j>i rij(zi − zj)
2, where z =

2



[z1 z2 · · · zq]
T ∈ Rq. Let us now rewrite (1) as

z̈ + ω2
0z +Dż +Rz = 0 .

This, using x = [zT żT ]T ∈ R2q, allows us to obtain

ẋ =

[

0 Iq
−(ω2

0Iq +R) −D

]

x =: Φx (2)

where Iq ∈ Rq×q is the identity matrix. Employing the symmetric positive definite matrix

P =
1

2

[

ω2
0Iq +R 0

0 Iq

]

we can establish the following Lyapunov equality

ΦTP + PΦ = −

[

0 0
0 D

]

.

Since the righthand side is negative semidefinite, each solution x(t) of the system (2) is bounded. More-
over, by Krasovskii-LaSalle principle, x(t) should converge to the largest invariant region contained in
the intersection D ∩ {x : xTPx ≤ x(0)TPx(0)} where

D :=

{

x :

[

0 0
0 D

]

x = 0

}

.

It turns out that the condition

null

[

R− λIq
D

]

⊂ range1q for all λ ∈ C (3)

(where 1q ∈ Rq is the vector of all ones) guarantees that this largest invariant region is contained in the
synchronization subspace

S := range

[

1q 0
0 1q

]

.

In other words:

Lemma 1 Let (3) hold. Then and only then

x(t) ∈ D for all t =⇒ x(t) ∈ S for all t (4)

where x(t) is the solution of the system (2).

Proof. We first establish (3) =⇒ (4). Let x(t) = [z(t)T ż(t)T ]T be a solution of the system (2) that
identically belongs to D. This means Dż(t) ≡ 0. Also,

ẋ =

[

0 Iq
−(ω2

0Iq +R) 0

]

x−

[

0 0
0 D

]

x =

[

0 Iq
−(ω2

0Iq +R) 0

]

x

which implies

z̈ + (ω2
0Iq +R)z = 0 . (5)

Let λ1, λ2, . . . , λp be the distinct (p ≤ q) eigenvalues of R. Since R is symmetric positive semidefinite,
these eigenvalues are real and nonnegative. Consequently, the matrix [ω2

0Iq + R] is symmetric positive
definite with eigenvalues ω2

0 + λ1, ω
2
0 + λ2, . . . , ω

2
0 + λp. Therefore (5) implies that the solution has the

form [2, §23]

z(t) = Re

p
∑

k=1

ejωktξk (6)
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where ωk =
√

ω2
0 + λk are distinct and positive, and each ξk ∈ Cq (some of which may be zero) satisfies

0 = ([ω2
0Iq +R]− ω2

kIq)ξk

= (R − λkIq)ξk . (7)

Note that the condition Dż(t) ≡ 0 and (6) imply

Dξk = 0 (8)

since ωk are distinct and nonzero. Combining (7) and (8) we can write

ξk ∈ null

[

R− λkIq
D

]

. (9)

Suppose now (3) holds. Then (9) implies ξk ∈ range1q for all k. By (6) this readily yields z(t) ∈ range1q

for all t. Consequently, ż(t) ∈ range1q and x(t) ∈ S for all t.
Now we show the other direction (4) =⇒ (3). Suppose that condition (3) is not true. Then we can find

an eigenvalue λ∗ ≥ 0 of R and a nonzero vector ξ∗ ∈ R
q satisfying ξ∗ /∈ range1q such that Dξ∗ = 0 and

(R− λ∗Iq)ξ∗ = 0. Let ω∗ =
√

ω2
0 + λ∗. Using the pair (ω∗, ξ∗) let us construct the function z∗ : R → Rq

as z∗(t) = Re(ejω∗tξ∗). This function satisfies the following properties. First, since ξ∗ /∈ range1q, we
have

z∗(0) = ξ∗ /∈ range1q . (10)

Second, since Dξ∗ = 0, we have at all times

Dż∗(t) = Re(jω∗e
jω∗tDξ∗) = 0 . (11)

Third, since [R+ (ω2
0 − ω2

∗)Iq]ξ∗ = 0, we can write at all times

z̈∗(t) + (ω2
0Iq +R)z∗(t) = −ω2

∗z∗(t) + (ω2
0Iq +R)z∗(t) = Re(ejω∗t[R+ (ω2

0 − ω2
∗)Iq]ξ∗) = 0

which together with (11) leads to

z̈∗(t) +Dż∗(t) + (ω2
0Iq +R)z∗(t) ≡ 0 . (12)

Let x∗(t) = [z∗(t)
T ż∗(t)

T ]T . It follows from (12) that x∗(t) satisfies (2) and hence is a solution of the
system. By (11) we can assert that the solution x∗(t) belongs identically to D, but (10) tells us that x∗(t)
does not identically belong to S. That is, the condition (4) fails. �

To the question asked at the beginning we can now give the answer:

Theorem 1 The harmonic oscillators (1) synchronize if and only if (3) holds.

