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Summary

Synchronous behavior in networks of coupled systems

Synchronization in networks of interacting dynamical systems is an interesting phe-
nomenon that arises in nature, science and engineering. Examples include the simul-
taneous flashing of thousands of fireflies, the synchronous firing of action potentials by
groups of neurons, cooperative behavior of robots and synchronization of chaotic sys-
tems with applications to secure communication. How is it possible that systems in a
network synchronize? A key ingredient is that the systems in the network “communi-
cate” information about their state to the systems they are connected to. This exchange
of information ultimately results in synchronization of the systems in the network. The
question is how the systems in the network should be connected and respond to the re-
ceived information to achieve synchronization. In other words, which network structures
and what kind of coupling functions lead to synchronization of the systems? In addition,
since the exchange of information is likely to take some time, can systems in networks
show synchronous behavior in presence of time-delays?

The first part of this thesis focusses on synchronization of identical systems that interact
via diffusive coupling, that is a coupling defined through the weighted difference of the
output signals of the systems. The coupling might contain time-delays. In particular, two
types of diffusive time-delay coupling are considered: coupling type I is diffusive coupling
in which only the transmitted signals contain a time-delay, and coupling type II is diffu-
sive coupling in which every signal is time-delayed. It is proven that networks of diffusive
time-delay coupled systems that satisfy a strict semipassivity property have solutions that
are ultimately bounded. This means that the solutions of the interconnected systems al-
ways enter some compact set in finite time and remain in that set ever after. Moreover,
it is proven that nonlinear minimum-phase strictly semipassive systems that interact via
diffusive coupling always synchronize provided the interaction is sufficiently strong. If
the coupling functions contain time-delays, then these systems synchronize if, in addi-
tion to the sufficiently strong interaction, the product of the time-delay and the coupling
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strength is sufficiently small.

Next, the specific role of the topology of the network in relation to synchronization is dis-
cussed. First, using symmetries in the network, linear invariant manifolds for networks
of the diffusively time-delayed coupled systems are identified. If such a linear invariant
manifold is also attracting, then the network possibly shows partial synchronization. Par-
tial synchronization is the phenomenon that some, at least two, systems in the network
synchronize with each other but not with every system in the network. It is proven that
a linear invariant manifold defined by a symmetry in a network of strictly semipassive
systems is attracting if the coupling strength is sufficiently large and the product of the
coupling strength and the time-delay is sufficiently small. The network shows partial syn-
chronization if the values of the coupling strength and time-delay for which this manifold
is attracting differ from those for which all systems in the network synchronize. Next, for
systems that interact via symmetric coupling type II, it is shown that the values of the cou-
pling strength and time-delay for which any network synchronizes can be determined
from the structure of that network and the values of the coupling strength and time-delay
for which two systems synchronize.

In the second part of the thesis the theory presented in the first part is used to explain syn-
chronization in networks of neurons that interact via electrical synapses. In particular, it
is proven that four important models for neuronal activity, namely the Hodgkin-Huxley
model, the Morris-Lecar model, the Hindmarsh-Rose model and the FitzHugh-Nagumo
model, all have the semipassivity property. Since electrical synapses can be modeled
by diffusive coupling, and all these neuronal models are nonlinear minimum-phase, syn-
chronization in networks of these neurons happens if the interaction is sufficiently strong
and the product of the time-delay and the coupling strength is sufficiently small. Numer-
ical simulations with various networks of Hindmarsh-Rose neurons support this result.
In addition to the results of numerical simulations, synchronization and partial synchro-
nization is witnessed in an experimental setup with type II coupled electronic realizations
of Hindmarsh-Rose neurons. These experimental results can be fully explained by the
theoretical findings that are presented in the first part of the thesis.

The thesis continues with a study of a network of pancreatic β-cells. There is evidence
that these β-cells are diffusively coupled and that the synchronous bursting activity of the
network is related to the secretion of insulin. However, if the network consists of active
(oscillatory) β-cells and inactive (dead) β-cells, it might happen that, due to the interaction
between the active and inactive cells, the activity of the network dies out which results in
a inhibition of the insulin secretion. This problem is related to Diabetes Mellitus type 1.
Whether the activity dies out or not depends on the number of cells that are active relative
to the number of inactive cells. A bifurcation analysis gives estimates of the number of
active cells relative to the number of inactive cells for which the network remains active.

At last the controlled synchronization problem for all-to-all coupled strictly semipassive
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systems is considered. In particular, a systematic design procedure is presented which
gives (nonlinear) coupling functions that guarantee synchronization of the systems. The
coupling functions have the form of a definite integral of a scalar weight function on a
interval defined by the outputs of the systems. The advantage of these coupling functions
over linear diffusive coupling is that they provide high gain only when necessary, i.e. at
those parts of the state space of the network where nonlinearities need to be suppressed.
Numerical simulations in networks of Hindmarsh-Rose neurons support the theoretical
results.
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CHAPTER ONE

Introduction

Abstract. In this introductory chapter the synchronization phenomenon is introduced and some
historical notes are given. It is shown that synchronization plays an important role in our daily
lives, and that there are many important applications of synchronization. In this chapter the
motivation for this thesis and the main contributions are presented. In addition, the structure of
the thesis is discussed. At the end of this chapter a list of the author’s publications is given.

1.1 The synchronization phenomenon and historical notes

Synchronization is everywhere, whether it is the simultaneous flashing of thousands of fire-
flies that gather in trees along the tidal rivers in Malaysia [141, 27] (see [151] for a nice color
picture), or the undesired lateral vibrations of London’s Millennium Bridge on its open-
ing day induced by the synchronized feet of pedestrians walking over it [150]. Synchro-
nization is inevitable and plays an important role in our lives. Clusters of synchronized
pacemaker neurons regulate our heartbeat [121], synchronized neurons in the olfactory
bulb allow us to detect and distinguish between odors [53], and our circadian rhythm is
synchronized to (more precisely, entrained to) the 24-hour day-night cycle [40, 167].

Synchronization should be understood as the phenomenon that “things” keep happen-
ing simultaneously for an extended period of time [149]. Synchronization is persistent.
Two fish that “accidentally” swim in the same direction for some time can not be called
synchronized, while a school of fish that moves though the ocean like a single organism
can be considered as synchronized. In other words, synchronization is the (stable) time-
correlated behavior of two or more processes [23]. Probably one of the clearest examples
of synchronization in that sense is the firefly example; all fireflies light up at the same
time. Another but probably less clear example is the synchronization of the the orbit of
the moon around the earth and its spin. The same side of the moon is always facing earth
which is because the moon spins around its axis in the same amount of time it takes the
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moon to orbit around earth [149]. Also less obvious is the synchronization of the legs of a
horse when trotting: the front left leg and the right back leg are in sync but half a period
out of sync with the synchronized other pair [37].

To have persistent synchronization of certain systems there should be some kind of in-
teraction between the systems. This interaction can be of the type master-slave, where
one system influences the other system(s), or there can be mutual interaction, where all
systems influence each other. A clear example of master-slave synchronization is the
synchronization of the circadian rhythm to the 24-hour day-night cycle; a change in our
circadian rhythm does not affect the 24-hour day-night cycle. The synchronization of the
fireflies is an example of mutual synchronization; there is no single firefly that orches-
trates the rhythmic synchronized blinking. Each firefly adjusts its own rhythm of lighting
up as a response to the flashes of the others, resulting in a mysterious self-organizing
collective behavior. Sometimes one can intuitively explain why systems synchronize but
often the mechanism that synchronizes systems is not trivial. A nice non-trivial example
is the crowd synchronization on the Millennium Bridge in London on the day it opened.
In [150, 45], a theory is presented that explains what happened that day. When a critical
number of pedestrians was walking over the bridge, it started to vibrate in lateral direc-
tion. As a natural response, to keep their balance, people where stepping to the left or
to the right at the same time, counteracting the bridge’s lateral movement. The lateral
movement of the bridge started the crowd to walk synchronously. As more pedestrians
stepped in synchrony, the larger forces acting on the bridge made it vibrate even more,
triggering more and more people to synchronize their feet. Eventually a large number of
people stepped in synchrony, inducing a movement of the bridge in lateral direction with
an amplitude of a couple of centimeters.

The example of the Millennium bridge shows great resemblance to what the Dutch sci-
entist Christiaan Huygens wrote down in his notebook in the seventeenth century [67]
(which is probably the first scientific description of the synchronization phenomenon).
Huygens observed that two of his famous pendulum clocks that where hanging on a
beam supported by two chairs always ended up swinging in opposite direction. This
“sympathy”, as he called it, was persistent; for any kind of perturbation he applied the
clocks ended up in synchrony. Huygens’ explanation of this remarkable phenomenon
was that the motion of the beam that induced the synchronization of the two clocks [123],
just like the motion of the Millennium bridge induced the crowd synchrony. His explana-
tion was remarkably accurate given that differential calculus was still to be invented those
days.

About two hundred years later, Lord Rayleigh described in his famous book “the theory
of sound” the synchronized sound of two organ tubes whose outlets where close to each
other [130]. In the beginning of the twentieth century, Balthasar van der Pol and Sir Ed-
ward Victor Appleton discussed the synchronization of a triode oscillator to an external
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input [10, 160]. This result was important as it had applications to radio communication.
In the eighties of the twentieth century, in Russia, synchronization in balanced and un-
balanced rotors and vibro-exciters was reported [22]. See also [153, 25] and the references
therein. These examples of synchronization of (electro-)mechanical systems have im-
portant applications in milling processes and electrical generators. In 1990, Pecora and
Carroll published their famous paper “Synchronization in chaotic systems”, [116], which dis-
cussed synchronization of two master-slave coupled chaotic Lorenz systems. Until then
it was widely believed that synchronization of chaotic systems was impossible since in a
chaotic system small disturbances grow exponentially fast. However, Pecora and Carroll
showed that chaotic systems can synchronize. Applications of chaos synchronization are
in secure communication; a chaotic master system can mask a message that is recovered
by the synchronized slave [39]. Also in 1990, Mirollo and Strogatz published the paper
“Synchronization of pulse-coupled biological oscillators”, [95], in which a model is presented
that explains why, for instance, fireflies synchronize. Motivated by these important works,
synchronization became of popular subject of study for physicists, biologists, mathemati-
cians and engineers. See for instance, the special issues [1, 3, 2, 4, 5, 6, 7, 8] and the
references therein.

1.2 Applications and controlled synchronization

Synchronization is not only something that just happens, but there are also numerous
applications. One application that is already mentioned before is the secure commu-
nication via synchronization of chaotic systems [116]. See also [65] and [39]. Another
important application is the synchronization of robot manipulators, commonly referred
to as cooperation or coordination [122]. Synchronization of robots can give flexibility and
manoeuvrability that can not be achieved by a single manipulator [104]. Examples in-
clude tele-operated master-slave systems, multi-actuated positioning systems and medi-
cal robotics for minimal invasive surgery.

Interesting applications of synchronization are in the area of automotive engineering. For
instance, if vehicles are able to ride in a platoon, i.e. a cluster or string of synchronized
vehicles, with relatively short intervehicle distances, a significant reduction of aerody-
namics drag is possible, resulting in lower fuel consumption [99]. Another automotive
application is the synchronization of windscreen wipers discussed in [79]. To save space
and weight, it is suggested to remove the classical bulky rigid mechanical connection
between the wipers and drive them instead by independent motors. Synchronization
between the wipers is then needed to avoid collisions.

When considered the synchronization of two or more systems, one can distinguish two
directions: synchronization analysis of interconnected systems with given coupling func-
tions and communication structure, and design of coupling functions and network struc-
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tures that guarantees synchronization of systems. In general, trying to find explanations
why synchronization happens is an analysis problem, while for engineering applications
of synchronization one often has to find controllers which guarantee that synchronization
will be achieved. Designing coupling functions and network structures that lead to syn-
chronization of systems is called controlled synchronization. The controlled synchroniza-
tion of master-slave systems is closely related to observer design known from (non)linear
control theory [103]. Indeed, using the transmitted signals from the master system, the
states of the slave system have to be reconstructed in such a way that they match the
states of the master, i.e. there is synchronization of master and slave. The controlled
synchronization of master-slave systems can also be considered as a particular case of
the (nonlinear) regulator problem [66, 114] for which conditions for the solvability exist.
Controlled synchronization for mutually coupled systems is discussed in, for instance,
[35, 36, 104].

1.3 Motivation, contributions and outline

Consider a network consisting of k systems of the form

ẋi(t) = f(xi(t), ui(t)), (1.1a)

yi(t) = h(xi(t)), i = 1, 2, . . . , k, (1.1b)

with state xi, input ui and output yi. The systems are coupled; the inputs of the systems
will depend on the outputs of the systems they are connected to. Such couplings are
described by the equations

ui(t) = Gi(y1(t− τi1), y2(t− τi2), . . . , yk(t− τik)), i = 1, 2, . . . , k, (1.2)

withGi being the coupling function for the ith system. The coupled systems (1.1), (1.2) will
be called synchronized if their states asymptotically match, i.e. xi(t) → xj(t) as t → ∞
for all i, j. The coupling functions have to satisfy the communication structure of the
network; ui(t) can only be influenced by the output of system yj(t − τij) if system j

connects to system i. The constants τij represent time-delays. A signal is time-delayed if
τij > 0 and non-delayed if τij = 0. It is relevant to take time-delays into account as the
communication between two or more systems can take an amount of time that often can
not be neglected. An example is the coupling of two distant neurons; due to the finite
propagation speed of the membrane potential through the neuron’s axon [73], a neuron
“feels” the change of membrane potential of the other neuron it is connected to only after
some time has elapsed. It might also be the case that the time-delay is induced by the time
that it takes to “compute” the coupling functions. An example of this is when humans
are trying to drive their cars at a fixed distance of each other [139]. All drivers compare the
distance between their vehicles and the vehicles in front of them and decide whether they
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shouldmaintain their current speed or have to accelerate or decelerate to keep the desired
distance. However, the reaction time1 of the drivers can not be neglected; experiments
and simulator results show that the reaction time varies between 0.6 s and 2 s, [139].

This thesis consists of two parts. The first part presents results on synchronization of
diffusively coupled systems. Diffusive coupling is a linear coupling that is proportional to
the difference of the (time-delayed) output signals of the interacting systems, cf. [55, 128].
For instance, in a network of two diffusively coupled systems without time-delays the
coupling functions are

u1(t) = σa12(y2(t)− y1(t)), (1.3a)

u2(t) = σa21(y1(t)− y2(t)). (1.3b)

Here the positive constant σ denotes the coupling strength and nonnegative scalars a12
and a21 are the weights of the interconnections. The notation σa12 and σa21 looks a bit
cumbersome here; one might have expected simply σ12 and σ21 instead. The main reason
to use this notation is that in this thesis the networks are supposed to be given, i.e. a12 and
a21 are supposed to be fixed and known. Then, for fixed and known values a12 and a21,
conditions for synchronization will be expressed in terms of the value of the coupling
strength σ. In case of time-delayed interaction, two types of diffusive coupling will be
considered. In the first type of coupling the time-delay appears only in the “received”
signals. For two coupled systems possible coupling functions are

u1(t) = σa12(y2(t− τ)− y1(t)), (1.4a)

u2(t) = σa21(y1(t− τ)− y2(t)), (1.4b)

where the positive constant τ represents the amount of time-delay. This type of diffusive
coupling will in the remainder be referred to as coupling type I. Of course, it is also pos-
sible that every signal in the coupling functions contains a time-delay. Possible coupling
functions that describe this type of interaction in a network of two systems are

u1(t) = σa12(y2(t− τ)− y1(t− τ)), (1.5a)

u2(t) = σa21(y1(t− τ)− y2(t− τ)). (1.5b)

Interaction of this type will be called coupling type II. An important difference between
coupling type I and coupling type II is that if the systems are synchronized then coupling
type II vanishes, i.e. yi(t) = yj(t) implies ui(t) = uj(t) = 0, but coupling type I generally
does not vanish2. This implies that the solutions of synchronized type II coupled sys-
tems are a solution of an uncoupled system whereas the solutions of synchronized type I
coupled systems will generally not be a solution of an uncoupled system.

1The reaction time consists of the time it takes to receive and process visual information, the time that
is needed to make a decision and the time it takes to hit the brakes or the accelerator pedal.

2Coupling type I vanishes only if the synchronized systems have τ -periodic or constant steady-state
solutions.
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Diffusive interaction is an important type of coupling. It is found in, for instance, net-
works of coupled neurons [21, 34, 38, 74, 80, 89, 162], networks of biological systems
[119, 137, 41], coupled mechanical systems [104, 132, 131, 36, 172] and electrical systems
[39, 169]. In [124, 128] a framework is introduced to analyze synchronization of systems
that interact via non-delayed symmetric diffusive coupling, i.e. (1.3) with a12 = a21. In
this framework, it is assumed that each systems has a property called semipassivity. A
semipassive system is a system whose state trajectories remain bounded provided that
the supplied energy is bounded3. Many physical and biological systems do have such a
property, cf. [147]. It is proved in [124, 128] that semipassive systems that interact via sym-
metric non-delayed diffusive coupling have solutions that are ultimately bounded. That is,
every solution enters a compact set in finite time and remains there ever after. Moreover,
under the assumption that the system is (nonlinear) minimum-phase4, it proved that
there exists a positive constant, say σ̄, such that the systems synchronize if the coupling
strength is larger than or equal to this constant, i.e. σ ≥ σ̄.

This thesis extends the ideas presented in [124, 128]. In particular, in chapter 3, the
semipassivity-based framework for synchronization of diffusively coupled systems is gen-
eralized in the sense that

i. the interaction is not assumed to be symmetric, i.e. aij is not necessarily aji;

ii. the diffusive coupling functions might contain time-delays.

For both coupling type I and coupling type II, it is proven that the solutions of diffusively
time-delay coupled strictly semipassive systems are ultimately bounded. Moreover, it is
proven that if these systems are also minimum-phase, then the systems synchronize if
the coupling is sufficiently strong and, in addition, the product of the coupling strength
and the time-delay is sufficiently small. See Figure 1.1. The results presented in this
chapter are published in [146].

In chapter 4 results are presented on partial synchronization in networks of diffusively
time-delay coupled systems. Partial synchronization, also known as clustering, is the phe-
nomenon where some, at least two, systems in the network do synchronize with each
other but not with every system in the network. In [129, 125, 126], it is shown that sym-
metries in networks of systems interacting via non-delayed symmetric diffusive coupling
define linear invariant manifolds. Moreover, it is proven that a linear invariant manifold
defined by a symmetry in a network of strictly semipassive minimum-phase systems is
attracting if the coupling strength is sufficiently large. The network shows partial syn-
chronization if the coupling strength for which this linear invariant manifold is attract-
ing is lower than the coupling strength for which all systems in the network synchronize.

3A formal definition of a semipassive systems will be presented in section 2.3.
4Details are provided in Chapter 3.
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Figure 1.1. Diffusively time-delay coupled strictly semipassive systems synchronize if
the coupling strength σ and time-delay τ belong to the shaded area.

Chapter 4 extends the results of [129, 125, 126] to the case of diffusive time-delay inter-
action which is not assumed to be symmetric. Like in [129, 125, 126], it is shown that
symmetries in networks of diffusively time-delay coupled systems define linear invariant
manifolds. Such a linear invariant manifold for a network of coupled strictly semipassive
minimum-phase systems is attracting if the coupling strength is sufficiently large and
the product of the coupling strength and the time-delay is sufficiently small. The net-
work shows partial synchronization if the values of the coupling strength and time-delay
for which this manifold is attracting differ from those for which all systems in the net-
work synchronize. Most of the results presented in this chapter are derived for uniform
time-delays, i.e. every time-delay has the same value. Section 4.4 presents some results
on partial synchronization for systems that interact via coupling type I with non-uniform
time-delays.

In chapter 5 a relation between synchronization of two symmetric type II coupled systems
and synchronization in more complex networks of symmetric type II coupled systems is
established. In particular, it is shown in this chapter that the knowledge of the values of
the coupling strength and time-delay for which two symmetric type II coupled systems
synchronize is sufficient to determine those values of the coupling strength and time-
delay for which any network of symmetric type II coupled systems synchronizes. For
general coupled systems these results that are presented hold locally, that is, the systems
will synchronize given that they are already sufficiently close. They become global if the
systems are strictly semipassive andminimum-phase. The results presented in this chap-
ter can be considered as a generalization of the famous Wu-Chua conjecture [170]. This
chapter is based on [145].

The second part of this thesis shows how the theory presented in the first part can be ap-
plied. Some related results are presented in addition. The focus is on synchronization in
networks of neurons. First, in chapter 6, it is proven that four of the most popular models
for neural activity do have the strict semipassivity property. That is, the Hodgkin-Huxley
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model, the Morris-Lecar model, the Hindmarsh-Rose model and the FitzHugh-Nagumo
model are all strictly semipassive. Moreover, all these models are also minimum-phase.
These results are important because they explain, using the theory presented in the first
part, the (experimentally) observed synchronous behavior of neurons that interact via
so-called electrical synapses. Simulations illustrate the theoretical results. The results pre-
sented in this chapter are published in [147].

Chapter 7 presents examples of synchronization and partial synchronization in networks
of diffusively time-delay coupled Hindmarsh-Rose neurons. The examples that are pre-
sented are results of numerical simulations and experiments with setup of type II coupled
electronic Hindmarsh-Rose neurons. Some of the results presented in this chapter are
published in [101].

Chapter 8 studies synchronization and activation in networks of coupled pancreatic β-
cells. These cells play an important role in glucose homeostasis since they release in-
sulin, which is the hormone that is mainly responsible for the blood glucose regulation.
The β-cells are known to be diffusively coupled and there is evidence that the synchro-
nized bursting activity is closely related to the insulin secretion. First it is shown that
synchronous bursting activity can indeed be expected in a network of properly function-
ing β-cells. Next networks are considered that consist of cells that are functioning well
and cells that are dead. It is shown that all activity of the network stops if the number of
dead cells relative to the number of healthy cells exceeds a certain threshold. Analytical
estimates of this threshold are derived and numerical simulations verify the results. The
results presented in this chapter are published in [12].

In Chapter 9 is the focus is on the controlled synchronization problem. Using the no-
tions of semipassivity, convergent systems5 and incremental passivity [110], a method is
described to derive nonlinear integral coupling functions that guarantee synchronization
in networks of all-to-all coupled systems. The main idea of the approach is to overcome
the disadvantages of the conventional linear high gain coupling in practical applications,
e.g. when there is a lot of output noise. The proposed method gives coupling gains that
are only large in the parts of the state space where the nonlinearities have to be sup-
pressed. The results are illustrated using simulations of a network with two Hindmarsh-
Rose neurons. The results presented in this chapter are published in [113]6.

Figure 1.2 shows the structure of the thesis. Chapter 2 contains some basic definitions
and mathematical tools that will be used throughout this thesis. It is strongly advised to
read chapter 2 first. Chapters 3, 8 and 9 can be read independently (after reading chapter
2). These chapters are all self-contained with their own introduction and conclusions.

5Convergent systems will be defined in section 2.4

6The main ideas presented in this chapter are of the first author of [113], A. V. Pavlov. This chapter is
included with his permission.
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chapter 1

chapter 2

chapter 3 chapter 4 chapter 5 chapter 6 chapter 8 chapter 9

chapter 7

chapter 10

Figure 1.2. Structure of the thesis.

It is recommended to read chapter 3 before reading chapters 4, 5 and 6. Chapter 7, in
which simulation results and experimental results are presented, should be read only
after reading chapters 3, 4, 5 and 6.

Chapter 10 summarizes themost important conclusions of all chapters. In addition, some
recommendations for future research are given. Not shown in Figure 1.2 are the appen-
dices. Appendix A provides the proofs of the technical results. Appendix B presents a
parameter estimation procedure for a Hindmarsh-Rose neuron. These results are pub-
lished in [148] and generalized in [158, 155]. The machinery that is used is published in
[157]. In [156] a more general procedure for the estimation of parameters of such models
is presented.
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CHAPTER TWO

Preliminaries

Abstract. In this chapter the notation and (mathematical) concepts that will be used throughout
the thesis are introduced. In section 2.1 the notation is introduced. Section 2.2 discusses stability
concepts for ordinary differential equations. The notions of (semi)passivity and convergent sys-
tems are presented in sections 2.3 and 2.4, respectively. Section 2.5 deals with retarded function
differential equations and stability of retarded functional differential equations. Finally, in section
2.6 some basic graph theoretical results are discussed.

2.1 Notation

The symbolR stands for the real numbers (−∞,∞),R>0 (R≥0) denotes the set of positive
(non-negative) real numbers and Rn denotes the n-fold cartesian product R × . . . × R.
The symbol C stands for the complex numbers, C>0 (C≥0) denotes the set of complex
numbers with positive (non-negative) real part. The set of integers is denoted by Z, and
N is the set of positive integers. The Euclidian norm in Rn is denoted by |·|, |x|2 := x�x,
where x� denotes the transpose of x. Let ε ∈ R>0, then |x|ε stands for the following:

|x|ε =
{

|x| − ε, if |x| > ε,

0, otherwise.

The induced norm of a matrix A ∈ Rn×n, denoted by ‖A‖, is defined as ‖A‖ =

maxx∈Rn,|x|=1 |Ax|. The n × n identity matrix is denoted by In. Simply I is written if
no confusion can arise. The notation col (x1, . . . , xn) denotes the column vector with en-
tries x1, . . . , xn. Here xi might be scalars or column vectors. The symbol ⊗ denotes the
Kronecker product of two matrices, i.e. let A ∈ Rn×m and B ∈ Rp×l, then the matrix
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A⊗ B ∈ Rnp×ml is given as

A⊗ B =

⎛
⎜⎜⎜⎝
a11B a12B . . . a1mB
a21B a22B . . . a2mB
...

...
. . .

...
an1B an2B . . . anmB

⎞
⎟⎟⎟⎠ ,

where aij denotes the ijth entry of the matrix A. The spectrum, determinant and trace of
a matrix A are denoted by spec (A), det (A) and trace (A), respectively.

Let X ⊂ Rn and Y ⊂ Rm. The space of continuous functions from X to Y that are (at
least) r ≥ 0 times continuously differentiable is denoted by Cr(X ,Y), C(X ,Y) is simply
the space of continuous functions from X to Y . If the derivatives of a function of all
orders (r = ∞) exist the function is called smooth and if the derivatives up to a sufficiently
high order exist the function is called sufficiently smooth. Let L∞(X ,Y) be the space of
essentially bounded functions that map elements of X into elements of Y , i.e. L∞(X ,Y)

is the space of all measurable functions f : X → Y for which ess sup |f | < ∞. A function
V : D → R≥0, D ⊂ Rn contains 0, is called positive (semi)definite, denoted by V (·) > 0

(V (·) ≥ 0), if V (0) = 0 and V (x) > 0 (V (x) ≥ 0) for all x ∈ D \ {0}. It is radially
unbounded if D = Rn and |x| → ∞ implies V (x) → ∞. If the quadratic form x�Px

with a symmetric matrix P = P� is positive (semi)definite, then the matrix P is positive
(semi)definite, denoted by P > 0 (P ≥ 0).

2.2 Stability concepts for ordinary differential equations

Consider a system of ordinary differential equations,

ẋ(t) = f(t, x(t)), (2.1)

with state x ∈ Rn and f : R × Rn → Rn being piecewise continuous in t and locally
Lipschitz continuous in x for all t ≥ t0. The dot notation, “ · ”, stands, as usual, for
the derivative with respect to t. A solution of (2.1) on [t0, t0 + T ] is a function x(t) that
satisfies (2.1) on [t0, t0+T ] almost everywhere. A solution of (2.1) though (t0, x0), denoted
by x(t; t0, x0), is a solution of (2.1) for which x(t0) = x0. The assumptions on f guarantee
existence and uniqueness of solutions.

Definition 2.1 (Lyapunov stability [114, 135]). Suppose that f(t, 0) = 0 for all t ≥ t0 and let
x(t0) = x0. Then the trivial solution x ≡ 0 is

i. stable (in the sense of Lyapunov) if for any number ε > 0 and any t0 ∈ R, there is
δ = δ(ε, t0) > 0 such that |x0| < δ implies |x(t; t0, x0)| < ε for all t ≥ t0;



2.2 STABILITY CONCEPTS FOR ORDINARY DIFFERENTIAL EQUATIONS 15

ii. uniformly stable (in the sense of Lyapunov) if it is stable and the number δ can be
chosen independently of t0;

iii. asymptotically stable (in the sense of Lyapunov) if it is stable and there is a number
δ̄ = δ̄(t0) > 0 such that |x0| < δ̄ implies |x(t; t0, x0)| → 0 as t → ∞;

iv. uniformly asymptotically stable (in the sense of Lyapunov) if it is uniformly stable and
there is a number δ̄ > 0 such that for any ε > 0 there is a T = T (ε) > 0 such that
|x0| < δ̄ implies |x(t; t0, x0)| < ε for all t ≥ t0 + T ;

v. exponentially stable (in the sense of Lyapunov) if there are constants m,α > 0 such
that |x(t; t0, x0)| ≤ me−α(t−t0) |x0| for all t ≥ t0.

�

Remark 2.1. All definitions for Lyapunov stability are given locally. They become global if
the definitions hold for all x0 ∈ Rn. �

The stability of an equilibrium of an ordinary differential equation can be ensured by con-
structing a (suitable) Lyapunov function.

Theorem 2.1 (Lyapunov’s second method [72]). Consider (2.1) and suppose that f(t, 0) = 0

for all t ≥ t0. Let u, v, w : R≥0 → R≥0 be continuous nondecreasing functions, u(s) and
v(s) are positive for s > 0, and u(0) = v(0) = 0. Suppose that there exists a positive definite
function V ∈ C1(R×D,R≥0) such that

u(|x|) ≤ V (t, x) ≤ v(|x|).

and

V̇ (t, x) =
∂V (t, x)

∂t
+

∂V (t, x)

∂x
f(t, x) ≤ −w(|x|)

for all x ∈ D and t ≥ t0, then the origin of (2.1) is uniformly stable. The origin of (2.1) is
asymptotically uniformly stable if it is uniformly stable and w > 0 for all x ∈ D\{0}. The
origin of (2.1) is globally uniformly (asymptotically) stable if it is uniformly (asymptotically)
stable with D = Rn and u → ∞ as |x| → ∞.

Stability (in the sense of Lyapunov) of (2.1) can also be defined with respect to sets. First
invariance and attractivity of a set with respect to (2.1) are defined.

Definition 2.2 (Invariance of sets [78]). LetA be a nonempty set and x(t; t0, x0) a solution
of (2.1) through (t0, x0). Then A is called

i. invariant under (2.1) if x0 ∈ A implies x(t; t0, x0) ∈ A for all t ∈ R;

ii. positive invariant under (2.1) if x0 ∈ A implies x(t; t0, x0) ∈ A for all t ≥ t0.
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�

Definition 2.3 (Attractivity of sets [157, 94]). Let A be a nonempty set and x(t; t0, x0) a
solution of (2.1) through (t0, x0). Then A is called an attracting set if

i. A is positively invariant under the dynamics (2.1), and

ii. there exists a set T ⊂ Rn of strictly positive measure such that
limt→∞ dist (x(t; t0, x0),A) = 0 for all x0 ∈ T , with dist (x,A) := infx∗∈A |x− x∗|.

The set A is a globally attracting set if T = Rn. �

Stability of sets is defined as follows:

Definition 2.4 (Stability of sets [176]). Let A ⊂ Rn be compact and positively invariant
under (2.1). The set A is

i. stable (in the sense of Lyapunov) with respect to (2.1) if for any ε > 0 there is a δ > 0

such that dist (x0,A) < δ implies dist (x(t; t0, x0),A) < ε for all t ≥ t0;

ii. asymptotically stable (in the sense of Lyapunov) with respect to (2.1) if it is a stable
and attracting set;

iii. uniformly asymptotically stable (in the sense of Lyapunov) with respect to (2.1) if it is
asymptotically stable and there is a number δ̄ > 0 such that for any ε > 0 there is
a T = T (ε) > 0 such that dist (x0,A) < δ̄ implies dist (x(t; t0, x0),A) < ε for all
t ≥ t0 + T .

�

Remark 2.2. The definitions for Lyapunov stability of sets are given locally. They become
global if the definitions hold for all x0 ∈ Rn. �

The stability (in the sense of Lyapunov) of (2.1) can also be defined with respect to a
solution of (2.1). Section 2.4 of this chapter provides conditions for a solutions of (2.1) to
be stable.

Definition 2.5 (Lyapunov stability of a solution [114]). Let x̄(t) be a solution of (2.1) defined
for t ∈ (t∗,∞). The solution x̄(t) is called

i. stable (in the sense of Lyapunov) if for any t0 ∈ (t∗,∞) and number ε > 0 there is
δ = δ(ε, t0) > 0 such that |x0 − x̄(t0)| < δ implies |x(t; t0, x0)− x̄(t)| < ε for all
t ≥ t0;
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ii. uniformly stable (in the sense of Lyapunov) if it is stable and the number δ can be
chosen independently of t0;

iii. asymptotically stable (in the sense of Lyapunov) if it is stable and there is a number
δ̄ = δ̄(t0) > 0 such that |x0 − x̄(t0)| < δ̄ implies |x(t; t0, x0)− x̄(t)| → 0 as t → ∞;

iv. uniformly asymptotically stable (in the sense of Lyapunov) if it is uniformly stable and
there is a number δ̄ > 0 such that for any ε > 0 there is a T = T (ε) > 0 such that
|x0 − x̄(t0)| < δ̄ implies |x(t; t0, x0)− x̄(t)| < ε for all t ≥ t0 + T ;

v. exponentially stable (in the sense of Lyapunov) if there are constants m,α > 0 such
that |x(t; t0, x0)− x̄(t)| ≤ me−α(t−t0) |x0 − x̄(t0)| for all t ≥ t0.

�

Finally some notions of boundedness of the system (2.1) are given.

Definition 2.6 (Lagrange stability and L-dissipativity, [127]). The system (2.1) is called

i. Lagrange stable if every solution is bounded in forward time;

ii. L-dissipative if the system is Lagrange stable and there exists a constant c > 0 such
that lim supt→∞ |x(t)| ≤ c for every initial condition x0 ∈ Rn.

�

Remark 2.3. The solutions of a L-dissipative system are ultimately bounded, that is, all
solutions enter independent of the initial conditions a compact set in finite time. �

2.3 Passive systems and semipassive systems

This section deals with systems having inputs and outputs. The theory of dissipative sys-
tems provides a nice and intuitive framework to analyze (and design) such open systems.
With the introduction of storage functions and supply rates by J.C. Willems in 1972,
[165, 166], the connection between physical energy-related phenomena and the mathe-
matical input-output description of a system was established. A dissipative system is a
system for which the supply (or energy) at the current time does not exceed the initial
supply plus the supplied energy. Roughly speaking, a dissipative system is a system that
does not generate energy and dissipates the energy supplied by its surrounding. Passive
systems are dissipative systems with a particular supply rate, namely a supply rate being
the bilinear product of the input(s) and output(s). Semipassive systems are systems that
behave as passive systems except that these systems do generate a finite amount of energy
itself. Formally passivity and semipassivity are defined as follows:



18 2 PRELIMINARIES

Definition 2.7 (Passivity and semipassivity, [165, 124]). Consider a system

ẋ(t) = f(x(t), u(t)), y(t) = h(x(t)), (2.2)

where state x ∈ Rn, output y ∈ Rm, input u ∈ L∞(R,Rm), sufficiently smooth functions
f : Rn → Rn and h : Rn → Rm. Suppose that there exists a nonnegative storage function
V ∈ Cr(Rn,R≥0), r ≥ 0, V (0) = 0, such that the following dissipation inequality

V (x(t))− V (x(t0)) ≤
∫ ∞

t0

y�(s)u(s)−H(x(s))ds, (2.3)

holds whereH ∈ C(Rn,R). The system (2.2) is called

i. Cr-passive if there exists a Cr storage function V and a function H such that (2.3)
holds with H(·) ≥ 0;

ii. strictly Cr-passive if there exists a Cr storage function V and a functionH such that
(2.3) holds with H(·) > 0.

iii. Cr-semipassive if there exists a Cr storage function V and a function H such that
(2.3) holds with H(·) ≥ 0 outside a ball B = B(0, R) ⊂ Rn with radius R centered
around 0, i.e.

∃R > 0, |x| ≥ R ⇒ H(x) ≥ 
 (|x|) ,

with some nonnegative continuous function 
(|x|) defined for all |x| ≥ R;

iv. strictly Cr-semipassive if there exists a Cr storage function V and a functionH such
that (2.3) holds with H(·) > 0 outside a ball B = B(0, R) ⊂ Rn.

�

Remark 2.4. If the storage function V ∈ Cr(Rn,R≥0) with r ≥ 1, inequality (2.3) can be
replaced by

V̇ (x(t)) ≤ y�(t)u(t)−H(x(t)).

�

Passive systems systems have, from a control theoretical point of view, some interest-
ing properties. For instance, a “free” C1-passive system, that is a C1-passive system with
u ≡ 0, or a C1-passive system with a feedback u = −γ(y) satisfying y�γ(y) ≥ 0 for all
y, is, under some detectability assumptions, stable in the sense of Lyapunov. Moreover,
if the storage function is positive definite, then the zero-dynamics of a strictly C1-passive
system (2.2), i.e. the dynamics (2.2) with the constraint y ≡ 0, are asymptotically sta-
ble. A nonlinear system with asymptotically stable zero dynamics is also called nonlinear
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V̇ (t) ≤ y�(t)u(t)

Figure 2.1. Semipassivity: a systems behaving as a passive systems outside some
ball in its state-space. For any smooth passive feedback u(t) = γ(y(t)) such that
−y�(t)γ(y(t)) ≤ 0, the solutions of a strictly semipassive system enter a compact set
in finite time [127].

minimum-phase. See [136, 26, 159, 59] for (many) more details and interesting properties
of dissipative and passive systems.

As follows from its definition, a semipassive system behaves, roughly speaking, as a pas-
sive system outside some ball in the system’s state-space. See Figure 2.1. A nice property
of semipassive systems (that will be heavily exploited in this thesis) is that a system of
semipassive systems for which y�u ≤ 0 is Lagrange stable. The closed-loop system is
even L-dissipative if the systems are strictly semipassive. See [127] for details.

Many (physical) systems are semipassive. In the next example it is shown that the well-
known Lorenz (chaotic) oscillator is a strictly semipassive system.

Example 2.1 ([124]). Consider the Lorenz equations [86] with input u,

ẋ1 = σ(x2 − x1) + u, (2.4a)

ẋ2 = rx1 − x2 − x1x3, (2.4b)

ẋ3 = −bx3 + x1x2, (2.4c)

where σ, r, b > 0 are constant parameters. The Lorenz system is strictly semipassive
with respect to output y = x1 and input u with the positive definite storage function
V = 1

2
(x2

1 + x2
2 + (x3 − σ − r)2). Indeed, a straightforward computation shows that V̇ ≤

yu−H(x) withH(x) = σx2
1+x2

2+ b
(
x3 − σ+r

2

)2− b (σ+r)2

4
being positive outside the ball

B centered around (0, 0, σ + r) with radius R, R2 = (σ + r)2
(
1
4
+ b

4
max

(
1
σ
, 1
))
. �

2.4 Convergent systems

In this section the notion of convergent systems is introduced. Convergent systems are
nonlinear systems with inputs that have some interesting properties. Themost important
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property of a convergent system is that the solutions of such system “forget” their initial
conditions such that, after some transient time, the solutions only depend on the input
signal that excites the system. Note that this property is natural for asymptotically stable
linear systems, but nonlinear systems do not have this property in general. A convergent
system is formally defined as follows:

Definition 2.8 (Convergent systems, [42, 114]). Consider the system

ẋ(t) = f(x(t), w(t)), (2.5)

with state x ∈ Rn, external signal w(t) ∈ PC(R,W), that is, w(t) is piecewise con-
tinuous in t and takes values from a compact set W ⊂ Rm, and the function f ∈
C(Rn × PC(R,W),Rn) is locally Lipschitz and C1 in x. The system (2.5) is called

i. convergent if

(a) for any continuous input w(t) ∈ PC(R,W) all solutions x(t) are defined and
bounded for all t ∈ [t0,∞) and all initial conditions x0 = x(t0) ∈ Rn;

(b) for any input w(t) ∈ PC(R,W) there exists a unique globally asymptotically
stable solution xw(t) on the interval t ∈ (−∞, +∞), i.e. for all initial condi-
tions the following holds:

lim
t→∞

|x(t)− xw(t)| = 0;

ii. uniformly convergent if the system is convergent and the solution xw(t) is globally
uniformly asymptotically stable;

iii. exponentially convergent if the system is convergent and the solution xw(t) is globally
exponentially stable.

�

As follows from its definition, a convergent system has a unique limit solution that is
determined by the input signal, and every solution converges to it independent of the
choice of initial conditions. As mentioned in [114], the notion of convergence is has the
advantage over other existing formulations of this property (such as incremental stability
[9], contraction theory [85] and incremental ISS [9]) that it is coordinate independent and
does not require an operator description of the system.

A sufficient condition for the system (2.5) to be an exponentially convergent system is
given in the following lemma.
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Lemma 2.2 (Demidovich Lemma, [42, 114]). Consider the system (2.5). If there exists a
matrix P ∈ Rn×n, P = P� > 0, such that all eigenvalues λi(Q) of the symmetric matrix

Q(x, w) =
1

2

(
P

(
∂f

∂x
(x, w)

)
+

(
∂f

∂x
(x, w)

)�
P

)

are negative and separated away from zero, i.e. there is a δ > 0 such that

λi(Q(x, w)) ≤ −δ < 0,

for all i = 1, . . . , n and all x ∈ Rn, w ∈ W , then the system (2.5) is exponentially convergent.

2.5 Retarded functional differential equations

In this thesis the systems in the network will be described by ordinary differential equa-
tions. Since the systems interact via time-delayed diffusive coupling, the closed-loop dy-
namics are given by a set of delay differential equations. The specific type of delay differen-
tial equations that will be encountered are retarded functional differential equations. In this
section some basic theory about solutions and stability of solutions of retarded functional
differential equations is being introduced.

The following has been adopted from [56]. Let τ ≥ 0 be a real number and let C =

C([−τ, 0],Rn). The norm of an element φ of C is |φ| = sup−τ≤θ≤0 |φ(θ)|. Even though
|·| also defines a norm in Rn, no confusion should arise. If t0 ∈ R, T ≥ 0 and x ∈
C([t0 − τ, t0 + T ]), for any t ∈ [t0, t0 + T ], xt(θ) ∈ C is defined as xt(θ) = x(t + θ),
−τ ≤ θ ≤ 0. Let Ω ⊂ R × C, f : Ω → Rn is a given functional and “ · ” represents the
right-hand derivative with respect to time1, then the relation

ẋ(t) = f(t, xt), (2.6)

is called a retarded functional differential equation (on Ω), denoted by RFDE(f). A function
x is a solution of (2.6) on the interval [t0 − τ, t0 + T ) if there are t0 ∈ R and T > 0 such
that x ∈ C([t0−τ, t0+T ),Rn), (t, xt) ∈ Ω and x(t) satisfies (2.6) for all t ∈ [t0−τ, t0+T ).
For given t0 ∈ R and φ ∈ C, x(t; t0, φ) denotes a solution of (2.6) through (to, φ). That is,
x(t; t0, φ) is a solution of (2.6) for which xt0 = φ. In the remainder it will be assumed that
the function f is completely continuous, that is, f : Ω → Rn is continuous and takes closed
bounded sets of Ω into bounded subsets of Rn. In addition, it will be assumed that f is
Lipschitz in φ in each compact set inΩ and has bounded continuous first order derivatives
with respect to φ. These assumptions on f guarantee existence and uniqueness of an
absolutely continuous solution x(t; t0, φ).

1The right-hand derivative of the function x(t) is ẋ(t) = limh→0+
x(t+h)−x(t)

h .
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2.5.1 Stability theory for RFDE

The notions of (Lyapunov) stability for ordinary differential equations presented in section
2.2 naturally extend to notions of (Lyapunov) stability for retarded functional differential
equations.

