
Title Passivity-based output synchronization of dynamical networks
with non-identical nodes

Author(s) Zhao, J; Hill, DJ; Liu, T

Citation
The 49th IEEE Conference onDecision and Control (CDC 2010),
Atlanta, GA, USA, 15-17 December 2010. In IEEE Conference on
Decision and Control. Proceedings, 2010, p. 7351-7356

Issued Date 2010

URL http://hdl.handle.net/10722/213538

Rights IEEE Conference on Decision and Control. Proceedings.
Copyright © Institute of Electrical and Electronics Engineers.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38074415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Passivity-based Output Synchronization of Dynamical Networks with

Non-identical Nodes

Jun Zhao, David J.Hill and Tao Liu

Abstract— Output synchronization of dynamical networks
with non-identical nodes is studied using the passivity property.
A synchronization criterion is developed for networks with
general outer coupling topologies which need to be neither
symmetric nor have the zero-row-sum property. When the
passivity property cannot give synchronization for a single outer
coupling topology, the problem of how to achieve synchroniza-
tion by switching among several outer coupling topologies is
studied. Synchronization conditions by switching among these
topologies are presented and an output-dependent switching
law is designed. In particular, it is shown that synchronizability

can be checked by verifying if a certain nonlinear programming
problem has no feasible solution or has a negative maximum.

I. INTRODUCTION

Synchronization problems of dynamical networks occur

in a variety of contexts, having extensive applications in

physics, biology, ecology and many engineering fields [1],

[3], [15], [23], [29]. Focus of the study has been mainly

put on networks with identical nodes. Indeed, identical node

dynamics greatly simplify the synchronization analysis. In

this aspect, the master stability function approach plays a

dominating role in the study of local synchronization. In

particular, identical node dynamics together with a constant,

symmetric and irreducible coupling configuration matrix

always makes it possible to locally transform the network

dynamics into a set of decoupled lower-dimensional systems

whose stability can be easily determined by analyzing the

master stability function [1], [3]. Many extensions of this

technique have been also available in the literature [2], [7],

[16], [25], [31] – see also recent survey papers [1], [3] and

references therein.

Global synchronization of dynamical networks is of course

a very preferable property but is a very difficult issue and

few results have been reported until now. Some results are

still based on the stability of the master stability equa-

tion (see for instance, [12], [13], [33]). In these results,

the nonlinear dynamics of each node are linearized and

the stability margin given by the master stability equation
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method for the linearized network is assumed to be large

enough to compensate the nonlinear terms which are treated

as perturbations satisfying linear growth conditions.

Often, some strong properties of the node dynamics have

to be imposed in order to have global synchronization

without linearization. The notion of V -uniformly decreasing

functions was proposed in [29] and a full dimensional

synchronization criterion was set up. Another property that

is required to guarantee global synchronization is the V -

stability assumption of each node [30]. A similar method

was applied in [24].

The assumption of networks having identical nodes is

not always realistic. In fact, most dynamical networks in

engineering have different nodes. Examples can be found

in many practical networks, such as power systems [9] and

multi-robot systems [14]. The study of synchronization of

dynamical networks with non-identical nodes is very hard

and very few results have been reported by now. Several col-

lective properties for coupled non-identical chaotic systems

were respectively discussed in [8], [26], [28]. A simulation

study for non-identical Kuramoto oscillators was carried

out in [4]. Controlled synchronization was considered for

the case that each node has a normal form with a linear

main part [18], and distributed controllers were designed to

achieve synchronization. When asymptotic synchronization

is impossible for networks with non-identical nodes, par-

tial or bounded synchronization were studied instead [22],

[32]. Looking for effective methods for networks with non-

identical nodes is a challenging issue.

On the other hand, passivity is a useful system property

that has been widely exploited in analysis and synthesis of

nonlinear control systems [27]. Since a dynamical network is

composed of a number of nodes that are nonlinear systems, it

is natural and reasonable to expect passivity to be useful for

network analysis and design. In fact, several attempts using

the passivity property to deal with synchronization problems

have been made. An output synchronization condition for

multi-agent systems was proposed when the outer coupling

is given by a constant multiplied by differences between

node outputs [5]. A similar method was used for networks

with time delay in communication [6]. A weaker version

of passivity, called semi-passivity, was shown to be able

to create ultimate boundedness of the solutions [21]. For

a certain class of coupled chaotic systems, passivity can

produce a synchronization feature [11]. There are some

relevant works including flocking algorithm in SE(3) [10],

global analysis of limit cycles of interconnected oscillators

[20] and applications to the analysis of biochemical networks
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[19].

