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Summary

Controlled Synchronization in Networks of Diffusively Coupled
Dynamical Systems

There are, at least, two crucial elements to be considered when studying synchro-
nization in networks of dynamical systems. First, the dynamics of the
individual systems; for instance, their input-output stability properties or their
degree of homogeneity. Secondly, the exchange of information among the sys-
tems, i.e., how the systems in the network communicate information about their
state to the systems they are connected to. This thesis studies the relation of these
two elements to the occurrence of synchronous behavior in networks of coupled
dynamical systems. Particularly, for some classes of systems, we investigate what
network structures and coupling functions lead to synchronization of the inter-
connected systems. Additionally, because of the time needed to transmit data
over the network, the use of networked communication to exchange information
among the systems results in unavoidable time-delays. We analyze the effect of
these networked-induced delays in the proposed synchronization schemes.

Firstly, we focus on synchronization in networks of linear time-invariant systems.
Each system in the network is assumed to be passive and detectable with respect
to the coupling variable (the measurable output). The systems are time-delayed
diffusively coupled, i.e., they are coupled through weighted time-delayed
differences of their outputs. Using the passivity property of the individual
systems and Lyapunov-Krasovskii functionals, we derive conditions which
ensure ultimate boundedness of the solutions of the coupled systems. Then,
using the detectability assumption, we prove that under some mild conditions
there always exists a region, referred to as the synchronization region, in the para-
meter space (coupling strength versus time-delay) such that if these parameters
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belong to the region, the systems synchronize. Next, we propose predictor-based
diffusive dynamic couplings to increase the time-delay that can be induced to the sys-
tems without compromising the synchronous behavior, i.e., by including
predictors in the couplings, we prove that the synchronization regions may be
increased. Additionally, we propose observer-based diffusive dynamic couplings to
extend the class of systems under study. We show that by including observers
in the loop, it is possible to remove the passivity assumption on the measurable
output as long as this holds with respect to a different output function.

Secondly, we extend some of these results for a class of nonlinear systems. The
notions of passivity and detectability of linear systems are replaced by
semipassivity and convergence of the nonlinear case. We do not assume
semipassivity plus convergence with respect to the measurable output, but this
is supposed to hold with respect to a different output function which is not di-
rectlymeasured. However, if there exists a nonlinear observerwhich estimates the
semipassive output from measurements of the available output, it can be used to
construct an observer-based diffusive dynamic coupling to interconnect the systems.
We develop a general tool for constructing the observer dynamics using ideas of
immersion and invariance. Sufficient conditions on the systems, the couplings, the
convergence rate of the observer, and the time-delays that guarantee boundedness
of the solutions and synchronization of the coupled systems are derived.

We also study the possible emergence of partial synchronization. Partial synchro-
nization is a phenomenon, in which some, at least two, systems in the network
synchronize with each other but not with every system in the network. Using
symmetries in the network, we identify linear invariant manifolds of the cou-
pled systems. If these manifolds are attracting, the systems in the network may
exhibit partial synchronization. We prove that a linear invariant manifold defined
by a symmetry in the network is attracting, if the interaction among the systems is
sufficiently strong and the rate of convergence of the observer is sufficiently fast.
Next, we present a result on network synchronization in the case when the mea-
surements of the outputs and the transmission of the controllers are subject to
different time-delays. Predictor-based diffusive dynamic couplings based on the con-
cept of anticipating synchronization are proposed to interconnect the systems. We
show that these couplings are capable of increasing the time-delay that can be in-
duced to the systems without compromising the synchronous behavior, i.e., by
including the predictors, it is possible to significantly increase the synchronization
region.

In the third part of the thesis, we present a set of experimental results on net-
work synchronization using static diffusive couplingswith time-delays. We employ
an experimental setup with electronic circuit realizations of the Hindmarsh-Rose
neuron model. Nevertheless, it is important to notice that in practical situations,



xiii

the dynamics of the systems in the network cannot be expected to be perfectly
identical. For instance, because the signals exchanged among the systems are con-
taminated with noise and/or there are small mismatches in the systems’ param-
eters. Because of these inherent imperfections, we can not expect that the differ-
ences between the states of systems converge to zero. It is necessary to allow for
a mismatch between them, which, of course, needs to be small enough in order
to consider that the systems are "practically synchronized". To this end, we intro-
duce the notion of practical (partial) synchronization, which states that the circuits
may be called (partially) synchronized if the differences between their outputs are
sufficiently small on a finite, long time-interval. First, practical synchronization of
twodiffusively coupled electronicHindmarsh-Rose circuits is discussed. Next, we
present three experimental studies on partial practical synchronization. Finally,
we experimentally study the relation between the conditions for synchronization
of symmetrically coupled systems and the network topology.



Chapter 1

Introduction

Abstract. The synchronization phenomenon, some historical notes, and practical
applications of synchronization are introduced first in this chapter. Then, the objectives
of the thesis, some technical preliminaries employed throughout the manuscript, and the
used mathematical framework are presented. The chapter also discusses the motivation
for this thesis and a detailed outline of the main contributions. The chapter ends with a list
of the author’s publications.

1.1 The Synchronization Phenomenon

The word synchronization is derived from the word “synchronous” which is origi-
nated from the Greek roots χρóνoς (chronos, meaning time) and σύν (syn, mean-
ing the same or common). Then, in a direct translation, “synchronous” means
“occurring at the same time”. Synchronization can be defined as a process in which
“events” keep happening simultaneously for an extended period of time [139]. The
emergence of synchronization in coupled dynamical systems is a fascinating topic
in various scientific disciplines ranging from biology, physics, and chemistry to
social networks and technological applications. The scientific interest in these
phenomena can be traced back to Christiaan Huygens’ seminal work "an odd kind
of sympathy" between pendulum clocks, cf. [54, 102], and it continues to fasci-
nate the scientific community to date. In 1665, the Dutch scientist, inventor of
the pendulum clock, Christiaan Huygens, reported on in-phase and anti-phase syn-
chronization of two pendulum clocks [54], see Figure 1.1. The description of the
experiment, together with Huygens’ explanation of the sympathy of the clocks is
remarkable, since, at that time, differential calculus was still in its infancy. It was
until the end of the 17th centurywhenNewton laid down the formal aspects of this
theory. Huygens explained that the beam to which the clocks are attached serves
as the medium for the possible emergence of anti-phase or in-phase synchroniza-

1



2 1 Introduction

Figure 1.1 Original drawing of Christiaan Huygens illustrating his experiments
with two pendulum clocks placed on a common support [54].

tion of the two pendulum clocks. Nowadays, a more accurate phrasing would be
that the beamprovides energy transfer from one clock to the other (and vice versa)
through the beam. It is interesting to remark at this point that even today a com-
plete mathematical theory describing the in-phase and anti-phase synchronous
behavior of the two pendulum clocks is still missing. Some difficulties in this
respect are the modeling of both the damping and the escapement mechanism
and the particular nature of the beam that should be modeled as being flexible,
thus making the overall model a combination of ordinary and partial differential
equations [95, 96, 97, 98].

From the time of Huygens on, synchronous behavior among coupled dynami-
cal systems has been encountered and investigated in many areas of science and
engineering. For instance, in biology, clusters of synchronized pacemaker neu-
rons regulating our heartbeat [101], synchronized neurons in the olfactory bulb
that allowus to detect anddistinguish amongodors [45], and our circadian rhythm,
which is synchronized to the 24-h day-night cycle [33, 145] are clear examples. In
the animal kingdom, synchronized motion of bird flocks and fish schools, thou-
sands of fireflies flashing simultaneously, synchronized attacks of killer whales,
and groups of Japanese tree frogs (Hyla japonica) showing synchronous behavior
in their calls are examples of synchronized collective animal behavior, see for instance
[13, 62, 102, 139]. Animals in groups employ decentralized strategies and have
limitations on sensing, computation, and actuation. Yet, at the level of the group,
they are known to manage a variety of challenging tasks quickly, robustly, accu-
rately, and adaptively in uncertain and changing environments. As pointed out
by the authors in [62], nonlinear dynamics and control theory can be used to rigo-
rously investigate mechanisms of feedback and interaction in high-performing
animal groups. These tools can be translated into adaptive control laws for en-
gineered applications. The study of synchronized motion in networks of indivi-
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dual mobile agents is receiving a rapidly growing interest in engineering [92, 103,
113, 123, 128]. Particularly, in [103, 123, 128], the authors address the platooning
problem, i.e., the problem of designing intelligent vehicle/highway systems that
can significantly increase safety and highway capacity. The general objective of
the platooning problem is to pack the driving vehicles together as tightly as po-
ssible (with synchronized velocity, acceleration, braking, and steering) in order
to increase traffic flow while preventing amplification of disturbances through-
out the string. There are also several research groups studying synchronization
in robotics, where multiple robots carry out tasks that cannot be achieved by a
single one. For instance in [85, 116], the authors study synchronization of teleope-
rated systems, where one master system guides a slave system along the desired
paths. Teleoperation is of use in various settings and contexts, like for instance,
long distance tasks (e.g., cleaning at unsafe or inaccessible places or exploration at
Mars), where the communication time-delay seriously challenges simple control
schemes [38]. In other teleoperated tasks the challenge is extended with typical
aspects regarding the human (at the master robot) and the environment (at the
slave robot) [38, 50, 66]. In industrial applications like a distribution center or a
luggage handling system at an airport, a (virtual) supervisor may assign tasks at
a high level, and the holons, or robots in the distribution center have to arrange
themselves in a synchronous manner such that the tasks are executed. Building
such an environment, with sufficient room for optimal or sub-optimal perfor-
mance, is an extremely interesting and challenging objective [9, 10, 11]. The range
of engineering examples of network synchronization reaches beyond coordinated
motion. For instance, control of the directional sensitivity of smart antennas [53]
and synchronization of microelectromechanical systems (MEMS), which has pro-
mising applications such as neurocomputing [52] and improvements of signal-to-
noise ratios [12].

Other applications are potentially foreseen in the system of systems context ofwhich
energy management (synchronization in power networks [39]) and the internet
are a few examples. The goal in applications in such cases is often to achieve syn-
chronous behavior with preferably a decentralized control structure where only
neighbors’ information is used in the feedback. Indeed, synchronous behavior of
such a system of systems can be realized as a network synchronization problem. A
key ingredient is that the systems in the network “communicate” information about
their state to the systems they are connected to. This exchange of informationmay
ultimately result in synchronization. The question is how the systems in the net-
work should be connected and respond to the received information to achieve
synchronous behavior. In other words, which network structures and what cou-
pling functions lead to synchronization of the systems? Several more examples
of synchronous behavior in physics, biology, and engineering can be found in, for
instance, [27, 102, 139, 145] and references therein.
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1.2 Controlled Synchronization

In this section, we formulate a coordinate-dependent definition of synchroniza-
tion. This definition is a particular case of the coordinate-free definition given in
[26]. Consider a network consisting of k input-output dynamical systems
described by the following ordinary differential equations

Σyi :

{
ẋi = fi(xi, ui, t),

yi = hi(xi, t), i = 1, . . . , k,
(1.1)

with state xi ∈ Rni , input ui ∈ Rmi , output yi ∈ Rsi , and functions fi : Rni ×
Rmi ×R→ Rni and hi : Rni ×R→ Rsi . The interconnection among the systems
is given through the input terms ui. It is assumed that these terms are the outputs
of some dynamical systems representing the dynamics of the couplings, i.e.,

Σui :

{
η̇i = Ni(η1, . . . , ηk, y1, . . . , yk, t),

ui = Ui(η1, . . . , ηk, y1, . . . , yk, t), i = 1, . . . , k,
(1.2)

with state ηi ∈ Rpi , and functionsNi : Rp1×. . .×Rpk×Rs1×. . .×Rsk×R→ Rmi

and Ui : Rp1 × . . .×Rpk ×Rs1 × . . .×Rsk ×R→ Rmi . These dynamic couplings
must satisfy the communication structure of the network, i.e., the functions Ni(·)
and Ui(·) can only be constructed using the outputs of systems that are directly
connected to system i in the communication network, see Figure 1.2.

Definition 1.1. The k systems (1.1) interconnected through the dynamic couplings (1.2)
are said to asymptotically synchronize (or simply synchronize) if the solutions of the
coupled systems are well defined and xi(t)→ xj(t) as t→∞ for all i, j.

At this point, we distinguish two possibilities. On the one hand, if the coupling
functions Ni(·) and Ui(·) are given, then the synchronization problem is one of
analysis, i.e., for specific coupling functions, we study the possible emergence of
synchronization of the coupled systems (1.1),(1.2). On the other hand, a more
general case is when one should synthesize control algorithms to ensure synchro-
nization. Designing coupling functions and/or network structures that lead to
synchronization of the coupled systems is referred to as controlled synchronization.

Controlled synchronization has been extensively investigated in the literature. In
particular, the study of synchronization in networks of diffusively coupled systems
has received a lot attention, see, e.g., [20, 22, 23, 47, 91, 104, 132, 147, 151]. The
k systems (1.1) are said to be diffusively coupled, if they interact through weighted
differences of the form

ui = γ
∑
j∈Ei

aij(yj − yi), i = 1, . . . , k, (1.3)
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Figure 1.2 Network of coupled input-output dynamical systems.

where yj denotes the output of a system j that is connected to system i, γ is a
positive constant referred to as the coupling strength, aij ≥ 0 are the weights of
the interconnections, and Ei denotes the set of all systems j that are connected to
system i. Moreover, since the coupling strength is encompassed in the constant γ,
it is often assumed without loss of generality that maxi∈I

∑
j∈Ei aij = 1.

Diffusive interaction is an important type of coupling. It is found in many fields
of science and technology, e.g., networks of coupled neurons [24, 63, 93, 100, 126,
146], networks of biological systems [13, 33, 45, 62, 101, 139, 145], coupled
mechanical systems [85, 86, 87, 116, 149], and electrical systems [12, 52, 82, 117].
For this reason, there are several technical results about synchronization in
networks of diffusively coupled dynamical systems. For instance, in [19, 20, 22], the
relation between synchronization in networks of coupled nonlinear systems and
the network topology is investigated. A general method to determine the mini-
mum coupling strength needed to achieve global synchronization is proposed.
The derived bounds are explicitly linked with the average path length of the
associated graph. In [47, 104, 147], the authors study synchronous behavior in
diffusively coupled networks as a consequence of the inherent dissipation on the
systems and the couplings. More recently, in [55], the output synchronization
problem for networks of diffusively coupled heterogeneous nonlinear systems is
considered. The authors apply nonlinear output regulation theory to force the
output of each system of the network to robustly track the output of a
prescribed nonlinear exosystem. In [35], the role of the internal model princi-
ple is investigated for the study of synchronization of relative-degree-one non-
linear systems. Assuming that the systems are incrementally (output-feedback)
passive, the authors propose internal-model-based distributed control lawswhich
guarantee output synchronization to an invariantmanifold driven by autonomous
synchronized internal models. The synchronization problem for a class of linear
time-invariant systems interacting on time-varying topologies and interconnected
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through observer-based diffusive dynamic couplings is considered in [119, 144].
Using incremental dissipativity theory, the authors in [49] derive conditions on
the coupling strength to achieve synchronization in networks of systems having a
cyclic feedback structure. The method takes advantage of the incremental passi-
vity properties of the subsystems in the network to reformulate the synchroniza-
tion problem as one of achieving incremental stability by coupling. For a broad
class of coupled nonlinear oscillators, in [40], a novel condition on the coupling
functions ensuring network synchronization is presented. This condition can be
stated in terms of the parameters of the individual subsystems and the topology
of the underlying network. In [121], the authors develop analytical and numerical
conditions to determine whether limit cycle oscillators synchronize in diffusively
coupled networks. Two classes of systems are considered: reaction diffusion PDEs
with Neumann boundary conditions, and compartmental ODEs, where compart-
ments are interconnected through diffusion terms with adjacent compartments.
The authors provide two time-scale averaging methods for certifying stability of
spatially homogeneous time-periodic trajectories in the presence of sufficiently
small or large diffusion and develop methods using structured singular values
for the case of intermediate diffusion.

There are also some results addressing the problem of controlled synchroniza-
tion of nonlinear systems interconnected through diffusive time-delayed couplings.
This type of couplings arise naturally for interconnected systems since the trans-
mission of signals can be expected to take some time. For instance, in [86, 87], the
authors propose an adaptive diffusive coupling which solves the network synchro-
nization problem for dynamical systems described by Euler-Lagrange equations
and subject to time-delays. The authors in [91] give sufficient conditions for net-
work synchronization in terms of Linear Matrix Inequalities (LMIs) for a class of
nonlinear systems interconnected through Pyragas-type [110] time-delayed cou-
plings. In [132], the authors consider the problem of network synchronization of
diffusively time-delayed coupled semipassive systems. They prove that under some
mild conditions, there always exists a region S in the parameter space (coupling
strength γ versus time-delay τ ) such that if (γ, τ) ∈ S, the systems synchronize.
We refer the interested reader to [102, 140], the special issues [1, 2, 3, 4, 5, 6, 7, 8],
and the references therein, where more recent results about controlled synchro-
nization in networks of coupled dynamical systems can be found.
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1.3 Objectives

This thesis aims to provide new insights into the study of synchronization in
networks of coupled dynamical systems by means of analytical, numerical, and
experimental analyses. Particularly, the purpose is to exploit some mathematical
tools available in the literature to obtain results that are beyond the current under-
standing. The general objective of the thesis is to provide answers to the following
questions: Given a set of input-output dynamical systems interacting on graphs
with general topologies, what network structures and coupling functions lead to
synchronization of the interconnected systems? Additionally, what is the effect of
possible network-induced delays in the proposed synchronization schemes? And,
is it possible to modify such an effect in order to increase robustness against time-
delays in the network?

The authors in [104, 108] introduce a mathematical framework to analyze syn-
chronization in networks of diffusively coupled systems. In this framework, it is
assumed that each system has a property called semipassivity. A semipassive
system is a system whose state trajectories remain bounded provided that the
supplied energy is bounded1. Under this assumption, the authors prove that
the solutions of diffusively coupled semipassive systems are ultimately bounded.
Moreover, if the internal dynamics associated with the semipassive outputs are
exponentially convergent2, then there always exists a threshold such that if the
coupling strength exceeds this threshold, the systems synchronize. This thesis
extends the ideas presented in [104, 108]. Particularly, using the semipassivity-
based framework, we study cases where the static diffusive couplings considered
in [104, 108] fail to induce synchronization in networks of coupled systems. We
propose different classes of couplings (both static and dynamic) to solve some par-
ticular problems of controlled synchronization.

The first situation to be considered is when the semipassive outputs are not
available for feedback. If the measurable outputs are different state functions
which do not have the desired properties (semipassivity and exponentially
convergent internal dynamics), the results presented in [104, 108] cannot be
applied. The first particular objective of the thesis is to design coupling functions
that are capable of inducing network synchronization in this case. Such couplings
must be constructed using the measurable non-semipassive outputs, the network
structure, and the possible network-induced delays. On the one hand, general
tools for constructing these coupling functions should be provided. On the other
hand, we ought to guarantee that the solutions of the coupled systems exist and
are ultimately bounded.

1A formal definition of semipassivity is presented in Section 1.4.2.
2Details are provided in Section 1.4.3.
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The second objective is to design couplingswhichmay enhance robustness against
time-delays of the interconnected systems, i.e., these couplings must be
capable of increasing the amount of time-delay that can be induced to the systems
without compromising the synchronous behavior. We study the case when the
measurements of the outputs and the transmission of the controllers are subject
to different time-delays. The coupling functions must predict the future values
of the semipassive outputs to compensate for the network-induced delays. We
should guarantee that the designed couplings lead to ultimately bounded solu-
tions of the interconnected systems.

Last but not least, the third particular objective is to illustrate some theoretical
results by means of an experimental study. Particularly, in networks of diffusively
time-delayed coupled semipassive systems, it is desired to test the theoretical results
about full synchronization, partial synchronization, and synchronization in relation to
the network topology presented in [132], [133], and [130], respectively. The goal
is to verify the predictive value of these results using an experimental setup built
around electronic circuit realizations of the Hindmarsh-Rose neuron model.
However, the dynamics of the circuits cannot be expected to be perfectly iden-
tical. For instance, because the signals exchanged among the circuits are conta-
minated with noise and/or there are small mismatches in the circuits’ compo-
nents. Because of these inherent imperfections, we cannot expect that the cir-
cuits perfectly synchronize. It is necessary to allow for a mismatch between them,
which, of course, needs to be small enough in order to consider that the circuits are
"practically synchronized". The experiments with networks of coupled Hindmarsh-
Rose circuits shall indicate when the aforementioned theoretical results, derived
for identical systems and without any noise, (fail to) have sufficient predictive
value in practice.

1.4 Mathematical Preliminaries and Framework

In this section, the notation, some definitions, and the mathematical framework
used throughout the thesis are presented. Particularly, the notions of semipassivity,
convergent systems, some basic terminology of graph theory, and the class of systems
under study are introduced.

1.4.1 Notation

Unless otherwise stated, throughout this thesis the following notation is used:
The symbol R>0 (R≥0) denotes the set of positive (nonnegative) real numbers.
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Likewise, the symbol C>0 (C≥0) stands for the set of complex numbers with posi-
tive (nonnegative) real parts. The Euclidian norm in Rn is denoted simply as | · |,
|x|2 = xTx, where T defines transposition. The notation col(x1, ..., xn) stands
for the column vector composed of the elements x1, ..., xn. This notation is also
used in case the components xi are vectors. The induced norm of a matrix A ∈
Rn×n, denoted by ‖A‖, is defined as ‖A‖ = maxx∈Rn,|x|=1 |Ax|. The n×n identity
matrix is denoted by In or simply I if no confusion can arise. Likewise, n × m
matrices composed of only ones and only zeros are denoted as 1n×m and 0n×m,
respectively, or simply 1 and 0 when their dimensions are evident. A function
V : X → R>0 defined on a neighborhoodX ofRnwith 0 ∈ X is positive definite if
V (x) > 0 for all x ∈ X\{0} and V (0) = 0, and it is radially unbounded if X = Rn.
If V (x)→∞ as |x| → ∞, then V (·) is called proper. If a quadratic form xTPxwith
a symmetric matrix P = PT is positive definite, then P is called positive definite.
For positive definite matrices, we use the notation P > 0; moreover, P > Qmeans
that the matrix P −Q is positive definite. The spectrum of a matrix A is denoted
by spec(A). For any two matrices A and B, the notation A ⊗ B (the Kronecker
product) stands for the matrix composed of submatrices AijB, i.e.,

A⊗B =


A11B A12B · · · A1nB

A21B A22B · · · A2nB
...

...
. . .

...
An1B An2B · · · AnnB

 ,

where Aij , i, j ∈ {1, ..., n}, stands for the ijth entry of the n × n matrix A. Let
X ⊂ Rn and Y ⊂ Rm. The space of continuous functions from X to Y is denoted
by C(X ,Y). If the functions are (at least) r ≥ 0 times continuously differentiable,
then it is denoted by Cr(X ,Y). If the derivatives of a function of all orders (r =∞)
exist, the function is called smooth and if the derivatives up to a sufficiently high
order exist the function is named sufficiently smooth. Time-delayed signals are
denoted as x(t)τ = x(t − τ) with time-delay τ ∈ R≥0. For simplicity of notation,
we often suppress the explicit dependence of time t.

1.4.2 Semipassive Systems

The results presented in this thesis follow the same research line as [104, 108],
where sufficient conditions for synchronization in networks of diffusively coupled
semipassive systems are derived. Consider the system

Σ :

{
ẋ = f(x, u),

z = h(x),
(1.4)

with state x ∈ Rn, input u ∈ Rm, output z ∈ Rm, and sufficiently smooth
functions f : Rn ×Rm → Rn and h : Rn → Rm.
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(a) (b)

Figure 1.3 (a) Connected graph. (b) Strongly connected graph.

Definition 1.2. [108]. The dynamical system (1.4) is called Cr-semipassive if there exists
a nonnegative function V ∈ Cr(Rn,R≥0), x 7→ V (x), called the storage function, such
that V̇ ≤ zTu − H(x), where the function H ∈ C(Rn,R) is nonnegative outside some
ball, i.e., ∃ ϕ > 0 s.t. |x| ≥ ϕ → H(x) ≥ %(|x|), for some continuous nonnegative
function %(·) defined for |x| ≥ ϕ. If the function H(·) is positive outside some ball, then
the system (1.4) is said to be strictly Cr-semipassive.

Remark 1.3. System (1.4) is Cr-passive ( strictly Cr-passive ) if it is Cr-semipassive
(strictly Cr-semipassive) with H(·) being positive semidefinite (positive definite).

In light of Remark 1.3, a (strictly) Cr-semipassive system behaves like a (strictly)
passive system for large |x(t)|. From a physical point of view, one may think of
a semipassive system as a passive system with a limited amount of free energy.
The class of strictly semipassive systems includes, e.g., the chaotic Lorenz system
[104], the van der Pol oscillator [81], and many models that describe the action
potential dynamics of individual neurons [136].

1.4.3 Convergent Systems

In the framework considered in [104, 108] (and also in this thesis), it is assumed
that the internal dynamics of each subsystem in the network is a convergent
system. Consider the system (1.4) and suppose f(·) is locally Lipschitz in x, u(·) is
piecewise continuous in t, and takes values on some compact set u ∈ U ⊆ Rm.

Definition 1.4. [37]. System (1.4) is said to be convergent if and only if for any bounded
signal u(t) defined on the whole interval (−∞,+∞) there is a unique bounded globally
asymptotically stable solution x̄u(t) defined in the same interval for which it holds that,
limt→∞ |x(t)− x̄u(t)| = 0, for all initial conditions.
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For a convergent system, the limit solution is solely determined by the external
excitation u(t) and not by the initial condition. A sufficient condition for system
(1.4) to be convergent obtained by Demidovich in [37] and later extended in [94]
is presented in the following proposition.

Proposition 1.5. (Demidovich Condition [37, 94]). If there exists a positive definite
matrix P ∈ Rn×n such that all the eigenvalues λi(Q) of the symmetric matrix

Q(x, u) =
1

2

(
P

(
∂f

∂x
(x, u)

)
+

(
∂f

∂x
(x, u)

)T
P

)
, (1.5)

are negative and separated from zero, i.e., there exists a constant c ∈ R>0 such that
λi(Q) ≤ −c < 0, for all i ∈ {1, ..., n}, u ∈ U , and x ∈ Rn, then system (1.4) is
globally exponentially convergent. Moreover, for any pair of solutions x1(t), x2(t) ∈ Rn
of (1.4), the following is satisfied

d

dt

((
x1 − x2

)T
P
(
x1 − x2

))
≤ −α |x1 − x2|2 ,

with constant α := c
λmax(P ) and λmax(P ) being the largest eigenvalue of the symmetric

matrix P .

1.4.4 Communication Graphs

Given a set of interconnected systems, the communication topology is encoded
through a communication graph. The convention is that system i receives infor-
mation from system j if and only if there is a directed link from node j to node i in
the communication graph. Let G = (V, E , A) denote a weighted digraph (directed
graph), where V = {v1, v2, ..., vk} is the set of nodes, E ⊆ V ×V is the set of edges,
andA is theweighted adjacencymatrixwith nonnegative elements aij . The neigh-
bors of vi is the set of directed edges to a node vi and it is denoted as Ei. If the graph
does not contain self-loops, it is called simple. If two nodes have a directed edge
in common, they are called adjacent. Assume that the network consists of k nodes,
then the adjacency matrix A ∈ Rk×k := aij with aij > 0, if {i, j} ∈ E and aij = 0

otherwise. We also introduce the degree matrix D ∈ Rk×k := diag{d1, ..., dk} with
di =

∑
j∈Ei aij , and L := D − A, which is called the Laplacian matrix of the graph

G, see [29] for further details. In order to ensure that pieces of information may
reach all nodes, the graph needs to be connected in some appropriate sense. Then,
some notions of connectivity are introduced.

Definition 1.6. A path from node v1 ∈ V to node vθ ∈ V in a graph G is a sequence
{v1, ..., vθ} with θ > 1 of distinct nodes such that (vi, vi+1) ∈ E , i = {1, ..., θ − 1}. The
length of the path is θ − 1.
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Existence of a path from node v1 ∈ V to node vθ ∈ V in some graph G implies that
information can propagate from system v1 to system vθ.

Definition 1.7. A graph G = (V, E , A) is called connected, if its set of nodes V contains
at least one specific node v, called a centroid of G, from which information can propagate
to all other nodes along paths in G. It is called strongly connected, if any node v ∈ V is a
centroid of G, i.e., there are paths connecting any two nodes.

Proposition 1.8. [29, 129]. The Laplacian matrix L ∈ Rk×k of a connected graph G
has an algebraically simple eigenvalue λ1 = 0 with corresponding eigenvector 1k×1 and
all the other eigenvalues have positive real parts. Furthermore, if the graph G is strongly
connected, then the left eigenvector ν corresponding to the zero eigenvalue of L has strictly
positive real entries, i.e., νTL = 0 with νi > 0 for all i.

Definition 1.9. An independent strongly connected component (iSCC) of a directed
graph G = (V, E , A) is an induced subgraph G̃ = (Ṽ, Ẽ) which is maximal, subject to
being strongly connected, and satisfies (v, ṽ) /∈ E for any v ∈ V\Ṽ and ṽ ∈ Ṽ . Note that
there is no edge in E with tail outside Ṽ and head in Ṽ .

The fact that there is no edge in E with tail outside Ṽ and head in Ṽ means that the
systems represented by the nodes within the iSCC are not influenced by systems
represented by nodes outside the iSCC. In order to illustrate the previous defini-
tions, consider the graph depicted in Figure (1.3a). This graph is connected with
centroid v1, but it is not strongly connected since v1 is the only centroid. How-
ever, adding a single edge from node v2 to node v1 makes the resulting graph
(1.3b) strongly connected. Moreover, the iSCC in graph (1.3a) is just v1 while in
(1.3b) is the graph itself. Throughout this thesis, depending of the problem being
tackled, it is assumed that the graph G encoding the communication topology is
either connected or strongly connected.

1.4.5 Mathematical Framework

This section introduces the class of systems to be considered in this thesis. In
particularly, the necessary input-output properties of each system in the network
are specified. Consider k identical nonlinear systems of the form

ẋi = f(xi) +Bui, (1.6)
zi = Cxi, (1.7)
yi = Nxi, (1.8)

with i ∈ I := {1, ..., k}, state xi ∈ Rn, input ui ∈ Rm, semipassive output zi ∈ Rm,
measurable output yi ∈ Rs, sufficiently smooth function f : Rn → Rn, matrices
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C,N, andB of appropriate dimensions, and thematrixCB ∈ Rm×m being similar
to a positive definite matrix. It is assumed that:

(H1.1) Each system (1.6),(1.7) is strictly C1-semipassive with input ui, output zi,
and radially unbounded storage function V (xi).

Then, there exists a globally defined coordinate transformation such that sys-
tems (1.6),(1.7) can be written in the following normal form, (this transformation is
explicitly computed in [108]),

ζ̇i = q(ζi, zi), (1.9)
żi = a(ζi, zi) + CBui, (1.10)

with internal state ζi ∈ Rn−m and sufficiently smooth functions q : Rn−m×Rm →
Rn−m and a : Rn−m ×Rm → Rm. It is further assumed that:

(H1.2) The internal dynamics (1.9) is an exponentially convergent system, i.e., there
is a positive definite matrix P ∈ R(n−m)×(n−m) such that the eigenvalues of the
symmetric matrix

Q(ζi, zi) =
1

2

(
P

(
∂q

∂ζi
(ζi, zi)

)
+

(
∂q

∂ζi
(ζi, zi)

)T
P

)
, (1.11)

are uniformly negative and bounded away from zero for all ζi ∈ Rn−m and
zi ∈ Rm.

Remark 1.10. Assumption (H1.2) is employed to ensure that the internal states ζi
asymptotically synchronize whenever the semipassive outputs zi asymptotically synchro-
nize. Indeed, there are some other methods to verify this, for instance, contraction theory
[68], Lyapunov function approach to incremental stability [15], the quadratic (QUAD)
inequality approach (a Lipschitz-like condition) [36], and differential dissipativity [43],
which are all concepts that are closely related to notion of convergent systems [94] that we
use here.

We also refer the interested reader to Refs. [25, 36], where a fairly detailed com-
parison among some of these concepts can be found.

As mentioned before, the mathematical framework considered here is based on
the one introduced in [104, 108], where synchronization in networks of diffusively
coupled semipassive systems with exponentially convergent internal dynamics is
studied. The authors in [104, 108] present sufficient conditions ensuring that the
solutions of the coupled semipassive systems are ultimately bounded and asymp-
totically synchronize for sufficiently strong coupling. The main result of [108] can
be summarized in the following theorem.
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Theorem 1.11. [108]. Consider k identical systems (1.6),(1.7) interconnected on a
simple strongly connected graph through the diffusive static coupling

ui = γ
∑
j∈Ei

aij(zj − zi), (1.12)

with i ∈ I := {1, . . . , k}, coupling strength γ ∈ R≥0, interconnection weights
aij = aji ∈ R≥0 for all i, j ∈ I, and Ei being the set of neighbors of system i. Let
(H1.1) be satisfied and assume that:

(H1.3) There exists a positive definite function W ∈ C2(Rn−m,R>0) such that for all
ζi, ζj ∈ Rn−m and zi ∈ Rm there is a constant α′ ∈ R>0 such that

∇W(ζi − ζj)T (q(ζi, zi)− q(ζj , zi)) ≤ −α′ |ζi − ζj |2 . (1.13)

Then, the solutions of the coupled systems are ultimately bounded and there exists a
positive constant γ′ such that if γλ2(L) > γ′, where λ2(L) denotes the smallest nonzero
eigenvalue of the symmetric Laplacian matrix, there exists a (globally) asymptotically
stable subset of the diagonal set

M := {x := col(x1, . . . , xk) ∈ Rkn|xi = xj ,∀ i, j ∈ I}.

Remark 1.12. The notation γaij for the "effective" coupling strength (between systems i
and j) looks a bit cumbersome at first sight. One might have expected simply γij instead.
The reason to use this notation is that, in this thesis, the networks are supposed to be
given, i.e., the weights aij are supposed to be fixed and known. Then, for these fixed aij ,
conditions for synchronization are expressed in terms of the coupling strength γ.

Proposition 1.13. [94]. If the internal dynamics (1.9) satisfies (H1.2) for some positive
definite matrix P ∈ R(n−m)×(n−m) and constant α ∈ R>0, then (H1.3) in Theorem 1.11
is satisfied withW(ζi − ζj) = (ζi − ζj)TP (ζi − ζj) and α′ = α.

The result stated in Theorem 1.11 amount to the following. Provided that (H1.1)
and (H1.3) (or (H1.2)) are satisfied, the network topology is strongly connected
and simple, and the coupling strength is sufficiently large, the solutions of the
k diffusively coupled systems enter a compact invariant set in finite time and
asymptotically synchronize. It is important to note that (H1.1) and (H1.3) are
independent of the network. This implies that systems satisfying assumptions
(H1.1) and (H1.3) can synchronize and this result does not depend of the specific
network topology. Theorem 1.11 states that the systems synchronize if γλ2(L)

is sufficiently large. Here the network topology plays a role since λ2(L) denotes
the smallest nonzero eigenvalue of the Laplacian of the network. The smallest
nonzero eigenvalue of the Laplacian matrix is also known as the algebraic
connectivity of the network [42].
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1.5 Thesis Overview and Contributions

This thesis extends the ideas presented in [104, 108]. Particularly, using the
semipassivity based framework introduced in Section 1.4.5, we study some cases
where the result stated in Theorem 1.11 fails to provide a complete answer about
the occurrence of synchronization in networks of coupled systems. There are
some results in this direction already. For instance, in [129, 132], the authors ana-
lyze the case when the diffusive static coupling (1.12) is corrupted with network-
induced time-delays. In other words, they tackle the problem of controlled net-
work synchronization of semipassive systems interconnected through diffusive
static time-delayed couplings. In the same spirit, in this thesis, we propose different
classes of diffusive couplings (both static and dynamic) to solve some particular
problems of controlled synchronization.