Remark 1 Note that the condition (3) does not depend on the natural frequency ω0.

Before we end this section we attempt to interpret condition (3). Recall that, given matrices C ∈ Rm×n

and A ∈ Rn×n, the unobservable subspace of the pair (C, A) is

unobs (C, A) = null











C
CA
...

CAn−1











.

The below result reveals the meaning of condition (3) from the observability point of view.

Theorem 2 Condition (3) holds if and only if unobs (D, R) = range1q.

Proof. Suppose (3) fails. Then we can find an eigenvector ξ of R satisfying ξ /∈ range1q and Dξ = 0.
Let λ be the corresponding eigenvalue, i.e., Rξ = λξ. We can write











D
DR
...

DRq−1











ξ =











Dξ
DRξ
...

DRq−1ξ











=











Dξ
λDξ
...

λq−1Dξ











= 0 .
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Therefore ξ ∈ unobs (D, R). Since ξ /∈ range1q, we must have unobs (D, R) 6= range1q.
Now we show the other direction. Suppose unobs (D, R) 6= range1q. By definition we have D1q = 0

and R1q = 0, meaning unobs (D, R) ⊃ range1q. Consequently, 2 ≤ dimunobs (D, R) =: ℓ. Let
{η1, η2, . . . , ηℓ} with η1 = 1q be an orthogonal basis for unobs (D, R). Since R is symmetric its
eigenvectors form an orthogonal basis for Cq. Let this basis be {ξ1, ξ2, . . . , ξq} with ξ1 = 1q. Note
that we have span {η2, . . . , ηℓ} ⊂ span {ξ2, . . . , ξq}. Now, let us choose an arbitrary nonzero vector
w ∈ span {η2, . . . , ηℓ}. Since unobs (D, R) is R-invariant we have Rw ∈ span {η1, . . . , ηℓ}. Moreover,
w ∈ span {ξ2, . . . , ξq} implies Rw ∈ span {ξ2, . . . , ξq} because ξi are eigenvectors. Hence we can write

Rw ∈ span {η1, . . . , ηℓ} ∩ span {ξ2, . . . , ξq}

= span {η2, . . . , ηℓ} .

This implies (since w was arbitrary) that span {η2, . . . , ηℓ} isR-invariant. Consequently, span {η2, . . . , ηℓ}
contains at least one eigenvector ξ of R. It must be that ξ /∈ range1q because 1q /∈ span {η2, . . . , ηℓ}.
Let λ be the corresponding eigenvalue, i.e., Rξ = λξ. Since ξ ∈ unobs (D, R) we have ξ ∈ nullD yielding
nullD ∩ null (R − λIq) ⊃ span {ξ} which implies that (3) fails to hold. �

3 Sufficient conditions for synchronization

Although condition (3) tells us definitely whether a given array of harmonic oscillators will synchronize
or not, it may nevertheless be expensive or simply impossible to employ when, for instance, the number
of oscillators is large or certain parameter values are unknown. Therefore it is worthwhile to look for
sufficient-only, yet simpler-to-check conditions to determine synchronization. This is what we intend to
do in this section.

Recall that an undirected graph is a pair of sets (V , E) where V = {v1, v2, . . . , vq} is the set of
vertices and the elements of the (possibly empty) set E are some (unordered) pairs of vertices (vi, vj).
Let us now introduce two graphs associated to the array of harmonic oscillators (1) as follows. The graph
Γd = (V , Ed) describes the interconnection associated to dissipative coupling and is such that (vi, vj) ∈ Ed
when dij 6= 0. Similarly, Γr = (V , Er) denotes the restorative coupling topology and (vi, vj) ∈ Er when
rij 6= 0.

By construction D1q = 0, which yields nullD ⊃ range1q. Since a graph is connected when the
eigenvalue of the associated Laplacian matrix at the origin is simple, we have nullD = range1q when Γd

is connected. Note that (3) is trivially satisfied if nullD = range1q. Therefore we can assert:

Corollary 1 The harmonic oscillators (1) synchronize if the dissipative coupling graph Γd is connected.

As mentioned earlier, a collection of identical pendulums connected (only) by dampers eventually
synchronize. What the above result adds to this statement is that even if we supplement the collection
by springs connecting some pairs of pendulums, the tendency for synchronization cannot be destroyed.
Corollary 1 is hardly surprising. Now we move on to establishing a less evident result. We begin by
defining the matrix R∆ ∈ Rq×q as

R∆ =











∑

j r̂1j −r̂12 · · · −r̂1q
−r̂21

∑

j r̂2j · · · −r̂2q
...

...
. . .

...
−r̂q1 −r̂q2 · · ·

∑

j r̂qj











where r̂ij =

{

rij for dij = 0 ,
0 for dij 6= 0 .