In this paper, we study the synchronization problem for

dynamical networks with non-identical nodes using passiv-

ity. With respect to previous work on the topic, the main

contributions of this paper are as follows. First of all, a

general output synchronization criterion based on passivity

is developed with no symmetry or zero-row-sum property of

the outer coupling matrix assumed. Therefore, the proposed

criterion is well-suited to a more general class of networks.

Secondly, with help of passivity, output synchronization is

achieved by switching among a number of outer coupling

topologies, with each of them, if used alone, synchronization

may not be achieved. This strategy has not been seen in the

literature so far. Thirdly, a nonlinear programming problem

is formulated to check synchronizability of networks with

switching topologies.

II. PRELIMINARIES

Consider a network composed of N non-identical nodes.

Each isolated node is represented by the nonlinear control

system

ẋi = fi(xi) + gi(xi)ui,
yi = hi(xi), i = 1, 2, · · · , N,

(1)

where xi = (xi1, xi2, · · · , xin)T ∈ Rn, ui, yi ∈ Rm are

the state variable, control input and output of the i-th node,

respectively; fi : Rn → Rn, gi : Rn → Rn×m and hi :
Rn → Rm are continuous mappings.

Choose x =







x1

...

xN






, f(x) =







f1(x1)
...

fN (xN )






, g(x) =









g1(x1) 0 · · · 0
0 g2(x2) · · · 0
· · · · · · · · · · · ·
0 0 · · · gN (xN )









, u =







u1

...

uN






,

y =







y1

...

yN






= h(x) =







h1(x1)
...

hN (xN )






.

Putting all the independent nodes together makes a non-

linear control system in a compact form

ẋ = f(x) + g(x)u,
y = h(x).

(2)

The network is then formed by choosing control action which

interconnects nodes through an outer coupling topology

ui =
N

∑

j=1

aijΓyj, (3)

or equivalently u = (A ⊗ Γ) y, where A = (aij)N×N is a

matrix, called outer coupling matrix, and Γ is an m × m
positive definite matrix, called the inner coupling matrix and

⊗ stands for the Kronecker product.

A typical form of the control is given by

ui =

N
∑

j=1,j 6=i

aijΓ(yj − yi)

which can be rewritten as the form of (3) by defining aii =

−
N

∑

j=1,j 6=i

aij . By doing so, the outer coupling matrix A has

the zero row sum property, which is often used as an ideal

property. Here, we adopt the general form of A where the

zero row sum property need not hold.

Under the interconnection (3), the network can be ex-

pressed by

ẋi = fi(xi) + gi(xi)

N
∑

j=1

aijΓyj ,

yi = hi(xi), i = 1, 2, · · · , N,

(4)

or equivalently,

ẋ = f(x) + g(x) (A ⊗ Γ) y.
y = h(x).

(5)

The network (4) is said to achieve output synchronization if

lim
t→∞

(yi(xi(t)) − yj(xj(t))) = 0, i, j = 1, · · · , N (6)

Obviously, output synchronization is equivalent to the con-

vergence of x(t) to the output synchronization manifold:

M = {x | h1(x1) = h2(x2) = · · · = hN (xN )} .

Since we are interested in the problem of how to have

output synchronization by the passivity property, we make

the following assumption.

Assumption 2.1. As a dynamic control system, each node

of (1) is passive.

From this assumption and according to the KYP lemma

[27], there exist storage functions Vi(xi), which are positive

definite, such that

Lfi
Vi(xi) ≤ 0, (7)

Lgi
Vi(xi) = hT

i (xi). (8)

III. SYNCHRONIZATION CRITERION

In this section, we will establish a general output synchro-

nization criterion using the passivity property.

Theorem 3.1 (i) If A +AT is negative definite, then x(t)
converges to the set

ker(h) = {x | hi(xi) = 0, i = 1, 2, · · · , N},

which implies output synchronization;

(ii) If A+AT is semi-negative definite with a simple zero

eigenvalue, then, there exist constants αi, i = 1, 2, · · · , N
with

∑N

i=1 α2
i = 1 such that x(t) converges to the set

{x | αihj(xj) − αjhi(xi) = 0, i, j = 1, 2, · · · , N};

(iii) If A + AT has the zero row sum property and has N −
1 negative eigenvalues, then, x(t) converges to the output

synchronization manifold M.
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Proof. Choose V (x) =

N
∑

i=1

Vi(xi). Differentiating V

along the trajectory of the network (4) and using passivity

we have

2V̇ = 2

N
∑

i=1

Lfi
Vi + 2

N
∑

i=1

Lgi
Viui

≤ 2

N
∑

i=1

hT
i ui

= 2yT (A ⊗ Γ) y
= yT

(

(A + AT ) ⊗ Γ
)

y.