In Chapter 2, we consider the problem of controlled synchronization in networks
of identical linear time-invariant systems of the form

ẋi = Axi +B1ui +B2ω, (1.14)
yi = C1xi, (1.15)
zi = C2xi, (1.16)

with i ∈ I = {1, ..., k}, state xi ∈ Rn, (measured) output yi ∈ Rs, passive output
zi ∈ Rm, input ui ∈ Rm, matrices A,B1, B2, C1, and C2 of appropriate dimen-
sions, and the matrix C2B1 being similar to a positive definite matrix. The sys-
tems are driven by some piecewise continuous bounded signal ω(t). This signal
acts as either an external force or a reference signal that is applied to all the sys-
tems in the network. System (1.14),(1.16) is a particular form of system (1.6),(1.7)
with f(xi) = Axi,C = C2, and the addition of the extra termB2ω(t). Each system
in the network is assumed to be passive and detectablewith respect to the coupling
variable zi = C2xi. First, the systems are interconnected through static time-delayed
couplings of the form

ui = γ
∑
j∈Ei

aij(z
τ
j − zi), (1.17)

ui = γ
∑
j∈Ei

aij(z
τ
j − zτi ), i ∈ I, (1.18)

where τ ∈ R>0 denotes the finite time-delay, ui and zτi := zi(t − τ) are the
input and the time-delayed passive output of the system i, respectively, zτj is the
time-delayed passive output of system j to which system i is connected, γ ∈ R≥0

denotes the coupling strength, and aij ∈ R≥0 are the interconnection weights. It
is not necessarily assumed that aij = aji. Although the systems are linear and
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time-invariant, the signal ω(t) may lead to complex oscillatory behavior without
coupling. Due to this external signal and the time-delays, it is not immediate
that the closed-loop system possesses bounded solutions. Using the passivity
property of the individual systems and Lyapunov-Krasovskii functionals, we de-
rive conditions which ensure ultimate boundedness of the solutions of the coupled
systems. Then, using the detectability assumption of the pair (A,C2), we prove
that under some mild conditions there always exists a region S, referred to as the
synchronization region, in the parameter space (coupling strength γ versus time-delay
τ ) such that if γ, τ ∈ S, the coupled systems asymptotically synchronize. Next, we
propose predictor-based diffusive dynamic couplings to increase the time-delay that
can be induced to the systems without compromising the synchronous behavior,
i.e., by including predictors in the couplings, we prove that the synchronization
region S may be increased. In the results mentioned above, it is assumed that zi
(the passive output) is available for feedback. However, if the measurable output
is a different state function yi = C1xi, which does not have the desired passivity
properties, these results do not hold. Nevertheless, if the pair (A,C1) is detectable,
there exists an observer which reconstructs the retarded passive output zτi from
measurements of yτi . Then, an observer-based diffusive dynamic coupling which only
depends on the time-delayed measurable output yτi can be constructed to inter-
connect the systems. The main results are illustrated by computer simulations.
The contents of this chapter are published in [78].

In Chapter 3, for the nonlinear systems (1.6)-(1.8), we extend some of the results
presented in Chapter 2. In the result stated in Theorem 1.11, it is assumed that
the variables zi that render the internal dynamics convergent, and for which each
system is strictly C1-semipassive is available for feedback. Therefore, if the
measurable output is a different state function yi = Nxi ∈ Rs, which does not
have the desired properties, Theorem 1.11 cannot be applied. However, as in
the linear case, if there exists a nonlinear observer which reconstructs zi from
measurements of yi, then diffusive dynamic couplings which only depend on the
measurable outputs yi could be constructed to interconnect the systems. Such
couplings are dynamical systems of the form

η̇i = l(ηi, yi, ui), (1.19)
ẑi = ψ(ηi, yi), (1.20)
ui = γ

∑
j∈Ei

aij (ẑj − ẑi) , (1.21)

with i ∈ I, observer state ηi ∈ Rp, p ≥ n − s, input ui ∈ Rm, measurable
output yi ∈ Rs, estimated semipassive output ẑi ∈ Rm, sufficiently smooth
functions l : Rp × Rs × Rm → Rp and ψ : Rp × Rs → Rm, coupling strength
γ ∈ R≥0, and interconnectionweights aij ∈ R≥0. The dynamic diffusive coupling
(1.19)-(1.21) is the combination of a nonlinear observer and an estimated version
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of the diffusive static coupling (1.12). Here, the observer is assumed to be given;
therefore, the synchronization problem in networks of semipassive systems cou-
pled through (1.19)-(1.21) is one of analysis. We derive sufficient conditions on the
systems to be interconnected, the convergence rate of the observer, and the coupling
strength γ such that the solutions of the coupled systems are uniformly bounded
and synchronize. The results are illustrated by computer simulations of coupled
FitzHugh-Nagumo neural oscillators. The contents of this chapter are published
in [77].

In Chapter 4, we address and solve the synthesis part of a more general setting.
Using ideas of immersion and invariance introduced in [17], a general tool for
constructing the nonlinear observer (1.19),(1.20) is presented. Moreover, the
effect of network-induced time-delays is also analyzed. We propose observer-based
diffusive time-delayed couplings to interconnect the systems. Particularly, we
propose dynamic couplings of the form

η̇i = l(ηi, yi, ui), (1.22)
ẑi = ψ(ηi, yi), (1.23)
ui = γ

∑
j∈Ei

aij
(
ẑτj − ẑi

)
, (1.24)

ui = γ
∑
j∈Ei

aij
(
ẑτj − ẑτi

)
, (1.25)

with i ∈ I, observer state ηi ∈ C([−τ, 0],Rp), p ≥ n − s, C([−τ, 0],Rp) being a
Banach space of continuous functions mapping the interval [−τ, 0] into Rp, time-
delay τ ∈ R≥0, input ui ∈ C([−τ, 0],Rm), measurable output yi ∈ Rs,
estimated time-delayed semipassive output ẑτi ∈ C([−τ, 0],Rm), coupling strength
γ ∈ R≥0, interconnection weights aij ∈ R≥0, and to be designed mappings
l : Rp×Rs×Rm → Rp and ψ : Rp×Rs → Rm. Asmentioned before, in this chap-
ter, we give a methodology for constructing the functions l(·) and ψ(·) using the
immersion and invariance techniques introduced in [17]. Sufficient conditions are
derived on the systems to be interconnected, the network topology, the coupling
dynamics, and the time-delay that guarantee boundedness and (global) state syn-
chronization of the solutions of the coupled system. The results are illustrated by
computer simulations of coupled chaotic FitzHugh-Nagumo neural oscillators.
The contents of this chapter are based on [76].

In Chapter 5, using the delay-free observer-based couplings (1.19)-(1.21) intro-
duced in Chapter 3, we study the possible emergence of partial synchronization.
Partial synchronization is a phenomenon, in which some, at least two, systems
in the network synchronize with each other but not with every system in the
network. The result presented here is a direct extension of the results presented
in [105, 106], where sufficient conditions for partial synchronization in networks
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of diffusively coupled semipassive systems are derived. Using symmetries in the
network, we identify linear invariant manifolds of the coupled systems (1.6)-(1.8),
(1.19)-(1.21). Note that the coupling (1.21) can be written in matrix form

u = −γ (L⊗ Im) ẑ, (1.26)

where L ∈ Rk×k denotes the Laplacian matrix, ẑ := col(ẑ1, ..., ẑk) ∈ Rkm, and
u := col(u1, ..., uk) ∈ Rkm. If a network possesses certain symmetry, this
symmetry must be present in the Laplacian matrix L. Particularly, the network
may contain some repeated patterns when considering arrangements of the
constants aij and hence the permutation of some elements would leave the
network unchanged. In other words, the structure of the network is preserved
after simultaneous swapping of (some of) the nodes of the network. The matrix
representation of a permutation of the set I = {1, ..., k} is a permutation ma-
trix Π ∈ Rk×k. We prove that, for a permutation matrix Π, if there is a solution
X ∈ Rk×k to the matrix equation

(Ik −Π)L = X (Ik −Π) , (1.27)

then the set ker (I −Π⊗ I) defines a linear invariant manifold for the coupled
systems (1.6)-(1.8),(1.19)-(1.21). If these manifolds are attracting, the systems in
the network may exhibit partial synchronization. We prove that a linear inva-
riant manifold defined by a symmetry in a network is attracting, if the coupling
strength γ is sufficiently large (but not large enough for having full synchroniza-
tion) and the rate of convergence of the observer is sufficiently fast. The results are
illustrated by computer simulations of coupled chaotic Hindmarsh-Rose
neural oscillators. The contents of this chapter are published in [80].

In Chapter 6, we address the problem of constructing (reduced order) observers
for general nonlinear systems when the output measurements are subject to
constant time-delays. In Chapter 4, using the I&I techniques introduced in [56],
we give a methodology for constructing the dynamic coupling (1.22)-(1.25). We
remark that the observer dynamics (1.22)-(1.23) is independent of the time-delay,
i.e., it is assumed that the measurements of yi are not subject to time-delay and
the delay in the dynamic coupling (1.22)-(1.25) is only induced when the esti-
mated outputs ẑi are transmitted. Under this assumption, it is possible to main-
tain a delay-free observer structure while analyzing the effect of transmission
delays in the synchronous behavior. However, in some practical applications,
the outputs yi may also be corrupted with time-delays. For instance, when the
measurement process intrinsically causes non-negligible time-delays or when the
system is monitored through communication networks which results in
unavoidable delays. In Chapter 6, we study the immersion and invariance tech-
niques presented in [17, 56] for designing nonlinear observers. We show how
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these I&I ideas may be extended when the output measurements are corrupted
by constant time-delays. Following the design method developed in [17], we de-
rive a general tool for constructing I&I observers in the presence of time-delays.
It is important to point out that, as it is the case in the delay-free setting consi-
dered in [17], the observer design relies on the existence of two mappings, β(·)
and φ(·), which must be selected to render the zero solution of the estimation
error dynamics asymptotically stable. This stabilization problem may be diffi-
cult to solve, since, in general, it relies on the solution of a set of partial diffe-
rential equations (or inequalities). However, as it is shown in the examples in
Chapter 6, for some systems these equations turn out to be solvable. Throughout
Chapter 6, the observer may play two different roles. On the one hand, it may
be used to reconstruct a delayed version of the unmeasured state from measure-
ments of the available delayed outputs. In this case, we refer to it as a retarded
immersion and invariance observer. On the other hand, the observer may be used to
reconstruct both the delay-free unmeasured state and the delay-free outputs from
measurements of the delayed outputs. In this case, we refer to it as an immer-
sion and invariance predictor. The tools given in Chapter 6 may be directly used to
construct a more general version of the dynamic coupling (1.22)-(1.25), i.e., with
these techniques, we may also consider time-delays at the level of the observer
and not only when transmitting the estimated semipassive outputs. However,
this case is not analyzed here and it is left as future research. The main results
of this chapter are illustrated by computer simulations using the chaotic Lorenz
system and the Duffing oscillator. The contents of this chapter are based on [75].

Chapter 7 focuses on controlled synchronization of identical semipassive systems
interconnected through predictor-based diffusive dynamic couplings. An important
element of our control scheme is the use of a communication network. Network
communication is necessary in the study of synchronization to transmit and re-
ceive measurement and control data among the systems. Because of the time
needed to transmit data over the network, the use of networked communication to
exchange information results in unavoidable time-delays. These network-induced
delays are undesirable because they may lead to the loss of synchrony in the net-
work. Hence, when studying synchronization among dynamical systems with
networked communication, it is important to design control algorithmswhich are
robust with respect to time-delays. The results presented here follow the same re-
search line as [132], where sufficient conditions for synchronization in networks
of diffusively time-delayed coupled semipassive systems are derived. The authors
in [132] prove that under some mild assumptions, there always exists a region
S in the parameter space (coupling strength γ versus time-delay τ ), such that if
(γ, τ) ∈ S , the systems synchronize. Nevertheless, it is important to note that for
this class of systems, once the network topology is specified, the region S is fixed.
In other words, the time-delay that may be induced to the network without com-
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promising the synchronous behavior is limited by the network topology [82]. The
time-delay τ considered in the results presented in [132] can be realized as the sum
of measurement and transmission time-delays. In this chapter, we make a clear
distinction between these delays. The measurement time-delay τ1 ∈ R≥0 affects
the outputs of the systems yi(t), resulting in time-delayed outputs yi(t−τ1) being
available for control purposes. The transmission time-delay is encompassed in
τ2 ∈ R≥0. It affects the control inputs ui(t), resulting in the time-delayed control
signals ui(t − τ2) being applied to the systems. Notice that the total time-delay
τ considered in [132] is simply given by the sum of the individual delays, i.e.,
τ = τ1 +τ2. In this chapter, we show that by including predictors in the couplings,
we may increase the total time-delay that can be induced. We propose predictor-
based diffusive dynamic couplings based on the concept of anticipating synchronization
[89] that on the one hand estimate future values yi(t+ τ) of the outputs yi(t), and
on the other hand interconnect the systems through these time-ahead estimated
signals. The proposed predictor-based couplings are dynamical systems of the
form

η̇1i = q(η1i, η2i), (1.28)
η̇2i = a(η1i, η2i) + CBui + κ (yi(t− τ1)− η2i(t− τ)) , (1.29)

ui = γ
∑
j∈Ei

aij (η2j − η2i) , (1.30)

ηi = η0i ∈ Rn, t ∈ [−τ, 0], (1.31)

with i ∈ I = {1, ..., k}, stacked state ηi := col(η1i, η2i) ∈ C([−τ, 0],Rn), internal
state η1i ∈ C([−τ, 0],Rn−m), actuated state η2i ∈ C([−τ, 0],Rm), input
ui ∈ Rm, smooth vectorfields q(·) and a(·) as in (1.9),(1.10), initial history η0i,
coupling strength γ ∈ R≥0, predictor gain κ ∈ R≥0, measurement time-delay
τ1 ∈ R≥0, total time-delay τ ∈ R≥0, and interconnection weights aij = aji ≥
0. The predictor dynamics is given by (1.28)(1.29) while (1.30) is a time-ahead
estimated version of the diffusive static coupling (1.12). Notice that if κ = 0

and ui(t) = 0, the predictor dynamics (1.28)(1.29) is the same as the individual
systems dynamics (1.9),(1.10) with ui(t) = 0. We construct the predictor in this
way in order to take advantage of the stability properties of (1.9),(1.10), namely,
semipassivity and convergence. By including the predictors in the loop, the new pa-
rameter κ comes into play. This κ plays the role of the predictor gain, i.e., it is a
parameter of the predictors that can be tuned to make the prediction error dynamics
converge to the origin. We derive sufficient conditions for global state synchro-
nization of the interconnected systems. In particular, it is proved that under some
assumptions, there always exists a region in the extended parameter space (coupling
strength γ, total time-delay τ , and predictor gain κ), such that if γ, τ , and the new
parameter κ belong to this region, the systems synchronize. Then, we provide a
local analysis, in which the performance of our predictor-based control scheme is
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compared against the diffusive static couplings available in the literature. It is shown
(locally) that the amount of time-delay that can be induced to the network may be
increased by including the predictors in the loop. Finally, we present a simula-
tion example that shows that indeed it is possible to extend the synchronization
regions with the proposed control scheme. In this example, we notice that while
the regions S obtained through the diffusive static coupling are strongly influenced
by the network topology, the regions obtained with the predictor-based coupling
are influenced by the network topology only for small coupling strength. As γ is
increased, the upper bounds of these regions are solely determined by the predic-
tor gain κ. The results are illustrated by computer simulations of coupled chaotic
Hindmarsh-Rose neural oscillators. The contents of this chapter are based on [79].

Chapter 8 presents a set of experimental results on network synchronization using
diffusive static time-delayed couplings. Particularly, we test some theoretical results
about full synchronization [132], partial synchronization [133], and synchronization
in relation to the network topology [130] in networks of coupled semipassive sys-
tems with time-delays. We employ an experimental setup with electronic cir-
cuit realizations of the Hindmarsh-Rose neuron model. It is important to no-
tice that in practical situations, the dynamics of the systems in the network can-
not be expected to be perfectly identical. For instance, because the signals ex-
changed among the systems are contaminated with noise and/or there are small
mismatches in the systems’ parameters. Because of these inherent imperfections,
we cannot expect that the systems perfectly synchronize. It is necessary to allow
for amismatch between them, which, of course, needs to be small enough in order
to consider that the systems are "practically synchronized". To this end, we introduce
the notions of practical synchronization and practical partial synchronization, which
states that circuits may be called (partially) synchronized if, after some transient,
the differences between their outputs are sufficiently small on a long finite time
interval. The experiments with networks of coupled Hindmarsh-Rose circuits in-
dicate when the considered theoretical results, derived for identical systems and
without any noise, (fail to) have sufficient predictive value in reality. The results
presented in this chapter are based on [131].

All the chapters in this thesis are self-contained with their own introduction and
conclusions. However, it is strongly advised to read first Section 1.4, where the
notation, some definitions, and the mathematical framework used throughout
the thesis are presented. In Figure 1.4, we show some important references to
technical results about synchronizationusing the semipassivity-based framework.
It is graphically indicated how these results have evolved from the original paper
of Pogromsky in 1998 [104]. The position of this thesis among those results is also
presented. Chapter 9 summarizes the most important conclusions of all chapters.
Additionally, some recommendations for future research are given.



22 1 Introduction

1.6 List of Publications

Refereed journal publications

• C. Murguía, R.H.B. Fey, and H. Nijmeijer. Network synchronization by
dynamic diffusive coupling. International Journal of Bifurcation andChaos,
in Applied Sciences and Engineering, 23(4):1350076, 2013. (Chapter 3)

• C. Murguía, R.H.B. Fey, and H. Nijmeijer. Synchronization in networks of
identical linear systems with time-delay. IEEE Transactions on Circuits and
Systems-I. Vol. 61, 1801-1814, 2013. (Chapter 2)

• C. Murguía, R.H.B. Fey, and H. Nijmeijer. Network synchronization using
invariant manifold based diffusive dynamic couplings with time-delay.
Accepted in Automatica, 2014. (Chapter 4)

• C. Murguía, R.H.B. Fey, and H. Nijmeijer. Network synchronization of
time-delayed coupled systems using predictor-based diffusive dynamic
couplings. Chaos: An Interdisciplinary Journal of Nonlinear Science,
25:023108, 2015. (Chapter 7)

• E. Steur, C. Murguía, R.H.B. Fey and H. Nijmeijer. Synchronization and
partial synchronization experiments with networks of time-delay coupled
Hindmarsh-Rose neurons. Submitted to the International Journal of Bifur-
cation and Chaos, 2015. (Chapter 8)

• C. Murguía, R.H.B. Fey, and H. Nijmeijer. Immersion and invariance
observers with time-delayed output measurements. Submitted to Commu-
nication in Nonlinear Science and Numerical Simulation, 2014. (Chapter 5)

Journal publications in preparation

• C. Murguía, J. Peña, R.H.B. Fey, and H. Nijmeijer. Partial antiphase
synchronization between two complex networks using symmetry-based
diffusive time-delayed couplings.

• C. Murguía, A. Denasi, R.H.B. Fey, and H. Nijmeijer. Controlled
synchronization in networks of heterogeneous nonlinear system with
prescribed performance.



1.6 List of Publications 23

Refereed proceedings

• C. Murguía and H. Nijmeijer. Controlled synchronization in networks of
nonlinear systems via dynamic couplings, in Proceedings of the 3rd IFAC
Conference on Analysis and Control of Chaotic Systems, Cancun, Mexico,
2012. (Chapter 3)

• H. Nijmeijer and C. Murguía. Cooperative mechanical systems: Past,
present, and future, in Proceedings of the 56th Japan Joint Automatic
Control Conference, pp. 1-4. Tokyo, Japan, 2013.

• T. Oguchi, H. Nijmeijer, C. Murguía, W.A.W.A. Oomen, Partial
synchronization in Cartesian product networks of coupled nonlinear
systems without/with delays, in Proceedings of the 56th Japan Joint
Automatic Control Conference, pp. 1237-1242. Tokyo, Japan, 2013.

• C. Murguía, R.H.B. Fey, and H. Nijmeijer, Partial Network Synchronization
and Diffusive Dynamic Couplings, in Proceedings of the IFAC World
Conference, Cape Town, South Africa, 2014. (Chapter 6)

• C. Murguía, J. Peña, N. Jeurgens, R.H.B. Fey, T. Oguchi, and H. Nijmeijer,
Synchronization in Cartesian-Product Networks of Time-Delay Coupled
Systems. Submitted to the 4rd IFAC Conference on Analysis and Control
of Chaotic Systems, Tokyo, Japan, 2015.



24 1 Introduction

Figure 1.4 Flow chart of the results using the semipassivity-based framework.



Chapter 2

Synchronization of Diffusively
Time-Delayed Coupled Linear
Systems

Abstract. We study the problem of controlled network synchronization for a class of iden-
tical linear systems. The systems are interconnected through static and dynamic diffusive
couplings with time-delays. In particular, we derive conditions on the systems, the couplings,
the time-delay, and the network topology that guarantee global synchronization of the
systems. Time-delayed dynamic diffusive couplings are constructed by combining linear
observers and output feedback controllers. Using passivity properties of the individual
systems, sufficient conditions for boundedness of the interconnected systems are derived.
Moreover, predictor-based dynamic couplings are proposed in order to enhance robustness
against time-delays in the network. The results are illustrated by numerical simulations.

2.1 Introduction

Synchronization, consensus, and coordination of dynamical linear systems have
attracted the attention of many researchers during the last decades. For instance,
in engineering, one of the most commonly cited examples for consensus and syn-
chronization of linear systems is the problem of coordinated motion of individual
mobile agents [92, 103, 113, 115, 123, 128]. Another example is speed synchro-
nization ofmultiple inductionmotors during speed acceleration and load changes
[34, 150], for instance, in distributed paper-making machines, continuous rolling
mills, and manufacturing assemblies. Synchronization of wind turbines in wind
parks is also an interesting example. This occurs when the blades of two different

This chapter is based on [78].

25



26 2 Synchronization of Diffusively Time-Delayed Coupled Linear Systems

wind turbines have the same rotational speed, then the relative angle between
their blades is constant [31, 32]. In this situation, the steady-state fluctuations
of the electrical and mechanical variables of the wind turbines have the same
values and they can produce significant positive effects on the electrical power
system. Recently, consensus and synchronization have been used to control the
segmented primary mirror of the European Extremely Large Telescope [118]. The
controller must stabilize and maintain 984 segments composing the mirror in a
fixed smooth surface. Measurements available for feedback are relative positions
of neighboring segments, so the output is spatially localized. Distributed inte-
gral controllers based on measurements of the adjacent segments are proposed to
solve the problem.

In this chapter, we study synchronization in networks of diffusively coupled linear
systems. There are several technical results about consensus and synchronization
of linear systems interconnected through static and dynamic diffusive couplings.
In the consensus problem [64, 65, 73, 112, 114], the emphasis is on the commu-
nication constraints rather than the individual system dynamics. The dynamics
of the individual systems are usually very simple (chains of integrators) and the
evolution of the group is mostly determined by the network topology. Regarding
synchronization [19, 43, 47, 84, 104, 147], the focus is not only on the network topo-
logy, but also on the individual system dynamics. In practical situations, time-
delays caused by signal transmission affect the behavior of the interconnected sys-
tems. It is therefore important to study the effect of time-delays in existing syn-
chronization and consensus schemes. In this chapter, we consider the problem
of controlled synchronization for a class of identical linear systems in networks
with general topologies. The systems are interconnected through either static or
dynamic diffusive time-delayed couplings. Using Lyapunov-Razumikhin functions,
we prove that under some mild assumptions there always exists a region S in the
parameter space (coupling strength γ versus time-delay τ ) such that if γ and τ belong
to that region, the systems asymptotically synchronize. Moreover, we show that
the systems synchronize provided that the coupling strength is sufficiently large,
and the product of the coupling and the time-delay is sufficiently small, i.e., pro-
vided that the coupling is strong, we can always allow for a small time-delay and
still end up in synchrony. There are some result in this direction already. In [92]
and [28], the authors give estimations of the maximal delay that can be tolerated
in the network without compromising the consensus behavior. They demonstrate
that the maximal delay is inversely proportional to the largest eigenvalue of the
Laplacian matrix. Using frequency-dependent and delay-dependent convex sets
togetherwith the generalizedNyquist criterion, in [74], the authors derive general set
valued consensus conditions for linear systems. However, in these results, the dy-
namics of the individual systems are single, double, or higher dimensional chains
of integrators. In [132], sufficient conditions for the existence of the region S are
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given for a class of nonlinear systems. In order to derive their results, the authors
assume that the individual systems are semipassive [104] with respect to the cou-
pling variable zi and their corresponding internal dynamics have some desired
stability properties (convergent internal dynamics [94]). In this chapter, we derive a
similar result to the one presented in [132] for a class of linear systems. However,
the requirements of semipassivity and convergence of the individual nonlinear sys-
tems amount to passivity and detectability in the linear case. Moreover, we propose
predictor-based dynamic diffusive couplings in order to enhance robustness against
time-delays in the network, i.e., by including some dynamics in the coupling, we
may expand the synchronization region S. Additionally, we let the systems be
driven by some external piecewise continuous signal ω. Although the systems
are linear and time-invariant, the signal ω may lead to oscillatory or even chaotic
behavior without any coupling. The signal ω acts as either an external force or a
reference signal that may be applied to all the systems. Due to this external sig-
nal and the time-delay, it is not immediate that the closed loop system possesses
bounded solutions, [44, 122]. Hence, sufficient condition for boundedness of the
solutions of the interconnected systems are also derived.

2.2 SystemsDescription andTime-delayedCouplings

In this section, we introduce the notion of diffusive time-delayed coupling together
with the system description.

2.2.1 Systems Description

Consider k identical linear dynamical systems

ẋi = Axi +B1ui +B2ω, (2.1)
yi = C1xi, (2.2)
zi = C2xi, (2.3)

with i ∈ I := {1, ..., k}, state xi ∈ Rn, (measured) output yi ∈ Rs, passive
output zi ∈ Rm, input ui ∈ Rm, matrices A ∈ Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×w,
C1 ∈ Rs×n, C2 ∈ Rm×n, and the matrix C2B1 being similar to a positive defi-
nite matrix. The systems are driven by some external signal ω(t) : R≥0 → Rw,
which is assumed to be piecewise continuous and uniformly bounded for all t,
i.e., |ω(t)| ≤ δ for some positive constant δ. The signal ω(t) acts as either an exter-
nal force or a reference signal that is applied to all the subsystems. Throughout
the chapter the following is assumed:
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(H2.1) The system (A,B1, C2) is passive, i.e., there exists a positive definite matrix
P = PT ∈ Rn×n such that

PA+ATP ≤ 0, BT1 P = C2. (2.4)

Remark 2.1. Notice that the nominal system (A,B1, C1) is not assumed to be passive.
The passivity property is supposed to hold with respect to a state function zi = C2xi,
which is not necessarily measured.

2.2.2 Diffusive Time-Delayed Couplings

In practical situations, time delays caused by signal transmission affect the beha-
vior of the interconnected systems. It is therefore important to study the effect of
time-delays in existing synchronization schemes. Here, we consider two different
types of diffusive time-delayed couplings

ui = γ
∑
j∈Ei

aij(z
τ
j − zi), (2.5)

ui = γ
∑
j∈Ei

aij(z
τ
j − zτi ), i ∈ I, (2.6)

where τ ∈ R>0 denotes the finite time-delay, ui and zτi := zi(t − τ) are the in-
put and the time-delayed passive output of the system i, respectively, zτj is the
time-delayed passive output of system j to which system i is connected, γ ∈ R>0

denotes the coupling strength, and aij ∈ R≥0 are the weights of the interconnec-
tions. It is not necessarily assume that aij = aji. Moreover, since the coupling
strength is encompassed in the constant γ, then it is assumed without loss of
generality that maxi∈I

∑
j∈Ei aij = 1. In coupling (2.5), the transmitted signal

(the output of node j) is delayed by a factor τ and compared with the current out-
put of node i. This type of coupling arises naturally for interconnected systems
since the transmission signals can be expected to take some time. In case of cou-
pling (2.6), both signals are time-delayed. Such a coupling may arise, for instance,
when the systems are interconnected by a centralized control law. Couplings (2.6)
and (2.5) can be written respectively in matrix form as follows

u = −γ (L⊗ Im) zτ , (2.7)

u = −γ (D ⊗ Im) z + γ (Λ⊗ Im) zτ , (2.8)

where u = col(u1, ..., uk), z = col(z1, ..., zk), adjacency matrix Λ ∈ Rk×k, and
diagonal degree matrix D ∈ Rk×k. By definition any connected graph possesses
one independent strongly connected component (iSCC), see Definition 1.9. Let
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Vs = {v1, ..., vk1
} be the nodes forming the iSCC and Vc = {vk1+1, ..., vk} the

remaining nodes. It follows that the Laplacian matrix L of a connected graph can
be written as follows

L =

(
Ls 0

F Lc

)
, (2.9)

where the matrix Ls ∈ Rk1×k1 denotes the Laplacian matrix of the iSCC of the
graph, i.e., the Laplacian of the subgraph Gs = (Vs, Es, As) where Es ⊆ Vs × Vs
and Λs ∈ Rk1×k1 the associated weighted adjacency matrix. The matrix F ∈
Rk1×(k−k1) denotes the interconnection between the iSCC and the remaining no-
des andLc ∈ R(k−k1)×(k−k1) is a thematrix denoting the rest of the interconnection.
If the systems interact on a simple connected graph, we can rewrite the couplings
(2.7) and (2.8) as follows(

us
uc

)
= − γ

(
Ls ⊗ Im 0

F ⊗ Im Lc ⊗ Im

)(
zτs
zτc

)
, (2.10)

and (
us
uc

)
= − γ

(
Ds ⊗ Im 0

0 Dc ⊗ Im

)(
zs
zc

)
(2.11)

+ γ

(
Λs ⊗ Im 0

F ⊗ Im Λc ⊗ Im

)(
zτs
zτc

)
,

respectively, where u = col(us, uc) ∈ Rkm and z = col(zs, zc) ∈ Rkm. Moreover,
Ds := diag{d1, ..., dk1

} ∈ Rk1×k1 , Λs := Ds − Ls, Dc := diag{dk1+1, ..., dk} ∈
Rk−k1×k−k1 , and Λc := Dc − Lc. The vectors zs and zc are partitions of the
stacked vector z such that zs = col(z1, ..., zk1

) ∈ Rmk1 and zc = col(zk1+1, ..., zk) ∈
Rm(k−k1). The vector zs stands for the stacked output of the iSCC and zc is the
stacked output of the remaining nodes.

2.3 Boundedness and Synchronization

Due to the external signal ω and the time-delay, it is not immediate that the closed-
loop systempossesses bounded solutions, [44, 122]. Moreover, evenwithout time-
delay, it is not trivial that systems interacting through diffusive couplings have
bounded solutions. The diffusive coupling can make systems which have an
asymptotically stable equilibrium in isolation to produce stable oscillations [107].
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2.3.1 Boundedness

Let the k systems (2.1),(2.3) be interconnected via the diffusive time-delayed coupling
(2.6). Notice that the closed-loop stacked system is written as follows

ẋ = (Ik ⊗A)x− γ(L⊗B1C2)xτ + (1k×1 ⊗B2)ω. (2.12)

with x = col(x1, ..., xk).

Lemma 2.2. Consider the k passive systems (2.1),(2.3)with |ω(t)| < δ for some constant
δ ∈ R>0 and positive definite matrix P = PT ∈ Rn×n satisfying (2.4). Let the systems
be interconnected through the diffusive time-delayed coupling (2.6)with coupling strength
γ ∈ R>0 on a simple connected graph. Assume that there exists a constant β ∈ R>0 such
that the following Riccati inequality is satisfied

PA+ATP + βPB2B
T
2 P + 2γāCT2 C2 ≤ 0, (2.13)

where ā = 2d̄+ ‖F‖+ ‖Lc‖ and d̄ = maxi∈I
∑
j∈Ei aij . Let γmax be the largest γ that

satisfies inequality (2.13), then the solutions of the closed-loop system (2.1),(2.3),(2.6) are
bounded for all finite τ ≥ 0 and γ ∈ Iγ := [0, γmax].

The proof of Lemma 2.2 can be found in the Appendix A.

Remark 2.3. The result stated in Lemma 2.2 is independent of the time-delay. Therefore,
if (2.13) is satisfied, the closed-loop system (2.1),(2.3),(2.6) is bounded for arbitrary large
time-delay. However, it can be shown that if (2.13) is not satisfied for any γ ∈ R>0, but
the inequality

PA+ATP + βPB2B
T
2 P ≤ 0, (2.14)

is satisfied for some β ∈ R>0, then the solutions may be bounded for some values of (γ, τ)

in some set Iγτ . That is, there may exist a delay-dependent region Iγτ where boundedness
of the closed-loop system is guaranteed.

Remark 2.4. Using the Schur complement [120], the boundedness condition (2.13) can
be rewritten as the following linear matrix inequality (LMI)

PA+ATP PB1 PB2

BT1 P − 1
γāI 0

BT2 P 0 − 1
β I

 ≤ 0. (2.15)

It follows that the boundedness problem considered in Lemma 2.2 can be regarded as a
feasibility problem of the LMI (2.15). Then, for a given γ, constant ā, and matrix P
satisfying (2.4), the solutions of the closed-loop system (2.1),(2.3),(2.6) are bounded, if
there exists a constant β ∈ R>0 such that (2.15) is feasible. This condition is only satisfied
for values of γ in some interval Iγ . Then, the solutions of the closed-loop system are
ensured to be bounded for γ ∈ Iγ
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Figure 2.1 Extended region of attraction for synchronization S ∩ Iγ ⊆ S ′.

Remark 2.5. The result presented in Lemma 2.2 applies for systems interacting on a
simple connected graph. If the systems interact on a simple strongly connected graph, it
follows that L = Ls, Lc = 0, and F = 0, i.e., the strongly connected component is the
graph itself. Then, the condition for boundedness (2.13) amounts to

PA+ATP + βPB2B
T
2 P + 4γd̄CT2 C2 ≤ 0. (2.16)

Now, let the k systems (2.1),(2.3) be interconnected through the diffusive time-
delayed coupling (2.5). Note that, in this case, the closed-loop stacked system is
written as

ẋ = (Ik ⊗A)x− γ(D ⊗B1C2)x+ γ(Λ⊗B1C2)xτ + (1k×1 ⊗B2)ω.

Lemma 2.6. Consider the k identical passive systems (2.1),(2.3)with |ω(t)| < δ for some
constant δ ∈ R>0 and positive definite matrix P = PT ∈ Rn×n satisfying (2.4). Let the
systems be interconnected through the diffusive time-delayed coupling (2.5)with coupling
strength γ ∈ R>0 on a simple connected graph. Assume that there exists a constant
β ∈ R>0 such that the following Riccati inequality is satisfied

PA+ATP + βPB2B
T
2 P + 2γāC2C

T
2 ≤ 0, (2.17)

where ā = max (‖F‖+ ‖Λc‖ − d
¯
, ‖F‖) and d

¯
= mini∈(k1+1,...,k)

∑
j∈Ei aij . Let

γmax be the largest γ that satisfies inequality (2.17), then the solutions of the closed-loop
system (2.1),(2.3),(2.5) are bounded for all finite τ ≥ 0 and γ ∈ Iγ = [0, γmax].

The proof is very similar to the proof Lemma 2.2 and it is omitted here.
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Remark 2.7. If the systems interact on a simple strongly connected graph, the condition
for boundedness (2.17) is weakened to (2.14), i.e., solutions are bounded for arbitrarily
large γ as long as (2.14) holds.

2.3.2 Synchronization

In this section, we derive sufficient conditions for synchronization of systems inte-
racting through the diffusive time-delayed couplings described in the previous
section. Passivity of (2.1),(2.3) and nonsingularity of the matrix C2B1 imply the
existence of a coordinate transformation such that the systems can be written in
the following normal form

ζ̇i = N1ζi +N2zi +N3ω, (2.18)
żi = M1ζi +M2zi +M3ω + C2B1ui, (2.19)

with i ∈ I, internal state ζi ∈ Rp, p := n − m, matrices N1 ∈ Rp×p, N2 ∈
Rp×m, N3 ∈ Rp×w,M1 ∈ Rm×p,M2 ∈ Rm×m,M3 ∈ Rm×w, and C2B1 being non-
singular. In addition, if the pair (A,C2) is detectable, then it can be shown that
the coordinate transformation can be chosen such that the matrix N1 is Hurwitz.
For the sake of simplicity, we assume that C2B1 = Im. Then, the stacked system
is given by

ζ̇ = (Ik ⊗N1)ζ + (Ik ⊗N2)z + (Ik ⊗N3)ω, (2.20)
ż = (Ik ⊗M1)ζ + (Ik ⊗M2)z + (Ik ⊗M3)ω + u, (2.21)

with ζ = col(ζ1, ..., ζk). Define the linear manifold

M :=
{
col(z, ζ) ∈ Rkn| zj = zi and ζj = ζi ∀ i, j

}
.

The manifoldM is often called the synchronization manifold or the diagonal set. In
the following theorem, we give sufficient conditions for synchronizationwhen the
systems are interconnected via the time-delayed diffusive coupling (2.6).

Theorem 2.8. Consider k identical systems (2.1),(2.3) interacting through the time-
delayed diffusive coupling (2.6) on a simple connected graph. Assume that the pair (A,C2)

is detectable and the conditions of Lemma 2.2 are satisfied. Then, there exist positive
constants γ′, χ′ ∈ R>0 such that if γ′ < γ ≤ γmax (with γmax being the maximal
coupling strength for which boundedness of solutions is guaranteed) and γτ < χ′, then the
solutions of the closed-loop system (2.1),(2.3),(2.6) asymptotically converge to the diagonal
setM.