Definition 2.9 (Stability of RFDE(f), [56, 54]). Consider the RFDE(f),

ẋ(t) = f(t, xt), (2.7)

and suppose that f(t, 0) = 0 for all t ∈ R. Then the solution x ≡ 0 is

i. stable if for any t0 ∈ R and number ε > 0 there is δ = δ(t0, ε) > 0 such that |φ| < δ

implies |xt(t0, φ)| < ε for all t ≥ t0;

ii. uniformly stable if it is stable and the number δ can be chosen independently of t0;

iii. asymptotically stable if it is stable and there exists a number δ̄ = δ̄(t0) > 0 such that
|φ| ≤ δ̄ implies x(t; t0, φ) → 0 as t → ∞;

iv. uniformly asymptotically stable if it is uniformly stable and there exists a number
δ̄ = δ̄(t0) > 0 such that for every ε > 0 there is a T ′ = T ′(ε) > 0 such that |φ| ≤ δ̄

implies |xt(t0, φ)| < ε for all t ≥ t0 + T ′.

v. exponentially stable if there are constants m,α > 0 such that |x(t; t0, φ)| ≤
me−α(t−t0) |φ| for all t ≥ t0.

�

Like the stability of (an equilibrium) of an ordinary differential equation can be ensured by
constructing a (suitable) Lyapunov function, the stability of (an equilibrium) of a retarded
functional differential equation can be ensured by constructing a (suitable) Lyapunov func-
tional. If V : R×C → R is continuous and x(t; t0, φ) is a solution of (2.6) through (t0, φ),
then

V̇ (t, φ) := lim sup
h→0+

1
h
[V (t+ h, xt+h(t, φ))− V (t, φ)]. (2.8)

That is, V̇ (t, φ) is the upper right-hand derivative of V (t, φ) along the solution x(t; t0, φ).

Theorem 2.3 (Method of Lyapunov functionals, [56] §5.2, Theorem 2.1). Consider the
RFDE(f) and suppose f : R ×C → Rn is completely continuous and u, v, w : R≥0 → R≥0

are continuous nondecreasing functions, u(s) and v(s) are positive for s > 0, and u(0) =

v(0) = 0. If there is a continuous functional V : R×C → R such that

u(|φ(0)|) ≤ V (t, φ) ≤ v(|φ|),
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V̇ (t, φ) ≤ −w(|φ(0)|),

then the solution x ≡ 0 of (2.7) is uniformly stable. If u(s) → ∞ if s → ∞ the solutions
of (2.7) are uniformly bounded. If w(s) > 0 for s > 0 the solution x ≡ 0 is uniformly
asymptotically stable.

Remark 2.5. Theorem 2.3 is sometimes referred to as the Lyapunov-Krasovskii theorem
since N. N. Krasovskii proved asymptotic stability in Theorem 2.3. �

The following example shows how Theorem 2.3 can be applied to assess the stability of
the zero solutions of a simple linear scalar system.

Example 2.2. From [56]. Consider the scalar system

ẋ(t) = −ax(t) + bx(t − τ), (2.9)

with constants a > 0 and b and finite time-delay τ . Take V (φ) = 1
2
φ2(0) + a

2

∫ 0

−τ
φ2(θ)dθ,

then V̇ (φ) = −a
2
φ2(0) − bφ(0)φ(−τ) − a

2
φ2(−τ). It is easy to see that V̇ (φ) is negative

definite if |b| < a. Hence the zero solution of (2.9) is uniformly asymptotically stable for
any |b| < a. �
Remark 2.6. The condition |b| < a is sufficient but certainly not necessary for the global
stability of the zero solution of (2.9). Indeed, for the linear system (2.9), the exact region
of stability is obtained for those parameters a, b, τ for which the roots of the characteristic
equation λ + a − be−λτ = 0 have strictly negative real part. The upper bound for the
region of stability is given parametrically by the equation a = b cos(ζτ), b sin(ζτ) = −ζ

where 0 < ζ < π
τ
. The region |b| < a is exactly the region where the zero solution of (2.9)

is uniformly asymptotically stable for any τ > 0. See [56], §5.2. �

To apply Theorem 2.3, a functional has to be defined which has negative definite deriva-
tives along the solutions of RFDE(f). In this sense Theorem 2.3 can be seen as the natu-
ral extension of Lyapunov’s second method for ODE’s. However, often it is preferable to
determine the stability of a system using functions rather than functionals as functions
are, in general, easier to apply. Moreover, it is often intuitive to assess the stability of a
system by defining functions like a distance function or a energy function and the rate
of change of such function. In the following theorem sufficient conditions for stability
of the RFDE(f) are given using functions instead of functionals. If V : R × Rn → R is
continuous and x(t; t0, φ) is a solution of (2.6) through (t0, φ), then

V̇ (t, φ(0)) := lim sup
h→0+

1
h
[V (t+ h, x(t + h; t, φ))− V (t, φ(0))]. (2.10)

Theorem 2.4 (Lyapunov-Razumikhin theorem, [56], §5.4, Theorem 4.1 and Theorem 4.2).
Consider the RFDE(f) and suppose that f : R ×C → Rn is completely continuous. Suppose
u, v, w : R≥0 → R≥0 are continuous nondecreasing functions, u(s) and v(s) are positive
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for s > 0, u(0) = v(0) = 0, and v strictly increasing. If there is a continuous function
V : R×Rn → R such that

u(|x|) ≤ V (t, x) ≤ v(|x|), t ∈ R, x ∈ Rn.

and
V̇ (t, φ(0)) ≤ −w(|φ(0)|) if V (t+ θ, φ(θ)) ≤ V (t, φ(0)),

for θ ∈ [−τ, 0], then the solution x ≡ 0 of the RFDE(f) is uniformly stable. If, in addition,
w(s) > 0 for s > 0 and there is a continuous nondecreasing function p(s) > s for s > 0 such
that

V̇ (t, φ(0)) ≤ −w(|φ(0)|) if V (t+ θ, φ(θ)) < p(V (t, φ(0))),

for θ ∈ [−τ, 0], then the solution x ≡ 0 is uniformly asymptotically stable. If u(s) → ∞ if
s → ∞ the solution x ≡ 0 is a global attractor for the RFDE(f).

The next example shows how Theorem 2.4 can be applied to determine stability of the
zero solution of the simple linear scalar system (2.9).

Example 2.3. From [56]. Consider again (2.9) and let V (x(t)) = 1
2
x2(t). Then V̇ (x(t)) =

−ax2(t) + bx(t)x(t − τ) ≤ −ax2(t) + bx2(t) if |x(t)| ≥ |x(t− τ)|, hence the solution
x ≡ 0 is uniformly stable if |b| ≤ a. Take p(s) = c2s with some constant c > 1, then
V̇ (x(t)) ≤ −(a − bc)x2(t) if p(V (x(t))) > V (x(t − τ)). Hence if |b| < a there is a c > 1

such that V̇ (x(t)) ≤ 0 (whenever p(V (x(t))) > V (x(t − τ))). This implies that the zero
solution of (2.9) is uniformly asymptotically stable for |b| < a. In fact, x ≡ 0 is a global
attractor for (2.9). �

2.6 Elementary Graph theory

In this section some basic terminology from graph theory is presented. The notation and
terminology has been adopted from [24, 44]. A graph is a pair G = (V, E), with V = V(G)
denoting the set of nodes of the graph G and E = E(G) are its edges. It will always be
assumed that V and E are finite and, for unambiguous notation, V∩E = ∅. Let x and y be
two nodes, then {x, y} ∈ E denotes the directed edge from node x to node y. A network is
called undirected if {x, y} ∈ E for each {y, x} ∈ E . Otherwise the graph is a directed graph,
or digraph for short. The set of all directed edges to a node x is denoted as Ex. A graph
contains a self-loop if there is a node x with an edge {x, x}. If a graph does not contain
self-loops the graph is called simple.

Example 2.4. The graphs depicted in Figure 2.2 are both simple digraphs. Con-
sider the graph depicted in Figure 2.2(a), then V(G1) = {1, 2, 3, 4} and E(G2) =

{{4, 1}, {1, 2}, {2, 3}, {3, 4}}. For the graph depicted in Figure 2.2(b) it follows that
V(G2) = {1, 2, 3, 4} and E(G2) = {{1, 4}, {1, 2}, {3, 2}, {3, 4}}. �
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Figure 2.2. Two simple digraphs: (a) graph G1, (b) graph G2.

A graph G ′ = (V ′, E ′) is a subgraph of G, denoted by G ′ ⊂ G, if V ′ ⊂ V and E ′ ⊂ E . A
path is a nonempty graph P(V ′, E ′) ⊂ G(V, E) of the form V ′ = {x0, x1, . . . , xk}, E ′ =
{{x0, x1} , {x1, x2} , . . . , {xk−1, xk}} with all xi distinct.) A digraph G is called strongly
connected if every two nodes are joined by some path. A digraph G is connected if every two
nodes are joined by some path not taken the direction of the interconnection into account.
A maximal (strongly) connected subgraph of G is a (strongly) connected component of G.
Example 2.5. The graph G1 depicted in Figure 2.2(a) is strongly connected while the graph
G2 in Figure 2.2(b) is not strongly connected. �

If two nodes have a directed edge in common they are called adjacent. Suppose that the
network consists of k nodes, then the adjacency matrix A ∈ Rk×k is defined as A =

(
aij
)

where

aij =

{
1, if {j, i} ∈ E(G),
0, otherwise.

The degree matrix D ∈ Rk×k is a diagonal matrix with the degrees di =
∑

j aij as entries
on its diagonal. The matrix L := D − A is the Laplacian matrix (or Kirchhoff matrix) of
the graph G.
Example 2.6. The adjacency matrices of the graphs depicted in Figure 2.2(a) and Figure
2.2(b) are, respectively, ⎛

⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝
0 0 0 0
1 0 1 0
0 0 0 0
1 0 1 0

⎞
⎟⎟⎠ .

�

Of course, it is also possible to consider weighted graphs. Let wij be the weight on edge
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{j, i}, then the weighted adjacency matrix Aw :=
(
aw,ij

)
with

aw,ij =

{
wij, if {j, i} ∈ E(G),
0, otherwise.

Then the weighted degree matrix Dw is defined as the diagonal matrix with entries
∑

j wij

and the weighted Laplacian matrix Lw = Dw − Aw. In this thesis the weighted versions
of the adjacency matrix, the degree matrix and the Laplacian matrix will be denoted, for
notational simplicity, as A, D and L, respectively. Also, rather than weighted adjacency
matrix, weighted degree matrix and weighted Laplacian matrix, simply adjacency matrix,
degree matrix and Laplacian matrix will be written.

This thesis considers dynamical systems on a simple strongly connected graph. The fol-
lowing proposition gives a useful properties of the Laplacian matrix of a simple strongly
connected graph.

Proposition 2.5 (Properties of the Laplacian matrix). Let G be a simple strongly connected
digraph. Then the Laplacian matrix L is irreducible2 and spec (L) ⊂ C>0 ∪ 0.

Proof of proposition 2.5. The adjacency matrix A is irreducible if and only if its associated
digraph is strongly connected. Then L is irreducible. In addition L is singular because
all rowsums are zero. Since L is strongly connected the number of strongly connected
components is 1 (G itself), and because the (algebraic) multiplicity of the zero eigenvalue
is equal to the number of strongly connected components, cf. [24], it follows that the zero
eigenvalue is simple. Gerschgorin’s theorem about the location of the eigenvalues of L
in the complex plane, cf. [64], and the fact that the zero eigenvalue is simple implies
spec (L) ⊂ C>0 ∪ 0.

2The matrix L ∈ Rk × k, k > 1, is reducible if there is a permutation matrix P ∈ Rk × k and an integer
1 ≤ m ≤ k − 1 such that

P�LP =

(
L1 L2

0 L3

)
,

where L1 ∈ Rm×m,L2 ∈ Rm×(k−m) and L3 ∈ R(k−m)×(k−m), cf. [64]. The matrix L is irreducible if L is
not reducible [64].
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CHAPTER THREE

Synchronization of semipassive systems

Abstract. In this chapter results are presented on synchronization of strictly semipassive systems.
First it will be proven that the solutions of strictly semipassive systems that interact via time-
delayed diffusive coupling are ultimately bounded. Then, assuming that the systems are identical
and satisfy an internal stability property, it is proven that these systems synchronize whenever
the coupling is sufficiently strong and the product of the coupling strength and time-delay is
sufficiently small. The results presented in this chapter are published in [146].

3.1 Introduction

Diffusive coupling arises naturally in various areas varying from physiology [137, 41] and
neuroscience [34, 38, 74, 80, 162] to electrical systems [169, 161] and mechanical en-
gineering [132, 131, 36, 172]. The study of synchronization of these diffusively coupled
systems has received a lot of attention from the scientific community. Most works do
discuss synchronization in networks of diffusively coupled systems of a specific type,
e.g. networks of Lorenz systems. Some general theory about synchronization in net-
works of diffusively coupled systems without time-delays is presented in [55]. It is shown
that the systems synchronize if the solutions of the interconnected systems are bounded
and the coupling is sufficiently strong. In [124, 128] a general framework to analyze
synchronization of systems that interact via symmetric non-delayed diffusive coupling
is proposed. Sufficient conditions are presented for the solutions of the systems to be
ultimately bounded, and this boundedness result is independent of the topology of the
network. If the systems satisfy an additional internal stability property, then the systems
are guaranteed to synchronize for sufficiently strong coupling. The main result of [128]
is given in the following theorem.
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Theorem 3.1 ([128]). Consider k systems on a simple strongly connected graph:

żi(t) = q(zi(t), yi(t)), (3.1a)

ẏi(t) = a(yi(t), zi(t)) +Bui(t), i ∈ I := {1, 2, . . . , k} , (3.1b)

with zi ∈ Rp, yi ∈ Rm, ui ∈ L∞(R,Rm), sufficiently smooth functions a : Rp × Rm → Rp

and q : Rm ×Rp → Rm, and the matrix B ∈ Rm×m is (similar to) a positive definite matrix.
The systems (3.1) are coupled via

ui(t) = σ
∑
j∈Ei

aij(yj(t)− yi(t)), (3.2)

with coupling strength σ > 0 and interconnection weights aij = aji ≥ 0 for all i, j ∈ I1.
Suppose that

(H3.1) each system (3.1) is strictly C1-semipassive with a radially unbounded storage function;

(H3.2) there exists a positive definite function V0 ∈ C2(Rp,R≥0) and a positive constant α
such that

∇V �
0 (zi − zj)(q(zi, y)− q(zj , y)) ≤ −α |zi − zj |2 ,

for all zi, zj ∈ Rp and all y ∈ Rm.

Then the solutions of the closed-loop system (3.1), (3.2) are ultimately bounded and there exists
a constant σ∗ > 0 such that if σλ2(L) ≥ σ∗, λ2(L) denotes the smallest nonzero eigenvalue of
the symmetric Laplacian matrix, there is a globally asymptotically stable subset of the diagonal
set {

col (z1, . . . , zk, y1, . . . , yk) ∈ Rk(p+m)|yi = yj and zi = zj for all i, j ∈ I
}
.

An important observation is that assumptions (H3.1) and (H3.2) in Theorem 3.1 do not
depend on the network. This implies that systems that satisfy assumptions (H3.1) and
(H3.2) can synchronize and this result is independent of the specific network topology.
Theorem 3.1 states that the systems will synchronize if σλ2(L) is sufficiently large. Here
the network topology plays a role since λ2(L) denotes the smallest nonzero eigenvalue of
the Laplacian of the network. The smallest nonzero eigenvalue of the Laplacian matrix is
also known as the algebraic connectivity of the network, [47].

In the results presented above the coupling functions do not contain time-delays. How-
ever, it is relevant and important to consider time-delayed interaction. Indeed, in every

1The notation σaij for the “effective” coupling strength (between systems i and j) looks a bit cumber-
some at first sight. The reason to use this notation is that for a fixed network topology, i.e. aij are fixed,
sufficient conditions for synchronization can be expressed in terms of the value of the coupling strength σ
(and, in case of time-delayed coupling, the value of the time-delay).
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physical setup or biological system, it is likely that the transmission of a signal takes
some (small) amount of time. In the last decade, a quite some attention is given to syn-
chronization of diffusively coupled systems with time-delayed interaction. For instance,
in [81, 173], synchronization of master-slave coupled nonlinear systems in Lur’e form
is investigated. In [107], the circle criterion for time-delay systems is used to analyze
synchronization in a network of mutually coupled Lur’e systems. In [51, 171, 106, 31], syn-
chronization in networks of time-delay coupled systems is investigated and sufficient con-
ditions for synchronization are presented in terms of Linear Matrix Inequalities (LMIs).
A drawback of the LMI approach is that the conditions that follow are not very trans-
parent and, moreover, such conditions tend to be (very) conservative. Conditions for lo-
cal stability of the synchronized state in networks of nonlinear bidirectionally diffusively
coupled systems are presented in [174]. In [93] an approach is presented where the local
stability of the synchronized equilibria in directed networks is investigated. In [32, 33]
it is shown that passive and weakly minimum-phase relative degree one systems on a
balanced graph synchronize in presence of time-delays, see also [108] for results of syn-
chronization of agents on undirected graphs. Synchronization of Lagrangian systems is
discussed in [35, 36]. In [163, 35] contraction analysis [85] is used to analyze synchroniza-
tion in networks with time-delayed interaction. Hereby it is assumed that the coupling
is either uniform or symmetric. In addition, to use contraction theory, one has to find
a domain that is positively invariant under the given network dynamics [134], something
that is also nontrivial, especially when time-delays are involved.

In this chapter synchronization of diffusively time-delay coupled semipassive systems is
discussed in the spirit of [128]. Sufficient conditions are given for the solutions of the
coupled systems to be bounded and, in addition, sufficient condition are presented for
synchronization of these systems. The results generalize the main result of [128], i.e.
Theorem 3.1, in the sense that the coupling is not assumed to be symmetric and might
contain time-delays. (See Theorem 3.10, Theorem 3.12 and Corollary 3.11 in this chapter.)
The systems will interact via two different types of time-delay diffusive coupling, namely
coupling type I

ui(t) = σ
∑
j∈Ei

aij (yj(t− τij)− yi(t)) , (3.3)

or coupling type II
ui(t) = σ

∑
j∈Ei

aij (yj(t− τij)− yi(t− τji)) . (3.4)

In case of coupling type I the transmitted signal (the output of node j) is delayed by a
factor τij and “compared” with the current output of node i. This type of coupling arises
naturally for interconnected systems since the transmission of signals can be expected to
take some time. Coupling type II differs from coupling type I as the “reference” signals
yi(t) in case of coupling type II also contain a time-delay. Such a coupling might arise, for
instance, when the systems are synchronized by a centralized control law. It is important
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to realize that coupling type II vanishes if the systems are synchronized while coupling
type I generally does not vanish. This means that the dynamics of synchronized type
II coupled systems are the same as the dynamics of an uncoupled system, while the
dynamics of the synchronized type I coupled systems differ from that of an uncoupled
system.

The remainder of this chapter is organized as follows. In section 3.2 it will be proven
that the solutions of interconnected semipassive systems are ultimately bounded. Some
results related to synchronization of diffusively time-delay coupled passive systems are
presented as well. Section 3.3 gives sufficient conditions for synchronization of semipas-
sive systems in the spirit of Theorem 3.1. In section 3.4, it will be shown that strictly
semipassive minimum-phase systems synchronize for suitable values of the coupling
strength and the time-delay. Section 3.5 discusses the results presented in this chapter.

3.2 Interconnected semipassive systems

Consider k systems on a simple strongly connected graph:

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(t), (3.5a)

yi(t) = hi(xi(t)), i ∈ I := {1, 2, . . . , k}, (3.5b)

with state xi ∈ Rn, input ui ∈ L∞(R,Rm), output yi ∈ Rm, sufficiently smooth functions
fi : R

n → Rn, gi : Rn → Rn×m and hi : R
n → Rm. First, to avoid any possible confusion

about when systems can be called synchronized, the formal definition of the notion of
synchronization that will be used throughout this thesis is given.

Definition 3.1 (Synchronization). Consider k systems (3.5) on a simple strongly con-
nected graph. Let the systems be coupled via (3.3) or (3.4). The interconnected systems
are said to locally synchronize if, for all continuous initial history φi, φj , there is δ > 0

such that |φi − φj | < δ implies |xi(t; t0, φi)− xj(t; t0, φj)| → 0 as t → ∞ for every
i, j ∈ {1, 2, . . . , k}. When δ = ∞ the systems are said to globally synchronize (or sim-
ply synchronize for short). �

Definition 3.1 states that the coupled systems locally synchronize if the initial history is
sufficient close and the corresponding solutions converge to each other as time goes to
infinity. For global synchronization the the initial history of the systems is not required
to be close initially.

The main goal of the remainder of this section is to give sufficient conditions for the
coupled systems to have bounded solutions. As shown in [127, 147], it is not trivial that
the solutions of interconnected systems are bounded. See also chapter 6, section 6.4,
in which it is shown that the solutions of two diffusively coupled linear systems ẋi(t) =
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Axi(t) + Bui(t), with A a Hurwitz matrix, grow unbounded if the coupling strength
exceeds some threshold value. The following (technical) lemma will be used to prove the
main results of this section.

Lemma 3.2. Let L be the Laplacian matrix of a simple strongly connected graph. Then there
exists a vector ν with strictly positive entries such that ν�L = 0, i.e. the positive vector ν is the
left eigenvector of L corresponding to the simple zero eigenvector.

Proof of Lemma 3.2. The claim follows from Proposition 2.5 and the Perron-Frobenius
theorem for irreducible non-negative matrices, cf. [64].

3.2.1 Semipassive systems interacting via coupling type I

Consider k systems on a simple strongly connected graph which interact via coupling
type I,

ui(t) = σ
∑
j∈Ei

aij (yj(t− τij)− yi(t)) . (3.3)

Theorem 3.3. Consider k (not necessarily identical) systems (3.5) on a simple strongly connected
graph that interact via coupling type I (3.3). Suppose that each system is strictly C1-semipassive
with a radially unbounded storage function. Then the solutions of the closed-loop system (3.5),
(3.3) are ultimately bounded.

Proof of Theorem 3.3. Since the graph is a simple and strongly connected graph there ex-
ists, by Lemma 3.2, a vector ν with strictly positive entries such that ν�L = 0. Let νi
be the ith entry of ν. By assumption, each system is strictly semipassive with a radially
unbounded storage function Vi(xi). Define the functional

W (xt(θ)) =

k∑
i=1

νi

(
Vi(xi(t)) +

σ
2

∑
j∈Ei

aij

∫ 0

−τij

|yj(t+ s)|2 ds
)
, (3.6)

with maxi,j∈I(τij)θ ≤ 0 Clearly the functional W is positive definite. Then, by assump-
tion,

Ẇ (xt(θ)) ≤
k∑

i=1

νi

(
y�i (t)ui(t)−Hi(xi(t)) +

σ
2

∑
j∈Ei

aij
(
|yj(t)|2 − |yj(t− τij)|2

))
. (3.7)

Consider the term

k∑
i=1

νiy
�
i (t)ui(t) = σ

(
k∑

i=1

νi

(
−di |yi(t)|2 +

∑
j∈Ei

aijy
�
i (t)yj(t− τij)

))
, (3.8)
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and note that ν�L = ν�(D − A) = 0 implies that ν�Dξ = ν�Aξ for any vector ξ ∈ Rk.
Then, using the inequality y�i (t)yj(t−τij) ≤ 1

2
|yi(t)|2+ 1

2
|yj(t− τij)|2 and equations (3.7)

and (3.8), it is easy to verify that

Ẇ (xt(θ)) ≤ −
k∑

i=1

νiHi(xi(t)). (3.9)

The result follows now from the arguments presented in [127].

Remark 3.1. The result stated in Theorem 3.3 is independent of the values of the time-
delays. �
Remark 3.2. If the systems are semipassive (thus not strictly semipassive) the closed-loop
system (3.5),(3.3) will be Lagrange stable. See [127] for the details. �

Corollary 3.4. Consider a network of k identical systems (3.5) on a simple strongly connected
graph that interact via coupling type I. Suppose that the conditions stated in Theorem 3.3 hold.
Then the solutions of the interconnected systems converge to the set ∪k

i=1 {xi ∈ Rn|V (xi) ≤ c∗}
where c∗ = supH(ξ)=0 V (ξ).

Proof of Corollary 3.4. See appendix A.1.1.

Theorem 3.3 is important as it provides conditions for the solutions of the interconnected
systems to be bounded independent of the specific network topology. Corollary 3.4 gives
an even stronger result as it implies that the solutions of identical systems converge to a
set which is completely determined by the semipassivity property of the systems.

Using the strong connection between passive systems and semipassive systems, see sec-
tion 2.3, the following result is immediate (hence it will be presented without proof).

Corollary 3.5. Consider k not necessarily identical systems (3.5) on a simple strongly connected
graph. Let the systems interact via coupling type I and suppose that the systems (3.5) with
fi(0) = 0 are

i. strictly C1-passive with a radially unbounded storage function, then the systems synchro-
nize in the sense of Definition 3.1;

ii. strictly C1-output passive2 with a radially unbounded storage function, then the systems
synchronize in the sense that h(xi(t; t0, φi)) → h(xj(t; t0, φj)) as t → ∞ for any con-
tinuous initial history φi, φj for all i, j ∈ I. If, in addition, the systems are zero-state
detectible3, then the systems synchronize in the sense of Definition 3.1.

2A system is strictly C1-output passive if the system is C1-passive and the functionH(x)− ε |h(x(t))|2 ≥
0 for some ε > 0.

3The system (3.5) is zero-state detectable if, for any trajectory such that ui(t) = 0, yi(t) = 0 implies
xi(t) = 0. See [59].
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Remark 3.3. Suppose that the systems (3.5) with fi(0) = 0 on a simple strongly connected
graph are C1-passive with a radially unbounded positive definite storage function Vi. Ex-
amples of such systems are systems of the form ẋi(t) = Axi(t)+Bui(t), yi(t) = C�xi(t),
with a storage function Vi(xi) = x�

i (t)Pxi(t) for some positive definite P such that
PB = C�. Then the interconnected systems (3.5), (3.3) synchronize in the sense that∣∣yi(t)− yj(t− τ ∗ij)

∣∣→ 0 as t → ∞ for all initial history for all i, j ∈ I, where τ ∗ij denotes
the minimum of the sum of delays over the paths from i to j. This assertion follows
directly from the proof of Theorem 3.3 using a LaSalle type of argument and the fact that∑k

i=1

∑
j∈Ei νiaijy

�
i (t)yj(t − τij) =

∑k
i=1

∑
j∈Ei νiaij

(
1
2
|yi(t)|2 + 1

2
|yj(t− τij)|2

)
only if∣∣yi(t)− yj(t− τ ∗ij)

∣∣ for all i, j ∈ I. Often this implies that |yi(t)− yj(t)| → 0 as t → ∞
for all initial history for all i, j ∈ I, e.g. if the solutions of the interconnected systems
all converge to some constant function. This is for instance the case when the systems
are of the form ẋi(t) = ui(t) with output yi(t) = xi(t). See also [32, 33] for examples.
However, for a network with identical harmonic oscillators, it is not necessarily true that∣∣yi(t)− yj(t− τ ∗ij)

∣∣ → 0 as t → ∞ implies that |yi(t)− yj(t)| → 0 as t → ∞ for any ini-
tial history. Indeed, for a network consisting of three identical harmonic oscillators with
frequency ω that are coupled in a directed ring and all time-delays are τij = ω/3, there
exist initial history such that y1(t) = y2(t− ω/3) = y3(t− 2ω/3) = y1(t − ω) = y1(t) (as
t → ∞). �

3.2.2 Semipassive systems interacting via coupling type II

As interconnected strictly semipassive systems on a simple strongly connected graph that
interact via coupling type I have ultimately bounded solutions, one might expect that the
solutions of those systems interacting via coupling type II,

ui(t) = σ
∑
j∈Ei

aij (yj(t− τij)− yi(t− τji)) , (3.4)

are being ultimately bounded as well.

Theorem 3.6. Consider k (not necessarily identical) systems (3.5) on a simple strongly connected
graph that interact via coupling type II (3.4). Suppose that each system is strictly C1-semipassive
with a radially unbounded storage function and the functions Hi(xi) are such that there exist
Ri > 0 such that |xi| > Ri implies Hi(xi) − 2σdi |yi|2 > 0 with di =

∑
j∈Ei aij . Then the

solutions of the closed-loop system (3.5), (3.4) are ultimately bounded.

Proof of Theorem 3.6. See appendix A.1.2

Remark 3.4. Of course, it can be that the conditions of Theorem 3.6 are satisfied only
for values σ on some interval Iσ. Then the solutions of the interconnected systems are
ultimately bounded for σ ∈ Iσ. �
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It is easy to derive the counterparts of Corollaries 3.4 and 3.5 for coupling type II. (Hence
these results are presented without proofs.)

Corollary 3.7. Consider a network of k identical systems (3.5) on a simple strongly connected
graph. Let the systems interact via coupling type II and suppose that the conditions stated
in Theorem 3.6 hold. Then the solutions of the interconnected systems converge to the set
∪k
i=1 {xi ∈ Rn|V (xi) ≤ c∗(σ)} where c∗(σ) = supH(ξ)−2σmaxi(di)|h(ξ)|2=0 V (ξ).

Corollary 3.8. Consider k not necessarily identical systems (3.5) on a simple strongly connected
graph. Let the systems interact via coupling type II and suppose that the systems (3.5) with
fi(0) = 0 are

i. strictly C1-passive with a radially unbounded storage function and the functions Hi(xi)

are such that Hi(xi) − 2σdi |yi|2 > 0, then the systems synchronize in the sense of
Definition 3.1;

ii. strictly C1-passive with a radially unbounded storage function and the functions Hi(xi)

are such that Hi(xi) − 2σdi |yi|2 > 0, then the systems synchronize in the sense that
h(xi(t; t0, φi)) → h(xj(t; t0, φj)) as t → ∞ for any continuous initial history φi, φj

for all i, j ∈ I. If, in addition, the systems are zero state detectible, then the systems
synchronize in the sense of Definition 3.1.

Remark 3.5. Note that in case ii in Corollary 3.5 the systems are required to satisfied a
stronger condition than being strictly output passive. Indeed, the systems have to be
strictly output passive with the constant ε ≥ 2σdi (instead of ε > 0). �

3.3 Synchronization of semipassive systems

This section considers identical systems (3.5) that can be transformed into the normal
form

żi(t) = q(zi(t), yi(t)), (3.10a)

ẏi(t) = a(yi(t), zi(t)) +B(yi(t), zi(t))ui(t), i ∈ I, (3.10b)

with yi ∈ Rm, zi ∈ Rp, p = n−m, sufficiently smooth Lipschitz continuous functions q :
Rp×Rm → Rp, a : Rm×Rp → Rm, andB(·, ·) being nonsingular. See for instance [30] for
necessary and sufficient conditions for the existence of such coordinate transformation.
For simplicity, however, it will be assumed that B(·, ·) = I , hence

żi(t) = q(zi(t), yi(t)), (3.11a)

ẏi(t) = a(yi(t), zi(t)) + ui(t). (3.11b)
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In this section sufficient conditions are presented for synchronization of strictly semi-
passive systems (3.11) that interact via either coupling type I or coupling type II. For both
types of coupling, conditions are presented such that the synchronization manifold, i.e.
the linear manifold

M =
{
col (z1, . . . , zk, y1, . . . , yk) ∈ Rk(p+m)|zi = zj and yi = yj for all i, j ∈ I

}
,

is invariant under the given dynamics. Sufficient conditions for synchronization of those
systems will be presented in term of the coupling strength and the time-delays.

Remark 3.6. The systems (3.11) have relative degree one. In [30] it is shown that, under
mild regularity conditions, any passive system with a positive definite storage function
has to be a relative degree one system. As in the remainder of this section it will be
assumed that the systems are strictly semipassive, and semipassive systems are basically
passive systems outside some ball in the state space, it is natural to consider relative
degree one systems. �

3.3.1 Semipassive systems interacting via coupling type I

Consider the systems (3.11) on a simple strongly connected graph. Let the systems be
coupled via

ui(t) = σ
∑
j∈Ei

aij (yj(t− τij)− yi(t)) . (3.3)

First conditions will be derived that guarantee thatM is invariant under the given closed-
loop dynamics (3.11), (3.3).

Proposition 3.9. The linear manifold M is invariant under the dynamics (3.11), (3.3) on a
simple strongly connected graph if (at least) one of the following conditions is satisfied:

i. the time-delays τij = 0 for all i, j ∈ I;

ii. the time-delays τij = τ with τ ∈ R>0, and
∑

j∈Ei aij = constant for all i, j ∈ I;

iii. there are continuous initial history φi on M such that all yi(t; t0, φi)
4 on M are T -

periodic with period time T = mini,j∈I(τij);

iv. there are continuous initial history φi onM such that all yi(t; t0, φi) onM are constant,
i.e. yi(t; t0, φi) = constant on M for every i ∈ I.

4The notation yi(t; t0, φi) is used to denote the yi-components of the solution of (3.11) that coincides
with φi on t ∈ [−τ, 0].



38 3 SYNCHRONIZATION OF SEMIPASSIVE SYSTEMS

Proof of Proposition 3.9. Since the systems (3.11) are assumed to be identical it follows that
M is invariant under (3.11), (3.3) if

ui(t) = uj(t), (3.12)

for all i, j ∈ I. Case i and iv are obvious. For case ii it is assumed that all τij = τ such
that, on M, 0 = ui(t) − uj(t) = σ(di − dj)(y(t) − y(t − τ)). Thus (3.12) holds if di =∑

j∈Ei aij = constant for all i ∈ I. For case iii it follows that any ui(t) = σ
∑

j∈Ei aij(yj(t−
τij)− yi(t)) = σ

∑
j∈Ei aij(yj(t − τij)− yi(t − T ∗)) with T ∗ being some integer multiple

of T . Then all solutions on M being T -periodic implies each ui(t) ≡ 0 on M.

Remark 3.7. The conditions for the existence of the synchronized state presented in
Proposition 3.9 are sufficient but not necessary as will be shown in Example 4.3 in chapter
4. �

Only the cases i and ii will be discussed since cases iii and iv of Proposition 3.9 are rather
restrictive and, in general, difficult to verify a priori. First it will be assumed that the
couplings functions are such that the conditions in case ii are satisfied. In particular, it
will be assumed the the systems (3.11) interact via coupling type I with

(H3.3) τij = τ and
∑

j∈Ei aij = 1 for every i, j ∈ I.

Here, for notational convenience and without loss of generality,
∑

j∈Ei aij is chosen to be
equal to one for every i ∈ I.

Theorem 3.10. Consider k identical systems (3.11)which interact via coupling type I on a simple
strongly connected graph. Suppose that (H3.3) holds and, in addition, assume that

(H3.1) each system (3.11) is strictly C1-semipassive with a radially unbounded positive definite
storage function V (·);

(H3.2) there exists a positive definite function V0 ∈ C2(Rp,R>0) such that for all zi, zj ∈ Rp

and all y∗ ∈ Rm there is a constant α0 ∈ R>0 such that

(∇V0(zi − zj))
�(q(zi, y∗)− q(zj, y

∗)) ≤ −α0 |zi − zj |2 . (3.13)

Then there exists constants σ̄ and γ̄ such that if σ ≥ σ̄ and στ ≤ γ̄ the set M contains a
globally asymptotically stable subset.

Proof of Theorem 3.10. See appendix A.1.3.
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Figure 3.1. Strictly semipassive minimum phase systems that interact via coupling type
I synchronize whenever (σ, τ) ∈ S (shaded area).

The result of Theorem 3.10 boils down to the following. Given k strictly C1-semipassive
identical systems with minimum phase5 internal dynamics, then under restriction that
the coupling is sufficiently strong and at the same time the time-delay is sufficiently
small, the systems will synchronize. In other words, there exists always a region S =

{σ, τ ∈ R≥0|σ ≥ σ̄ and στ ≤ γ̄}, indicated in gray in Figure 3.1, such that if (σ, τ) ∈ S,
then the systems synchronize.

Remark 3.8. In Theorem 3.10, assumption (H3.1) implies, by Theorem 3.3 and Corollary
3.4, that the solutions of the network are being ultimately bounded. This boundedness
property plays an important role in the proof of Theorem 3.10. An advantage of the
semipassivity approach that is used here is that proving that a single system is strictly
semipassive guarantees boundedness of solutions of the whole network. However, these
conditions for boundedness are only sufficient and Theorem 3.10 remains true without
assumption (H3.1) if it can be proved that the solutions of the interconnected systems are
ultimately bounded. �
Remark 3.9. For simplicity it is stated that assumption (H3.2) holds on the whole state
space. Of course, since ultimate boundedness is already guaranteed by assumption (H3.1)
(and Theorem 3.3), assumption (H3.2) has to hold only on the compact set to which the
solutions converge in finite time. �

Consider now case i of Proposition 3.9, i.e. the k identical systems (3.11) on a simple
strongly connected graph interact via coupling of the form

ui(t) = σ
∑
j∈Ei

aij(yj(t)− yi(t)), (3.14)

5a system is minimum-phase if it has stable zero dynamics, i.e. the internal tracking dynamics are
stable, cf. [135]. Assumption (H3.2) implies that the systems are minimum-phase.
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where aij is not assumed to be equal to aji. Since this coupling vanishes on the synchro-
nization manifold, assumption (H3.3) of Theorem 3.10 can be omitted, and the following
result can easily be derived.

Corollary 3.11. Consider k identical systems (3.11) on a simple strongly connected graph that in-
teract via non-delayed diffusive coupling (3.14). Suppose that assumptions (H3.1) and (H3.2)
hold. Then there exists a constant σ̄ such that if σ ≥ σ̄ the setM contains a globally asymptot-
ically stable subset.

Proof of Corollary 3.11. See appendix A.1.4.

Obviously Corollary 3.11 generalizes themain result of [128], i.e. Theorem 3.1, in the sense
that the assumption that the coupling is symmetric (aij = aji) is not needed anymore.

3.3.2 Semipassive systems interacting via coupling type II

Consider the systems (3.11) on a simple strongly connected graph and let the systems be
coupled via

ui(t) = σ
∑
j∈Ei

aij (yj(t− τij)− yi(t− τji)) . (3.4)

To guarantee invariance of the synchronization manifold M under the dynamics (3.11),
(3.4) it will be assumed that

(H3.4) τij = τji for all i, j ∈ I.

Clearly, if assumption (H3.4) is satisfied, all couplings function (3.4) vanish if the sys-
tems are synchronized. Hence the linear manifold M is positively invariant under the
given dynamics. Sufficient conditions for the stability of the synchronization manifold
are presented in the following theorem.

Theorem 3.12. Consider k identical systems (3.11) on a simple strongly connected graph that
interact via coupling type II. Suppose that (H3.4) holds and assume, in addition, that

(H3.5) each system is strictly C1-semipassive with a radially unbounded storage function and
the functionsH(xi) are such that there existR > 0 such that |xi| > R impliesH(xi)−
2σd |yi|2 > 0 with d = maxi∈I

∑
j∈Ei aij ;

(H3.2) there exists a positive definite function V0 ∈ C2(Rp,R>0) such that for all zi, zj ∈ Rp

and all y∗ ∈ Rm there is a constant α0 ∈ R>0 such that

(∇V0(zi − zj))
�(q(zi, y∗)− q(zj, y

∗)) ≤ −α0 |zi − zj |2 . (3.13)
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Then there exists constants σ̄ and γ̄ such that if σ ≥ σ̄ and στ ∗ ≤ γ̄, τ ∗ = maxi,j∈I τij , the set
M contains a globally asymptotically stable subset.

Proof of Theorem 3.12. See appendix A.1.5.

Remark 3.10. As remarked before for systems that interact via coupling type I (Remark
3.8), assumption (H3.5) in Theorem 3.12 is sufficient to have boundedness of solutions
of type II coupled systems. Suppose that assumption (H3.5) is not satisfied but it can be
proven that the solutions of the closed-loop system are ultimately bounded, then Theorem
3.12 can be applied without (H3.5). �
Remark 3.11. It might be that assumption (H3.5) is only satisfied for values σ on
some interval Iσ. Then the systems (3.11) coupled via (3.4) synchronize if (σ, τ ∗) ∈
{σ ∈ Iσ, τ

∗ ∈ R≥0|σ ≥ σ̄ and στ ∗ ≤ γ̄}. Note that it is then implicitly assumed that
σ̄ ∈ Iσ. �

3.4 Convergent systems

In Theorems 3.1, 3.10, 3.12 and Corollary 3.11 it has been assumed that

(H3.2) there exists a positive definite function V0 ∈ C2(Rp,R>0) such that for all zi, zj ∈
Rp and all y∗ ∈ Rm there is a constant α0 ∈ R>0 such that

(∇V0(zi − zj))
�(q(zi, y∗)− q(zj, y

∗)) ≤ −α0 |zi − zj |2 . (3.13)

In this section it is shown how this function V0 can be constructed using the concept of
convergent systems (which is introduced in chapter 2, section 2.4).

Proposition 3.13. If the subsystem (3.11a) satisfies the Demidovich condition (Lemma 2.2) with
a positive definite matrix P , then assumption (H3.2) holds with

V0(zi − zj) = (zi − zj)
�P (zi − zj). (3.15)

Proof of Proposition 3.13. (The proof can also be found in [111].) The derivative of (3.15)
along two trajectories of (3.11a) with the constraint yi(t) = yj(t) = y∗(t) is given by

V̇0

∣∣∣
yi=yj=y∗

(zi − zj) = (∇V0(zi − zj))
�(q(zi, y∗)− q(zj , y

∗))

= (zi − zj)
�P (q(zi, y

∗)− q(zj, y
∗)). (3.16)

Denote
Φ(ζ) := (zi − zj)

�Pq(zj + ζ(zi − zj), y
∗), (3.17)
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with constant ζ ∈ [0, 1]. Note that (3.16) can be written as Φ(1)−Φ(0). By the mean value
theorem and q ∈ C1

Φ(1)− Φ(0) =
dΦ

dζ
(ζ∗), (3.18)

for some ζ∗ ∈ [0, 1]. Hence

V̇0

∣∣∣
yi=yj=y∗

(zi − zj) = (zi − zj)
�P

dq

dz
(z∗, y∗)(zi − zj)

= (zi − zj)
�Q(z∗, y∗)(zi − zj), (3.19)

with z∗ = zj + ζ∗(zi − zj) and the matrix Q(·, ·) as defined in Lemma 2.2. Since Q(·, ·) is
uniformly negative definite by assumption it can be concluded that

V̇0

∣∣∣
yi=yj=y∗

(zi − zj) ≤ −α0 |zi − zj |2 , (3.20)

with constant α0 = δ
λmax(P )

, δ as defined in Lemma 2.2 and λmax(P ) being the largest
eigenvalue of the positive definite matrix P .

In the remainder of this thesis it will often be assumed that a system satisfies assumption
(H3.2). For notational convenience, it will simply be stated that such a system satisfies
the Demidovich condition (with a positive definite matrix P ). Of course, this assumption
can replaced by the more general assumption (H3.2).

3.5 Discussion

In this chapter synchronization of semipassive systems that interact via time-delay dif-
fusive coupling has been discussed. First it is proven that the solutions of strictly semi-
passive systems that interact via coupling type I or type II are ultimately bounded. Next
it is proven that coupled identical strictly semipassive minimum-phase systems always
synchronize provided that the coupling is sufficiently strong and the product of the cou-
pling and the time-delay is sufficiently small. Finally the notion of convergent systems
is used to present a condition (that is relatively easy to verify) to ensure that the systems
are minimum-phase. An important observation is that (as follows from the proofs of the
theorems) the main result of [128], i.e. Theorem 3.1, is a special case of Theorem 3.10
and Theorem 3.12. See also Corollary 3.11. Thus the results presented in this chapter
generalize Theorem 3.1.

It has to be noted that the results presented in this chapter are mainly on the existence
level, i.e. for strictly semipassive minimum-phase systems there exist constants σ̄ and
γ̄ such that if σ ≥ σ̄ and στ ≤ γ̄ the systems synchronize. One has to realize that the
estimates of the threshold values σ̄ and γ̄ which are provided in the proofs of the theo-
rems can be quite conservative. Moreover, it is important to notice that these estimates
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depend on the particular dynamical systems in the network, e.g. the threshold values for
a network of Lorenz systems can be expected to differ from the threshold values that can
be found for a network of Hindmarsh-Rose oscillators.