We let ΓΣ = (V , EΣ) where EΣ = Er ∪ Ed. Likewise, employing the set difference E∆ = Er − Ed we
define the graph Γ∆ = (V , E∆). Let Γ∆ have c connected components, which we denote by Γℓ = (Vℓ, Eℓ)
for ℓ = 1, 2, . . . , c. By definition all the pairs (Vℓ, Vk) and (Eℓ, Ek) are disjoint for ℓ 6= k. Moreover,
⋃

ℓ Vℓ = V and
⋃

ℓ Eℓ = E∆. Note that if Γ∆ itself is connected then c = 1 and Γ1 = Γ∆. Let nℓ = |Vℓ| be
the number of vertices that belong to Γℓ. Without loss of generality let the vertices vi be such labelled that
V1 = {v1, v2, . . . , vn1

}, V2 = {vn1+1, vn1+2, . . . , vn1+n2
}, and so on. Then R∆ has the block diagonal

form

R∆ =











R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rc
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with Rℓ ∈ Rnℓ×nℓ . Note that each Rℓ is symmetric positive semidefinite and satisfies Rℓ1nℓ
= 0 meaning

there is an eigenvalue at the origin. Since Γℓ is connected this eigenvalue at the origin is simple. Hence
the eigenvalues of Rℓ can be ordered as 0 = λ1, ℓ < λ2, ℓ ≤ · · · ≤ λnℓ, ℓ. Now, for each ℓ = 1, 2, . . . , c,
define the following system

η̈ℓ + (ω2
0Inℓ

+Rℓ)ηℓ = 0 (13)

with ηℓ = [zσℓ+1 zσℓ+2 · · · zσℓ+nℓ
]T ∈ Rnℓ where σ1 = 0 and σℓ = n1+n2+ · · ·+nℓ−1 for ℓ ≥ 2. Note that

we can write z = [z1 z2 · · · zq]T = [ηT1 ηT2 · · · ηTc ]
T . Let Ωℓ = {ω > 0 : ω2 = ω2

0+λk, ℓ , k = 1, 2, . . . , nℓ}
denote the set of characteristic frequencies of the system (13). Note that the frequency ω0 belongs to
every Ωℓ because λ1, ℓ = 0. Now we list a sufficient set of conditions guaranteeing synchronization.

Assumption 1 (P) The harmonic oscillators (1) satisfy the following conditions.

1. For all ℓ = 1, 2, . . . , c the system (13) is observable from each zk for all k ∈ {i : vi ∈ Vℓ}.

2. Ω1 ∩ Ω2 ∩ · · · ∩ Ωc = {ω0} .

3. ΓΣ is connected.

A more mathematical (less physical) version of Assumption 1 reads:

Assumption 1 (M) The harmonic oscillators (1) satisfy the following conditions.

1. None of the matrices R1, R2, . . . , Rc has an eigenvector with a zero entry.

2. λ = 0 is the only common eigenvalue of the matrices R1, R2, . . . , Rc.

3. nullR ∩ nullD = range1q.

Theorem 3 The harmonic oscillators (1) synchronize if Assumption 1 holds.

Proof. If we can show that Assumption 1 implies condition (3) then by Theorem 1 the oscillators
must synchronize. Let us establish the implication by contradiction. Suppose that (3) is not true but
Assumption 1 holds. Then we can find an eigenvector ξ /∈ range1q satisfying Dξ = 0 and (R−λIq)ξ = 0
for some λ. This eigenvalue λ cannot be zero for then we have ξ ∈ nullR ∩ nullD which contradicts the
third condition of Assumption 1. Let us therefore study the case λ 6= 0 in the sequel.

Let us employ the partitions ξ = [z1 z2 · · · zq]
T = [ηT1 ηT2 · · · ηTc ]

T . Since Dξ = 0 we can write
0 = ξTDξ =

∑

j>i dij(zi − zj)
2 which implies that for a given pair (i, j) of indices either dij = 0 or

zi = zj . Since dij = 0 means r̂ij = rij we have r̂ij(zi − zj) = rij(zi − zj) for all i, j. Now we can proceed
to claim Rξ = R∆ξ because

Rξ =







∑

j r1j(z1 − zj)
...

∑

j rqj(zq − zj)






=







∑

j r̂1j(z1 − zj)
...

∑

j r̂qj(zq − zj)






= R∆ξ .

Therefore R∆ξ = λξ. Then the block diagonal structure of R∆ allows us to write Rℓηℓ = ληℓ for all
ℓ = 1, 2, . . . , c. Since by assumption nonzero eigenvalue λ is not common to all Rℓ we should have ηℓ = 0
for at least one index ℓ. Also, again by assumption, no entry of ηℓ can be zero whenever ηℓ 6= 0. That
is, if ηℓ 6= 0 then zk 6= 0 for all k ∈ {i : vi ∈ Vℓ}. Let us now define two (nonempty) sets of indices
I := {i : vi ∈ Vℓ, ηℓ 6= 0, ℓ = 1, 2, . . . , c} and its complement J := {1, 2, . . . , q} − I. Note that zi 6= 0
for i ∈ I and zi = 0 for i ∈ J . For any pair of indices (i, j) with i ∈ I and j ∈ J we can assert the
following. (i) dij = 0. Because zi − zj 6= 0 and 0 = ξTDξ ≥ dij(zi − zj)

2. (ii) r̂ij = 0. Because, by how
we constructed the sets I and J , the vertices vi and vj cannot belong to the same vertex set Vℓ. Then by
the block diagonal form of R∆ the entry r̂ij must be zero. (iii) rij = 0. Because dij = 0 means rij = r̂ij .