The proof of Theorem 2.8 can be found in the Appendix A. Next, let the systems
(2.1),(2.3) be interconnected through (2.5).
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Theorem 2.9. Consider k identical systems (2.1),(2.3) interacting through the time-
delayed diffusive coupling (2.5) on a simple connected graph. Assume that the pair (A,C2)

is detectable and the conditions of Lemma 2.6 are satisfied. Then, there exist positive
constants γ′, χ′ ∈ R>0 such that if γ′ < γ ≤ γmax (with γmax being the maximal
coupling strength for which boundedness of solutions is guaranteed) and γτ < χ′, then the
solutions of the closed-loop system (2.1),(2.3),(2.5) asymptotically converge to the diagonal
setM.

The proof is very similar to the proof of Theorem 2.8 and it is omitted here. The
results stated in Theorem 2.8 and Theorem 2.9 amount to the following. If the
conditions of the above theorems are satisfied, then there always exists a region
S = {γ, τ ∈ R≥0|γ > γ′ and γτ < χ′}, (lighter gray area in Figure 2.1), such that
if (γ, τ) ∈ S ∩Iγ , (darker gray area in Figure 2.1), the k diffusively interconnected
systems synchronize. Note that if γmax < γ′ synchronization can not be achieved.

Remark 2.10. The results stated in Theorem 2.8 and Theorem 2.9 remain valid without
the assumptions of Lemma 2.2 and Lemma 2.6, respectively, as long as the solutions of the
whole network are bounded. Similar statements can be made for the subsequent results.

In the above remark, we want to point out that all the synchronization results in
this chapter are valid even if the systems are not passive and the Ricatti equa-
tions in all the the lemmas are not satisfied as long as the closed-loop system has
bounded solutions. It may be that solutions are bounded for some values of (γ, τ)

in some set Iγτ , then the synchronization results can be applied in this set.

2.4 Diffusive Dynamic Time-Delayed Couplings

2.4.1 Observer-based Diffusive Dynamic Couplings

So far, it has been assumed that zi (the passive output) is available for feedback.
However, if the measurable output is a different state function yi = C1xi, which
does not have the desired passivity properties, then the results stated in Theo-
rem 2.8 and Theorem 2.9 cannot be used to conclude synchronization. Neverthe-
less, if the pair (A,C1) is detectable, there exists an observer which reconstructs
the retarded passive output zτi from measurements of yτi . Then, an observer-based
diffusive dynamic coupling (ODDC), which only depends on the time-delayed mea-
surable output yτi can be constructed. Consider an observer of the form

η̇i = Aηi +B1u
τ
i +B2ω

τ +H(C1ηi − yτi ), (2.22)
ẑτi = C2ηi(t).
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Define the estimation error εi := ηi − xτi . Then, the estimation error dynamics is
given by

ε̇i = (A+HC1) εi. (2.23)
It follows that the observer (2.22) exponentially reconstructs zτi , if and only if the
matrix (A + HC1) is Hurwitz. Then, combining (2.22) and an estimated version
of (2.6), we construct the ODDC as follows

η̇i = Aηi +B1u
τ
i +B2ω

τ +H(C1ηi − yτi ), (2.24)
ui = γ

∑
j∈Ei

aijC2 (ηj − ηi) , i ∈ I. (2.25)

In the following lemma and theorem, we give sufficient conditions for bounded-
ness and synchronization of the solutions of the closed-loop system (2.1),(2.2),
(2.24),(2.25).

Lemma 2.11. Consider the k identical passive systems (2.1)-(2.3) with |ω(t)| < δ for
some constant δ ∈ R>0 and positive definite matrix P = PT ∈ Rn×n satisfying (2.4).
Let the systems be interconnected through theODDC (2.24),(2.25)with coupling strength
γ ∈ R>0 on a simple connected graph. Suppose that the pair (A,C1) is detectable and the
observer gain H is such that A + HC1 is Hurwitz. In addition, assume that there exists
a constant β ∈ R>0 such that (2.13) is satisfied. Let γmax be the largest γ that satisfies
inequality (2.13), then the solutions of the closed-loop system (2.1),(2.2),(2.24),(2.25) are
bounded for all finite τ ≥ 0 and γ ∈ Iγ = [0, γmax].

Theorem 2.12. Consider k identical systems (2.1),(2.2) interacting through the ODDC
(2.24),(2.25) on a simple connected graph. Assume that the pairs (A,C1) and (A,C2)

are detectable and the conditions of Lemma 2.11 are satisfied. Then, there exist positive
constants γ′, χ′ ∈ R>0 such that if γ′ < γ ≤ γmax (with γmax being the maximal
coupling strength for which boundedness of solutions is guaranteed) and γτ < χ′, then
the solutions of the closed-loop system (2.1),(2.2),(2.24), (2.25) asymptotically converge to
the diagonal setM.

The proofs of Lemma 2.11 and Theorem 2.12 can be found in the Appendix A.

2.4.2 Predictor-based Diffusive Dynamic Couplings

Now, we studywhether it is possible to enhance robustness against time-delays in
the network by including some dynamics in the coupling. Predictor-based diffusive
dynamic couplings (PDDC) that may increase the region of attraction for synchro-
nization are proposed. Consider a predictor of the form

ς̇i = Aςi +B1ui +B2ω +K1(C2ς
τ
i − zτi ), (2.26)

ẑi = C2ςi,
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with predictor state ςi ∈ Rn and predictor gainK1 ∈ Rn×m. Define the prediction
error εi := ςi − xi, then

ε̇i = Aεi +K1C2ε
τ
i , (2.27)

notice that εi(t) → 0 implies that ςi(t) → xi(t). The origin εi = 0 of (2.27) is
exponentially stable if and only if the roots of the characteristic equation

det
(
λI −A−K1C2e

−λτ) = 0, (2.28)

belong to the open left half of the complex plane, (see [72] for details). Then,
system (2.26) is called a predictor for system (2.1),(2.3) if and only if there exists a
gainK1 such that all the roots of (2.28) possess negative real parts.

Remark 2.13. The characteristic equation (2.28) is transcendental and has infinitely
many solutions. Moreover, its exact region of stability as an explicit function of A, K1,
C2, and τ is not known analytically. However, the purpose of this chapter is not to give
a solution method to the spectrum assignment problem of (2.27). There are several re-
sults dealing with approximating this stability region. For instance, in [71], the authors
propose a stabilization method for linear time-delayed systems, which consists in control-
ling the rightmost eigenvalue of the closed-loop system. They use the software package
DDE-BIFTOOL [41] to approximate such an eigenvalue. In [72], analytical methods
and computational algorithms using a unified eigenvalue-based approach are presented.
Finally, results based on LMIs can be found in, for instance, [83] and references therein.

Combining (2.26) and a delay-free version of (2.6), we construct the PDDC as
follows

ς̇i = Aςi +B1ui +B2ω +K1(C2ς
τ
i − zτi ), (2.29)

ui = γ
∑
j∈Ei

aijC2 (ςj − ςi) , i ∈ I. (2.30)

In the following lemma and theorem, we give sufficient conditions for bounded-
ness and synchronization of the solutions of the closed-loop system (2.1),(2.3),
(2.29),(2.30).

Lemma 2.14. Consider the k identical passive systems (2.1),(2.3) with |ω(t)| < δ for
some constant δ ∈ R>0 and positive definite matrix P = PT ∈ Rn×n satisfying (2.4).
Let the systems be interconnected through the PDDC (2.29),(2.30)with coupling strength
γ ∈ R>0 on a simple connected graph. Suppose that the pair (A,C2) is detectable and
the predictor gain K1 is such that all the roots of (2.28) belong to the open left half of
the complex plane. In addition, assume that there exists a constant β ∈ R>0 such that
(2.13) is satisfied with ā = ‖F‖+‖Lc‖. Let γmax be the largest γ that satisfies inequality
(2.13), then the solutions of the closed-loop system (2.1),(2.3),(2.29),(2.30) are bounded
for all finite τ ≥ 0 and γ ∈ Iγ = [0, γmax].
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Theorem 2.15. Consider k identical systems (2.1),(2.3) interacting through the PDDC
(2.29),(2.30) on a simple connected graph. Assume that the pair (A,C2) is detectable and
the conditions of Lemma 2.14 are satisfied. Then, there exist positive constants γ′, τ ′ ∈
R>0 such that if γ′ < γ ≤ γmax (with γmax being the maximal coupling strength for
which boundedness of solutions is guaranteed) and τ < τ ′, then the solutions of the closed-
loop system (2.1),(2.3),(2.29),(2.30) asymptotically converge to the diagonal setM.

The proofs of Lemma 2.14 and Theorem 2.15 can be found in the Appendix A.
Assume again that the passive output zi = C2xi is not available for feedback.
Next, a PDDC that may compensate for the time-delay in the network and esti-
mate the passive output zi from measurements of yτi is proposed. Consider the
following PDDC

ς̇i = Aςi +B1ui +B2ω +K2(C1ς
τ
i − yτi ), (2.31)

ui = γ
∑
j∈Ei

aijC2 (ςj − ςi) , i ∈ I, (2.32)

with predictor state ςi ∈ Rn and predictor gain K2 ∈ Rn×s. Consider the error
εi = ςi − xi, then

ε̇i = Aεi +K2C1ε
τ
i . (2.33)

The origin εi = 0 of (2.33) is exponentially stable if and only if the roots of the
characteristic equation

det
(
λI −A−K2C1e

−λτ) = 0, (2.34)

belong to the open left half of the complex plane. In the following lemma and
theorem, we give sufficient conditions for boundedness and synchronization of
the solutions of the coupled systems (2.1),(2.2),(2.31),(2.32).

Lemma 2.16. Consider the k identical passive systems (2.1)-(2.3) with |ω(t)| < δ for
some constant δ ∈ R>0 and positive definite matrix P = PT ∈ Rn×n satisfying (2.4).
Let the systems be interconnected through the PDDC (2.31),(2.32)with coupling strength
γ ∈ R>0 on a simple connected graph. Suppose that the pair (A,C1) is detectable and the
predictor gainK2 is such that all the roots of (2.34) belong to the open left half of the com-
plex plane. In addition, assume that there exists a constant β ∈ R>0 such that (2.13) is
satisfied with ā = ‖F‖+ ‖Lc‖. Let γmax be the largest γ that satisfies inequality (2.13),
then the solutions of the closed-loop system (2.1),(2.2),(2.31),(2.32) are bounded for all
finite τ ≥ 0 and γ ∈ Iγ = [0, γmax].
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Figure 2.2 Graph of the interconnection.

Theorem 2.17. Consider k identical systems (2.1),(2.2) interacting through the PDDC
(2.31),(2.32) on a simple connected graph. Assume that the pairs (A,C2) and (A,C1)

are detectable and the conditions of Lemma 2.16 are satisfied. Then, there exist positive
constants γ′, τ ′ ∈ R>0 such that if γ′ < γ ≤ γmax (with γmax being the maximal
coupling strength for which boundedness of solutions is guaranteed) and τ < τ ′, then the
solutions of the closed-loop system (2.1),(2.2),(2.31),(2.32) asymptotically converge to the
diagonal setM.

The proofs of Lemma 2.16 and Theorem 2.17 are very similar to the proofs of
Lemma 2.14 and Theorem 2.15 and we omit them here. From Theorem 2.15 and
Theorem 2.17, it can be concluded that if the predictor gainsK1 andK2 are chosen
appropriately, the region of attraction for synchronization may be increased with
respect to the region S . In other words, if the systems are interconnected either by
(2.29),(2.30) or (2.31),(2.32), then there always exists a region S ′ = {γ, τ ∈ R≥0|γ >
γ′ and τ < τ ′}, indicated in Figure 2.1, such that if (γ, τ) ∈ S ′ ∩ Iγ , then the sys-
tems synchronize. Moreover, if the matricesK1 andK2 are chosen appropriately,
it may be that S ∩ Iγ ⊆ S′ ∩ Iγ .

2.5 Two Examples

2.5.1 Second Order Systems

A.1 Dynamical model
Consider k identical systems (2.1)-(2.3) with matrices

A =

(
0 a1

−a2 −a3

)
, B1 = B2 =

 0

1

 , (2.35)

C1 =
(

1 0
)
, C2 =

(
1 2a1

a3

)
.

with a1, a2, a3 ∈ R>0. The above system represents the dynamics of a large class of
linear systems, e.g.,Mass-Spring-Damper systems or RLC circuits. See for instance
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[149] and [67], respectively, for applications of networks of such systems. Define
the function ω(t) as

ω(t) = sign(sin(2t) + cos(t)), (2.36)

with sign(0) = 0, which is piecewise continuous and bounded.

A.2 Passivity
The system (A,B1, C2) as in (2.35) is strictly-passive with positive definite matrix
P = PT ∈ R2×2 as follows

P =

( 2a2

a3
+ a3

a1
1

1 2a2

a3

)
, (2.37)

and
PA+ATP =

(
−2a2 0

0 −2a1

)
. (2.38)

A.3 Network Topology and Diffusive Time-Delayed Coupling
Consider a network of five systems interconnected according to the graph de-
picted in Figure 2.2 with aij = 1 if {ij} ∈ E and aij = 0 otherwise. This network
is connected and has a unique centroid v1. Then, the Laplacian matrix L ∈ R5×5 is
given by

L =


0 0 0 0 0

−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1

 . (2.39)

Let the five systems be interconnected through the time-delayed diffusive coupling
(2.6), i.e.,

u(t) = −γLz(t− τ), (2.40)

with time-delay τ , input vector u = col(u1, ..., u5), delayed output vector zτ =

col(zτ1 , ..., zτ5 ), and coupling strength γ.

A.4 Boundedness
The system (A,B1, C2) as in (2.35) is strictly-passive, the external signal ω is uni-
formly bounded, and the graph depicted in Figure 2.2 is connected. Then, by
Lemma 2.2, the solutions of the closed-loop system (2.1),(2.3),(2.35),(2.40) are
bounded for arbitrary large time-delay, if inequality (2.13) is satisfied for a given
coupling strength γ and some positive constant β. Taking a1 = a2 = a3 = 1,
inequality (2.13) takes the following form

Q(β, γ) =

(
−2 + β + 2γ 2(β + 2γ)

2(β + 2γ) −2 + 4β + 8γ

)
≤ 0. (2.41)
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Figure 2.3 Synchronization of five systems, xi = (x1i, x2i)
T .

The above inequality is satisfied if the eigenvalues of the symmetricmatrixQ(β, γ)

are nonpositive, i.e.,

λ(Q(β, γ)) = (−2,−2 + 5β + 10γ) ≤ 0.

The constant β can be arbitrarily small as long as it is larger than zero. Maxi-
mizing γ in λ(Q(β, γ)) yields a maximal γmax = 0.2. Therefore, the solutions of
the closed-loop system are ensured to be bounded for γ ≤ γmax = 0.2 and τ ≥ 0.
The result stated in Lemma 2.2 is just a sufficient condition, then it may be that
boundedness is possible for larger values of γ. Actually, using computer simula-
tion, we found that boundedness is guarantee for γ ≤ 0.23. Moreover, the result
in Lemma 2.2 is independent of the time-delay, then it may be that the closed-loop
system possesses bounded solutions for some values of (γ, τ) in some set Iγτ , i.e.,
there may exists a delay-dependent region where boundedness is guaranteed.

A.5 Synchronization
The conditions of Lemma 2.2 are satisfied and the pair (A,C2) as in (2.35) is
observable. Then by Theorem 2.8, the systems synchronize provided that γ ≤
γmax is sufficiently large, and γτ is sufficiently small. Figure 2.3 depicts the simu-
lation results for τ = 2 and γ = 0.1.

2.5.2 Linear Oscillators

B.1 Dynamical Model and Network Topology
Consider a group of k systems (2.1)-(2.3) with matrices
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A =

 0 1 0

−1 0 0

−1 −1 −1

 , B1 =

 1

0

0

 , (2.42)

B2 =

 0

0

1

 , C1 = BT2 , C
T
2 =

 1.21

0

0.18

 .

The function ω(t) is defined as

ω(t) = sign(sin(2t+ 5) + cos(t)) + cos(t) sin(10t), (2.43)

with sign(0) = 0, which is piecewise continuous and bounded. Consider a net-
work of eight systems interconnected according to the graph depicted in Figure
2.4 with aij = 1 if {ij} ∈ E and aij = 0 otherwise. Then, the Laplacian matrix
L ∈ R8×8 is given by

L =



2 −1 0 0 −1 0 0 0

0 1 0 −1 0 0 0 0

−1 0 1 0 0 0 0 0

0 0 −1 2 0 0 0 −1

0 0 0 0 1 0 −1 0

0 0 0 0 −1 1 0 0

0 0 0 0 0 0 1 −1

0 0 0 0 0 −1 0 1


. (2.44)

Again, this network satisfies the minimal connectivity requirements for achieving
synchronization of the coupled systems, i.e., it is simple and connected.

B.2 Observer-based Dynamic Diffusive Coupling
The pairs (A,C1) and (A,C2) are observable, and the system (A,B1, C2) is passive
with matrix P satisfying (2.4) given by

P =

 1.21 0 0.18

0 1.02 0

0.18 0 0.18

 . (2.45)

Next, assume that the measurable output yi is subject to constant time-delay. Let
the eight systems be interconnected through the ODDC (2.24),(2.25),(2.42) with
observer gain H = (2.6, 0.65,−2.6)T . The boundedness inequality (2.13) of
Theorem 2.12 is not satisfied for anyP > 0 and γ, β ∈ R>0, i.e., there does not exist
a γ which ensures boundedness of the closed-loop system (2.1),(2.2),(2.24),(2.25),
(2.42) for arbitrary large time-delay. However, since the condition (2.14) is sa-
tisfied, then it may be that the closed-loop system possesses bounded solutions
for some values of (γ, τ) in some set Iγτ . Moreover, according to Theorem 2.12,
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Figure 2.4 Graph of the interconnection.

there exists a region S = {γ, τ ∈ R≥0 | γ > γ′ and γτ < χ′}, such that if
(γ, τ) ∈ S, then the systems synchronize. Therefore, the closed-loop system
(2.1),(2.2),(2.24),(2.25),(2.42) possesses bounded solutions and all the systems syn-
chronize if (γ, τ) ∈ Iγτ ∩ S. Figure 2.5 depicts the regions Iγτ and S, which are
obtained by computer simulation. Note that S ⊂ Iγτ and therefore Iγτ ∩ S = S.
Hence, boundedness and synchronization is achieved for (γ, τ) ∈ S.

B.3 Predictor-based Dynamic Diffusive Coupling
Finally, let the eight systems be interconnected through the PDDC (2.31),(2.32),
(2.42). Asmentioned before, the network is simple and connected, the pairs (A,C1)

and (A,C2) are observable, the system (A,B1, C2) is passive and inequality (2.14)
is satisfied. Then, given a predictor gainK2 such that all the roots of the characte-
ristic equation (2.34) belong to the open left half of the complex plane, it follows by
Theorem 2.17 that the solutions of the closed-loop system (2.1),(2.2),(2.31),(2.32),
(2.42) are bounded and there exist positive constants γ′ and τ ′ such that if γ > γ′

and τ < τ ′, then the systems synchronize. In Figure 2.6, the real parts of the
roots λ of (2.34) with the largest real part (the rightmost characteristic root) for
two different values of K2 are shown. This figure is obtained using the software
package DDE-BIFTOOL [41]. Notice that <(λ) becomes positive for large time-
delays. Figure 2.7 depicts the synchronization regions S ′1 = {γ, τ ∈ R≥0 | γ >

0 ∧ τ < 2.86} and S ′2 = {γ, τ ∈ R≥0 | γ > 0 ∧ τ < 1.65} obtained by com-
puter simulation for the two predictor matrices K2 = (0.532,−0.779,−0.475)T

and K2 = (−0.231,−0.656, 0.522)T , respectively. Note that S ⊆ S ′1 ⊆ S ′2, the
synchronization region S is increased for the given values of the predictor gains.
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Figure 2.5 Boundedness region Iγτ and synchronization region S.
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Figure 2.6 The rightmost characteristic root of (2.34) as a function of the delay τ .

2.6 Conclusions

We have presented analytical tools for studying synchronization of diffusively
coupled linear systems interacting on networks with general topologies. We have
proposed diffusive static and dynamic couplings with time-delays which, un-
der some mild conditions, achieve asymptotic state synchronization of the inter-
connected systems. Sufficient conditions which ensure boundedness of the solu-
tions of the coupled systems have been derived. We have constructed diffusive dy-
namic couplings by combining linear observers and output feedback controllers.
Moreover, predictor-based diffusive dynamic couplings have been proposed to
enhance robustness against time-delay in the network. The results are illustrated
by numerical simulations.
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Figure 2.7 Synchronization regions S ⊆ S ′1 ⊆ S ′2.
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Chapter 3

Synchronization via
Observer-Based Diffusive
Dynamic Couplings

Abstract. We address the problem of controlled synchronization in networks of nonlinear
systems interconnected through diffusive dynamic couplings. These couplings can be realized
as dynamic output feedback controllers constructed by combining nonlinear observers and
feedback interconnection terms. Using Lyapunov-Krasovskii functionals and the notion
of semipassivity, we prove that under some mild assumptions, the solutions of the inter-
connected systems are ultimately bounded. Sufficient conditions on the systems to be in-
terconnected, the network topology, the coupling strength, and the rate of convergence of
the observer that guarantee (global) state synchronization are derived. The stability of the
synchronization manifold is proved using Lyapunov-Razumikhin methods. The results
are illustrated by computer simulations of coupled FitzHugh-Nagumo neural oscillators.

3.1 Introduction

This chapter focuses on synchronization in networks of identical nonlinear sys-
tems. This thesis follows the same research line as [104, 108], where sufficient con-
ditions for synchronization of semipassive systems interconnected through diffu-
sive static couplings are presented. However, their results apply to systemswhich
are semipassive and their internal dynamics are convergentwith respect to the cou-
pling variable (the measurable output). In this manuscript, we do not assume
semipassivity plus convergence with respect to the measurable outputs yi as in
[104], but this is supposed to hold with respect to a different state function zi,

This chapter is based on [77, 81].
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which is not directly measured. However, if there exists a nonlinear observer
which reconstructs zi frommeasurements of yi, a diffusive dynamic couplingwhich
only depends on the measurable outputs yi could be constructed to interconnect
the systems. In this chapter, we start the analysis part of these ideas. Assuming
that the observer is given, we derive sufficient conditions on the systems to be
interconnected, the network topology, the coupling strength, and the rate of con-
vergence of the observer ensuring network synchronization and ultimate bound-
edness of the solutions of the coupled systems. There are some results in this
direction already. For instance, in [119, 144], the synchronization problem for
a class of linear systems with time-varying topologies interconnected through
observer-based diffusive dynamic couplings is considered. In [116], the authors pro-
pose a dynamic output feedback controller that solves the synchronization problem
in networks of robot manipulators, in the case when position measurements are
available only. Using adaptive control methods, the authors in [86, 87] construct di-
ffusive dynamic couplings which solve the network synchronization problem for
dynamical systems described by Euler-Lagrange equations and subject to time-
delays. The remainder of the chapter is organized as follows. In Section 3.2, the
system description and the motivation for this chapter are presented. The class
of observers that are considered, the observer-based diffusive couplings that are
used to interconnect the systems, and sufficient conditions for boundedness of the
solutions of the closed-loop system are presented in Section 3.3. In Section 3.4,
sufficient conditions for network synchronization are given. An illustrative ex-
ample that shows step by step how to apply the results of Section 3.4 is presented
in Section 3.5. Finally, conclusions are stated in Section 3.6.

3.2 SystemDescription andDiffusive StaticCouplings

The systems description, the result presented in [108], and the motivation for this
chapter are presented in this section. Consider a network of k nonlinear systems
of the form

ẋi = f(xi) +Bui, (3.1)
yi = C1xi, (3.2)
zi = C2xi, (3.3)

with i ∈ I := {1, ..., k}, state xi ∈ Rn, input ui ∈ Rm, measurable output yi ∈ Rs,
semipassive output zi ∈ Rm, sufficiently smooth function f : Rn → Rn, matrices
C1, C2, and B of appropriate dimensions, and the matrix C2B ∈ Rm×m being
similar to a positive definite matrix. The systems (3.1),(3.3) are assumed to be
strictly semipassive and to have relative degree one. Then, there exists a globally
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defined coordinate transformation such that systems (3.1),(3.3) can be written in
the following normal form, (this transformation is explicitly computed in [108]),

ζ̇i = q(ζi, zi), (3.4)
żi = a(ζi, zi) + C2Bui, (3.5)

with internal state ζi ∈ Rn−m and sufficiently smooth vectorfields q : Rn−m ×
Rm → Rn−m and a : Rn−m ×Rm → Rm. For the sake of simplicity, it is assumed
that C2B = In (results for the general case with C2B being similar to a positive
definite matrix can easily be derived). The network is called diffusively coupled if
the systems interact through weighted differences of the form

ui = γ
∑
j∈Ei

aij(zj − zi), i ∈ I, (3.6)

where zj is the output of system j towhich system i is connected, γ ∈ R>0 denotes
the coupling strength, aij = aji ≥ 0 are the weights of the interconnections, and
Ei is the set of neighbors of system i. Notice that the controller (3.6) can be written
in matrix form as follows

u = −γ (L⊗ Im) z, (3.7)
with z := col(z1, . . . , zk) ∈ Rkm, u := col(u1, . . . , uk) ∈ Rkm, and Laplacian
matrix L = LT ∈ Rk×k. Define the linear manifold

M := {col(z, ζ) ∈ Rkn|zi = zj and ζi = ζj ,∀ i, j ∈ I},
where ζ := col(ζ1, . . . , ζk) ∈ Rk(n−m). The manifoldM is called the synchro-
nization manifold or the diagonal set. The systems are said to synchronize, if the
synchronization manifoldM contains an asymptotically stable subset. The main
result of [108] is given in the following theorem.

Theorem 3.1. [108]. Consider k identical systems (3.1),(3.3) interconnected on a simple
strongly connected graph through the diffusive static coupling (3.6)with coupling strength
γ ∈ R≥0. Assume that:
(H3.1) Each system (3.1),(3.3) is strictly C1-semipassive with input ui, output zi, and
radially unbounded storage function V (xi).
(H3.2) There exists a positive definite function W ∈ C2(Rn−m,R>0) such that for all
ζi, ζj ∈ Rn−m and zi ∈ Rm there is a constant α′ ∈ R>0 such that

∇W(ζi − ζj)T (q(ζi, zi)− q(ζj , zi)) ≤ −α′ |ζi − ζj |2 , (3.8)

where q(·) is the vector field associated with the internal dynamics (3.4).

Then, the solutions of the coupled systems are ultimately bounded and there exists a posi-
tive constant γ′ such that if γλ2(L) > γ′, where λ2(L) denotes the smallest nonzero
eigenvalue of the symmetric Laplacian matrix, there exists a (globally) asymptotically sta-
ble subset of the diagonal setM.
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Proposition 3.2. [94]. If there exists a positive definite matrix P ∈ R(n−m)×(n−m) such
that the eigenvalues of the symmetric matrix

Q(ζi, zi) =
1

2

(
P

(
∂q

∂ζi
(ζi, zi)

)
+

(
∂q

∂ζi
(ζi, zi)

)T
P

)
, (3.9)

are negative and separated away from zero, i.e., there exists a constant c ∈ R>0 such that
λl(Q) ≤ −c < 0, for all l ∈ {1, ..., n − m}, ζi ∈ Rn−m, and zi ∈ Rm; then, the
internal dynamics (3.4) is an exponentially convergent system and (H3.2) in Theorem 3.1
is satisfied withW(ζi − ζj) = (ζi − ζj)TP (ζi − ζj) and α′ = c

λmax(P ) , where λmax(P )

denotes the largest eigenvalue of the symmetric matrix P .

Remark 3.3. In Proposition 3.2, we present a general tool for verifying assumption (H3.2)
in Theorem 3.1 using the concept of convergent systems. This assumption is employed
to ensure that the internal states ζi asymptotically synchronize whenever the semipassive
outputs zi asymptotically synchronized. Indeed, there are some other methods to verify
this, for instance, contraction theory [68], Lyapunov function approach to incremental
stability [15], the quadratic (QUAD) inequality approach (a Lipschitz-like condition) [36],
and differential dissipativity [43], which are all concepts that are closely related to notion
of convergent systems [94] that is used here.

We also refer the interested reader to [25, 36], where a fairly detailed comparison
among some of these techniques can be found.

In the result stated in Theorem 3.1, it is assumed that the variable zi that ren-
ders the internal dynamics convergent, and for which each system is strictly C1-
semipassive is available for feedback. Hence, if the measurable output is a di-
fferent state function yi, which does not have the desired properties, Theorem 3.1
cannot be applied. It is therefore interesting to extend these results to the case
when the variable zi is not measurable, but there exists a (nonlinear) observer
which reconstructs zi from the measurable output yi. Then, a natural question
arises, "is it possible to interconnect the systems using an estimated variable ẑi
and still achieve synchronization and boundedness of the solutions?" In order to
answer this question, we first need to make some stability assumptions on the
observer dynamics.

3.3 Boundedness and Diffusive Dynamic Couplings

In this section, the class of observers that are considered and the observer-based
diffusive couplings that are used to interconnect the systems are introduced. More-
over, sufficient conditions for boundedness of the closed-loop system are derived.
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3.3.1 Nonlinear Observer

Consider the k nonlinear systems (3.1)-(3.3). Assume that for any initial condi-
tion xi(0) ∈ Rn and every input signal ui, the corresponding solution xi(t) is
defined for all t ≥ 0, i.e., the system is forward complete [16]. Consider (nonlinear)
observers of the form {

η̇i = l(ηi, yi, ui),

ẑi = β(ηi, yi),
(3.10)

with i ∈ I, state ηi ∈ Rp, p ≥ n − s, estimated semipassive output ẑi ∈ Rm, and
sufficiently smooth functions l : Rp ×Rs ×Rm → Rp and β : Rp ×Rs → Rm de-
signed such that ẑi asymptotically converges to the actual value of zi. Associated
with the observer (3.10), we have the estimation error εi ∈ Rm defined as

εi := ẑi − zi = β(ηi, yi)− zi. (3.11)

Then, the estimation error dynamics is given by

ε̇i =
∂β(ηi, yi)

∂ηi
l(ηi, yi, ui) +

(
∂β(ηi, yi)

∂yi
C1 − C2

)(
f(xi) +Bui

)
. (3.12)

It is assumed that the functions l(·) and β(·) are designed such that the estimation
error dynamics (3.12) has the following structure

ε̇i = φ(εi, xi), (3.13)

with sufficiently smooth function φ : Rm × Rn → Rm and φ(0, xj) = 0 for all
xi ∈ Rn. The estimated ẑi uniformly asymptotically converges to zi, if the
origin of the estimation error dynamics (3.13) is uniformly asymptotically stable.
In general, it is unknown under what conditions on (3.1) and (3.3) the (nonlinear)
observer (3.10) can be designed. In this chapter, it is assumed that the observer
exists and is given. Nevertheless, we forward the interested reader to [84] and [56]
for existence conditions and interesting design methods of (nonlinear) observers.

3.3.2 Observer-based Diffusive Dynamic Couplings

Let the k systems (3.1),(3.2) be interconnected through diffusive dynamic
couplings of the form 

η̇i = l(ηi, yi, ui),

ẑi = β(ηi, yi),

ui = γ
∑
j∈Ei

aij (ẑj − ẑi) ,
(3.14)
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where γ ∈ R>0 denotes the coupling strength and aij ≥ 0 are the interconnection
weights. Moreover, since the coupling strength is encompassed in the constant γ,
it is assumed without loss of generality that maxi∈I

∑
j∈Ei aij = 1. The dynamic

coupling (3.14) is the combination of the nonlinear observer (3.10) and an esti-
mated version of the diffusive static coupling (3.6).

3.3.3 Boundedness of the Interconnected Systems

Here, we derive sufficient conditions for boundedness of the solutions of the cou-
pled systems (3.1),(3.2),(3.14).

Lemma 3.4. Consider k coupled systems (3.1),(3.2),(3.14) on a simple strongly connected
graph with coupling strength γ ∈ R≥0. Assume that:

(H3.3) There exists a nonlinear observer (3.10) such that the corresponding estimation
error dynamics (3.13) is uniformly asymptotically stable with positive definite radially
unbounded Lyapunov function V0 ∈ C1(Rm,R≥0) satisfying

(∇V0(εi))
T
φ(εi, xi) ≤ −κ |εi|2 , (3.15)

uniformly in xi(t) for some constant κ ∈ R>0.

(H3.4) Each system (3.1),(3.3) is strictly C1-semipassive with radially unbounded storage
function, and the functionsH(xi) are such that there exists R ∈ R>0 such that |xi| > R

implies that H(xi)− γdi|zi|2 > 0 with di =
∑
j∈Ei aij .

Let γmax be the largest γ that satisfies (H3.4), then the solutions of the coupled system
(3.1),(3.2),(3.14) are ultimately bounded for γ ∈ [0, γmax].

The proof of Lemma 3.4 can be found in Appendix A.

3.4 Synchronization of Semipassive Systems

In the following theorem, we give sufficient conditions for synchronization of the
coupled systems (3.1),(3.2),(3.14).
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Figure 3.1 A network of eight identical systems. The graph is strongly connected.

Theorem 3.5. Consider k coupled systems (3.1),(3.2),(3.14) on a simple strongly
connected graph with coupling strength γ ∈ R≥0. Suppose that the conditions stated
in Lemma 3.4 are satisfied. In addition, assume that

(H3.5) The internal dynamics ( 3.4) is an exponentially convergent system, i.e., there is a
positive definite matrix P ∈ R(n−m)×(n−m) such that the eigenvalues of the symmetric
matrix

Q(ζi, zi) =
1

2

(
P

(
∂q

∂ζi
(ζi, zi)

)
+

(
∂q

∂ζi
(ζi, zi)

)T
P

)
, (3.16)

are uniformly negative and bounded away from zero for all ζi ∈ Rn−m and zi ∈ Rm.

Then, the solutions of the closed-loop system (3.1),(3.2),(3.14) are ultimately bounded and
there exist positive constants γ′ and κ′ such that if γ ∈ (γ′, γmax] (with γmax being the
largest coupling strength for which boundedness of solutions is guaranteed) and κ > κ′

(with κ from assumption (H3.3)), then there exists a globally asymptotically stable subset
of the diagonal setM.

The proof of Theorem 3.5 can be found in Appendix A.

3.5 Example: FitzHugh-Nagumo Neural Oscillators

In this section, we present an illustrative examplewherewe show step by step how
to apply Theorem 3.5 to conclude synchronization of the coupled systems. It is
assumed that each system in the network is a FitzHugh-Nagumo neural oscillator.
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A. Network Topology. Consider a network of eight systems interconnected
according to the graph depicted in Figure 3.1 with aij = 1 if {ij} ∈ E and
aij = 0 otherwise. The network is strongly connected and simple. Moreover, the
associated adjacent matrix is not symmetric, i.e., A 6= AT . The Laplacian matrix
is given by

L =



2 −1 0 0 −1 0 0 0

0 1 0 −1 0 0 0 0

−1 0 1 0 0 0 0 0

0 0 −1 1 0 0 0 0

0 0 0 0 1 0 −1 0

0 0 0 0 −1 1 0 0

0 0 0 0 0 0 1 −1

0 0 0 −1 0 −1 0 2


. (3.17)

B. Semipassivity and Convergence. Each system in the network is assumed to be
a FitzHugh-Nagumo neural oscillator of the form

ẋ1i = x1i − x3
1i

3 − x2i + I + ui,

ẋ2i = ψ (x1i + a− bx2i) ,

yi = x2i,

(3.18)

with measurable output yi, state xi = (x1i, x2i)
T ∈ R2, input ui ∈ R, positive

constants ψ, a, b ∈ R>0, and i ∈ I = {1, ..., 8}. Consider the following storage
function

V (xi) =
1

2
(x2

1i +
1

ψ
x2

2i). (3.19)

Straightforward computations show that

V̇ (xi) ≤ uix1i −H(xi),

where
H(xi) =

x4
1i

3
− x2

i1 − Ixi1 + bx2
i2 − axi2. (3.20)

It is easy to verify that H(xi) > 0 for sufficiently large |xi|. It follows that sys-
tem (3.18) is strictly C1-semipassive with input ui, output zi = x1i, and storage
function (3.19). Moreover, verifying the Demidovich’s condition (3.9) along the
internal dynamics of (3.18), it follows that for P = 1, the matrix Q(xi) is simply
given by Q(xi) = −ψb. Since b, ψ ∈ R>0, then by Proposition 3.2, the internal dy-
namics is an exponentially convergent system. At this point, Theorem 3.1 could
be applied to conclude that diffusively coupled FitzHugh-Nagumo neural oscilla-
tors possess bounded solutions and for sufficiently large coupling strength the
systems synchronize. However, the variable zi is not available for feedback. The
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coupling variable is the measurable output yi and therefore Theorem 3.1 cannot
be used. Nevertheless, if there exists a nonlinear observer which asymptotically
estimates zi from measurements of yi, we could construct the dynamic coupling
(3.14) and apply Theorem 3.5 to investigate synchronization.