The results presented in this chapter hold for networks with a fixed topology and con-
stant time-delays. It would, from a practical point of view, be very interesting to extend
the results for networks with time-varying topologies and time-varying delays. See, for in-
stance, [108, 96] for some results for consensus of multi agent systems. It has to be noted
that for networks with a fixed topology but varying delays, the part of the proofs of Theo-
rem 3.10 and Theorem 3.12 concerning the convergence of the solutions to each other is
still valid. This is because the proof of convergence uses the Lyapunov-Razumikhin the-
orem which remains true for bounded time-varying delays. Hence to extend the results
presented here in that direction it has (only) to be proven that the solutions are ultimately
bounded.
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CHAPTER FOUR

Synchronization and network topology
Part I: Partial synchronization

Abstract. This chapter presents results on partial synchronization of identical strictly semipassive
systems. Linear invariant manifolds corresponding to the regimes of partial synchronization are
identified by symmetries in the network. First, the results on partial synchronization of strictly
semipassive systems that interact via symmetric non-delayed diffusive coupling presented in [129,
125, 126] are extended to the asymmetric coupling case. Then results are presented for partial
synchronization of systems that interact via coupling type I or coupling type II. In both cases,
it is assumed that the time-delays are uniform. Finally, some results are presented for partial
synchronization of semipassive systems that interact via a specific type of coupling type I with
non-uniform time-delays.

4.1 Introduction

In this chapter partial synchronization of k identical systems that interact via diffusive
time-delay coupling is discussed. Partial synchronization, also known as clustering, is
the phenomenon where some systems in the network do synchronize while others do
not. This implies that, if there is partial synchronization in a network, there should ex-
ist linear manifolds of the type

{
col (x1, . . . , xk) ∈ Rkn|xi = xj for some i, j ∈ I

}
that

invariant under the closed-loop dynamics and attracting for values of the coupling
strength and time-delay other than those for which the full synchronization manifold{
col (x1, . . . , xk) ∈ Rkn|xi = xj for all i, j ∈ I

}
is attracting. As the systems in the net-

work are assumed to be identical, the existence of such linear invariant manifolds is likely
to follow from the specific topology of the network [18, 20, 129, 125, 126]. In particular, in
[18, 20] it is shown how the structure of the network can be chosen such that partial syn-
chronization occurs. In [129, 125, 126], a systematic approach is presented to identify the
linear invariant manifolds using local and global symmetries in the closed-loop dynamical
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system. Local symmetries are the symmetries that are present in the system itself. For
example, the Lorenz system [86] is a system [129] with a local symmetry. Indeed, the
Lorenz equations

ẋ1 = σ(x2 − x1), (4.1a)

ẋ2 = rx1 − x2 − x1x3, (4.1b)

ẋ3 = −bx3 + x1x2, (4.1c)

are invariant under the change of coordinates x �→ y with y1 = −x1, y2 = −x2 and
y3 = x3. Global symmetries are the symmetries that are present in the network. In
this chapter the results of [129, 125, 126] will be extended to the case with asymmetric
time-delayed interaction. Only global symmetries will be considered as the focus in this
chapter is on the topology of the the network. However, it is important to realize that
local symmetries also might influence the synchronization in a network. See [129] for an
example.

In case of a global symmetry, i.e. if the network contains a certain symmetry, the sym-
metry must be present in the adjacency matrix A (and thus also in the Laplacian ma-
trix L). Hence a rearrangement of (some of) the entries of A leaves the network un-
changed. Mathematically the rearrangement of the entries of A is described by the
(pre)multiplication of A with a permutation matrix. Recall that a permutation matrix
is a matrix with exactly one entry equal to one in each row and each column and zeros
everywhere else. Permutation matrices are orthogonal and form a group (with identity
element I) under multiplication. In [129, 125, 126] networks are considered that consist
of identical systems that interact via non-delayed diffusive coupling,

ui(t) = σ
∑
j∈Ei

aij(yj(t)− yi(t)), (4.2)

with aij = aji. In particular, in [129] it is proven that if there is a permutation matrix Π
that commutes with the Laplacian matrix L, i.e. ΠL = LΠ, then the set ker(Ikn −Π⊗ In)

defines a linear invariant manifold for the network. In addition, sufficient conditions
are presented for this manifold to be globally attracting for the closed-loop dynamics. In
[125, 126], the assumption thatΠ and L commute is relaxed; it is proven that the result of
[129] remains true if there exists a solutionX of thematrix equation (I−Π)L = X(I−Π).
(Obviously, if Π and L commute, L = X .)

Partial synchronization will be formally defined as follows:

Definition 4.1 (Partial synchronization). Consider k systems on a simple strongly con-
nected graph:

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(t), (4.3a)

yi(t) = hi(xi(t)), i ∈ I := {1, 2, . . . , k} , (4.3b)
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with state xi ∈ Rn, input ui ∈ L∞(R,Rm), output yi ∈ Rm, sufficiently smooth functions
fi : R

n → Rn, gi : Rn → Rn×m and hi : R
n → Rm. Let the systems interact via coupling

type I
ui(t) = σ

∑
j∈Ei

aij (yj(t− τij)− yi(t)) , (4.4)

or coupling type II
ui(t) = σ

∑
j∈Ei

aij (yj(t− τij)− yi(t− τji)) . (4.5)

The interconnected systems are said to locally partially synchronize if, for all con-
tinuous initial history φi, φj , there is δ > 0 such that |φi − φj| < δ implies
|xi(t; t0, φi)− xj(t; t0, φj)| → 0 as t → ∞ for at least two but not all i, j ∈ I. When
δ = ∞ the systems are said to globally partially synchronize (or simply partially synchronize
for short). �

The remainder of this chapter is organized as follows. Section 4.2 gives sufficient con-
ditions for partial synchronization in networks coupled without delays. The result gen-
eralizes the main results presented in [129, 125, 126] in the sense that the non-delayed
interaction is not assumed to be symmetric anymore. In section 4.3 sufficient conditions
are presented for partial synchronization of systems that interact via time-delay diffusive
coupling of type I or type II. In this section it is assumed that the time-delays are uni-
form, i.e. the value of the time-delay on each interconnection is the same. In section 4.4
some results are presented for systems that interact via coupling type I with non-uniform
time-delays. Section 4.5 concludes the chapter.

4.2 Non-delayed interaction

Consider k systems (in the normal form introduced in chapter 3, section 3.3) on a simple
strongly connected graph,

żi(t) = q(zi(t), yi(t)), (4.6a)

ẏi(t) = a(yi(t), zi(t)) + ui(t), i ∈ I, (4.6b)

with zi ∈ Rp, yi ∈ Rm, input ui ∈ C0(R,Rm) ∩ L∞, and sufficiently smooth functions
q : Rp × Rm → Rp, a : Rm × Rp → Rm. Let the systems (4.6) interact via non-delayed
diffusive coupling

ui(t) = σ
∑
j∈Ei

aij(yj(t)− yi(t)). (4.7)

It will not be assumed that the coupling (4.7) is symmetric, i.e. aij is not necessarily
equal to aji. The following lemma shows that a symmetry in the network defines a linear
invariant manifold for the closed-loop dynamics.
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Lemma 4.1. Let Π ∈ Rk×k be a permutation matrix and the matrix X be the solution of the
matrix equation (I − Π)L = X(I − Π). Then the set ker (Ikn −Π⊗ In) defines a linear
invariant manifold for the system (4.6), (4.7).

Proof of Lemma 4.1. The following new variables are introduced for notational conve-
nience: Ξ := Ikn − Π ⊗ In, ξ(t) := col (z1(t), y1(t), . . . , zk(t), yk(t)), F (ξ(t)) :=

col (q(z1(t), y1(t)), a(y1(t), z1(t)), . . . , q(zk(t), yk(t)), a(yk(t), zk(t))) and

B :=

(
0 0
0 Im

)
. (4.8)

Then, using the new notation, the closed-loop system (4.6), (4.7) can be written as

ξ̇(t) = F (ξ(t))− σ(L⊗ B)ξ(t). (4.9)

Let ξ∗(t) be such that Ξξ∗(t) = 0, hence Ξξ̇∗(t) = 0. This implies that

ΞF (ξ∗(t))− σΞ(L⊗ B)ξ∗(t) = 0. (4.10)

Since (Π ⊗ In)F (ξ(t)) = F ((Π ⊗ In)ξ(t)) because Π is a permutation matrix, it follows
from the assumptions that

0 =F (ξ∗(t))− F ((Π⊗ In)ξ
∗(t))− (X ⊗ B)(Ikn − Π⊗ In)ξ

∗(t), (4.11)

hence ker (Ikn −Π⊗ In) defines a linear invariant manifold for the system (4.6), (4.7).

Using Lemma 4.1 and the machinery presented in the previous chapter, cf. Corollary 3.11,
the following theorem is a straightforward extension of the main result of [125].

Theorem 4.2. Consider k systems (4.6) on a simple strongly connected graph that are coupled
via non-delayed diffusive coupling (4.7). Let Π ∈ Rk×k be a permutation matrix and X be the
solution of the matrix equation (I −Π)L = X(Ik −Π). Suppose that

(H4.1) each system (4.6) is strictly C1-semipassive with a radially unbounded storage function;

(H4.2) each subsystem (4.6a) satisfies the Demidovich condition;

(H4.3) there is a constant λ′ ∈ R>0 such that for all ζ ∈ Rk

1
2
ζ�(Ik − Π)�(X +X�)(Ik −Π)ζ ≥ λ′ζ�(Ik − Π)�(Ik −Π)ζ.

Then there exists a positive constant σ∗ such that if σ ≥ σ∗, then a subset of the set ker(Ikn −
Π⊗ In) is globally asymptotically stable.
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Figure 4.1. The network of Example 4.1.

Proof of Theorem 4.2. See appendix A.2.1.

Remark 4.1. The existence of a solution X of the matrix equation (I − Π)L = X(I − Π)

and assumption (H4.3) can be easily verified using the singular value decomposition of
(I −Π), cf. [125, 126]. �

Theorem 4.2 provides sufficient conditions for subset of the set ker(Ikn − Π ⊗ In) to be
globally asymptotically stable. The network shows partial synchronization if the values of
the coupling strength for which this subset is globally asymptotically stable do not coin-
cide with the values of the coupling strength for which the network fully synchronizes.
Let σ∗ be as in Theorem 4.2, i.e. σ∗ is such that a subset of the set ker(Ikn − Π ⊗ In)

is globally asymptotically stable if σ ≥ σ∗. Note that assumptions (H4.1) and (H4.2) im-
ply, by Corollary 3.11, that all systems synchronize whenever the coupling is sufficiently
strong, say σ ≥ σ̄. Then partial synchronization of the systems can only be expected if
σ∗ < σ̄.

The following two examples show how Theorem 4.2 can be applied.

Example 4.1. Consider the network depicted in Figure 4.1. The corresponding Laplacian
matrix is given as

L =

⎛
⎜⎜⎝
a1 + 2a3 −a1 −a3 −a3
−a1 a1 + 2a3 −a3 −a3
−a2 −a2 2a2 0
−a2 −a2 0 2a2

⎞
⎟⎟⎠ .

Consider the permutation matrix

Π =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

It can easily be verified that this matrix commutes with L, i.e. ΠL = LΠ. Hence X = L

is a solution of the matrix equation (I−Π)L = X(I−Π). A straightforward computation
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Figure 4.2. The network of Example 4.2. The interconnections represented by the
dashed lines have weights a4.

shows that (H4.3) holds with λ′ = 2a2 > 0. Suppose that assumptions (H4.1) and (H4.2)
are satisfied. Then Theorem 4.2 implies that the set ker(I4n −Π⊗ In) contains a globally
attracting subset for sufficiently large σ which implies that systems 3 and 4 synchronize
for sufficiently large σ. There is partial synchronization if the network does not fully
synchronize for the values of σ for which systems 3 and 4 synchronize. �
Example 4.2 ([125]). Consider the network depicted in Figure 4.2. The Laplacian matrix
of this network is

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 −a1 0 −a1 −a2 −a4 0 0
−a1 d1 −a1 0 −a4 −a2 0 0
0 −a1 d1 −a1 0 0 −a2 −a4

−a1 0 −a1 d1 0 0 −a4 −a2
−a2 −a4 0 0 d5 −a3 0 −a3
−a4 −a2 0 0 −a3 d5 −a3 0
0 0 −a2 −a4 0 −a3 d5 −a3
0 0 −a4 −a2 −a3 0 −a3 d5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with d1 = 2a1 + a2 + a4 and d5 = 2a3 + a2 + a4. The permutation matrix

Π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

does not commute with L but there exists a solutionX of the matrix equation (I−Π)L =

X(I−Π). This can be verified (numerically) using the singular value decomposition. For
instance, let a1 = a3 = 1 and a2 = a4 =

1
2
. Consider the singular value decomposition of
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I − Π, I − Π = UΣV �, with unitary matrices U and V and Σ is a diagonal matrix with
the singular vales of I −Π as entries, cf. [64]. Note that dimker(I−Π) = 2. Assume that
Σ has the form

Σ =

(
Σ1 0
0 0

)
,

with Σ1 ∈ R6×6 being a diagonal matrix with the nonzero singular values of I − Π as
entries. It is easy to verify that the matrix

X =
1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 −5 −1 −5 0 0 0 0
−5 11 −5 −1 0 −2 0 2
−1 −5 11 −5 0 0 0 0
−5 −1 −5 11 0 2 0 −2
0 0 0 0 11 −5 −1 −5
0 −2 0 2 −5 11 −5 −1
0 0 0 0 −1 −5 11 −5
0 2 0 −2 −5 −1 −5 11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

solves (I − Π)L = X(I − Π). Let

1
2
U�(X +X�)U =

(
X1 X�

2

X2 X3

)
,

then λ′ can be chosen as the smallest eigenvalue of the matrix X1. For this example λ′ =
2 > 0. Then Theorem 4.2 implies that if assumptions (H4.1) and (H4.2) are satisfied, the
set ker(I8n −Π⊗ In) contains a globally attracting subset for sufficiently large σ. �

4.3 Delayed interaction with uniform time-delays

In this section the result presented in the previous section will be extended to the case of
systems that interact via diffusive time-delay coupling. First sufficient conditions for par-
tial synchronization in networks of systems with coupling type I are given, then similar
results are presented for systems interacting via coupling type II. For both cases it will be
assumed that the time-delays are all the same, i.e. τij = τ for every i, j ∈ I.

4.3.1 Coupling type I

Consider a network with systems (4.6) on a simple strongly connected graph that interact
via coupling type I with uniform time-delays, that is, coupling of the form

ui(t) = σ
∑
j∈Ei

aij(yj(t− τ)− yi(t)). (4.12)

Like in Chapter 3, it will be assumed that
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(H4.4)
∑

j aij = 1 for all i ∈ I.

Like in the previous section, before sufficient conditions for the convergence to a linear
invariant manifold are given, it is first shown that such invariant manifolds exist under
appropriate conditions.

Lemma 4.3. Let Π ∈ Rk×k be a permutation matrix and the matrix X be the solution
of the matrix equation (I − Π)A = X(I − Π). Suppose that (H4.4) holds, then the set
ker (Ikn − Π⊗ In) defines a linear invariant manifold for the system (4.6), (4.12).

Proof of Lemma 4.3. The proof is almost the same as the proof of Lemma 4.1. Using the
notation as in Lemma 4.1, the closed-loop system (4.6), (4.12) can be written as

ξ̇(t) = F (ξ(t))− σ(I ⊗B)ξ(t) + σ(A⊗ B)ξ(t− τ). (4.13)

Let ξ∗(t + θ), θ ∈ [−τ, 0], be such that Ξξ∗(t + θ) = 0. Hence Ξξ̇∗(t+ θ) = 0 such that

ΞF (ξ∗(t))− σΞ[(I ⊗ B)ξ∗(t)− (A⊗B)ξ∗(t− τ)] = 0. (4.14)

Since (Π⊗ In)F (ξ(t)) = F ((Π⊗ In)ξ(t)), it follows from the assumptions that

0 =F (ξ∗(t))− F ((Π⊗ In)ξ
∗(t))− σ[(I ⊗ B)Ξξ∗(t)− (X ⊗B)Ξξ∗(t− τ)]. (4.15)

Thus ker (Ikn −Π⊗ In) defines a linear invariant manifold for the system (4.6), (4.12).

Conditions for the convergence of the solutions of the closed-loop system to (a subset of)
the set ker(I −Π⊗ In) are presented in the following theorem.

Theorem 4.4. Consider k systems (4.6) on a simple strongly connected graph that interact via
coupling (4.12). Let Π ∈ Rk×k be a permutation matrix and the matrix X be the solution
of the matrix equation (I − Π)A = X(I − Π). Suppose that (H4.4) holds and assume, in
addition, that

(H4.1) each system (4.6) is strictly C1-semipassive with a radially unbounded storage function;

(H4.2) each subsystem (4.6a) satisfies the Demidovich condition;

(H4.3) there is a constant λ′ ∈ R>0 such that for all ζ ∈ Rk

1
2
ζ�(Ik − Π)�(X +X�)(Ik −Π)ζ ≥ λ′ζ�(Ik − Π)�(Ik −Π)ζ.

Then there exist positive constants σ∗ and γ∗ such that if σ ≥ σ∗ and στ ≤ γ∗, then the set
ker(I − Π⊗ In) contains a globally asymptotically stable subset.
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Figure 4.3. Values of σ and τ for which a subset of the set ker(Ikn − Π⊗ In) is globally
asymptotically stable (light shaded area) and the values of σ and τ for which there is full
synchronization.

Proof of Theorem 4.4. See appendix A.2.2

Like Theorem4.2, Theorem 4.4 gives sufficient conditions for a subset of the set ker(Ikn−
Π⊗ In) to be globally asymptotically stable. It follows that partial synchronization occurs
if the values for the coupling strength and the time-delay for which a subset of the set
ker(Ikn − Π ⊗ In) is globally asymptotically stable do not coincide with the values of the
coupling strength and time-delay for which there is full synchronization. Theorem 3.10
implies that, if the conditions of Theorem 4.4 are satisfied, there are positive constants σ̄
and γ̄ such that if σ ≥ σ̄ and στ ≤ γ̄ the coupled systems (4.6), (4.12) all synchronize.
Thus partial synchronization can only occur if σ∗ < σ̄, γ∗ > γ̄, or both σ∗ < σ̄ and γ∗ > γ̄.
See Figure 4.3.

Corollary 4.5. Consider k systems (4.6) on a simple strongly connected graph that interact via
coupling (4.12) with aij = aji for every i, j ∈ I. Suppose that (H4.4), (H4.1) and (H4.2) hold.
Let Π ∈ Rk×k be a permutation matrix that commutes with A, i.e. ΠA = AΠ, and let λi(A)

be the eigenvalues of A ordered as 0 ≤ |λ1(A)| ≤ |λ2(A)| ≤ . . . ≤ |λk−1(A)| ≤ |λk(A)| = 1.
Define λ(L) = λ(I − A) := max(λ2(L), λ

∗(L)), λ2(L) is the smallest nonzero eigenvalue
of L = I − A and λ∗(L) denotes the smallest nonzero eigenvalue of L with corresponding
eigenvector in range (I −Π), and λ(A) := min(|λk−1(A)| , |λ′(A)|), |λ′(A)| is the largest
|λi(A)| with corresponding eigenvector in range (I −Π). Then there exist positive constants σ�

and γ� such that the set ker(Ikn − Π⊗ In) contains a globally asymptotically stable subset if

σλ(L) ≥ σ� and στλ(A) ≤ γ�.

Proof of Corollary 4.5. The proof follows immediately from the proof of Theorem 4.4 us-
ing the facts that

i. A = A� since aij = aji for any i, j ∈ I;
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ii. Π and A commute impliesX = A is a solution of the matrix equation (I − Π)A =

X(I − Π);

iii. ζ�(Ik −Π)�A(Ik − Π)ζ ≥ λ(L)ζ�(Ik − Π)�(Ik −Π)ζ for any ξ ∈ Rk;

iv. ζ�(Ik −Π)�A(Ik − Π)ζ ≤ λ(A)ζ�(Ik −Π)�(Ik − Π)ζ for any ξ ∈ Rk.

Corollary 4.5 implies that a network of systems that interact via symmetric coupling type
I might show partial synchronization only if λ(L) > λ2(L) and/or λ(A) < λ′(A). Indeed,
as follows from the proof of Theorem 3.10, if λ(L) = λ2(L) and λ(A) = λ′(A), the values
of σ and τ for which a subset of the set ker(Ikn −Π⊗ In) is globally asymptotically stable
coincide with the values of σ and τ for which all systems synchronize.

4.3.2 Coupling type II

Consider again the systems (4.6) on a simple strongly connected graph but let the systems
now interact via coupling type II with uniform time-delays, i.e. let the system be coupled
via

ui(t) = σ
∑
j

aij(yj(t− τ)− yi(t− τ)). (4.16)

The results on partial synchronization for systems interacting via coupling type I can eas-
ily be extended to the case where the systems interact with coupling type II. The following
lemma gives conditions for the existence of a linear invariant manifold.

Lemma 4.6. Let Π ∈ Rk×k be a permutation matrix and the matrix X be the solution of
the matrix equation (I − Π)L = X(I − Π). Then the set ker (Ikn − Π⊗ In) defines a linear
invariant manifold for the system (4.6), (4.16).

Proof of Lemma 4.6. The proof follows with minor modifications from the proof of
Lemma 4.1.

Using Lemma 4.6, hence the existence of a linear invariant manifold, the following the-
orem gives sufficient conditions for the linear invariant manifold to be attracting for the
dynamics (4.6), (4.16).

Theorem 4.7. Consider k systems (4.6) on a simple strongly connected graph that interact via
coupling (4.16). Let Π ∈ Rk×k be a permutation matrix and the matrix X be the solution of
the matrix equation (I − Π)L = X(I − Π). Suppose that
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(H4.5) each system is strictly C1-semipassive with a radially unbounded storage function and
the functionsH(xi) are such that there existR > 0 such that |xi| > R impliesH(xi)−
2σd |yi|2 > 0 with d = maxi∈I

∑
j∈Ei aij ;

(H4.2) each subsystem (4.6a) satisfies the Demidovich condition;

(H4.3) there is a constant λ′ ∈ R>0 such that for all ζ ∈ Rk

1
2
ζ�(Ik − Π)�(X +X�)(Ik −Π)ζ ≥ λ′ζ�(Ik − Π)�(Ik −Π)ζ.

Then there exist positive constants σ∗ and γ∗ such that if σ ≥ σ∗ and στ ≤ γ∗, then the set
ker(I − Π⊗ In) contains a globally asymptotically stable subset.

Proof of Theorem 4.7. Assumption (H4.5) implies, by Theorem 3.6 and Corollary 3.7, that
the solutions of the closed-loop system are ultimately bounded, and the bounds are in-
dependent of the network topology. Lemma 4.6 implies that the set ker (Ikn −Π⊗ In)

defines a linear invariant manifold for the closed-loop system (4.6), (4.16). The proof
can now easily be constructed from arguments used in the proofs of Theorem 3.12 and
Theorem 4.4.

The next corollary is the counterpart of Corollary 4.5 for systems that interact via coupling
type II. (Hence it will be presented without proof.)

Corollary 4.8. Consider k systems (4.6) on a simple strongly connected graph that interact
via coupling (4.16) with aij = aji for any i, j ∈ I. Suppose that (H4.5) and (H4.2) hold.
Let Π ∈ Rk×k be a permutation matrix that commutes with L, i.e. ΠL = LΠ, and let
λi(L) be the eigenvalues of L ordered as 0 = λ1(L) < λ2(L) ≤ . . . ≤ λk(L). Define
λ(L) := max(λ2(L), λ

∗(L)), λ∗(L) is the smallest eigenvalue of L with corresponding eigen-
vector in range (I − Π), and λ(L) = min(λk(L), λ

′(L)), λ′(L) is the largest eigenvalue of L
with corresponding eigenvector in range (I − Π). Then there exist positive constants σ� and γ�

such that the set ker(Ikn −Π⊗ In) contains a globally asymptotically stable subset if

σλ(L) ≥ σ� and στλ(L) ≤ γ�.

Corollary 4.8 implies that partial synchronization in a network of systems that interact
via symmetric coupling type II can only happen if

i. λ(L) > λ2(L), λ2(L) is the smallest nonzero eigenvalue of L, and/or

ii. λ(L) < λk(L), λk(L) is the largest eigenvalue of L.
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4.4 Delayed interaction with non-uniform time-delays

In the previous section it is assumed that the time-delays are uniform, i.e. all the time-
delays in the network are identical. Suppose now that the time-delays are non-uniform,
but there is a certain symmetry in the network with respect to the interactions and time-
delays. That is, some simultaneous rearrangements of the entries of the adjacency matrix
A and the matrix

(
τij
)
, i.e.

(
τij
)
=

⎛
⎜⎜⎜⎝

0 τ12 · · · τ1k

τ21 0
. . .

...
...

. . . . . . τ(k−1)k

τk1 · · · τk(k−1) 0

⎞
⎟⎟⎟⎠ , (4.17)

leaves the network unchanged. For example, if Π is a permutation matrix that commutes
with A, ΠA = AΠ, then Π should also commute with the matrix

(
τij
)
. Note that for a

network with uniform time-delays, a symmetry in the network with respect to the inter-
actions is always a symmetry with respect to the time-delays. Is it possible to have partial
synchronization in networks with non-uniform time-delays? In this section some results
are presented for systems that interact via coupling type I with non-uniform time-delays.

To avoid (very) complicated notation only a special type of coupling type I will be consid-
ered. Let PΠ(k) denote the family of k × k dimensional symmetric permutation matrices
with zero trace and let the systems be coupled via

u(t) = −σIy(t) + σ
∑
�

η�(Π� ⊗ I)y(t− τ�), (4.18)

where Π� ∈ PΠ(k) and constants η� ≥ 0 are such that
∑

� η� = 1. Note that the zero trace
assumption implies that there is no self-interaction. In addition, due to the specific form
of coupling (4.18), a symmetry in the adjacency matrix is also a symmetry in the matrix(
τij
)
.

Lemma 4.9. For any matrix Π ∈ PΠ(k), the set ker(Ikn − Π⊗ In) defines a linear invariant
manifold for the closed-loop dynamics (4.6), (4.18).

Proof of Lemma 4.9. It will be proven that all matrices in PΠ(k) commute. Then the proof
of invariance follows from the proof of Lemma 4.3 with ξ∗(t + θ), θ = [−τ ∗, 0] and τ ∗ =

max�(τ�), such that (Ikn −Π⊗ In)ξ
∗(θ) = 0.

Take arbitrary matrices Πi,Πj ∈ PΠ(k). Then, using Corollary 4.5.18(b) of [64]1 and each
matrix Πi,Πj ∈ PΠ(k) being symmetric and orthogonal, it follows that Πi and Πj are

1Corollary 4.5.18(b) states that there exists a unitary matrix U such that UAU� and UBU� are both
diagonal, A and B are both symmetric, if and only if AB̄ is normal, with B̄ the component-wise conjugate
of B.
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Figure 4.4. Four systems in a ring.

simultaneously diagonalizable. Thus Πi and Πj commute. Since Πi and Πj are chosen
arbitrary from PΠ(k) it can be concluded that all matrices in PΠ(k) commute.

Sufficient conditions for partial synchronization of the systems (4.6) coupled via (4.18)
are given in the next theorem.

Theorem 4.10. Consider k systems (4.6) on a simple strongly connected graph. Let the systems
be coupled via (4.18) and suppose that

(H4.1) each system (4.6) is strictly C1-semipassive with a radially unbounded storage function;

(H4.2) each subsystem (4.6a) satisfies the Demidovich condition.

Then for any Π� ∈ PΠ(k), if η� > 0, there exist positive constants σ′ and γ′ such that if σ ≥ σ′

and στ� ≤ γ′ there exists a globally attractive subset of the set ker(Ikn − Π⊗ In).

Proof of Theorem 4.10. See appendix A.2.3.

To show how Theorem 4.10 should be applied, a simple example with four systems cou-
pled in a ring will be presented.

Example 4.3. Consider four systems coupled in a ring as depicted in Figure 4.4. Note that
for this network the coupling (4.18) can be written as

u(t) = −σy(t) + σ
2
(Π1 ⊗ I)y(t− τ1) +

σ
2
(Π2 ⊗ I)y(t− τ2), (4.19)

with

Π1 =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ and Π2 =

⎛
⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ .
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Theorem 4.10 implies that, given that (H4.1) and (H4.2) hold, the set ker(Ikn − Π� ⊗ In)

is invariant under the closed-loop dynamics and there exist constant σ′ and γ′ such that
if σ ≥ σ′ and στ� ≤ γ′ a subset of the set ker(Ikn − Π⊗ In) is globally attracting. Hence,
if σ ≥ σ′ and στ1 ≤ γ′, systems 1 and 2 synchronize, and systems 3 and 4 synchronize.
This result is independent of the value of τ2. Of course, if σ ≥ σ′ and στ2 ≤ γ′, systems
1 and 4 synchronize, and systems 2 and 3 synchronize. If σ ≥ σ′, στ1 ≤ γ′ and στ2 ≤ γ′,
a subset of the set ker(I − Π1 ⊗ I) ∪ ker(I − Π2 ⊗ I) is globally attracting, i.e. all four
systems in the network synchronize. �
Remark 4.2. It can be concluded from Example 4.3 that assumption (H3.3) in section
3.3, i.e. τij = τ and

∑
j∈Ei aij = 1 for every i, j ∈ I, is sufficient but not necessary for

the set M =
{
col (z1, . . . , zk, y1, . . . , yk) ∈ Rk(m+p)|zi = zj and yi = yj for all i, j ∈ I

}
to be invariant under the closed-loop dynamics. �

4.5 Discussion

In this chapter results have been presented on partial synchronization of strictly semi-
passive systems. Sufficient conditions for the existence of linear invariant manifolds for
networks of diffusively (time-delay) coupled systems are derived. In addition conditions
are presented for these linear invariant manifolds manifolds to be stable and attracting.
In particular, in networks of strictly semipassive minimum phase systems that interact
via diffusive time-delay coupling, a linear invariant manifolds manifold defined by a sym-
metry is proven to be stable and attracting if the coupling strength is sufficiently large
and the product of the coupling strength and time-delay is sufficiently small. The net-
work shows partial synchronization if the values of the coupling strength and time-delay
for which this manifold is attracting differ from those for which all systems in the net-
work synchronize. In such networks a decrease of coupling strength or an increase of the
time-delay results in loss of full synchronization but some systems in the network will
still synchronize, i.e. there is partial synchronization. See Figure 4.3.

Most of the results presented in this chapter are derived for diffusive coupling with uni-
form time-delay. Some results are presented for partial synchronization of strictly semi-
passive systems that interact via a special type of coupling type I with non-uniform time-
delays. Although the type of coupling functions is rather restricted, an example with four
systems coupled in a ring with two different time-delays, Example 4.3, shows interesting
results. First of all it has to be noted that the conditions for the linear invariant man-
ifold defined by a symmetry to be stable and attracting in this example depend on the
coupling strength and only one of the two delays. Moreover, this example shows that as-
sumption (H3.3), i.e.

∑
j aij = 1 for all i and all time-delays are the same, is sufficient

but not necessary to guarantee invariance of the full synchronization manifold under the
closed-loop dynamics. For future research it would be very interesting to extend the re-
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sults presented in this chapter to the case of non-uniform time-delays general coupling
type I and, of course, coupling type II. However, it has to be noted that the notation will
quickly become complicated.
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CHAPTER FIVE

Synchronization and network topology
Part II: Scaling laws in networks

Abstract. This chapter considers systems that interact via symmetric coupling type II. It will be
shown how the knowledge that two coupled systems synchronize for certain values of the coupling
strength and time-delay can be used to predict synchronization in any network withmore than two
systems. Both local and global results are presented. It will be shown that these results are closely
related to the Wu-Chua conjecture (which is derived for non-delayed interaction). The results that
are presented in this chapter are submitted for publication, [145].

5.1 Introduction

In this chapter systems the focus is, like in chapter 3, again on full synchronization.
The problem that will be discussed is how the topology of the particular network does
affect the synchronization of its nodes. Suppose that it is known that the systems in
some network synchronize for a certain set of parameters, i.e. the coupling strength
and time-delay. Can this information be used to predict synchronization in some other
network? Of course, it can be extremely useful to know the relation between the topology
of a network and the synchronization of its nodes. Think for instance about robots that
have to carry out some task in synchrony. What kind of communication structure is
needed to synchronize anyways, and can there still be synchrony if a communication link
is suddenly missing?

For networks of systems that interact via non-delayed diffusive coupling there are quite
some results that relate synchronization and the topology of the network. Probably the
best-known result for diffusively coupled systems without time-delays is a conjecture pro-
posed in [170].
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Conjecture 5.1 (Wu-Chua, [170]). Consider two arrays of diffusively coupled systems of sizes
k1 ≥ 2 and k2 ≥ 2, respectively,

ẋ(t) =

⎛
⎜⎝

f(t, x1(t))
...

f(t, xk1(t))

⎞
⎟⎠− σ1(L1 ⊗D)x(t), (5.1)

ẏ(t) =

⎛
⎜⎝

f(t, y1(t))
...

f(t, yk2(t))

⎞
⎟⎠− σ2(L2 ⊗D)y(t), (5.2)

where x ∈ Rk1n, y ∈ Rk2n, f : R × Rn → Rn, symmetric Laplacian matrices L1 ∈ Rk1×k1 ,
L2 ∈ Rk2×k2 , matrix D ∈ Rn×n and σ1 and σ2 are positive constants. Suppose that

σ1λ2(L1) = σ2λ2(L2), (5.3)

where λ2(L) denotes the smallest nonzero eigenvalue of the symmetric Laplacian matrix L, then
the systems in array (5.1) synchronize if and only if the systems in array (5.2) synchronize.

Conjecture 5.1, commonly referred to as the Wu-Chua conjecture, is shown to be wrong
in general [115]. In particular, the Wu-Chua conjecture fails if the coupled systems lose
synchrony when the coupling strength is increased. However, for a large class of sys-
tems, i.e. those system that remain synchronized for increasing coupling strength, the
conjecture seems to hold and is useful to predict synchronization for any network. Note
that systems that are strictly semipassive and have internal convergent dynamics have the
convenient property that synchronization is maintained for increasing coupling strength,
cf. [128].

In [117], the Master Stability function (MSF) is introduced to investigate synchronization
of diffusively coupled systems. The main idea of the MSF approach is that, if the systems
are synchronized, local perturbations transversal to the synchronization manifold vanish
as time increases. Suppose that the network consists of identical systems of the form

ẋi(t) = f(xi(t)) +Bui(t), (5.4a)

yi(t) = Cxi(t), (5.4b)

where yi(t) and ui(t) have the same dimension. If the variational system

ξ̇(t) = [Df(s(t))− σλjBC]ξ(t), (5.5)

with Df(s(t)) being the Jacobian of f evaluated along the solution of a free system
ṡ(t) = f(s(t)), is locally stable for every λj , then the diffusively coupled systems locally
synchronize. Here λj , j = 2, . . . , k, are the nonzero eigenvalues of the Laplacian matrix
L. It is not assumed that L is symmetric, hence λj might be complex. Typically the sta-
bility of (5.5) is evaluated by computing its Lyapunov exponents, cf. [168]. The systems
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locally synchronize, if for every λj , the Lyapunov exponents of (5.5) are all negative. It
follows that if the Lyapunov exponents of the system

ξ̇(t) = [Df(s(t))− σ(a+ b
√
−1)BC]ξ(t), (5.6)

with real constants a and b, are negative for any (a, b) ∈ S, where S is a nonempty
subset of R × R, then the diffusively coupled systems (5.4) locally synchronize if every
λj = aj+bj

√
−1 is such that (aj , bj) ∈ S. Thus theMSF approach relates synchronization

and network topology implicitly.

In [19, 16] a graph theoretical approach is presented which relates the network topol-
ogy and synchronization. In this Connection Graph Stability (CGS) method the coupling
strength required to synchronize two diffusively symmetrically coupled systems is as-
sumed to be known. Then the coupling strength that ensures synchronization in a larger
network can be computed using this information and the sum of path lengths on the
edges of the graph. An advantage of this approach is that it can also be used for time-
varying couplings [17]. In [14] the CGS method is generalized for asymmetric diffusive
interaction.

There are not so many results that show the connection between synchronization and the
topology of the network for diffusively time-delay coupled systems. In [43] conditions for
synchronization of type II coupled systems are presented using a MSF approach. Hence,
synchronization and network topology are implicitly related. In [174] some results for
synchronization of type II coupled systems are presented for particular types of network
topologies (all-to-all, nearest neighbor, star, small-world).

This chapter presents results regarding synchronization of systems on a simple strongly
connected graph that interact via symmetric coupling type II. It will be shown that if the
(local) synchronization diagram1 for two mutually coupled systems is known, then this
information is sufficient to predict local synchronization in any network of these type II
coupled systems. In particular, it will be shown that taking the intersections of scaled
copies of the (local) synchronization diagram of two coupled systems gives the local syn-
chronization diagram of any network of coupled systems. The reason to consider only
coupling type II is that this type of coupling is non-invasive, i.e. the coupling terms van-
ish if the systems are synchronized. Note that coupling type I does not have this (nice)
property. Because of the non-invasive character of coupling type II, a natural decompo-
sition can be made between the structure of the network and the dynamics of its nodes.
The symmetry assumption guarantees that the factors with which the synchronization
diagram of two systems are scaled are real valued.

The remainder of this chapter is organized as follows. Section 5.2 presents the main
result. In this section it will be proven that the local synchronization diagram of any net-

1The local synchronization diagram denotes the set of parameters σ and τ for the the systems locally
synchronize.
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work can be constructed from the synchronization diagram of two systems. In section
5.3 it will be assumed that the synchronization diagram of two systems has a particular
shape. It will be shown that, if this is the case, it is much easier to construct the synchro-
nization diagram for any network from the synchronization diagram of the two coupled
systems. In addition, these results will be related to the Wu-Chua conjecture. In section
5.4, a global version of the result of section 5.2 is presented for networks consisting of
systems that are strictly semipassive and minimum phase. Finally, section 5.5 concludes
the chapter.

5.2 A local analysis

Consider k identical systems on a simple strongly connected graph

ẋi(t) = f(xi(t)) +Bui(t), (5.7a)

yi(t) = Cxi(t), i ∈ I := {1, 2 . . . , k}, (5.7b)

with state xi ∈ Rn, input ui ∈ L∞(R,Rm), output yi ∈ Rm, sufficiently smooth functions
f : Rn → Rn, and matrices B,C� ∈ Rn×m. Let the systems interact via the symmetric
version of coupling type II with uniform time-delays, i.e. the systems are coupled via

ui(t) = σ
∑
j∈Ei

aij(yj(t− τ)− yi(t− τ)), (5.8)

with coupling strength σ > 0, time-delay τ , and interconnection weights aij = aji. Note
that aij = aji implies that the adjacency matrix is symmetric, hence the Laplacian matrix
L is symmetric. Thus the eigenvalues of L are real. Then, by Proposition 2.5 in section
2.6 of chapter 2, L has eigenvalues that can be ordered as 0 = λ1 < λ2 ≤ . . . ≤ λk.
Throughout this section it will be assumed that

(H5.1) the solutions of the coupled systems (5.7), (5.8) are bounded.

See the chapter 3 for sufficient conditions for boundedness of solutions of coupled sys-
tems. In addition, it will be assumed that

(H5.2) a “free” system (5.7), i.e. the system

ṡ(t) = f(s(t)), s0 = s(t0), (5.9)

has an attractorA with basin of attraction B(A)2.

2A is called an attractor if it is a closed, invariant and Lyapunov stable set. The basin of attraction B(A)
is the union of all solutions of (5.9) that converge to A.
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5.2.1 k = 2 coupled systems

First, conditions are presented for the local synchronization of two coupled systems. Con-
sider k = 2 systems (5.7) that are coupled via (5.8) with a12 = a21 = 1, i.e.

ẋ1(t) = f(x1(t)) + σBC(x2(t− τ)− x1(t− τ)), (5.10a)

ẋ2(t) = f(x2(t)) + σBC(x1(t− τ)− x2(t− τ)). (5.10b)

Theorem 5.2. Consider the systems (5.10) and assume (H5.1) and (H5.2). Suppose, in addi-
tion, that

(H5.3) there is a nonempty set S∗ ⊂ R>0 ×R≥0 such that for all (σ, τ) ∈ S∗, the origin of the
linear system

η̇(t) = Df(s(t))η(t)− 2σBCη(t− τ), (5.11)

with state η ∈ Rn and Df(s(t)) being the Jacobian of f evaluated along a solution
s(t) of (5.9) through s0 ∈ B(A), is uniformly locally asymptotically stable.

Then the systems (5.10) with sufficiently close history φ1, φ2 ∈ C([−τ, 0],Rn) in B(A) locally
synchronize if (σ, τ) ∈ S∗.

Proof of Theorem 5.2. It is proven first that assumptions (H5.2) and (H5.3) imply that the
systems

ṡ(t) = f(s(t)), (5.12a)

ξ̇(t) = f(ξ(t)) + 2σBC(s(t− τ)− ξ(t− τ)). (5.12b)

initialized in B(A) locally synchronize when (σ, τ) ∈ S∗. Define ζ(t) = s(t)− ξ(t), then

ṡ(t) = f(s(t)), (5.13a)

ξ̇(t) = f(ξ(t)) + 2σBCζ(t− τ), (5.13b)

ζ̇(t) = f(s(t))− f((s− ζ)(t))− 2σBCζ(t− τ)

= f((ζ + ξ)(t))− f(ξ(t))− 2σBCζ(t− τ). (5.13c)

Linearize around ζ ≡ 0 to obtain

˙̃ζ(t) = Df(s(t))ζ̃(t)− 2σBCζ̃(t− τ)

= Df(ξ(t))ζ̃(t)− 2σBCζ̃(t− τ) (5.14)

and
ξ̇(t) = f(ξ(t)) + 2σBCζ̃(t− τ) (5.15)

Assumption (H5.3) implies that the origin of system (5.14) driven by the “free” system
(5.12a) is locally uniformly asymptotically stable for (σ, τ) ∈ S∗. Because the solutions
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of (5.12a) are bounded by (H5.2) hence the solutions of (5.12) are bounded, the systems
(5.12) locally synchronize. It follows that assumptions (H5.2) and (H5.3) also imply that
the origin of (5.14) driven by (5.15) is uniformly asymptotically stable for (σ, τ) ∈ S∗.

It will now shown that two mutually coupled systems have local error dynamics of the
form (5.14), (5.15). Consider two mutually coupled systems (5.10) and define e(t) =
1
2
(x2(t)− x1(t)). Then

ẋ1(t) = f(x1(t)) + 2σBCe(t− τ), (5.16a)

ė(t) = −1
2
f(x1(t)) +

1
2
f((x1 + 2e)(t))− 2σBCe(t− τ), (5.16b)

and linearizing around e ≡ 0 gives

ẋ1(t) = f(x1(t)) + 2σBCẽ(t− τ), (5.17a)
˙̃e(t) = Df(x1(t))ẽ(t)− 2σBCẽ(t− τ). (5.17b)

Since the systems (5.14), (5.15) and (5.17) share the same dynamics, it is concluded that
the set {ẽ = 0} is locally uniformly asymptotically stable if (σ, τ) ∈ S∗. This immediately
implies local synchronization of the systems (5.10).

Remark 5.1. If the coupled systems do not have bounded solutions and the free system
does not have a local attractor, asymptotic stability of the origin the variational system
(5.11) driven by a free system does not necessarily imply synchronization. See [88] for a
counterexample for non-delayed diffusively coupled systems.

5.2.2 k > 2 coupled systems

The main result of this chapter is given in the following theorem.

Theorem 5.3. Consider k systems (5.7) on a simple strongly connected graph that are coupled via
(5.8). Assume the conditions of Theorem 5.2 hold, i.e. (H5.1), (H5.2) and (H5.3) are satisfied,
and let λj , j = 2, . . . , k, be the nonzero eigenvalues of L. Then k coupled systems (5.7), (5.8)
with continuous initial history sufficiently close in B(A) locally synchronize if (σ, τ) ∈ S :=

∩k
j=2Sj , where

Sj := {(σ, τ)|(λjσ/2, τ) ∈ S∗}.