Construct the vector ξ̂ = [ẑ1 ẑ2 · · · ẑq]
T with entries ẑi = 0 for i ∈ I and ẑi = 1 for i ∈ J . Clearly,

ξ̂ /∈ range1q. We can write

ξ̂TDξ̂ =
∑

j>i

dij(ẑi − ẑj)
2

=
1

2

∑

i,j∈I

dij(ẑi − ẑj)
2 +

∑

i∈I, j∈J

dij(ẑi − ẑj)
2 +

1

2

∑

i,j∈J

dij(ẑi − ẑj)
2

=
1

2

∑

i,j∈I

dij(0 − 0)2 +
1

2

∑

i,j∈J

dij(1− 1)2

= 0

6



where we used the fact that dij = 0 when i ∈ I and j ∈ J . Then ξ̂TDξ̂ = 0 implies Dξ̂ = 0 because D is
symmetric positive semidefinite. Since we also have that rij = 0 when i ∈ I and j ∈ J , we can similarly

establish Rξ̂ = 0. Hence ξ̂ ∈ nullR ∩ nullD. But ξ̂ /∈ range1q. This contradicts the third condition of
Assumption 1. �

As stated earlier, Assumption 1 is only sufficient for synchronization. Hence if an assembly of harmonic
oscillators fail to synchronize, at least one of the three conditions listed therein must not hold. Of those
three conditions, the necessity of the third one (that ΓΣ is connected) is evident. However, the relation
of the remaining two conditions to synchronization is subtle and requires due attention. To better
understand the meanings of those conditions we now provide two examples, where harmonic oscillators
do not synchronize. Each example violates one of the first two conditions of Assumption 1.

Example 1 Consider the following four coupled harmonic oscillators

z̈1 + ω2
0z1 + r(z1 − z2) = 0

z̈2 + ω2
0z2 + d(ż2 − ż4) + r(z2 − z1) + r(z2 − z3) = 0

z̈3 + ω2
0z3 + r(z3 − z2) = 0

z̈4 + ω2
0z4 + d(ż4 − ż2) = 0

where ω0, d, r > 0. The associated D and R matrices are provided below.

D =









0 0 0 0
0 d 0 −d
0 0 0 0
0 −d 0 d









, R =









r −r 0 0
−r 2r −r 0
0 −r r 0
0 0 0 0









.

It turns out that for the pair (D, R) condition (3) fails to hold and hence by Theorem 1 the oscillators
do not synchronize. In particular,

null

[

R− rIq
D

]

= range









1
0

−1
0









6⊂ range









1
1
1
1









.

The solution corresponding to the eigenvector [1 0 − 1 0]T is shown in Fig. 3 where the first and third
pendulums oscillate (with π radians of phase difference) at frequency ω =

√

ω2
0 + r while the second and

fourth oscillators sit still. (We note that the two springs are identical.) Let us now figure out which

Figure 3: Pendulums out of synchrony due to lack of observability.

condition(s) of Assumption 1 is violated for our example. First we consider the interconnection. The
graphs ΓΣ and Γ∆ are given in Fig. 4. Since the graph ΓΣ is connected, the third condition of Assumption 1
is satisfied. Note that Γ∆ has two components: Γ1 and Γ2, the latter being a single vertex. Related to
these graphs are the matrices R1 ∈ R3×3 and R2 ∈ R1×1. We have R2 = 0 since Γ2 has no edges. The
matrix R1 on the other hand has the following form

R1 =





r −r 0
−r 2r −r
0 −r r



 .

7



v4

Γ1 Γ2

Γ∆ΓΣ

v1 v2 v3 v4v1 v2 v3

Figure 4: The graphs associated to the coupled harmonic oscillators in Example 1.

For the graph Γ2 the system (13) simply reads η̈2 + ω2
0η2 = 0 where η2 = z4 ∈ R. Hence the as-

sociated set of characteristic frequencies is singleton Ω2 = {ω0}. The system associated to Γ1 reads
η̈1 + (ω2

0I3 + R1)η1 = 0 where η1 = [z1 z2 z3]
T ∈ R3. The set of eigenvalues of R1 being {0, r, 3r}, we

have Ω1 = {ω0,
√

ω2
0 + r,

√

ω2
0 + 3r}. Now we can write Ω1∩Ω2 = {ω0}. Therefore the second condition

of Assumption 1 is also satisfied. Since the second and third conditions hold, the first condition must not
(because the oscillators do not synchronize). The system η̈2 + ω2

0η2 = 0 is clearly observable from z4.
Therefore the other system η̈1 + (ω2

0I3 + R1)η1 = 0 must be unobservable from at least one of its states
zk, k ∈ {1, 2, 3}. It can be shown that from z2 the system is indeed unobservable. This finding is not at
all surprising when we look at the solution depicted in Fig. 3.