C. Nonlinear Observer.

Proposition 3.6. Consider the system

η̇i =
(
κψb− κ2ψ + κ− 1

)
yi + (1− κψ) ηi − κψa−

(κyi + ηi)
3

3
+ I + ui, (3.21)

with state ηi ∈ R and some constant κ ∈ R. Then, there exists a nonempty set K ⊆ R
such that for all initial conditions ηi(0) ∈ R and κ ∈ K it is satisfied that:

lim
t→∞

(zi(t)− κyi(t)− ηi(t)) = 0.

Proof: Define the estimation error

εi = κyi + ηi − zi, (3.22)

straightforward computations show that the estimation error satisfies the
following differential equation

ε̇i = −
(
κψ − 1 +

(κyi + ηi)
2

4
+

(3κyi + 3ηi − 2εi)
2

12

)
εi. (3.23)

Consider the positive definite Lyapunov function V0(εi) = 1
2ε

2
i , then

V̇0(εi, yi) = −
(
κψ − 1 +

(κyi + ηi)
2

4
+

(3κyi + 3ηi − 2εi)
2

12

)
ε2i

≤ −(κψ − 1)ε2i , (3.24)

therefore for κ > 1
ψ the origin of (3.23) is globally uniformly asymptotically stable.

2

D. Diffusive Dynamic Coupling. Combining the observer (3.21) and an
estimated version of (3.6) the dynamic coupling (3.14) takes the following form

η̇i =
(
κψb− κ2ψ + κ

)
yi + (1− κψ) ηi − κψa− (κyi+ηi)

3

3 − yi + I + ui,

ẑi = κyi + ηi,

ui = γ
∑
j∈Ei

aij (ẑj − ẑi) .

(3.25)
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Figure 3.2 Synchronization of eight FitzHugh-Nagumo oscillators. The controller
is turned on at t = 100.

It follows from Theorem 3.5 that for sufficiently large γ and κ the solutions of the
closed-loop system (3.18),(3.25) are ultimately bounded and the goal of synchro-
nization is achieved.

E. Numerical Results. Figure 3.2 depicts the simulation results for the network of
eight FitzHugh-Nagumo neural oscillators coupled through (3.25) with coupling
strength γ = 0.5, κ = 13, ψ = 0.08, a = 0.7, b = 0.8, and I = 0.33.

3.6 Conclusions

Sufficient conditions for network synchronization and boundedness of the so-
lutions of coupled semipassive systems interconnected through observer based
diffusive couplings have been derived. Such couplings are constructed by com-
bining nonlinear observers and output interconnection terms. It has been shown
that synchronization can be achieved if the coupling strength γ is sufficiently
large, and the rate of convergency of the observer is sufficiently fast. In general,
it is not easy to find a nonlinear observer such that assumption (H3.3) is satisfied.
However, the aimof this chapter is not to give a designmethod for the observer dy-
namics but to provide sufficient conditions for network synchronizationwhen the
observer is given. Nevertheless, in the next chapter, we include an observer design
method for the class of systems under study (semipassive systems with conver-
gent internal dynamics). The performance of the scheme is verified by computer
simulations of coupled FitzHugh-Nagumo neural oscillators.



Chapter 4

Synchronization via
Invariant-Manifold-Based
Couplings with Time-Delays

Abstract. We address the problem of controlled synchronization in networks of
nonlinear systems interconnected through diffusive time-delayed dynamic couplings. These
couplings can be realized as dynamic output feedback controllers constructed by
combining nonlinear observers and time-delayed feedback interconnection terms. Using
Immersion and Invariance techniques, we present a general tool for constructing the
dynamics of the couplings. Sufficient conditions on the systems to be interconnected, the
network topology, the couplings, and the time-delay that guarantee (global) state
synchronization are derived. The asymptotic stability of the synchronization manifold
is proved using Lyapunov-Razumikhin methods. Moreover, using Lyapunov-Krasovskii
functionals and the notion of semipassivity, we prove that under some mild assumptions,
the solutions of the interconnected systems are ultimately bounded. Simulation results
using FitzHugh-Nagumoneural oscillators illustrate the performance of the control scheme.

4.1 Introduction

The results presented in this chapter follow the same research line as [104, 108] and
[132], where sufficient conditions for synchronization of diffusively
interconnected semipassive systems with and without time-delays are derived.
Nevertheless, their results apply to systems which are semipassive and their
internal dynamics are convergent [37] with respect to the coupling variable (the
measurable output). In this chapter, we do not assume semipassivity plus

This chapter is based on [76].
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convergence with respect to the measurable outputs yi as in [104], but this is
supposed to hold with respect to a state function zi, which is not directly
measured. However, if there exists a nonlinear observer which reconstructs zi
from measurements of yi, then a diffusive dynamic coupling which only depends
on the measurable outputs yi could be constructed to interconnect the systems.
There are some results in this direction already. For instance, in [119, 144], the
synchronization problem for a class of linear systems with time-varying topolo-
gies interconnected through observer-based diffusive dynamic couplings is
considered. In [116], the authors propose a dynamic output feedback controller that
solves the synchronization problem of two robot manipulators in the case when
position measurements are available only. Using adaptive control methods, the
authors in [86, 87] construct diffusive dynamic couplings which solve the network
synchronization problem for dynamical systems described by Euler-Lagrange
equations and subject to time-delays. In [77], we have started the analysis part
of these ideas. We have derived sufficient conditions on the convergence rate of the
observer ensuring network synchronization. However, in our previous work, it
is assumed that the observer exists, it is given, and the communication among
the systems is instantaneous, i.e., there are no time-delays in the loop. In prac-
tical situations, time-delays caused by signal transmission affect the behavior of
the interconnected systems. Diffusive time-delayed couplings arise naturally for in-
terconnected systems since the transmission of signals can be expected to take
some time. This chapter addresses and solves the synthesis part of a more general
setting. We develop a general tool for constructing diffusive time-delayed dynamic
couplings using the ideas of immersion and invariance that are introduced in [17].
Sufficient conditions are derived on the systems to be interconnected, the network
topology, the coupling dynamics, and the time-delay that guarantee boundedness
and (global) state synchronization of the solutions of the coupled system.

The remainder of the chapter is organized as follows. In Section 4.2, the system
description and the motivation for this chapter are presented. Moreover, the defi-
nition of the diffusive time-delayed coupling and the result presented in [132] are
also presented. The observer design is given in Section 4.3 before discussing the
main results on network synchronization in Section 4.4. In Section 4.5, an illus-
trative example that shows step by step how to construct the proposed couplings
is presented. Moreover, it is also shown how to apply the results of Section 4.3
and Section 4.4 to prove boundedness and synchronization of the solutions of the
closed-loop system. Finally, conclusions are stated in Section 4.6.



4.2 System Description and Diffusive Time-Delayed Couplings 57

4.2 System Description and Diffusive Time-Delayed
Couplings

Consider k identical nonlinear systems of the form

ẋi = f(xi) +Bui, (4.1)
yi = C1xi, (4.2)
zi = C2xi, (4.3)

with i ∈ I := {1, ..., k}, state xi ∈ Rn, input ui ∈ Rm, measurable output yi ∈ Rs,
semipassive output zi ∈ Rm, sufficiently smooth function f : Rn → Rn, matrices
C1, C2, and B of appropriate dimensions, and the matrix C2B ∈ Rm×m being
similar to a positive definite matrix. The systems (4.1),(4.3) are assumed to be
strictly semipassive and to have relative degree one. Then, there exists a globally
defined coordinate transformation such that systems (4.1),(4.3) can be written in
the following normal form, (this transformation is explicitly computed in [107]),

ζ̇i = q(ζi, zi), (4.4)
żi = a(ζi, zi) + C2Bui, (4.5)

with internal state ζi ∈ Rn−m and sufficiently smooth vector fields
q : Rn−m ×Rm → Rn−m and a : Rn−m ×Rm → Rm. For the sake of simplicity, it
is assumed that C2B = In (results for the general case with C2B being similar to
a positive definite matrix can easily be derived). Define the linear manifold

M := {col(z, ζ) ∈ Rkn|zi = zj and ζi = ζj ,∀ i, j ∈ I},

where ζ := col(ζ1, . . . , ζk) ∈ Rk(n−m) and z := col(z1, . . . , zk) ∈ Rkm. The
manifold M is called the synchronization manifold or the diagonal set. The
coupled systems are said to synchronize, if the synchronization manifold M
contains an asymptotically stable subset.

4.2.1 Diffusive Time-Delayed Couplings

The main results of this chapter follow the same research line as [132], where
synchronization of semipassive systems interconnected through diffusive
time-delayed couplings is considered. The network is called diffusively time-delayed
coupled if the systems interact through weighted differences of the form
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ui = γ
∑
j∈Ei

aij(z
τ
j − zi), (4.6)

ui = γ
∑
j∈Ei

aij(z
τ
j − zτi ), i ∈ I, (4.7)

where zj are the outputs of systems j to which systems i are connected, γ > 0

denotes the coupling strength, aij ≥ 0 are the weights of the interconnections, Ei
is the set of neighbors of system i, zi(t)τ := zi(t − τ), and τ ∈ R≥0 is the finite
time-delay. Moreover, since the coupling strength is encompassed in the constant
γ, then it is assumed without loss of generality that maxi∈I

∑
j∈Ei aij = 1. In

case of coupling (4.6), the transmitted signals (the outputs of nodes j) are delayed
τ units of time and compared with the current output of node i. This type of
coupling arises naturally for interconnected systems since the transmission of
signals can be expected to take some time. In coupling (4.7), all signals are time-
delayed. Such a coupling may arise, for instance, when the systems are
interconnected by centralized control laws. Notice that the controllers (4.6) and
(4.7) can be written in matrix form as follows

u = −γ (D ⊗ Im) z + γ (A⊗ Im) zτ , (4.8)
u = −γ (L⊗ Im) zτ , (4.9)

where u := col(u1, . . . , uk), z = col(z1, . . . , zk), Laplacian matrix L ∈ Rk×k,
adjacency matrix A ∈ Rk×k, and diagonal degree matrix D ∈ Rk×k. The main
results of [132] are summarized in the following lemma and theorem.

Lemma 4.1. [132]. Consider the k nonlinear systems (4.1),(4.3) coupled through the
diffusive time-delayed coupling (4.6) with coupling strength γ ∈ R≥0 and time-delay
τ ∈ R≥0 on a simple strongly connected graph. Suppose that each system (4.1),(4.3) is
strictly C1-semipassive with radially unbounded storage function V (xi), then the
solutions of the coupled systems (4.1),(4.3),(4.6) are ultimately bounded for any finite
τ, γ ∈ R≥0. If the systems (4.1),(4.3) are coupled through (4.7), assume that:

(H4.1) The functions H(xi) are such that there exists R > 0 such that |xi| > R implies
that H(xi)− γ|zi|2 > 0.

Let γmax be the largest γ that satisfies (H4.1), then the solutions of the coupled systems
(4.1),(4.3),(4.7) are ultimately bounded for any finite τ ∈ R≥0 and γ ∈ [0, γmax].



4.2 System Description and Diffusive Time-Delayed Couplings 59

Theorem4.2. [132]. Consider the k nonlinear systems (4.1),(4.3) interconnected through
either coupling (4.6) or (4.7) with coupling strength γ ∈ R≥0 and time-delay τ ∈ R≥0

on a simple strongly connected graph. Assume that the conditions stated in Lemma 4.1
are satisfied and

(H4.2) The internal dynamics (4.4) is an exponentially convergent system, i.e., there is a
positive definite matrix P ∈ R(n−m)×(n−m) such that the eigenvalues of the symmetric
matrix

Q =
1

2

(
P

(
∂q

∂ζi
(ζi, zi)

)
+

(
∂q

∂ζi
(ζi, zi)

)T
P

)
, (4.10)

are uniformly negative and bounded away from zero for all ζi ∈ Rn−m and zi ∈ Rm.

Then, the solutions of the closed-loop systems (4.1),(4.3),(4.6) and (4.1),(4.3),(4.7) are
ultimately bounded and there exist positive constants γ′,Ξ′ ∈ R>0 such that if
γ ∈ (γ′, γmax] (with γmax being the maximal coupling strength for which boundedness of
solutions is guaranteed) and γτ < Ξ′, then there exists a (globally) asymptotically stable
subset of the diagonal setM.

Remark 4.3. In Theorem 4.2, it is assumed that the internal dynamics (4.4) is an
exponentially convergent system. This assumption is employed to ensure that the
internal states ζi asymptotically synchronize whenever the semipassive outputs zi
asymptotically synchronize. Indeed, there are some other methods to verify this, for
instance, contraction theory [68], Lyapunov function approach to incremental stability
[15], the quadratic (QUAD) inequality approach (a Lipschitz-like condition) [36], and
differential dissipativity [43], which are all concepts that are closely related to notion of
convergent systems [94] that we use here.

We also refer the interested reader to [25, 36], where a fairly detailed comparison
among some of these techniques can be found.

4.2.2 Problem Statement and Outline of the Results

In the result stated in Theorem 4.2, it is assumed that the variable zi that
render the internal dynamics convergent, and for which each system is strictly
C1-semipassive is available for feedback. Therefore, if the measurable output is a
different state function yi, which does not have the desired properties,
Theorem 4.2 cannot be applied. To overcome these obstacles, in this manuscript,
two different types of observer-based diffusive dynamic couplings are proposed. The
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ideas of immersion and invariance [17] are used to construct nonlinear observers
which reconstruct the desired outputs zi from the measurable outputs yi. Then,
the systems are interconnected using these estimated variables ẑi. We prove that
under some mild conditions network synchronization and boundedness of the
solutions can also be achieved when the systems are coupled through these
estimated outputs ẑi. The results are presented as follows: First, in Proposition 4.6,
we give a general tool for constructing the observer dynamics before
introducing the proposed observer-based diffusive dynamic couplings in Section 4.4.
Next, in Lemma 4.8, we present a preliminary result which ensures boundedness
of the solutions of the closed-loop system. Finally, the main result on network
synchronization is stated in Theorem 4.11.

Remark 4.4. The results presented in this chapter also hold when the systems (4.1) are of
the form

ẋi = f(xi) +B (ui + ω(t)) ,

with an external known signal ω : R≥0 → Rm, which is assumed to be piecewise
continuous and uniformly bounded for all t ∈ (−∞,∞), i.e., |ω(t)| ≤ δ for some positive
constant δ. The signal ω(t) acts as either an external force or a reference signal that is
applied to all the systems. However, for simplicity of notation, we do not analyze this case.

4.3 Invariant-Manifold-Based Observer

Consider the k identical nonlinear systems (4.1)-(4.3). Assume that for any
initial condition xi(t0) ∈ Rn and every input signal ui, the corresponding solution
xi(t) is defined for all t ≥ t0, i.e., the systems are forward complete. Clearly, when
measuring yi = C1xi, it appears that it is only needed to reconstruct the
remaining part of the state ρi = N1xi, whereN1 is chosen such that (NT

1 , C
T
1 )T has

full column rank. Generally, this allows for reduced order observers
(especially when ρi and yi have some shared components). Assume that C1 has
full row rank, then there exists N1 ∈ Rp×n with p = n− s, such that(

ρi
yi

)
=

(
N1

C1

)
xi, xi =

(
N2 N3

)( ρi
yi

)
, (4.11)

with (
N1

C1

)−1

=
(
N2 N3

)
.
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It follows that systems (4.1),(4.2) can be rewritten as

ρ̇i = N1f(xi) +N1Bui, (4.12)
ẏi = C1f(xi) + C1Bui, (4.13)

with xi = N2ρi +N3yi.

Definition 4.5. Consider the system

η̇i = l(ηi, yi) + s(ηi, yi)ui, (4.14)
ρ̂i = β(ηi, yi), (4.15)

with i ∈ I, state ηi ∈ Rr, r ≥ p = n−s, and sufficiently smooth functions l : Rr×Rs →
Rr, s : Rr × Rs → Rr×m, and β : Rr × Rs → Rp. The system (4.14),(4.15) is called
an observer for system (4.12),(4.13) if there exists a mapping β(·) such that the manifold

A := {(ρi, yi, ηi) ∈ Rp × Rs × Rr : β(ηi, yi) = ρi}, (4.16)

has the following properties.

(P4.1) All trajectories of the extended system (4.12)-(4.15) that start on the manifold A
remain there for all future times, i.e., A is positively invariant.

(P4.2) All trajectories of the extended system (4.12)-(4.15) that start in a neighborhood of
A asymptotically converge to A.

The above definition implies that an asymptotically converging estimate of the
state ρi is given by (4.15). Note that the estimation error εi := ρ̂i − ρi is zero
on the manifold A. Moreover, if property (P4.2) holds for any initial state
ρi(t0), yi(t0), ηi(t0) ∈ Rp×Rs×Rr, then (4.14),(4.15) is a global observer for system
(4.12),(4.13).

4.3.1 Observer Design

In this section, we present a general tool for constructing nonlinear (reduced
order) observers of the form given in Definition 4.5 for the class of systems un-
der study. The design is based on the work presented in [17, 56].
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Proposition 4.6. Consider the system (4.12)-(4.15) and suppose that there exist a
C1-mapping β : Rr ×Rs → Rp such that the following holds.

(H4.3) For all yi and ηi the function β(ηi, yi) is left-invertible1 with respect to ηi and

det

(
∂β

∂ηi

)
6= 0.

(H4.4) The system

ε̇i = φ(εi, xi) := (N1 −
∂β

∂yi
C1) (f(x̂i)− f(xi)) , (4.17)

with xi = N2ρi + N3yi and x̂i = N2(ρi + εi) + N3yi has a (globally) asymptotically
stable equilibrium at εi = 0, uniformly in ρi(t) and yi(t). Then, the system (4.14),(4.15)
with

l(ηi, yi) =

(
∂β

∂ηi

)−1(
N1 −

∂β

∂yi
C1

)
f(x̂i), (4.18)

s(ηi, yi) =

(
∂β

∂ηi

)−1(
N1 −

∂β

∂yi
C1

)
B, (4.19)

and x̂i = N2β(ηi, yi) +N3yi, is a (global) observer for the system (4.12),(4.13).

Proof: Consider the estimation error εi = β(ηi, yi) − ρi, where β(·) is a
continuous differentiable function such that (H4.3) holds. Note that |εi| repre-
sents the distance of the system trajectories from the manifoldA defined in (4.16).
The dynamics of εi is then given by

ε̇i =
∂β

∂ηi
l(ηi, yi) +

∂β

∂yi
C1f(xi)−N1f(xi) (4.20)

+

(
∂β

∂ηi
s(ηi, yi) +

∂β

∂yi
C1B −N1B

)
ui.

By assumption (H4.3) the functions l(·) and s(·) in (4.18) and (4.19) are well
defined. Then, substitution of (4.18) and (4.19) in (4.20) yields the dynamics (4.17).
It follows from (H4.4) that the distance |εi| from the manifold A converges
asymptotically to zero. Moreover, note that the manifold A is invariant, i.e., if
εi(t) = 0 for some t, then εi(σ) = 0 for all σ > t. Hence, by Definition 4.5, the
system (4.14),(4.15) with l(·) and s(·) as in (4.18) and (4.19) is a (global) observer
for (4.12),(4.13). �

1A mapping ψ(x, y, t) : Rl × Rm × R → Rr is left-invertible (with respect to x) if there exists a
mapping ψL : Rr ×Rm ×R→ Rl such that ψL(ψ(x, y, t), y, t) = x for all x, y, and t.
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Proposition 4.6 provides an implicit description of the observer dynamics (4.14),
(4.15) in terms of the mapping β(·) which must be selected to satisfy (H4.4). As
a result, the problem of constructing an observer for the system (4.12),(4.13) is
reduced to the problem of rendering the system (4.17) asymptotically stable by
assigning the function β(·). Associated with the observer (4.14),(4.15), we have
the estimation error εi ∈ Rp defined as εi = ρ̂i − ρi = β(ηi, yi) − ρi, and the
estimation error dynamics ε̇i = φ(εi, xi), with φ(·) defined in (4.17) and
φ(0, xi) = 0 for all xi. Given a function β(·) such that the origin of (4.17) is
uniformly asymptotically stable, it follows that ρ̂i asymptotically converges to ρi.

4.4 Time-Delayed Output Dynamic Couplings

Let the k systems (4.1),(4.2) be interconnected through a Diffusive Time-Delayed
Dynamic Coupling (DTDC) of the form

η̇i = l(ηi, yi) + s(ηi, yi)ui,

ẑi = C2N2β(ηi, yi) + C2N3yi,
(4.21)

ui = γ
∑
j∈Ei

aij
(
ẑτj − ẑi

)
, (4.22)

ui = γ
∑
j∈Ei

aij
(
ẑτj − ẑτi

)
, (4.23)

with finite time-delay τ ∈ R≥0, coupling strength γ ∈ R≥0, interconnection
weights aij ≥ 0, maxi∈I

∑
j∈Ei aij = 1, N2 and N3 as in (4.11), and l(·) and s(·) as

in (4.18) and (4.19), respectively. The DTDC (4.21)-(4.23) is the combination of the
observer (4.14),(4.15) and estimations of (4.6) and (4.7).

Remark 4.7. The observer dynamics (4.14),(4.15) is independent of the time-delay, i.e.,
it is assumed that the measurements of yi are not subject to time-delay and the delay in
theDTDC (4.21)-(4.23) is induced when the estimated outputs ẑi are transmitted. Under
this assumption, it is possible to maintain the same observer structure while analyzing the
effect of transmission delays.
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4.4.1 Boundedness of the Interconnected Systems

Lemma 4.8. Consider the k nonlinear systems (4.1),(4.2) interconnected through either
the DTDC (4.21),(4.22) or (4.21),(4.23) with coupling strength γ ∈ R≥0 and time-delay
τ ∈ R≥0 on a simple strongly connected graph. Suppose that each system (4.1),(4.3)
is strictly C1-semipassive with radially unbounded storage function V (xi). In addition
assume that:

(H4.5) There exists a function β(·) such that (H4.3) is satisfied and the estimation error
dynamics (4.17) is (globally) asymptotically stable with radially unbounded Lyapunov
function V0 ∈ C1(Rp,R≥0) such that

(∇V0(εi))
T
φ(εi, xi) ≤ −κ |εi|2 , (4.24)

uniformly in xi(t) for some constant κ ∈ R>0.

(H4.6) If the systems are coupled through (4.21),(4.22), the functions H(xi) are such
that there exists R > 0 such that |xi| > R implies that H(xi) − γc|zi|2 > 0, with
c = ‖C2‖‖N2‖.

(H4.7) If the systems are coupled through (4.21),(4.23), the functions H(xi) are such
that there exists R > 0 such that |xi| > R implies that H(xi) − γc̃|zi|2 > 0, with
c̃ = ‖C2‖‖N2‖+ 2.

Let γmax be the largest γ that satisfies (H4.6) and (H4.7), then the solutions of the coupled
systems (4.1),(4.2),(4.21),(4.22) and (4.1),(4.2), (4.21),(4.23) are ultimately bounded for
any finite τ ∈ R≥0 and γ ∈ [0, γmax].

The proof of Lemma 4.8 can be found in the Appendix A.

Remark 4.9. If the conditions stated in Lemma 4.8 are satisfied, then existence and
ultimate boundedness of the solutions of the closed-loop system are guaranteed. Before
studying network synchronization (a relative stability notion), it is necessary to ensure
that solutions exist and are bounded; otherwise, it would not make sense to talk about
synchronization simply because solutions are not guaranteed to be well defined.

4.4.2 Network Synchronization

First, we derive conditions that guarantee invariance of the synchronization
manifoldM under the closed-loop dynamics (4.1),(4.2),(4.21)-(4.23).
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Proposition 4.10. The synchronization manifoldM is invariant under the closed-loop
dynamics (4.1),(4.2),(4.21),(4.22) on a simple strongly connected graph if at least one of
the following conditions is satisfied.

1. The estimated states are τ -periodic, i.e.,

ẑi(t) = ẑi(t− τ).

2.
∑
j∈Ei aij = d̄ for some d̄ ∈ R>0 and for all i ∈ I.

Proof: For the existence of the synchronized state, it is required that the
dynamics of the systems are identical on the synchronization manifold. Since all
the systems (4.1),(4.2) are assumed to be identical, it follows thatM is invariant
under (4.1),(4.2),(4.21),(4.22) if ui = uj onM for all i, j ∈ I, i.e.,

0 = ui − uj = γ(di − dj) (ẑ∗ − ẑτ∗ ) ,

for all ẑ∗ ∈ M̂z := {ẑ ∈ Rkm|ẑi = ẑj ,∀ i, j ∈ I} with ẑ := col(ẑ1, . . . , ẑk). Then,
ui = uj only if di =

∑
j∈Ei aij = d̄ ∈ R>0 for all i ∈ I or if ẑ = ẑτ , i.e., the

estimated states are τ -periodic. �

Therefore, it is assumed that:

(H4.8)
∑
j∈Ei aij = d̄ ∈ R>0 ∀ i ∈ I, for systems interacting through the DTDC

(4.21),(4.22).

Clearly, if the systems are interconnected through (4.21),(4.23), all the coupling
functions vanish on the synchronization manifold. Hence, the synchronization
manifoldM is positively invariant under the dynamics (4.1),(4.2),(4.21),(4.23). In
the following theorem, we give sufficient conditions for network synchronization
of the interconnected systems.

Theorem 4.11. Consider the k nonlinear systems (4.1),(4.2) interconnected through
either the DTDC (4.21),(4.22) or (4.21),(4.23) with coupling strength γ ∈ R≥0 and
time-delay τ ∈ R≥0 on a simple strongly connected graph. Suppose that the conditions
stated in Lemma 4.8 and assumption (H4.2) are satisfied and in the case of (4.21),(4.22)
assumption (H4.8) holds. Then, the solutions of the coupled systems (4.1),(4.2),(4.21),
(4.22) and (4.1),(4.2),(4.21),(4.23) are ultimately bounded and there exist positive
constants γ′, Ξ′, and κ′ such that if γ ∈ (γ′, γmax] (with γmax being the maximal cou-
pling strength for which boundedness of solutions is guaranteed), γτ < Ξ′, and κ > κ′

(with κ from (H4.5)), then there exists a (globally) asymptotically stable subset of the
diagonal setM.
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Figure 4.1 Network of eight identical systems. The graph is directed and strongly
connected.

The proof of Theorem 4.11 can be found in the Appendix A. The result stated in
Theorem 4.11 amounts to the following. The interconnected systems asymptoti-
cally synchronize provided that the coupling strength γ belongs to the set
(γ′, γmax], the time-delay τ is sufficiently small, and the estimation errors εi con-
verge sufficiently fast to the origin.

4.5 Example: FitzHugh-Nagumo Neural Oscillators

It is well known that individual neurons in parts of the brain discharge their
action potentials in synchrony. Synchronous oscillations of neurons have been
reported in the olfactory bulb, the visual cortex, the hippocampus, and in the
motor cortex [45, 124]. The presence or absence of synchrony in the brain is
often linked to specific brain functions or critical physiological states
(e.g., epilepsy). Hence, understanding conditions that lead to such a behavior,
exploring the possibilities to manipulate these conditions, and describe them
rigorously is vital for further progress in neuroscience and related branches of
physics [136]. Thus, to show the performance of our control-scheme, we have se-
lected networks of coupled FitzHugh-Nagumo neural oscillators. The FitzHugh
Nagumo neuronal model is one of many neuronal models that fulfils the
conditions stated in Theorem 4.11 at the level of the systems, namely, semipassivity
and convergence, see [136].
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A. Convergence and Semipassivity. Each system in the network is assumed to be
a forced FitzHugh-Nagumo oscillator of the form{

żi = zi − z3
i

3 − yi + δ cos(t) + ui,

ẏi = ψ (zi + a− byi) ,
(4.25)

with measurable output yi ∈ R, semipassive output zi ∈ R, input ui ∈ R, state
xi = (zi, yi)

T ∈ R2, positive constants ψ, a, b, δ ∈ R>0, and i ∈ I = {1, ..., 8}. The
FitzHugh-Nagumo oscillator is strictly C1-semipassive with input ui, output zi,
storage function V (xi) = 1

2 (z2
i + 1

ψy
2
i ), and function H(·) as follows

H(xi) =
z4
i

3
− z2

i − δ |zi|+ by2
i − ayi, (4.26)

which is strictly positive for sufficiently large |xi|. Moreover, if we apply
Demidovich’s condition (4.10) to the internal dynamics of (4.25), it follows that
for P = 1 the matrix Q(xi) is simply given by Q(xi) = −ψb. Since b, ψ ∈ R>0, it
follows that Q(xi) is strictly negative and then the internal dynamics is an expo-
nentially convergent system; therefore, assumption (H4.2) is satisfied. However,
the variable zi is not available for feedback, the coupling variable is the measur-
able output yi and therefore Theorem 4.2 cannot be applied. Nevertheless, if there
exists a function β(·) such that (H4.5) is satisfied, then the DTDC (4.21)-(4.23)
could be constructed and therefore Theorem 4.11 may be applied to conclude
synchronization of the closed-loop system.

B. Network Topology. Consider a network of eight systems coupled according to
the graph depicted in Figure 4.1 with aij = 1 if {ij} ∈ E and aij = 0 otherwise.
The network is strongly connected and simple. Moreover, the degree matrix is
given byD = diag{2, ..., 2}, assumption (H4.8) is satisfied, and the associated ad-
jacency matrix is not symmetric, i.e., A 6= AT .

C.NonlinearObserver. Next, using Proposition 4.6, an observer of the formgiven
in Definition 4.5 is constructed. Associated with system (4.25), the estimation
error dynamics (4.17) takes the following form

ε̇i = −
(

1 − ∂β
∂yi

)( z2
i εi + ziε

2
i +

ε3i
3 − εi

−ψεi

)

= −
(
ε2i
12

+
(
zi +

εi
2

)2

− 1 +
∂β

∂yi
ψ

)
εi. (4.27)
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Consider the Lyapunov function V0(εi) = 1
2ε

2
i , then

V̇0(εi, zi) = −
(
ε2i
12

+
(
zi +

εi
2

)2

− 1 +
∂β

∂yi
ψ

)
ε2i

≤ −
(
∂β

∂yi
ψ − 1

)
ε2i . (4.28)

Taking the function β(ηi, yi) = ηi + κyi with κ ∈ R>0, yields V̇0 ≤ − (κψ − 1) ε2i ;
therefore, for any κ > 1

ψ the origin of (4.27) is globally uniformly asymptotically

stable. Notice that det
(
∂β
∂ηi

)
= 1 6= 0, i.e., assumption (H4.3) is satisfied. It fo-

llows that the functions l(·) and s(·) in (4.18) and (4.19) are well defined; hence,
the nonlinear observer (4.14),(4.15) takes the following form

η̇i =
(
κψb− κ2ψ + κ− 1

)
yi + (1− κψ) ηi

− κψa− (κyi+ηi)
3

3 + δcos(t) + ui,

ẑi = κyi + ηi.

(4.29)

D. Diffusive Dynamic Coupling. Combining the observer (4.29) and estimated
versions of (4.6) and (4.7), the dynamic couplings (4.21) and (4.23) are given by

ui = γ
∑
j∈Ei

aij
(
κyτj − κyi + ητj − ηi

)
, (4.30)

ui = γ
∑
j∈Ei

aij
(
κyτj − κyτi + ητj − ητi

)
. (4.31)

Let the 8 systems (4.25) be interconnected according to the graph depicted in
Figure 4.1 through the DTDC (4.29)-(4.31). Next, we check whether the assump-
tions of Lemma 4.8 and Theorem 4.11 are satisfied. It is already shown that (H4.5)
of Lemma 4.8 is satisfied and that each system (4.25) is strictly C1-semipassive
with H(xi) as in (4.26). The function H(xi) has to satisfy the conditions stated
in (H4.6) and (H4.7). Since, the function H(xi) has a positive fourth-degree term
in zi and a positive quadratic term in yi, which for large |xi| dominate all the
other terms, it follows that the inequalities in (H4.6) and (H4.7) are always satis-
fied for sufficiently large |xi| and arbitrary large coupling strength γ. Therefore, by
Theorem 4.11, the solutions of the coupled systems (4.25),(4.29)-(4.31) are
ultimately bounded, and for sufficiently small time-delay τ and sufficiently large
γ and κ, the systems synchronize.
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a)

b)

Figure 4.2 Synchronization of eight FitzHugh-Nagumo oscillators: (a) Time re-
sponses. (b) Values of γ and τ , obtained by extensive computer simu-
lation, for which the systems synchronize (gray region).

E. Numerical Results. Consider the following parameters, ψ = 0.08, a = 0.7,
b = 0.8, and δ = 1.325. For these parameters, the solutions of the FitzHugh-
Nagumo oscillator exhibit chaotic behavior. Figure 4.2 depicts the simulation
results of the network of FitzHugh-Nagumo oscillators interconnected via (4.29),
(4.31) on the graph depicted in Figure 4.1. Figure 4.2(a) shows the time responses
for γ = 0.75, κ = 13, and τ = 0.5. The top panel shows the eight zi states and
the eight yi states are depicted in the bottom one. The controller is turned on at
t = 25 [s]. In Figure 4.2(b), we show the values of γ and τ , obtained by extensive
computer simulation, for which the systems synchronize (gray region).
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4.6 Conclusions

In this chapter, we have addressed the problem of controlled network synchro-
nization of general nonlinear underactuated systems. We have developed a
general tool for constructing two different types of time-delayed diffusive dynamic
couplings using the ideas of immersion and invariance. The coupling design
problem is recast as a problem of rendering attractive and invariant a manifold
defined in the extended state-space of the plant and the coupling. Sufficient
conditions on the systems to be interconnected, the network topology, the
coupling dynamics, and the time-delay that guarantee (global) state synchroniza-
tion and boundedness have been derived. We have presented simulation results
using chaotic FitzHugh-Nagumo neural oscillators that shows step by step how
to construct the proposed time-delayed dynamic diffusive couplings and how to
apply the results stated in Section 4.4 and Section 4.5 to prove boundedness and
synchronization of the solutions of the closed-loop system.



Chapter 5

Partial Synchronization via
Observer-Based Diffusive
Dynamic Couplings

Abstract. Partial synchronization in networks of semipassive systems interconnected
through a class of diffusive dynamic couplings is studied. The couplings are constructed by
combining nonlinear observers and feedback interconnection terms. Sufficient conditions
on the systems to be interconnected, the network topology, the observer dynamics, and the
coupling strength that guarantee (global) partial synchronization are derived. The results
are illustrated by computer simulations of coupled Hindmarsh-Rose neural oscillators.

5.1 Introduction

In this chapter, we study a phenomenon called partial synchronization or
clustering in networks of coupled oscillators, i.e., some oscillators in the network
do synchronize while others do not. The study of partial synchronization is
relevant in many science and engineering applications. For instance in [141], the
authors report the occurrence of partial synchronization in arrays of chaotic
semiconductor lasers. In [117], experimental partial synchronization in networks
of chaotic circuits with applications to communication systems is considered. The
clustering problem of Josephson junction arrays with applications to high
frequency electromagnetic generators is addressed in [111]. The occurrence of
partial synchronization in networks of diffusively coupled nonlinear oscillators
has been investigated in, for instance, [21, 105, 109, 148]. In particular, the au-

This chapter is based on [80].

71
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thors in [105, 109] derive conditions for the existence and stability of partial syn-
chronization modes in networks of nonlinear semipassive systems with convergent
internal dynamics. Moreover, they show that if a network contains certain
symmetries, then these symmetries identify modes of partial synchronization. In
these results, it is assumed that the variable zi that renders the internal dynamics
convergent, and for which each system is strictly semipassive is used in the diffusive
(feedback) coupling. Therefore, if the measurable output is a different state
function yi, which does not have the desired stability properties, then these results
cannot be applied. Nevertheless, if there exists a (nonlinear) observer, which
reconstructs zi from measurements of yi, then an observer-based diffusive dynamic
coupling, which only depends on the measurable output yi could be constructed
to interconnect the systems. In [77], we have started with the analysis of these
ideas for the study of full network synchronization. Following the same approach,
in this chapter, we extend the ideas presented in [105] to the case of observer-based
diffusive dynamic couplings. We derive sufficient conditions on the individual sys-
tems, the network topology, the observer dynamics, and the coupling strength
that guarantee partial network synchronization.

