185 research outputs found

    Leaders do not look back, or do they?

    Get PDF
    We study the effect of adding to a directed chain of interconnected systems a directed feedback from the last element in the chain to the first. The problem is closely related to the fundamental question of how a change in network topology may influence the behavior of coupled systems. We begin the analysis by investigating a simple linear system. The matrix that specifies the system dynamics is the transpose of the network Laplacian matrix, which codes the connectivity of the network. Our analysis shows that for any nonzero complex eigenvalue λ\lambda of this matrix, the following inequality holds: λλcotπn\frac{|\Im \lambda |}{|\Re \lambda |} \leq \cot\frac{\pi}{n}. This bound is sharp, as it becomes an equality for an eigenvalue of a simple directed cycle with uniform interaction weights. The latter has the slowest decay of oscillations among all other network configurations with the same number of states. The result is generalized to directed rings and chains of identical nonlinear oscillators. For directed rings, a lower bound σc\sigma_c for the connection strengths that guarantees asymptotic synchronization is found to follow a similar pattern: σc=11cos(2π/n)\sigma_c=\frac{1}{1-\cos\left( 2\pi /n\right)} . Numerical analysis revealed that, depending on the network size nn, multiple dynamic regimes co-exist in the state space of the system. In addition to the fully synchronous state a rotating wave solution occurs. The effect is observed in networks exceeding a certain critical size. The emergence of a rotating wave highlights the importance of long chains and loops in networks of oscillators: the larger the size of chains and loops, the more sensitive the network dynamics becomes to removal or addition of a single connection

    Semi-passivity and synchronization of diffusively coupled neuronal oscillators

    Full text link
    We discuss synchronization in networks of neuronal oscillators which are interconnected via diffusive coupling, i.e. linearly coupled via gap junctions. In particular, we present sufficient conditions for synchronization in these networks using the theory of semi-passive and passive systems. We show that the conductance-based neuronal models of Hodgkin-Huxley, Morris-Lecar, and the popular reduced models of FitzHugh-Nagumo and Hindmarsh-Rose all satisfy a semi-passivity property, i.e. that is the state trajectories of such a model remain oscillatory but bounded provided that the supplied (electrical) energy is bounded. As a result, for a wide range of coupling configurations, networks of these oscillators are guaranteed to possess ultimately bounded solutions. Moreover, we demonstrate that when the coupling is strong enough the oscillators become synchronized. Our theoretical conclusions are confirmed by computer simulations with coupled \HR and \ML oscillators. Finally we discuss possible "instabilities" in networks of oscillators induced by the diffusive coupling

    Synchronous behavior in networks of coupled systems : with applications to neuronal dynamics

    Get PDF
    Synchronization in networks of interacting dynamical systems is an interesting phenomenon that arises in nature, science and engineering. Examples include the simultaneous flashing of thousands of fireflies, the synchronous firing of action potentials by groups of neurons, cooperative behavior of robots and synchronization of chaotic systems with applications to secure communication. How is it possible that systems in a network synchronize? A key ingredient is that the systems in the network "communicate" information about their state to the systems they are connected to. This exchange of information ultimately results in synchronization of the systems in the network. The question is how the systems in the network should be connected and respond to the received information to achieve synchronization. In other words, which network structures and what kind of coupling functions lead to synchronization of the systems? In addition, since the exchange of information is likely to take some time, can systems in networks show synchronous behavior in presence of time-delays? The first part of this thesis focusses on synchronization of identical systems that interact via diffusive coupling, that is a coupling defined through the weighted difference of the output signals of the systems. The coupling might contain timedelays. In particular, two types of diffusive time-delay coupling are considered: coupling type I is diffusive coupling in which only the transmitted signals contain a time-delay, and coupling type II is diffusive coupling in which every signal is timedelayed. It is proven that networks of diffusive time-delay coupled systems that satisfy a strict semipassivity property have solutions that are ultimately bounded. This means that the solutions of the interconnected systems always enter some compact set in finite time and remain in that set ever after. Moreover, it is proven that nonlinear minimum-phase strictly semipassive systems that interact via diffusive coupling always synchronize provided the interaction is sufficiently strong. If the coupling functions contain time-delays, then these systems synchronize if, in addition to the sufficiently strong interaction, the product of the time-delay and the coupling strength is sufficiently small. Next, the specific role of the topology of the network in relation to synchronization is discussed. First, using symmetries in the network, linear invariant manifolds for networks of the diffusively time-delayed coupled systems are identified. If such a linear invariant manifold is also attracting, then the network possibly shows partial synchronization. Partial synchronization is the phenomenon that some, at least two, systems in the network synchronize with each other but not with every system in the network. It is proven that a linear invariant manifold defined by a symmetry in a network of strictly semipassive systems is attracting if the coupling strength is sufficiently large and the product of the coupling strength and the time-delay is sufficiently small. The network shows partial synchronization if the values of the coupling strength and time-delay for which this manifold is attracting differ from those for which all systems in the network synchronize. Next, for systems that interact via symmetric coupling type II, it is shown that the values of the coupling strength and time-delay for which any network synchronizes can be determined from the structure of that network and the values of the coupling strength and time-delay for which two systems synchronize. In the second part of the thesis the theory presented in the first part is used to explain synchronization in networks of neurons that interact via electrical synapses. In particular, it is proven that four important models for neuronal activity, namely the Hodgkin-Huxley model, the Morris-Lecar model, the Hindmarsh-Rose model and the FitzHugh-Nagumo model, all have the semipassivity property. Since electrical synapses can be modeled by diffusive coupling, and all these neuronal models are nonlinear minimum-phase, synchronization in networks of these neurons happens if the interaction is sufficiently strong and the product of the time-delay and the coupling strength is sufficiently small. Numerical simulations with various networks of Hindmarsh-Rose neurons support this result. In addition to the results of numerical simulations, synchronization and partial synchronization is witnessed in an experimental setup with type II coupled electronic realizations of Hindmarsh-Rose neurons. These experimental results can be fully explained by the theoretical findings that are presented in the first part of the thesis. The thesis continues with a study of a network of pancreatic -cells. There is evidence that these beta-cells are diffusively coupled and that the synchronous bursting activity of the network is related to the secretion of insulin. However, if the network consists of active (oscillatory) beta-cells and inactive (dead) beta-cells, it might happen that, due to the interaction between the active and inactive cells, the activity of the network dies out which results in a inhibition of the insulin secretion. This problem is related to Diabetes Mellitus type 1. Whether the activity dies out or not depends on the number of cells that are active relative to the number of inactive cells. A bifurcation analysis gives estimates of the number of active cells relative to the number of inactive cells for which the network remains active. At last the controlled synchronization problem for all-to-all coupled strictly semipassive systems is considered. In particular, a systematic design procedure is presented which gives (nonlinear) coupling functions that guarantee synchronization of the systems. The coupling functions have the form of a definite integral of a scalar weight function on a interval defined by the outputs of the systems. The advantage of these coupling functions over linear diffusive coupling is that they provide high gain only when necessary, i.e. at those parts of the state space of the network where nonlinearities need to be suppressed. Numerical simulations in networks of Hindmarsh-Rose neurons support the theoretical results