Remark 2 The situation shown in Fig. 3 not only renders the first condition of Assumption 1 more
meaningful but also suggests a refinement on it. If the system in Fig. 3 were slightly modified by relocat-
ing the damper between the third and fourth pendulums (as opposed to the original configuration where
it connects the second and fourth pendulums) the observability condition of Assumption 1 would still be
violated yet the pendulums would this time synchronize. The reason is that even the component (13)
described by the first three pendulums is unobservable from the second pendulum, it nevertheless is ob-
servable from the third. And the significance of the third pendulum is that it is through it that the first
component (in the modified system) is connected via damper to the second component (namely, to the
fourth pendulum). One can carry this observation further so as to suggest the following relaxation of the
first condition of Assumption 1: “For all ℓ = 1, 2, . . . , c the system (13) is observable from each zk for
all k ∈ {i : vi ∈ Vℓ, dij 6= 0, j /∈ Vℓ}.”

Example 2 Consider the following four coupled harmonic oscillators

z̈1 + ω2
0z1 + r(z1 − z2) = 0

z̈2 + ω2
0z2 + d(ż2 − ż3) + r(z2 − z1) = 0

z̈3 + ω2
0z3 + d(ż3 − ż2) + r(z3 − z4) = 0

z̈4 + ω2
0z4 + r(z4 − z3) = 0

where ω0, d, r > 0. The associated D and R matrices are provided below.

D =









0 0 0 0
0 d −d 0
0 −d d 0
0 0 0 0









, R =









r −r 0 0
−r r 0 0
0 0 r −r
0 0 −r r









.

It turns out that for the pair (D, R) condition (3) fails to hold and hence by Theorem 1 the oscillators
do not synchronize. In particular,

null

[

R− 2rIq
D

]

= range









1
−1
−1
1









6⊂ range









1
1
1
1









.

The solution corresponding to the eigenvector [1 −1 −1 1]T is shown in Fig. 5 where the first and fourth
pendulums make a synchronized pair and the second and third pendulums make another synchronized
pair. These pairs oscillate (with π radians of phase difference between pairs) at frequency ω =

√

ω2
0 + 2r.

(We note that the two springs are identical.) Let us now figure out which condition(s) of Assumption 1
is violated here. The graphs ΓΣ and Γ∆ are given in Fig. 6. Since the graph ΓΣ is connected, the third
condition of Assumption 1 is satisfied. Corresponding to the two components Γ1 and Γ2 are the matrices
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Figure 5: Pendulums out of synchrony due to extra common frequencies.

Γ2

Γ∆ΓΣ

v1 v2 v3 v4v1 v2 v3 v4

Γ1

Figure 6: The graphs associated to the coupled harmonic oscillators in Example 2.

R1 = R2 =

[

r −r
−r r

]

.

For the graph Γ1 the system (13) reads η̈1 + (ω2
0I2 + R1)η1 = 0 where η1 = [z1 z2]

T ∈ R2. It can be
shown that this system is observable from each zk, k = 1, 2. Since R2 = R1, the same argument is valid
also for the system (13) associated to Γ2. Therefore the first condition of Assumption 1 is also satisfied.
This implies that the second condition cannot hold. Let us verify that the second condition does not hold.
The set of eigenvalues of R1 being {0, 2r}, we have Ω1 = {ω0,

√

ω2
0 + 2r}. The equality R2 = R1 implies

Ω2 = Ω1. Hence Ω1 ∩ Ω2 = {ω0,
√

ω2
0 + 2r} 6= {ω0} as expected.

4 Electrical networks

ℓ0

g12 ℓ23

z1 z2 z3

c0 c0ℓ0 ℓ0 c0

Figure 7: Three coupled LC oscillators.

Hitherto the coupled pendulums were the workhorse in our study of the dynamics (1). There are
however other important systems that share the same model; for instance, coupled electrical oscillators.
Consider an array of identical LC oscillators where certain pairs (i, j) are coupled via an LTI resistor
(with conductance gij) or an LTI inductor (with inductance ℓij) or both; see Fig. 7. Writing Kirchhoff’s
Current Law (KCL) at each node then yields the dynamics (1) in terms of electrical parameters:

c0z̈i + ℓ−1
0 zi +

q
∑

j=1

gij(żi − żj) +

q
∑

j=1

hij(zi − zj) = 0 , i = 1, 2, . . . , q (14)

9



where zi denote the node voltages, c0 > 0 and ℓ0 > 0 are respectively the capacitance and inductance of
an individual oscillator, and hij = ℓ−1

ij when there is an inductor (i.e., ℓij 6= 0) that connects the ith and
jth nodes and hij = 0 otherwise. We work with passive components, i.e., gij = gji ≥ 0 and hij = hji ≥ 0.
We take gii = 0 and hii = 0. Note that the interconnection of such an array can be represented by the
admittance matrix

Y (s) =











∑

j y1j(s) −y12(s) · · · −y1q(s)

−y21(s)
∑

j y2j(s) · · · −y2q(s)
...