5.2 System Description

Consider k identical nonlinear systems of the form

ẋi = f(xi) +Bui, (5.1)
yi = C1xi, (5.2)
zi = C2xi, (5.3)

with i ∈ I := {1, ..., k}, state xi ∈ Rn, input ui ∈ Rm, measurable output yi ∈ Rs,
semipassive output zi ∈ Rm, sufficiently smooth function f : Rn → Rn, and
matrices C1 ∈ Rs×n, C2 ∈ Rm×n, and B ∈ Rn×m with the matrix C2B ∈ Rm×m
being similar to a positive definite matrix. In addition, it is assumed that the
systems (5.1),(5.3) are strictly C1-semipassive, they have relative degree one, and
their corresponding internal dynamics are exponentially convergent systems. The
network is called diffusively coupled if the systems interact via couplings of the form

ui = γ
∑
j∈Ei

aij(zj − zi), i ∈ I, (5.4)

where zj is the output of system j towhich system i is connected, γ ∈ R>0 denotes
the coupling strength, aij ≥ 0 are the weights of the interconnections, and Ei is
the set of neighbors of system i. Notice that the coupling (5.4) can be written in
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the following matrix form

u = −γ (L⊗ Im) z, (5.5)

where L ∈ Rk×k denotes the Laplacian matrix, z := col(z1, ..., zk) ∈ Rkm, and
u := col(u1, ..., uk) ∈ Rkm. Define x := col(x1, ..., xk) ∈ Rkn and the linear
manifold

M := {x ∈ Rkn|xi = xj ,∀ i, j ∈ I}.

The manifoldM is called the synchronization manifold or the diagonal set. The
systems (5.1),(5.3),(5.4) are said to fully synchronize, or simply synchronize, if the
synchronizationmanifoldM contains an asymptotically stable subset. In a similar
manner, consider the linear manifold

MP := {x ∈ Rkn|xi = xj , for some i, j ∈ I}.

The manifoldMP is called a partial synchronization manifold. The systems (5.1),
(5.3),(5.4) are said to partially synchronize, if the partial synchronization
manifoldMP is invariant under the closed-loopdynamics and contains an asymp-
totically stable subset. The result presented here is a direct extension of the
results presented in [105, 106], where sufficient conditions for partial synchro-
nization in networks of diffusively interconnected semipassive systems are de-
rived. These papers show that if a network contains certain symmetries, then these
symmetries identify modes of partial synchronization. Moreover, the authors
prove that if the individual systems are semipassive and their corresponding
internal dynamics are exponentially convergent systems, then the partial synchro-
nization manifold may contain an asymptotically stable subset.

Remark 5.1. In the results presented in [105, 106], it is assumed that the variable zi that
renders the internal dynamics convergent, and for which each system is strictly C1-
semipassive is available for feedback. Therefore, if the measurable output is a different
state function yi, which does not have the desired stability properties, then these results
cannot be applied.

It is therefore interesting to extend these results to the case when the variable zi is
not measurable, but there exists a (nonlinear) observer which reconstructs zi from
the measurable output yi. If such an observer exists, we can construct a diffusive
dynamic coupling combining the observer and an estimated version of the diffusive
coupling (5.4). Then, a natural question arises, "If the systems are interconnected
through an estimated variable ẑi, is it still possible to achieve partial synchroniza-
tion of the closed loop system?" In order to answer this question, we first need to
make some stability assumptions on the observer dynamics.
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5.3 Observer-based Diffusive Dynamic Couplings

In this section, the structure of the observers that we consider and the diffusive
dynamic coupling that is used to interconnect the systems are introduced.
Moreover, sufficient conditions for boundedness of the closed-loop system are
also presented.

5.3.1 Nonlinear Observer

Consider the k identical systems (5.1)-(5.3). Assume that for any initial condition
xi(t0) ∈ Rn and every input signal ui, the corresponding solution x(t) is well
defined and ultimately bounded for all t ≥ t0, (in Section 5.3.3, we give sufficient
conditions for ultimate boundedness of the closed-loop system for the class of
inputs under study). Consider (nonlinear) observers of the form{

η̇i = l(ηi, yi, ui),

ẑi = β(ηi, yi),
(5.6)

with i ∈ I, state ηi ∈ Rp, p ≥ n − s, estimated semipassive output ẑi ∈ Rm, and
sufficiently smooth functions l : Rp ×Rs ×Rm → Rp and β : Rp ×Rs → Rm de-
signed such that ẑi asymptotically converges to the actual value of zi. Associated
with the observer (5.6), we have the estimation error εi ∈ Rm defined as

εi := ẑi − zi = β(ηi, yi)− zi. (5.7)

Then, the estimation error dynamics is given by

ε̇i =
∂β(ηi, yi)

∂ηi
l(ηi, yi, ui) +

(
∂β(ηi, yi)

∂yi
C1 − C2

)(
f(xi) +Bui

)
. (5.8)

It is assumed that the functions l(·) and β(·) are designed such that the estimation
error dynamics (5.8) has the following structure

ε̇i = φ(εi, xi), (5.9)

with sufficiently smooth function φ : Rm × Rn → Rm and φ(0, xj) = 0 for all
xi ∈ Rn. The estimated ẑi uniformly asymptotically converges to zi, if the
origin of the estimation error dynamics (5.9) (or 5.8) is uniformly asymptotically
stable. In general, it is unknown under what conditions on (5.1),(5.2) the (non-
linear) observer (5.6) can be constructed. In this manuscript, it is assumed that
the observer exists and it is given. Nevertheless, we forward the interested reader
to [56, 84] for existence conditions and interesting design methods of (nonlinear)
observers.
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5.3.2 Diffusive Dynamic Couplings

Let the k systems (5.1),(5.2) be interconnected through dynamic diffusive
couplings of the form

η̇i = l(ηi, yi, ui), (5.10)
ẑi = β(ηi, yi), (5.11)
ui = γ

∑
j∈Ei

aij (ẑj − ẑi) , (5.12)

where γ ∈ R≥0 denotes the coupling strength and aij ≥ 0 are the interconnection
weights. Moreover, since the coupling strength is encompassed in the constant
γ, then it is assumed without loss of generality that maxi∈I

∑
j∈Ei aij = 1. The

dynamic coupling (5.10)-(5.12) is the combination of the nonlinear observer (5.6)
and an estimated version of the diffusive coupling (5.4).

5.3.3 Boundedness of the Interconnected Systems

In this part, we derive sufficient conditions for boundedness of the solutions of
the coupled systems (5.1),(5.2),(5.10)-(5.12).

Lemma 5.2. [77]. Consider k coupled systems (5.1),(5.2),(5.10)-(5.12) on a simple
strongly connected graph with coupling strength γ ∈ R≥0. Assume that:

(H5.1) There exists a nonlinear observer (5.6) such that the corresponding estimation
error dynamics (5.9) is uniformly asymptotically stable with positive definite radially
unbounded Lyapunov function V0 ∈ C1(Rm,R≥0) satisfying

(∇V0(εi))
T
φ(εi, xi) ≤ −κ |εi|2 , (5.13)

uniformly in xi(t) for some constant κ ∈ R>0.

(H5.2) Each system (5.1),(5.3) is strictly C1-semipassive with radially unbounded storage
function, and the functionsH(xi) are such that there exists R ∈ R>0 such that |xi| > R

implies that H(xi)− γdi|zi|2 > 0 with di =
∑
j∈Ei aij .

Let γmax be the largest γ that satisfies (H5.2), then the solutions of the coupled system
(5.1),(5.2),(5.10)-(5.12) are ultimately bounded for γ ∈ [0, γmax].
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5.4 Symmetries and Invariant Manifolds

In this section, we extend the ideas presented by [105] for the identification of
partial synchronization modes to the case of diffusive dynamic couplings. If a given
network possesses certain symmetry, this symmetry must be present in the
adjacency matrix A (and thus also in the Laplacian matrix L). In particular, the
networkmay contain some repeated patterns when considering the arrangements
of the constants aij and hence the permutation of some elements would leave
the network unchanged. That is, the structure of the network is preserved after
simultaneous swapping of (some of) the nodes of the network. The matrix
representation of a permutation of the set I = {1, ..., k} is a permutation matrix
Π ∈ Rk×k. Consider the closed-loop system (5.1),(5.2),(5.10)-(5.12)

η̇i = l(ηi, yi, ui),

ẑi = β(ηi, yi),

ẋi = f(xi) + γB
∑
j∈Ei

aij (ẑj − ẑi) , i ∈ I.

Given that εi = ẑi − zi, the closed-loop system can be written in terms of the
estimation errors εi as follows

ε̇i = φ(εi, xi), (5.14)
ẋi = f(xi) + γB

∑
j∈Ei

aij (zj − zi + εj − εi) , (5.15)

with φ(·) from (5.9). Introduce the new set of variables: ε := col(ε1, . . . , εk),
x := col(x1, . . . , xk), Ξ :=

(
Π ⊗ In

)
, F (x) := col(f(x1), . . . , f(xk)), and

Φ(ε, x) := col(φ(ε1, x1), . . . , φ(εk, xk)). Then, the stacked closed-loop system (5.14),
(5.15) can be written as

ε̇ = Φ(ε, x), (5.16)
ẋ = F (x)− γ(L⊗BC2)x− γ(L⊗B)ε. (5.17)

Using this new notation, in the following lemma, we show that a symmetry in the
network defines a linear invariant manifold for the closed-loop dynamics.
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Lemma 5.3. Consider a network of k systems (5.1),(5.2) interconnected through the
dynamic coupling (5.10)-(5.12) with coupling strength γ ∈ R>0 and Laplacian matrix
L ∈ Rk×k. Let Π ∈ Rk×k be a permutation matrix and X ∈ Rk×k denote a solution to
the matrix equation

(Ik −Π)L = X (Ik −Π) , (5.18)

then the set

N :=
{

(ε, x) ∈ Rkm ×Rkn|ε = 0km×1 ∧ (Ikn −Π⊗ In)x = 0kn×1

}
, (5.19)

defines a linear invariant manifold for the coupled systems (5.14),(5.15).

Proof: Assume that at some time t∗ it is satisfied that (Ikn − Ξ)x(t∗) = 0 and
ε(t∗) = 0. Then, the set N is invariant under the closed-loop dynamics if
(Ikn − Ξ)x(t∗) = 0 and ε(t∗) = 0 imply (Ikn − Ξ)ẋ(t∗) = 0 and ε̇(t∗) = 0. By
construction ε = 0 is an equilibrium point of (5.16), then ε(t∗) = 0 → ε̇(t∗) = 0.
Consider (5.17) and the solution X of the matrix equation (5.18). Since Π is a
permutation matrix, it follows that ΞF (x(t∗)) = F (Ξx(t∗)), then

(Ikn − Ξ)ẋ(t∗) = (Ikn − Ξ)F (x(t∗))− γ(Ikn − Ξ)(L⊗BC2)x(t∗),

− γ(Ikn − Ξ)(L⊗B)ε(t∗),

= F (x(t∗))− F (Ξx(t∗))− γ(X ⊗BC2)(Ikn − Ξ)x(t∗)

− γ(Ikn − Ξ)(L⊗B)ε(t∗) = 0,

because it is assumed that (Ikn − Ξ)x(t∗) = 0 and ε(t∗) = 0 . Then, ε(t) = 0 and
(Ikn − Ξ)x(t) = 0 for all t ≥ t∗; therefore, the set N defines a linear invariant
manifold for the interconnected systems (5.14),(5.15). �

5.5 Partial Synchronization

In the previous section, conditions for the existence of linear invariant manifolds
are presented. For partial synchronization to occur, we require these manifolds
to contain an asymptotically stable subset. In this section, we present sufficient
conditions for a linear invariant manifold to contain an asymptotically stable sub-
set. Consider the k systems (5.1)-(5.3). Since it is assumed that the systems have
relative degree one and the matrix C2B is similar to a positive definite matrix,
then there exists a globally defined coordinate transformation such that systems
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(5.1),(5.3) can be written in the following normal form, (this transformation is
explicitly computed in [107]),

ζ̇i = q(ζi, zi), (5.20)
żi = a(ζi, zi) + C2Bui, (5.21)

with internal state ζi ∈ Rn−m, and sufficiently smooth vector fields q : Rn−m ×
Rm → Rn−m and a : Rn−m ×Rm → Rm. For the sake of simplicity, it is assumed
that C2B = In (results for the general case with C2B being similar to a positive
definite matrix can easily be derived). In the following theorem, we give sufficient
conditions for partial synchronization to occur.

Theorem 5.4. Consider the k nonlinear systems (5.1),(5.2) interconnected through the
diffusive dynamic coupling (5.10)-(5.12) on a simple strongly connected graph.
Suppose the conditions of Lemma 5.2 and Lemma 5.3 are satisfied for some matrix X
and permutation matrix Π. In addition assume that:

(H5.3) There is a constant λ′ ∈ R>0 such that

1

2
ϑT (I −Π)

T
(X +XT ) (I −Π)ϑ ≥ λ′ |(I −Π)ϑ|2 .

(H5.4) The internal dynamics ( 5.20) is an exponentially convergent system, i.e., there is
a positive definite matrix P ∈ R(n−m)×(n−m) such that the eigenvalues of the symmetric
matrix

Q(ζi, zi) =
1

2

(
P

(
∂q

∂ζi
(ζi, zi)

)
+

(
∂q

∂ζi
(ζi, zi)

)T
P

)
, (5.22)

are uniformly negative and bounded away from zero for all ζi ∈ Rn−m and zi ∈ Rm.

Then, there exist positive constants γ′ and κ′ such that if γ > γ′ and κ > κ′ with κ from
(5.13), then the set N contains a globally asymptotically stable subset.

The proof of Theorem 5.4 is presented in the Appendix A. Notice that if the ma-
trices L and Π commute, then the matrix equation (5.18) admits a solutionX = L.
The problem of finding a λ′ ∈ R>0 satisfying (H5.3) can be solved via singular
value decomposition, see [106]. Moreover, ifX+XT commutes with Π, then λ′ is
the minimal eigenvalue of 1

2 (X +XT ) under the restriction that the eigenvectors
of 1

2 (X +XT ) are taken from the set range(Ik −Π).
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Figure 5.1 A network of four identical systems.

5.6 Example: Hindmarsh-Rose neural oscillators

In this section, we present an illustrative example where we show step by step
how to apply Theorem 5.4 to conclude partial synchronization of the coupled sys-
tems. It is assumed that each system in the network is a Hindmarsh-Rose neural
oscillator, see [51].

A. Convergence and Semipassivity. Consider four identical Hindmarsh-Rose
oscillators of the form

ζ̇1i = 0.005 (4 (zi + 1.618)− ζ1i) , (5.23)
ζ̇2i = −2zi − z2

i − ζ2i, (5.24)
żi = −z3

i + 3zi − 4.75 + 5ζ2i − ζ1i + ui, (5.25)

yi =
(
ζ1i, ζ2i

)T
, (5.26)

with i ∈ I = {1, 2, 3, 4}, measurable output yi, state xi = (ζ1i, ζ2i, zi)
T ∈ R3, and

input ui ∈ R. It is shown in [82] that the system (5.23)-(5.25) is strictly
C1-semipassive with input ui, output zi, and storage function

V (xi) =
1

2

(
1

0.005 · 4ζ
2
1i + µζ2

2i + z2
i

)
,

for some µ ∈ R>0. Moreover, the corresponding H(xi) satisfies (H5.2) for
arbitrarily large γ. Assumption (H5.4) is satisfied with P = I2, i.e., the internal
dynamics (5.23),(5.24) is an exponentially convergent system. At this point,
Theorem 1 in [105] could be applied to conclude that the network of coupled
Hindmarsh-Rose systems may exhibit partial synchronization. However, the
variable zi is not available for feedback. The coupling variable is the
measurable output yi; therefore, the results in [105] cannot be used. Nevertheless,
if there exists an observer which estimates zi from measurements of yi, then the
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dynamic coupling (5.10)-(5.12) could be constructed and therefore Theorem 5.4
may be used to study partial synchronization.

B. Nonlinear Observer.

Proposition 5.5. Consider four systems of the form

η̇i = −0.005κ1

(
4

κ2
β + 4.472− y1i

)
(5.27)

+ κ2

(
−β

3

κ3
2

+
3β

κ2
− 4.75 + 5y2i − y1i + ui

)
,

ẑi =
1

κ2
β(yi, ηi), (5.28)

with i ∈ I, state ηi ∈ R, function β(yi, ηi) = κ1y1i+ηi, and constants κ1 and κ2. Then,
there exist κ1 ∈ R>0 and κ2 ∈ R>0 such that for all initial conditions ηi(t0) ∈ R, it is
satisfied that: limt→∞ (κ1y1i + ηi − κ2zi) = 0.

Proof: Define the estimation error

εi := κ1y1i + ηi − κ2zi. (5.29)

Straightforward computations show that the estimation error satisfies the
following differential equation

ε̇i = −
(
κ1

5κ2
− 3 +

1

κ2

(
εi +

3κ2

2
zi

)2

+
3κ2

4
z2
i

)
εi. (5.30)

Consider the positive definite Lyapunov function V0(εi) = 1
2ε

2
i , then along the

solutions of (5.30), it is satisfied that

V̇0 ≤ −
(
κ1

5κ2
− 3

)
ε2i . (5.31)

Therefore, for κ1 > 15κ2 > 0, the origin of (5.30) is globally uniformly asymptoti-
cally stable. �

C. Dynamic Diffusive Coupling. Combining the observer (5.27),(5.28) and an
estimated version of (5.4), the dynamic coupling (5.12) takes the form

ui =
γ

κ2

∑
j∈Ei

aij (κ1y1j − κ1y1i + ηj − ηi) . (5.32)
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D. Network Topology. Consider a network of four systems coupled according to
the graph depicted in Figure 5.1, (this topology is taken from [134]). The network
is strongly connected and simple. The associated Laplacian matrix is given by

L =
1

3


3 −1 0 −2

−1 3 −2 0

0 −2 3 −1

−2 0 −1 3

 . (5.33)

Note that the above Laplacian commuteswith the following permutationmatrices

Π1 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,Π2 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 ,Π3 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 ,

i.e., LΠj = ΠjL for all j ∈ {1, 2, 3}, and hence X = L is a solution of the ma-
trix equations (I4 − Πj)L = X(I4 − Πj). Let x = col(x1, . . . , x4) ∈ R12 and
the stacked estimation error ε = col(ε1, . . . , ε4) ∈ R4. Then, from Lemma 5.3,
it follows that the sets Nj :=

{
(ε, x) ∈ R4 ×R12|ε = 0 ∧ (I12 −Πj ⊗ I3)x = 0

}
,

define linear invariant manifolds for the closed-loop system. Moreover, since L
is symmetric and commutes with Πj , then λ′ in (H5.3) can be estimated as the
minimal eigenvalue of L under the restriction that the eigenvectors of L are taken
from the set range(Ik −Πj), see [109] for details. Let λi be an eigenvalue of L and
µi the corresponding eigenvector, then λ1 = 0, λ2 = 2

3 , λ3 = 4
3 , λ4 = 2, and

µ1 =


1

1

1

1

 , µ2 =


1

−1

−1

1

 , µ3 =


1

1

−1

−1

 , µ4 =


−1

1

−1

1

 .

Then, after some straightforward computations, it follows that λ′ = λ2 for both Π1

and Π2, and λ′ = λ3 for Π3. Therefore, all the assumptions stated in
Theorem 5.4 are satisfied, and it can be concluded that for sufficiently large γ,
κ1, and κ2 the sets Nj contain globally asymptotically stable subsets. Note that
the conditions for partial synchronization of Π1 and Π2 are the same. It may
be that multiple partial synchronization manifolds coexist and also their condi-
tions for being stable might coincide. The case in which all partial synchroniza-
tion manifolds are stable coincides the fully synchronized state. It follows that
to observe partial synchronization, it is necessary that the values of γ, κ1, and
κ2 for which a partial manifold is stable do not coincide with those for which
the full synchronization manifold is stable. Particularly, in this example, the only
partial synchronization manifold that can be observed is the corresponding to the
set N3, i.e., x1 = x4 6= x2 = x3.
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Figure 5.2 States responses. The controller is turned-on at time = 500[ms].

Figure 5.3 (a) Partial synchronization of neurons 1 and 4. (b) Partial synchroniza-
tion of neurons 2 and 3. (c) No synchronization of neurons 1 and 3.

E. Numerical Results. Figure 5.2 and Figure 5.3 depict simulation results of the
network of four Hindmarsh-Rose oscillators with coupling constants γ = 1,
κ1 = 10, and κ2 = 0.07. In Figure 5.2, the top panel shows the zi states of the
four oscillators and the ζ1i and ζ2i states are depicted in the bottom ones. The
controller is turned on at time = 500[ms].

5.7 Conclusion

We have presented a methodology for studying the emergence of partial
network synchronization for a class of nonlinear oscillators interconnected
through observer-based diffusive dynamic couplings. It has been shown that
symmetries in the network define linear invariant manifolds, which, when being
attracting, define modes of partial synchronization. Sufficient conditions on the
systems to be interconnected, the network topology, the observer dynamics, and
the coupling strength that guarantee (global) partial synchronization have been
derived. The results have been illustrated by computer simulations of coupled
Hindmarsh-Rose neural oscillators.



Chapter 6

Immersion and Invariance
Observers with Time-Delayed
Output Measurements

Abstract. We address the problem of constructing (globally) convergent, (reduced-order)
observers for general nonlinear systems when the output measurements are subject to
constant time-delays. Immersion and invariance (I&I) techniques are used to derive a
general tool for constructing I&I observers in the presence of time-delays. We show that
an asymptotic estimate of the unknown states can be obtained by rendering attractive an
appropriately selected invariant manifold in the extended state space. In this manuscript,
the observer may play two different roles. On the one hand, it may be used to reconstruct
a delayed version of the unmeasured state from measurements of the available delayed
outputs. We show that if the time-delay is known, standard I&I techniques can be directly
applied to estimate the delayed unmeasured states. In this case, we refer to the observer
as a retarded immersion and invariance observer. On the other hand, the observer may be
used to reconstruct both the delay-free unmeasured states and the delay-free output from
measurements of the delayed output. In this case, we refer to it as an immersion and
invariance predictor. Two examples with chaotic oscillators are presented to show the
performance of the observers.

6.1 Introduction

There has been considerable interest in the study of systems exhibiting complex
behavior during the last decades. Particularly, the problem of estimating the state

This chapter is based on [75].
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of dynamical systems has received a lot of attention due to its importance in
practical applications, where part of the state may not be available for
measuring. Frequently, it is necessary to estimate the unmeasured states, for
instance, when they are used for synthesizing state controllers or for process
monitoring purposes. To this end, a state observer is usually employed to
reconstruct the complete state of the system from measurements of the available
outputs. In the celebrated paper of Luenberger [69], the (reduced-order) observer
design problem is completely addressed and solved for linear time-invariant sys-
tems. Luenberger derives an observer design technique based on the solution of a
Silvester-type matrix equation. After this result, several research groups started de-
veloping observer design methods for specific classes of nonlinear systems. The
classical approach to nonlinear observer design consists in finding a transforma-
tion that linearizes the plant up to an output injection term and then applying
standard linear observer design techniques, see [60, 61]. We refer the reader to [84]
and references therein for a fairly complete literature review of the
existing observer design techniques for nonlinear systems. More recently, in
[14, 58], the early ideas of Luenberger are extended to the nonlinear case. In
these papers, sufficient conditions for the existence of linear observers with nonlinear
output injection terms are derived in terms of the solution of a partial differen-
tial equation (PDE). In the same spirit, in [56], it is shown that an asymptotic
estimate of the unknown states can be obtained by rendering attractive an
appropriately selected (invariant) manifold in the extended state space (the union
of the state spaces of the system and the observer). For a class of nonlinear time-
varying systems, the authors propose a nonlinear observer in terms of two
mappings which must be selected to render the origin of the estimation error
dynamics asymptotically stable. As pointed out by the authors, in Remark 2 in
[56], this stabilization problem may be extremely difficult to solve, since it relies
on the solution of a set of partial differential equations (or inequalities). However,
in many cases of practical interest, these equations are solvable.

We remark that in all the aforementioned papers, it is assumed that the
communication between the system and the observer is instantaneous, i.e., there
are no time-delays in the loop. The estimation of the system state based ondelayed
output measurements is an important problem inmany engineering applications.
For instance, when the measurement process intrinsically causes non-negligible
time-delays or when the system is controlled or monitored through a commu-
nication network which results in unavoidable time-delays. Then, it is impor-
tant to study the effect of time-delays in the existing observer design techniques.
There are some results in this direction already. For instance, the authors in [30]
and [70] present state observers for drift observable nonlinear systems when the
output measurements are affected by known time-delays. Again, these results
consist in finding a transformation that linearizes part of the plant and then
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applying standard linear or hight gain observer design techniques. In [59], the ideas of
their previous work [58] are extended to the case when the output measurements
are subject to constant time-delays. The authors propose a nonlinear
observer with state-dependent gain which is computed from the solution of a
system of first-order singular PDEs. In this chapter, we study the immersion and
invariance (I&I) techniques presented in [17, 56] for designing nonlinear observers.
We show how these I&I ideas may be extended when the output measurements
are corrupted by constant time-delays. Following the design method developed
in [17], we derive a general tool for constructing I&I observers in the presence
of time-delays. It is important to point out that, as it is the case in the delay-
free setting considered in [17], the observer design relies on the existence of two
mappings, β(·) and φ(·), which must be selected to render the zero solution of
the estimation error dynamics asymptotically stable. This stabilization problem
may be difficult to solve, since, in general, it relies on the solution of a set of
partial differential equations (or inequalities). However, as it is shown in the
examples, for some systems these equations turn out to be solvable. Through-
out this chapter, the observer may play two different roles. On the one hand, it
may be used to reconstruct a delayed version of the unmeasured state ρ(t) from
measurements of the available delayed output y(t − τ), where τ denotes a cons-
tant time-delay which is assumed to be known. In other words, the observer is
used to estimate ρ(t − τ) from y(t − τ). In this case, we refer to it as a retarded
immersion and invariance observer. On the other hand, the observer may be used to
reconstruct both the delay-free unmeasured state ρ(t) and the delay-free output
y(t) frommeasurements of y(t− τ). In this case, we refer to it as an immersion and
invariance predictor.

The remainder of the chapter is organized as follows. In Section 6.2, we formulate
the I&I observer design problem in the presence of time-delays and propose a
general tool for constructing asymptotically convergent retarded I&I observers. This
is illustrated with an example using the Lorenz system. Next, in Section 6.3, we
give a general tool for constructing I&I predictors. Its performance is illustrated
with numerical simulations using the forced Duffing system. Finally, conclusions
are stated in Section 6.4.

6.2 Retarded Immersion and Invariance Observer

Consider a nonlinear time-varying system of the form{
ρ̇ = f1(ρ, y, t),

ẏ = f2(ρ, y, t),
(6.1)
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with unknown part of the state ρ ∈ Rn, output y ∈ Rm, stacked state
x := (ρT , yT )T ∈ Rn+m, and sufficiently smooth functions f1 : Rn×Rm×R→ Rn

and f2 : Rn × Rm × R → Rm. It is assumed that the system (6.1) is forward
complete, i.e., trajectories starting at time t0 are defined for all t ≥ t0. A
k-dimensional manifold in Rn+m (1 ≤ k ≤ n + m) has a rigorous
mathematical definition. We refer the interested reader to, for instance, [46, 127]
for precise definitions.

6.2.1 I&I Observer Design

Consider the system {
η̇ = l(η, yτ , t− τ),

η(θ) = ϕ(θ), θ ∈ [−τ, 0],
(6.2)

with state η ∈ C([−τ, 0],Rr), C([−τ, 0],Rr) being the Banach space of continuous
functions mapping the interval [−τ, 0] into Rr, r ≥ n, delayed output
yτ (t) := y(t − τ) ∈ C([−τ, 0],Rm) of system (6.1), sufficiently smooth function
l : Rr × Rm × R → Rr, and continuous function ϕ : [−τ, 0] → Rr specifying the
initial data of the system.

Definition 6.1. System (6.2) is called a retarded I&I observer for system (6.1) if there exist
mappings β : Rr×Rm×R→ Rr, (η, yτ , t) 7→ β(η, yτ , t) and φ : Rn×Rm×R→ Rr,
(ρτ , yτ , t) 7→ φ(ρτ , yτ , t), ρτ := ρ(t− τ) that are left invertible (with respect to their first
arguments)1 such that the manifold

M := {(ρ, y, η, t) ∈ Rn ×Rm ×Rr ×R : β(η, yτ , t) = φ(ρτ , yτ , t)}, (6.3)

has the following properties:

(P6.1) All trajectories of the extended system (6.1),(6.2) that start onM remain there for
future time, i.e.,M is positively invariant.

(P6.2) All trajectories of the extended system (6.1),(6.2) that start in a neighborhood ofM
asymptotically converge toM.

1A mapping ψ(x, y, t) : Rl × Rm × R → Rr is left invertible (with respect to x) if there exists a
mapping ψL : Rr ×Rm ×R→ Rl such that ψL(ψ(x, y, t), y, t) = x for all x, y, and t.
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The above definition implies that an asymptotically converging estimate of the
retarded unknown state ρτ is given by

ρ̂τ = φL(β(η, yτ , t), yτ , t),

where φL(·) denotes a left inverse of φ(·). Note that the estimation error
ε := ρ̂τ − ρτ is zero on the manifoldM. Moreover, if (P6.2) holds for any initial
state, then (6.2) is a global retarded I&I observer for the system (6.1). Following the
procedure presented in [17], we derive a general tool for constructing nonlinear
retarded observers of the form given in Definition 6.1.

Remark 6.2. Note that left invertibility of β(·) and φ(·) in (6.3) does not necessarily
imply thatM is a manifold. However, in this manuscript, it is assumed thatM in (6.3)
is a manifold in the sense of [127].

Proposition 6.3. Consider the extended system (6.1),(6.2) and suppose that there exist
C1-mappings β : Rr × Rm × R → Rr and φ : Rn × Rm × R → Rr with left inverse
φL : Rr ×Rm ×R→ Rn such that the following holds.

(H6.1) For all yτ , η, and t, β(η, yτ , t) is left invertible with respect to η and

det

(
∂β

∂η

)
6= 0. (6.4)

(H6.2) The system

ε̇ =
∂β

∂yτ

(
f2(ρτ , yτ , t− τ)− f2(ρ̂τ , yτ , t− τ)

)
− ∂φ

∂t
+
∂φ

∂t

∣∣∣∣
ρτ=ρ̂τ

(6.5)

+
∂φ

∂ρτ

∣∣∣∣
ρτ=ρ̂τ

f1(ρ̂τ , yτ , t− τ)− ∂φ

∂ρτ
f1(ρτ , yτ , t− τ)

+
∂φ

∂yτ

∣∣∣∣
ρτ=ρ̂τ

f2(ρ̂τ , yτ , t− τ)− ∂φ

∂yτ
f2(ρτ , yτ , t− τ)

with ρ̂τ = φL(φ(ρτ , yτ , t) + ε), has a (global) asymptotically stable equilibrium at ε = 0,
uniformly in ρτ , yτ , and t. Then, the system (6.2) with

l(η, yτ , t− τ) = −
(
∂β

∂η

)−1
(
∂β

∂yτ
f2(ρ̂τ , yτ , t− τ)

+
∂β

∂t
− ∂φ

∂ρτ

∣∣∣∣
ρτ=ρ̂τ

f1(ρ̂τ , yτ , t− τ) (6.6)

− ∂φ

∂yτ

∣∣∣∣
ρτ=ρ̂τ

f2(ρ̂τ , yτ , t− τ)− ∂φ

∂t

∣∣∣∣
ρτ=ρ̂τ

)
,

and ρ̂τ = φL(β(η, yτ , t), yτ , t), is a (global) retarded observer for the system (6.1).
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Proof: Define the estimation error

ε = β(η, yτ , t)− φ(ρτ , yτ , t), (6.7)

where β(·) is a C1-function such that (H6.1) holds. Note that |ε| represents the
distance of the system trajectories from the manifold M defined in (6.3). The
dynamics of ε along the solutions of the systems is given by

ε̇ =
∂β

∂yτ
f2(ρτ , yτ , t− τ) +

∂β

∂η
l(η, yτ , t− τ) +

∂β

∂t
(6.8)

− ∂φ

∂ρτ
f1(ρτ , yτ , t− τ)− ∂φ

∂yτ
f2(ρτ , yτ , t− τ)− ∂φ

∂t
.

By assumption (H6.1), the function l(·) in (6.6) is well defined. Then,
substitution of (6.6) in (6.8) yields the dynamics (6.5). It follows from (H6.2) that
the distance |ε| from the manifoldM converges asymptotically to zero. Hence, by
Definition 6.1 the system (6.2)with l(·) as in (6.6) is a (global) retarded I&I observer for
system (6.1). �

Proposition 6.3 provides an implicit description of the observer dynamics (6.2)
in terms of the mappings β(·) and φ(·) which must be selected to satisfy (H6.2).
As a result, the problem of constructing a retarded observer for the system (6.1)
is reduced to the problem of rendering the system (6.5) asymptotically stable by
assigning the functions β(·) and φ(·).

6.2.2 Example: Lorenz system

Consider the Lorenz system

ẏ = σ (ρ1 − y) , (6.9)
ρ̇1 = ry − ρ1 − yρ2, (6.10)
ρ̇2 = −bρ2 + yρ1, (6.11)

with output y ∈ R, internal state ρ = (ρ1, ρ2)T ∈ R2, and positive constants
σ, r, b ∈ R>0. It is assumed that the output y is subject to constant time-delay,
i.e., the available output is yτ , where τ denotes a constant time-delay. Using
Proposition 6.3, we derive a retarded reduced-order observer of the form given
in Definition 6.1. Let φ(ρτ , yτ , t) = ρτ in (6.7), then

ε = β(η, yτ )− ρτ , (6.12)

with ε = (ε1, ε2)T ∈ R2, η = (η1, η2)T ∈ R2, and β(·) = (β1(·), β2(·))T . Associated
with the system (6.9)-(6.11) and the estimation error (6.12), the estimation error
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dynamics (6.5) takes the following form

ε̇ =
∂β

∂yτ
(f2(ρτ , yτ , t− τ)− f2(ρτ + ε, yτ , t− τ)) (6.13)

− ∂φ

∂ρτ
(f1(ρτ , yτ , t− τ)− f1(ρτ + ε, yτ , t− τ))

=

( ∂β1

∂yτ

∂β2

∂yτ

)
(−σε1)−

(
1 0

0 1

)(
ε1 + yτ ε2

bε2 − yτ ε1

)

=

( −σ ∂β1

∂yτ
ε1 − ε1 − yτ ε2

−σ ∂β2

∂yτ
ε1 − bε2 + yτ ε1

)
.

Then, the problem of constructing a retarded observer for the system (6.9)-(6.11)
is reduced to the problem of rendering the system (6.13) asymptotically stable by
assigning the function β(·). Consider the positive definite function V = 1

2ε
T ε,

then

V̇ = −σ∂β1

∂yτ
ε21 − ε21 − yτ ε2ε1 − σ

∂β2

∂yτ
ε2ε1 − bε22 + yτ ε2ε1

= −
(
σ
∂β1

∂yτ
+ 1

)
ε21 − σ

∂β2

∂yτ
ε2ε1 − bε22, (6.14)

by selecting β1 = κyτ + η1, κ > 0, and β2 = η2 yields

V̇ = − (σκ+ 1) ε21 − bε22 < 0, (6.15)

which is negative definite for any κ > − 1
σ , and therefore the origin of the esti-

mation error dynamics (6.13) with function β(·) as above is globally uniformly
asymptotically stable. Then, the retarded observer (6.2) with l(·) as in (6.6) takes
the following form

η̇ =

( −∂β1

∂yτ

−∂β2

∂yτ

)(
σ(β1(η1, yτ )− yτ )

)
+

(
ryτ − β1(η1, yτ )− yτβ2(η2, yτ )

−bβ2(η2, yτ ) + yτβ1(η1, yτ )

)

=

(
−(σκ+ 1)η1 − yτη2 +

(
κσ − κ2σ + r − κ

)
yτ

−bη2 + yτη1 + κy2
τ

)
. (6.16)

Figure 6.1 depicts the simulation results for σ = 10, r = 28, b = 8
3 , time-delay

τ = 0.25 [s], and κ = 0.25 > − 1
σ = −0.1. The top panel shows the state ρ1(t)

and the estimated retarded state ρ̂1(t − τ) while ρ2(t) and ρ̂2(t − τ) are depicted
in the bottom panel. In Figure 6.2, the norm of the estimation error ε = ρτ − ρ̂τ
for different values of κ is shown.
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Figure 6.1 The continuous lines are the current internal states ρ(t) and the dashed-
dotted lines are the estimated retarded states ρ̂(t− τ).

Figure 6.2 Norm of the estimation error for different values of the observer gain κ.