(9)

(i). Since A + AT is negative definite and Γ is positive

definite, (A+AT )⊗Γ is negative definite. Therefore, V̇ < 0
if h(x) 6= 0 and V̇ = 0 if and only if h(x) = 0. By Lasalle’s

Invariance Principle, x(t) converges to the set ker(h).
(ii). Choose a unitary matrix Φ = (Φ1, · · · , ΦN ) with its

columns Φi = (φ1i, φ2i · · · , φNi)
T such that

ΦT (A + AT )Φ = diag{λ1, · · · , λN} (10)

where λi are eigenvalues of A + AT satisfying

0 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λN . (11)

Let z = (ΦT ⊗ Im)y. Then, it follows from (9) that

2V̇ ≤ zT (ΦT ⊗ Im)((A + AT ) ⊗ Γ)(Φ ⊗ Im)z
= zT diag{λ1Γ, · · · , λNΓ}z

=

N
∑

i=2

λiz
T
i Γzi.

(12)

Thus, V̇ < 0 if (zT
2 , · · · , zT

N)T 6= 0, and V̇ = 0 if and only

if (zT
2 , · · · , zT

N )T = 0, which in turn results in









φ11Im ∗ · · · ∗
φ21Im ∗ · · · ∗
· · · · · · · · ·

φN1Im ∗ · · · ∗



















z1

0
...

0











=











φ11z1

φ21z1

...

φN1z1











(13)

Let αi = φi1. Thus, V̇ = 0 only if

αihj(xj) − αjhi(xi) = 0, i, j = 1, 2, · · · , N.

Applying Lasalle’s Invariance Principle again gives the re-

sult.

(iii). The zero row sum property of A + AT allows us

to choose Φ in (ii) with Φ1 = ( 1√
N

, 1√
N

, · · · , 1√
N

)T . Then

output synchronization follows from (ii).

Remark 3.2. When the interconnection is given by ui =
∑

j∈Ni
k(yj − yi), where k is a positive constant and Ni is

the set of nodes transmitting their outputs to the i-th node,

and if the graph representing the outer coupling topology is

balanced, then, output synchronization is achieved. There-

fore, the result of [5] is a special case of Theorem 3.1.

Corollary 3.3. If A + AT is negative definite and the

network (4), if viewed as a dynamical system, is zero-state

detectable, then the network (4) realizes state synchroniza-

tion.

Proof. Applying zero-state detectability to (9) immediately

produces state synchronization.

Corollary 3.4. If A + AT is irreducible, has the zero row

sum property and all off-diagonal entries are non-negative,

then, the network (4) achieves output synchronization.

Proof. Obvious.

Remark 3.5. We have global synchronization results in

the sense of global convergence in Theorem 3.1 if all the

storage functions Vi are radially unbounded.

IV. SYNCHRONIZATION BY SWITCHING

If the matrix A + AT is neither negative definite nor

semi-negative definite with the zero row sum property and

with a simple zero eigenvalue, we can not ensure output

synchronization from passivity. In this case, it is natural to

ask if passivity still plays an important role in checking

output synchronization. The answer is positive under certain

circumstances if we are given a number of applicable outer

coupling topologies such that with each of them output

synchronization cannot be guaranteed by passivity. More

precisely, if we are allowed to use l outer coupling matrices

Ak = (ak
ij)N×N , k = 1, 2, · · · , l, and to switch among

them and each Ak, if used alone, can not guarantee output

synchronization, output synchronization is still possible if

we choose the switching among these Ak properly. In this

section, we will show how to achieve output synchronization

by design the switchings. Of course, none of Ak is assumed

to satisfy (i) or (iii) in Theorem 3.1 because otherwise it will

be trivial to choose a constant switching law.

Theorem 4.1. If there exist constants βk ≥ 0, k =
1, · · · , l, such that A =

∑l

k=1 βkAk satisfies either (i)

or (iii), then output synchronization can be achieved by

switchings.

Proof. If A satisfies (i), the proof is obvious. We now

suppose A satisfies (iii). Using a similar argument as in the

proof of Theorem 3.1, we can easily show

yT ((A + AT ) ⊗ Γ)y = 0 ⇔ x ∈ M. (14)

Thus, for any x /∈ M,

l
∑

k=1

βkyT ((Ak+AT
k )⊗Γ)y = yT ((A+AT )⊗Γ)y < 0, (15)

which implies that for each y with x /∈ M, there exists at

least one k such that yT ((Ak + AT
k )⊗ Γ)y < 0. Design the

switching law as

σ = σ(h(x)) = arg min{hT (x)((Ak + AT
k ) ⊗ Γ)h(x)}.