...
. . .

...
−yq1(s) −yq2(s) · · ·

∑

j yqj(s)











(15)

where yij(s) = gij + (ℓijs)
−1 = gij + hij/s is the admittance of the coupling between the ith and jth

nodes. Define the symmetric positive semidefinite matrices

G =











∑

j g1j −g12 · · · −g1q
−g21

∑

j g2j · · · −g2q
...

...
. . .

...
−gq1 −gq2 · · ·

∑

j gqj











, H =











∑

j h1j −h12 · · · −h1q

−h21

∑

j h2j · · · −h2q

...
...

. . .
...

−hq1 −hq2 · · ·
∑

j hqj











.

Note that Y (s) = G + s−1H . Also note that G/c0 and H/c0 correspond to the matrices D and R of
the array (1). In other words, G represents the dissipative coupling and H the restorative coupling.
Given a matrix A ∈ Cn×n let now λk(A) denote the kth smallest eigenvalue of A with respect to the real
part. That is, Reλ1(A) ≤ Reλ2(A) ≤ · · · ≤ Reλn(A). By Corollary 1 we can then state that the LC
oscillators (14) synchronize if λ2(G) > 0, i.e., if the dissipative coupling graph is connected. Note that
the condition λ2(G) > 0 is only sufficient when H 6= 0. Now we point out an interesting extension of this
inequality, which turns out to manifest itself in terms of the admittance matrix:

Theorem 4 The LC oscillators (14) synchronize if and only if

Reλ2(Y (jω)) > 0 for all ω > 0 . (16)

Proof. Without loss of generality take c0 = 1. Then G and H correspond to the matrices D and R of
the array (1). Hence, by Theorem 1, the LC oscillators (14) synchronize if and only if

null

[

H − λIq
G

]

⊂ range1q for all λ ∈ C . (17)

Our task therefore reduces to establishing the equivalence of (16) and (17), where Y (jω) = G+(jω)−1H .
Let λ ∈ C be an eigenvalue of Y (jω) and ξ ∈ Cq be the corresponding unit eigenvector, i.e., Y (jω)ξ = λξ
and ‖ξ‖2 = ξ∗ξ = 1, where ξ∗ is the conjugate transpose of ξ. We can write

λ = ξ∗Y (jω)ξ

= ξ∗(G− jω−1H)ξ

= ξ∗Gξ − jξ∗Hξ/ω .

Since both G and H are symmetric positive semidefinite matrices we have Imλ = −ξ∗Hξ/ω ≤ 0 and
Reλ = ξ∗Gξ ≥ 0. Therefore no eigenvalue of Y (jω) can be on the open left half-plane. Also note that by
construction G1q = 0 and H1q = 0. Therefore Y (jω)1q = 0 and we can let λ1(Y (jω)) = 0 for all ω > 0.

Suppose now (16) fails. This means that Reλ2(Y (jω)) = 0 for some ω > 0. There are two possibilities,
one of which is: (i) Imλ2(Y (jω)) = 0. In this case the eigenvalue at the origin is repeated and it must have
at least two eigenvectors. (Otherwise 1q would be the only eigenvector for the eigenvalue at the origin
and there would exist a generalized eigenvector ξ ∈ Cq satisfying Y (jω)ξ = 1q. But such ξ could not
exist because it would lead to the following contradiction: q = 1T

q 1q = 1T
q Y (jω)ξ = (Y (jω)1q)

T ξ = 0.)
Therefore we can find ξ2 /∈ range1q satisfying Y (jω)ξ2 = 0. This implies 0 = ξ∗2Y (jω)ξ2 = ξ∗2Gξ2 −
jξ∗2Hξ2/ω. Since both G and H are symmetric positive semidefinite matrices we can deduce Gξ2 = 0
and Hξ2 = 0. That is, nullG ∩ nullH ⊃ span {ξ2}. Thus (17) fails. Let us now consider the other
possibility: (ii) Imλ2(Y (jω)) < 0. Then we can write λ2(Y (jω)) = −jβ2 for some β2 > 0. Let ξ2 ∈ Cq

be the corresponding unit eigenvector, i.e., Y (jω)ξ2 = −jβ2ξ2 and ξ∗2ξ2 = 1. Clearly, ξ2 /∈ range1q. We
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can write −jβ2 = ξ∗2Y (jω)ξ2 = ξ∗2Gξ2 − jξ∗2Hξ2/ω. This yields ξ∗2Gξ2 = 0. Consequently, Gξ2 = 0 and
−jβ2ξ2 = Y (jω)ξ2 = −jHξ2/ω. Therefore ξ2 has to be an eigenvector of H . In particular we can write
nullG ∩ null (H − β2ωIq) ⊃ span {ξ2} and (17) once again fails.