6.3 Immersion and Invariance Predictor

Consider the system (6.1) and the stacked state x := (ρT , yT )T ∈ Rn+m. Then,
system (6.1) can be rewritten in the following compact form

ẋ = f(x, t), (6.17)

where

f(x, t) :=

(
f1(ρ, y, t)

f2(ρ, y, t)

)
. (6.18)
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Consider the system {
η̇ = l(η, yτ , t− τ),

η(θ) = ϕ(θ), θ ∈ [−2τ, 0],
(6.19)

with state η ∈ C([−τ, 0],Rr), r ≥ n+m, sufficiently smooth function l : Rr×Rm×
R → Rr, and continuous function ϕ : [−τ, 0] → Rr specifying the initial data of
the system.

Definition 6.4. The system (6.19) is called an I&I predictor for system (6.1) if there exist
mappings β : Rr×Rm×R→ Rr, (η, yτ , t) 7→ β(η, yτ , t) and φ : Rn+m×Rm×R→
Rr, (x, yτ , t) 7→ φ(x, yτ , t) that are left invertible (with respect to their first arguments)
such that the manifold

M := {(x, y, η, t) ∈ Rn+m ×Rm ×Rr ×R : β(η, yτ , t) = φ(x, yτ , t)}, (6.20)

has the following properties:

(P6.3) All trajectories of the extended system (6.1),(6.19) that start onM remain there for
future time, i.e.,M is positively invariant.

(P6.4) All trajectories of the extended system (6.1),(6.19) that start in a neighborhood of
M asymptotically converge toM.

The above definition implies that an asymptotically converging estimate of the
state x is given by

x̂ = φL(β(η, yτ , t), yτ , t),

where φL(·) denotes a left inverse of φ(·). Note that the prediction error
ε = x̂ − x is zero on the manifoldM. Moreover, if property (P6.4) holds for any
initial state, then (6.19) is a global I&I predictor for the system (6.1). Following the
same procedure as in [17], we derive a general tool for constructing predictors of
the form given in Definition 6.4.

Proposition 6.5. Consider the system (6.1),(6.19) and suppose that there exist C1

mappings β : Rr × Rm × R → Rr and φ : Rn+m × Rm × R → Rr with left in-
verse φL : Rr ×Rm ×R→ Rn+m such that the following holds.

(H6.3) For all yτ , η, and t, β(η, yτ , t) is left invertible with respect to η and

det

(
∂β

∂η

)
6= 0. (6.21)



92 6 Immersion and Invariance Observers with Time-Delayed Output Measurements

(H6.4) The system

ε̇ =
∂β

∂yτ
(f2(ρτ , yτ , t− τ)− f2(ρ̂τ , yτ , t− τ)) (6.22)

+
∂φ

∂x

∣∣∣∣
x=x̂

f(x̂, t)− ∂φ

∂x
f(x, t)− ∂φ

∂t
+
∂φ

∂t

∣∣∣∣
x=x̂

+
∂φ

∂yτ

∣∣∣∣
x=x̂

f2(ρ̂τ , yτ , t− τ)− ∂φ

∂yτ
f2(ρτ , yτ , t− τ),

with x̂ = φL(φ(x, yτ , t) + ε), has a (globally) asymptotically stable equilibrium at ε = 0,
uniformly in x, xτ , and t. Then, the system (6.19) with

l(η, yτ , t− τ) = −
(
∂β

∂η

)−1(
∂β

∂yτ
f2(ρ̂τ , yτ , t− τ) (6.23)

+
∂β

∂t
− ∂φ

∂x

∣∣∣∣
x=x̂

f(x̂, t)

− ∂φ

∂yτ

∣∣∣∣
x=x̂

f2(ρ̂τ , yτ , t− τ)− ∂φ

∂t

∣∣∣∣
x=x̂

)
,

and x̂ = φL(β(η, yτ , t), yτ , t), is a (global) I&I predictor for the system (6.1).

Proof: Define the (off-the-manifold) error

ε := β(η, yτ , t)− φ(x, yτ , t), (6.24)

where β(·) is a C1-function such that (H6.3) holds. Then, the error dynamics is
given by

ε̇ =
∂β

∂η
l(η, yτ , t− τ) +

∂β

∂yτ
f2(ρτ , yτ , t− τ) +

∂β

∂t
(6.25)

− ∂φ

∂x
f(x, t)− ∂φ

∂yτ
f2(ρτ , yτ , t− τ)− ∂φ

∂t
.

By assumption (H6.3), the function l(·) in (6.23) is well defined. Then, substitu-
tion of (6.23) in (6.25) yields the dynamics (6.22). It follows from (H6.4) that the
distance |ε| from the manifoldM converges asymptotically to zero. Hence, by
Definition 6.4 the system (6.19) with l(·) as in (6.23) is a (global) I&I predictor for
system (6.1). �
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6.3.1 Example: Duffing system

Consider the forced-Duffing system

ρ̇ = −aρ− by − cy3 + q cos(ωt), (6.26)
ẏ = ρ, (6.27)

with output y ∈ R, internal state ρ ∈ R, stacked state x = (ρ, y)T ∈ R2 and
positive constants a, b, c, q, ω ∈ R>0. It is assumed that the measurements of y
are subject to constant time-delay, i.e., the measurable output is yτ . Using Propo-
sition 6.5, we derive a predictor of the form given in Definition 6.4 such that we
reconstruct x from measurements of yτ . Let φ(x, yτ , t) = x in (6.24), then
ε = β(η, yτ ) − x, with ε = (ε1, ε2)T ∈ R2, η = (η1, η2)T ∈ R2, and
β(·) = (β1(·), β2(·))T . Thus, the estimation error dynamics (6.22) takes the
following form

ε̇ = −
( ∂β1

δyτ

∂β2

δyτ

)
ε1τ +

(
−aε1 − bε2 + cy3 − c(y + ε2)3

ε1

)

=

(
−∂β1

δyτ
ε1τ − aε1 − bε2 − 3c

(
ε2
2 + y

)2
ε2 − c

4ε
3
2

−∂β2

δyτ
ε1τ + ε1

)
. (6.28)

(6.29)

Again, it follows that the problem of constructing a predictor for the system (6.26),
(6.27) is reduced to the problem of rendering the origin of the system (6.29)
uniformly asymptotically stable by assigning the function β(·). This stabilization
problem is difficult to solve because the error dynamics (6.29) is a time-varying
retarded nonlinear system. In order to simplify the problem, the function β(·) is
selected as

β(η, yτ ) =

(
η1 + κyτ

η2

)
, (6.30)

with κ ∈ R>0. It follows that

ε̇ =

(
−κε1τ − aε1 − bε2 − 3c

(
ε2
2 + y

)2
ε2 − c

4ε
3
2

ε1

)
. (6.31)

Linearizing (6.31) around the origin yields

˙̃ε1 = −κε̃1τ − aε̃1 − bε̃2 − 3cy2ε̃2, (6.32)
˙̃ε2 = ε̃1. (6.33)
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Figure 6.3 Stability region S in the parameter space.

Proposition 6.6. There exist positive constants κ̄ and χ̄ such that if κ > κ̄ and κτ < χ̄,
then the origin ε̃1 = ε̃2 = 0 of the linearized system (6.32),(6.33) is globally asymptotically
stable.

The proof of Proposition 6.6 can be found in the Appendix A. The result of
Proposition 6.6 amounts to the following. If the gain κ is sufficiently large and the
time-delay τ is sufficiently small, then the origin of the prediction error
dynamics (6.31) is locally asymptotically stable. In other words, there exists a
region S = {κ, τ ∈ R≥0|κ > κ̄ and κτ < χ̄}, such that if (κ, τ) ∈ S, then (6.31)
converges to the origin asymptotically. Taking β(·) as in (6.30) and l(·) as in (6.23),
the predictor dynamics (6.19) takes the following form

η̇ =
∂φ

∂x
f(β(η, yτ ), t)− ∂β

∂yτ
f2(β1(ητ , y(2τ)), yτ , t− τ) (6.34)

=

(
−κ(η1τ + κy(2τ))− a(η1 + κyτ )− bη2 − cη3

2 + q cosωt

η1 + κyτ

)
.

with y(2τ) := y(t − 2τ). Figure 6.3 depicts the region S obtained by extensive
computer simulations with a = 0.3, b = 1, c = 1, q = 20, ω = 1.2 and initial
history η1(θ) = η2(θ) = 0, ρ(θ) = y(θ) = 3, θ ∈ [−2τ, 0], (for these parameters the
Duffing system possesses chaotic solutions). It follows that if (κ, τ) ∈ S, the gray
region in Figure 6.3, the system (6.34) locally asymptotically predicts the value of
x(t) from measurements of y(t − τ). In other words, the system (6.34) is a local
I&I predictor for the system (6.26),(6.27). Figure 6.4 depicts the states x(t) and the
predicted states x̂(η(t), y(t− τ)) for τ = 0.4 and κ = 1.2.
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Figure 6.4 The dashed-dotted lines are the current states (ρ, y) and the continuous
lines are the predicted states (ρ̂(η, yτ ), ŷ(η, yτ )).

6.4 Conclusions

We have derived an extension to the work presented in [56] for constructing
nonlinear observers in the case the output measurements are corrupted with
time-delays. Following the framework proposed in [56], a general methodology
has been developedwhich relies on rendering attractive an appropriately selected
invariant manifold in the extended state space (the union of the state spaces of
the system and the observer). Proposition 6.3 and Proposition 6.5 provide an
implicit description of the observer dynamics in terms of the mappings, β(·) and
φ(·), which must be selected to render the origin of the estimation error dynamics
asymptotically stable. This stabilization problem can be difficult to solve, since
in general, it relies on the solution of a set of PDEs. However, as shown in the
examples, in many cases of practical interest these equations turn out to be
solvable. In [57] and [18], for the delay-free case, the authors present
methodologies for selecting the functions β(·) and φ(·) for some classes of
systems. These methods may be extended to the time-delayed case. However, we
remark that the aim of this manuscript is not to extend the methods
presented in [57] or [18], but to show how the general I&I ideas introduced in
[56] for designing observers may be extendedwhen the output measurements are
corrupted with time-delays.
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Chapter 7

Synchronization via
Predictor-Based Diffusive
Dynamic Couplings

Abstract. We study the problem of controlled network synchronization of coupled
semipassive systems in the case when the outputs (the coupling variables) and the inputs are
subject to constant time-delays (as it is often the case in a networked context).
Predictor-based dynamic output feedback controllers are proposed to interconnect the systems
on a given network. Using Lyapunov-Krasovskii functionals and the notion of
semipassivity, we prove that under some mild assumptions, the solutions of the
interconnected systems are globally ultimately bounded. Sufficient conditions on the
systems to be interconnected, the network topology, the coupling dynamics, and the
time-delays that guarantee global state synchronization are derived. A local analysis is
provided, in which we compare the performance of our predictor-based control scheme
against the existing diffusive static couplings available in the literature. We show (locally)
that the time-delay that can be induced to the network may be increased by including
the predictors in the loop. The results are illustrated by computer simulations of coupled
Hindmarsh-Rose neurons.

7.1 Introduction

This chapter focuses on controlled synchronization of identical nonlinear sys-
tems interacting on networkswith general topologies and interconnected through
predictor-based diffusive dynamic couplings. An important element of our control

This chapter is based on [79].
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scheme is the use of a communication network. Network communication is
necessary in the study of synchronization to transmit and receive measurement
and control data among the systems. Because of the time needed to transmit data
over the network, the use of networked communication results in
unavoidable time-delays. This networked-induceddelays are undesirable because
they may lead to the loss of synchrony. Hence, when studying synchronization
among dynamical systems with networked communication, it is important to
design control algorithms which are robust with respect to time-delays. The
results presented here follow the same research line as [104, 132], where
sufficient conditions for synchronization of diffusively interconnected nonlinear
systems with and without time-delays are derived. In order to derive their
results, the authors assume that the individual systems are semipassive [107] with
respect to the coupling variable yi, and their corresponding internal dynamics
have some desired stability properties (convergent internal dynamics [94]). In
particular, in [132], the authors study the problem of network synchronization of
diffusively time-delayed coupled semipassive systems. They prove that under some
mild assumptions, there always exists a region S in the parameter space (coupling
strength γ versus time-delay τ ), such that if (γ, τ) ∈ S , the systems synchronize.
Nevertheless, it is important to note that for this class of systems, once the net-
work topology is specified, the region S is fixed. In other words, the time-delay
that may be induced to the network without compromising the synchronous be-
havior is limited by the network topology[82]. Here, we show that by including
predictors in the couplings, we may increase the time-delay that can be induced
to the network without compromising the synchronous behavior. We propose
predictor-based diffusive dynamic couplings based on the concept of anticipating syn-
chronization [89] that on the one hand estimate future values yi(t+τ) of the outputs
yi(t), and on the other hand interconnect the systems through these time-ahead
estimated signals. By including the predictors in the loop, a new parameter κ
comes into play. This κ plays the role of the predictor gain, i.e., it is a parameter
of the predictors that can be tuned to make the prediction error dynamics converge
to the origin. We derive sufficient conditions for global state synchronization of
the interconnected systems. In particular, it is proved that under some assump-
tions, there always exists a region in the extended parameter space (coupling strength
γ, time-delay τ , and predictor gain κ), such that if γ, τ , and the new parameter κ
belong to this region, the systems synchronize. In [78], we have started study-
ing these ideas for a class of passive LTI systems. Note that for LTI systems the
separation principle holds, i.e., the predictor dynamics and the coupling structure
can be designed independently. However, the analysis becomes more involved
for nonlinear systems, since in general, the separation principle does not hold;
in this case, there is a strong nonlinear relation between the predictor dynamics
and the coupling structure. Finally, we provide a local analysis, in which the per-
formance of our predictor-based control scheme is compared against the existing
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diffusive static couplings available in the literature. It is shown (locally) that the
amount of time-delay that can be induced to the network may be increased by
including the predictors in the loop.

The remainder of the chapter is organized as follows. The system description
and the problem statement are introduced in Section 7.2. The predictor struc-
ture is given in Section 7.3 before introducing the proposed predictor-based diffusive
dynamic coupling in Section 7.4. In Sections 7.5 and 7.6, we present themain results
on global boundedness and network synchronization. Moreover, a local analysis,
in which we explain the "mechanism of action" behind our predictor-based cou-
plings is also presented. In Section 7.7, simulation results of coupled Hindmarsh-
Rose neurons are presented. Finally, conclusions are stated in Section 7.8.

7.2 System Description

Consider k identical nonlinear systems of the form

ζ̇i = q(ζi, yi), (7.1)
ẏi = a(ζi, yi) +Bui, (7.2)

with i ∈ I := {1, ..., k}, state xi := col(ζi, yi) ∈ Rn, internal state ζi ∈ Rn−m,
output yi ∈ Rm, input ui ∈ Rm, sufficiently smooth functions q : Rn−m ×Rm →
Rn−m, a : Rn−m ×Rm → Rm, and matrix B ∈ Rm×m being similar to a positive
definite matrix. For the sake of simplicity it is assumed that B = Im (results for
the general case with B being similar to a positive definite matrix can be easily
derived). The systems (7.1),(7.2) are assumed to be strictly C1-semipassive and the
internal dynamics (7.1) are supposed to be convergent. In [132], the authors derive
sufficient conditions for network synchronization of diffusively time-delayed coupled
semipassive systems, i.e., the systems (7.1),(7.2) interconnected through weighted
differences of the form

ui(t) = γ
∑
j∈Ei

aij (yj(t− τ)− yi(t− τ)) , (7.3)

where τ ∈ R>0 denotes the time-delay, yj(t−τ) and yi(t−τ) are the time-delayed
outputs of the jth and ith systems, γ ∈ R>0 denotes the coupling strength, aij ≥ 0

are the weights of the interconnections, and Ei is the set of neighbors of system
i. Moreover, since the coupling strength is encompassed in the constant γ, then it
is assumed without loss of generality that maxi∈I

∑
j∈Ei aij = 1. The authors in

[132] prove that the systems (7.1)-(7.3) asymptotically synchronize provided that
γ is sufficiently large and the product of the coupling strength and the time-delay



100 7 Synchronization via Predictor-Based Diffusive Dynamic Couplings

γτ is sufficiently small. Then, there exists a region S in the parameter space, such
that if (γ, τ) ∈ S, the systems synchronize. Nevertheless, it is important to no-
tice that in the closed loop system (7.1)-(7.3), once the interconnections aij are
specified, the region S is fixed. Hence, the amount of time-delay that may be in-
duced to the network is limited by the network topology [82]. In this manuscript,
we propose predictor-based diffusive dynamic couplings in order to enhance robust-
ness against time-delays in the network, i.e., by including some dynamics in the
coupling, we may expand the synchronization region S. The time-delay τ that
is being induced in coupling (7.3) could be realized as the sum of measurement
and transmission time-delays. In this chapter, it is necessary to make a clear dis-
tinction among these delays. The measurement time-delay τ1 ∈ R>0 affects the
outputs of the systems yi(t), resulting in time-delayed outputs yi(t − τ1) being
available for control purposes. The transmission time-delays are encompassed in
τ2 ∈ R>0. It affects the control inputs ui(t), resulting in the time-delayed control
signals ui(t − τ2) being applied to the systems, see Figure 7.1. Notice that the
total time-delay τ in (7.3) is simply given by the sum of the individual delays, i.e.,
τ := τ1 + τ2. Therefore, the interconnected systems (7.1)-(7.3) could be realized as
individual systems with input time-delay τ2 as follows

ζ̇i = q(ζi, yi), (7.4)
ẏi = a(ζi, yi) + ui(t− τ2), (7.5)
xi = φ(t), t ∈ [−τ2, 0], (7.6)

with time-delayed input uτ2i ∈ Rm and continuous function φ : [−τ2, 0] → Rn

specifying the initial history, in closed-loop with the following diffusive time-
delayed coupling

ui(t) = γ
∑
j∈Ei

aij (yj(t− τ1)− yi(t− τ1)) . (7.7)

However, if the future value yi(t+τ2) of yi(t) could be obtained, then by applying
the controller

ui(t) = γ
∑
j∈Ei

aij (yj(t+ τ2)− yi(t+ τ2)) , (7.8)

the interconnected systems (7.4)-(7.6),(7.8) would be given by

ζ̇i = q(ζi, yi), (7.9)
ẏi = a(ζi, yi) + γ

∑
j∈Ei

aij (yj(t)− yi(t)) , (7.10)

which is the delayed-free closed-loop system. From this point of view, we pro-
pose a control scheme, in which a predictor is used to estimate the future values
yi(t+τ2) frommeasurements of the available time-delayed output yi(t−τ1). Then,
the output of the predictor is used to interconnect the systems, see Figure 7.3.
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Figure 7.1 Configuration of the prediction scheme.

7.3 Synchronization-based Predictor

In this section, we introduce the state predictor based on synchronization that is
used to estimate yi(t + τ2) from measurements of yi(t − τ1). In the first contri-
bution concerning synchronization-based predictors [143], the author studies the
following coupled Ikeda equations

ρ̇ = −αρ− β sin(ρτ ), (7.11)
ż = −αz − β sin(ρ), (7.12)

with states ρ, z ∈ R, ρτ (t) = ρ(t − τ), and constants α, β, τ ∈ R>0. Notice that
the dynamics of the prediction error e(t) := z(t − τ) − ρ(t) is simply given by
ė(t) = −αe(t); therefore, a necessary and sufficient condition for e(t) to converge
to the origin is thatα > 0. Thus, the solution of (7.12) asymptotically synchronizes
with the future solution of (7.11) at time instant t+ τ ; hence, (7.12) anticipates the
dynamics of (7.11). This idea has been generalized into general multidimensional
systems, in for instance, [88, 89]. Following these ideas, we propose a predictor
based on synchronization for the class of systems under study. Consider k iden-
tical systems of the form

η̇1i = q(η1i, η2i), (7.13)
η̇2i = a(η1i, η2i) + ui + κ (yi(t− τ1)− η2i(t− τ)) , (7.14)
ηi = η0i ∈ Rn, t ∈ [−τ, 0], (7.15)

with measurement time-delay τ1 ∈ R≥0, total time-delay τ = τ1 + τ2 ∈ R≥0,
transmission time-delay τ2 ∈ R≥0, i ∈ I = {1, ..., k}, state ηi := col(η1i, η2i) ∈
Rn, internal state η1i ∈ Rn−m, actuated state η2i ∈ Rm, input ui ∈ Rm, smooth
vectorfields q(·) and a(·) as in (7.1),(7.2), initial history η0i, and gain κ ∈ R>0. The
system (7.13)-(7.15) is called a predictor for system (7.4)-(7.6) if and only if

lim
t→∞

(
xi(t− τ1)− ηi(t− τ)

)
≡ lim
t→∞

(
xi(t+ τ2)− ηi(t)

)
= 0.
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Figure 7.2 Prediction region S1.

Notice that if κ = 0 and ui(t) = 0, the predictor dynamics (7.13),(7.14) is the same
as the individual subsystems dynamics (7.4),(7.5) with uτ2 = 0. We construct
the predictor in this way in order to take advantage of the stability properties of
(7.4),(7.5), namely, semipassivity and convergence. Moreover, each system (7.4)-(7.6)
together with the predictor (7.13)-(7.15) could be interpreted as an extended new
system with input ui, new output η2i, and internal delays τ1 and τ2, see Figure
7.1. Define the prediction error εi = col(ε1i, ε2i) := xi − ητ2i . Then, the prediction
error dynamics is given by

ε̇1i = q(ζi, yi)− q(ζi − ε1i, yi − ε2i) (7.16)

ε̇2i = a(ζi, yi)− a(ζi − ε1i, yi − ε2i)− κετ2i. (7.17)

It follows that the system (7.13)-(7.15) is a predictor for system (7.4)-(7.6) if the
zero solution of (7.16),(7.17) is asymptotically stable. In the following lemma, we
give sufficient conditions for asymptotic stability of the origin of (7.16),(7.17). In
particular, we prove that under some mild assumptions, there always exists a re-
gion S1 in the parameter space (predictor gain κ and total time-delay τ ), such that
if (κ, τ) ∈ S1, then the system (7.13)-(7.15) anticipates the dynamics (7.4)-(7.6).
Moreover, it is also proved that the region S1 is bounded by a unimodal function
ϕ(κ) defined on some set J ⊂ R.

Definition 7.1. The function ϕ : J → R≥0, κ 7→ ϕ(κ) is called unimodal if for some
value κ∗ ∈ J , it is monotonically increasing for κ ≤ κ∗ and monotonically decreasing
for κ ≥ κ∗. Hence, the maximum value of ϕ(κ) is given by ϕ(κ∗) and there are no other
maxima.
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Figure 7.3 Configuration of the proposed control scheme.

Lemma 7.2. Consider the k nonlinear systems (7.4)-(7.6), (7.13)-(7.15) and suppose
that for every input signal ui, any finite time-delay τ , and predictor gain κ, the solu-
tions of the systems are ultimately bounded (in Section 7.5, Lemma 7.4, we give sufficient
conditions for ultimate boundedness of the closed-loop system for the class of inputs under
study). In addition assume that:

(H7.1) The internal dynamics (7.4) is an exponentially convergent system, i.e., there is
a positive definite matrix P = PT ∈ R(n−m)×(n−m) such that the eigenvalues of the
symmetric matrix

1

2

(
P

(
∂q

∂ζi
(ζi, yi)

)
+

(
∂q

∂ζi
(ζi, yi)

)T
P

)
, (7.18)

are uniformly negative and bounded away from zero for all ζi ∈ Rn−m and yi ∈ Rm.

Then, there exist a positive constant κ′ ∈ R>0 and a unimodal function
ϕ : J := [κ′,∞) → R≥0, κ 7→ ϕ(κ) with ϕ(κ′) = limκ→∞ ϕ(κ) = 0, such that if
(κ, τ) ∈ S1 with S1 := {κ, τ ∈ R≥0|κ > κ′, τ < ϕ(κ)}, then the system (7.13)-(7.15) is
a global predictor for system (7.4)-(7.6); and therefore, limt→∞ xi(t+ τ2)− ηi(t) = 0.

The proof of Lemma 7.2 can be found in the Appendix A. The result stated in
Lemma 7.2 amounts to the following. If the solutions of (7.4)-(7.6),(7.13)-(7.15)
exist and are ultimately bounded, the zero solution of the prediction error dy-
namics (7.16), (7.17) is asymptotically stable provided that the predictor gain κ is
sufficiently large and the total timedelay τ is smaller than someunimodal function
ϕ(κ), see Figure 7.2. Hence, there exists a region S1 (gray area in Figure 7.2) such
that if (κ, τ) ∈ S1, the system (7.13)-(7.15) asymptotically anticipates the dynamics
(7.4)-(7.6).
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7.4 Predictor-based Diffusive Dynamic Couplings

Let the k systems (7.4)-(7.6) be interconnected through a Diffusive Dynamic
Coupling (DDC) of the form

η̇1i = q(η1i, η2i), (7.19)
η̇2i = a(η1i, η2i) + ui + κ (yi(t− τ1)− η2i(t− τ)) , (7.20)

ui = γ
∑
j∈Ei

aij (η2j − η2i) , (7.21)

ηi = η0i ∈ Rn, t ∈ [−τ, 0], i ∈ I, (7.22)

with coupling strength γ ∈ R≥0, predictor gain κ ∈ R≥0, and interconnection
weights aij = aji ≥ 0. Since the coupling strength is encompassed in the constant
γ, then it can be assumed without loss of generality that maxi∈I

∑
j∈Ei aij = 1.

The dynamic coupling (7.19)-(7.22) is the combination of the nonlinear
predictor (7.13)-(7.15) and an estimated version of the time-ahead output
controller (7.8), see Figure 7.3. Then, the closed-loop system is given by

ζ̇i = q(ζi, yi),

ẏi = a(ζi, yi) + γ
∑
j∈Ei

aij
(
ητ22j − ητ22i

)
,

η̇1i = q(η1i, η2i),

η̇2i = a(η1i, η2i) + γ
∑
j∈Ei

aij (η2j − η2i) + κ (yτ1i − ητ2i) , i ∈ I,

with initial history (7.6),(7.22). Alternatively, since εi = xi − ητ2i , the closed-loop
system can be written in terms of the prediction errors as follows

ζ̇i = q(ζi, yi), (7.23)

ẏi = a(ζi, yi) + γ
∑
j∈Ei

aij (yj − yi + ε2i − ε2j) , (7.24)

ε̇1i = q(ζi, yi)− q(ζi − ε1i, yi − ε2i) (7.25)

ε̇2i = a(ζi, yi)− a(ζi − ε1i, yi − ε2i)− κετ2i, i ∈ I, (7.26)

which is the delay-free closed-loop system (7.9)-(7.10) perturbed by the prediction
errors ε2i. Then, given the result in [104], it is intuitive to think that the systems
may synchronize provided that γ is sufficiently large and the prediction errors
converge sufficiently fast to the origin. However, before we start thinking about
network synchronization, it is necessary to ensure that the solutions of the closed-
loop system (7.4)-(7.6),(7.19)-(7.22) arewell defined, i.e., the solutions exist and are
bounded.



7.5 Boundedness of the Coupled Systems 105

Remark 7.3. In the following sections, we present results about boundedness and
synchronization of the solutions of the interconnected systems (7.4)-(7.6),(7.19)-(7.22).
These results are given in terms of the coupling strength γ, the predictor gain κ, and the
total time-delay τ . By definition, the total time delay is given by the sum of the measure-
ment time-delay τ1 and transmission time-delay τ2, i.e., τ := τ1 + τ2. It follows that if
boundedness and synchronization of the solutions is guaranteed for τ ≤ τ̄ ∈ R>0, then
boundedness and synchronization is guaranteed for all τ1, τ2 ∈ R≥0 such that τ1+τ2 ≤ τ̄ .

7.5 Boundedness of the Coupled Systems

In this section, we give sufficient conditions for ultimate boundedness of the
solutions of closed-loop system (7.4)-(7.6),(7.19)-(7.22) interacting on simple strongly
connected graphs.
Lemma 7.4. Consider k nonlinear systems (7.4)-(7.6) interconnected through the
predictor-based DDC (7.19)-(7.22) with coupling strength γ ∈ R≥0, predictor gain
κ ∈ R≥0, and total time-delay τ ∈ R≥0 on a simple strongly connected graph. Assume
that:

(H7.2) Each system (7.4),(7.5) is strictly C1-semipassive with input uτ2i , output yi,
radially unbounded storage function V (xi), and the functions H(xi) are such that there
exist constants R, δ ∈ R>0 such that |xi| > R implies that H(xi)− δ|yi|2 > 0.

Let δ̄ be the largest δ that satisfies (H7.2), then the solutions of the coupled systems
(7.4)-(7.6),(7.19)-(7.22) are ultimately bounded for any finite τ ∈ R≥0 and (γ, κ) ∈ N
with N := {γ, κ ∈ R≥0| 3κ2 + γ ≤ δ̄}.

The proof of Lemma 7.4 can be found in the Appendix A.
Remark 7.5. The result stated in Lemma 7.4 is independent of the time-delay. Therefore,
if the conditions stated in Lemma 7.4 are satisfied, the solutions of the closed-loop system
(7.4)-(7.6),(7.19)-(7.22) are ultimately bounded for arbitrary large time-delays.

7.6 Network Synchronization

In this section, we give sufficient conditions for network synchronization of the
interconnected systems. Define x := col(x1, . . . , xk) and the synchronization
manifoldM := {x ∈ Rkn | xi = xj , ∀ i, j ∈ I}. The systems (7.4)-(7.6),(7.19)-
(7.22) are said to fully synchronize, or simply synchronize, if the synchronization
manifoldM contains an asymptotically stable subset.
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Figure 7.4 Projections and a three dimensional sketch of the synchronization
region S1 ∩ S2 ∩N .

7.6.1 Global Result

Next, we give sufficient conditions for the existence of an asymptotically stable
subset of the synchronization manifold. Particularly, we prove that under some
mild assumptions, there always exists a region in the parameter space (coupling
strength γ, predictor gain κ, and total time-delay τ ), such that if γ, κ, and τ belong
to this region, the systems synchronize. Moreover, it is also proved that this region
is bounded by a concave function ϕ̄ : K ⊆ R2 → R≥0, (κ, γ) 7→ ϕ̄(κ, γ). The
function ϕ̄(κ, γ) has a unique maximum on K and it has no other extrema.

Theorem 7.6. Consider k nonlinear systems (7.4)-(7.6) coupled through the predictor
based DDC (7.19)-(7.22) with coupling strength γ ∈ R≥0, predictor gain κ ∈ R≥0,
and total time-delay τ ∈ R≥0 on a simple strongly connected graph. Assume that the
conditions of Lemma 7.2 and Lemma 7.4 are satisfied. Then, there exist constants
γ′, σ′, κ′ ∈ R>0, a function κ̄(γ) := κ′ + σ′γ2

γ−γ′ , and a concave function ϕ̄ : K → R≥0,
(κ, γ) 7→ ϕ̄(κ, γ) with ϕ̄(κ̄(γ), γ) = limκ→∞ ϕ̄(κ, γ) = 0, such that if (γ, κ, τ) ∈
S1 ∩ S2 ∩ N with S2 := {γ, κ, τ ∈ R≥0|γ > γ′, κ > κ̄(γ), τ < ϕ(κ, γ)}, S1 the
prediction set defined in Lemma 7.2, and N the boundedness set defined in Lemma 7.4,
then the solutions of the closed-loop system (7.4)-(7.6),(7.19)-(7.22) are ultimately bounded
and there exists a globally asymptotically stable subset of the synchronization manifoldM.
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The proof of Theorem 7.6 is presented in the Appendix A. The result stated in
Theorem 7.6 amounts to the following. The interconnected systems
asymptotically synchronize provided that the following inequalities are
simultaneously satisfied

3κ

2
+ γ ≤ δ̄, (I1)

γ > γ′ =
κ′

λ2
, (I2)

κ > κ̄(γ) = κ′ +
σ′γ2

γ − γ′ , (I3)

τ < ϕ̄(κ, γ) < ϕ(κ), (I4)

with δ̄ the largest δ that satisfies (H7.2). The constants γ′, σ′, κ′, and the
unimodal functions ϕ(κ) and ϕ̄(κ, γ) are derived in the proofs of Lemma 7.2 and
Theorem 7.6, see (A.118),(A.121),(A.146),(A.148), and (A.149). Geometrically, the
intersection of the inequalities (I1)-(I4) could be realized as a three-dimensional
region in the parameter space. Hereafter, we refer to this region as the synchro-
nization region and it is denoted as S1 ∩S2 ∩N as stated in Theorem 7.6. Indeed, it
is not easy to visualize how the synchronization region looks like in the parameter
space. Using inequalities (I1)-(I4), in Figure 4, we present sketches of the projec-
tions of S1 ∩ S2 ∩ N on the three planes and a three-dimensional sketch of the
synchronization region.

7.6.2 Discussion

So far, we have proved that the k systems (7.4)-(7.6) interconnected through the
predictor-based diffusive dynamic coupling (7.19)-(7.22) asymptotically synchronize
provided that the conditions stated in Theorem 7.6 are satisfied. However, we
have not shown in what sense the synchronization region S1 ∩ S2 ∩ N may be
greater than the synchronization region S that would be obtained when the sys-
tems are coupled through the diffusive static coupling (7.7). The results presented in
Theorem 7.6 are meant to prove existence of the synchronization region; therefore,
the estimate of S1 ∩ S2 ∩ N given by the intersection of (I1)-(I4) may be
conservative. This is because the approach taken in this manuscript is Lyapunov-
based, i.e., we use Lyapunov-Razumikhin functions and Lyapunov-Krasovskii
functionals to derive the results. It follows that the conditions stated in Lemma
7.2, Lemma 7.4, and Theorem 7.6 are sufficient but certainly not necessary. Hence,
if both regions S1 ∩ S2 ∩N and S are obtained using these Lyapunov methods, it
may be hard to extract quantitative insights out of them. Thus, a direct comparison
between these conservative regions to evaluate the performance of the couplings
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would be meaningless. In the following section, we provide a local analysis to
illustrate the "mechanism of action" behind our predictor-based couplings. We
compare (locally) the synchronization regions obtained with both controllers with-
out using the mentioned Lyapunov methods. In particular, the provided analysis
is related to theMaster Stability Function (MSF) approach [99], in the sense that the
conditions for local synchronization follow from the stability properties of linear
variational systems.

7.6.3 Local Analysis

The k systems (7.4)-(7.6) can be written in the following compact form

ẋi = f(xi) + Bui(t− τ2), (7.27)
yi = Cxi, (7.28)
xi = φ(t), t ∈ [−τ2, 0], (7.29)

with i ∈ I = {1, . . . , k}, and

xi = col(ζi, yi), f(xi) := col (q(ζi, yi), a(ζi, yi)) ,

C :=
(
0m×(n−m) Im

)
, B := CT .

Then, the closed-loop stacked system (7.4)-(7.7) can be written as

ẋ = F (x)− γ (L⊗ BC)x(t− τ), (7.30)

with x := col(x1, . . . , xk), F (x) := col(f(x1), . . . , f(xk)), and Laplacian matrix
L ∈ Rk×k. Assume that:

(H7.3) The solutions of the coupled systems (7.4)-(7.7) are ultimately bounded,
i.e., there exists a constantM ∈ R>0 such that |xi(t)| < M for all t ∈ [−τ,∞) and
i ∈ I.