    Controlled synchronization in networks of diffusively coupled dynamical systems

    Get PDF

    Synchronization in networks of diffusively coupled nonlinear systems:robustness against time-delays

    Get PDF
    In this manuscript, we study the problem of robust synchronization in networks of diffusively time-delayed coupled nonlinear systems. In particular, we prove that, under some mild conditions on the input-output dynamics of the systems and the network topology, there always exists a unimodal region in the parameter space (coupling strength versus time-delay), such that if they belong to this region, the systems synchronize. Moreover, we show how this unimodal region scales with the network topology, which, in turn, provides useful insights on how to design the network topology to maximize robustness against time-delays. The results are illustrated by extensive simulation experiments of time-delayed coupled Hindmarsh-Rose neural chaotic oscillators

    Amplitude and phase effects on the synchronization of delay-coupled oscillators

    Get PDF
    We consider the behavior of Stuart–Landau oscillators as generic limit-cycle oscillators when they are interacting with delay. We investigate the role of amplitude and phase instabilities in producing symmetry-breaking/restoring transitions. Using analytical and numerical methods we compare the dynamics of one oscillator with delayed feedback, two oscillators mutually coupled with delay, and two delay-coupled elements with self-feedback. Taking only the phase dynamics into account, no chaotic dynamics is observed, and the stability of the identical synchronization solution is the same in each of the three studied networks of delay-coupled elements. When allowing for a variable oscillation amplitude, the delay can induce amplitude instabilities. We provide analytical proof that, in case of two mutually coupled elements, the onset of an amplitude instability always results in antiphase oscillations, leading to a leader-laggard behavior in the chaotic regime. Adding selffeedback with the same strength and delay as the coupling stabilizes the system in the transverse direction and, thus, promotes the onset of identically synchronized behaviorWe would like to thank T. Erneux, E. Schöll, S. Yanchuk, and P. Perlikowski for helpful discussions. O.D. acknowledges the Research Foundation Flanders FWO-Vlaanderen for a fellowship and for project support. This work was partially supported by the Interuniversity Attraction Poles program of the Belgian Science Policy Office, under Grant No. IAP VI-10 “photonics@be,” by MICINN Spain under project DeCoDicA Grant No. TEC2009- 14101 ,, and by the project PHOCUS EU FET Open Grant No. 240763 .Peer reviewe

    Amplitude and phase effects on the synchronization of delay-coupled oscillators

    Get PDF
    We consider the behavior of Stuart-Landau oscillators as generic limit-cycle oscillators when they are interacting with delay. We investigate the role of amplitude and phase instabilities in producing symmetry-breaking/restoring transitions. Using analytical and numerical methods we compare the dynamics of one oscillator with delayed feedback, two oscillators mutually coupled with delay, and two delay-coupled elements with self-feedback. Taking only the phase dynamics into account, no chaotic dynamics is observed, and the stability of the identical synchronization solution is the same in each of the three studied networks of delay-coupled elements. When allowing for a variable oscillation amplitude, the delay can induce amplitude instabilities. We provide analytical proof that, in case of two mutually coupled elements, the onset of an amplitude instability always results in antiphase oscillations, leading to a leader-laggard behavior in the chaotic regime. Adding self-feedback with the same strength and delay as the coupling stabilizes the system in the transverse direction and, thus, promotes the onset of identically synchronized behavior

    Passivity-based output synchronization of dynamical networks with non-identical nodes

    Get PDF
    Article no. 5717720Output synchronization of dynamical networks with non-identical nodes is studied using the passivity property. A synchronization criterion is developed for networks with general outer coupling topologies which need to be neither symmetric nor have the zero-row-sum property. When the passivity property cannot give synchronization for a single outer coupling topology, the problem of how to achieve synchronization by switching among several outer coupling topologies is studied. Synchronization conditions by switching among these topologies are presented and an output-dependent switching law is designed. In particular, it is shown that synchronizability can be checked by verifying if a certain nonlinear programming problem has no feasible solution or has a negative maximum. ©2010 IEEE.published_or_final_versio
    corecore