(16)

Then,

V̇ ≤ hT (x)((Aσ + AT
σ ) ⊗ Γ)h(x) < 0, ∀x /∈ M. (17)

Once again, applying Lasalle’s Invariance Principle com-

pletes the proof.

When such a matrix A does not exist or is difficult to find,

we need to establish other output synchronization conditions.

To this end, we first extend the notion of completeness of a

family of functions [17] to completeness on a set.
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Definition 4.2. Let S = {s1(x), · · · , sp(x)} be a family of

functions defined on a subset Ω ⊂ Rn. S is called complete

on Ω if for any x ∈ Ω there exists at least one k satisfying

sk(x) ≤ 0. Moreover, S is called strictly complete on Ω if

sk(x) < 0.

Remark 4.3. The classic notion of completeness (see [17])

is a special case of the above definition when Ω = Rn \{0}.
Proposition 4.4. If the family of functions S =

{hT (x)((Ak + AT
k ) ⊗ Γ)h(x), k = 1, · · · , l} is strictly

complete on Rn\M, then output synchronization is achieved

by the switching law (16).

Proof. Obvious.

This proposition gives a principle of checking output syn-

chronization. In order to make this principle implementable,

we need to develop methods to check the strict completeness

For any fixed i, 1 ≤ i ≤ l, consider the nonlinear

programming problem

max wT ((Āi + ĀT
i ) ⊗ Γ)w

s.t. wT ((Āj + ĀT
j ) ⊗ Γ)w ≥ 0, 1 ≤ j ≤ l, j 6= i,

wT w = 1,
(18)

where w ∈ Rm(N−1),

Āi =











ai
22 ai

23 · · · ai
2N

ai
32 ai

33 · · · ai
3N

...
...

. . .
...

ai
N2 ai

N3 · · · ai
NN











,

which is the matrix obtained by deleting the first row and

the first column of the matrix Ai.

The output synchronization problem is closely related to

the nonlinear programming problem above, as shown in the

following theorem.

Theorem 4.5. Suppose all Ak+AT
k have the zero row sum

property. If for some i the nonlinear programming problem

(18) has no feasible solution or the maximum is negative

if a feasible solution exists, then, output synchronization is

achieved by the switching law (16).

Proof. For any y ∈ RmN , we have

y =











y1

y2

...

yN











=











y1

y1

...

y1











+

(

0
w

)

,

where yi ∈ Rm and w =











y2 − y1

y3 − y1

...

yN − y1











∈ Rm(N−1).

The zero row sum property ensures

yT ((Ak +AT
k )⊗Γ)y = wT ((Āk + ĀT

k )⊗Γ)w, k = 1, · · · , l.
(19)

Obviously, x ∈ M if and only if w = 0.

We split the proof into two cases.

Case 1: (18) has no feasible solution. In this case,
{

wT ((Āj + ĀT
j ) ⊗ Γ)w ≥ 0, 1 ≤ j ≤ l, j 6= i,

wT w = 1
(20)

has no solution, which means by normalizing w that
{

wT ((Āj + ĀT
j ) ⊗ Γ)w ≥ 0, 1 ≤ j ≤ l, j 6= i,

w 6= 0
(21)

has no solution. Therefore, for any w 6= 0 there exists at

least j such that

wT ((Āj + ĀT
j ) ⊗ Γ)w < 0. (22)

Applying (19) we know that for any x /∈ M there exist j
such that

hT (x)((Aj + AT
j ) ⊗ Γ)h(x) < 0, (23)

which indicates that S = {hT (x)((Ak + AT
k )⊗Γ)h(x), k =

1, · · · , l} is strictly complete on Rn \ M, and thus output

synchronization follows from Proposition 4.4.

Case 2: The maximum of (18) is negative. For any y =
h(x) with x /∈ M, if

yT ((Aj + AT
j ) ⊗ Γ)y ≥ 0, j 6= i, (24)

then (19) gives
{

wT ((Āj + ĀT
j ) ⊗ Γ)w ≥ 0, j 6= i,

w 6= 0.
(25)

Set w̄ = w
‖w‖ . Then,

{

w̄T ((Āj + ĀT
j ) ⊗ Γ)w̄ ≥ 0, j 6= i,

w̄T w̄ = 1.
(26)

The negative maximum of (18) guarantees

w̄T ((Āi + ĀT
i ) ⊗ Γ)w̄ < 0, (27)

which is equivalent to

wT ((Āi + ĀT
i ) ⊗ Γ)w < 0. (28)

According to (19), (28) implies

yT ((Ai + AT
i ) ⊗ Γ)y < 0, (29)

which in turn gives rise to the strict completeness of S =
{hT (x)((Ak +AT

k )⊗Γ)h(x), k = 1, · · · , l} on Rn \M, and

thus output synchronization follows from Proposition 4.4.