To show the other direction suppose this time that (17) fails. Then we can find an eigenvector ξ2 /∈
range1q that satisfies Gξ2 = 0 and Hξ2 = β2ξ2 for some β2 ∈ R. Note that β2 has to be real because it is
an eigenvalue ofH , a real symmetric matrix. Then we can write Y (jω)ξ2 = (G−jω−1H)ξ2 = −jβ2ω

−1ξ2.
That is, λ = −jβ2ω

−1 is an eigenvalue of Y (jω). We also have Y (jω)1q = 0. Therefore Reλ2(Y (jω)) = 0
and (16) fails. �

Remark 3 Though a simple reexpression of Theorem 1, Theorem 4 is nevertheless significant (from the
synchronization point of view) for it suggests a natural way of combining the two different interconnection
graphs: the dissipative coupling graph and the restorative coupling graph. The result is a single graph with
complex-weighted edges whose Laplacian is the admittance matrix Y (jω).

y31(s)

z1 z2 z3

y12(s) y23(s)

y0(s) y0(s) y0(s)

Figure 8: Three coupled electrical oscillators.

We now briefly discuss how far the range of condition (16) might extend. To this end we consider a
generalization of the dynamics (14) employing the transfer function approach; see Fig. 8. In this general
setting, each of q identical oscillators2 is assumed to consist entirely of resistors, capacitors, and inductors,
all LTI and passive, i.e., with positive resistance, capacitance, and inductance values. We denote by y0(s)
the admittance of an individual oscillator as seen from a given pair of terminals. One of those terminals
is connected to the common ground and the other connects the oscillator to the rest of the network. In
short, we represent each oscillator by an LTI passive one-port. As for coupling, the connection between
a pair (i, j) of oscillators is through also an LTI passive one-port (containing only resistors, capacitors,
and inductors) with admittance yij(s). Note that yij(s) = yji(s). As before, we take yii(s) = 0 and when
there is no direct connection between the pair (i, j) we have yij(s) = 0. The overall interconnection gives
us Y (s), the q-by-q admittance matrix (15). The array of coupled oscillators, considered as a whole, we
denote by N (y0(s), Y (s)). The network N (y0(s), Y (s)) is said to synchronize if the node voltages zi (see
Fig. 8) synchronize, i.e., |zi(t) − zj(t)| → 0 for all i, j ∈ {1, 2, . . . , q} and all initial conditions. (Note
that here the initial condition, which determines the future evolution of the array, is the collection of all
the initial capacitor voltages and initial inductor currents throughout the entire network.) In the sequel
we will seek conditions guaranteeing the synchronization of N (y0(s), Y (s)).

Thanks to passivity we will be able to proceed in our analysis fairly rapidly. First, note that the
eigenvalues that are observable from the node voltages have to be the (finitely many) roots of the char-
acteristic polynomial n(s) where n(s)/d(s) = det [y0(s)Iq + Y (s)] and the polynomials n(s), d(s) are
coprime. Since the network is passive those eigenvalues are confined to the closed left half-plane. Clearly,
the ones with strictly negative real parts do not play any role in the steady state behavior of the network.
This allows us to focus on the eigenvalues on the imaginary axis. Suppose now λ = jω with ω ∈ R is such
an eigenvalue. Then (and only then) there exists a nonzero ξ ∈ Cq (ξ ∈ Rq if ω = 0) and z(t) = Re(ξejωt)
is a possible trajectory that can be traced by the node voltage vector z = [z1 z2 · · · zq]

T . KCL imposes

2Although we stick to the term oscillator, the general setting we consider here allows also systems that do not display

oscillatory behavior, e.g., a single capacitor.

11



on this trajectory the constraint Re
(

[y0(jω)Iq + Y (jω)]ξejωt
)

= 0. In other words,

ξ ∈ null [y0(jω)Iq + Y (jω)] =: E(jω) .

Therefore any steady state solution can be written as a sum of finitely many terms z(t) =
∑

k Re(ξke
jωkt),

where ωk are distinct and ξk ∈ E(jωk) are nonzero. Evidently, this steady state solution corresponds to a
synchronized collection of node voltages if and only if ξk ∈ range1q for all k. Note also that ξk ∈ range1q

implies Y (jωk)ξk = 0. Since ξk ∈ E(jωk), this means y0(jωk)ξk = 0, i.e., y0(jωk) = 0. Hence we
obtained:

Theorem 5 The network N (y0(s), Y (s)) synchronizes if and only if

null [y0(jω)Iq + Y (jω)] ⊂ range1q for all ω ∈ R .