Proof of Theorem 5.3. Introduce the auxiliary system

ξ̇(t) = f(ξ(t))− σλ2BC(ξ(t− τ)− 1
k
(1� ⊗ I)x(t− τ)), (5.18)

with ξ ∈ Rn, x(t) := col (x1(t), . . . , xk(t)), 1 := col (1, . . . , 1). Let the initial condition for
(5.18) be in B(A). Define ei(t) = xi(t)− ξ(t), then

ξ̇(t) = f(ξ(t)) + 1
k
σλ2BC(1� ⊗ I)e(t− τ), (5.19a)

ė(t) = F (e(t), ξ(t))− σ(L⊗ BC)e(t− τ)− 1
k
σλ2(11

� ⊗ BC)e(t− τ), (5.19b)
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with e(t) := col (e1(t), . . . , ek(t)) and

F (e(t), ξ(t)) := col (f((e1 + ξ)(t))− f(ξ(t), . . . , f((ek + ξ)(t))− f(ξ(t)) .

Because L is symmetric, there is an orthonormal matrix U ∈ Rk×k such that

U−1LU =

⎛
⎜⎜⎜⎝
0

λ2

. . .
λk

⎞
⎟⎟⎟⎠ =: Λ. (5.20)

The eigenspace corresponding to the simple zero eigenvalue of L is span{1}, hence the
first column of U is

√
k
k
1. Because the matrix U is orthonormal with the first column

equal to
√
k
k
1, for any vector c1 for some constant c, cU�1 =

(
c
√
k 0 . . . 0

)�
. Define

new coordinates ē(t) =
√
k
k
(U−1 ⊗ I)e(t), then

ξ̇(t) = f(ξ(t)) + σλ2BC(γ� ⊗ I)ē(t− τ), (5.21a)

˙̄e(t) = F̄ (ē(t), ξ(t))− σ(Λ⊗ BC)ē(t− τ)− 1
k
σλ2(γγ

� ⊗ BC)ē(t− τ), (5.21b)

with γ = col (1, 0, . . . , 0) and F̄ (ē(t), ξ(t)) =
√
k
k
(U−1 ⊗ I)F (

√
k(U ⊗ I)ē(t), ξ(t)). Note

that, because U is orthonormal with its first column equal to
√
k
k
1, ēj(t) → 0 as t → ∞

for all j ∈ {2, . . . , k} implies synchronization of the coupled systems. Linearize around
e ≡ 0 to obtain

ξ̇(t) = f(ξ(t)) + σλ2BCẽ1(t− τ) (5.22a)
˙̃e1(t) = Df(ξ(t))ẽ1(t)− σλ2BCẽ1(t− τ), (5.22b)
˙̃ej(t) = Df(ξ(t))ẽj(t)− σλjBCẽj(t− τ), j = 2, . . . , k. (5.22c)

It will now shown that the conditions in the theorem imply that ẽj(t) → 0 as t → ∞
which in turn implies local synchronization of the systems (5.7), (5.8).

Consider the master system
ṡ(t) = f(s(t)), (5.23)

with s(t0) ∈ B(A), that drives k − 1 slaves

q̇j(t) = f(qj(t)) + σλjBC(s(t− τ)− qj(t− τ)), j = 2, . . . , k. (5.24)

Define q̄j(t) = qj(t) − s(t) and linearize around q̄ := col (q̄2, . . . , q̄k) ≡ 0. Following the
proof of Theorem 5.2, one concludes that if the origin of

˙̃qj(t) = Df(s(t))q̃j(t)− σλjBCq̃j(t− τ), (5.25)

is uniformly asymptotically stable for (σ, τ) ∈ Sj , then the jth slave system (5.24) locally
synchronizes with the master (5.23). Then all slaves locally synchronize with the master
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if (σ, τ) ∈ ∩k
j=2Sj . The arguments used in the proof of Theorem 5.2 also imply that if

(σ, τ) ∈ ∩k
j=2Sj , then the set {col (q̃2, . . . , q̃k) = 0} is locally uniformly asymptotically

stable for the systems

q̇2(t) = f(q2(t)) + σλ2BCq̃2(t− τ), (5.26a)
˙̃qj(t) = Df(q2(t))q̃j(t)− σλjBCq̃j(t− τ), j = 2, . . . , k. (5.26b)

Since the dynamics of (5.26b), (5.26a) and (5.22) are the same, it is concluded that ẽi(t) →
0 as t → ∞ for every i ∈ I if (σ, τ) ∈ ∩k

j=2Sj . As noted before, ẽj → 0 as t → ∞ for every
j ∈ {2, . . . , k} implies that xi(t)− x�(t) → 0 as t → ∞ for every i, � ∈ I, i �= �.

Remark 5.2. The conditions in Theorem 5.3 guarantee that the origin of (5.22b) (driven by
(5.22a)) is locally uniformly asymptotically stable. Note that e1(t) → 0 as t → ∞ implies
that xi(t) − s(t) → 0 for t → ∞ for every i ∈ I. Although the origin of every system
(5.22c) being uniformly asymptotically stable already implies local synchronization of the
systems, it is important that the origin of (5.22b) is uniformly stable to guarantee that the
linearization around e ≡ 0 remains valid. Usually the auxiliary system ξ̇(t) = f(ξ(t))

is chosen instead of (5.18). Then the linearized e1-dynamics would have been ˙̃e1(t) =

Df(ξ(t))ẽ1(t). Stability of these dynamics cannot be guaranteed if the system ξ̇(t) =

f(ξ(t)) has for example a chaotic attractor.

A graphical illustration of Theorem 5.3 is given in the next example.

Example 5.1. Consider a network consisting of four systems. Suppose that the nonzero
eigenvalues of the Laplacian matrix L are λ2 < 2, λ3 = 2 and λ4 > 2 and let (H5.3) be
satisfied with the region S∗ as depicted in Figure 5.1(a). The regions Sj are determined
by scaling S∗ with a factor 2/λj over the σ-axis. Since λ3 = 2 it follows that S3 = S∗. The
scaled copies S2 and S4 are, together with S∗ = S3, shown in Figure 5.1(b). The region S2

is at the right of S∗ since λ2 < 2, and, because λ4 > 2, the region S4 is on the left of S∗.
Then S is determined by taking the intersections of Sj as shown in Figure 5.1(c). �

5.3 Unimodal functions and the Wu-Chua conjecture

In this section, a region S∗ with a specific shape will be considered. More precise, it will
be assumed that S∗ is bounded by the line τ = 0 and a unimodal continuous function
∂τ(σ) which is defined for σ ∈ [σmin, σmax], where σmin and σmax denote the minimal and
maximal coupling strength for which the two systems synchronize with τ ≡ 0, respec-
tively. Recall that the function ∂τ(σ) is a unimodal function if there is some σ̂ such that
∂τ(σ̄) is monotonically increasing for σ̄ ∈ [σmin, σ̂], and ∂τ(σ) is monotonically decreas-
ing for σ ∈ [σ̂, σmax]. Hence ∂τ(σ̂) = τ̂ is the maximum value of ∂τ(σ) and there are no
other local maxima.
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(a) (b) (c)

Figure 5.1. A graphical representation of Theorem 5.3 for k = 4 systems: (a) the region
S∗ = S3 (shaded area), (b) scaled copies S2 and S4(light shaded) and S3 (dark shaded),
and (c) the region S (dark shaded area) determined by the intersections of scaled copies
of S∗.

Let ∂τ (·) be the monotonically increasing part of ∂τ(·) and denote by ∂τ (·) the monoton-
ically decreasing part of ∂τ(·). See Figure 5.2(a). In addition, let ∂σ(·) and ∂σ(·) be such
that ∂τ (∂σ(τ)) = τ and ∂τ (∂σ(τ)) = τ for any τ ∈ [0, τ̂ ], respectively.

Corollary 5.4. Consider k systems (5.7) on a simple strongly connected graph. Let the systems
(5.7) be coupled via (5.8) and λj , j = 2, . . . , k, be the positive eigenvalues of the Laplacian
matrix L with ordering λ2 ≤ λ3 ≤ . . . ≤ λk. Suppose that the solutions of the closed-loop
system are bounded and assume that (H5.2) and (H5.3) are satisfied with S∗ bounded by
the line τ ≡ 0 and a unimodal function ∂τ(σ). Then the systems locally synchronize when
(σ, τ) ∈ S2 ∩ Sk.

Proof of Corollary 5.4. Theorem 5.3 implies that the systems locally synchronize whenever
(σ, τ) ∈ ∩k

j=2Sj . It will be assumed that S2 ∩ Sk �= ∅. (Otherwise there is nothing to
prove.) Then S∗ being bounded by a unimodal function ∂τ(σ) and the line τ ≡ 0 implies
that each Sj is bounded by a unimodal function ∂τ(2σ/λj) and the line τ ≡ 0. Let τmax =

max{τ ∈ (0, τ̂ ]|∃σ s.t. (σ, τ) ∈ ∩k
j=2Sj}. Such τmax clearly exists since ∂τ is unimodal.

For any fixed τ ∗ ∈ [0, τmax], (σ, τ ∗) ∈ ∩k
j=2Sj implies σ ∈ [2∂σ(τ ∗)/λ2, 2∂σ(τ

∗)/λk] due to
monotonicity of ∂σ(·) and ∂σ(·). Hence, if S∗ is bounded by a unimodal function ∂τ(σ)

and the line τ ≡ 0, ∩k
j=2Sj = S2 ∩ Sk.

As illustrated in Figure 5.2(b), if the conditions stated in Corollary 5.4 hold, the region in
the (σ, τ) space for which the systems locally synchronize is completely determined by
the intersection of S2 and Sk.

Corollary 5.4 can be reformulated as follows.

Corollary 5.4′. Consider k systems (5.7) on a simple strongly connected graph. Let the systems
(5.7) be coupled via (5.8) and λj , j = 2, . . . , k, be the positive eigenvalues of the Laplacian
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(a) (b)

Figure 5.2. Unimodal curves: (a) S∗ is bounded by τ ≡ 0 and a unimodal function
τ(σ), and (b) the region of synchronization in the parameter space is determined by the
intersections of S2 and Sk.

matrix L with ordering λ2 ≤ λ3 ≤ . . . ≤ λk. Suppose that the solutions of the closed-loop
system are bounded and assume that (H5.2) and (H5.3) are satisfied with S∗ bounded by the
line τ ≡ 0 and a unimodal function ∂τ(σ). Then the systems locally synchronize for any
τ ∈ [0, τmax] if

2∂σ(τ)

λ2
≤ σ ≤ 2∂σ(τ)

λk
,

where τmax is such that
∂σ(τmax)

λ2
=

∂σ(τmax)

λk
.

The result stated in Corollary 5.4′ shows a close relation to the Wu-Chua conjecture, i.e.
Conjecture 5.1, which is derived for non-delayed coupling. Indeed, for non-delayed in-
teraction, τ = 0, it follows that σλ2 ≥ 2∂σ(0) = 2σmin and σλk ≤ 2∂σ(0) = 2σmax.
Assuming σmax = ∞, i.e. the systems doe not lose synchronize for increasing coupling
strength, it follows that the k systems synchronize for σλ2 ≥ 2σmin. This is exactly the
Wu-Chua conjecture since the two systems are assumed to synchronize for any coupling
strength not smaller than σmin. (Note that the smallest nonzero eigenvalue of the Lapla-
cian matrix for two coupled systems equals two.)

5.4 Global results

In chapter 3, section 3.3, it is proven that strictly semipassive minimum phase systems
that interact via coupling type II synchronize whenever the coupling is sufficiently strong
and the product of the time-delay with the coupling strength is sufficiently small. In this
section a result will be presented that states that taking intersections of scaled copies of
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the synchronization diagram of two coupled systems is a sufficient condition for global
synchronization of k type II coupled strictly semipassive minimum phase systems.

Consider the systems (5.7) in the normal form presented in chapter 3, section 3.3, i.e.

żi(t) = q(zi(t), yi(t)), (5.27a)

ẏi(t) = a(yi(t), zi(t)) + ui(t). (5.27b)

where yi ∈ Rm, zi ∈ Rp, p = n−m, sufficiently smooth Lipschitz continuous functions
q : Rp × Rm → Rp, a : Rm × Rp → Rm. Let the systems (5.27) interact via symmetric
coupling type II,

ui(t) = σ
∑
j∈Ei

aij(yj(t− τ)− yi(t− τ)), (5.8)

with coupling strength σ > 0, time-delay τ , and interconnection weights aij = aji.

It follows from Theorem 3.12 that if

(H5.4) each system (5.27) is strictly C1-semipassive with a radially unbounded storage
function and the functions H(xi) are such that there exist R > 0 such that |xi| >
R impliesH(xi)− 2σd |yi|2 > 0 with d = maxi∈I

∑
j∈Ei aij ;

(H5.5) each subsystem (5.27a) satisfies the Demidovich condition,

then there exist constants σ̄ and γ̄ such that the two systems (5.27) coupled via (5.8)
globally synchronize whenever (σ, τ) ∈ S̄ with

S̄ = {(σ, τ) ∈ R>0 ×R≥0|σ ≥ σ̄ and στ ≤ γ̄} . (5.28)

Clearly, S̄ is bounded by the line τ ≡ 0 and a unimodal function. Hence, by Corollary 5.4,
a network consisting of k systems (5.27) coupled via (5.8) shows local synchronization if
(σ, τ) ∈ S̄2 ∩ S̄k with S̄j :=

{
(σ, τ)| (2σ/λj, τ) ∈ S̄

}
. It turns out that the condition that

(σ, τ) ∈ S̄2 ∩ S̄k is sufficient to guarantee global synchronization of systems (5.27) coupled
via (5.8).

Theorem 5.5. Consider k systems (5.27) on a simple strongly connected graph. Let the systems
(5.27) be coupled via (5.8) and λj , j = 2, . . . , k, be the positive eigenvalues of the Laplacian
matrix L with ordering λ2 ≤ λ3 ≤ . . . ≤ λk. Suppose that (H5.4) and (H5.5) are satisfied
such that two systems globally synchronize if (σ, τ) ∈ S̄ with S̄ as in (5.28). Then the k systems
globally synchronize if (σ, τ) ∈ S̄2 ∩ S̄k with S̄j :=

{
(σ, τ)| (2σ/λj, τ) ∈ S̄

}
.

Proof of Theorem 5.5. See Appendix A.3.1.
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5.5 Discussion

In this chapter it is shown that if the values of σ and τ are known for which two systems
that interact via symmetric coupling type II (locally) synchronize, then this knowledge is
sufficient to determine those values σ and τ for which the systems in a network withmore
than two systems locally synchronize. In particular, the local synchronization diagram for
synchronization of k systems is constructed by taking the intersections of scaled copies
of the synchronization diagram for synchronization of two systems. The scaling factors
are the nonzero eigenvalues of the Laplacian matrix L, and it is shown that, in general,
all eigenvalues of L have to be taken into account. If the synchronization diagram of two
coupled systems has a particular shape, i.e. it is bounded by the line τ ≡ 0 and a unimodal
function, then only the largest and the smallest nonzero eigenvalues of L determine the
synchronization diagram for local synchronization of k systems. This result is closely
related to the Wu-Chua conjecture. It is also shown that, for the class of systems that is
considered in the previous chapters, taking intersections of the scaled synchronization
diagram of two systems gives conditions for global synchronization.

Using the theory presented in this chapter, one can conclude that there is an important
difference between synchronization of systems with delayed interaction and synchroniza-
tion of systems with non-delayed interaction. In case of non-delayed interaction, synchro-
nization is achieved if the smallest nonzero eigenvalue of the Laplacian matrix is suffi-
ciently large. (Note that the smallest nonzero eigenvalue of the Laplacian of a graph is re-
lated to the connectedness of the graph, cf. [47].) This explains directly why it is relatively
easy to have synchronization in small-world network while it is hard to synchronize a
large network of nearest-neighbor coupled systems. (For a small-world network the value
of the smallest nonzero eigenvalue of its Laplacian is large compared to the value of the
smallest nonzero eigenvalue of the Laplacian of a nearest-neighbor network.) However,
for delayed interaction every eigenvalue of the Laplacian matrix is important as it deter-
mines an upper bound on the coupling strength for a fixed time-delay. Since the largest
eigenvalue of a Laplacianmatrix of a small-world network is relatively large, it is still hard
to have synchronization in such network when the coupling contains time-delays.

The results presented in this chapter hold for systems that interact via symmetric cou-
pling type II. The symmetry assumption is convenient since it guarantees the eigenvalues
of the Laplacian to be real. However, the symmetry assumption is quite restrictive and
it would be interesting to investigate the relation of the network topology and synchro-
nization of asymmetrically coupled systems. The non-invasive character of coupling type
II allows to derive conditions that do only depend on the structure of the network. For
coupling type I this is certainly less trivial as the coupling structure and coupling strength
do influence the dynamics of the systems even if they are synchronized. Of course, it is
interesting to have results for coupling type I like those presented in this chapter as well.



Part II

Networks of neurons and related results

73





CHAPTER SIX

Every neuron is semipassive

Abstract. In this chapter it will be proven that four important models in computational neuro-
science have something in common; they are all strictly semipassive. Using the theory presented
in the first part of this thesis, it is shown that neurons that interact via so-called electrical synapses
will synchronize for sufficiently strong coupling (and sufficiently small time-delays). In addition,
two examples are presented that show that diffusive interaction can cause instabilities and/or
induces unexpected oscillations. The results presented in this chapter are published in [147].

6.1 Introduction

Single neurons are important functional units for the computational properties of the
brain [73, 28]. The most important biophysical variable in neural computation is the neu-
ron’s membrane potential, which can rapidly change and controls a vast number of ionic
channels. Roughly speaking, there are three distinct cases of activity of a neuron. First,
the membrane potential can be constant over time. Second, the neuron can fire action
potentials at a constant rate. An action potential is an electrical impulse that is character-
ized by a rapid increase of the neuron’s membrane potential followed by a sudden drop
to its initial level. The activity where the neuron fires action potentials at a constant rate
is called spiking. Third, the neuron might produce bursts of action potentials. That is,
the neuron fires a couple of action potentials, remains silent for a while, and fires again a
couple of action potentials. This type of activity is called bursting. These different types of
activity are shown in Figure 6.1. As also can be seen in Figure 6.1, the type of activity of a
neuron can be “controlled” by applying a certain input current. This input current might
be an external clamping current, see [73] for details, or it might be induced by activity of
other neurons.

Throughout the years many models are developed that are capable mimicking this kind
of behavior. See, for instance, [70] for a review. Letting the membrane potential be the
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(a) (b) (c)

Figure 6.1. Current clamped measurements of the membrane potential of a neuron
from the hippocampal area of a mouse for various input currents with a Heaviside func-
tion profile. For an initial input current of 0 pA, the cell is silent, i.e. the membrane
potential is at a constant level. (a) For a final input current of 50 pA, the membrane po-
tential shows a single action potential and remains constant afterwards. (b) A bursting
solution with two action potentials per bursts for a final input current of 100 pA. (c) Con-
tinuous spiking for a final input current of 150 pA. The experimental data is provided by
Dr. Alexey Semyanov and Dr. Inseon Song of the Semyanov Research Unit, Riken BSI.

output of a neuron and the input current be the only variable that influences the output,
a model of a single neuron is a single-input-single-output system. Since, from a biophysi-
cal point of view, the amount of electrical energy that a neuron can produce itself is finite,
every proper model of a single neuron has to be semipassive1. In this chapter it will be
proved that the most important models of neural activity do have the semipassivity prop-
erty. Four well-known models are selected from the many models of neuronal activity.
The models that will be considered are the conductance based, biophysically meaningful,
models of Hodgkin-Huxley [63] and Morris-Lecar [97], and the more abstract, mathemat-
ical, models derived by FitzHugh and Nagumo [48, 98] and Hindmarsh and Rose [62].
Despite the difference in the range of behavior that these models are capable to produce,
these models have an important collective property; each model is semipassive.

It is well known that individual neurons in parts of the brain discharge their action po-
tentials in synchrony. In fact, synchronous oscillations of neurons have been reported in
the olfactory bulb, the visual cortex, the hippocampus and in the motor cortex [53, 138].
Presence or absence of synchrony in the brain is often linked to specific brain function
or critical physiological state (e.g. epilepsy). Hence, understanding conditions that will
lead to such behavior, exploring the possibilities to manipulate these conditions, and de-
scribe them rigorously is vital for further progress in neuroscience and related branches

1It is here assumed that every single neuron can be modeled by a set of ODEs.
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of physics.

The exchange of information between neurons takes place at the so-called synapses.
There are two types of synapses; chemical synapses and electrical synapses [73]. At chem-
ical synapses, the pre-synaptic neuron releases neurotransmitters (as function of its
membrane potential), and these neurotransmitters induce a synaptic current at the post-
synaptic neuron. At the electrical synapses, which are also called gap junctions, there
is a direct high conductance pathway between the pre-synaptic neuron and the post-
synaptic neuron. It follows fromOhm’s laws that the synaptic currents in case of electrical
synapses are of the form g · (V1(t)− V2(t)), where the constant g represents the synaptic
conductance and V1(t)− V2(t) denotes the difference in membrane potential of the neu-
rons at the pre-synaptic side and the post-synaptic side at time t, respectively. Note that
the electrical synapses are exactly the diffusive coupling functions that are introduced in
chapter 3.

Recently it has been pointed out that electrical synapses play an important role in
synchronization of individual neurons [21]. Several attempts have been made to un-
derstand when synchronization of neurons coupled via electrical synapses occurs. In
[46, 80, 89, 105, 162] phase equations and phase response curves are used to analyze
the dynamics of coupled neurons. The overall conclusion is that the neurons synchro-
nize for sufficiently strong coupling. However, the use of phase equations is only justi-
fied when the coupling between the cells is relatively weak. In general, the results for
strong coupling are rare [38]. In [38] Coombes uses a piecewise linear model of spiking
neurons which allows to extend the results for weak coupling (using phase equations)
to strong coupling. Chow and Kopell [34] used Integrate-and-Fire kind of models to in-
vestigate synchronization via electrical synapses. Using spike response functions (for
the Integrate-and-Fire models an analytic expression for this function exists), it is shown
that the oscillators synchronize for large coupling strength. Simulations indicate that the
results also hold for more realistic models, however no rigorous mathematical proof is
presented. In [77] conditions for synchrony in two coupled Hodgkin-Huxley neurons [63]
are presented. It turns out that if the coupling between the neurons is strong enough,
then the neurons will synchronize. In [109] synchronization for multiple interconnected
chaotic Hindmarsh-Rose neurons [62] is discussed. Synchronization is witnessed for
large coupling strength. Such results are not so surprising. Indeed, given that each
model of neural activity does have the semipassivity property, it follows from the theory
presented in chapter 3, in particular Corollary 3.11, that neurons coupled via electrical
synapses synchronize for sufficiently strong coupling.

This chapter is organized as follows. In section 6.2 it will be proven that the four models
mentioned above are all strictly semipassive. Next, in section 6.3 synchronization in
networks of neurons is discussed. In particular, it will be demonstrated that ensembles
of Hindmarsh-Rose and Morris-Lecar oscillators will end up in synchrony whenever the
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coupling between the neurons is large enough. In section 6.4 is will be shown that it is
not obvious that systems being interconnected via diffusive coupling will have bounded
solutions and eventually end up in synchrony. In particular, it is shown that two “dead”
cells can become “alive” when being interconnected via diffusive coupling, i.e. the cells
start to oscillate due to the interaction. Finally, section 6.5 concludes this chapter.

6.2 Semipassive neurons

In this section it will be proven that the neuronal models of Hodgkin-Huxley, Morris-
Lecar, FitzHugh-Nagumo andHindmarsh-Rose all have the semipassive property. Hence,
by Theorem 3.3 in chapter 3, one can conclude that the solutions of these coupled oscilla-
tors exist and are bounded.

Hodgkin-Huxley model

The most important model in (computational) neuroscience is probably the Hodgkin-
Huxley model [63]. In 1952, Hodgkin and Huxley proposed a model to describe the gen-
eration of action potentials in the giant axon of squid. (Hodgkin and Huxley received the
Nobel Prize in Physiology or Medicine in 1963 for this work.) Their model consists of
an equation for the membrane potential and equations for three ionic currents, viz. a
sodium current, a potassium current and a leak current. The Hodgkin-Huxley model is
considered as the first biophysically plausible model of a neuron. Many models of neural
activity are closely related to the Hodgkin-Huxley model.

The Hodgkin-Huxley model is given by the following equations:

Cẏ(t) = gNaz
3
1(t)z2(t) (ENa − y(t)) + gKz

4
3(t) (EK − y(t))

+ gL (EL − y(t)) + Em + u(t), (6.1a)

żi(t) = αi(y(t)) (1− zi(t))− βi(y(t))zi(t), i = 1, 2, 3, (6.1b)

where y ∈ R is the membrane potential, zi ∈ R are so-called gating variables, ex-
ternal input u ∈ L∞(R,R), positive constants gNa, gK , gL, C ∈ R>0 and constants
ENa, EK , EL, Em ∈ R. The terms gNaz

3
1(t)z2(t), gKz

4
3(t) and gL denote the sodium con-

ductance, the potassium conductance and the leak conductance, respectively, and ENa,
EK and EL are the corresponding reversal potentials. The constant C is the membrane
capacity and Em is a constant current. The functions αj(·) and βj(·) are empirically de-
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Figure 6.2. A solution of the Hodgkin-Huxley model with parameters values presented
in the text.

termined to be

α1(s) =
25− s

10 (e(2.5−s/10) − 1)
, β1(s) = 4e−s/18,

α2(s) = 0.07e−s/20, β2(s) =
1

e(3−s/10) + 1
,

α3(s) =
10− s

100 (e(1−s/10) − 1)
, β3(s) = 0.125e−s/80.

Figure 6.2 shows the responses of the Hodgkin-Huxley model for parameters

ENa = 115, EK = −12, EL = 10.6, gNa = 120,

gK = 36, gL = 0.3, C = 1, Em = 10,

and u(t) ≡ 0.

Proposition 6.1. The Hodgkin-Huxley model is strictly semipassive in D, with

D = {col (y, z1, z2, z3) ∈ R4|0 < zi < 1, i = 1, 2, 3}.

Proof of Proposition 6.1. First, it will be proved that for all t0 ≤ t1, t0, t1 ∈ R,
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(C1) y(t) exists on the interval t ∈ [t0, t1] and remains bounded if the input u(t) is
bounded;

(C2) for each i = 1, 2, 3, zi(t) ∈ (0, 1) for all t ∈ [t0, t1] if zi(t0) ∈ (0, 1).

Suppose that (C1) does not hold. Denote

u∗ = sup
t∈[t0,t1]

|u(t)| . (6.2)

According to assumptions of the proposition such u∗ must exist. The right-hand side of
(6.1) is locally Lipschitz, hence its solutions are at least defined over a finite time interval.
Let [t0, T ] be the maximal interval of their existence. Let M ∈ R>0 be an arbitrarily large
constant. Then there should exist a time instant t′1 such that

|ξ(t)| ≥ M, ∀ t ≥ t′1, (6.3)

with ξ(t) := col (y(t, z1(t), z2(t), z3(t)). Consider the dynamics

żi(t) = αi(y(t)) (1− zi(t))− βi(y(t))zi(t), i = 1, 2, 3. (6.4)

One can easily verify that αi(y(t)) > 0 and βi(y(t)) > 0 for any (bounded) y(t). Hence on
the boundary zi = 0, żi(t) > 0, and at the boundary zi = 1, żi(t) < 0. Thus zi(t) can not
cross the boundaries zi = 0 and zi = 1. Hence the set (0, 1) is positively invariant under
the zi-dynamics, i.e. for all zi(t0) ∈ (0, 1),

0 < zi(t) < 1, ∀ t ∈ [t0, T ]. (6.5)

Then, according to (6.5), (6.1) the following holds

|ξ(t)| ≤ e−λ(t−t0)|y(t0)|+ ρ+
1

λ
u∗, ∀ t ∈ [t0, T ] (6.6)

where ρ, λ are positive constants of which the value do not depend on M . Combining
(6.3) and (6.6) gives

M ≤ |ξ(t)| ≤ e−λ(t−t0)|y(t0)|+ ρ+
1

λ
u∗, ∀ t ∈ [t′1, T ] (6.7)

where M is arbitrarily large and ρ, y(t0), and 1/λu∗ are fixed and bounded. This is a
contradiction, hence (C1) hold. This automatically implies that (C2) holds too.

To finalize the proof of strict semipassivity of (6.1) in D, consider the positive definite
storage function V : D → R≥0,

V = 1
2C

y(t)2 + 1
2

3∑
i=1

z2i (t). (6.8)
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A straightforward computation shows that

V̇ = y(t)u(t)−
(
gNaz

3
1(t)z2(t) + gKz

4
3(t) + gL

)
y2(t)

+
(
gNaz

3
1(t)z2(t)ENa + gKz

4
3(t)EK + gLEL + Em

)
y(t)

−
3∑

i=1

(
αi(y(t))

((
zi(t)− 1

2

)2 − 1
4

)
+ βi(y(t))zi

2(t)
)
. (6.9)

Because (C2) holds it follows that

V̇ ≤y(t)u(t)− gLy
2(t) + c1y(t)

−
3∑

i=1

(
αi(y(t))

((
zi(t)− 1

2

)2 − 1
4

)
+ βi(y(t))zi

2(t)
)
, (6.10)

with constant
c1 = max

d1,d2∈[0,1]
|d1gNaENa + d2gKEK + gLEL + Em| . (6.11)

Given that (6.10) holds for all t, it follows that the Hodgkin-Huxley model is strictly semi-
passive in D.

Remark 6.1. TheHodgkin-Huxleymodel is strictly semipassive inD. Although the results
presented in chapters 3, 4 and 5 assume that the systems are strictly semipassive in Rn,
it is not difficult to verify that these results remain true when the systems are strictly
semipassive in D with D = R× (0, 1)× . . .× (0, 1). This is because the Hodgkin-Huxley
model has the normal form

ẏ(t) = a(y(t), z(t)) + u(t), (6.12a)

ż(t) = qz(t), y(t)), (6.12b)

with (y, z) ∈ D. Then, for any input signal u(t) that depends only on the (possibly time-
delayed) output signals y(t) and satisfies y(t)u(t) ≤ 0, the semipassivity property implies
that the solutions of the closed-loop system are ultimately bounded. �

Morris-Lecar model

The Morris-Lecar model [97] describes the voltage oscillations in the barnacle giant mus-
cle fiber. It is also used to describe the membrane potential in a variety of neural cells
[73]. The model consists of an equation for the membrane potential which, like in the
Hodgkin-Huxley model, depends on some ionic currents, namely a potassium current, a
calcium current and a leak current. However, contrary to the Hodgkin-Huxley model, the
calcium current is in the Morris-Lecar model a static function of the membrane potential.
(In the Hodgkin-Huxley model the calcium current depends on two activation variables
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which are given by two differential equations that depend on the membrane potential).
The Morris-Lecar model is given by the following equations:

Cẏ(t) = gL (EL − y(t)) + gCaα∞ (y(t)) (ECa − y(t))

+ gKz(t) (EK − y(t)) + Em + u(t), (6.13a)

ż(t) = η (y(t)) (β∞(y(t))− z(t)) , (6.13b)

with y ∈ R being the membrane potential, gating variable z ∈ R, external input
u ∈ L∞(R,R), constant parameters EL, ECa, EK , Em ∈ R and positive constants
C, gL, gCa, gK ∈ R. The terms gCaα∞ (y(t)) , gKz(t) and gL represent the sodium con-
ductance, the potassium conductance and the leak conductance, respectively, ENa, EK

and EL are the corresponding reversal potentials, C is the membrane capacity and Em is
a constant current. The functions α∞(·), β∞(·) and η(·) are defined as

α∞(s) =
1

2

(
1 + tanh

(
s− E1

E2

))
,

β∞(s) =
1

2

(
1 + tanh

(
s− E3

E4

))
,

η(s) = η̄ cosh

(
s− E3

2E4

)
,

with constants η̄ ∈ R>0 and E1, E2, E3, E4 ∈ R.

Figure 6.3 shows the responses of the Morris-Lecar model for parameters

ECa = 100, EK = −70, EL = −50, gCa = 4,

gK = 8, gL = 2, C = 1, Em = 40,

E1 = −1, E2 = 15, E3 = 10, E4 = 14.5,

and u(t) ≡ 0.

Proposition 6.2. The Morris-Lecar model is strictly semipassive in D, with

D = {col (y, z) ∈ R2|0 < z < 1}.

Proof of Proposition 6.2. Notice that the set (0, 1) is positively invariant under the z-
dynamics. The proof can easily be deducted from the proof of strict semipassivity of
the Hodgkin-Huxley model.

Remark 6.2. Many biophysically meaningful neuronal models, i.e. conductance based
models like the Hodgkin-Huxley and Morris-Lecar models, share the same structure, see
for instance [63, 97, 154]. In particular, the evolution of the membrane potential is given
by an equation of the form

Cẏ(t) = u(t) +
n∑

j=1

sj(t) (6.14)
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Figure 6.3. A solution of the Morris-Lecar model with parameters values presented in
the text.

where y ∈ R denotes the membrane potential,C ∈ R>0 is the membrane capacity, u ∈ R

is the input and sj(t) represent the ionic currents. Often sj(t) = gj(t)(Ej − y(t)) where
Ej ∈ R is a constant reversal potential and gj(t) > 0 are conductances which are such
that gj(t) > 0 for all t. In particular, the conductances are typically given as

gj = ḡj

m∏
i=1

z
pij
i (6.15)

with maximal conductance ḡj ∈ R>0, non-negative integers pij and voltage dependent
gating variables zi(y(t)). These gating variables satisfy zi(t) ∈ (0, 1) if zi(t0) ∈ (0, 1) for
all t ≥ t0.

All models of neuronal oscillators of this form are strictly semipassive (in R × (0, 1) ×
. . .× (0, 1)), and the proof for strict semipassivity is similar to the proof presented for the
Hodgkin-Huxley model. �

FitzHugh-Nagumo model

The FitzHugh-Nagumo model [48, 98] is one of the simplest models of the spiking dy-
namics of a neuron. Themodel is suggested by FitzHugh in 1961 [48] and, independently,
by Nagumo, Arimoto and Yoshizawa in 1962 [98]. It gives a quantitative description of
the excitable properties of the membrane potential of a neuron. The model is given by
the following set of differential equations

ẏ(t) = y(t)− y3(t)

3
− z(t) + Em + u(t), (6.16a)

ż(t) = φ (y(t) + a− bz(t)) , (6.16b)
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Figure 6.4. A solution of the FitzHugh-Nagumomodel with parameters values presented
in the text.

where y ∈ R represents the membrane potential, z ∈ R is an internal variable with no
physical meaning, input u ∈ L∞(R,R) and constants a, b, φ ∈ R>0 and Em ∈ R.

Figure 6.4 shows the responses of the FitzHugh-Nagumo model for parameters

a = 0.7, b = 0.8, φ = 0.08, Em = 0.4,

and u(t) ≡ 0.

Proposition 6.3. The FitzHugh-Nagumo model is strictly semipassivity.

Proof of Proposition 6.3. The proof is easy and straightforward. Consider the positive defi-
nite storage function V : R2 → R≥0

V =
1

2

(
y2(t) +

1

φ
z2(t)

)
. (6.17)

Then

V̇ = y(t)u(t)− y4(t)

3
+ y2(t) + Emy(t)− bz2(t) + az(t). (6.18)

It is easy to see thatH(y(t), z(t)) := y4(t)
3

−y2(t)−Emy(t)+ bz2(t)−az(t) will be positive
for large |y(t)| and |z(t)|. Clearly the FitzHugh-Nagumo neuron is strictly semipassive.

Hindmarsh-Rose model

In 1979 Hindmarsh and Rose participated in a project to model synchronization of two
neurons of pond snail [60]. The biophysical models like the Hodgkin-Huxley model were
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Figure 6.5. A solution of the Hindmarsh-Rose model with parameters values presented
in the text.

too computationally expensive at that time, and the inexpensive FitzHugh-Nagumomodel
was not accurate enough for this project. Therefore Hindmarsh and Rose started to devel-
oped their own model. In 1982 Hindmarsh and Rose proposed a two-dimensional model
[61] and, in 1984, they published the paper [62] with their famous three-dimensional
model:

ẏ(t) = −ay3(t) + by2(t) + z1 − z2 + Em + u(t), (6.19a)

ż1(t) = c− dy2(t)− z1(t), (6.19b)

ż2(t) = r (s (y(t) + y0)− z2(t)) , (6.19c)

where y ∈ R represents the membrane potential, internal nonphysical variables z1, z2 ∈
R, input u ∈ L∞(R,R) and constant parameters a, b, c, d, r, s ∈ R>0, r � 1, andEm, y0 ∈
R. Depending on the choice of parameters, the model can produce persistent spike trains
or bursting oscillations. Moreover, for some values of parameters it can even produce
chaotic bursts. In Figure 6.5 the chaotic bursting is shown. The parameters that are used
are

a = 1, b = 3, c = 1, d = 5,

r = 0.005, s = 4, y0 = 1.618, Em = 3.25,

and u(t) ≡ 0.

Proposition 6.4. The Hindmarsh-Rose model is strictly semipassive.
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Proof of Proposition 6.4. The proof is adopted from [109]. Consider the positive definite
storage function V : R3 → R≥0,

V = 1
2

(
y2(t) + μz21(t) +

1
rs
z22(t)

)
, (6.20)

with constant μ > 0 that will be determined later. Hence

V̇ = y(t)u(t)− ay4(t) + by3(t) + y(t)z1(t) + Emy(t)

+ μcz1(t)− μdy2(t)z1(t)− μz21(t) + y0z2(t)− 1
s
z22(t). (6.21)

Let λi ∈ (0, 1), i = 1, 2, to obtain

− ay4(t)− μdy2(t)z1(t) =

− aλ1y
4(t)− a(1− λ1)

(
y2(t) + μd

2a(1−λ1)
z1(t)

)2
+ μ2d2

4a(1−λ1)
z21(t), (6.22)

and

− μz21(t) + y(t)z1(t) =

− μλ2z
2
1(t)− μ(1− λ2)

(
z1(t)− 1

2μ(1−λ2)
y(t)

)2
+ 1

4μ(1−λ2)
y2(t). (6.23)

Combining (6.21), (6.22) and (6.23) yields

V̇ = y(t)u(t)− aλ1y
4(t) + by3(t) + 1

4μ(1−λ2)
y2(t) + Emy(t)

−
(
μλ2 − μ2d2

4a(1−λ1)

)
z21(t) + μcz1(t)− 1

s
z22(t) + y0z2(t)

− μ(1− λ2)
(
z1(t)− 1

2μ(1−λ2)
y(t)

)2
− a(1− λ1)

(
y2(t) + μd

2a(1−λ1)
z1(t)

)2
. (6.24)

Take μ < 4aλ2(1−λ1)
d2

. Clearly, for sufficiently large |y(t)|, |z1(t)| and |z2(t)|, the

terms aλ1y
4(t) − by3(t) − 1

4μ(1−λ2)
y2(t) − Emy(t),

(
μλ2 − μ2d2

4a(1−λ1)

)
z21(t) − μcz1(t) and

1
s
z22(t) − y0z2(t) are positive. Moreover, since μ(1 − λ2)

(
z1(t)− 1

2μ(1−λ2)
y(t)

)2
and

a(1 − λ1)
(
y2(t) + μd

2a(1−λ1)
z1(t)

)2
are non-negative, it follows that the Hindmarsh-Rose

model is strictly semipassive.

6.3 Synchronization in networks of neurons

In the previous section it is shown that the models of Hodgkin-Huxley, the Morris-Lecar,
the FitzHugh-Nagumo and the Hindmarsh-Rose are all strictly semipassive. Using the
machinery presented in chapter 3, one can conclude that the solutions of the coupled
systems are ultimately bounded. Moreover, if the models are minimum-phase, then a
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network of neurons will synchronize if the coupling is sufficiently strong and, if time-
delays are present, the product of the coupling strength and time-delay is sufficiently
small. Fortunately, this is not hard to prove that the models are minimum-phase. Indeed,
the internal dynamics of all these models satisfy the Demidovich condition, i.e. Lemma
2.2, with P = I . Hence, for suitable values of the coupling strength and time-delay, the
neurons will synchronize.

In this section it will be demonstrated, using computer simulations, that networks with
these neurons indeed synchronize. In particular, simulation results will be presented
for a network of Morris-Lecar neurons and a network of Hindmarsh-Rose neurons. The
coupling will not contain time-delays and is assumed to be symmetric, i.e.

ui(t) = σ
∑
j∈Ei

aij(yj(t)− yi(t)), (6.25)

with aij = aji. Hence Theorem 3.1 can be used. The goal is of the simulations is not to
determine the exact threshold values for which the network starts to synchronize. Such
threshold values can be expressed in terms of the system parameters (see, for instance
[109] or [16] for Hindmarsh-Rose neurons), or they can be determined by computing, for
instance, the transversal Lyapunov exponents of the coupled systems [117]. Here, the goal
is only to show that for large enough coupling the neurons will synchronize.

Example 6.1 (Synchronization of Hindmarsh-Rose oscillators). Consider the network de-
picted in 6.6(a) with eight coupled Hindmarsh-Rose neurons

ẏi(t) = −ay3i (t) + by2i (t) + zi,1(t)− zi,2(t) + Em + ui(t) (6.26a)

żi,1(t) = c− dy2i (t)− zi,1(t) (6.26b)

żi,2(t) = r (s (yi(t) + y0)− zi,2(t)) (6.26c)

where i = 1, . . . , 8. The parameters that will be used are the same as presented before.
The Laplacian matrix for the network is

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 −1 0 0 0 −1 −1
−1 4 −1 −1 0 0 0 −1
−1 −1 4 −1 −1 0 0 0
0 −1 −1 4 −1 −1 0 0
0 0 −1 −1 4 −1 −1 0
0 0 0 −1 −1 4 −1 −1

−1 0 0 0 −1 −1 4 −1
−1 −1 0 0 0 −1 −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.27)

and the smallest nonzero eigenvalue of L is λ2 ≈ 2.58. The simulations indicate that the
neurons synchronize when the coupling strength σλ2(L) � 0.387, which corresponds to
a synchronization threshold σ̄ ≈ 1.00. (This agrees with the numerical results obtained
in, for instance, [16], where it is stated that two diffusively coupled Hindmarsh-Rose neu-
rons synchronize when the coupling strength σ ≥ 0.50 which corresponds to a threshold
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Figure 6.6. Eight diffusively coupled oscillators. Each interconnection has weight 1.

value σ̄ = 1.00.) Figure 6.7 shows the simulation results of the network of Hindmarsh-
Rose oscillators. In the top panel, σ = 0.2, hence σλ2(L) ≈ 0.52 ≤ σ̄. Indeed, the
neurons do not synchronize. This becomes more clear in the graph in the bottom panel,
where the error signals ỹj(t) := y1(t)−yj(t), j = 2, . . . , 8, are plotted in gray. The middle
panel shows a simulation with coupling σ = 0.4 such that σλ2(L) ≈ 1.03 > σ̄. The first
500 [s] the systems are uncoupled and one observes the systems are not synchronized.
The coupling becomes active when t ≥ 500. It can be seen, especially in the bottom
panel, that all systems rapidly synchronize. �
Example 6.2 (Synchronization of Morris-Lecar oscillators). This example discusses syn-
chronization of eight Morris-Lecar oscillators on the graph depicted in Figure 6.6(b). The
corresponding Laplacian matrix is given as

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 0 0 −1 0 0 −1
−1 2 −1 0 0 0 0 0
0 −1 4 −1 0 −1 −1 0
0 0 −1 2 −1 0 0 0

−1 0 0 −1 3 −1 0 0
0 0 −1 0 −1 3 −1 0
0 0 −1 0 0 −1 3 −1

−1 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.28)

The smallest nonzero eigenvalue of L is λ2 ≈ 1.27. Each Morris-Lecar oscillator is given
by the following set of equations

Cẏi(t) =gL (EL − yi(t)) + gCaα∞ (yi(t)) (ECa − yi(t)) + (6.29a)

+ gKzi(t) (EK − yi(t)) + Em + ui(t), (6.29b)

żi(t) =η (yi(t)) (β∞(yi(t))− zi(t)) , (6.29c)
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Figure 6.7. Synchronization of eight Hindmarsh-Rose neurons. The coupling becomes
when t ≥ 500. Top panel: no synchronization for σ = 0.2. Middle panel: synchronization
for σ = 0.4. Bottom panel: error signals ỹj(t) := y1(t)− yj(t), j = 2, . . . , 8, for σ = 0.2
(gray) and σ = 0.4 (black).

with i = 1, . . . , 8. The parameters and functions α∞(·), β∞(·). and η(·) are as presented
in the previous section. The top panel of Figure 6.8 shows the simulation results for the
eight diffusively coupled Morris-Lecar oscillators with σ = 0.001. The systems do not
synchronize, which can be clearly seen in the bottom panel of Figure 6.8 in which the
error signals ỹj(t) := y1(t) − yj(t), j = 2, . . . , 8, are plotted in gray. The middle panel
shows a simulation result with σ = 0.05. For t < 250 the oscillators are uncoupled and
do not synchronize. Then, when t ≥ 250 the coupling is turned on and all oscillators
synchronize. The bottom panel shows the corresponding error signals in black. �

6.4 Diffusion driven instabilities

Until now it is only shown that diffusive interaction can make systems synchronized.
However, diffusive interaction of systems might also result in “instabilities”. In this sec-
tion the unstable behavior due to diffusive interaction will be discussed briefly. The main
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Figure 6.8. Synchronization of eightMorris-Lecar neurons. The coupling becomes when
t ≥ 250. Top panel: no synchronization for σ = 0.001. Middle panel: synchronization for
σ = 0.05. Bottom panel: error signals ỹj(t) := y1(t) − yj(t), j = 2, . . . , 8, for σ = 0.001
(gray) and σ = 0.05 (black).

reason to include this section in this chapter is that the diffusion driven instabilities have
important applications in neuronal (and other biological) systems, see [84] and the ref-
erences therein. In [84] it is shown that the diffusive interaction between initially silent
cells is essential for generating stable oscillatory behavior. The main reason for the os-
cillations is that the internal variables, e.g. (in)activation particles, have the tendency to
oscillate. If the cells are coupled with sufficiently strong interaction, the internal variables
start to oscillate which makes the membrane potential to oscillate. The goal here is not to
discuss the machinery for the generation of these oscillations in detail. These details can
be found in [127, 140].