V. EXAMPLE

In this section, we give an example to validate the pro-

posed methods. Consider five coupled pendula as shown in

Fig 1.

The dynamics of isolated pendula are

ẋi1 = xi2,
ẋi2 + g

Li

sin(xi1) = ui, i = 1, 2, 3, 4, 5,

yi = xi2,
(30)

which are passive with the storage functions

Vi(xi) =
1

2
x2

i2 +
g

Li

(1 − cos(xi1)).
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Fig. 1. Coupled pendula.

Let Γ = 1, L1 = 1.05, L2 = 1.10, L3 = 1.15, L4 = 1.20,
L5 = 1.25 and

A =






























−2 0 1 −1 0 0 1 0 0 0

0 −3 −1 1 0 1 0 0 0 1

0 0 −2 0 1 0 0 0 1 0

0 0 1 −2 1 −1 0 1 0 0

0 −1 0 0 −2 0 0 0 1 0

0 0 1 0 0 −2 1 0 0 0

0 0 0 0 1 0 −3.5 1 0 1

0 0 0 1 0 0 1 −2.5 1 0

0 0 0 1 0 1 0 1 −5 1

0 0 0 0 0 0 0 0 1 −1.5































.

It is easy to see that A + AT < 0. Applying (i) of

Theorem 3.1. we know yi → 0. The simulation result is

shown in Fig.2. Now, we consider the same coupled pendula

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

y
i

Fig. 2. The outputs yi of non-switching case.

as Example 1 but with three switching topologies given by

A1 =































0 0 1 0 −1 0 0 0 0 0

0 −4 1 1 0 1 1 0 0 0

1 1 −2 0 0 0 0 0 0 0

0 1 0 −1 0 0 0 1 0 −1

−1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 −2 0 1 0 0

0 1 0 0 0 0 −2 1 0 0

0 0 0 1 1 1 1 −3 −1 0

0 0 0 0 0 0 0 −1 1 0

0 0 0 −1 0 0 0 0 0 1































,

A2 =































−1 0 0 1 0 0 0 0 0 0

0 −3 0 1 1 0 1 0 0 0

0 0 −1 1 0 0 0 0 0 0

1 1 1 −5 1 1 0 0 0 0

0 1 0 1 −3 1 0 −1 0 1

0 0 0 1 1 −3 0 0 1 0

0 1 0 0 0 0 −1 0 0 0

0 0 0 0 −1 0 0 1 0 0

0 0 0 0 0 1 0 0 −1 0

0 0 0 0 1 0 0 0 0 −1































,

A3 =































−3 0 1 1 0 1 0 0 0 0

0 −2 1 0 0 0 0 0 0 1

1 1 −2 0 0 0 0 0 0 0

1 0 0 1 −1 0 0 −1 0 0

0 0 0 −1 −1 0 1 0 0 1

1 0 0 0 0 −2 0 0 0 1

0 0 0 0 1 0 −2 0 1 0

0 0 0 −1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 −2 1

0 1 0 0 1 1 0 0 1 −4































.

Γ = 1.5, Li are the same as Example 1.

It is easy to show that if any topology is exploited alone,

the network does not output synchronize. A direct compu-

tation shows that the nonlinear programming (18) has the

negative maximum. By Theorem 4.5, the network achieves

output synchronization under the switching law (16), which

is depicted in Fig.3-4.
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Fig. 3. The outputs yi of the switched network.
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Fig. 4. The switching signal σ(t) of the switched network.

VI. CONCLUSIONS

A output synchronization criterion for dynamical networks

with non-identical nodes and with general outer coupling

topologies has been presented using the passivity property.

A switching strategy is developed for the case of multi-

topologies when none of the topologies alone may lead to

synchronization. The proposed conditions can be checked

by computing the sign of the optimal solution of a certain

nonlinear programming problem.

The idea of achieving synchronization by designing

switching laws based on the passivity property has first

appeared in this paper, which enlarges the possibility of

synchronizability even if each given outer coupling topology

cannot bring synchronization. Turning the synchronization

condition into a certain nonlinear programming problem

makes it possible to make use of the methods in operational

research.

Unlike for networks with identical nodes, we have known

little about behaviors of networks with non-identical nodes.

Effective approaches need developing to cope with such

networks. Passivity has proved useful but is still expected to

be able to deal with more problems in the area of dynamical

networks.
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