Also, for a synchronizing network, the steady state node voltages have the form zi(t) =
∑

k Re(αke
jωkt)

with αk ∈ C and ωk ∈ R satisfying y0(jωk) = 0.

Purists may rightfully contend that the subspace E(jω) is not always well-defined because for certain
frequencies ω either y0(jω) or some entries yij(jω) of Y (jω) may attain infinite magnitude. This however
is only a minor mathematical obstacle, easy to circumvent by thinking in terms of the physical system
that the model stands for. Consider the case |y0(jω)| = ∞. This means that the impedance y−1

0 (jω)
is zero, i.e., the oscillators behave as short circuit at that particular frequency ω. As a result, all nodes
are grounded, i.e., all the node voltages zi have to be zero, meaning E(jω) = {0}. Consider now the
other potentially ambiguous case, |yij(jω)| = ∞ for certain pairs (i, j) while |y0(jω)| < ∞. Note that
|yij(jω)| = ∞ implies that the nodes i and j are short-circuited, i.e., zi = zj . To get rid of the infinite
terms yij(jω) = yji(jω) in the expression null [y0(jω)Iq + Y (jω)] we can remove ith and jth rows from
the matrix [y0(jω)Iq + Y (jω)] and inject the following two new rows: (i) the sum of the removed pair of
rows and (ii) a row that imposes the equality zi = zj. The cure can be repeated until all the infinite terms
are gone. Let us demonstrate the procedure on an example network with q = 4 nodes whose admittance
matrix reads

Y (s) =









y12(s) + y14(s) −y12(s) 0 −y14(s)
−y12(s) y12(s) + y23(s) −y23(s) 0

0 −y23(s) y23(s) + y34(s) −y34(s)
−y14(s) 0 −y34(s) y14(s) + y34(s)









Suppose that at some frequency ω the admittances y12(jω) and y23(jω) are infinite. This gives us the
equalities z1 = z2 and z2 = z3. Summing up the first three rows of [y0(jω)Iq + Y (jω)] lets us get rid of
the terms y12(jω) and y23(jω). Then we inject the extra rows [1 − 1 0 0] and [0 1 − 1 0] to represent
the relation z1 = z2 = z3. Hence we can express E(jω) as

E(jω) = null









y0(jω) + y14(jω) y0(jω) y0(jω) + y34(jω) −y14(jω)− y34(jω)
−y14(jω) 0 −y34(jω) y0(jω) + y14(jω) + y34(jω)

1 −1 0 0
0 1 −1 0









with righthand side cleansed of the infinite terms. Incidentally, another relevant point we want to make
has to do with the eigenvalues of Y (jω). Since the roots of the polynomial p(λ) = det [−λIq + Y (jω)]
are the eigenvalues of Y (jω), we can use the procedure described above to define the finite eigenvalues of
Y (jω) when some of its entries are infinite. For instance, for the previous example, the finite eigenvalues
of Y (jω), when y12(jω) and y23(jω) are infinite, are defined as the roots of the polynomial

p(λ) = det









−λ+ y14(jω) −λ −λ+ y34(jω) −y14(jω)− y34(jω)
−y14(jω) 0 −y34(jω) −λ+ y14(jω) + y34(jω)

1 −1 0 0
0 1 −1 0









.

Being thus able to single out the finite eigenvalues allows us to continue to use the notation λk(Y (jω)),
which will henceforth stand for the kth smallest finite eigenvalue of Y (jω) with respect to the real part.

Consider now a network N (y0(s), Y (s)) that does not synchronize. For this network Theorem 5
assures us that there exist a vector ξ /∈ range1q and a frequency ω ∈ R satisfying Y (jω)ξ = −y0(jω)ξ
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and |y0(jω)| < ∞. Therefore λ = −y0(jω) is a (finite) eigenvalue of Y (jω). Since the network is passive,
all the eigenvalues of Y (jω) belong to the closed right half-plane, i.e., Reλk(Y (jω)) ≥ 0 for all k, whence
Reλ ≥ 0. Also, again due to passivity, Re y0(jω) ≥ 0, whence Reλ ≤ 0. Consequently, Reλ = 0. This
implies, since Y (jω)1q = 0, the matrix Y (jω) has at least two eigenvalues on the imaginary axis. This
allows us to assert Reλ2(Y (jω)) = 0. To summarize:

Corollary 2 The network N (y0(s), Y (s)) synchronizes if Reλ2(Y (jω)) > 0 for all ω ∈ R.

5 Conclusion

In this paper we studied the synchronization of identical (linear) pendulums coupled via dampers and
springs. We first presented a necessary and sufficient condition for synchronization and then pointed
out a sufficient set of conditions that may occasionally turn out to be easier to check than the former.
Toward the end of the paper we applied the results obtained for pendulums to understanding better the
collective behavior of coupled oscillators in LTI passive electrical networks. In particular, we established
a relation between the second smallest eigenvalue of the node admittance matrix and the tendency of the
individual systems to oscillate in unison.
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