In this section it will be shown via two simple examples, inspired by [127], that it is not
trivial that systems interacting via diffusive coupling have bounded solutions and possibly
end up in synchrony for sufficiently strong coupling. In particular, it is demonstrated that
diffusive coupling 1) can make the solutions of the interconnected systems to become
unbounded, and 2) can make systems, which have an asymptotically stable equilibrium
in isolation, to produce stable oscillations.
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Example 6.3 (Unbounded solutions). Consider the linear non-minimum phase stable
transfer function

H(s) =
s2 − s + 1

s3 + 2s2 + 2s+ 1
. (6.30)

A possible state space realization for the system is

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (6.31)

with

A =

⎡
⎣ 1 −1 1

1 0 0
−4 2 −3

⎤
⎦ , B = C� =

⎡
⎣00
1

⎤
⎦ . (6.32)

Consider now two diffusively coupled systems (6.31)

ẋ1(t) = Ax1(t) + σBC(x2(t)− x1(t)),

ẋ2(t) = Ax2(t) + σBC(x1(t)− x2(t)), (6.33)

Clearly the origin of each uncoupled system is globally asymptotically stable. However,
the system is not semipassive. When σ > 0.6512 (for σ = 0.6512 the system undergoes
a Poincaré-Andronov-Hopf bifurcation [127]) the solutions of the interconnected systems
become unbounded. �

Example 6.3 shows how the diffusive coupling between two not semipassive systems
might result in unbounded solutions. A similar phenomena is encountered in networks
of diffusively coupled Chua circuits, cf. [161]. The piecewise linear model of the Chua
circuit is not semipassive (the Chua attractor is not globally stable) and due to the inter-
action the trajectories of the systems can be driven outside the basin of attraction and the
solutions grow unbounded.

The following example is taken from [127]. It shows how two systems, which both have
an asymptotically stable equilibrium in absence of interaction, start to produce stable
oscillations when the systems interact via diffusive coupling.

Example 6.4 (Diffusion driven oscillations). Consider two systems which interact via dif-
fusive coupling:

ẋ1(t) = Ax1(t)(1 + |x1(t)|2) + σBC(x2(t)− x1(t)),

ẋ2(t) = Ax2(t)(1 + |x2(t)|2) + σBC(x1(t)− x2(t)), (6.34)

where matrices A, B and C are as presented above. Again the origin of an isolated
system is asymptotically stable and when σ = 0.6512 the (linearized) system undergoes a
Poincaré-Andronov-Hopf bifurcation. The coupled systems (6.34) start to produce stable
oscillations whenever σ > 0.6512, see Figure 6.9 for simulation results. �
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Figure 6.9. Diffusion driven oscillations. The top panel shows the outputs of the two
uncoupled systems. In the bottom panel the outputs of two coupled systems with σ = 2
are shown.

The key mechanism for the oscillations is the Poincaré-Andronov-Hopf bifurcation and
the non-minimum-phaseness of the systems. Note that the four models described above
do have minimum-phase internal dynamics since the internal dynamics are convergent.
Hence no “spontaneous” oscillations due to diffusive interaction will occur in networks of
Hodgkin-Huxley, Morris-Lecar, FitzHugh-Nagumo and Hindmarsh-Rose neurons. Thus
in a network consisting of silent “dead” neurons the diffusive interaction can not result
in activity of the network.

6.5 Discussion

In this chapter it is proven that the Hodgkin-Huxley, Morris-Lecar, FitzHugh-Nagumo
and Hindmarsh-Rose models for neural activity are strictly semipassive and have inter-
nal convergent dynamics. Then, using the theoretical framework presented in the first
part of this thesis, it can be concluded that neurons that are coupled via electrical synapses
always synchronize given that the coupling is sufficiently strong. (If time-delays on the
interaction are taken into account, the product of the time-delay and the coupling strength
should in addition be sufficiently small.) These results support the result of [77] and the
simulation results of Chow and Kopell [34]. In [46] the authors discuss the emergence
of clusters in networks of all-to-all coupled neurons as function of the coupling strength.
Those clusters might emerge when the coupling is not strong enough to end up in syn-
chrony. The emergence of clusters for diffusively coupled neurons can easily be explained
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by applying the theory presented in chapter 4 and this chapter.

In addition, it is shown in this chapter that diffusively coupled systems which are not
semipassive might have unbounded solutions. A probably more interesting property, at
least from the biological point of view, is that diffusively coupled non-minimum phase
systems which are initially silent can start to produce stable oscillations.

It would be interesting to investigate the emergence of stable synchronization in networks
of neurons that interact via chemical synapses. The approach to analyze synchronization
of neurons in such networks is to use canonic models such as Integrate-and-Fire neu-
rons and phase models. For instance, in [95] it is shown that certain Integrate-and-Fire
neurons in a network with all-to-all connections synchronize for almost any initial con-
dition. In [143, 144, 133] synchronization of more realistic neuronal oscillators in pulse-
coupled networks is discussed. However, rigorous constructive results about what con-
ditions the oscillators should satisfy and the effect of a particular network topology on
the synchronization are not present nowadays. Even for systems that can be represented
as the seemingly simple (pulse-)coupled Kuramoto oscillators, cf. [76], the problem of
global synchronization is not tackled in full generality. Networks with strong interactions
and/or chaotic regimes remain problematic.

Finally, it is important to realize that the semipassivity property of neurons can be very
useful to analyze the dynamics in networks of chemically coupled neurons. Indeed, con-
sider a collection of k neurons that interact via chemical synapses, where the chemical
synapse is modeled as the Fast ThresholdModulation (FTM) coupling introduced in [143],
i.e.

ui(t) =

k∑
j=1

−gijH(yj(t)− θ)(Esyn − yi(t)), (6.35)

where gij ∈ R>0 denotes the synaptic conductance, Esyn ∈ R is the synaptic reversal po-
tential which determines whether the synapse is inhibitory or excitatory, and the function
H(·) is typically chosen as the Heaviside function such that neuron j will influence neu-
ron i only if the membrane potential of neuron j exceeds the threshold θ ∈ R. It is not
hard to verify that semipassive neuronal oscillators interconnected via chemical synapses
have bounded solutions. (This follows from the fact that

∑
yi(t)ui(t) ≤ 0 outside some

ball in Rk, i.e. the “supplied energy” is bounded.)
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CHAPTER SEVEN

Synchronization in networks of diffusively
coupled Hindmarsh-Rose neurons

Abstract. The goal of this chapter is to demonstrate and verify the theoretical results on full
synchronization and partial synchronization that are presented in the first part of this thesis.
In particular, the theoretical results are verified via computer simulations and real experiments
in networks of diffusively coupled Hindmarsh-Rose neurons. Some of the experimental results
presented in this chapter are published in [101]. Example 7.2 is taken from [146].

7.1 Introduction

As shown in the previous chapter, the Hindmarsh-Rose model of neural activity satisfies
the semipassivity condition and has internal dynamics that are convergent. This makes
the Hindmarsh-Rose neuron the perfect candidate to illustrate the theoretical results on
synchronization that are presented in the first part of this thesis with. An advantage of
the Hindmarsh-Rose model over the Hodgkin-Huxley and Morris-Lecar models, which
are also strictly semipassive and minimum-phase, is that the Hindmarsh-Rose model can
be relatively easy implemented on an electrical circuit board, see section 7.2. This makes
it possible to do experiments on synchronization in networks of electronic Hindmarsh-
Rose neurons. Of course, it is also relatively easy to produce a circuit realization of a
FitzHugh-Nagumo neuron and do experiments with networks of FitzHugh-Nagumo neu-
rons. However, the dynamical behavior that a Hindmarsh-Rose neuron is able to produce,
e.g. bursting and even chaotic bursting, is much richer than that of a FitzHugh-Nagumo
neuron, which makes it more interesting to consider networks of Hindmarsh-Rose neu-
rons. Moreover, the Hindmarsh-Rose neurons is a more realistic model of a neuron than
the FitzHugh-Nagumo model is. In appendix B it is shown that a Hindmarsh-Rose neu-
ron is able to mimic the membrane potential of real neurons of a mouse.
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Why is it interesting to do experiments on synchronization in networks of Hindmarsh-
Rose neurons? The framework presented in chapters 3, 4 and 5 is derived for identical
systems. However, in practice systems will never be completely identical, systems are
at most almost identical. Hence, synchronization of the experimental systems implies
some robustness against disturbances, e.g. measurement noise, and small deviations in
the systems parameters. (There is no mathematical proof for this claim yet!) Besides, ob-
servations of interesting (synchronous) behavior of the systems in the experimental setup
motivate the development of theory that can explain these observations. For instance, the
theory about the scaling laws presented in chapter 5 is inspired by experimental observa-
tions.

In this chapter simulation results are presented for networks of chaotic Hindmarsh-Rose
neurons,

żi,1(t) = 1− 5y2i (t)− zi,1(t), (7.1a)

żi,2(t) = 0.005 (4 (yi(t) + 1.618)− zi,2(t)) , (7.1b)

ẏi(t) = −y3i (t) + 3y2i (t) + zi,1 − zi,2 + 3.25 + ui(t), i = I := {1, 2, . . . , k} , (7.1c)

on a simple strongly connected graph that interact via non-delayed diffusive coupling

ui(t) = σ
∑
j∈Ei

aij(yj(t)− yi(t)), (7.2)

diffusive coupling type I

ui(t) = σ
∑
j∈Ei

aij(yj(t− τ)− yi(t)). (7.3)

The results for the Hindmarsh-Rose neurons on a simple strongly connected graph that
interact via diffusive coupling type II,

ui(t) = σ
∑
j∈Ei

aij(yj(t− τ)− yi(t− τ)), (7.4)

are supported by experiments. The reason why the experimental results are presented
only for coupling type II becomes clear somewhat later.

The goal of this chapter is not to derive sharp bounds on the coupling strength and time-
delays for which the neurons synchronize. The goal is to show that the framework pre-
sented in chapters 3, 4 and 5 does provide important (qualitative) insight in the collective
dynamics of systems that interact via diffusive coupling. Note that, since the internal
dynamics of the Hindmarsh-Rose neuron, i.e. the zi-dynamics, are convergent1, synchro-
nization of the output signals yi(t) of the Hindmarsh-Rose neurons implies synchroniza-
tion in the sense of Definition 3.1, i.e. the states of the Hindmarsh-Rose neurons will

1It is easy to see that the zi-dynamics satisfy the Demidovich condition, see Lemma 2.2, with P = I .
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(a) (b)

Figure 7.1. The experimental setup: (a) the electronic Hindmarsh-Rose neurons, and (b)
the coupling interface.

asymptotically match. Hence, in this chapter, only the outputs signals yi(t) are plotted to
show that the systems do (or do not) synchronize.

The remainder of this chapter is organized as follows. First, in section 7.2, the experi-
mental setup with which the results for coupling type II will be demonstrated is briefly
introduced. In section 7.3 results on full synchronization (chapter 3) are presented. Some
remarkable examples on partial synchronization (chapter 4) are given in section 7.4. The
results on the scaling laws in networks of systems that interact via coupling type II (chap-
ter 5) are supported by experimental results that are presented in section 7.5. Section 7.6
concludes this chapter.

7.2 Experimental setup

In this section the experimental setup will be briefly introduced. For details about the
setup the reader is referred to [100] and [101].

The experimental setup that is considered in this chapter consists of (up to) eighteen
electronic equivalents of the Hindmarsh-Rose neuron and a coupling interface. A single
electronic neuron is shown in Figure 7.1(a) and Figure 7.1(b) shows the coupling inter-
face. The electronic Hindmarsh-Rose neurons are build using off-the-shelf components
such as resistors, capacitors, analog voltage multipliers and operational amplifiers. Be-
cause of practical reasons, such as saturation of signals in the operational amplifiers,
the Hindmarsh-Rose model (7.1) has to be modified slightly for circuit implementation.
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Figure 7.2. Solutions of the electronic Hindmarsh-Rose neuron for ui(t) ≡ 0 V.

Consider the modified Hindmarsh-Rose model,

1
1000

ẏi(t) = −y3i (t) + 3yi(t)− 8 + 5zi,1 − zi,2 + 3.25 + ui(t), (7.5a)
1

1000
żi,1(t) = −5y2i (t)− 2yi(t)− zi,1(t), (7.5b)

żi,2(t) = 5 (4 (yi(t) + 1.1180)− zi,2(t)) , i = I, (7.5c)

where yi ∈ R denotes still the neuron’s membrane potential and z1,i, z2,i ∈ R are internal
variables. This modified model (7.5) can be transformed into the original model (7.1) via
the change of coordinates,

y �→ y + 1, z1 �→ 5z1 − 4, z2 �→ z2 + 6,

and a redefinition of time. (Note that the model (7.5) is a thousand times “faster” than
the original model (7.1), that is, thousand time-units of the original model correspond
to one time-unit for the modified model.) It follows that this modified model is strictly
semipassive as well and has convergent internal dynamics. Each state of the electronic
Hindmarsh-Rose model, i.e. the circuit realization of (7.5), can be measured as a volt-
age, and one time-unit of the model (7.5) corresponds to one second for the electric
Hindmarsh-Rose neuron. The inputs ui(t) are also voltages. Figure 7.2 shows a mea-
surement of the states of (7.5) for ui(t) ≡ 0 V. The units V (for the states) and s (for time)
are explicitly added in this figure since the measured states and time are real physical
quantities.

Comparing Figure 7.2 and Figure 6.5, which shows a solution of the model (7.1),
one concludes that the electronic Hindmarsh-Rose neuron mimics the behavior of the
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Hindmarsh-Rosemodel pretty well. Indeed, both themodel and the electronic neuron op-
erate in the chaotic bursting regime, the shapes of the spikes are similar and the ranges of
the signals match (taking the change of coordinates into account). The electronic neuron
produces signals that are indeed thousand times “faster” than the signals of the original
Hindmarsh-Rosemodel. Details about the electronic Hindmarsh-Rose neuron, including
the electronic circuit layout, can be found in [100].

The topology of the network, the coupling functions and the time-delays are specified in
the coupling interface. See Figure 7.1(b). With this interface it is possible to couple up to
eighteen neurons. The most important component of the coupling interface is the Atmel
ARM� Thumb�-based AT91SAM9260 microcontroller with an ARM926ej-s core that
runs at 180 MHz. Custom made software allows to specify the coupling structure and
control the time-delays2 via simple c-code. The outputs yi(t) of the neurons are made
available for the microcontroller via 16 bit analog-digital-converters with an input range
of ±10 V. The microcontroller computes the coupling functions ui(t) and these signals
are made available to the electronic neurons via a 14 bit digital-analog-converter with
an output limit of, again, ±10 V. The analog-digital-converters sample simultaneously,
which means that the outputs of all neurons that are coupled to the interface are acquired
at the same time. The digital-analog-converter updates the signals ui(t) simultaneously.
Clearly, the conversion of the signals and the computation of the coupling functions takes
a small amount of time. This time-delay is estimated to be around 80 μs when all eighteen
circuits are coupled. In addition, because of the simultaneous sampling and simultane-
ous updates of the interface, the time-delays will be approximately the same for every
neuron. Thus coupling type II naturally emerges. This is the reason why experimental
results are only shown for coupling type II and not for coupling type I. It has to be noted
that the time-delay induced by the synchronization interface is so small (compared to the
time-scale of the output signals of the electronic neurons) that it can almost be neglected.
Hence it is also possible to do experiments that approximate the synchronous behavior
in network of neurons that interact via non-delayed coupling or coupling type I. In fact,
in [101] it is shown that the experimental results for networks of electronic Hindmarsh-
Rose neurons that interact via diffusive coupling without additional delays, i.e. the best
approximation of non-delayed coupling, are very close to the simulation results with such
networks. Details about the synchronization interface can be found in [100].

7.2.1 Experimental synchronization of Hindmarsh-Rose neurons

Because of the tolerances on the electrical components and nonlinearities in the voltage
multipliers and the operational amplifiers, every electronic Hindmarsh-Rose neuron will

2A time-delay is generated by buffering the measured output signals of the neurons. The size of the
buffer corresponds to a certain amount of delay.
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behave slightly different. This has important consequences for the synchronization of
the electronic neurons. Indeed, a perfect asymptotic match of the outputs (and thus the
states) of the neurons can not be guaranteed anymore. It can only be expected that the
electronic neurons practically synchronize. Practical synchronization and practical partial
synchronization are defined as follows.

Definition 7.1 (Practical synchronization of type II coupled Hindmarsh-Rose neu-
rons). Consider k electronic HR neurons that interact via coupling type II. The
interconnected systems are said to practically synchronize if, for every continuous
initial history φi, φj , there is a sufficiently small positive number ε such that
lim supt→∞ |yi(t; t0, φi)− yj(t; t0, φj)| < ε for every i, j ∈ I. �
Definition 7.2 (Practical partial synchronization of type II coupled Hindmarsh-Rose neu-
rons). Consider k electronic HR neurons that interact via coupling type II. The in-
terconnected systems are said to practically partially synchronize if, for every contin-
uous initial history φi, φj, there is a sufficiently small positive number ε such that
lim supt→∞ |yi(t; t0, φi)− yj(t; t0, φj)| < ε for at least two but not all i, j ∈ I. �
Remark 7.1. In Definitions 7.1 and 7.2 the neurons are said to practically synchronize
when the outputs of the systems become sufficiently close and remain close as time in-
creases. Note that the convergency property of the internal dynamics implies full-state
practical synchronization. �
Remark 7.2. Definitions 7.1 and 7.2 are stated here only for Hindmarsh-Rose neurons that
interact via coupling type II. A general definition for practical (partial) synchronization
for any type of systems that interact via any type of coupling can easily be presented. It is
important to note that the value of the number ε depends on the type of systems in the
network and the type of coupling. �

The following example shows practical synchronization of two type II coupled electronic
Hindmarsh-Rose neurons.

Example 7.1 (Practical synchronization of two coupled neurons with minimal delay). Con-
sider k = 2 electronic Hindmarsh-Rose systems which are coupled via

u1(t) = σ(y2(t− τ)− y1(t− τ)), (7.6a)

u2(t) = σ(y1(t− τ)− y2(t− τ)), (7.6b)

with minimal time-delay τ ≈ 80 μs. Experiments show that the two electronic
Hindmarsh-Rose neurons practically synchronize with ε = 0.15 V when σ = 0.6, see
Figure 7.3. Figure 7.3(a) shows the outputs of two electronic Hindmarsh-Rose neurons as
function of time t. The solutions are almost indistinguishable. In Figure (b) the outputs
of the two neurons are plotted in the (y1, y2)-plane. It becomes now more clear that the
systems do not perfectly synchronize since the signals are not confined to the diagonal
y1 = y2. However, since the systems are practically synchronized the outputs remain
close to the diagonal. �
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(a) (b)

Figure 7.3. Practical synchronization of two electronic Hindmarsh-Rose neurons for
σ = 0.6 and τ ≈ 80 μs: (a) practically synchronized outputs y1(t) and y2(t) as function
of time t, and (b) practically synchronized outputs y1(t) and y2(t) in the (y1, y2)-plane.

Remark 7.3. In the example above the electronic Hindmarsh-Rose neurons are considered
practically synchronized if the difference in outputs converges within a bound ε = 0.15 V.
This value of εmight look rather high at first sight. However, taking into account that the
outputs signals of the Hindmarsh-Rose neuron are spiky, a small mismatch in the output
signals easily results in relatively large differences between the output signals. As can be
seen in Figure 7.3(a), with ε = 0.15 V, the neurons produce their action potentials at the
same time and the output signals are almost indistinguishable. It can be concluded from
Figure 7.3(b) that the “synchronization error” is the largest when the action potentials are
produced. Indeed, the deviation from the diagonal is the largest when the signals y1(t)
and y2(t) are between −1 V and 0.5 V. �

7.3 Full synchronization

In this section simulations and experiments are presented that support the theoretical
results of chapter 3. In Example 7.2 five neurons are considered that are coupled in a ring
structure and interact via coupling type I. In Example 7.3 experimental results are shown
for a network with four neurons that are all-to-all coupled via coupling type II.

Example 7.2 (Five type I coupled neurons in a directed ring. [146]). Consider k = 5

Hindmarsh-Rose systems that are uniformly coupled in a directed ring with coupling
type I:

u1(t) = σ(y5(t− τ)− y1(t)), (7.7a)

uj(t) = σ(yj−1(t− τ)− yj(t)), j = 2, . . . , 5. (7.7b)



102 7 SYNCHRONIZATION IN NETWORKS OF DIFFUSIVELY COUPLED HINDMARSH-ROSE NEURONS

See Figure 7.4(a). Clearly, the corresponding graph is simple and strongly connected.
Since all time-delays are the same and the corresponding adjacency matrix

A =

⎛
⎜⎜⎜⎜⎝
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ ,

it follows that assumption (H3.3) is satisfied3. Hence the synchronized state exists. Thus,
by Theorem 3.10, the five coupled systems synchronize if σ is sufficiently large and στ

is sufficiently small. The results (that are obtained via computer simulations) are shown
in Figure 7.4. In Figure 7.4(b) the approximated values of σ and τ for which the systems
synchronize are plotted. The systems synchronize if σ and τ belong to the dark shaded
area. It can be concluded that the neurons indeed synchronize for sufficiently large sigma
and sufficiently small στ .

As mentioned before, it is important to note that coupling type I (with τ > 0) generally
does in not vanish when the systems are synchronized. In Figure 7.4(c) the synchronized
solutions of the five systems are depicted for σ = 2 and τ = 0. The synchronized solu-
tions look like the solution of a free Hindmarsh-Rose neuron, i.e. a solution of a neuron
with ui(t) ≡ 0. This is because the coupling terms ui(t) vanish if τ = 0 and the sys-
tems are synchronized. If τ > 0, the synchronized solution is not a solution of a free
Hindmarsh-Rose neuron anymore. See Figures 7.4(d) and 7.4(e) for simulation results
with σ = 3, τ = 0.1 and σ = 4, τ = 0.22, respectively. �
Example 7.3 (A fully connected network with four type II coupled neurons). Consider
k = 4 Hindmarsh-Rose neurons that interact via coupling type II. The four neurons are
all-to-all connected and the coupling is uniform, i.e. all interconnection weights are the
same and all time-delays are equal, and each neuron couples to every other neuron. See
Figure 7.5(a). The coupling functions are

ui(t) = σ

4∑
j=1,j �=i

(yj(t− τ)− yi(t− τ)). (7.8a)

Clearly all assumptions of Theorem 3.12 are satisfied, hence, by Theorem 3.12, (practical)
synchronization is expected for sufficiently large σ and, at the same time, sufficiently
small στ . Figure 7.5(b) shows the values σ and τ for which the four electronic neurons
are considered to be practically synchronized. The four neurons practically synchronize
when σ and τ are in the dark shaded area of the (σ, τ)-plane. Again, it can be concluded
that the neurons indeed synchronize for sufficiently large sigma and sufficiently small
στ . �

3assumption (H3.3) requires τij = τ and
∑

j∈Ei
aij = 1 for every i, j ∈ I.
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1
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(a)

(b) (c)

(d) (e)

Figure 7.4. Synchronization of five type I coupledHindmarsh-Rose neurons in a directed
ring: (a) the network topology. (b) values of σ and τ for which the systems synchronize
(shaded region). The time responses of the coupled neurons for (c) σ = 2, τ = 0, (c)
σ = 3, τ = 0.1, (c) σ = 4, τ = 0.22. For t < 250 the systems are uncoupled and do not
synchronize, for t ≥ 250 the coupling is active and the systems clearly synchronize.
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34
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σ, τ

σ, τ

σ, τ
σ, τ

σ, τ

(a) (b)

Figure 7.5. Practical synchronization of four all-to-all type II coupled neurons: (a) the
network topology and (b) the values of σ and τ for which the four systems practically
synchronize (shaded area).

7.4 Partial synchronization

In this section the theoretical results presented in chapter 4 are supported by simulations
and experiments. First, in Example 7.4 the network of Example 4.1 is considered. Simu-
lation results are presented for non-delayed interaction. Then, in Example 7.5 a network
consisting of four neurons that interact via coupling type II is considered. The experi-
mental results looks a bit surprising at first sight, but the result can be fully explained
using the theory presented in chapter 4. Finally, Example 7.6 shows simulation results
for four neurons that interact via coupling type I with multiple delays.

Example 7.4 (Partial synchronization in a directed network. See Example 4.1). Consider
four Hindmarsh-Rose neurons that interact via non-delayed diffusive coupling. The net-
work is as shown in Figure 7.6(a). As mentioned before, the Laplacian matrix for this
network is given as

L =

⎛
⎜⎜⎝
a1 + 2a3 −a1 −a3 −a3
−a1 a1 + 2a3 −a3 −a3
−a2 −a2 2a2 0
−a2 −a2 0 2a2

⎞
⎟⎟⎠ .

Assuming a1, a2, a3 > 0 the graph is simple and strongly connected. Now Theorem 4.2
will be applied. Consider the permutation matrix

Π =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ,
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(a) (b)

Figure 7.6. Four Hindmarsh-Rose neurons interacting via non-delayed diffusive cou-
pling: (a) the network topology and (b) a simulation result with σ = 1, a1 = a3 = 1 and
a2 = 5.

which commutes withL, i.e. ΠL = LΠ. HenceX = L is a solution of thematrix equation
(I − Π)L = X(I − Π) and a straightforward computation shows that λ′ = 2a2. This
implies that the set ker(Ikn − Π) contains a globally attracting subset if σ is sufficiently
large. If a1 and a3 are relatively small compared to a2, then neurons 3 and 4 synchronize
while there is no synchronization between the other neurons. This results is remarkable
since neurons 3 and 4 do not interact directly with each other! Figure 7.6(b) shows a
simulation result for a1 = a3 = 1, a2 = 5 and σ = 1. As can de seen in the bottom left
panel of this figure, outputs y3(t) and y4(t) synchronize (as they are on the diagonal in
the (y3, y4)-plane). The other three figures show that there is no synchronization between
the other neurons. �
Example 7.5 (Practical partial synchronization of four type II coupled neurons in a ring).
Consider four Hindmarsh-Rose neurons that interact via coupling type II with a coupling
configuration as shown in Figure 7.7(a). The surprising experimental results are shown
in Figure 7.7(b). First it will be carefully explained what is going on. Then the results are
explained using Corollary 4.8.

As expected, from Theorem 3.12, the four neurons fully practically synchronize when
σ is sufficiently large and στ is sufficiently small. Those values of σ and τ for which
the neurons fully practically synchronize are in the dark shaded area in Figure 7.7(b).
Suppose that σ and τ are such that the neurons fully practically synchronize. If the value
of σ decreases but the value of τ remains the same, full practical synchronization is lost.
However, neurons 1 and 2 remain synchronous and neurons 3 and 4 are still practically
synchronized. Of course, there is no synchronization when σ becomes very small. This
result is probably expected. However, let σ and τ again be such that the neurons fully
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σ, τ σ, τ
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(a) (b)

Figure 7.7. Four neurons that interact via coupling type II: (a) the network and (b)
regions of practical partial synchronization as function of σ and τ .

practically synchronize, keep σ fixed but increase τ . What happens is that full practical
synchronization is lost, but neurons 1 and 3, and neurons 2 and 4 remain practically
synchronized. If τ becomes too large none of the neurons will synchronize anymore.

Although the latter result is unexpected, it can easily be explained using Corollary 4.8.
The Laplacian matrix for this network is given as

L =

⎛
⎜⎜⎝

3 −2 0 −1
−2 3 −1 0
0 −1 3 −2

−1 0 −2 3

⎞
⎟⎟⎠ , (7.9)

Note that L is symmetric. Consider the permutation matrices

Π1 =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ and Π2 =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .

It can easily be verified that both Π1 and Π2 commute with L, hence Corollary 4.8 can be
used. The Laplacian matrix L has eigenvalues

λ1 = 0, λ2 = 2, λ3 = 4, λ4 = 6,

and the corresponding eigenvectors are

v1 =

⎛
⎜⎜⎝
1
1
1
1

⎞
⎟⎟⎠ , v2 =

⎛
⎜⎜⎝

1
1

−1
−1

⎞
⎟⎟⎠ , v3 =

⎛
⎜⎜⎝

1
−1
−1
1

⎞
⎟⎟⎠ , v4 =

⎛
⎜⎜⎝

1
−1
1

−1

⎞
⎟⎟⎠ .
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Clearly, the eigenvectors of L that are in range (I − Π1) are v3 and v4. Then Corollary
4.8 states that if σλ3 = 4σ is sufficiently large and στλ4 = 6στ is sufficiently small, the
set ker(I − Π1 ⊗ I) contains a globally attractive subset. In other words, neurons 1 and
2 synchronize and neurons 3 and 4 synchronize for sufficiently large 4σ and sufficiently
small 6στ . On the other hand, the eigenvalues of L that are in range (I − Π2) are v2 and v3
such that, again by Corollary 4.8, the set ker(I−Π2⊗I) contains a globally attractive subset
if σλ2 = 2σ is sufficiently large and στλ3 = 4στ is sufficiently small. Thus neurons 1 and
3 synchronize and neurons 2 and 4 synchronize for sufficiently large 2σ and sufficiently
small 4στ . It is not difficult to see that if σλ2 = 2σ is sufficiently large and στλ4 = 6στ is
sufficiently small, then both sets ker(I−Π1⊗I) and ker(I−Π2⊗I) have an asymptotically
stable subset, i.e. a subset of the set ker(I − Π1 ⊗ I) ∩ ker(I − Π1 ⊗ I) is asymptotically
stable. But this implies full synchronization. To summarize, if σ is sufficiently large and
στ is sufficiently small, then there is full synchronization. If σ is still sufficiently large but
στ is not small enough, then a subset of the set ker(I−Π2⊗I) is asymptotically stable, i.e.
neurons 1 and 3 synchronize and neurons 2 and 4 synchronize. If στ is sufficiently small
but σ is not sufficiently large, then a subset of the set ker(I − Π1 ⊗ I) is asymptotically
stable, i.e. neurons 1 and 2 synchronize and neurons 3 and 4 synchronize. This is exactly
what is shown in Figure 7.7(b). �
Example 7.6 (Partial synchronization in a ring of four type I coupled neurons with non-u-
niform time-delays). Consider the network of Example 4.3, i.e. consider four systems
coupled in a ring as depicted in Figure 7.8(a). The coupling functions for this network
are

u(t) = −σy(t) + σ
2
(Π1 ⊗ I)y(t− τ1) +

σ
2
(Π2 ⊗ I)y(t− τ2), (7.10)

where u(t) = col (u1(t), u2(t), u3(t), u4(t)), y(t) = col (y1(t), y2(t), y3(t), y4(t)), y(t−τj) =

col (y1(t− τj), y2(t− τj), y3(t− τj), y4(t− τj)), j = 1, 2, and

Π1 =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ and Π2 =

⎛
⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ .

As already mention in Example 4.3, Theorem 4.10 implies that if σ is sufficiently large
and στ1 is sufficiently small, then the set ker(I − Π1 ⊗ I) has a globally asymptotically
stable subset. If σ is sufficiently large and στ2 is sufficiently small, then the set ker(I −
Π2 ⊗ I) has a globally asymptotically stable subset. If σ is sufficiently large and both στ1
and στ2 are sufficiently small, then there is full synchronization. The simulation results
confirm these statements. Figure 7.8(b) shows the values of σ and τ1 for which neurons
1 and 2 synchronize, and neurons 3 and 4 synchronize. This results is independent
of the value of τ2. In Figure 7.8(c) the results of a simulation are shown where σ is
sufficiently large and both στ1 and στ2 are sufficiently small. There is full synchronization
as expected. If τ2 becomes too large, full synchronization is lost but neurons 1 and 2

synchronize, and neurons 3 and 4 synchronize. See Figure 7.8(d). �
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Figure 7.8. Four Hindmarsh-Rose neurons in a ring with non-uniform time-delays: (a)
the network topology, (b) the values of σ and τ1 for which neurons 1 and 2 and neurons 3
and 4 synchronize (independent of the value of τ2!), (c) phase-space representation of full
synchronization of the four neurons for σ = 2, τ1 = 0.3 and τ2 = 0.6, (d) phase-space
representation of partial synchronization of neurons 1 and 2 and neurons 3 and 4 for
σ = 2,τ1 = 0.3 and τ2 = 5.

7.5 Network topology

This section supports the results that are given in chapter 5, i.e. it will be shown how
the values of the coupling strength and time-delay for which two neurons that interact
via coupling type II synchronize can be used to determine the values of the coupling
strength and time-delay for which any number of type II coupled neurons synchronizes.
However, rather than the stability diagram of two coupled systems, the stability diagram
of the four uniformly all-to-all coupled systems presented in Example 7.3 will be used
to reconstruct the diagrams for other networks. The reason for this is that, because of
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saturation of the digital-analog-converters of the coupling interface, it is not possible to
determine the stability diagram of two coupled systems for large values of σ. Since the
coupling strength that is needed synchronize four all-to-all uniformly coupled neurons
is only half the coupling strength required to synchronize two neurons4, it is possible
to measure the stability diagram for four systems for (relatively) large coupling strength.
Note that the stability diagram is bounded by the line τ ≡ 0 and a unimodal function.
Hence, by Corollary 5.4, only the largest and the smallest nonzero eigenvalues of the
Laplacian matrix have to be taken into account by applying the scaling. In Example 7.7
the stability diagram for three neurons coupled in a line will be reconstructed from the
stability diagram of the four all-to-all uniformly coupled neurons, in Example 7.8 the
same is done for four systems coupled in a ring.

Example 7.7 (Three neurons in a line). Consider three type II coupled neurons is a line.
The Laplacian matrix of this network is

L =

⎛
⎝ 1 −1 0
−1 2 −1
0 −1 1

⎞
⎠ . (7.11)

It is easy to verify that L has eigenvalues λ1 = 0, λ2 = 1 and λ3 = 3. Recall the nonzero
eigenvalues of the Laplacian matrix of the network of the four all-to-all coupled neurons
are all equal to four. This implies that taking the intersection of the diagram depicted in
Figure 7.5(b) scaled by a factor 4/λ2 = 4 and a factor 4/λ3 = 4/3 over the σ-axis gives
the desired result. Indeed, as shown in Figure 7.9(a), the reconstructed stability diagram
(dark shaded area) is pretty close to the measured stability diagram (bounded by the thick
black line). �

Example 7.8 (Four neurons in a ring). Consider now four neurons in a network with
Laplacian matrix

L =

⎛
⎜⎜⎝

2 −1 0 −1
−1 2 −1 0
0 −1 2 −1

−1 0 −1 2

⎞
⎟⎟⎠ . (7.12)

The Laplacian matrix has eigenvalues λ1 = 0, λ2 = λ3 = 2 and λ4 = 4. Thus taking
the intersection of the diagram depicted in Figure 7.5(b) scaled by a factor 4/λ2 = 2 and
a factor 4/λ4 = 1 over the σ-axis gives the stability diagram for the four type II coupled
neurons in a ring. The reconstructed stability diagram is shown in Figure 7.9(b) (dark
shaded area), and, again, the reconstructed diagram and the measured stability diagram
(bounded by the thick black line) show a pretty good resemblance. �

4This follows from Theorem 5.3 since, for four all-to-all uniformly coupled systems, λ2 = λ3 = λ4 = 4.
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(a) (b)

Figure 7.9. The stability diagrams for three neurons in a line (example 7.7) and four
neurons in a ring (example 7.8). The diagrams are reconstructed from the diagram of
four all-to-all uniformly type II coupled neurons. The scaled copies are given in the light
shade, the intersection of the scaled copies is given in the darker shade. The thick black
line indicates the boundary of the measured stability diagram. (a) three neurons in a line,
and (b) four neurons in a ring.

7.6 Discussion

In this chapter results are presented of computer simulations and real experiments in
networks of diffusively coupled Hindmarsh-Rose neurons. To quantify synchronization
of the electronic Hindmarsh-Rose neurons in the experimental setup the notion of practi-
cal (partial) synchronization is introduced. Illustrative examples on full synchronization,
partial synchronization and the role of the network topology are given for Hindmarsh-
Rose neurons that interact via coupling type I, coupling type II or non-delayed diffusive
coupling. In all examples the results support, or can be explained by, the theoretical
framework given in chapters 3, 4 and 5.

The systems in the experimental setup are clearly not perfectly identical, but the results
obtained with this experimental setup can still be explained by the theory that is devel-
oped. However, it is worth to investigate synchronization of non-identical systems in
detail. In addition, there are some limitations in the experimental setup such as the
saturation of the signals. Hardware improvements will make it possible to do more com-
plicated experiments.



CHAPTER EIGHT

Synchronization and activation in a model
of a network of β-cells

Abstract. Islets of pancreatic β-cells are of utmost importance in the understanding of diabetes
mellitus. In this chapter a model of a network of such pancreatic β-cells is considered. The cells
are are globally coupled via gap junctions, i.e. all-to-all non-delayed diffusive coupling. Some of
the cells in the islet are producing bursting oscillations while other cells are inactive. It is proven
that the cells in the islet synchronize if the coupling is sufficiently large and all cells are active (or
inactive). If the islet consists of both active and inactive cells and the coupling is sufficiently large,
an active cluster and an inactive cluster emerge. It is shown that activity of the islet depends on the
coupling strength and the number of active cells compared to the number of inactive cells. If too
few cells are active the islet becomes inactive. The results presented in this chapter are published
in [12].

8.1 Introduction

Diabetes mellitus is a problem of world wide concern [164, 175]. Dynamical analysis
and control of pancreatic cells is one of its issues. The pancreas agglomerates cells in
functional units called Langerhans islets. In particular, pancreatic β-cells play an impor-
tant role in glucose homeostasis since they release insulin which is the hormone mainly
responsible for the blood glucose regulation [68, 118]. Experimental studies show that
the insulin secretion in β-cell is directly related to spiking/bursting electrical activity of
the cell membrane. For instance, the absence of the spiking or bursting indicates that
the insulin secretion is inhibited [119, 120, 137]. Synchronization of bursting activity in
Langerhans islets is expected to play an important role in the insulin secretion [118, 137].
Moreover, there is experimental evidence that bursting electrical activity occurs when an-
alyzing an islet as a whole, while when β-cells are analyzed in isolation, most of them are
in an inhibited inactive state [118, 142]. On the other hand, if too many cells are inactive
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the islet might stop showing activity [120]. In this chapter a model of an islet with active
and inactive β-cells is considered and it is studied how many cells need to be active the
let the islet show activity such that the insulin secretion will not be inhibited. A single
β-cell will be described by a model proposed by Pernarowski [120]. This model is capable
of reproducing the inactive state, bursting oscillations and continuous spiking. The be-
havior of the model can be changed by varying a single parameter. Each cell will interact
with all other cells via gap-junctions, i.e. a coupling given by the difference in membrane
potential of the cells multiplied by the coupling strength. Using the machinery presented
in chapter 3, see also [128, 124], it is proven that if the coupling is sufficiently strong an
islet with all cells active (or inactive) synchronizes, and if the islet consists of both active
and inactive cells it is proven that an active cluster and an inactive cluster emerge. It is
shown that the network will be active as long as the islet contains a sufficient amount
of active cells. It is well known that coupling between cells might influence the behav-
ior of cells. In, for instance [127, 140], it is shown that certain systems that are inactive
in isolation can produce stable oscillations when there are coupled. See also chapter 6,
section 6.4. In [127, 140] the cells are assumed to be identical, whereas in this chapter
non-identical cells are considered. The analysis shows that, depending on the coupling
strength, the equilibrium of the islet changes from unstable to stable when not enough
cells are active, which in turn implies that the electrical activity of the islet dies out and
the insulin secretion is inhibited.

This chapter is organized as follows. In section 8.2 the model of a single cell is intro-
duced and its dynamic behavior is briefly explained. Then in the next section the islet
of globally coupled β-cells is introduced and some theoretical results concerning the syn-
chronization of the activity in the islet are presented. Section 8.4 discuss when a islet
stops showing activity and numerical simulations are presented that support the theoret-
ical results. The results are further discussed in section 8.5.

8.2 A single β-cell

Consider a model of a β-cell [120]:

ẏ(t) = f(y(t))− z1(t)− z2(t), (8.1a)

ż1(t) = w∞(y(t))− z1(t), (8.1b)

ż2(t) = ε (h(y(t))− z2(t)) , (8.1c)

where, y ∈ R denotes the membrane potential which is also the natural output of a cell,
z1 ∈ R a channel activation variable, z2 ∈ R is related to the concentration of intracellular
calcium and adenosine diphosphate (ADP), ε � 1 is a small positive parameter and the
polynomials f(y(t)) = −f3y

3(t) + f2y
2(t) + f1y(t), w∞(y(t)) = w3y

3(t) + w2y
2(t) −

w1y(t)− w0, h(y(t)) = b (y(t) + y0). In the sequel the following parameters will be used
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Figure 8.1. Numerical simulation of an isolated β-cell with the parameters presented in
the text and initial conditions (yi(0), z1,i(0), z2,i(0)) = (−1,−2, 1). The black trajectories
correspond to an active bursting cell (y0 = 0.954), the gray trajectories represent an inac-
tive cell (y0 = 1.375). The single burst in the beginning is due to the initial conditions.

[120]: f3 = 1
12
, f2 = 3

8
, f1 = 37

64
, w3 =

11
12
, w2 =

3
8
, w1 = 227

64
, w0 = 3, ε = 0.0025 and b = 4.

If y0 = 0.954 the cell bursts; the cell shows activity and the cell is called active. On the
other hand, if y0 = 1.375 the solutions of (8.1) converge to an equilibrium and the cell is
called inactive. Figure 8.1 shows the state trajectories of an active cell and an inactive cell.