We refer the reader to [130], Section 2, where sufficient conditions for
boundedness of the solutions of the interconnected systems (7.4)-(7.7) are derived.
The communication graph is strongly connected and aij = aji by assumption. Then,
the Laplacian matrix is symmetric and its eigenvalues are real. Moreover, the ma-
trix L has an algebraically simple eigenvalue λ1 = 0 and 1 = col(1, . . . , 1) ∈ Rk is
the corresponding eigenvector [29]. Applying Gerschgorin’s disc theorem [138],
it can be concluded that the eigenvalues of L are nonnegative, i.e., the matrix L is
positive semidefinite. It follows that L has eigenvalues λ1, ..., λk ∈ R≥0 ordered
by increasing parts: 0 = λ1 < λ2 ≤ · · · ≤ λk. Since L is symmetric, then there
exists a nonsingular matrix T ∈ Rk×k so that Λ := T−1LT , where Λ denotes an
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upper block-triangular matrix with the eigenvalues of L on its diagonal. It can be
proved that the matrix T can be chosen to satisfy

T


1

0
...
0

 = 1k×1,
(
T−1

)T


1

0
...
0

 = ν, (7.31)

for some vector ν ∈ Rk×1 satisfying νT1k×1 = 1 and νTL = 0. It follows that the
first column of T is 1k×1 and the first row of T−1 equals νT . Introduce the change
of coordinates x := (T ⊗In)x̄, then the closed-loop system in the new coordinates
is given by

˙̄x = (T−1 ⊗ In)F ((T ⊗ In)x̄)− γ (Λ⊗ BC) x̄(t− τ). (7.32)

Notice that x̄1 =
∑k
i=1 νixi =: ξ with νT1k×1 = 1. Moreover, x̄j = 0n×1,

j = 2, . . . , k implies that xi = x̄1 = ξ for all i ∈ I, i.e., the coupled systems
are synchronized. Linearizing (7.32) around x̄ = col(ξ,0n×1, . . . ,0n×1) yields

˙̄x = (Ik ⊗ Jf (ξ)) x̄− γ (Λ⊗ BC) x̄(t− τ), (7.33)

with Jf (ξ) denoting the Jacobian matrix of the function f : Rn → Rn evaluated
along ξ =

∑k
i=1 νixi ∈ Rn. Smoothness of the vectorfield f(·) and boundedness

of the solutions imply that the Jacobianmatrix Jf (ξ) is well defined and uniformly
bounded. Moreover, since the system (7.33) is linear, then asymptotic stability of
its zero solution x̄j = 0n×1, j = 2, . . . , k amounts to asymptotic stability of the
following equations

żi = Jf (ξ)zi − γλiBCzi(t− τ), i = 2, 3, . . . , k. (7.34)

Therefore, the k diffusively time-delayed coupled systems (7.4)-(7.7) locally syn-
chronize provided that the coupling strength γ and the total time-delay τ are such
that the zero solution of the (k−1) linear equations (7.34) are asymptotically stable
uniformly in ξ(t). Next, consider the closed-loop system (7.4)-(7.6),(7.19)-(7.22).
Using the same compact form (7.30), the interconnected systems can be written as

ẋ = F (x)− γ (L⊗ BC) (x− ε) , (7.35)
ε̇ = F (x)− F (x− ε)− κ (Ik ⊗ BC) ε(t− τ), (7.36)

with prediction error εi := col(ε1i, ε2i) and stacked error ε := col(ε1, . . . , εk).
Assume that:

(H7.4) The conditions stated in Lemma 7.4 are satisfied.
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Figure 7.5 Synchronization regionsR,R2,Rk, and R̄.

Therefore, the solutions of the interconnected systems (7.4)-(7.6),(7.19)-(7.22) are
uniformly ultimately bounded for all t ∈ [−τ,∞). Inducing again the change of
coordinates x = (T ⊗ In)x̄ and ε := (T ⊗ In)ε̄ with T as in (7.31), the closed-loop
system is written as

˙̄x = (T−1 ⊗ In)F ((T ⊗ In)x̄)− γ (Λ⊗ BC) x̄+ γ (Λ⊗ BC) ε̄, (7.37)

˙̄ε = (T−1 ⊗ In)F ((T ⊗ In)x̄)− κ (Ik ⊗ BC) ε̄τ (7.38)
− (T−1 ⊗ In)F ((T ⊗ In) (x̄− ε̄)).

Linearizing the stacked systems (7.37),(7.38) around x̄ = col(ξ,0n×1, . . . ,0n×1)

and ε̄ = col(0n×1, . . . ,0n×1) yields

˙̄x = (Ik ⊗ Jf (ξ)) x̄− γ (Λ⊗ BC) x̄+ γ (Λ⊗ BC) ε̄, (7.39)
˙̄ε = (Ik ⊗ Jf (ξ)) ε̄− κ (Ik ⊗ BC) ε̄(t− τ), (7.40)

with Jf (ξ) the Jacobian matrix of f : Rn → Rn evaluated along ξ =
∑k
i=1 νixi.

System (7.39),(7.40) is linear, then asymptotic stability of its zero solution
x̄j = 0n×1, j = 2, . . . , k, and ε̄i = 0n×1, i = 1, . . . , k implies asymptotic
stability of the following equations

żj = (Jf (ξ)− γλjBC) zj , j = 2, 3, . . . , k, (7.41)
˙̄εi = Jf (ξ)ε̄i − κBCε̄i(t− τ), i = 1, 2, . . . , k. (7.42)

Hence, the k systems (7.4)-(7.6) interconnected through the predictor-based
coupling (7.19)-(7.22) locally synchronize provided that the coupling strength γ,
the predictor gain κ, and the total time-delay τ are such that the zero solution of
the (2k − 1) linear equations (7.41),(7.42) are asymptotically stable uniformly in
ξ(t). Summarizing, local synchronization of the coupled systems (7.4)-(7.7) and
(7.4)-(7.6),(7.19)-(7.22) amounts to asymptotic stability of the origin of the systems
(7.34) and (7.41),(7.42), respectively.
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Figure 7.6 Network Topologies

Assume that:

(H7.5) The conditions stated in Lemma 7.2 are satisfied.

The k systems (7.42) are the linearization of the prediction error dynamics (7.16),
(7.17) in the coordinates ε̄ = (T ⊗ In)ε. Therefore, from Lemma 7.2, it follows that
there exist a positive constant κ′ and a unimodal function ϕ : [κ′,∞) → R≥0

with ϕ(κ′) = limκ→∞ ϕ(κ) = 0, such that the zero solution of system (7.42)
is asymptotically stable if (κ, τ) ∈ R := {κ, τ ∈ R≥0|κ > κ′, τ < ϕ(κ)}, see
Figure 7.4. Notice that the dynamics (7.34), (7.41), and (7.42) share a similar struc-
ture. System (7.42) has the same dynamics as system (7.41) if κ = γλj , j = 2, . . . , k,
and τ = 0. Similarly, system (7.34) has the same dynamics as system (7.42) if
γλj = κ, j = 2, . . . , k. Therefore, the existence of the regionR implies that:

(P7.1) The zero solution of the (k − 1) systems (7.41) are asymptotically stable if

γ >
κ′

λ2
. (7.43)

(P7.2) The zero solution of the (k − 1) systems (7.34) are asymptotically stable if

(γ, τ) ∈ R̄ :=

k⋂
j=2

Rj , (7.44)

with Rj := {(γ, τ)|(κ = γλj , τ) ∈ R}. Moreover, it can be proved that given uni-
modality of the function ϕ(·), the region R̄ is simply given by R̄ = R2 ∩ Rk, see
Section 5.3 in [129] for further details. In Figure 7.5, we provide a
graphical interpretation of the statements given in Propositions (P7.1) and (P7.2).
From (P7.1) and (P7.2), it follows that the coupled systems (7.4)-(7.7) locally
synchronize if (γ, τ) ∈ R̄ and the coupled systems (7.4)-(7.6),(7.19)-(7.22) locally
synchronize if (κ, τ) ∈ R and γ > κ′

λ2
. Notice that by introducing the predictor-

based coupling, we have shifted the effect of the time-delay from the synchro-
nization error dynamics to the prediction error dynamics. That is, if the k sys-
tems are coupled through the diffusive static coupling (7.7), the time-delay appears
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explicitly in the synchronization error dynamics (7.34) and it is directly linked to
the network topology through the nonzero eigenvalues of the Laplacian matrix.
On the other hand, if they interact through the predictor-based coupling, the time-
delay appears in the prediction error dynamics (7.42), but not in the synchroniza-
tion error dynamics (7.41); and therefore, in this case, the effect of the time-delay
is not influenced by the network topology. Finally, from (P7.1) and (P7.2), we can
immediately conclude the following:

(a) If λ2 < λk, then area(R) > area(R̄).
(b) If λ2 = λk > 1, then area(R) > area(R̄).
(c ) If λ2 = λk = 1, then area(R) = area(R̄).
(d) If λ2 = λk < 1, then area(R) < area(R̄),

with λ2 and λk being the smallest nonzero and the largest eigenvalues of the
Laplacian matrix, and area(R) and area(R̄) denoting the area of the regions R
and R̄, respectively. Therefore, locally, the predictor-based coupling would lead
to greater or equal synchronization regions in cases (a)-(c). It is worth noting
that for a given strongly connected graph, λ2 = λk, if the network topology is
all-to-all, i.e., each system in the network receives information from all the
remaining systems. 2

7.6.4 On Robustness of the Control-Scheme

The results presented in the previous sections are derived for networks of coupled
identical systems. However, in practical situations, the dynamics of the systems
cannot be expected to be perfectly identical. Moreover, the vectorfields q(·) and
a(·) of the dynamics (7.4)-(7.6) must be exactly known to be able to construct the
predictor-based coupling (7.19)-(7.22). This is unrealistic in practical situations,
where there may be parametric uncertainties and/or unmodeled dynamics in the
available models. In this situation, the best that can be done is to construct the
couplings with the known part of the dynamics, which, hereafter, is referred to as
the nominal dynamics.

Hence, because of all these practical issues, we can not expect that the systems
perfectly synchronize under the proposed control scheme. In the best case, if the
uncertainties are sufficiently small (in some appropriate sense), it can be expected
that the synchronization errors are bounded by a small constant µ ∈ R>0, which,
of course, needs to be small enough in order to consider that the systems are
"practically synchronized". Let the k systems (7.4)-(7.6) be the nominal dynamics of
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the following perturbed systems

ζ̇i = q(ζi, yi) + ∆qi(ζi, yi), (7.45)
ẏi = a(ζi, yi) + ui(t− τ2) + ∆ai(ζi, yi), (7.46)
xi = φ(t), t ∈ [−τ2, 0], (7.47)

with i = 1, ..., k, state xi := col(ζi, yi) ∈ Rn, internal state ζi ∈ Rn−m, output
yi ∈ Rm, input ui ∈ Rm, sufficiently smooth known functions q : Rn−m × Rm →
Rn−m and a : Rn−m × Rm → Rm, and sufficiently smooth unknown functions
∆qi : Rn−m × Rm → Rn−m and ∆ai : Rn−m × Rm → Rm. The vectorfields
q(·) and a(·) are the known part of the dynamics while the terms ∆qi(ζi, yi) and
∆ai(ζi, yi) represent parametric uncertainties and/or unmodeled dynamics. In
this setting, the predictor based coupling (7.19)-(7.22) is constructed using the
known vectorfields q(·) and a(·) of the nominal dynamics. Then, at this point,
one may wonder under what conditions the solutions of the coupled perturbed
systems (7.45)-(7.47),(7.19)-(7.22) are ultimately bounded and practically synchro-
nize. Firstly, we address the boundedness part in the following lemma, which is
a slight modification of Lemma 7.4.

Lemma 7.7. Consider k perturbed systems (7.45)-(7.47) interconnected through the
predictor-based coupling (7.19)-(7.22) with coupling strength γ ∈ R≥0, predictor gain
κ ∈ R≥0, and total time-delay τ ∈ R≥0 on a simple strongly connected graph. Assume
that:

(H7.6) Each system (7.45),(7.46) is strictly C1-semipassive with input uτ2i , output yi,
radially unbounded storage function Vi(xi), and the functions Hi(xi) are such that there
exist constants Ri, δi ∈ R>0 such that |xi| > Ri implies that Hi(xi)− δi|yi|2 > 0.

Let δ̄i be the largest δi that satisfies (H7.6) and define δ̄min := min(δ̄1, . . . , δ̄k), then
the solutions of the coupled systems (7.45)-(7.47),(7.19)-(7.22) exist and are ultimately
bounded for any finite τ ∈ R≥0 and (γ, κ) ∈ Ñ with Ñ := {γ, κ ∈ R≥0| 3κ2 +γ ≤ δ̄min}.

The proof of Lemma 7.7 follows the same lines as the proof of Lemma 7.4 and it is
omitted here. The result stated in Lemma 7.7 implies that ultimate boundedness
of the solutions of the coupled perturbed systems can still be guaranteed as long
as each perturbed system (7.45),(7.46) is strictly C1-semipassive in the presence of
the perturbation terms ∆qi(ζi, yi) and ∆ai(ζi, yi). This is not hard to satisfy when
the perturbations are due to parametric uncertainties; then, semipassivity of the
nominal systemmay imply semipassivity of the perturbed one if the uncertainties
are sufficiently small.
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The next step would be to show that under some conditions the coupled
perturbed systems "practically synchronize". Practical synchronization means that
the differences between the states of the systems converge to some compact
invariant set in finite time, and this set is bounded by a constant µ ∈ R>0 which
has to be small enough to consider that the systems are still synchronized.
However, the formal study of practical synchronization goes beyond the scope
of this chapter. The general purpose of this manuscript is to gain insights of the
synchronization mechanisms for the class of systems and couplings under study.
Particularly, we focus on the stability analysis of the synchronization manifoldM
with respect to the coupled unperturbed systems. The practical implications of the
control-scheme are not considered here and are left for future research.

7.7 Example: Hindmarsh-Rose Neural Oscillators

A. Network Topology, Convergence, and Semipassivity. Consider a network of
k systems coupled according to the graphs depicted in Figure 7.6. The networks
are strongly connected and undirected. Each system in the network is assumed
to be a Hindmarsh-Rose neuron [51] of the form

ż1i = 1− 5y2
i − z1i,

ż2i = 0.005(4yi + 6.472− z2i),

ẏi = −y3
i + 3y2

i + z1i − z2i + 3.25 + uτ2i ,

(7.48)

with output yi ∈ R, internal states zi1, zi2 ∈ R, state xi = col(zi1, zi2, yi) ∈ R3,
delayed input uτ2i ∈ R, transmission time-delay τ2 ∈ R≥0, and i ∈ I = {1, . . . , k}.
It is well known that theHindmarsh-Rose neuron (7.48) has a chaotic attractor [51]
for ui = 0. Furthermore, in [136], it is proved that the Hindmarsh-Rose neuron
is strictly C1-semipassive with quadratic storage function V (z1i, z2i, yi) := 1

2y
2
i +

σz2
1i + 25z2

2i, constants ς1, ς2 ∈ (0, 1), 0 < σ < 4ς1(1−ς2)
25 , and

H(z1i, z2i, yi) = ς1y
4
i − 3y3

i −
1

4σ(1− ς2)
y2
i

+

(
σς2 −

25σ2

4(1− ς1)

)
z2

1i +
1

4
z2

2i − 1.618z2i

+ σ(1− ς2)

(
z1i −

1

2σ(1− ς2)
yi

)2

− σz1i

+ (1− ς1)

(
y2
i +

5σ

2(1− ς1)
z1i

)2

− 3.25yi. (7.49)
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Moreover, the (z1i, z2i)-dynamics (the internal dynamics) is an exponentially
convergent system (in the sense of Definition 1.4), i.e., it satisfies the Demidovich
condition (7.18) with P = I2; hence, assumption (H7.1) is satisfied.

B. Predictor-basedDiffusiveDynamicCoupling. Associatedwith systems (7.48),
the dynamic couplings (7.19)-(7.22) take the following form

η̇1i = 1− 5η2
3i − η1i,

η̇2i = 0.005(4η3i + 6.472− η2i),

η̇3i = −η3
3i + 3η2

3i + η1i − η2i + 3.25 + ui + κ(yτ1i − ητ3i),
ui = γ

∑
j∈Ei aij(η3j − η3i),

(7.50)

with predictor state ηi = col(η1i, η2i, η3i) ∈ R3, measurement time-delay
τ1 ∈ R≥0, total time-delay τ ∈ R≥0, coupling strength γ ∈ R≥0, and predic-
tor gain κ ∈ R≥0. As previously mentioned, each system (7.48) is strictly C1-
semipassive with H(xi) as in (7.49). It can be shown that the function H(xi)

satisfies the boundedness assumption (H7.2) stated in Lemma 7.4 for arbitrary
large coupling strength γ and predictor gain κ, i.e., N = R≥0 × R≥0. Therefore,
by Lemma 7.4, the solutions of the closed-loop system (7.48),(7.50) always exist
and are ultimately bounded. Moreover, since the internal dynamics is convergent,
(H7.1) is satisfied; hence, by Lemma 7.2, there exists a region S1 ⊂ R≥0 ×R≥0 (as
depicted in Figure 7.2), such that if (κ, τ) ∈ S1, the predictor state ηi asymptoti-
cally anticipates the dynamics (7.48), i.e., limt→∞ xi(t+ τ2)− ηi(t) = 0. Finally, by
Theorem 7.6, there exists a nonempty set S2 ⊂ R≥0 ×R≥0 ×R≥0 (as depicted in
Figure 7.4), such that if (γ, κ, τ) ∈ S1 ∩ S2 ∩N , the systems synchronize.

C. Simulation Results. In Figures 7.7-7.10, we show the results obtained through
extensive computer simulations for τ1 = τ2 = τ

2 . Figure 7.7 depicts the predic-
tion region S1 introduced in Lemma 7.2. This region is clearly bounded by a uni-
modal function; hence, there is an optimal predictor gain κ = κ∗ := 2.05 that
leads to the maximum time-delay τ = τ∗ = 3.82 that can be induced to the pre-
dictor. This maximum time-delay depends directly on the dynamics of the sys-
tems, but not on the network topology, (see the proof of Lemma 7.2). In Figure 7.8,
for G0, we show the synchronization region S obtained when the two neurons are
coupled via the diffusive static coupling (7.7) and a projection of the synchronization
region S1 ∩ S2 ∩ N on the (γ, τ )-plane obtained through the predictor-based cou-
pling (7.50) for κ = κ∗. For this particular topology and κ, both couplings lead to
approximately the same maximum time-delay τ∗. This can be explained (locally)
by the statement (b) of the local analysis since λ2(G0) = λk(G0) = 2. However, the
asymptotic behavior is quite different. The upper bound of S decreases asympto-
tically to zero as the coupling strength increases. On the other hand, the projec-
tion of the synchronization region S1 ∩ S2 ∩ N has an upper bound that converges
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Figure 7.7 Prediction region S1.

Figure 7.8 Synchronization regions S and S1 ∩ S2 ∩N for κ = κ∗ and G0, i.e., two
coupled systems.

to τ∗ asymptotically as γ is increased. Hence, in the latter case (for large γ), the
maximum time-delay is determined by the predictor gain κ, see Figure 7.7. Fi-
nally, in Figure 7.9 and Figure 7.10, we show the regions S and the projections
of S1 ∩ S2 ∩ N for all the topologies depicted in Figure 7.6. It is clear that the
regions S in Figure 7.10 are strongly influenced by the network topology [130].
Conversely, the regions S1 ∩ S2 ∩ N in Figure 7.9 are influenced by the network
topology only for small coupling strength. The upper bounds of the synchroniza-
tion regions converge asymptotically to τ∗ independently of the network topology
as γ is increased.
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Figure 7.9 Synchronization region S1 ∩ S2 ∩ N for different topologies Gj , j =

1, 2, 3, 4, and κ = κ∗.

Figure 7.10 Synchronization region S for different topologies Gj , j = 1, 2, 3, 4.

7.8 Conclusions

We have presented a result on network synchronization in the case when the
measurements of the available outputs and the transmission of the controllers are
subject to different constant time-delays. We have shown that the time-delay that
can be induced to the network may be increased by the proposed predictor-based
diffusive dynamic couplings. Using the notion of semipassivity, we have provided
sufficient conditions which guarantee existence and ultimate boundedness of the
solutions of the closed-loop system. Sufficient conditions that guarantee (global)
state synchronization have also been derived. We have provided a local analy-
sis to illustrate the "mechanism of action" behind our predictor-based couplings.
Finally, we have presented an illustrative example that shows that indeed it is po-
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ssible to extend the synchronization regions with the proposed control scheme.
While the regions S obtained through the diffusive static coupling (7.7) are strongly
influenced by the network topology, the regions S1 ∩ S2 ∩ N obtained with the
predictor-based coupling are influenced by the network topology only for small
coupling strength. As γ is increased, the upper bounds of S1 ∩ S2 ∩ N are deter-
mined by the prediction set S1, i.e., for a fixed κ and its corresponding maximum
time-delay τ∗, see Figure 7.7, the upper bounds of S1 ∩S2 ∩N converge asympto-
tically to τ∗ independently of the network topology.



Chapter 8

Synchronization in Networks
of Hindmarsh-Rose Neurons:
Experimental Results

Abstract. Experimental results about synchronization and partial synchronization in
networks of Hindmarsh-Rose neurons that interact through diffusive time-delayed
couplings are presented. In particular, we test the predictive value of our theoretical
results using an experimental setup with electronic circuit realizations of the Hindmarsh-
Rose neuron model.

8.1 Introduction

In this chapter, we present a set of experimental results on synchronization in
networks of coupled dynamical systems with time-delays. Particularly, we test
some theoretical results about full synchronization [132], partial synchronization [133],
and synchronization in relation to the network topology [130] in networks of coupled
semipassive systems. We employ an experimental setup with electronic circuit
realizations of the Hindmarsh-Rose neuron model [51]. It is important to notice
that in practical situations, the dynamics of the systems in the network cannot
be expected to be perfectly identical. For instance, because the signals exchanged
among the systems are contaminated with noise and/or there are small
mismatches in the systems’ parameters. Because of these inherent imperfections,
we can not expect that the systems perfectly synchronize. It is necessary to
allow for a mismatch between them, which, of course, needs to be small enough
in order to consider that the systems are "practically synchronized". To this end, we

This chapter is based on [131].
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introduce the notions of practical synchronization and practical partial synchroniza-
tion, which states that circuits may be called (partially) synchronized if, after some
transient, the differences between their outputs are sufficiently small on a long
finite time interval. The experiments with networks of coupled Hindmarsh-Rose
circuits shall indicate when the aforementioned theoretical results, derived for
identical systems and without any noise, (fail to) have sufficient predictive value
in reality.

We present experimental results on network synchronization of systems
interconnected through diffusive time-delayed couplings. These coupling
functions are of the form

ui(t) = γ
∑
j

aij
(
yj(t− τ)− yi(t)

)
,

which we refer to as transmission delay couplings, and

ui(t) = γ
∑
j

aij
(
yj(t− τ)− yi(t− τ)

)
,

which is called full delay couplings. The function ui denotes the input of system
i, which has output yi, yj is the output of a neighboring system j, τ ∈ R>0

denotes the networked-induced time-delay, the constants aij ∈ R≥0 are the
interconnection weights, and γ ∈ R>0 is the coupling strength. In case of
transmission delay couplings, the transmitted signals (the outputs of neighbors of
system i) are delayed by τ units of time and compared with the current output
of system i. These kind of couplings arise naturally in networked systems due to
finite speed of propagation of signals. It takes some amount of time before sys-
tem i receives information about the state of its neighbors (via the outputs yj).
Full delay couplings, where all signals are time-delayed by an amount τ , may arise,
for instance, when the systems are interconnected by a centralized control law. In
that case the central controller first has to sample the outputs of all the systems,
then it has to compute the coupling inputs ui and, finally, the controller needs
to communicate these inputs to the systems. Full delay coupling functions also
appear in traffic flows, where the time-delay corresponds to the human reaction
time [125].

There are several results studying synchronization in networks of linearly coupled
systems from a theoretical point of view, see , for instance, [47, 78, 90, 99, 104, 147].
Conditions are established to predict synchronization and partial synchronization in
such networks. In addition the problem of how synchronization relates to the
structure of the network has been investigated intensively, at least in the delay-free
case, see [20, 22, 105, 142]. However, obtained results are usually tested using com-
puter simulations. Much less attention is devoted to the verification of theoretical
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synchronization results in real experimental setups. The focus of this chapter is to
test the validity of theory using an experimental setup that consists of electronic
circuit board realizations of the (mathematical) Hindmarsh-Rose neuron model
[51]. Particularly, this chapter presents results of a series of experiments that are
conducted to verify the theoretical results about full synchronization [132], partial
synchronization [134], and synchronization in relation to the network topology [130].

8.2 System Description and a Review of Theoretical
Results

We consider networks of identical nonlinear systems, where the networks are
described by graphs G = (V, E , A) and the systems are of the form

żi = q(zi, yi), (8.1a)
ẏi = a(zi, yi) + ui, (8.1b)

with i ∈ V := {1, ..., k}, internal state zi ∈ Rn−m, output yi ∈ Rm, state
xi := col(zi, yi), input ui ∈ Rm, and sufficiently smooth functions q : Rn−m ×
Rm → Rn−m and a : Rn−m ×Rm → Rm. We consider two types of time-delayed
couplings, namely transmission delay couplings

ui = γ
∑
j∈Ni

aij
(
yj(t− τ)− yi(t)

)
, (8.2)

and full delay couplings

ui = γ
∑
j∈Ni

aij
(
yj(t− τ)− yi(t− τ)

)
. (8.3)

The positive constant γ denotes the coupling strength and the non-negative
constant τ is the time-delay. The constants aij ≥ 0 are the entries of the weighted
adjacency matrixA of the graph G. Since the coupling strength is encompassed in
the constant γ, it is assumedwithout loss of generality that maxi∈V

∑
j∈Ni aij = 1.

Note that in case of the transmission delay coupling (8.2) only the transmitted
signals contain delays and in the full-delay coupling (8.3) all signals contain delay.
It is important to point out that if all the systems in the network asymptotically
synchronize, i.e., if the solutions of the systems asymptotically match

xi(t)→ xj(t) as t→∞ for all i, j ∈ V,

then the full delay coupling (8.3) vanishes and the transmission delay coupling
(8.2) generally does not vanish. So, we say that transmission delay coupling
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is invasive and full delay coupling is non-invasive. Define the staked state
x := col(x1, . . . , xk). A necessary condition for a network of k systems (8.1a),(8.1b)
to synchronize is that the synchronization manifold

M := {x ∈ Rkn|x1 = x2 = . . . = xk},

is forward invariant with respect to the dynamics of the coupled systems. We
observe that, because the systems (8.1) are identical and the full delay coupling
(8.3) is non-invasive, the synchronization manifoldM is forward invariant under
the dynamics (8.1),(8.3). However, for the invasive transmission delay coupling
(8.3), we need an additional assumption that ensuresM to be forward invariant
under the time-delayed coupled systems (8.1),(8.2). The least restrictive assump-
tion forM being forward invariant under (8.1),(8.2) is that∑

j∈Ni
aij = 1 for all i ∈ V.

See Proposition 1 in Ref. [132] for further details. From now on, it is supposed
that the above assumption is always satisfied for systems interacting through the
transmission delay coupling (8.2).

8.2.1 Synchronization

So far, we have given conditions which ensure that the synchronization manifold
M is forward invariant under the dynamics of the closed-loop dynamics (8.1),(8.2)
and (8.1),(8.3). Next, we present conditions for the synchronizationmanifoldM to
contain an asymptotically stable subset. Clearly, asymptotic stability of (a subset)
ofM implies that the network of time-delayed coupled systems synchronizes.

Theorem 8.1. [132]. Consider a network of k coupled systems (8.1),(8.2) or (8.1),(8.3)
on a simple and strongly connected graph G = (V, E , A). Assume that:

(H8.1) The solutions of the coupled systems are uniformly ultimately bounded.

(H8.2) There exists a positive definite matrix P ∈ R(n−m)×(n−m) such that the
eigenvalues of the symmetric matrix

P

(
∂q

∂zi
(zi, yi)

)
+

(
∂q

∂zi
(zi, yi)

)T
P,

are uniformly negative and bounded away from zero for all zi ∈ Rn−m and yi ∈ Rm.

Then, there exist positive constants γ̄ and χ̄ such that, if γ ≥ γ̄ and γτ ≤ χ̄, then (a
subset of) the synchronization manifoldM is globally asymptotically stable for (8.1),(8.2)
or (8.1),(8.3).
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Remark 8.2. The values of γ̄ and χ̄ depend on the dynamics of the systems, the type of
coupling (either (8.2) or (8.3)), and the network topology.

In Theorem 8.1, it is assumed that the coupled systems have uniformly ultimately
bounded solutions. Conditions (at the level of the systems) for this uniform
ultimate boundedness are provided in Appendix B. Condition (H8.2) implies that
the subsystem (8.1a) is an exponentially convergent system with input yi. Such an
exponentially convergent system has a unique exponentially stable steady state
solution that depends on the driving input yi, but not on the initial data zi(t0).
Roughly speaking, an exponentially convergent system “forgets” its initial conditions
exponentially fast. It follows that given two exponentially convergent systems
defined by the same function q(·), but driven by different inputs yi and yj , if
|yi(t) − yj(t)| → 0 as t → ∞, then |zi(t) − zj(t)| → 0 as t → ∞. This implies
that if all outputs yi of the systems (8.1) synchronize, then all “internal states” zi
synchronize. For a precise definition of convergent systems see Section 1.4.3.

We remark that our results on uniform ultimate boundedness of solutions of
networks with full delay coupling (8.3) involve an upper bound γmax on the
coupling strength γ, see Appendix B. Then, if the results presented in the
appendix are used to ensure uniform ultimate boundedness of (8.1),(8.3), we have
to impose the additional constraint γ < γmax in Theorem 8.1.

8.2.2 Partial Synchronization

Partial synchronization is a form of incomplete network synchronization
characterized by synchronized activity in clusters of systems. In other words,
we say that a network shows partial synchronization if the states of at least two
systems, but not all of them, asymptotically match, i.e., xi(t) → xj(t) as t → ∞,
for at least two systems i and j, i, j ∈ V , but not all of them. Synchronization
in networks of time-delayed coupled systems is associated with the asymptotic
stability of the forward invariant synchronization manifold M. Similarly, for
partial synchronization, we need a forward invariant partial synchronization
manifoldP to be asymptotically stable. It turns out to be convenient to parametrize
such a partial synchronization manifold in terms of a k × k permutation matrix
Π. Particularly, for a given permutation matrix Π ∈ Rk×k, we define

P(Π) := {x ∈ Rkn|x ∈ ker(Ikn −Π⊗ In)}.
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We always assume that Π 6= Ik and

Π 6=



0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 · · · 0 1

1 0 · · · 0 0

 ,

that is, we omit permutation matrices that define manifolds corresponding to
synchronization of none of the systems and full synchronization.

Lemma 8.3. [137]. Consider k systems (8.1) on a simple and strongly connected graph
G = (V, E , A). Then, for a given permutation matrix Π ∈ Rk×k, the manifold P(Π)

is forward invariant with respect to the dynamics of transmission delay coupled systems
(8.1),(8.2) if and only if one of the following conditions is satisfied:

i. ker(I −Π) is a right invariant subspace of A.

ii. There exists a matrix XA ∈ Rk×k that solves

(I −Π)A = XA(I −Π).

The manifold P(Π) is forward invariant with respect to the dynamics of full delay coupled
systems (8.1),(8.3) if and only if one of the following conditions is satisfied:

iii. ker(I −Π) is a right invariant subspace of L.

iv. There exists a matrix XL ∈ Rk×k that solves

(I −Π)L = XL(I −Π).

In case the matrices Π and A (Π and L) commute, i.e., ΠA = AΠ (ΠL = LΠ),
then XA = A (XL = L) solves the matrix equation of condition ii (condition iv).
In this case, the matrix Π can be thought of as a re-labeling of the nodes, in such
a way that the network before and after the re-labeling is identical. Condition i (
condition iii) can be used to construct a permutationmatrixΠ that defines a partial
synchronization manifold from repeated patterns in the right eigenvectors of the
matrix A (L). Condition ii (condition iv) is particularly useful for the assessment
of asymptotic stability of the forward invariant partial synchronization manifold
P(Π).
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Theorem 8.4. [135]. Consider a network of k systems (8.1) on a simple and strongly
connected graph G = (V, E , A). Assume that (H8.1) and (H8.2) of Theorem 8.1 are
satisfied.

(H8.3) Let Π ∈ Rk×k be a permutation matrix that satisfies condition i (hence condition
ii) of Lemma 8.3 and suppose that there exists a positive constant c∗ such that

(I −Π)T
(
I − 1

2 (XT
A +XA)

)
(I −Π) ≥ c∗(I −Π)T (I −Π).

(H8.4) Let Π ∈ Rk×k be a permutation matrix that satisfies condition iii (hence condition
iv) of Lemma 8.3 and suppose that there exists a positive constant c′ such that

(I −Π)T
(

1
2 (XT

L +XL)
)
(I −Π) ≥ c′(I −Π)T (I −Π).

If (H8.3) holds, then there exist positive constants γ∗ and χ∗ such that if γ ≥ γ∗

and γτ ≤ χ∗, then (a subset of) the partial synchronization manifold P(Π) is globally
asymptotically stable for (8.1),(8.2).

If (H8.4) holds, then there exist positive constants γ′ and χ′ such that if γ ≥ γ′

and γτ ≤ χ′, then (a subset of) the partial synchronization manifold P(Π) is globally
asymptotically stable for (8.1),(8.3).

Remark 8.5. The threshold values γ∗ and χ∗ (γ′ and χ′) depend on the dynamics of the
systems, the type of coupling (either (8.2) or (8.3)), and the network topology. See the
proofs of Theorem 5 and Theorem 6 in Ref. [135] for further details.

The problem of finding the constant c∗ (or constant c′) specified in Theorem 8.4
can be solved using singular value decomposition, see Ref. [106]. We remark that
the conditions for the occurrence of synchronization and partial synchronization at
the level of the dynamics of the individual systems coincide. Whether systems in
a network partially synchronize or fully synchronize depends in large extend on
the network topology and the values of coupling strength and time-delay. It may
happen that two partial synchronization manifolds are asymptotically stable for
the same values of coupling strength and time-delay. In fact, it may happen that
the conditions for all possible partial synchronization manifolds to be stable coin-
cide with the conditions for the synchronization manifoldM to be stable. Thus
to have partial synchronization in a network of systems (8.1),(8.2) (or (8.1),(8.3)),
we require at least that one of the following two conditions is satisfied:

• γ∗ < γ̄ (γ′ < γ̄);

• χ∗ > χ̄ (χ′ > χ̄).
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Figure 8.1 The dark gray area represents the full synchronization region. The
lighter gray area represents the partial synchronization region.

An example where partial synchronization can be observed is schematically
depicted in Figure 8.1. For network structures defined by undirected graphs
G = (V, E , A)with symmetric adjacencymatrixA, it is possible to derive necessary
conditions for the above inequalities to be satisfied. These conditions can be found
in Appendix B.

8.2.3 Condition for synchronization in relation to the network
topology

Let L = L> be the Laplacian matrix of a simple and strongly connected
undirected graph G, and order the eigenvalues of L as

0 = λ1 < λ2 ≤ . . . ≤ λk.

It is shown in Ref. [130] that for any network with a symmetric Laplacian matrix
L, the values of coupling strength γ and time-delay τ for which full delay coupled
systems (8.1),(8.3) synchronize can be determined from the non-zero eigenvalues
of L and the values of coupling strength and time-delay for which two coupled
systems (8.1),(8.3) synchronize. In particular, given two symmetrically coupled
systems (8.1),(8.3), if the conditions (H8.1) and (H8.2) of Theorem 8.1 are satisfied,
there exists a non-empty set

S∗ := {(γ, τ) ∈ R>0 ×R≥0|γ̄ ≤ γ < γmax and γτ ≤ χ̄},

such that for any (γ, τ) ∈ S∗ the two coupled systems synchronize. We refer to
this set S∗ as the synchronization region of two full delay coupled systems.
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Theorem 8.6. [130]. Consider a network of k > 2 coupled systems (8.1),(8.3) on an
undirected graph G = (V, E , A) with symmetric adjacency matrix A. Suppose that the
conditions (H8.1) and (H8.2) of Theorem 8.1 are satisfied and let S∗ be the synchroniza-
tion region of two full delay coupled systems (8.1). Then, the network of k > 2 systems
(8.1),(8.3) synchronizes if (γ, τ) ∈ S2 ∩ Sk, where

Sj :=
{(

λj
2 γ, τ

)
∈ S∗

}
,

with λ2 and λk the smallest non-zero and the largest eigenvalues of the symmetric
Laplacian matrix L, respectively.

In other words, Theorem 8.6 states that for any undirected network of full delay
coupled semipassive systems, the values of coupling strength and time-delay for
which the network synchronizes can be found by taking the intersection of S2 and
Sk, where, for j = 2, k, Sj is a copy ofS∗ that is scaled by a factor 2

λj
over the γ-axis.

8.3 The Experimental Setup

We test the theoretical results presented in the previous section in an experimental
setup of time-delayed coupled Hindmarsh-Rose neurons. The Hindmarsh-Rose
model [51] is given by the following set of ordinary differential equations:

żi,1 = 1− 5y2
i − zi,1,

żi,2 = 0.005(4(yi + 1.6180)− zi,2),

ẏi = −y3
i + 3y2

i + zi,1 − zi,2 + E + ui,

(8.4)

where yi ∈ R is the output of the ith neuron, which represents its membrane
potential, zi := col(zi,1, zi,2) ∈ R2 are the internal states, ui ∈ R is an exter-
nal input channel, which can be used to communicate with other neurons, and
E ∈ R is a constant parameter. For zero external input, ui ≡ 0, depending on
the value of parameter E the membrane potential of the Hindmarsh-Rose neuron
is either constant or spiking, i.e., a rapid rise and fall of the membrane poten-
tial, or bursting, where the neuron produces a number of spikes followed by a
period of quiescence. We set E = 3.3, for which the Hindmarsh-Rose neuron
operates in a chaotic bursting mode. As it is proved in [130, 136], independently
of the value of E, the Hindmarsh-Rose neuron is strictly C1-semipassive with a
quadratic storage function V (zi, yi) and the functionH(zi, yi) being fourth-degree
in yi and quadratic in zi. Using Theorem B.4 and Theorem B.5 in Appendix B, it
can be shown that for every finite coupling strength γ, the solutions of the cou-
pled Hindmarsh-Rose neurons are uniformly ultimately bounded. Moreover, as
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proved in [130, 136], the internal dynamics of the Hindmarsh-Rose neuron satis-
fies condition (H8.2) with matrix P = I2, which implies that its internal dynamics
is an exponentially convergent system with input yi. Thus, the Hindmarsh-Rose
neuron satisfies all assumptions at the level of the systems, and we conclude that
synchronization and partial synchronization in networks of time-delayed coupled
Hindmarsh-Rose neurons should happenwhen the coupling strength γ and time-
delay τ are chosen appropriately.