First, the fast-slow analysis of the system (8.1) presented in [120] will be summarized
since it explains how the model generates the different behaviors depicted in Figure 8.1.
See also, for instance, Chapter 6 of [71] and Section 11.4 of [72]. Consider an active cell,
i.e. y0 = 0.954. On the fast t time scale, the time scale that dominates during the bursts,
the behavior of the cell is governed by letting ε = 0 such that

ẏ(t) = f(y(t))− z1(t)− z2, (8.2a)

ż1(t) = w∞(y)(t)− z1(t), (8.2b)

where z2 is now a constant parameter. The bifurcation diagram of this system is depicted
in Figure 8.2. A family of stable limit cycles starts at a Hopf bifurcation indicated by point
B in the diagram and terminates at the homoclinic bifurcation point C. The equilibria of
the fast subsystem (8.2) lie on z2 = S(y) := f(y)− w∞(y). The equilibria located on the
S-shaped curve S(·) between the left knee (point A) and the Hopf bifurcation point B are
unstable, while all other equilibria are stable. On the slow t∗ := εt time scale, the time in
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Figure 8.2. Fast-slow analysis and a projection of the trajectories of an active cell onto
the (z2, y)-plane.

between the bursts, the dynamics are given by the equations

z2(t
∗) = S(y(t∗)), (8.3a)

dz2
dt∗ (t

∗) = h(y(t∗))− z2(t
∗). (8.3b)

Between the bursts the solutions of (8.1a) follow the lower branch of the curve z2 = S(y)

with z2 slowly decreasing (since this branch lies below the nulcline z2 = h(y)). The
equilibrium of the system (8.1) is given by the intersection of the S-shaped curve with the
nulcline of the slow system h(y) = 0. If y0 = 0.954 the unique equilibrium is located at
the unstable branch of S(y). Suppose that the initial conditions of (8.1a) are chosen near
the lower branch of S(y). Then the solutions follow the lower branch with decreasing z2
until the left knee (pointA) is reached. At this point stability is lost and the fast subsystem
starts to dominate. Hence the system starts to oscillate. During these oscillations z2 will
be slowly increasing such that at a certain moment a homoclinic bifurcation occurs (at
point C), which forces the solutions back to near the lower branch of S(y). This process
repeats over and over resulting in the stable bursting behavior. On the other hand, if
y0 = 1.375 the intersection of S(y) and h(y) is on the lower branch of S(y) which implies
that the equilibrium of (8.1) is stable.
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8.3 An islet of β-cells

Consider an islet consisting of k coupled β-cells

ẏi(t) = f(yi(t))− z1,i(t)− z2,i(t) + ui(t), (8.4a)

ż1,i(t) = w∞(yi(t))− z1,i(t), (8.4b)

ż2,i(t) = ε (b (yi(t) + y0,i)− z2,i(t)) , (8.4c)

with i = 1, . . . , k and ui ∈ L∞(R,R) is an input with which the cell is able to “commu-
nicate” with other cells. The islet consists of k1 cells that are active while the remaining
k − k1 =: k2 cells are inactive. Recall that the difference of a cell being active or inactive
depends only on the value of y0,i, i.e. y0,i = 0.954 if a cell is active and y0,i = 1.375 if the
cell is inactive.

It is well known that β-cells couple via so-called gap junctions [137]. It will be assumed
that the cells are globally (all-to-all) coupled with uniform coupling strength. Hence the
coupling for the ith cell is given by the equations

ui(t) = σ
∑k

j=1,j �=i
(yj(t)− yi(t)), (8.5)

with coupling strength σ > 0. The cells are called synchronized if, for every initial con-
ditions, limt→∞ |xi(t)− xj(t)| = 0 for all i, j = 1, . . . , k with xi := col (yi, z1,i, z2,i). The
next two results follow from the machinery presented in chapter 3, see also [128, 147].

Lemma 8.1. The solutions of the cells (8.4) coupled via (8.5) are ultimately bounded.

Theorem 8.2. Consider an islet with k cells (8.4) coupled via (8.5). There exists a constant
σ̄ > 0 such that if σk > σ̄, then

i. if all cells are active (k1 = k), all cells show synchronized bursting oscillations;

ii. if all cells are inactive (k2 = k), all cells are synchronized but there are no oscillations;

iii. if k1 < k cells are active and k2 < k cells are inactive, the active cells synchronize and the
inactive cells synchronize, but the active cells do not synchronize with the inactive cells.

The proofs of Lemma 8.1 and Theorem 8.2 are provided in appendix A, section A.4.
Lemma 8.1 states that all solutions of the interconnected cells enter some compact set
in finite time and the solutions remain in that set thereafter. Note that this result is
not trivial; it is well known that the solutions of interconnected systems might become
unbounded even if the solutions of a system in isolation are bounded. This typically
happens when the systems are non-minimum phase, see chapter 6, section 6.4. Theo-
rem 8.2 states that if the coupling strength multiplied by the number of cells exceeds the
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threshold σ̄, i.e. the coupling is sufficiently strong and/or the number of cells is suffi-
ciently large, a cluster of synchronized active cells and a cluster of synchronized inactive
cells emerge. If all cells are either active or inactive then all cells in the islet synchronize
when the coupling is sufficiently strong.

Remark 8.1. Lemma 8.1 and Theorem 8.2 also hold for the biophysically plausible con-
ductance based models of β-cells such as the models in [137, 71]. See chapter 6 for details.

�
Remark 8.2. Lemma 8.1 is also true for a general network topology, Theorem 8.2 can
be generalized for a general network topology in case that all cells are either active or
inactive. See chapter 3 for details. �

8.4 An active or an inactive islet?

In this section an islet of coupled cells (8.4), (8.5) with k1 active cells and k2 inactive cells
is considered. In the remainder it is assumed that σk ≥ σ̄ such that (as follows from
Theorem 8.2) a cluster of active cells and a cluster of inactive cells will emerge. Due to
the interaction of the clusters two scenarios occur:

i. the active cluster “stimulates” the inactive cluster such that the cells in the inactive
cluster start to produce oscillations;

ii. the inactive cluster suppresses the activity in the active cluster such that all activity
in the islet dies out.

As one might imagine, there will be two parameters that determine whether the islet
will be active or inactive, namely the coupling strength σk and the number of active cells
relative to the number of inactive cells, i.e. the relative sizes of the clusters. Let η be the
portion of active cells relative to the number of total cells, i.e. η = k1

k
. It follows that 1− η

represents the number of inactive cells relative to the number of total cells in the islet. In
what follows estimates are presented of the critical portion η∗ = η∗(σk) at which there is
a change from activity to inactivity.

The dynamics of a cluster are given as

ζ̇1,m(t) = f(ζ1,m(t))− ζ2,m(t)− ζ3,m(t) + νm(t), (8.6a)

ζ̇2,m(t) = w∞(ζ1,m(t))− ζ2,m(t), (8.6b)

ζ̇3,m(t) = ε (b (ζ1,m(t) + y0,m)− ζ3,m(t)) , (8.6c)

with m = 1, 2. Note that the equations describing the dynamics of the cluster are copies
of the equations that describe the single cell. This is because the cells in a cluster are
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synchronized and share the same dynamics. Letm = 1 be the inactive cluster andm = 2

the active cluster, i.e. y0,1 = 1.375 and y0,2 = 0.954. It is not difficult to see that the
coupling between the clusters is given by the equations ν1(t) = σkη(ζ1,2(t) − ζ1,1(t)),
ν2(t) = σk(1 − η)(ζ1,1(t) − ζ1,2(t)). The machinery presented in section 8.2 will now
be used to determine the estimate of the critical portion η∗. Consider the change of
coordinates: ξ1,m(t) = ζ1,m, ξ2,m(t) = ζ2,m(t) and ξ3,m(t) = ζ3,m(t) + cm with cm :=

b(1.250− y0,m), i.e. c1 = 1.184 and c2 = −0.5. Hence

ξ̇1,m(t) = f(ξ1,m(t))− ξ2,m(t)− ξ3,m(t) + cm + ν̃m(t), (8.7a)

ξ̇2,m(t) = w∞(ξ1,m(t))− ξ2,m(t), (8.7b)

ξ̇3,m(t) = ε (b (ξ1,m(t) + 1.250)− ξ3,m(t)) , (8.7c)

and

ν̃1(t) = σkη(ξ1,2(t)− ξ1,1(t)), (8.8a)

ν̃2(t) = σk(1− η)(ξ1,1(t)− ξ1,2(t)). (8.8b)

Figure 8.3 depicts the S-shaped curves of the fast subsystem of the uncoupled clusters
and the line ξ3,m = b(ξ1,m+1.250). Again, the equilibrium of the clusters are given by the
intersection of the S-shaped curve and the line. Note that the location of the equilibrium
of the original model (8.1) (and thus that of a uncoupled cluster) is changed by varying y0.
In Figure 8.2 this corresponds to shifting the line z2 = h(y) = b(y + y0) up or down (as
function of y0) while keeping the S-shaped curve fixed. After the change of coordinates
the location of the equilibrium still changes with y0 since cm = cm(y0), but, as can be
seen in Figure 8.3, this corresponds now to shifting the S-shaped curves to the left or
right while keeping the line ξ3,m = b(ξ1,m + 1.250) fixed. Consider two clusters (8.7)
which are coupled via (8.8). Due to the interaction the location of the S-shaped curves
of the active and the inactive clusters change, hence the locations (and thus stability) of
the equilibria change. The estimate of the critical portion η∗(σk) will now be determined
by estimating for which values of η, σk and the equilibrium of the inactive cluster the
equilibrium of the active cluster is at the left knee of its S-shaped curve. In particular,
consider the two following extreme cases:
Case 1. The location of the equilibrium of the inactive cluster (ξo1,1, ξ

o
2,1, ξ

o
3,1) does not

change due to the interaction with the active cluster. This is the case when the portion
of active cells is small. Let (ξo1,2, ξ

o
2,2, ξ

o
3,2) be the equilibrium of the active cluster. If the

equilibrium is at the left knee, then

0 = S̃(ξo1,2)− b
(
ξo1,2 + c2

)
+ σk(1− η∗)(ξo1,1 − ξo1,2), (8.9a)

0 = S̃ ′(ξo1,2)− σk(1− η∗), S̃ ′′(ξo1,2) > 0, (8.9b)

where S̃(ξ1,m) := f(ξ1,m) − w∞(ξ1,m) + cm and ′ indicates the derivative with respect
to ξ1,m. Here (8.9a) is the equilibrium equation for the active cluster and (8.9b) is the
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Figure 8.3. S-shaped curves of the uncoupled, i.e. ν̃m(t) ≡ 0, active cluster (cm = 1.184)
and inactive cluster (cm = −0.5). Also presented are the S-shaped curve corresponding
to cm = 0 and the line ξ3,m = b(ξ1,m + 1.250).

condition that guarantees the equilibrium to be at the left knee. Solving (8.9) for the
given model parameters results in σk(1 − η∗) = c with c ≈ 1.213. Since η∗ ∈ [0, 1] it
follows that η∗ = max(0, 1− c

σk
).

Case 2. The equilibria of both the active and inactive cluster are at the left knee of the
S-shaped curve with cm = 0. This happens if the coupling strength σk is large. In Figure
8.3 this corresponds to shifting the S-shaped curve of the active (inactive) cluster to the
left (right) by an amount of c1 (c2) such that the S-shaped curves of the active and inactive
cluster coincide with the S-shaped curve with cm = 0. Thus

0 = σkη∗(ξo1,2 − ξo1,1) + c1, (8.10a)

0 = σk(1− η∗)(ξo1,1 − ξo1,2) + c2, (8.10b)

from which it follows that η∗ = c1
c1−c2

≈ 0.297.

Figure 8.4 summarizes the result. The estimated critical portion η∗ is indicated by the
thick gray line. The area in gray in the (σk, η) plane indicates the region where activity
of the islet is guaranteed. For instance, for large σk at least 30% of the cells should be
active to have any activity of the islet. The circles in Figure 8.4 indicate the critical portion
obtained by numerical simulations of an islet with k = 100 cells. The analytical estimate
approaches the numerical results well for small η and large σk.
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Figure 8.4. Analytical estimates of the critical portion (thick gray line) and the result of
numerical simulations (circles).

Figure 8.5 shows the results of numerical simulations of a network consisting of k = 7

cells. The coupling strength σ = 1. In Figure 8.5(a), k1 = 3 cells are active and k2 = 4

cells are inactive. As expected two clusters emerge and the network shows activity. In
Figure 8.5(b), k1 = 2 cells are active and k2 = 5 cells are inactive. Again, as expected, two
clusters emerge but now all activity dies out.

8.5 Discussion

In this chapter a model of an islet of globally coupled β-cells is considered. Some cells are
active and others cells are inactive. As stated in the introduction, the activity of an islet
of β-cells is directly related to the blood glucose level, cf. [119, 120, 137]. It is investigated
in this chapter to what extent it is possible that coupled β-cells ultimately may exhibit
active or inactive behavior. First it is proven that the solutions of all cells in the islet are
ultimately bounded. In addition, it is proven that if all cells are active or all cells are
inactive, given that the coupling is sufficiently strong, all cells synchronize. If the islet
consists of both active and inactive cells and the coupling is sufficiently strong, then an
active cluster and an inactive clusters emerge. Using stability analysis of the equilibria
of the clusters an estimate of the critical portion η∗(σk) is determined. If for some fixed
coupling strength σk the portion of active cells η > η∗, the islet will still show some
activity. Results of numerical simulations show that the estimates of η∗(σk) are accurate
for small η and large σk.
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(a)

(b)

Figure 8.5. Numerical simulations of a network consisting of k = 7 cells coupled with
strength σ = 1: (a) three active and four inactive cells, (b) two active and five inactive
cells.
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In [120], the critical portion for an islet consisting of a large number (O(1
ε
)) of cells that

couple to their nearest neighbors is estimated to be 0.283. Although the analysis in [120]
is different, the value of the estimated portion in the large islet with nearest neighbor
coupling is close to the value that is estimated for an globally coupled islet consisting of
an arbitrary number of cells. It would be interesting to study the influence of the topology
of the network and the coupling strength in detail.
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CHAPTER NINE

Controlled synchronization via nonlinear
integral coupling

Abstract. The ideas presented in this chapter go beyond linear coupling. In particular, in this
chapter the problems of controlled synchronization and regulation of oscillatory systems that in-
teract via nonlinear coupling are considered. For a specific class of nonlinear systems, namely for
minimum-phase systems with relative degree one, a systematic design procedure for finding non-
linear couplings between the systems is proposed. This nonlinear coupling guarantees asymptotic
synchronization of the systems’ states for arbitrary initial conditions. The corresponding coupling
has the form of an integral and it can be considered as a generalized distance between the out-
puts of the coupled systems. It combines both the low-gain and the high-gain coupling design in
one nonlinear function. The results are illustrated with simulations of coupled Hindmarsh-Rose
neurons. The results presented in this chapter are published in [113].

9.1 Introduction

When considering synchronization of interconnected systems, one can distinguish two
directions; synchronization analysis of interconnected systems with given couplings and
interconnection structure, and design of interconnection couplings that guarantees syn-
chronization of the systems. The first problem is discussed for diffusive coupling in the
first part of this thesis. In this chapter the latter problem, also called controlled synchro-
nization, is considered. It has to be noted that in this chapter no time-delays are taken
into account.

The controlled synchronization problem is closely related to several control problems
such as observer design and the output regulation problem, see, e.g. [114] for the con-
nection between these problems. Browsing through the literature on synchronization
of nonlinear systems, one encounters multiple results with linear, diffusive, couplings.
While for analysis of interconnected systems with given linear couplings this is a normal
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approach, for the problem of couplings design, limiting oneself only to linear couplings
may be too restrictive, especially for highly nonlinear systems. The main problem of lin-
ear couplings is that the coupling gains that guarantee synchronization are often large.
This high-gain-feedback approach is needed to suppress the nonlinearities in the systems.
At the same time, nonlinear couplings, which can be considered as couplings with vary-
ing gains, seem to be more natural for nonlinear systems; the gain should be high in the
parts of the state space where the nonlinearities are essential and need to be suppressed,
while it can be small in other parts of the state space. Synchronization in nonlinearly
coupled systems has been considered mostly from the analysis point of view, see, e.g.
[82, 57]. There are not so many results focusing on design aspects of synchronization
through nonlinear coupling.

In this chapter a systematic approach is presented to design nonlinear coupling functions
that guarantee synchronization of two unidirectionally or bidirectionally coupled systems
and synchronization of multiple all-to-all coupled systems. In particular, in this chapter
coupling functions are considered in the form of a definite integral of some non-negative
weight function with the integral limits being the outputs of the systems. For two systems
the magnitude of the coupling can be considered as a generalized distance between the
systems’ outputs. For the case of a constant weight function it leads to the conventional
linear coupling. The introduction of a nonlinear weight function in such an integral cou-
pling leads to greater flexibility, which may lead to reduced coupling gains as it will be
demonstrated with an example. Lower coupling gains, in turn, lead to lower (measure-
ment) noise sensitivity. Moreover, this form of coupling is very convenient for analysis
and provides constructive design methods.

This approach has its roots in the semipassivity-based synchronization of systems with
linear couplings on the one hand, and recent developments in the nonlinear output regu-
lation problem [110, 114], on the other hand. In fact, as it has been pointed out in [114], the
controlled synchronization problem, at least for the case of master-slave synchronization,
can be considered as a particular case of the output regulation problem. Moreover, the
methods that are used both in the controlled synchronization and the output regulation
problems overlap in several aspects. Controllers developed within the output regulation
problem often contain the so-called internal model [29, 90], that is, an auxiliary dynami-
cal system which, being a part of the controller, guarantees the existence of a solution of
the closed-loop system corresponding to zero regulation error. Whether or not this solu-
tion is stabilized depends on synchrony between the system and the internal model. This
synchrony is achieved by another part of the controller, usually called a stabilizer. Apart
from this conceptual similarity, there is also similarity in techniques and methods em-
ployed in these problems, see, for instance, [112, 124], and the works on the convergence
property [111, 114], which is the key property in terms of stabilization in both the output
regulation problem and the synchronization problem.
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The remainder of this chapter is organized as follows. The controlled synchronization
problem and the proposed design method are explained in section 9.2. In section 9.3
preliminary definitions and results on semipassivity and incremental passivity are pre-
sented. Section 9.4 contains the main theoretical results and section 9.5 illustrates the
developed theory with an example of two nonlinearly coupled Hindmarsh-Rose oscilla-
tors. Section 9.6 concludes this chapter.

9.2 Controlled synchronization problem

Consider systems of the form

ẋi(t) = f(xi(t), ui(t)) (9.1a)

yi(t) = h(xi(t)), i = 1, . . . , k, (9.1b)

with state xi ∈ Rn, output yi ∈ R, input ui ∈ L∞(R,R) and sufficiently smooth functions
f : Rn × R → Rn and h : Rn → R. The systems (9.1) are assumed to satisfy the
standard assumptions on existence and uniqueness of solutions and exhibit, for ui(t) ≡ 0,
some bounded oscillatory dynamics. The problem of controlled synchronization of such
systems that will be studied is to find coupling functions

ui(t) = Gi(y1(t), . . . , yk(t)), i = 1, . . . k, (9.2)

that interconnect k identical systems of the form (9.1) such that for arbitrary initial con-
ditions x1(0), . . . xk(0) all solutions of the closed-loop system (9.1), (9.2) are well-defined
and synchronize in the sense of Definition 3.1, i.e. for all initial conditions,

|xi(t)− xj(t)| → 0, as t → ∞, ∀i, j. (9.3)

Moreover, for identical outputs y1(t) = y2(t) = . . . = yk(t) =: ys(t) the coupling func-
tions are supposed to vanish,

Gi(ys(t), . . . , ys(t)) = 0, i = 1, . . . , k. (9.4)

Of course, if the coupling functions all vanish when the systems are synchronized, then
the k interconnected systems exhibit, in exact synchrony, the oscillatory dynamics of the
original unforced system: (9.1) with ui(t) ≡ 0.

First a particular case of this problem corresponding to synchronization of two inter-
connected systems (9.1) will be considered. In this case a coupling is proposed in the
following integral form

u1(t) =

∫ y2(t)

y1(t)

λ(s)ds, u2(t) =

∫ y1(t)

y2(t)

λ(s)ds, (9.5)
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with weight function λ ∈ C(R,R≥0). For a class of nonlinear systems, a design proce-
dure will be proposed to find the weight function λ that will guarantee asymptotic syn-
chronization of the coupled systems’ states for arbitrary initial conditions. Note that for
a constant function λ(s) = λ for all s ∈ R, the integral coupling (9.5) becomes the linear
non-delayed diffusive coupling u1(t) = λ(y2(t) − y1(t)), u2(t) = λ(y1(t) − y2(t)). Lin-
ear coupling has the benefit that it is simple and uniform over various values of y1(t) and
y2(t). But the systems’ nonlinearities are not the same throughout the state space and, for
some values of the outputs y1(t) and y2(t), one could use a lower gain λ than for the other
values and still achieve asymptotic synchronization. The proposed integral coupling (9.5)
overcomes the lack of versatility of the linear coupling. It allows one, through shaping the
weight function λ(s), to adjust the coupling gain depending on y1(t) and y2(t). (In this
case the gain is understood as the ratio

∫ y2(t)

y1(t)
λ(s)ds/(y2(t) − y1(t)).) A smart choice of

λ may lead to gain reduction, at least in some average sense, which in turn may improve
sensitivity of the closed-loop system to noise.

9.3 Technical preliminaries

In this section some technical results are presented that will be useful for to derive the
main result.

Lemma 9.1. Consider two systems

ẋ1(t) = f1(x1(t), u1(t)), y1(t) = h1(x1(t)), (9.6)

ẋ2(t) = f2(x2(t), u2(t)), y2(t) = h2(x2(t)). (9.7)

Suppose both systems are strictly C1-semipassive with radially unbounded storage functions
V1(x1(t)) and V2(x2(t)). Then all solutions of these systems interconnected with the integral
coupling (9.5) with a nonnegative continuous weight function λ(s) ≥ 0, s ∈ R, are defined
and bounded on the infinite time interval t ≥ 0. Moreover, there exists a radially unbounded
nonnegative function W (x1(t), x2(t)) and a constant c∗ ≥ 0 such that for each c ≥ c∗ the set
{col (x1, x2) ∈ R2n|W (x1, x2) ≤ c} is a compact positively invariant set with respect to (9.6),
(9.7), (9.5).

Proof of Lemma 9.1. Let W (x1(t), x2(t)) := V1(x1(t)) + V2(x2(t)), which is a radially un-
bounded function. Then the semipassivity assumption for the individual systems implies

Ẇ (x1(t), x2(t)) = V̇1(x1(t)) + V̇2(x2(t))

≤ y1(t)u1(t)−H1(x1(t)) + y2(t)u2(t)−H2(x2(t))

= (y1(t)− y2(t))

∫ y2(t)

y1(t)

λ(s)ds−H1(x1(t))−H2(x2(t)). (9.8)
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Notice that λ(s) ≥ 0 for all s ∈ R implies (y1−y2)
∫ y2
y1

λ(s)ds = −(y2−y1)
∫ y2
y1

λ(s)ds ≤ 0

for all y1, y2 ∈ R. Hence,

Ẇ (x1(t), x2(t)) ≤ −H1(x1(t))−H2(x2(t)) ≤ 0, ∀ |x1(t)| ≥ ρ1, |x2(t)| ≥ ρ2, (9.9)

where ρ1 > 0 and ρ2 > 0 are the constants from the definition of the semipassivity
property of systems (9.6) and (9.7), respectively. Hence, since the function W is radially
unbounded, there exists c∗ > 0 such that Ẇ (x(t)) ≤ 0 for all x(t) = col (x1(t), x2(t))

satisfying W (x(t)) ≥ c ≥ c∗. Thus, the set {col (x1, x2) ∈ R2n|W (x1, x2) ≤ c} is a
compact positively invariant set. This implies, see e.g. [72], that all solutions x(t) are
defined for all t ≥ 0 and bounded.

Definition 9.1 (Incremental passivity [110]). A system (9.1) is called C1-incrementally-
passive if there exists a function ΔV ∈ C1(R2n,R≥0) such that

d
dt
ΔV (x1, x2) =

∂ΔV

∂x1

f(x1, u1) +
∂ΔV

∂x2

f(x2, u2)

≤ (y1 − y2)
�(u1 − u2)−ΔW (x1 − x2), (9.10)

for all x1, x2 ∈ Rn, u1, u2, y1, y2 ∈ R and some ΔW ∈ C(Rn,R≥0). The system (9.1) is
called strictly C1-incrementally-passive if ΔW (·) is positive definite. �

The main property of incrementally-passive systems that will be used in this chapter is
formulated in the next lemma.

Lemma 9.2. Consider two identical systems

ẋ1(t) = f̃(x1(t), v1(t)), y1(t) = h(x1(t)), (9.11a)

ẋ2(t) = f̃(x2(t), v2(t)), y2(t) = h(x2(t)), (9.11b)

that are interconnected through the integral coupling

v1(t) =

∫ y2(t)

0

λ(s)ds, v2(t) =

∫ y1(t)

0

λ(s)ds, (9.12)

with λ(s) ≥ 0 for all s ∈ R. Suppose that there is a constant c∗ > 0 and a non-negative radially
unbounded functionW (x1(t), x2(t)) ≥ 0 such that for each c ≥ c∗ the setW (x1(t), x2(t)) ≤ c

is compact and positively invariant with respect to the interconnected systems (9.11), (9.12).
Then if each system (9.11) is strictly C1-incrementally-passive with respect to input vi(t) and
output yi(t), i = 1, 2, then each solution of the interconnected systems (9.11), (9.12) is defined
and bounded for all t ∈ [t0,∞) and satisfies

x1(t)− x2(t) → 0 as t → ∞. (9.13)
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Proof of Lemma 9.2. From the strict incremental-passivity of each system (9.11) it can be
concluded that the time derivative of the function ΔV (x1, x2) along any solution (x1, x2)

of the interconnected systems (9.11), (9.12) satisfies

d
dt
ΔV ≤ (y1 − y2)(v1 − v2)−ΔW (x1 − x2) (9.14)

for some positive definite function ΔW (·). Note that since λ(s) ≥ 0 in (9.12),

(y1 − y2)(v1 − v2) = −(y1 − y2)

∫ y1

y2

λ(s)ds ≤ 0 (9.15)

for all y1, y2. Hence, sinceΔW (x) is positive definite,

d
dt
ΔV ≤ −ΔW (x1 − x2) < 0, (9.16)

for all x1, x2 ∈ Rn, x1 �= x2. Thus, applying LaSalle’s invariance principle [72] to the
system (9.11), (9.12) in any compact positively invariant set W (x1, x2) ≤ c for arbitrary
c ≥ c∗, one concludes that any solution of the interconnected system (9.11), (9.12) is
defined and bounded on the interval t ≥ t0. Moreover, it also implies that for any solution
of the interconnected system (9.11), (9.12), ΔW (x1(t) − x2(t)) → 0 as t → +∞, which,
in turn, implies (9.13).

Remark 9.1. If the storage functionΔV (x1, x2) is taken in the formΔV (x1, x2) = Ṽ (x1−
x2) for some positive definite function Ṽ ∈ C1(Rn,R≥0), one can easily show that for
each c ≥ c∗ there exists a class-KL function1 βc(r, t) such that

|x1(t)− x2(t)| ≤ βc(|x1(t0)− x2(t0)| , t), (9.17)

for every x1(t0), x2(t0) satisfying W (x1(t0), x2(t0)) ≤ c. In particular, if ΔV (x1, x2) =

(x1−x2)
�P (x1−x2) andΔW (x1−x2) = (x1−x2)

�R(x1−x2) for some positive definite
matrices P = P� > 0 and R = R� > 0 that do not depend on c, then there exist μ > 0

and ν > 0 such that any solution of (9.11), (9.12) is bounded and satisfies

|x1(t)− x2(t)| ≤ μe−νt |x1(t0)− x2(t0)| , (9.18)

for all t ≥ t0. �

As a tool to determine incremental-passivity of a system, the following lemma, which is
a minor modification of a result from [110], is provided.

1The function β : R≥0 ×R≥0 → R≥0 is a class-KL function if, for each t ≥ t0, β(·, t) is nondecreasing
and lims→0 β(s, t) = 0, and for each s ≥ 0,β(s, ·) is non-increasing and limt→∞ β(s, t) = 0. See, for
instance, [72]
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Lemma 9.3. Consider the system

ẋ(t) = f̃(x(t)) +Bv(t), y(t) = Cx(t), (9.19)

with state x ∈ Rn, output y ∈ R, input u ∈ L∞(R,R) and function f̃ ∈ C1(Rn,Rn). If there
exist matrices P = P� > 0 and R = R� > 0 such that for every x ∈ Rn,

P
∂f̃

∂x
(x) +

∂f̃�

∂x
(x)P ≤ −R, (9.20a)

PB = C�, (9.20b)

then system (9.19) is incrementally-passive with ΔV (x1, x2) = (x1 − x2)
�P (x1 − x2) and

ΔW (x1 − x2) = (x1 − x2)
�R(x1 − x2).

9.4 Controlled synchronization

This section considers the controlled synchronization problem for nonlinear systems of
the form

ẋi(t) = f(xi(t)) +Bui(t), (9.21a)

yi(t) = Cxi(t), (9.21b)

where i = 1, 2, . . . , k, state xi ∈ Rn, output yi ∈ R, input ui ∈ L∞(R,R), B and C are
constant matrices of appropriate dimensions and function f ∈ C1(Rn,Rn).

9.4.1 Controlled synchronization of two systems

First, a network with only two coupled systems (9.21) is considered. The next theorem
gives the main result.

Theorem 9.4. Suppose that each system in (9.21) is strictly C1-semipassive and there exists a
continuous function λ(s) ≥ 0 for all s ∈ R, such that

P
∂f

∂x
(x) +

∂f�

∂x
(x)P − 2C�Cλ(Cx) < −R,

PB = C�, (9.22)

for all x ∈ Rn. Then all solutions of the systems (9.21) interconnected through integral coupling
(9.5) with λ(s) satisfying (9.22) are bounded and satisfy

|x1(t)− x2(t)| ≤ μe−νt |x1(t0)− x2(t0)| , (9.23)

for all t ≥ t0 and some constants μ > 0, ν > 0.
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Proof of Theorem 9.4. See appendix A.5.1.

In the case when one coupling function is set to zero, the result of the previous theorem
remains the same and synchronization is still achieved. It corresponds to the so-called
controlled master-slave synchronization, which can be also considered as a variant of the
output regulation problem, cf. [114].

Finding λ(s) that satisfies condition (9.22) is, in general, not an easy task. In the next
result a particular class of systems is considered for which one can find an explicit formula
for λ(s) satisfying the conditions of Theorem 9.4. Consider the following system in the
normal form

ż(t) = q(z(t), y(t)), (9.24a)

ẏ(t) = a(y(t), z(t)) + u(t), (9.24b)

with output y ∈ R, z ∈ Rn−1, input u ∈ L∞(R,R) and the functions q(z(t), y(t)) and
a(y(t), z(t)) are continuously differentiable. Note that this system is of the form (9.21)
with x(t) = col (z(t), y(t)), f(x(t)) = col (q(z(t), y(t)), a(y(t), z(t))), B =

(
0 1

)�
and

C =
(
0 1

)
.

Theorem 9.5. Consider the system (9.24). Suppose that there exist constant matrices Q =

Q� > 0 and S = S� > 0, Q, S ∈ R(n−1)×(n−1), such that the inequality

Q
∂q

∂z
(z, y) +

∂q�

∂z
(z, y)Q ≤ −S (9.25)

holds for all z ∈ Rn−1 and y ∈ R. Suppose that there exists a continuous function λ(y) ≥ 0

that satisfies

λ(y) ≥ ε+
∂a

∂y
(y, z) +

1

2
ξ�(y, z)(S − εIn−1)

−1ξ(y, z) (9.26)

ξ(y, z) :=

(
Q
∂q

∂y
(z, y) +

∂a�

∂z
(y, z)

)
(9.27)

for all z ∈ Rn−1 and y ∈ R and some constant ε ∈ R>0 such that

S − εI > 0. (9.28)

Then λ(y) satisfies (9.22).

Proof of Theorem 9.5. See appendix A.5.2.

A function λ(y) satisfying (9.26) can be found if the right-hand side of (9.26) is inde-
pendent of z or can be bounded from above by a y-dependent function. Condition (9.25)
guarantees that zero dynamics of system 9.24 (i.e. the z-dynamics) are convergent [111],
which implies that for a given function y all solutions of the system ż(t) = q(z(t), y(t))

converge to a unique bounded globally asymptotically stable steady-state solution deter-
mined only by y. This property of the zero dynamics can be considered as a specific
minimum-phase property of the overall system (9.24).
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9.4.2 Controlled synchronization of multiple systems

This section considers k identical systems (9.21) which are interconnected by the all-to-all
integral coupling of the form

ui(t) =
k∑

j=i,j �=i

∫ yj(t)

yi(t)

λ(s)ds, i = 1, . . . , k. (9.29)

The following results are counterparts of the corresponding results from the two-systems
case.

Lemma 9.6. Assume that each subsystem in (9.21) is strictly C1-semipassive with a radially
unbounded storage function Vi. Then all solutions of the network of k interconnected systems
(9.21), (9.29) with λ(s) ≥ 0 for all s ∈ R are defined and bounded over the infinite time
interval t ≥ t0.

The proof of this lemma follows the same line of reasoning as the proof of Lemma 9.1
with the overall storage function equal toW :=

∑k
i=1 Vi.

Theorem 9.7. Consider k identical strictly C1-semipassive systems (9.21). Suppose there exist
P = P� > 0 and R = R� > 0 such that for all x ∈ Rn

P
∂f

∂x
(x) +

∂f

∂x

�
(x)P − 2(k − 1)C�Cλ(Cx) ≤ −R,

PB = C�. (9.30)

Then all solutions of the k interconnected systems (9.21), 9.29 are bounded and satisfy

|xi(t)− xj(t)| ≤ μe−νt |xi(t0)− xj(t0)| , ∀i, j ∈ {1, 2, . . . , k} (9.31)

for all t ≥ t0 and for some ν > 0, μ > 0.

Proof of Theorem 9.7. The proof is presented in section A.5.3 of appendix A.

Finally, to apply Theorem 9.7 to systems of the form (9.24), one can still use Theorem
9.5 with the only modification that in the case of k systems the right-hand side of (9.26)
should be divided by (k − 1).

9.5 An example

As an example, consider again the Hindmarsh-Rose oscillator

ż1(t) = c− dy2(t)− z1(t), (9.32a)

ż2(t) = r(s(y(t) + y0)− z2(t)), (9.32b)

ẏ(t) = −ay3(t) + by2(t) + z1(t)− z2(t) + Em + u(t). (9.32c)
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See chapter 6, section 6.2. Using the theory developed in the previous sections a nonlinear
integral coupling (9.5) will be derived that guarantees global exponential synchronization
of two identical oscillators (9.32). As proven in chapter 6, the Hindmarsh-Rose oscilla-
tor (9.32) is strictly C1-semipassive Moreover, this system is in the form (9.24). Hence
Theorem 9.5 can be used to find the desired weight function λ(y) ≥ 0.

First, note that condition (9.25) is satisfied with

Q =
1

2

(
γ 0
0 η

)
, S =

(
γ 0
0 ηr

)
, (9.33)

where γ and η are positive constants that will be determined somewhat later. The right-
hand side of inequality (9.26) is independent of z. Hence one can find λ(y) ≥ 0 from
(9.26):

λ(y(t)) ≥ ε− 3ay2(t) + 2by(t) +
1

2

(
(1− γdy(t))2

γ − ε
+

(ηεs/2− 1)2

2ηr − ε

)
, (9.34)

where ε > 0 is an arbitrary parameter satisfying ε < 2ηr and ε < γ due to (9.28).

The gain function (9.34) will now be minimized. Minimization of λ(y) is desirable to
reduce noise sensitivity, for example. First, let η = 2/(sε) such that (9.34) becomes

λ(y) ≥ ε− 3ay2 + 2by +
(1− γdy)2

2(γ − ε)
. (9.35)

Note that the right-hand side of (9.35) is a quadratic function of y. Choose 0 < γ <

6a/d2, then for all sufficiently small ε > 0 the right-hand side of (9.35) has a global
maximum, which depends on γ. Further optimization of γ within the set (0, 6a/d2)

allows minimization of this global maximum. This can be done analytically, but here the
optimization is done using a simple MATLAB code. The parameter ε should be taken
very small. After finding an optimal γ and choosing a small ε, λ(y) is defined as

λ(y) = max

{
0, ε− 3ay2 + 2by +

(1− γdy)2

2(γ − ε)

}
, (9.36)

since λ(y) has to be nonnegative.

For simulations of the two coupled Hindmarsh-Rose oscillators the parameters presented
in chapter 6 will be used: a = 1, b = 3, c = 1, d = 5, s = 4, Em = 3.25, y0 = 1.618,
r = 0.005. For these values of parameters the optimal value of γ (for ε = 0) equals
γ = 0.2. The corresponding λ(y) is shown in Figure 9.1(a). In fact, as follows from
(9.35), one can also choose λ(y) to be constant, which corresponds to conventional linear
diffusive coupling. See also chapter 6. As follows from Figure 9.1(a), the lower bound for
constant λ that guarantees global exponential synchronization equals 3. This is already a
significant improvement compared to the results from [109], where such a lower bound
is computed to be equal to 10.75 (for the chosen values of parameters).
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(a) (b)

Figure 9.1. Controlled synchronization of two Hindmarsh-Rose oscillators via nonlinear
integral coupling: (a) nonlinear gain function λ(y(t)) and (b) synchronized outputs of
the systems and the variable gain g(t).

Still, the main benefit of the nonlinear integral coupling is the fact that it works like a cou-
pling with a variable gain. It makes the gain high where necessary (e.g. where the nonlin-
earities are severe) and low where it is possible without compromising synchronization.
This is clearly demonstrated in Figure 9.1(b), where simulation results for two coupled
systems starting at the initial states [3, 0, 2]� and [10, 5, 0]� are presented. The upper plot
depict the outputs of the systems, while the lower plot shows the variable gain g(t) of the
nonlinear integral coupling. (This gain is defined as g(t) =

∫ y2(t)

y1(t)
λ(s)ds/(y2(t)− y1(t)).)

The gain varies from 3 down to 0.055. The average value of the gain over the final 700 time
units is 1.27. In fact, in a number of simulations performed for various initial conditions,
the average gain computed over intervals longer than 3000 time units after synchrony had
been achieved was never higher than 1.3. This value is even lower than an estimate of
the lower bound for the constant coupling gain that guarantees local exponential synchro-
nization found in [109], which equals 1.5. As follows from Figure 9.1(a), at some parts of
the state space, e.g. when both y1 and y2 lie to the left or to the right of the parabola in
Figure 9.1(a), no coupling is needed at all to maintain convergence of the system states
to each other regardless of the distance between y1 and y2. This intriguing phenomenon
has been observed in several simulations including one (with system parameters as in
[109]) in which zero-coupling phenomenon occurred not only in transients, but even on
the attractor. Lower gain means lower sensitivity to noise. This example demonstrates
the advantages of the proposed approach to synchronization based on nonlinear integral
coupling.
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9.6 Discussion

In this chapter the controlled synchronization problem for a class of nonlinear systems is
considered. It has been shown that the proposed nonlinear integral coupling guarantees
global exponential synchronization of two systems (either unidirectionally or bidirection-
ally coupled) and of k systems with the all-to-all interconnection topology. A system-
atic procedure for finding such nonlinear couplings in the integral form is presented.
The performance of the proposed method is successfully verified with simulations of two
Hindmarsh-Rose oscillators. Through this case study it has been demonstrated that the
nonlinear integral coupling may lead to lower (in average) coupling gains while preserv-
ing synchronization. This, in turn, may lead to improved noise sensitivity characteristics
of the overall system. The results presented in this chapter hold when the systems are
all-to-all connected. Of course, this assumption is rather restrictive and it would be inter-
esting to extend the results to a (more) general network topology. In addition, it would be
interesting to take possible time-delays into account.
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CHAPTER TEN

Conclusions and recommendations

Abstract. This final chapter summarizes the main results that are presented in this thesis. In
addition, recommendations for future research are given.

10.1 Conclusions

In this thesis synchronization of coupled systems has been discussed. A theoretical ex-
planation for synchronization in networks of diffusively time-delay coupled semipassive
systems is presented. Diffusive time-delay interaction is an important type of coupling
which is found in, for instance, networks of coupled neurons, networks of biological sys-
tems and coupled mechanical systems and electrical systems. Sufficient conditions for
full synchronization and partial synchronization in such networks are derived, and the
relation between the conditions for full synchronization and the topology of the network
is studied. As a particular application of the theory, network of neurons which interact
via so-called gap junctions have been considered. Synchronization in such networks is
often related to specific brain functions or pathological tremors. The theory is also used,
in combination with a fast-slow bifurcation analysis, to explain the stop of activity in net-
works of interacting “dead” and “alive” pancreatic β-cells. This problem is closely related
to diabetes mellitus. In addition, using the same mathematical tools, a systematic design
procedure is presented for finding nonlinear coupling functions that guarantee synchro-
nization in networks of all-to-all coupled semipassive systems.

In the first part of this thesis, i.e. chapters 3, 4 and 5, the focus is on the theoretical frame-
work that provides sufficient conditions for synchronization in networks of systems that
interact via diffusive coupling. Two different types of interaction are considered: coupling
type I, which is diffusive coupling in which time-delays appear only in the received output
signals, and coupling type II, in which every signal in the coupling contains a time-delay.
An important difference between the two types of coupling is that coupling type II van-
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ishes if the systems are synchronized whereas coupling type I does not vanish in general.
Sufficient conditions are given for both full synchronization and partial synchronization
and a relation between the network topology and full synchronization is established for
systems that interact via coupling type II.

In more detail, in chapter 3 sufficient conditions are given for full synchronization of
systems that interact via coupling type I or coupling type II. It is proven that systems that
are strictly semipassive and (nonlinear) minimum-phase always synchronize when the
coupling is sufficiently strong and the product of the coupling strength and the (maximal)
time-delay is sufficiently small. The result applies to both coupling type I and coupling
type II.

In chapter 4 sufficient conditions for partial synchronization of strictly semipassive
minimum-phase systems are presented. First, partial synchronization is discussed for
coupling type I or coupling type II with uniform time-delays, i.e. all time-delays are the
same. Exploiting the existence of symmetries in the network, it is shown that partial
synchronization might happen when the coupling strength is smaller than the coupling
strength that is required to have full synchronization. Partial synchronization might also
be witnessed if the product of the time-delay and the coupling strength is larger than
the value for which the systems fully synchronize. At the end of the chapter some re-
sults are presented for systems that interact via a particular type of coupling type I with
non-uniform time-delays.

Chapter 5 discusses how the topology of the network influences the synchronization of
systems that interact via symmetric coupling type II. A method is presented that uses the
knowledge of the values of the coupling strength and the time-delay for which two sys-
tems locally synchronize to predict the values of the coupling strength and time-delay for
which there is local synchronization in networks that consist of more than two systems.
The results become global for strictly semipassive minimum-phase systems.

In the second part of this thesis the theoretical results that are derived in the first part are
applied to network of neurons. First, in chapter 6, it is proven that four popular models
of neuronal activity do have the strict semipassivity property. In addition, each model
is minimum-phase. These results are important since they explain the (experimentally)
observed synchronization of neurons that are coupled via electrical synapses (which can
be modeled by diffusive coupling).

Chapter 7 presents examples in networks of synchronization of diffusively coupled
Hindmarsh-Rose neurons. It is proven in chapter 6 that the Hindmarsh-Rose model
is minimum-phase and strictly semipassive, hence the theoretical framework presented
in the first part of this thesis can be applied to analyze synchronization in these networks.
Simulations support the theory for neurons that interact via coupling type I. The results
for coupling type II are verified using an experimental setup with electronic Hindmarsh-
Rose neurons. Even though these electrical neurons are not completely identical, hence it
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can not be expected that they perfectly synchronize, the experimental results can be fully
explained by the presented theory.

In chapter 8 a model of a network of pancreatic β-cells is considered. It is known that the
regulation of the blood glucose level is related to the synchronized bursting activity of the
diffusively coupled β-cells. The theory of the first part explains why the cells synchronize.
In addition, results are presented for a network that consists of healthy cells, i.e. cells
that show bursting activity, and dead cells, i.e. cells that show no activity. These results
are closely related to what happens in the pancreas of people that suffer from diabetes
mellitus. It is shown that all activity in the network dies out if the number of dead cells
exceeds some threshold value (that depends on the coupling strength).

The results in chapter 9 go beyond linear diffusive coupling. In this chapter the controlled
synchronization problem is discussed. A design procedure for the coupling functions
is presented that guarantees synchronization in networks with all-to-all coupled strictly
semipassive systems. The coupling functions that are derived have the form of a definite
integral over a nonlinear weight function with the integration interval defined by the out-
puts of the coupled systems. These coupling functions have the property that they provide
a high gain when necessary, e.g. to suppress nonlinearities, and low gain otherwise.

10.2 Recommendations

In this section some recommendations are given for future research. Specific recom-
mendations that are related to the content of each chapter can already be found in the
discussion section at the end of each chapter.

The main assumptions in this thesis are that the systems are identical, the coupling func-
tions are static and linear (except for chapter 9), the topology of the network is fixed and
the time-delays are constant. So the general recommendation would be to extend the
results to time-varying network topologies, time-varying time-delays and general nonlin-
ear dynamical coupling functions. However, it is unlikely that such a unifying general
framework can be derived at once. In what follows, a couple of examples are presented
that motivate future research in certain directions.

A platoon of vehicles. Consider as a first example a number of vehicles that have to move
in a platoon. See, for instance, [99, 102]. As already mentioned in the introduction,
letting vehicles riding in a platoon has the advantage that a significant reduction of aero-
dynamics drag is possible, resulting in lower fuel consumption, and, due to the smaller
intervehicle distance, a larger number of vehicles can make use of the same piece of road.
It is important to note that the vehicles are not identical. In [99] a platoon is considered
in which each vehicle can communicate with (only) the preceding vehicle. Conditions for
stable platooning are derived in the frequency domain and experimental results with two
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vehicles of the same type are presented. In [102] experimental results are presented for
vehicles of different types, e.g. trucks and passenger cars. The structure of the network
in these works is considered to be fixed. However, in practical situations, every now and
then some of the vehicles have to take an exit while other vehicles are joining the platoon.
This results in a network topology that is definitely not fixed. Thus this particular appli-
cation demands conditions for synchronization of non-identical systems on a time-varying
graph. In addition, the synchronization of these vehicles should be considered as a con-
trolled synchronization problem since coupling functions that guarantee synchronization
have to be designed. The question how the controllers should be synthesized such that
synchronization of non-identical systems under switching topologies will be achieved is
still not answered.

Networks of neurons that interact via chemical synapses. There are examples of coupled sys-
tems for which the interaction is certainly not linear. As already briefly mentioned in
section 6.5 of chapter 6, an example worthwhile investigating is a network of chemically
coupled neurons and/or a network of neurons that interact via both chemical coupling
and electrical synapses. The chemical coupling functions are clearly nonlinear since a
neuron can only influence the neurons to which it is connected if its membrane poten-
tial is sufficiently large, cf. [143]. Since neural synchrony is often linked to specific brain
functioning or a critical physiological state such as epilepsy, it is very important to be able
to explain why there is synchrony. In [74, 75] synchronization of such coupled neurons
without delays is analyzed using singular perturbation techniques. However, much is still
unclear. For instance, the question how the structure of the neuronal network influences
synchronization is not completely understood. (Some results on the role of the network
topology for chemically coupled Hindmarsh-Rose neurons (without time-delays) are pre-
sented in [15].) Hence for this application (with this particular type of coupling) it would
certainly be relevant to have a framework which is similar to the framework as presented
in chapters 3, 4 and 5. The neurons in such network are also not perfectly identical which
motivates again to pay attention to synchronization of non-identical systems. In addition,
it is questionable if the definition of synchronization that is used in this thesis is the
right one when considering synchronization of neurons. Indeed, synchronization is in
this thesis understood as asymptotic matching of the states of all systems. However, if
neurons synchronize then the neurons show correlated behavior for a while but not for-
ever. This motivates to investigate the synchronization problem with finite time (practical)
convergence.

Synchronization under communication constraints In chapter 7, section 7.5, it is mentioned
that saturations of the digital-analog-converters in the synchronization interface make it
impossible to have synchronization of the electronic Hindmarsh-Rose neurons for large
values of the coupling strength. This is a nice example of a communication constraint that
limits the synchronization of coupled systems. Every application has its communication
constraints, e.g. the limited bandwidth that is available for the communication between
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systems or saturation and/or quantization of the transmitted signals. Communication
constraints have of course their influence on the synchronization of the systems (and
this influence is most likely not positive). Hence, it is important to take these communi-
cation constraints into account when controllers are designed that are supposed to let the
systems synchronize. In [49, 50] synchronization of systems is analyzed with limitations
on the transmission of the coupling signals. Centralized controlled synchronization, that
is, synchronization of systems via a centralized controller over some communication net-
work, can be considered as a Networked Control System (NCS). Conditions for stabil-
ity and stabilization of NCSs with all kinds of communication constraints can be found
in [58] and the references therein. However, there are still many open problems about
(controlled) synchronization under communication constraints. Note that one important
communication constraint is already discussed in this thesis, that is, a finite transmission
speed induces (a small amount of) time-delay. However, in this thesis, the time-delays are
assumed not to vary in time, while in practical applications the time-delays will probably
never be perfectly constant. A pretty straightforward extension of the results presented in
this thesis is to allow time-varying time-delays in the proposed framework.

Of course, there are many more open problems and interesting applications related to
synchronization than the ones mentioned in these three examples. It is for future re-
search to exploit the potential of synchronization in real-life applications and unveil the
many still existing mysteries surrounding this interesting phenomenon.
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APPENDIX A

Proofs

A.1 Proofs chapter 3

A.1.1 Proof of Corollary 3.4

Theorem 3.3 implies that the solutions enter a compact set in finite time. By assumption,
the systems are strictly semipassive with a radially unbounded storage function V (xi).
Let c∗ = supH(ξ)=0 V (ξ) and let Ωi := {xi ∈ Rn|V (xi) ≤ c∗}. Clearly the set ∪k

i=1Ωi is
positively invariant under the given dynamics. Define

V ∗(xi) =

{
0, for xi ∈ Ωi,

V (xi)− c∗, otherwise,
(A.1)

and let

W ∗(xt(θ)) = ν1V
∗(x1(t))+ . . .+νkV

∗(xk(t))+
σ
2

∑
i∈I

∑
j∈Ei

νiaij

∫ 0

−τij

|yj(t + s)|2 ds. (A.2)

Note that W is a locally Lipschitz continuous functional and xt,i(θ) are continuous and
bounded. Hence

Ẇ ∗(φ) = lim sup
h→0+

1
h
(W ∗(xh(φ))−W ∗(φ)) (A.3)

exists. From the arguments in the proof of Theorem 3.3 it follows that Ẇ ∗ ≤
0 on any compact set. Moreover, Ẇ ∗ = 0 only on ∪k

i=1Ωi ∪ D, with D =

{yt,i(θ), yt,j(θ) ∈ C|yi(t) = yj(t− τij) for all i, j ∈ I}. Note that the dynamics on D are
simply that of an uncoupled system ẋi(t) = f(xi(t)). Then, using a LaSalle type of ar-
gument ([56] §5.3, Theorem 3.1 and Theorem 3.2), it can be concluded that all solutions
converge to ∪k

i=1Ωi.
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A.1.2 Proof of Theorem 3.6

The proof follows the lines of the proof of Theorem 3.3. Let

W (x(t)) =

k∑
i=1

νiVi(xi(t)), (A.4)

where νi are the entries of the vector ν which satisfies ν�L = 0, and Vi are the storage
functions of the systems. Then, by assumption,

Ẇ (x(t)) ≤
k∑

i=1

νiy
�
i (t)ui(t)− νiHi(xi(t)), (A.5)

with

k∑
i=1

νiy
�
i (t)ui(t) = σ

k∑
i=1

∑
j∈Ei

νiaijy
�
i (t) (yj(t− τij)− yi(t− τji))

≤ σ

k∑
i=1

∑
j∈Ei

νiaij
(
|yi(t)|2 + 1

2
|yj(t− τij)|2 + 1

2
|yi(t− τji)|2

)
. (A.6)

Define the functional

W1(xt(θ)) =
1
2
σ

k∑
i=1

∑
j∈Ei

νiaij

(∫ 0

−τji

|yi(t+ s)|2 ds+
∫ 0

−τij

|yj(t+ s)|2 ds
)
, (A.7)

θ ∈ [−τ ∗, 0] with τ ∗ = maxi,j∈I(τij), which is positive definite and

Ẇ1(xt(θ)) = σ
k∑

i=1

∑
j∈Ei

νiaij
(
|yi(t)|2 − |yi(t− τji)|2 + |yj(t)|2 − |yj(t− τij)|2

)
. (A.8)

Define the positive definite functional

W2(xt(θ)) = W (x(t)) + 1
2
W1(xt(θ)), (A.9)

then it is easy to see that

Ẇ2(xt(θ)) ≤
k∑

i=1

νi

(
−Hi(xi(t)) + σ

∑
j∈Ei

aij
(
3
2
|yi(t)|2 + 1

2
|yj(t)|2

))
. (A.10)

Since ν�L = ν�(D − A) = 0 implies that ν�Dξ = ν�Aξ for any vector ξ ∈ Rk it follows
that

Ẇ2(xt(θ)) ≤
k∑

i=1

νi
(
2σdi |yi(t)|2 −Hi(xi(t))

)
. (A.11)

The result follows again from the arguments presented in [127].
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A.1.3 Proof of Theorem 3.10

Assumption (H3.3) implies that the diagonal set M is invariant under the closed-loop
dynamics. See Proposition 3.9. In what follows a Lyapunov-Razumikhin function will be
constructed to prove that (a subset of) M is globally attracting.

First, assumption (H3.1) implies, by Theorem 3.3, that the closed-loop system is L-
dissipative. LetM ∈ Rk×k,

M =

(
1 0
1 −I

)
, (A.12)

with 1 := col (1, . . . , 1), and define new coordinates ẑ(t) = (M ⊗ I)z(t), ŷ(t) =

(M ⊗ I)y(t), with z(t) = col (z1(t), . . . , zk(t)) and y(t) = col (y1(t), . . . , yk(t)). Note
that ẑ1(t) = z1(t), ẑ2(t) = (z1 − z2)(t), . . . , ẑk(t) = (z1 − zk)(t) and ŷ1(t) = y1(t), ŷ2(t) =

(y1 − y2)(t), . . . , ŷk(t) = (y1 − yk)(t). Define z̃(t) = col (ẑ2(t), . . . , ẑk(t)) and ỹ(t) =

col (ŷ2(t), . . . , ŷk(t)) and note that z̃(t) ≡ 0 and ỹ(t) ≡ 0 implies, together with the ulti-
mate boundedness of solutions, that the systems synchronize.

Assumption (H3.2) implies that there exists a positive definite function V1 ∈
C2(R(k−1)p,R≥0) such that

V̇1(z̃(t), ỹ(t))
∣∣∣
ỹ(t)≡0

≤ −α |z̃(t)|2 , (A.13)

for some positive constant α. Then smoothness of the functions q(·, ·) and boundedness
of the solutions of the closed-loop system implies

V̇1(z̃(t), ỹ(t))− V̇1(z̃(t), 0) ≤ c1 |z̃(t)| · |ỹ(t)| , (A.14)

for some positive constant c1.

Denote u(t) = col (u1(t), . . . , uk(t)) such that

u(t) = −σ(I ⊗ I)y(t) + σ(A⊗ I)y(t− τ). (A.15)

Using the continuity properties of the solutions, cf. [56], and Leibniz’ rule, y(t − τ) can
be written as

y(t− τ) = y(t)−
∫ 0

−τ

ẏ(t+ s)ds. (A.16)

Substitution of (A.16) into (A.15) yields

u(t) = −σ(L⊗ I)y(t)− σ(A⊗ I)

∫ 0

−τ

ẏ(t+ s)ds, (A.17)

with Laplacianmatrix L = I−A. Denote ũ(t) = col ((u1 − u2)(t), . . . , (u1 − uk)(t)), then

ũ(t) = −σ(L̃⊗ I)ỹ(t)− σ(Ã⊗ I)

∫ 0

−τ

˙̃y(t+ s)ds, (A.18)
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with

MLM−1 =

(
0 ∗
0 L̃

)
, (A.19)

and Ã = I − L̃.Using (A.18) the closed-loop “error” system can be written as

˙̃y(t) = ã(ỹ(t), z̃(t), y1(t), z1(t))− σỹ(t) + σ(Ã⊗ I)ỹ(t− τ) (A.20)

= ã(ỹ(t), z̃(t), y1(t), z1(t))− σ(L⊗ I)ỹ(t)− σ(Ã⊗ I)

∫ 0

−τ

˙̃y(t+ s)ds, (A.21)

where

ã(ỹ(t), z̃(t), y1(t), z1(t)) =

⎛
⎜⎝

a(y1(t), z1(t))− a((y1 − ỹ1)(t), (z1 − z̃1)(t))
...

a(y1(t), z1(t))− a((y1 − ỹk−1)(t), (z1 − z̃k−1)(t))

⎞
⎟⎠ . (A.22)

Substitution of (A.20) into (A.21) yields

˙̃y(t) = ã(ỹ(t), z̃(t), y1(t), z1(t))− σ(L⊗ I)ỹ(t)

− σ(Ã⊗ I)

∫ 0

−τ

ã(ỹ(t+ s), z̃(t+ s), y1(t+ s), z1(t + s))ds

+ σ2(Ã⊗ I)

∫ 0

−τ

ỹ(t+ s)− (Ã⊗ I)ỹ(t + s− τ)ds. (A.23)

(This is the equivalent of (A.20) on the interval t + θ, θ ∈ [−2τ, 0].)

It follows directly from (A.19) that spec
(
L̃
)
= spec (L) \{0}, hence−L̃ is a stable matrix,

hence there exists a unique solution of the Lyapunov equation (−L̃)�P +P (−L̃)+Q = 0

with P = P� > 0 andQ = Q� > 0. Let P be such that ‖P‖ = 1 and (−L̃)�P +P (−L̃) =

−2μI for some constant μ > 0, and consider the positive definite function

V2(ỹ(t)) =
1
2
ỹ�(t)(P ⊗ I)ỹ(t). (A.24)

Then

V̇2(ỹ(t)) ≤ 1
2
ỹ�(t)(P ⊗ I) (ã(ỹ(t), z̃(t), y1(t), z1(t)) + ũ(t)) , (A.25)

Ultimate boundedness of solutions and smoothness of the functions a(·, ·) implies that

1
2
ỹ�(t)(P ⊗ I) (ã(ỹ(t), z̃(t), y1(t), z1(t))) ≤ c2 |z̃(t)| · |ỹ(t)|+ c3 |ỹ(t)|2 , (A.26)

for some positive constants c2, c3. Since
∥∥∥Ã∥∥∥ ≤ 1 by construction and ‖P‖ = 1 by

definition, it follows from (A.23) that if |ỹt(θ)| < κ |ỹ(t)| for θ ∈ [−2τ, 0] with some
constant κ > 1,

V̇2(ỹ(t)) ≤ c2(1 + κστ) |z̃(t)| · |ỹ(t)|+
(
c3(1 + κστ) + 2κσ2τ − σμ

)
|ỹ(t)|2 . (A.27)
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(Note that for some vector ξ of appropriate dimension |Aξ| ≤ ‖A‖ · |ξ| since ‖·‖ is an in-
duced norm.) Let V3(z̃(t), ỹ(t)) = V1(z̃(t))+V2(ỹ(t)) be a Lyapunov-Razumikhin function
such that if V1(z̃(t)) + κ2V2(ỹ(t)) > V1(z̃t(θ)) + κ2V2(ỹt(θ)), θ ∈ [−2τ, 0]

V̇3(z̃(t), ỹ(t)) ≤ −α |z̃(t)|2 + (c1 + c2(1 + κστ)) |z̃(t)| · |ỹ(t)|
+
(
c3(1 + κστ) + 2κσ2τ − σμ

)
|ỹ(t)|2 . (A.28)

Denote γ = στ , then some basic algebra shows that (A.28) is negative definite if

μ >
1

σ

(
(c1 + c2(1 + κγ))2

4α
+ c3(1 + κγ

)
+ 2κγ, (A.29)

hence it can be concluded that (A.28) is negative definite if σ is sufficiently large and
γ is sufficiently small. Thus there exist constants σ̄ and γ̄ such that (A.28) is nega-
tive definite if σ ≥ σ̄ and στ ≤ γ̄. Then ultimate boundedness of solutions and the
Lyapunov-Razumikhin theorem (Theorem 2.4) implies that the set {col (ỹ, z̃) = 0} is a
global attractor if σ ≥ σ̄ and στ ≤ γ̄.

A.1.4 Proof of Corollary 3.11

It will be proven that the solutions of the systems that interact via non-symmetric diffusive
coupling are ultimately bounded. Note that

u(t) = −σ(L⊗ I)y(t). (A.30)

By Lemma 3.2 there exists a vector ν with all entries positive. Each system is strictly
semipassive with a radially unbounded storage function V . Define, as in the proofs of
Theorems 3.3 and 3.6,

W (z(t), y(t)) = ν1V (z1(t), y1(t)) + . . .+ νkV (zk(t), yk(t)), (A.31)

such that, by assumption,

Ẇ (z(t), y(t)) ≤ −ν1H(z1(t), y1(t))− . . .− νkH(zk(t), yk(t)) +
k∑

i=1

νiy
�
i (t)ui(t). (A.32)

It now suffices to prove that
∑k

i=1 νiy
�
i (t)ui(t) ≤ 0. Using (3.14) it follows that

k∑
i=1

νiy
�
i (t)ui(t) =

k∑
i=1

νiy
�
i (t)

∑
j∈Ei

aij(yj(t)− yi(t)) (A.33)

= −
k∑

i=1

νidi |yi(t)|2 +
k∑

i=1

y�i (t)
∑
j∈Ei

νiaijyj(t). (A.34)

Since ν�L = ν�(D−A) = 0 implies ν�Dξ = ν�Aξ for any vector ξ ∈ Rk, it follows that∑k
i=1 νiy

�
i (t)ui(t) ≤ 0, hence the closed-loop system is L-dissipative.

The proof of convergence to M follows now with minor modifications from the proof of
Theorem 3.10 using τ ≡ 0.
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A.1.5 Proof of Theorem 3.12

Assumption (H3.4) implies that the diagonal set M is invariant under the closed-loop
dynamics, and assumption (H3.5) gives a sufficient condition for the closed-loop system
being L-dissipative, see Theorem 3.6.

This first part of the proof follows the line of the proof of Theorem 3.10. Let, again,
M ∈ Rk×k,

M =

(
1 0
1 −I

)
, (A.35)

and define new coordinates ẑ(t) = (M ⊗ I)z(t), ŷ(t) = (M ⊗ I)y(t), with z(t) =

col (z1(t), . . . , zk(t)) and y(t) = col (y1(t), . . . , yk(t)). Note that ẑ1(t) = z1(t), ẑ2(t) =

(z1 − z2)(t), . . . , ẑk(t) = (z1 − zk)(t) and ŷ1(t) = y1(t), ŷ2(t) = (y1 − y2)(t), . . . , ŷk(t) =

(y1 − yk)(t). Define z̃(t) = col (ẑ2(t), . . . , ẑk(t)) and ỹ(t) = col (ŷ2(t), . . . , ŷk(t)). Like
before, Assumption (H3.2) implies that there exists a positive definite function V1 ∈
C2(R(k−1)p,R≥0) such that

V̇1(z̃(t), ỹ(t)) ≤ c1 |z̃(t)| · |ỹ(t)| − α |z̃(t)|2 , (A.36)

for some positive constants α, c1. See the proof of Theorem 3.10 for details.

Like in the proof of Theorem 3.10 the Lyapunov-Razumikhin Theorem will be used to
prove the claim. Since for the Lyapunov-Razumikhin Theorem the maximum time-delay
interval [−τ ∗, 0] has to be evaluated to determines stability, it will be assumed that all
time-delays τij ≡ τ ∗. (This is a worst case scenario.) Denote u(t) = col (u1(t), . . . , uk(t)),
then

u(t) = −σ(L⊗ I)y(t− τ ∗), (A.37)

which, using (A.16), can be written as

u(t) = −σ(L⊗ I)y(t) + σ(L⊗ I)

∫ 0

−τ∗
ẏ(t + s)ds. (A.38)

Denote ũ(t) = col ((u1 − u2)(t), . . . , (u1 − uk)(t)), then

ũ(t) = −σ(L̃⊗ I)ỹ(t) + σ(L̃⊗ I)

∫ 0

−τ∗
˙̃y(t+ s)ds, (A.39)

with L̃ as in (A.19).

Using (A.39) the closed-loop “error” system

˙̃y(t) = ã(ỹ(t), z̃(t), y1(t), z1(t))− σ(L̃⊗ I)ỹ(t) + σ(L̃⊗ I)ỹ(t− τ ∗) (A.40)



A.2 PROOFS CHAPTER 4 149

can be written as

˙̃y(t) = ã(ỹ(t), z̃(t), y1(t), z1(t))− σ(L⊗ I)ỹ(t)

+ σ(L̃⊗ I)

∫ 0

−τ∗
ã(ỹ(t+ s), z̃(t+ s), y1(t + s), z1(t+ s))ds

+ σ2(L̃2 ⊗ I)

∫ 0

−τ∗
ỹ(t+ s)ds. (A.41)

with ã(ỹ(t), z̃(t), y1(t), z1(t)) as in (A.22). Let P = P� > 0 be such that ‖P‖ = 1 and
(−L̃)�P + P (−L̃) = −2μI for some constant μ > 0. Such P exists since −L̃ is a stable
matrix. Consider the positive definite function

V2(ỹ(t)) =
1
2
ỹ�(t)(P ⊗ I)ỹ(t), (A.42)

and its derivative along the solutions of the closed-loop “error” system

V̇2(ỹ(t)) ≤ 1
2
ỹ�(t)(P ⊗ I) (ã(ỹ(t), z̃(t), y1(t), z1(t)) + ũ(t)) , (A.43)

Ultimate boundedness of solutions and smoothness of the functions a(·, ·) implies that

1
2
ỹ�(t)(P ⊗ I) (ã(ỹ(t), z̃(t), y1(t), z1(t))) ≤ c2 |z̃(t)| · |ỹ(t)|+ c3 |ỹ(t)|2 , (A.44)

for some positive constants c2, c3. Since
∥∥∥L̃∥∥∥ ≤ c4, with c4 being the square root of the

maximal eigenvalue of L̃�L̃, and ‖P‖ = 1 by definition, it follows from (A.23) that if
|ỹt(θ)| < κ |ỹ(t)| for θ ∈ [−2τ ∗, 0] with constant κ > 1,

V̇2(ỹ(t)) ≤ c2(1+κc4στ
∗) |z̃(t)|·|ỹ(t)|+

(
c3(1 + κc4στ

∗) + κc24σ
2τ ∗ − σμ

)
|ỹ(t)|2 . (A.45)

Let V3(z̃(t), ỹ(t)) = V1(z̃(t)) + V2(ỹ(t)) be a Lyapunov-Razumikhin function such that if
V1(z̃(t)) + κ2V2(ỹ(t)) > V1(z̃t(θ)) + V2(ỹt(θ)), θ ∈ [−2τ ∗, 0]

V̇3(z̃(t), ỹ(t)) ≤ −α |z̃(t)|2 + (c1 + c2(1 + κc4γ)) |z̃(t)| · |ỹ(t)|
+
(
c3(1 + κc4γ) + κσc24γ − σμ

)
|ỹ(t)|2 . (A.46)

with γ = στ ∗. After some simple algebra it can be concluded that (A.46) is negative
definite if σ is sufficiently large and γ is sufficiently small, i.e. there exist constants σ̄ and
γ̄ such that (A.46) is negative definite if σ ≥ σ̄ and στ ∗ ≤ γ̄.

A.2 Proofs chapter 4

A.2.1 Proof of Theorem 4.2

It follows from (the proof of) Corollary 3.11 that assumption (H4.1) implies that the solu-
tions of the closed-loop system are ultimately bounded, and the bounds are independent
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of the network topology. The proof follows now almost immediately from the proof of the
main result in [125].

If Π is a permutation matrix and there is a solution X of the matrix equation (I −Π)L =

X(Ik − Π), then the set ker(Ikn − Π ⊗ In) defines a linear invariant manifold for the
closed-loop system, see Lemma 4.1. Note that x ∈ ker(Ikn −Π⊗ In) defines equations of
the form

xi − xj = 0, (A.47)

for some i, j ∈ I. Let IΠ be set of pairs (i, j) for which (A.47) holds. Assumption (H4.2)
implies that there exists a function V1(z) such that

V̇1(z(t)) =
∑

(i,j)∈IΠ

∂V1(zi − zj)(t)

∂z
[q(zi(t), yi(t)− q(zj(t), yj(t))]

≤ −α
∑

(i,j)∈IΠ
|(zi − zj)(t)|2

+
∑

(i,j)∈IΠ

∂V1(zi − zj)(t)

∂z
[q(zj(t), yi(t)− q(zj(t), yj(t))]

≤ −α
∑

(i,j)∈IΠ
|(zi − zj)(t)|2 + c0 |(zi − zj)(t)| · |(yi − yj)(t)| , (A.48)

for some positive numbers α, c0. Let

V2(y(t)) =
1
2
|(Ikm −Π⊗ Im)y(t)|2 = 1

2

∑
(i,j)∈IΠ

|(yi − yj)(t)|2 . (A.49)

Then the time derivative of V2 along the trajectories of the closed-loop system are given
as

V̇2(y(t)) = −U(y(t)) +
∑

(i,j)∈IΠ
(yi − yj)

�(t)[a(yi(t), zi(t)) + a(yj(t), zj(t))], (A.50)

with
U(y(t)) = σ 1

2
y�(t)(Ik −Π)�(X +X�)(Ik −Π)y(t). (A.51)

Let V = V1 + V2. Note that V = 0 on ker(Ikn − Π ⊗ In) and positive everywhere else.
Then using the ultimate boundedness of solutions, smoothness of the functions q(·, ·)
and a(·, ·), and assumption (H4.3), it follows that

V̇ (z(t), y(t)) ≤ −
∑

(i,j)∈IΠ
α |(zi − zj)(t)|2 + c1

∑
(i,j)∈IΠ

|(zi − zj)(t)| · |(yi − yj)(t)|

+ (c2 − σλ′)
∑

(i,j)∈IΠ
|(yi − yj)(t)|2 , (A.52)
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for some constants c1, c2 and λ′ is the largest number for which the inequality in (H4.3)
holds. (See the proof of Theorem 3.10 for details.) After some simple linear algebra it
follows that V̇ < 0 if σ ≥ σ∗, with σ∗ the smallest number such that

σ∗ >
c21

4αλ′ + c2. (A.53)

Hence the set ker(Ikn−Π⊗ In) contains a globally asymptotically stable subset if σ ≥ σ∗.

A.2.2 Proof of Theorem 4.4

Denote, for notational convenience, Ξn = Ikn − Π ⊗ In. Assumption (H4.1) implies, by
Theorem 3.3 and Corollary 3.4, that the solutions of the closed-loop system are ultimately
bounded, and the bounds are independent of the network topology.

Lemma 4.3 implies that the set ker(Ξn) is invariant under the closed-loop dynamics. Like
in the proof of Theorem 4.2, assumption (H4.2) implies that there exists a positive defi-
nite function V1(Ξpz(t)) such that

V̇1(Ξpz(t),Ξmy(t)) ≤ −c0 |Ξpz(t)|2 + c1 |Ξpz(t)| · |Ξmy(t)| , (A.54)

for some positive constants c0, c1. Let

V2(Ξmy(t)) =
1
2
|Ξmy(t)|2 , (A.55)

such that
V̇2(Ξmy(t)) = y�(t)Ξ�

mΞmẏ(t). (A.56)

Note that

Ξmẏ(t) = Ξma(y(t), z(t))− σΞmy(t) + σ(X ⊗ I)Ξmy(t− τ), (A.57)

where, with some abuse of notation,

a(y(t), z(t)) =

⎛
⎜⎝
a(y1(t), z1(t))

...
a(yk(t), zk(t))

⎞
⎟⎠ . (A.58)

Using the continuity properties of y(t) and Leibniz’ rule,

Ξmẏ(t) = Ξma(y(t), z(t))

− σ((I −X)⊗ I)Ξmy(t)− σ(X ⊗ I)

∫ 0

−τ

Ξmẏ(t+ s)ds, (A.59)

or, explicitly,

Ξmẏ(t) = Ξma(y(t), z(t))− σ((I −X)⊗ I)Ξmy(t)

− σ(X ⊗ I)

∫ t

t−τ

Ξma(y(s), z(s))− σΞmy(s) + σ(X ⊗ I)Ξmy(s− τ)ds. (A.60)
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It follows that for some κ > 1, if κ2V2(Ξmy(t)) > V2(Ξmyt(θ)) for θ ∈ [−2τ, 0],

V̇2(Ξpz(t),Ξmy(t)) ≤ c2(1 + κστc4) |Ξpz(t)| · |Ξmy(t)|
+
(
c3(1 + κστc4) + κσ2τc4(1 + c4)− σλ′) |Ξmy(t)|2 , (A.61)

with positive constants c2, c3, constant c4 = ‖X‖ and λ′ is the largest number such
that the inequality in Assumption (H4.3) holds. Let V1(Ξpz(t)) + V2(Ξmy(t)) be a
Lyapunov-Razumikhin candidate. It follows from the arguments presented above that,
if κ2V2(Ξmy(t)) > V2(Ξmyt(θ)) for θ ∈ [−2τ, 0],

V̇1(Ξpz(t),Ξmy(t)) + V̇2(Ξpz(t),Ξmy(t))

≤ −c0 |Ξpz(t)|2 + (c1 + c2(1 + κστc4)) |Ξpz(t)| · |Ξmy(t)|
+
(
c3(1 + κστc4) + κσ2τc4(1 + c4)− σλ′) |Ξmy(t)|2 . (A.62)

Hence, there exist constants σ∗ and γ∗ such that (A.62) is negative definite if σ ≥ σ∗ and
στ ≤ γ∗. Thus it follows from the Lyapunov-Razumikhin Theorem that the set ker(Ξn)

is a global attractor given that σ ≥ σ∗ and στ ≤ γ∗. This implies, together with the
ultimately bounded solutions of the closed-loop system, that if σ ≥ σ∗ and στ ≤ γ∗ there
exists a globally asymptotically stable subset of the set ker(Ξn).

A.2.3 Proof of Theorem 4.10

Without loss of generality, it will be assumed that η1 > 0 and Π1 ∈ PΠ(k). Lemma
4.9 implies that the set ker(Ikn − Π1 ⊗ In) is invariant under the closed-loop dynamics.
Assumption (H4.1) implies, by Theorem 3.3 and Corollary 3.4, that the solutions of the
closed-loop system are ultimately bounded and, moreover, the bounds do not depend on
the network topology.

It will now be proven that the set ker(Ikn −Π1 ⊗ In) is globally attracting for appropriate
values of σ and τ1. Rewrite (4.18) as

u(t) = ση1 ((Π1 ⊗ I)y(t− τ1)− Iy(t)) + σ
∑
�\{1}

η� ((Π� ⊗ I)y(t− τ�)− Iy(t)) . (A.63)

Denote, for notational convenience, Ξn = Ikn−Π1⊗In. Like the proofs of Theorems 4.2,
4.4 and 4.7, a Lyapunov-Razumikhin function of the form

V (Ξpz(t),Ξmy(t)) = V1(Ξpz(t)) + V2(Ξmy(t)) (A.64)

will be constructed. Assumption (H4.2) implies that the function V1 can be chosen such
that

V̇1(Ξpz(t)) ≤ −c0 |Ξpz(t)|2 + c1 |Ξpz(t)| · |Ξmy(t)| , (A.65)
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for some positive constants c0, c1. Let V2(Ξmy(t)) = 1
2
y�(t)Ξ�

mΞmy(t) such that, using
argument like in the proof of Theorem 4.2,

V̇2(ΞMy(t)) ≤ c2 |Ξpz(t)| · |Ξmy(t)|+ c3 |Ξmy(t)|2 + y�(t)Ξ�
mΞmu(t), (A.66)

for some positive constants c2, c3. Note that

y�(t)Ξ�
mΞmu(t) = ση1y

�(t)Ξ�
m (Ξm(Π1 ⊗ I)y(t− τ1)− Ξmy(t))

+ σy�(t)Ξ�
m

∑
�\{1}

η� (Ξm(Π� ⊗ I)y(t− τ�)− Ξmy(t)) . (A.67)

Write, using Leibniz’ rule,

y(t− τ1) = y(t)−
∫ 0

−τ1

ẏ(t + s)ds. (A.68)

Then

y�(t)Ξ�
mΞmu(t) = −ση1y

�(t)Ξ�
mΞmy(t)− ση1y

�(t)Ξ�
m(Π1 ⊗ I)Ξm

∫ 0

τ1

ẏ(t+ s)ds

+ σy�(t)Ξ�
p

∑
�\{1}

η� (Ξm(Π� ⊗ I)y(t− τ�)− Ξmy(t)) . (A.69)

Suppose that κ |y(t)| > |yt(θ)| with θ ∈ [−2τ ∗, 0] and κ > 1, then

y�(t)Ξ�
mΞmu(t) ≤ −2ση1 |Ξmy(t)|2 + σκ∗ · |Ξmy(t)|2

+ κστ1η1
(
c2 |Ξpz(t)| · |Ξmy(t)|+ (c3 + 2σ) |Ξmy(t)|2

)
, (A.70)

where κ∗ = −1 +
∑

�\{1} η�κ. Note that κ > 1 implies κ∗ > 0. It follows that if
κ2V (Ξpz(t),Ξmy(t)) > V (Ξpzt(θ),Ξmyt(θ)), θ ∈ [−2τ ∗, 0],

V̇ (Ξpz(t),Ξmy(t)) ≤
(
c3(1 + κστ1η1) + 2κ2στ1η1 − σ(2η1 − κ∗)

)
|Ξmy(t)|2

(c1 + c2(1 + κστ1η1)) |Ξpz(t)| · |Ξmy(t)| − c0 |Ξpz(t)|2 . (A.71)

Again, for sufficiently large σ and sufficiently small στ there is κ∗ > 0 such that (A.71) is
negative definite. Hence there exist positive constants σ′ and γ′ such that if σ ≥ σ′ and
στ1 ≤ γ′ there exists a globally attractive subset of the set ker(Ikn − Π1 ⊗ In).

A.3 Proofs chapter 5

A.3.1 Proof of Theorem 5.5

Without loss of generality it will be assumed thatmaxi
∑

j∈Ei aij = 1. Gerschgorin’s The-
orem implies that each eigenvalue λj ≤ 2. Let (σ′, τ ′) ∈ S̄ , then (σ, τ) ∈ S̄j implies
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2σ/λj = σ′, from which it can be concluded that σ ≤ σ′. Then assumption (H5.4) im-
plies, by Corollary 3.7, that the solutions of the closed-loop system are ultimately bounded.
Moreover, the bounds of the solutions of a network with k > 2 systems can be chosen
identical as the bounds of the solutions for a network consisting of two systems.

The proof follows now almost immediately from the proof of Theorem 3.12.
Obviously, as the delays in the coupling are all the same, the set M ={
col (z1, . . . , zk, y1, . . . , yk) ∈ Rk(p+m|zi = zj and yi = yj for all i, j ∈ I

}
is invariant

under the closed loop dynamics (5.27), (5.8).

LetM ∈ Rk×k,

M =

(
1 0
1 −I

)
. (A.72)

Define coordinates ẑ(t) = (M ⊗ I)z(t), ŷ(t) = (M ⊗ I)y(t), with z(t) =

col (z1(t), . . . , zk(t)) and y(t) = col (y1(t), . . . , yk(t)). Note that ẑ1(t) = z1(t), ẑ2(t) =

(z1 − z2)(t), . . . , ẑk(t) = (z1 − zk)(t) and ŷ1(t) = y1(t), ŷ2(t) = (y1 − y2)(t), . . . , ŷk(t) =

(y1 − yk)(t). Define z̃(t) = col (ẑ2(t), . . . , ẑk(t)) and ỹ(t) = col (ŷ2(t), . . . , ŷk(t)).

Observe that

MLM−1 =

(
0 ∗
0 L̃

)
, (A.73)

with L̃ having eigenvalues λ2, . . . , λk. In these new coordinates, the closed-loop system
(5.27), (5.8) can be written as

˙̃z(t) = q̃(z1(t), y1(t), z̃(t), ỹ(t)), (A.74a)
˙̃y(t) = ã(y1(t), z1(t), ỹ(t), z̃(t))− σ(L̃⊗ I)ỹ(t− τ), (A.74b)

where

q̃(z1(t), y1(t), z̃(t), ỹ(t)) :=

⎛
⎜⎝
q(z1(t), y1(t))− q(z1(t)− z̃2(t), y1(t)− ỹ2(t))

...
q(z1(t), y1(t))− q(z1(t)− z̃k(t), y1(t)− ỹk(t))

⎞
⎟⎠ , (A.75)

and

ã(y1(t), z1(t), ỹ(t), z̃(t)) :=

⎛
⎜⎝
a(y1(t), z1(t))− q(y1(t)− ỹ2(t), z1(t)− z̃2(t))

...
a(y1(t), z1(t))− q(y1(t)− ỹk(t), z1(t)− z̃k(t))

⎞
⎟⎠ . (A.76)

There exists a nonsingular matrix U ∈ R(k−1)×(k−1) such that UL̃U−1 = Λ with Λ a
diagonal matrix with the eigenvalues of L̃, hence the nonzero eigenvalues of L, as entries.
It will be assumed that ‖U‖ = 1. (If ‖U‖ �= 1, then there is always a positive number c
such that ‖cU‖ = 1.) Introduce new coordinates ȳ(t) = (U ⊗ I)ỹ(t) and, for consistency
of notation, z̄(t) = z̃(t). Note that ‖U‖ = 1 implies that the bounds on ȳ(t) are the same
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as the bounds on ȳ(t). Note in addition that ȳ(t) = 0 and z̄(t) = 0 as t → ∞ implies
synchronization. In new coordinates the closed-loop system (5.27), (5.8) becomes

˙̄z(t) = q̄(z1(t), y1(t), z̄(t), ȳ(t)), (A.77a)

˙̄y(t) = ā(y1(t), z1(t), ȳ(t), z̄(t))− σ(Λ⊗ I)ȳ(t− τ), (A.77b)

where ā(y1, z1, ȳ, z̄) = (U ⊗ I)ã(y1, z1, (U
−1 ⊗ I)ȳ, z̄) and q̄(z1, y1, z̄, ȳ) =

ã(z1, y1, z̄, (U
−1 ⊗ I)ȳ). It will now be proven, using the Lyapunov-Razumikhin theo-

rem, that there are values for σ and τ for which the origin of (A.77) is asymptotically
stable. First, using Leibniz’ rule,

ȳ(t− τ) = ȳ(t)−
∫ 0

−τ

˙̄y(t+ s)ds, (A.78)

the equivalent system for (A.77) on the interval [t0 − 2τ,∞) can be derived

˙̄z(t) = q̄(z1(t), y1(t), z̄(t), ȳ(t)), (A.79a)

˙̄y(t) = ā(y1(t), z1(t), ȳ(t), z̄(t))− σ(Λ⊗ I)ȳ(t) + σ(Λ⊗ I)

∫ 0

−τ

˙̄y(t+ s)ds. (A.79b)

Consider the positive definite function

V0(z̄(t)) = z̄�(t)(P ⊗ I)z̄(t), (A.80)

with positive definite matrix P as in assumption (H5.5). Then ultimate boundedness of
the solutions, smoothness of the function q(·, ·) and assumption (H5.5) implies that

V̇0(z̄(t), ỹ(t)) ≤ −c0 |z̄(t)|2 + c1 |z̄(t)| · |ȳ(t)| , (A.81)

for some positive numbers c0 and c1 which do not depend the network topology. Let now
the positive definite function

V (z̄(t), ȳ(t)) = V0(z̄(t)) + ȳ�(t)ȳ(t), (A.82)

be a Lyapunov-Razumikhin function candidate. Note that ultimate boundedness of the
solutions and smoothness of the function a(·, ·) implies that

ȳ�(t)ā(y1(t), z1(t), ȳ(t), z̄(t)) ≤ c2 |z̄(t)| · |ȳ(t)|+ c3 |ȳ(t)|2 , (A.83)

for some positive numbers c2 and c3 which do not depend the network topology. Then
the Lyapunov-Razumikhin theorem implies that if V (z̄(t), ȳ(t)) ≥ κ2V (z̄t(θ), ȳt(θ)) on
θ ∈ [−2τ, 0] for some number κ > 1, and

V̇ (z̄(t), ȳ(t)) ≤− c0 |z̄(t)|2 + (c1 + c2(1 + κστλk)) |z̄(t)| · |ȳ(t)|
+(c3(1 + κστλk) + κσ2τλ2

k − σλ2) |ȳ(t)|2 , (A.84)
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λ2 and λk are the smallest nonzero and largest eigenvalues of L, respectively, is negative
definite, then the origin of (A.77) is asymptotically stable, which, in combination with
boundedness of solutions implies synchronization.

Denote ξ(z̄(t), ȳ(t)) = col (|z̄(t)| , |ȳ(t)|) and γ = στ , then (A.84) can be written as

− ξ�(z̄(t), ȳ(t))Qξ(z̄(t), ȳ(t)), (A.85)

with the symmetric matrix

Q =

(
c0 − c1+c2(1+κγλk)

2

− c1+c2(1+κγλk)
2

σλ2 − (c3(1 + κγλk) + κσγλ2
k)

)
. (A.86)

Observe thatQ > 0 if σ is sufficiently large and γ is sufficiently small, i.e. there exist con-
stants σ̄ and γ̄ such that if σ ≥ σ̄ and στ ≤ γ̄, the matrixQ > 0. For two coupled systems
with a12 = a21 = 1 it follows directly that λ2 = λk = 2. Let σ̄ and γ̄ be such that the right
hand side of (A.84) is negative definite if σ ≥ σ̄ and στ = γ ≤ γ̄. Thus the Lyapunov-
Razumikhin theorem and boundedness of solutions implies that the two systems syn-
chronize when S̄ = {(σ, τ) ∈ R≥0 ×R≥0|σ ≥ σ̄ and στ ≤ γ̄}. It is easy to see that if
the network consists of k systems, (σ, τ) ∈ S̄2 ∩ S̄k with S̄j :=

{
(σ, τ)| (2σ/λj, τ) ∈ S̄

}
implies that the right hand side of (A.84) is negative definite.

A.4 Proofs chapter 8

A.4.1 Proof of Lemma 8.1

The proof follows almost immediately from the proof of Theorem 3.6 and the proof of
strict semipassivity of the Hindmarsh-Rose neuron. Let xi(t) := col (yi(t), z1,i(t), z2,i(t))

and consider the positive definite storage function Vi(xi(t)) =
1
4
y4i (t)+

1
2w3

z21,i(t)+
μ
2ε
z22,i(t)

with a positive constant μ. Let the constants λj ∈ (0, 1), j = 1, . . . , 4, constant μ =
1

4f3λ1λ3(1−λ4)
, then V̇i(xi(t)) = y3i (t)ui(t)−Hi(xi(t)) with the function

Hi(xi(t)) =
λ2

w3

(
z1,i(t) +

w1

2λ2
yi(t)−

w2

2λ2
y2i (t)

)2

+ λ1f3

(
y3i (t) +

1

2λ1f3
z2,i(t)

)2

+ μλ3λ4

(
z2,i(t)−

b

2λ4
yi(t)

)2

+ (1− λ3)μz
2
2,i(t)− μby0,iz2,i(t) + (1− λ2)

1

w3

z21,i(t) +
w0

w3

z1,i(t)

+ (1− λ1)f3y
6
i (t)− f2y

5
i (t)− f1y

4
i (t)−

μλ3b
2

4λ4
y2i (t)

− 1

4w3λ2

(
w1yi(t)− w2y

2
i (t)
)2

. (A.87)
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It is not difficult to see that Hi(xi(t)) is positive for sufficiently large |xi(t)|.
Let W (x(t)) :=

∑k
i=1 Vi(xi(t)), x(t) := col (x1(t), . . . , xk(t)), then Ẇ (x(t)) =∑k

i=1 yi(t)ui(t)−Hi(t). Note that
∑k

i=1 y
3
i (t)ui(t) ≤ σ

2

∑k
i=1

∑k
j=1,j �=i y

2
i (t)(y

2
j (t)− y2i (t)).

Since
∑k

i=1

∑k
j=1,j �=i(y

2
j (t) − y2i (t)) ≤ 0 and thus

∑k
i=1 y

3
i (t)ui(t) ≤ 0 it follows that

Ẇ (x(t)) = −
∑k

i=1Hi(xi(t)) ≤ 0 for sufficiently large |x|. The function W is radially
unbounded since each function Vi is radially unbounded, hence there exists a constant
c∗ such that Ẇ < 0 for each constant c and all x satisfying W ≥ c > c∗. Thus the set{
x ∈ R3k : W ≥ c

}
is a positively invariant compact set under the dynamics (8.4), (8.5)

and all solutions exist and are bounded.

A.4.2 Proof of Theorem 8.2

Without loss of generality it is assumed that the cells i ∈ {1, . . . , k1} are active and
the cells i ∈ {k1 + 1, . . . , k} are inactive. It will be proven that the active cells will
synchronize with each other even in presence of coupling to the inactive cells. First,
for notational convenience, define zi(t) := col (z1,i(t), z2,i(t)), ẏi(t) = a(yi(t), zi(t)) +

ui(t), with a(yi(t), zi(t)) = f(yi(t)) − zi,i(t) − z2,i(t) and żi(t) = q(yi(t), zi(t)) :=

col (w∞(yi(t))− z1,i(t), ε (b (yi(t) + y0,i)− z2,i(t))). Define ỹ1(t) = y1(t), ỹj(t) := y1(t)−
yj+1(t), z̃1(t) = z1(t), z̃j(t) = z1(t)− zj+1(t), j = 2, . . . , k1, then ˙̃yj(t) = a(y1(t), z1(t))−
a(y1(t)− ỹj(t), z1(t)− z̃j(t))+u1−uj and ˙̃zj(t) = q(z1(t), y1(t))− q(z1(t)− z̃j(t), y1(t)−
ỹj(t)). Consider the Lyapunov function V = 1

2
ỹ�(t)ỹ(t) + 1

2
z̃�(t)P z̃(t) with ỹ(t) =

col (ỹ2(t), . . . , ỹk1(t)), z̃(t) = col (z̃2(t), . . . , z̃k1(t)) and

P = P̃ ⊗ I, P̃ =
1

ε

(
ε 0
0 1

)
. (A.88)

Note that a(y1(t), z1(t)) − a(yj(t), zj(t)) = (a(y1(t), z1(t)) − a(yj(t), z1(t))) +

(a(yj(t), z1(t))− a(yj(t), zj(t))). Using the ultimate boundedness of the states of all sys-
tems (Lemma 8.1), the triangle inequality and Lipschitz continuity of a(·, ·), it follows
that there exist constants c0, c1 ∈ R>0 such that ỹj(t)(a(y1(t), z1(t)) − a(yj(t), zj(t))) ≤
c0 |ỹj(t)| · |z̃j(t)| + c1 |ỹj(t)|2. It can easily be verified that the internal dynamics of the
β-cell satisfy the Demidovich condition. Hence z̃�j (t)P̃ (q(z1(t), y1(t))− q(zj(t), yj(t))) ≤
− |z̃j(t)|2 + c0 |ỹj(t)| · |z̃j(t)| for some constant c2 ∈ R>0. Thus there exist positive con-
stants C0, C1 such that V̇ ≤ − |z̃(t)|2 + C0 |z̃(t)| · |ỹ(t)| + C1 |ỹ(t)|2 + ỹ�(t)ũ(t) with
ũ := col (u1 − u2, . . . , u1 − uk1). Note that the constants C0 and C1 only depend on the
bounds on the trajectories yi(t) and zi(t) and the functions a(·, ·), q(·, ·) and not on the
number of cells. Since the coupling is global, it follows that

u1(t) = σ(yj(t)− y1(t)) + σ
∑k

�=2,� �=j
(y�(t)− y1(t)), (A.89a)

uj(t) = σ(y1(t)− yj(t)) + σ
k∑

�=2,� �=j

(y�(t)− yj(t)), (A.89b)
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such that ũj(t) = −σkỹj(t). Hence ỹ�(t)ũ(t) = −σk |ỹ(t)|2 such that if σk ≥ σ̄ :=
C2

0

4
+ C1 there exists a constant ε > 0 such that V̇ ≤ −εV . It follows that

∫ t

t0
−V̇ (τ)dτ =

V (t0) − V (t) ≤ V (t0) < ∞. Hence, using Barbalat’s lemma (note that V̇ is uniformly
continuous), it can be concluded that the active cells synchronize. Using the same ma-
chinery one can easily prove that the inactive cells will also synchronize with each other.
On the other hand, the active cells will not synchronize with the inactive cells since the
linear manifold corresponding to synchronization M := {col (x1, . . . , xk) ∈ R3k|x1 =

. . . = xk1 = xk1+1 = . . . = xk}, xi := col (yi, z1,i, z2,i), is not invariant under the closed
loop dynamics (8.4), (8.5). It follows immediately that all cells in the islet synchronize
whenever σk ≥ σ̄ provided that all cells are active (k1 = k) or all cells are inactive (k2 = k)
such thatM is invariant under the given dynamics.

A.5 Proofs chapter 9

A.5.1 Proof of Theorem 9.4

Firstly, since λ(s) is nonnegative and each system (9.21) is strictly C1-semipassive, Lemma
9.1 implies that there is a constant c∗ > 0 and a radially unbounded nonnegative function
W (x1(t), x2(t)) such that the set {col (x1, x2) ∈ R2n|W (x1, x2) ≤ c} for any c ≥ c∗ is
compact and positively invariant with respect to (9.21), (9.5). Secondly, note that the
coupling (9.5) can be decomposed as

∫ y2(t)

y1(t)

λ(s)ds =

∫ 0

y1(t)

λ(s)ds+

∫ y2(t)

0

λ(s)ds. (A.90)

Hence, the interconnected systems (9.21), (9.5) can be equivalently written as the systems

ẋi(t) = f̃(xi(t)) +Bvi(t), yi(t) = Cxi(t), (A.91)

with i = 1, 2, f̃(x(t)) = f(x(t)) +B
∫ 0

Cx(t)
λ(s)ds, and

v1(t) =

∫ y2(t)

0

λ(s)ds, v2(t) =

∫ y1(t)

0

λ(s)ds. (A.92)

Note that
∂f̃

∂x
(x(t)) =

∂f

∂x
(x(t))− BCλ(Cx(t)). (A.93)

Since PB = C�, condition (9.22) implies that f̃(x) satisfies condition (9.20) of Lemma
9.3. Hence the system

ẋ(t) = f̃(x(t)) +Bv(t), y(t) = Cx(t) (A.94)
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is strictly C1-incrementally-passive with ΔV (x1, x2) = (x1(t) − x2(t))
�P (x1 − x2) and

ΔW (x1 − x2) = (x1 − x2)
�R(x1 − x2). Applying Lemma 9.2 one concludes that any

solution of systems (A.91) interconnected through (A.92) is defined and bounded for
t ≥ t0 and, moreover, the states x1(t) and x2(t) asymptotically synchronize. In particular,
due to Remark 9.1, the convergence is exponential, i.e. (9.23) holds.

A.5.2 Proof of Theorem 9.5

Choose the matrices P and R in (9.22) as

P :=

(
Q 0
0 1

)
, R :=

(
εIn−1 0
0 2ε

)
. (A.95)

Notice that this P satisfies the equality PB = C�. By combining all the terms in the first
inequality in 9.22 in the right-hand side, one can see that for the chosen P = P� > 0

and R = R� > 0 this matrix inequality is equivalent to

J :=

(
A M
M� N

)
≥ 0, (A.96)

where

A = −Q
∂q

∂z
(z, y)− ∂q�

∂z
(z, y)Q− εIn−1, (A.97)

M = −Q
∂q

∂y
(z, y)− ∂a�

∂z
(y, z), (A.98)

N = −2
∂a

∂y
(y, z) + 2λ(y)− 2ε. (A.99)

Due to (9.25), inequality A.96 holds if

J̃ :=

(
S − εIn−1 M

M� N

)
> 0. (A.100)

Recall that J̃(z, y) is positive definite if and only if S − εIn−1 > 0 and N − M�(S −
εIn−1)

−1M > 0. The first inequality is guaranteed by (9.28), while the last one holds due
to the choice of λ(y) satisfying (9.26).

A.5.3 Proof of Theorem 9.7

Boundedness of solutions follows from Lemma 9.6. To prove synchronization of sys-
tems’ states, rewrite the systems (9.21), (9.29) as follows:

ẋi(t) = f̃(xi(t)) +Bvi(t), yi = Cxi(t), (A.101)
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where f̃(x(t)) = f(x(t)) + (k − 1)B
∫ 0

Cx(t)
λ(s)ds and

vi(t) =

k∑
j=1,j �=i

∫ yj(t)

0

λ(s)ds. (A.102)

Let ζ1(t) := col (x1(t), x1(t), . . . , x1(t)) and ζ2 := col (x2(t), x3(t), . . . , xk(t)). Consider
the following incremental storage function

ΔV = (ζ1 − ζ2)
�(Ik−1 ⊗ P )(ζ1 − ζ2). (A.103)

Then

d
dt
ΔV = 2(ζ1 − ζ2)

�(Ik−1 ⊗ P ) (F (ζ1)− F (ζ2)) (A.104)

−
k∑

i=2

(y1 − yi)
�
∫ y1

yi

λ(s)ds, (A.105)

where

F (ζ1) =
(
f̃�(x1) f̃�(x1) · · · f̃�(x1)

)�
,

F (ζ2) =
(
f̃�(x2) f̃�(x3) · · · f̃�(xk)

)�
.

Note that −
∑k

i=2(y1 − yi)
� ∫ y1

yi
λ(s)ds ≤ 0 since λ(s) ≥ 0 for all s ∈ R. Then it follows

that (9.30) implies (see, e.g. [111])

2(ζ1 − ζ2)
�(Ik−1 ⊗ P ) (F (ζ1)− F (ζ2))

≤ −(ζ1 − ζ2)
�(Ik−1 ⊗R)(ζ1 − ζ2) < 0. (A.106)

This, in turn, implies exponential convergence of ζ2(t) to ζ1(t) and concludes the proof
of the theorem.



APPENDIX B

Reconstructing dynamics of spiking
neurons from input-output measurements

Abstract. In this appendix a method is proposed to estimate the state and parameters of models of
neural dynamics from current clamped measurements of the membrane potential. The content
of this appendix has been published in [148] and [155]. Generalized results are presented in [156].

B.1 Introduction

Mathematical modeling of neural dynamics is essential for understanding the principles
behind neural computation. Since the introduction of clamping techniques, which made
it possible to measure the membrane potential and currents of single neurons [73], and
inspired by the pioneering works of Hodgkin and Huxley [63], a large number of models
describing action potential generation of neural cells have been developed (see [69] for
a review). These models offer a qualitative description of the mechanisms of spike gen-
eration in neural cells. To study the specific behavior of neural cells, e.g. the dynamic
fluctuations of the membrane potential, a rigid quantitative evaluation of these models
against empirical data is needed. For the dynamical models this amounts to the identi-
fication of the model’s states and parameter values from input-output measurements in
the presence of noise.

Which of the many available models is the most suitable one for this goal? In general,
models of neural dynamics can be classified as biophysically plausible or as purely math-
ematical. The biophysically realistic conductance based neuronal models describe the
generation of the spikes as a function of the individual ionic currents flowing through
the neuron’s membrane. Although being time consuming, the parameters of these mod-
els can, in principle, be partially obtained through measurements. However, complete
and accurate estimation of their parameters for a single living cell is hardly practicable.
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Because of these complications, a number of mathematical models that mimic the spik-
ing behavior of real neurons are introduced throughout the years, e.g. the Hindmarsh-
Rose [62] and Fitzhugh-Nagumo [48, 98] neuronal models. These models are simpler in
structure and in the number of parameters. Their parameters, however, have no imme-
diate physical interpretation. Hence, they cannot be measured explicitly in experiments.
It is showed by Izhikevich [70] that the mathematical models can, depending on their
specific parameters, cover a wide range of the dynamics that have been observed in real
neurons. Furthermore, they have the advantage of simplicity. This makes model identifi-
cation an easier task.

Here, the aim is to provide a method that allows a successful mapping of mathematical
neuronal models to the vast collection of available empirical data. However, fitting these
models to given input-output data is a hard technical problem. This is because the any
information of the internal, non-physical, states of the system is not available, and the
input-output information that is available is often deficient. Yet, to successfully model the
measured data one needs to reconstruct the unknown states and estimate the parameters
of the system simultaneously.

The problem of estimating the state and parameter vectors for a given nonlinear system
from input-output data is a well established field in system identification [83] and adaptive
control [135]. It has a broad domain of relevant applications in physics and engineering,
and efficient recipes for solving practical problems are available. In most cases, when
state and parameter identification is required, these methods apply to a rich class of sys-
tems that can be transformed into the so-called canonical adaptive observer form [13]:

ẋ(t) = Ax(t) + ϕ(t, y(t))θ + g(t), (B.1a)

y(t) = C�x(t), (B.1b)

with state x(t) ∈ Rn, output y(t) ∈ Y ⊂ R, θ ∈ Rd is a vector with unknown parameters,
known functions g : R≥0 → Rn, ϕ : R× Y → Rn ×Rd, and

A =

(
0 k�

0 F

)
and C� =

(
1 0 · · · 0

)
.

where k = col (k1, . . . , kn−1) is a vector of known constants and F is a known (n−1)×(n−
1) matrix, usually diagonal, with eigenvalues in the open left half-plane of the complex
domain. Algorithms for the asymptotic recovery of the state variables and the parameter
vector θ can be found in, for instance, [13, 91, 92].

Models of neural dynamics, however, typically are not in the form (B.1), and, more im-
portant, they cannot be transformed into this specific form. Consider, for instance, the
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Hindmarsh-Rose model [62]

ẋ1(t) = θ1,3x
3
1(t) + θ1,2x

2
1(t) + θ1,0 + x2(t)− x3(t) + g(t), (B.2a)

ẋ2(t) = −λ2x2(t) + θ2,2x
2
1(t) + θ2,0, (B.2b)

ẋ3(t) = −λ3x3(t) + θ3,1x1(t) + θ3,0, (B.2c)

and the FitzHugh-Nagumo model [48, 98]

ẋ1(t) = θ1,3x
3
1(t) + θ1,1x1(t)− x2(t) + θ1,0 + g(t), (B.3a)

ẋ2(t) = −λ2x2(t) + θ2,1x1(t) + θ2,0. (B.3b)

The parameters θi,j and λi are in general unknown. This implies that the matrix A in
(B.1), in particular the matrix F inA, is uncertain. So these models are not in the observer
canonical form. Hence new methods for estimating the unknown θi,j , λi for the relevant
classes of systems (B.2), (B.3) are required.

In this appendix the focus is, in particular, on the estimation of the parameters of the
Hindmarsh-Rose model. First a slight modification of the model (B.2) is presented and
some basic properties of this model are summarized. Second, a procedure allowing suc-
cessful fitting of the model to measured data will be developed for this modified model.
Third, it is demonstrated how this approach can be used for the reconstruction of the spik-
ing dynamics of single neurons in slices of hippocampal tissue in vitro. In section B.2
the modified Hindmarsh-Rose model is introduced and this section contains the formal
statement of the identification problem. In section B.3 the parameter estimation proce-
dure is described and sufficient conditions for convergence of the estimates are given.
Section B.4 describes the details of the application of this procedure to the problem of
reconstructing the spikes of hippocampal neurons from a mouse. Section B.5 concludes
this appendix.

B.2 Preliminaries

Consider the following slight modification of the Hindmarsh-Rose equations (B.2):

ẋ1(t) = θ1,3x
3
1(t) + θ1,2x

2
1(t) + θ1,1x1(t) + θ1,0 + x2(t)− x3(t) + g(t), (B.4a)

ẋ2(t) = −λ2x2(t) + θ2,2x
2
1(t) + θ2,1x1(t) + θ2,0, (B.4b)

ẋ3(t) = −λ3x3(t) + θ3,1x1(t) + θ3,0, (B.4c)

where θi,j are unknown constant parameters and λ2, λ3 are the unknown time constants
of the internal states. The state x1 represents the membrane potential and is also the
(natural) output of the neuron, x2 is a fast internal variable, x3 is a slow variable (λ3 � 1),
and g(t) is an external clamping current. The system (B.4) has, compared to the original
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equations (B.2), a full third order polynomial in x1 in the first equation and a full order
second order polynomial in x1 in the second equation. The modified model can adapt to
arbitrary time-scales and has less restrictions on the shape of the spikes.

The specific behavior of the Hindmarsh-Rose model can be analyzed by decomposition
into fast and slow subsystems (see for instance [18, 152]), where the fast subsystem is
composed by the x1 and x2 dynamics, and the x3 dynamics define the slow subsystem.
The following proporties hold for the Hindmarsh-Rose system:

i. the shape of the spikes is mainly determined by the fast subsystem,

ii. the firing frequency of the spikes in absence of the slow subsystem, i.e. x3 = 0, is
dictated by the amplitude of the external current g(t),

iii. the third equation, i.e. the slow variable, perturbs the input g(t) and modulates
the firing frequency such that, depending on the parameters, the model can pro-
duce periodic bursts, aperiodic bursts or spiking behavior with adaptable firing fre-
quency.

B.2.1 Problem Formulation

Consider the following class of nonlinear neuronal models:

ẋ1(t) = θ�1 φ1(t, x1(t)) +

n∑
i=2

xi(t), (B.5a)

ẋi(t) = −λixi(t) + θ�i φi(t, x1(t)), (B.5b)

with continuous functions φj : R× Y → Rdj , dj ∈ N\{1}, i = 1, 2, . . . , n. Variable x1(t)

in system (B.5) represents the dynamics of the cell’s membrane potential, and variables
xi(t), i ≥ 2, are internal states that can be associated with the ionic currents flowing in
the cell. The parameters θi ∈ Rdi , λi ∈ R>0 are constant. Clearly, the models (B.2)–(B.4)
belong to the particular class of systems (B.5).

The values of the variable x1(t) are assumed to be available at any instance of time and the
functions φi(t, x1(t)) are supposed to be known. The variables xi, i = 2, 3, . . . , n, however,
are not assumed to be available. The actual values of the parameters θ1, . . . , θn, λ2, . . . , λn,
are unknown a-priori. (Note that θi can be vectors with parameter values.) It will be
assumed that the domains of admissible values of θi, λi are known or can, at least, be
estimated. In particular, it will be assumed that θi,j ∈ [θi,j,min, θi,j,max], λi ∈ [λi,min, λi,max],
and the values of θi,j,min, θi,j,max, λi,min, λi,max are available.

Let, for notational convenience, θ = col (θ1, . . . θn) and λ = col (λ2, . . . , λn). The vectors
θ̂ and λ̂ denote the estimations of θ and λ. The domains of θ, λ are given by the symbols
Ωθ and Ωλ, respectively.
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The problem is how to derive an algorithm which is capable of reconstructing the states
and estimate the unknown parameters of the system (B.5) solely depending on the signal
x1(t). In the present work this problem is considered within the framework of designing
an observer for the dynamics and parameters of (B.5) that is driven by the measured
signal x1(t) and has dynamics of the form:

˙̂x(t) = f(t, x̂(t), z(t), x1(t)), (B.6a)

z(t) = h(x̂(t)), (B.6b)

where x̂(t) ∈ Rn is the approximation of states of the system (B.5) and z(t) =

col
(
θ̂(t), λ̂(t)

)
contains estimates of the parameters of the system. Hence, the goal is

to find conditions such that for some given small numbers δx, δz ∈ R>0 and all t0 ∈ R≥0

the following properties hold:

∃ t′ ≥ t0 s.t. ∀ t ≥ t′ :

{
|x̂(t)− x(t)| ≤ δx,

|z(t)− ϑ| ≤ δz.
(B.7)

where ϑ = col (θ, λ) is the vector with the actual parameters of the system (B.5).

B.3 Main Result

This section presents the main results. A “classical” observer will be designed which
estimates the state x(t) and parameters θ. An auxiliary system is introduced to estimate
the values of λ. These results are based on the concepts of weakly attracting sets [94, 52]1

and non-uniform small gain theorems [157].

First, for notational convenience, the following vector function is introduced

φ(t, x1(t), λ) =

⎛
⎜⎜⎜⎝

φ1(t, x1(t))∫ t

t0
e−λ2(t−τ)φ2(s, x1(s), τ)ds

...∫ t

t0
e−λn(t−τ)φn(s, x1(s), τ)ds

⎞
⎟⎟⎟⎠ , (B.8)

which is a concatenation of φ1(·) and the integrals∫ t

t0

e−λi(t−s)φi(s, x1(s))ds, i = 2, . . . , n. (B.9)

Then, using (B.8), the system (B.5) can be written in the more compact form:

ẋ1(t) = θ�φ(t, x1(t), λ). (B.10)

1The closed-loop system will not be stable in Lyapunov sense. The closed-loop system will have an
attracting set in the sense of Definition 2.3.
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Given that functions φi(·, ·) are known and that the values of x1(t
∗), t∗ ∈ [t0, t] are avail-

able, the integrals (B.9) can be calculated explicitly as functions of λi and t.

Taking into account that the time variable t can be arbitrarily large, explicit calculation
of integrals (B.9) is expensive in the computational sense and, in principle, requires in-
finitely large memory. For this reason an approximation of the function φ(t, x1(t), λ) will
be used. For instance, in the case that the signal x1(t) is periodic, bounded, and the func-
tions φi(t, x1(t)) are locally Lipschitz in x1 and periodic in t with the same period as x1(t),
the functions φi(t, x1(t)) can be expressed in a Fourier series expansion:

φi(t, x1(t)) =
ai,0
2

+

∞∑
j=1

(ai,j cos(ωjt) + bi,j sin(ωjt)) . (B.11)

Taking a finite number N of members from the series expansion (B.11) the following
approximation of (B.9) holds:∫ t

t0

e−λi(t−s)φi(s, x1(s))dτ ≈a0,i
2λi

+

N∑
j=1

ai,j
λ2
i + ω2

j

(sin(ωjt)ωj + λi cos(ωjt))

+

N∑
j=1

bi,j
λ2
i + ω2

j

(− cos(ωjt)ωj + λi sin(ωjt)) + ε(t), (B.12)

where ε(t) : R → R is an exponentially decaying term. In the case that the signal x1(t) is
not periodic in t or the functions φi(t, x1(t)) are not periodic in t, the integrals (B.9) can
be approximated as:∫ t

t0

e−λi(t−s)φi(s, x1(s))ds ≈
∫ t

t−T

e−λi(t−s)φi(s, x1(s))ds+ ε(t), (B.13)

where T ∈ R > 0 is sufficiently large.

Let the function φ̄(t, x1(t), λ) be the computationally realizable approximation of (B.8)
such that ∣∣φ̄(t, x1(t), λ)− φ(t, x1(t), λ)

∣∣ ≤ Δ, (B.14)

for all t ∈ R>0 and some smallΔ ∈ R>0.

Consider the following “classical” observer that estimates the states and the parameters θ
of the systems (B.10):

˙̂x1(t) = −α · (x̂1(t)− x1(t)) + θ̂�(t)φ̄(t, x1(t), λ̂), (B.15a)
˙̂
θ(t) = −γθ · (x̂1(t)− x1(t)) · φ̄(t, x1(t), λ̂(t)), (B.15b)

with constants γθ, α ∈ R>0. In (B.15), x̂1(t), θ̂(t) and λ̂ denote the estimates of
x1(t), θ and λ, respectively. (A definition of λ̂ follows somewhat later.) Define q(t) =

col
(
x̂1(t)− x1(t), θ̂(t)− θ

)
, then the closed-loop system (B.10), (B.15) can be written as

q̇(t) = A(t, x1(t), λ̂)q(t) + b u(t, x1(t), λ, λ̂), (B.16)
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where b =
(
1 0 . . . 0

)�
,

A(t, x1(t), λ̂) =

(
−α φ̄(t, x1(t), λ̂)

�

−γθφ̄(t, x1(t), λ̂) 0

)
,

and

u(t, x1(t), λ̂, λ) = θ�(φ̄(t, x1(t), λ̂)− φ̄(t, x1(t), λ)) + θ�(φ̄(t, x1(t), λ)− φ(t, x1(t), λ)).

The closed loop system (B.16) consists of the time-varying linear system q̇(t) =

A(t, x1(t), λ̂)q(t) which is perturbed by the function u(t, x1(t), λ̂, λ). Note, in addition,
that

lim sup
λ̂→λ

∣∣∣u(t, x1(t), λ, λ̂)
∣∣∣ ≤ |θ|Δ. (B.17)

The control problem is now, in terms of (B.7), to find values λ̂ close to λ, and conditions
such that limt→∞ |q(t)| ≤ δq, with small δq ∈ R>0.

The value of λ will be estimated using an auxiliary system. Consider the system

ξ̇1,i(t) = γi · σ(|x1(t)− x̂1(t)|ε) ·
(
ξ1,i(t)− ξ2,i(t)− ξ1,i(t)

(
ξ21,i(t) + ξ22,i(t)

))
, (B.18a)

ξ̇2,i(t) = γi · σ(|x1(t)− x̂1(t)|ε) ·
(
ξ1,i(t) + ξ2,i(t)− ξ2,i(t)

(
ξ21,i(t) + ξ22,i(t)

))
, (B.18b)

with initial conditions ξ21,i(t0)+ξ22,i(t0) = 1 and i = {2, . . . , n}. The function σ : R → R≥0

is supposed to satisfy |σ(s)| ≤ |s| for all s ∈ R, and σ(·) is bounded. The constants
γi ∈ R>0 are rationally-independent, i.e.:∑

γiki �= 0, ∀ ki ∈ Z. (B.19)

The systems (B.18) with initial conditions ξ21,i(t0) + ξ22,i(t0) = 1 are positively invari-
ant on the manifold ξ21,i(t) + ξ22,i(t) = 1. Taking into account that the constants γi are
rationally-independent, it can be concluded that trajectories ξ1,i(t) densely fill an invari-
ant n-dimensional torus [11]. In other words, the system (B.18) with initial conditions
ξ21,i(t0) + ξ22,i(t0) = 1 is Poisson-stable in Ωx = {ξ1,i, ξ2,i ∈ R2n|ξ1,i ∈ [−1, 1]}. Further-
more, notice that trajectories ξ1,i(t), ξ2,i(t) are globally bounded and that the right-hand
side of (B.18) is locally Lipschitz in ξ1,i, ξ2,i. The values of λi will be estimated as follows:

λ̂i(ξ1,i(t)) = λi,min +
λi,max − λi,min

2
(ξ1,i(t) + 1). (B.20)

Clearly, the following estimate holds:∣∣∣ ˙̂λ(t)∣∣∣ ≤ γ∗M, M ∈ R>0, γ
∗ = max

i
{γi}. (B.21)

The systems (B.16) and (B.18) are considered as two interconnected systems, denoted by
S1 and S2, respectively. The system S2 provides values λ̂(t) from the compact domain Ωλ
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Figure B.1. The interconnected systems S1 and S2.

as function of the output of the system S1. These values λ̂(t) are, in turn, injected into
the system S1. The system S1 is driven by the measured data and the estimates λ̂(t) and
will provide estimates of the state x1(t) and the parameters θ. A schematic representation
of the structure of these interconnected systems is provided in Figure B.1.

Sufficient conditions for convergence of the solutions of the system S1 to an invariant
attracting set in the neighborhood of the origin will be given next. In particular, it will be
showed that the systems (B.15), (B.18) serve as the desired observer (B.6) for the class of
systems specified by equations (B.5), i.e. the properties of (B.7) will be satisfied. First the
notion of λ-uniform persistency of excitation has to be introduced.

Definition B.1 (λ-uniform persistency of excitation [87]). Let function ϕ : R×D0×D1 →
Rn×m be continuous and bounded. Then ϕ(t, x(t), λ) is λ-uniformly persistently exciting
(λ-uPE) if there exist μ, L ∈ R>0 such that for each x ∈ D0, and each λ ∈ D1,∫ t+L

t

ϕ(s, x(s), λ)ϕ�(s, x(s), λ)ds ≥ μI, ∀t ≥ t0.

�

The latter notion, in contrast to the conventional definitions of persistency of excitation,
allows to deal with the parameterized regressors ϕ(t, x(t), λ). This is essential for deriv-
ing the asymptotic properties of the interconnected S1, S2 systems. These properties are
formulated in the theorem below:

Theorem B.1. Let the systems (B.10), (B.15), (B.18) be given. Assume that function
φ̄(t, x1(t), λ) is bounded, i.e.

∣∣φ̄(t, x1(t), λ)
∣∣ ≤ B, B ∈ R>0, for all t ≥ 0 and λ ∈ Ωλ,

λ-uPE with constants μ and L as in Definition B.1, and Lipschitz in λ:∣∣φ̄(t, x1(t), λ)− φ̄(t, x1(t), λ
′)
∣∣ ≤ D |λ− λ′| ,

for some D ∈ R>0. Then there exist a number γ∗ satisfying

γ∗ =
μ

4BDLM
,

and a constant ε > 0 such that for all γi ∈ (0, γ∗],
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i. the trajectories of the closed loop system (B.15), (B.18) are bounded;

ii. there exists a vector λ∗ ∈ Ωλ: limt→∞ λ̂(t) = λ∗;

iii. there exist positive constants κ = κ(α, γ0) and δ such that the following estimates hold:

lim sup
t→∞

∣∣∣θ̂(t)− θ
∣∣∣ < κ(Dδ + 3Δ),

lim
t→∞

∣∣∣λ̂i(t)− λi

∣∣∣ < δ,

lim
t→∞

|x̂1(t)− x1(t)|ε = 0.

The proof of Theorem B.1 is based on Theorem 1 and Corollary 4 in [157]. See also [158].
A generalization of Theorem B.1 will be made available in [156].

TheoremB.1 assures that the estimates θ̂(t), λ̂(t) converge to a neighborhood of the actual
values θ, λ asymptotically. Given that |x̂1(t)− x1(t)|ε → 0 as t → ∞, the size of this
neighborhood can be specified as a function of the parameter ε. The value of ε in turn
depends on the amount of noise in the driving signal, and the values of Δ and γi (the
smaller theΔ, γi the smaller the ε) such that the former, taking the presence of noise into
account, can in principle be made sufficiently small.

B.4 Experimental validation

It this section it is demonstrated how the results can be applied to the problem of estimat-
ing the parameters of a neuronal model from in vitro measurements of single neurons.
In particular, an algorithm is constructed that allows fitting the modified Hindmarsh-
Rose model (B.4) to a spike train recorded from real neural cells in slices of hippocampal
tissue of mouse2. Since the measured signal contains solely spiking dynamics the third
equation of the Hindmarsh-Rose model, i.e. the slow variable, is neglected. Hence, the
problem reduces to finding the parameters θ1,0, θ1,1, θ1,2, θ1,3, θ2,0, θ2,1, θ2,2, λ2 of the
reduced version of (B.4):

ẋ1(t) = θ1,3x
3
1(t) + θ1,2x

2
1(t) + θ1,1x1(t) + θ1,0 + x2(t) + g(t), (B.22a)

ẋ2(t) = −λ2x2(t) + θ2,2x
2
1(t) + θ2,1x1(t) + θ2,0. (B.22b)

In the experimental data the input function g(t) was a constant current such that g(t), in
this case, can be absorbed into the parameter θ1,0. Notice also that the value of θ2,0 can

2The data of the the single neuron recordings is provided by Dr. Alexey Semyanov and Dr. Inseon Song
of the Semyanov Research Unit, Riken BSI.
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be aggregated into the parameter θ1,0. Thus instead of (B.22) one obtains the following
equations:

ẋ1(t) = θ1,3x
3
1(t) + θ1,2x

2
1(t) + θ1,1x1(t) + θ∗1,0 + x2(t), (B.23a)

ẋ2(t) = −λ2x2(t) + θ2,2x
2
1(t) + θ2,1x1(t). (B.23b)

Using (B.15), (B.18) and Theorem B.1, the following system is capable of estimating the
unknown parameters of (B.23):

˙̂x1(t) = −α(x̂1(t)− x1(t)) + θ̂�(t)φ̄(t, x1(t), λ̂2(t)), (B.24a)
˙̂
θ(t) = −γθ · (x̂1(t)− x1(t)) · φ̄(t, x1(t), λ̂2(t)), (B.24b)

ξ̇1,1(t) = γ1 · σ(|x̂1(t)− x2(t)|ε) ·
(
ξ1,1(t)− ξ2,1(t)− ξ1,i(t)

(
ξ21,1(t) + ξ22,1(t)

))
, (B.24c)

ξ̇2,1(t) = γ1 · σ(|x̂1(t)− x1(t)|ε) ·
(
ξ1,1(t) + ξ2,1(t)− ξ2,1(t)

(
ξ21,1(t) + ξ22,1(t)

))
, (B.24d)

λ̂2(t) = λ1,min +
λ1,max − λ2,min

2
(ξ1,1(t) + 1), (B.24e)

with σ(·) = arctan(·). In (B.24) the vector θ̂ is the estimate of θ =

(θ∗0,0, θ0,1, θ0,2, θ0,3, θ1,1, θ1,2)
�, and λ̂1 is the estimate of λ1. The function φ̄0(x0(t), λ̂1, t)

in (B.24) is the computationally realizable approximation of

φ(t, x1(t), λ̂2(t)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
x1(t)
x2
1(t)

x3
1(t)∫ t

t0
e−λ̂2(s)(t−s)x1(s)ds∫ t

t0
e−λ̂2(s)(t−s)x2

1(s)ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(B.25)

The measured signal x1(t) is periodic, hence the Fourier-series expansion (B.12) is used
to approximate (B.25). The domain Ωλ is defined as Ωλ = [0.5, 2.5] with λmin = 0.5 and
λmax = 2.5, respectively. The Fourier-approximation (B.12) of (B.25) is persistently ex-
citing for all λ̂2 ∈ Ωλ. In simulations the following set of parameters is used: γθ = 3,
γ1 = 0.02/π, α = 20, and ε = 0.12. The trajectories of the estimates λ̂1(t) for various ini-
tial conditions are shown in the top panel of Figure B.2(a). The trajectories λ̂2(t) converge
to a bounded domain in the interval [2, 2.4]. For each value of λ̂2 the estimates θ̂ converge
to a bounded domain as well. For example, for the trajectory starting at λ̂2(0) = 0.5 the
following estimates are computed:

θ̂1,3 ∈ [−10.4,−10.25], θ̂1,2 ∈ [−4.45,−4.3], θ̂1,1 ∈ [6.6, 6.75],

θ̂∗1,0 ∈ [0.75, 0.95], θ̂2,2 ∈ [−32.5,−32.4], θ̂2,1 ∈ [−32.2,−32.1].

The range of these estimates correspond to the amount of uncertainty of in the system
(B.23). After some manual tuning it is found that the following choice of parameters θ̂,
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(a) (b)

Figure B.2. (a) Trajectories λ̂(t) as functions of time for different values of initial con-
ditions. (b) Trajectory x̂1(t) of system (B.23) with parameters (B.26) (solid line) plotted
against the actual data (dashed line).

λ̂2 results in rather accurate fitting:

θ̂1,3 = −10.4, θ̂1,2 = −4.35, θ̂1,1 = 6.65, θ̂∗1,0 = 0.9125,

θ̂2,2 = −32.45, θ̂2,1 = −32.15, λ̂2 = 2.027. (B.26)

The reconstructed trajectory x̂1(t) with the parameters (B.26) is shown in the bottom
panel of Figure B.2(b). Notice that despite the presence of small mismatches along the
trajectories, the amplitude and the shape of the spikes do closely follow the measured
response of the hippocampal neuron.

B.5 Discussion

In this appendix a method is presented with which the parameters of systems that can not
be transformed into the observer canonical form can be estimated. The proposed method
can be applied to systems that are of the class (B.5), such as (mathematical) models that
mimic neuronal behavior. The method is demonstrated by a successful reconstruction of
the states and estimations of the parameters of a modified Hindmarsh-Rosemodel driven
by spikes recorded from a single neuron in vitro. In particular, it is shown that the spik-
ing dynamics measured from a single neuron from the hippocampal area of mouse can
be reasonably accurate reconstructed with the modified Hindmarsh-Rose model (B.4).
Moreover, the estimated parameters of the model converge to small bounded domains.
The size of these domains can, in principle, be decreased by assigning a smaller value to
the parameter ε. However, it might be possible that the model is not accurate enough to
describe the spikes with such precision. The fact that the modified model’s parameters
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θ1,1, θ2,1 �= 0 indicates that the equations of the original Hindmarsh-Rose model are too
restricted for proper parameter fitting and our choice to use the modified model is justi-
fied. This appendix considered a simplified case where the clamping current applied to
the neuron was constant and the neuron produced simple spiking behavior. In general,
the output function of neurons is more complicated. Bursting sequences, for instance,
are noticed in neurons of the pond snail Lymnaea [62] and firing frequency adaptation of-
ten occurs when the neuron is stimulated with block shaped currents. In order to mimic
thismore complicated behavior, the full set of equations of the modifiedHindmarsh-Rose
model should be taken into account.
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Samenvatting

Synchroon gedrag in netwerken van gekoppelde systemen

Synchronisatie in netwerken van gekoppelde dynamische systemen is een interessant
fenomeen dat voorkomt in de natuur en verschillende takken van de wetenschap en tech-
niek. Voorbeelden omvatten het gelijktijdig oplichten van duizenden vuurvliegjes, het
synchrone vuren van zogenaamde “action potentials” door groepen van neuronen, coö-
peratief gedrag van robots en synchronisatie van chaotische systemen met toepassingen
in de beveiligde communicatie. Hoe kan het dat systemen in een netwerk te synchronise-
ren? Om te kunnen synchroniseren is het noodzakelijk dat de systemen informatie over
hun toestand communiceren met de systemen waaraan ze gekoppeld zijn. De vraag is
dan hoe de communicatie structuur eruit moet zien en hoe de systemen in het netwerk
moeten reageren op de ontvangen informatie om synchronisatie te bereiken. Met ande-
re woorden, welke netwerk structuren en wat voor een koppelingsfuncties resulteren in
synchronisatie van de systemen? En aangezien het uitwisseling van informatie tijd kost,
kunnen systemen in netwerken synchroniseren in aanwezigheid van tijdsvertragingen in
de koppelingen?

Het eerste deel van dit proefschrift richt zich op de synchronisatie van identieke syste-
men die interactie hebben via diffusieve koppeling. Dat is een koppeling bestaande uit
het gewogen verschil van de uitgangssignalen van de systemen. Deze koppeling mogen
tijdsvertragingen bevatten. Twee soorten diffusieve tijdsvertraagde koppelingen worden
beschouwd: koppeling type I is een diffusieve koppeling waarin alleen de gezonden signa-
len onderhevig zijn aan tijdsvertragingen, en koppeling type II is een diffusieve koppeling
waarin alle signalen zijn vertraagd. Het is bewezen dat netwerken bestaande uit zoge-
naamde strikt semipassieve systemen die interactie hebben via een diffusieve tijdsvertraag-
de koppeling begrensde oplossingen hebben. Daarnaast is het bewezen dat zogenaamde
minimum-fase strikt semipassieve systemen die diffusief gekoppeld zijn altijd synchroni-
seren op voorwaarde dat de koppelingssterkte voldoende groot is. Als de koppelingen
tijdsvertraagde signalen bevatten, dan dient daarnaast ook nog het product van de tijds-
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vertraging en de koppelingssterkte voldoende klein te zijn om te synchroniseren.

Vervolgens wordt de specifieke rol van de structuur van het netwerk in relatie tot synchro-
nisatie van de diffusief gekoppelde systemen besproken. Ten eerste worden condities
gegeven voor het bestaan van zogenaamde lineaire invariante variëteiten voor netwerken
van diffusieve tijdsvertraagde gekoppelde systemen. Deze condities hangen af van het
bestaan van symmetrieën in het netwerk. Het is bewezen dat de oplossingen van de diffu-
sief gekoppelde systemen die strikt semipassief en minimum-fase zijn convergeren naar
een dergelijke lineaire invariante variëteit op voorwaarde dat de koppelingssterkte vol-
doende groot is en het product van de tijdsvertraging en de koppelingssterkte voldoende
klein is. Het netwerk toont gedeeltelijke synchronisatie indien niet alle, maar slechts enkele
systemen in een netwerk synchroniseren voor deze waarden van de koppelingssterkte en
tijdsvertraging. Ten tweede wordt voor systemen die interactie hebben via symmetrische
koppeling type II aangetoond dat de waarden van de koppelingssterkte en tijdsvertraging
waarvoor elk netwerk synchroniseert kunnen worden afgeleid uit de structuur van het
netwerk en de waarden van de koppelingssterkte en de tijdsvertraging waarvoor twee ge-
koppelde systemen synchroniseren.

In het tweede deel van het proefschrift wordt de theorie uit het eerste deel gebruikt om
synchronisatie in netwerken van gekoppelde zenuwcellen uit te verklaren. Allereerst is
het bewezen dat vier belangrijke modellen die de dynamische activiteit van zenuwcellen
bechrijven, namelijk het Hodgkin-Huxley model, het Morris-Lecar model, het Hindmarsh-
Rose model en het Fitzhugh-Nagumo model, allen strikt semipassief zijn. Omdat al deze
modellen ook nog eens de minimum-fase eigenschap bezitten, zullen netwerken van dif-
fusief gekoppelde zenuwcellen synchroniseren indien de koppeling voldoende sterk is
en het product van de tijdsvertraging en de koppelingssterkte voldoende klein is. Nume-
rieke simulaties met verschillende netwerken van diffusief gekoppelde Hindmarsh-Rose
zenuwcellen ondersteunen deze theoretische bevindingen. Daarnaast zijn de theoreti-
sche bevindingen gevalideerdmet behulp van een experimentele opstelling bestaande uit
type II gekoppelde elektronische Hindmarsh-Rose zenuwcellen.

Het proefschrift gaat verder met een studie van netwerken bestaande uit pancreatische
β-cellen. Het is bekend dat deze β-cellen diffusief gekoppeld zijn en synchroniseren. De
gesynchroniseerde activiteit van een netwerk van β-cellen is gerelateerd aan de afschei-
ding van insuline wat het hormoon is dat de suikerspiegel reguleert. Als het netwerk
bestaat uit gezonde β-cellen en dode β-cellen kan het voorkomen dat de activiteit van het
netwerk afneemt of zelfs stopt. Dit resulteert in een sterk verminderde afscheiding van
insuline. (Patiënten die onvoldoende insuline aanmaken door het afsterven van β-cellen
lijden aan diabetes type 1.) Of een netwerk activiteit toont of niet hangt af van het aantal
gezonde cellen in verhouding tot het aantal dode cellen. Een bifurcatie analyse geeft een
schatting van uit hoeveel gezonde cellen het netwerk dient te bestaan ten opzichte van
het aantal dode cellen om het goed functioneren van het netwerk te kunnen garanderen.
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Als laatste wordt het geregelde synchronisatie probleem voor gekoppelde strikt semipassieve
systemen beschouwd. Een systematische procedure wordt gepresenteerd voor het ont-
werpen van koppelingsfuncties die synchronisatie garanderen in een netwerk waarin alle
systemen interactie met elkaar hebben. De koppelingsfuncties hebben de vorm van een
bepaalde integraal over een scalaire niet-negatieve functie op een interval bepaald door
de uitgangen van de systemen. Het voordeel van deze koppelingsfuncties is dat de kop-
pelingssterke alleen hoog is als dat nodig is, bijvoorbeeld in de delen van de toestands-
ruimte van het netwerk waar niet-lineariteiten dienen te worden onderdrukt. Numerieke
simulaties in netwerken vanHindmarsh-Rose zenuwcellen ondersteunen de theoretische
bevindingen.
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