8.3.1 A circuit realization of the Hindmarsh-Rose neuron model

An electronic circuit board with off-the-shelf components (resistors, capacitors,
operational amplifiers, and analog voltage multipliers) is designed to mimic the
dynamics of the Hindmarsh-Rose neuron (8.4). To ensure that the signals zi,1, zi,2,
and yi are in the (linear) operating range of the components of the circuit board,
we redefine the variables t, zi,1, zi,2, and yi:

t 7→ 100t,

zi,1 7→ 1
5 (zi,1 + 4),

zi,2 7→ zi,2 − 6,

yi 7→ yi − 1,

and obtain 
żi,1 = 100(−y2

i − 2yi − zi,1),

żi,2 = 0.5(4yi + 4.472− zi,2),

ẏi = 100
(
− y3

i + 3yi − 8 + 5zi,1 − zi,2 + E + ui
)
.

(8.5)

Because the change of variables is linear and invertible, we conclude that (8.5) is
strictly C1-semi-passivity and its internal dynamics is exponentially convergent.
Figure 8.2(a) shows the electronic circuit board that implements the equations
(8.5). A detailed description of the circuit diagram can be found in [82]. Each state,
zi,1, zi,2, and yi can be measured as a voltage on one of the five
coaxial connectors shown in Figure 8.2(a) at the right-side of the circuit board.
The remaining two coaxial connectors are there to set the value of parameter E
and provide the circuit its input signal ui. Figure 8.3(a) shows the states zi,1, zi,2,
and yi of (8.5) obtained by numerical integration of the equations in Matlab R©,
and Figure 8.3(b) shows recorded states zi,1, zi,2, and yi of an electrical circuit
realization of equations (8.5). There is a good qualitative match of measured sig-
nals and those obtained though numerical integration. Both the circuits and the
mathematical model show irregular bursting behavior and the time-scales and
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(a) Electronic circuit realization of the Hindmarsh-
Rose neuron

(b) Coupling interface

Figure 8.2 The hardware.

amplitudes of the signals are nearly in the same range. In the remaining part of
this chapter, we only show the outputs yi of the Hindmarsh-Rose neurons. Recall
that because the internal dynamics are exponentially convergent, synchronized
outputs imply synchronized internal dynamics, and hence, synchronized states
xi := col(zi,1, zi,2, yi).

8.3.2 The coupling interface and data acquisition

The network topology and coupling functions (8.2) or (8.3) are specified in the
coupling interface depicted in Figure 8.2(b). This coupling interface allows us to
construct networks with up to sixteen Hindmarsh-Rose neurons. The input and
output channels of the Hindmarsh-Rose circuit boards are connected (via coaxial
cables) to the coupling interface, which samples the outputs yi of the connected
circuits (with 16 bit resolution over a range of −10 [V] to 10 [V]) and returns the
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Figure 8.3 Simulated solutions of (8.4) and recorded data of an electronic
Hindmarsh-Rose circuit.

inputs ui (with 14 bit resolution over a range of −10 [V] to 10 [V]) according to
the network topology and coupling functions, which are specified in software
loaded to the heart of the coupling interface, a 210 [MHz]AtmelARM c© Thumb c©–
based AT91SAM9260 microcontroller. The coupling interface operates at a sam-
pling rate of approximately 40 [kHz]. The sampling and updating of the signals
happens simultaneously and themaximal throughput delay, which is equal for all
connected circuits and less than 80 [µs]. The data (time-traces) from the electronic
HR circuits is obtained using a National Instruments PCIe-6363 multifunction
data acquisition device with two BNC-2090A connector blocks. This data acqui-
sion setup can measure up to thirty-two analog inputs (voltage range −10 [V] to
10 [V], 1 MS/s, 16 bit resolution) and has four analog output channels (voltage
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range −10 [V] to 10 [V], 2.86 MS/s, 16 bit resolution). We only use one analog
output channel to specify E. The software that is used to acquire the data is Na-
tional Instruments LabVIEWTM 2009 running on a HP wx4600 workstation with
a 3.00 GHz Intel R© CoreTM2 Duo CPU and 4 GB ram with Microsoft R©Windows R©

XP Professional operating system. All data is plotted with Matlab R© from The
MathWorks, Inc.

8.4 Practical Synchronization ofCoupledHindmarsh-
Rose Circuits

Because of the inherent imperfections of the experimental setup, we can not expect
that differences between the outputs (and states) of circuits converge asympto-
tically to zero. It is necessary to allow for a mismatch between them, which,
of course, needs to be small enough in order to consider that the systems are
"practically synchronized".

Definition 8.7 (Practical synchronization). Consider k dynamical systems with
outputs yi ∈ Rm, i ∈ V = {1, 2, . . . , k}, defined on an interval [t0, t2). The k systems
are said to be practically synchronized with bound ε, if there is a t1(ε), t0 ≤ t1(ε) < t2,
such that |yi(t)− yj(t)| < ε for all i, j ∈ V and t ∈ [t1, t2).

For notational convenience, we fix the value of ε and refer to practical synchroniza-
tion with bound ε simply as practical synchronization. In all the following experi-
ments, we say that the circuits practically synchronize if the eventual difference
between the outputs does not exceed ε = 0.25 [V]. Although this value of ε looks
rather large, one has to realize that a small mismatch in the shapes or timing of the
spikes results in a relatively large synchronization error. Figure 8.4(a) shows prac-
tical synchronization of two circuits using the full delay couplingwith γ = 0.55[−]

and τ = 80 [µs] (the throughput delay). The outputs of the two systems are almost
indistinguishable with ε = 0.25 [V]. Figure 8.4(b) shows that the synchronization
error y1 − y2 is within the bound ε = 0.25 [V] and the errors are the largest when
the practically synchronized circuits produce their spikes. Figure 8.5 depicts the
practical synchronization regions of the two coupled systems for transmission
delay coupling (Figure 8.5(a)) and full delay coupling (Figure 8.5(b)), where we
define the practical synchronization region to be the set of all (γ, τ) for which the
coupled circuits practically synchronize with bound ε = 0.25 [V]. These practi-
cal synchronization regions are constructed by, for a fixed value of the time-delay
τ , increasing the coupling strength from 0 [-] to 10 [-] and recording the values
of γ for which the two coupled systems begin to practically synchronize and for
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Figure 8.4 Practical synchronization of two electronic HR circuits for γ = 0.55[−]

and τ = 80 [µs]. (a) Recorded time-traces of the outputs of the two
circuits. (b) Time-trace of the difference in output signals. The dashes
horizontal lines correspond to the bounds ±ε = ±0.25[V].

which practical synchronization is lost. These points are indicated by the stars
in Figures 8.5. The practical synchronization regions, the shaded area in Figure
8.5, are obtained through simple linear interpolation of the measured boundary
points (the stars). Results for γ > 10 [-] can not be presented because of hardware
limitations. For values of the coupling strength γ > 10, we have observed that
the coupling signals u1, u2 become saturated. The shape of the experimentally
determined synchronization regions is a reasonable but not perfect match with
the theoretical predictions of Theorem 8.1, which are schematically presented in
Figure 8.1. However, we see that the two circuits practically synchronize if the
coupling exceeds a certain threshold value. Moreover, for a fixed delay τ , an in-
crease of coupling strength results in loss of practical synchronization but practi-
cal synchronization is regained by lowering the value of the delay. There aremany
reasons why thematch between experiments and theory is not perfect. First of all,
our theoretical results are sufficient results, which may be too conservative. On
the other hand, in the experimental setting, the systems are not perfectly identi-
cal, signals are corrupted with noise and some additional errors are introduced
because of the sampling of the coupling interface. All these imperfections are not
taken into account in the theoretical framework. We emphasize once more that
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(a) (b)

Figure 8.5 Approximated practical synchronization regions (shaded area) for two
coupled HR circuits. The stars indicate the measured boundary points.
(a) Transmission delay coupling. (b) Full delay coupling.

transmission delay coupling is invasive, contrary to the full delay coupling, which
is non-invasive. Thus, the practically synchronized outputs of two full delay cou-
pled electronic Hindmarsh-Rose circuits look just like the ones depicted in Figure
8.4(a). For transmission delay coupled circuits the shape of the synchronized out-
puts changes when the values of γ and τ are changed. This is depicted in Figure
8.6, which shows experimental results of practically synchronized outputs of two
transmission delay coupled Hindmarsh-Rose circuits for γ = 2 [-] and τ = 2 [ms],
γ = 4 [-] and τ = 2 [ms], and γ = 2 [-] and τ = 4 [ms].

8.5 Practical Partial and Full Synchronization of
Coupled Hindmarsh-Rose Circuits

We continue with experiments in networks of Hindmarsh-Rose neurons that
interact through either transmission delay coupling or full delay coupling. In net-
workswithmore than two circuits, wemay encounter, at least in theory, the partial
synchronization phenomenon. Analogous to the definition of practical
synchronization we define practical partial synchronization:

Definition 8.8 (Practical partial synchronization). Consider a network of k dynamical
systems with outputs yi ∈ Rm, i ∈ V , defined on an interval [t0, t2). The network of
systems is said to practically partially synchronize with bound ε if there is a t1 = t1(ε),
t0 ≤ t1(ε) < t2, such that |yi(t)− yj(t)| < ε holds for all t ∈ [t1, t2) and at least two but
not all i, j ∈ V , i 6= j.
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(c) γ = 2 [-], τ = 4 [ms].

Figure 8.6 Trajectories of two practically synchronized transmission delay coupled
Hindmarsh-Rose circuits for different values of γ and τ .

As before, we fix ε = 0.25 [V] and refer to practical partial synchronization with
bound ε as practical partial synchronization. We present three experimental studies
on practical (partial) synchronization for:

1. The network shown in Figure 8.7 with four transmission delay coupled
Hindmarsh-Rose neurons.

2. The network shown in Figure 8.10 with four transmission delay coupled
Hindmarsh-Rose neurons.

3. The network shown in Figure 8.13 with ten full delay coupled Hindmarsh-Rose
neurons.
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Figure 8.7 The network topology for practical (partial) synchronization of
experiment 1.

8.5.1 Experiment 1

Consider four transmission delay coupled HR circuits with the network topology
depicted in Figure 8.7. This network topology is taken from [134], where it is
shown, theoretically and using numerical simulations, that this network exhibits
partial synchronization. It is easy to verify that each permutation matrix

Π1 =

(
J 0

0 J

)
, Π2 =

(
0 I2
I2 0

)
, Π3 =

(
0 J
J 0

)
,

where 0 = 02×2 and

J =

(
0 1

1 0

)
,

commutes with the weighted adjacency matrix

A =
1

3


0 1 0 2

1 0 2 0

0 2 0 1

2 0 1 0

 .

By Lemma 8.3, P(Π1), P(Π2), and P(Π3) are partial synchronization manifolds.
The manifold P(Π1) is associated with partial synchronization of neurons 1 and
2, respectively, neurons 3 and 4, manifold P(Π2) corresponds to partial synchro-
nization of neurons 1 and 3, respectively, neurons 2 and 4. Finally, manifoldP(Π3)

defines partial synchronization of neurons 1 and 4, respectively, neurons 2 and
3. It is shown in [134], Section 7A, that the conditions for a (subset of) P(Π1) to
be stable coincide with the conditions for full synchronization. One can verify
this using Proposition B.6 in the Appendix B. It can be shown, using numerical



136 8 Synchronization in Networks of Hindmarsh-Rose Neurons: Experimental Results

Figure 8.8 Practical partial synchronization region for four transmission delay cou-
pledHR circuitswith network structure shown in Figure 8.7. Crosses (∗)
indicate measured boundary points of a practical (partial) synchroniza-
tion regimes. I. Practical synchronization, II. Practical partial synchro-
nization of circuits 1 and 4, respectively, circuits 2 and 3, III. Practical
partial synchronization of circuits 1 and 3, respectively, circuits 2 and 4.

simulations, that there exist values for the coupling strength γ and time-delay τ
forwhichP(Π2) andP(Π3) are stablewithout having full synchronization. As it is
shown below, our experiments confirm the theoretical and numerical
findings presented in [134]. We have explored the (γ, τ)-parameter space to iden-
tify the regions of practical synchronization and practical partial synchronization.
Figure 8.8 depicts the results of these experiments. It is worth mentioning that
our theoretical results imply the existence of a constant χ∗ > 0 such that circuits
1 and 3, respectively, circuits 2 and 4 partially synchronize for γτ ≤ χ∗ (provided
γ ≥ γ∗), but, as we did not encounter a loss of practical partial synchronization
when τ was increased, our experiments seem to imply that this bound is not sharp.
Figure 8.9 shows outputs of the practically partially synchronized Hindmarsh-
Rose circuits for different values of γ and τ . The top panel of Figure 8.9(a) shows
practically partially synchronized outputs of the Hindmarsh-Rose circuits for
γ = 1.2 [-], τ = 2 [ms] (parameters in region II in Figure 8.8). The four smaller
plots provide an alternative graphical representation of practical partial synchro-
nization. In these a plots, we see that two circuits i and j are practically synchro-
nized if their outputs yi [V] and yj [V] are within an 2ε-band centered around the
diagonal in the (yi, yj)-plane. The diagonal and the bounds for practical synchro-
nization are indicated by the dotted and dashed lines, respectively. These four
plots show clearly the practical partial synchronization of circuits 1 and 4, respec-
tively, circuits 2 and 3. Figure 8.9(b) shows the outputs of the four transmission
delay coupled Hindmarsh-Rose circuits for γ = 4 [-] and τ = 8 [ms] (parameters
in region III in Figure 8.8), for which circuits 1 and 3, respectively, circuits 2 and 4

practically partially synchronize.
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Figure 8.9 Outputs of practically partially synchronized Hindmarsh-Rose circuits.
(a) Practical partial synchronization of circuits 1 and 4, respectively, 2

and 3 for γ = 1.2 [-] and τ = 2 [ms]. (b) Practical partial synchronization
of circuits 1 and 3, respectively, 2 and 4 for γ = 4 [-] and τ = 8 [ms].

8.5.2 Experiment 2

Consider four Hindmarsh-Rose circuits with full delay coupling on the network
depicted in Figure 8.10. The Laplacian matrix is given by

L =
1

3


3 −1 −1 −1

−1 2 −1 0

−1 −1 2 0

−1 0 0 1

 .
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Figure 8.10 The network topology for practical (partial) synchronization
experiment 2. All edges have weight 1

3
.

Figure 8.11 Practical partial synchronization region for four full delay coupled
Hindmarsh-Rose circuits with network structure shown in Figure
8.10. Crosses (∗) indicate measured boundary points of the practical
(partial) synchronization regimes. (I) Practical full synchronization,
(II) Practical partial synchronization of circuits 2 and 3.

The permutation matrix

Π =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ,

commutes with L; hence, by Lemma 8.3, P(Π) is a partial synchronization mani-
fold that corresponds to partial synchronization of circuits 2 and 3. In Section 6 of
[134], Example 3 shows that this partial synchronization manifold can be asymp-
totically stable for values of the coupling strength and time-delay that do not co-
incide with those for which we find full synchronization. One can verify this
using Proposition B.7 in Appendix B. The experimentally determined practical
(partial) synchronization region for the four full delay coupled Hindmarsh-Rose
circuits is shown in Figure 8.11. Figure 8.12 shows output trajectories of the par-
tially practically synchronized Hindmarsh-Rose circuits for γ = 3 [-] and τ = 1.5

[ms]. Note that the parameter region that corresponds to practical full synchro-
nization of the network is enclosed in the parameter region for partial practical
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Figure 8.12 Outputs of partially practically synchronized full delay coupled
Hindmarsh-Rose circuits 2 and 3 for γ = 3 [-] and τ = 1.5 [ms] (region
II in Figure 8.11).

synchronization of circuits 2 and 3, which is theoretically predicted in [134].

8.5.3 Experiment 3

Consider ten full delay coupled Hindmarsh-Rose circuits on the network
topology shown in Figure 8.13. This network topology, which we refer to as the
“sandglass network”, is introduced in [82] to study partial synchronization of
delay-free coupled Hindmarsh-Rose neurons. The Laplacian matrix of the
sandglass network is

L =
1

2



2 −1 0 −1 0 0 0 0 0 0

−1 4 −1 −1 −1 0 0 0 0 0

0 −1 2 0 −1 0 0 0 0 0

0 −1 0 5 −1 −1 −1 0 0 0

0 −1 −1 −1 5 −1 −1 0 0 0

0 0 0 −1 −1 5 −1 −1 −1 0

0 0 0 −1 −1 −1 5 0 −1 −1

0 0 0 0 0 −1 0 2 −1 0

0 0 0 0 0 −1 −1 −1 4 −1

0 0 0 0 0 0 −1 0 −1 2


.
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Figure 8.13 The sandglass network topology for (partial) practical synchronization
experiment 3. All edges have weight 1

2
.

We remark that maxi
∑
j∈Ni aij = 5

2 , which violates our assumption
maxi

∑
j∈Ni aij = 1. This violation is done for practical purposes; when

maxi
∑
j∈Ni aij = 1, the coupling strength that is required for practical synchro-

nization of all circuits would already be close to the maximal coupling strength
in the experimental setup (γ = 10 [-]). Moreover, from a theoretical point of view,
the factor 5

2 could be absorbed in the coupling strength γ (by re-defining γ); hence,
violating the assumption of maxi

∑
j∈Ni aij = 1 has no consequences for our

theoretical results. Of course, we have to redefine γmax, γ̄, χ̄, γ′ and χ′

accordingly. The sandglass network contains a lot of partial synchronization
manifolds. The permutation matrices that correspond to

• swapping of 1 and 8, 2 and 9, 3 and 10, 4 and 6, 5 and 7;

• swapping of 1 and 10, 2 and 9, 3 and 8, 4 and 7, 5 and 6;

• swapping 1 and 3 while keeping the others fixed;

• swapping 4 and 5 while keeping the others fixed;

• swapping 6 and 7 while keeping the others fixed;

• swapping 8 and 10 while keeping the others fixed;

and any combination of the latter four, e.g., simultaneous swapping of 1 and 3,
and 4 and 5, define partial synchronizationmanifolds, which can be verified using
Lemma 8.3. The Laplacian matrix of the sandglass network has eigenvalues

λ1 = 0, λ2 = 0.39, λ3 = λ4 = 0.88, λ5 = 1.5,

λ6 = 2.22, λ7 = 2.5, λ8 = λ9 = 3.11, λ10 = 3.37,
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with corresponding eigenvectors

µ1 = 110×1,

µ2 =
(
a2 b2 a2 c2 c2 −c2 −c2 −a2 −b2 −a2

)T
,

µ3 =
(
a3 0 −a3 b3 −b3 c3 −c3 d3 0 −d3

)T
,

µ4 =
(
a4 0 −a4 b4 −b4 c4 −c4 d4 0 −d4

)T
,

µ5 =
(
a5 0 a5 −a5 −a5 −a5 −a5 a5 0 a5

)T
,

µ6 =
(
a6 b6 a6 c6 c6 −c6 −c6 −a6 −b6 −a6

)T
,

µ7 =
(
a7 b7 a7 a7 a7 a7 a7 a7 b7 a7

)T
,

µ8 =
(
a8 0 −a8 b8 −b8 c8 −c8 d8 0 −d8

)T
,

µ9 =
(
a9 0 −a9 b9 −b9 c9 −c9 d9 0 −d9

)T
,

µ10 =
(
a10 b10 a10 c10 c10 −c10 −c10 −a10 −b10 −a10

)T
,

with a2, a3, . . . , b2, b3, . . . , c2, c3 . . . , d2, . . . , d10, being non-zero constants. The
values of these constants are, of course, not arbitrary, but for our purpose there
is no need to specify them. We only need to look at the repeating patterns in the
eigenvectors. One observes that the linear span of eigenvectors µ1, µ2, µ5, µ6, µ7

and µ10 is the set ker(I −Π) with permutation matrix

Π =



0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0


.

Thus, ker(I − Π) is an invariant subspace of L such that, by Lemma 8.3, P(Π) is
a partial synchronization manifold. Moreover, Π and L commute and the eigen-
vectors µ3, µ4, µ8, µ9 ∈ range(I −Π) such that, by Proposition B.7 in Appendix B,
we may find partial synchronization of neurons 1 and 3, 4 and 5, 6 and 7, and 8

and 10. A repetition of this procedure shows that this is the only mode of par-
tial synchronization that may be observed in this network. Figure 8.14 shows
the experimentally determined practical (partial) synchronization region for the
sandglass network. We see that circuits 1 and 3, respectively, 4 and 5, respec-
tively, 6 and 7, respectively, 8 and 10 practically partially synchronize when the
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Figure 8.14 Practical partial synchronization region for ten full delay coupled
Hindmarsh-Rose circuits on the sandglass network. Crosses
(∗) indicate measured boundary points of the practical (partial)
synchronization regimes. (I) practical full synchronization; (II)
practical partial synchronization of circuits 1 and 3, respectively, 4 and
5, respectively, 6 and 7, respectively, 8 and 10.

coupling is not strong enough to achieve practical full synchronization and in
case the coupling is strong enough for practical full synchronization but the time-
delay is too large. The shape of this practical partial synchronization region could
have been expected because the smallest (largest) eigenvalue of L with eigenvec-
tor in range(I −Π) is larger (smaller) than the smallest (largest) eigenvalue of L.
Output trajectories of the ten full delay coupled Hindmarsh-Rose circuits with
γ = 2 [-] and τ = 1 [ms] are depicted in Figure 8.15. In particular, Figure 8.15(a)
shows clearly that circuits 1 and 3, respectively, 4 and 5, respectively, 6 and 7,
respectively, 8 and 10 practically synchronize. Figure 8.15(b) confirms that only
these circuits practically partially synchronize. Since the Laplacian matrix L of
the sandglass network is symmetric, the practical full synchronization region of
full delay coupled Hindmarsh-Rose circuits could have been predicted with the
help of Theorem 8.6, from the practical synchronization region S∗ shown in Figu-
re 8.5(b) for two coupled neurons. Indeed, as shown in Figure 8.16, the inter-
section of two scaled copies S2 and S10 of that practical synchronization region,
i.e. S2 is a copy of S∗ scaled by a factor 2

λ2
= 2

0.39 over the γ-axis and S10 is an
other copy of S∗ scaled by the factor 2

λ10
= 2

3.3733 over the γ-axis, gives a reason-
able accurate prediction of the practical full synchronization region for full delay
coupled Hindmarsh-Rose circuits on the sandglass network.
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8.6 Conclusions

We have reviewed a number of theoretical results on synchronization and
partial synchronization in networks of systems that interact via diffusive time-
delayed couplings [130, 132, 133]. The predictive value of these theoretical
results in practical situations is tested using an experimental setup built around
electronic circuit board realizations of networks of Hindmarsh-Rose neurons. To
account for the inevitable dissimilarities in the electronic Hindmarsh-Rose
circuits, we have introduced the notions of practical synchronization and practical
partial synchronization, which state that the circuits may be called (partially) syn-
chronized if, after some transient time, the differences between their outputs are
sufficiently small on a long finite time interval. In a first set of experiments, we
have determined the practical synchronization regions for two Hindmarsh-Rose
circuits with transmission delay coupling and full delay coupling. In a next set of
experiments, we investigated full practical synchronization and partial practical
synchronization in networks of Hindmarsh-Rose circuits with transmission delay
coupling or full delay coupling. The first two experiments, in this set, used the
settings of the numerical studies presented in [134]. The sandglass network topo-
logy of the third experiment was introduced in [82]. Lastly, we successfully
applied the theory presented in [130] to construct the full practical synchroniza-
tion region in the sandglass network of full delay coupled Hindmarsh-Rose
circuits from the practical synchronization region of two full delay coupled
Hindmarsh-Rose circuits. These experimental results indicate that the theoretical
results presented in [130, 132, 133], which are derived for networks of noise-free
identical systems, can be successfully applied to real-world applications.
However, we have also found that these results are not always sharp (see
Experiment 1 in Section 8.5). We conclude that our theoretical results can pre-
dict network synchronization reasonably well in a qualitative sense, but its predic-
tive power at a quantitative level may be rather poor. This is because the theory is
essentially about the existence of (partial) synchronization in time-delayed cou-
pled networks. Practical applications often require constructive methods that
allow for precise computations of the network parameters (coupling strength γ
and time-delay τ ) for given dynamical systems. The estimates that are computed
from the proofs of the results are often conservative. Moreover, although the
theory predicts the experimental observations in most cases quite well, a theory
that would give us formal predictions for (practical) synchronization in networks
of systems that have mismatches and operate under noisy conditions is yet to be
developed.
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(a)

(b)

Figure 8.15 Outputs of practically partially synchronized full delay coupled
Hindmarsh-Rose circuits for γ = 2 [-] and τ = 1 [ms] (region II in
Figure 8.14).
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(a)

(b)

Figure 8.16 Construction of the practical full synchronization region for the sand-
glass network. (a) The scaled copies S2 and S10 of the practical syn-
chronization region S∗ shown in Figure 8.5(b) (light shade), their in-
tersection S2 ∩ S10 (dark shade), and the (boundary of the) practical
full synchronization region for the sandglass network (∗). (b) Zoomed
version of (a).



146 8 Synchronization in Networks of Hindmarsh-Rose Neurons: Experimental Results



Chapter 9

Conclusions and
Recommendations

Abstract. The main contributions and results of this thesis are summarized in this chapter.
Furthermore, some recommendations for future research directions are provided in the
last section.

9.1 Conclusions

In [104, 108], the authors derive sufficient conditions for synchronization in
networks of diffusively coupled semipassive systems. In this thesis, using the
semipassivity-based framework introduced in [104], we have studied cases where
the theory presented in [104, 108] cannot be used to conclude synchronization of
the coupled systems. We have proposed different classes of couplings (both static
and dynamic) to solve some particular problems of controlled synchronization.
Particularly, we have addressed two cases. Firstly, the case when the semipassive
(passive) outputs are not available for feedback has been studied. If the
measurable outputs are different state functions which do not have the desired
properties, namely, semipassivity (passivity) and exponentially convergent
internal dynamics (detectability), then the results presented in [104] cannot be
applied. We have proposed observer-based couplings to solve this issue. The
observer must reconstruct the semipassive (passive) outputs from measurements
of the available outputs. Then, using these estimated semipassive (passive)
outputs, we interconnect the systems. Secondly, we have studied the possibility
of increasing robustness against network-induced delays of the coupled systems
by including some dynamics in the couplings. We have proposed predictor-based
couplings that, on the one hand, predict the future values of the semipassive out-

147
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puts to compensate for the network-induced delays and, on the other hand, inter-
connect the systems through these time-ahead estimated signals.

In Chapter 2, using the passivity and detectability properties of the studied
linear time-invariant systems, sufficient conditions for synchronization and
boundedness of the solutions of the coupled systems interconnected through
observer-based diffusive time-delayed couplings have been derived. It has been
shown that synchronization can be achieved if the coupling strength γ is
sufficiently large, the product τγ of the time-delay and the coupling strength is
sufficiently small, and the origin of the estimation error dynamics is
asymptotically stable. We have also derived synchronization conditions in the
case when the systems are coupled through diffusive static time-delayed couplings.

In Chapter 3, we extend some of the results of Chapter 2 to the nonlinear case.
Sufficient conditions for network synchronization and boundedness of the
solutions of coupled semipassive systems interconnected through observer-based
diffusive couplings have been derived. Such couplings are constructed by
combining nonlinear observers and output interconnection terms. It has been
shown that synchronization can be achieved if the coupling strength γ is
sufficiently large and the rate of convergence of the observer is sufficiently fast.
In general, it is not easy to find a nonlinear observer such that the assumptions
of Chapter 3 are satisfied. However, the aim of Chapter 3 is not to give a design
method for the observer dynamics but to provide sufficient conditions for network
synchronization when the observer is given.

In Chapter 4, an observer design method for the class of systems under study
(semipassive systems with exponentially convergent internal dynamics) is
provided. Wehave developed a general tool for constructing twodifferent types of
diffusive dynamic time-delayed couplingsusing ideas of immersion and invariance (I&I).
Sufficient conditions on the systems to be interconnected, the network topology,
the observer dynamics, and the time-delay that guarantee (global) state
synchronization and boundedness of the solutions of the coupled systems have
been derived. We remark that the observer dynamics is assumed to be
independent of the time-delay, i.e., the measurable outputs are not subject to
time-delay and the delay in the observer-based couplings is only induced when
the estimated semipassive outputs are transmitted. Under this assumption, it is
possible to maintain a delay-free observer structure while analyzing the effect of
transmission delays in the synchronous behavior.

In Chapter 5, we have presented a methodology for studying the possible
emergence of partial synchronization in networks of semipassive systems
interconnected through observer-based diffusive dynamic couplings. It has been
shown that symmetries in the network define linear invariant manifolds, which,
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when being attracting, define modes of partial synchronization. Sufficient
conditions that guarantee (global) partial synchronization have been derived.

In Chapter 6, we have derived an extension to the work presented in [56] for
constructing nonlinear observers in the case when the output measurements are
corrupted with time-delays. Following the framework proposed in [56], we have
developed a general methodology which relies on rendering attractive an
appropriately selected invariant manifold in the extended state space (the union
of the state spaces of the system and the observer). An implicit description of
the observer dynamics has been provided in terms of two mappings which must
be selected to render the origin of the estimation error dynamics asymptotically
stable. This stabilization problem may be difficult to solve, since in general, it
relies on the solution of a set of PDEs. However, as shown in the examples, in
some cases of practical interest these equations turn out to be solvable. The tools
given in Chapter 6 may be directly used to construct more general versions of
the observer-based couplings proposed in Chapter 4, i.e., with these techniques,
we may also consider time-delays at the level of the observer and not only when
transmitting the estimated semipassive outputs. However, this case is not
analyzed here and is left for future research.

In Chapter 7 (and in Chapter 2 for the linear case), we have proposed predictor-
based dynamic couplings which may enhance robustness against time-delays of
the interconnected systems, i.e., these couplings may be capable of increasing the
amount of time-delay that can be induced to the systems without compromising
the synchronous behavior. Using the notion of semipassivity (passivity), we have
provided sufficient conditions which guarantee existence and boundedness of
the solutions of the coupled system. Sufficient conditions that guarantee (global)
state synchronization have also been derived. Additionally, we have provided a
local analysis to illustrate the "mechanism of action" behind our predictor-based
couplings. An illustrative simulation example that shows that indeed it is possible
to extend the synchronization regions with the proposed control scheme has been
presented. While the synchronization regions obtained through diffusive static
couplings are strongly influenced by the network topology, the synchronization
regions obtained with the predictor-based couplings are influenced by the topology
only for small coupling strength γ. As γ is increased the upper bounds of the
synchronization regions are completely determined by the predictor dynamics.

Finally, in Chapter 8, we have reviewed a number of theoretical results on synchro-
nization and partial synchronization in networks of systems that interact through
diffusive static time-delayed couplings [130, 132, 133]. The predictive value of
these theoretical results is tested in practical situations using an experimental
setup built around electronic circuit board realizations of networks ofHindmarsh-
Rose neurons. To account for the inevitable dissimilarities of the circuits, we
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have introduced the notions of practical synchronization and practical partial
synchronization, which state that the circuits may be called practically (partially)
synchronized if, after some transient time, the differences between their outputs is
sufficiently small on a long finite time interval. In a first set of experiments, we
have determined the practical synchronization regions for two Hindmarsh-Rose
circuits with transmission delay coupling and full delay coupling. In a next set
of experiments, we investigated full practical synchronization and partial
practical synchronization in networks of more than two Hindmarsh-Rose circuits
with transmission delay coupling or full delay coupling. Lastly, we have
successfully applied the theory presented in [130] to construct the full practi-
cal synchronization region in the sandglass network of full delay coupled Hind-
marsh-Rose circuits from the practical synchronization region of two full
delay coupled Hindmarsh-Rose circuits. These experimental results indicate that
the theoretical results presented in [130, 132, 133], which are derived for
networks of noise-free identical systems, can be successfully applied to real-world
applications.

9.2 Recommendations

Throughout this thesis, it has been assumed that the systems are identical, the
time-delays are constant, and the topology of the network is fixed. However, as
shown in Chapter 8, this setting is unrealistic in practical situations where the
systems cannot be expected to be perfectly identical. There may be mismatches in
the systems’ parameters and/or the signals exchanged among the systems could
be contaminated with noise. Moreover, communication losses may lead to time-
varying network topologies and the network-induceddelaysmay be time-varying,
e.g., due to shared communication networks. Therefore, a natural extension
would be to derive conditions for practical (partial) synchronization of diffusively
time-delayed coupled semipassive systems under the aforemention practical
issues. That is, sufficient conditions may be given on the systems with noise and
parametric uncertainties, the upper bounds of the time-varying delays, and the
time-varying topologies such that the differences between the states of the systems
converge to some compact invariant set in finite time. This set must be bounded
by a constant ε ∈ R>0 which has to be small enough to consider that the systems
are still synchronized. This kind of complete formal analysis of practical synchro-
nization is missing in the existing literature. Usually, only individual aspects of
of these practical issues are considered.
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Another recommendation for future work would be to study network synchro-
nization with prescribed performance. This means that the synchronization errors
should converge to a prespecified arbitrarily small compact set with predefined
convergence rate and exhibitingmaximumovershoots less than a sufficiently small
preassigned constant. The results presented in this thesis focus on asymptotic
synchronization of coupled semipassive systems. However, the transient behavior
of the synchronization errors is not taken into account. In some applications,
it may be required that the coupled systems fulfilled the aforementioned perfor-
mance specifications; then, designing coupling functions which are capable of
inducing synchronization with prescribed performance is certainly an interesting
line of research.

In Chapter 7, we have proposed predictor-based couplings to enhance
robustness against time-delays of the interconnected systems. In order to be
capable of constructing the proposed predictors, the time-delays must be
constant and known. Then, a direct extension would be to consider time-varying
delays and propose predictors which could be constructed using partial
information about these delays, e.g., the upper and lower bounds on both the
delays and their time-derivatives. Moreover, the proposed predictor dynamics
is a copy of an individual system dynamics driven by some correction term.
We construct the predictor in this way in order to take advantage of the stability
properties of the systems, namely, semipassivity and convergence. However, we
are certainly not restricted to this class of predictors. For instance, using the
immersion and invariance techniques presented in Chapter 6, we may be able to
construct predictors with more general structures. Then, if these I&I predictors
are designed appropriately, it may be possible to further extend the synchroniza-
tion regions presented in Chapter 7.

Throughout the thesis, we have proposed observer-based and predictor-based
couplings to solve some particular problems of controlled synchronization.
Nevertheless, to be able to construct such couplings, the dynamics of the systems
must be exactly known. This is unrealistic in practical situations, where theremay
be parametric uncertainties and/or unmodeled dynamics in the availablemodels.
In this situation, the best that can be done is to construct the couplings with the
known part of the dynamics. However, in this situation, we cannot expect that the
systems perfectly synchronize under the proposed control schemes. In the best
case, if the uncertainties are sufficiently small (in some appropriate sense), it can
be expected that the synchronization errors converge to some compact invariant
set. Then, an interesting extension would be to derive adaptive dynamic cou-
plings which compensate for the unmodeled dynamics in the systems and drive
the synchronization errors to the origin.
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Indeed, there are many more open problems and interesting applications related
to synchronization in networks of dynamical systems. Further research of this
exciting phenomenon is required to develop advanced techniques that allow us
to induce controlled synchronization in the most challenging scenarios.



Appendix A

Proofs

A.1 Proof of Lemma 2.2

First consider the nodes {v1, ..., vk1
}, i.e., the iSCC of the connected graph. Con-

sider the storage function

W1(x) =
1

2

k1∑
i=1

νix
T
i Pxi, (A.1)

where νi are the entries of the left eigenvector corresponding to the zero eigen-
value of the Laplacian matrix Ls, i.e. ν = (ν1, ..., νk1

)
T , νTLs = νT (Ds − Λs) = 0.

It follows that

Ẇ1 =

k1∑
i=1

νi(z
T
i ui +

1

2
xTi
(
PA+ATP

)
xi + ωTBT2 Pxi), (A.2)

consider the term
k1∑
i=1

νiz
T
i ui = γ

k1∑
i=1

∑
j∈Ei

νiaijz
T
i

(
zτj − zτi

)
, (A.3)

≤ γ
k1∑
i=1

∑
j∈Ei

νiaij

(
|zi|2 +

1

2
|zτi |2 +

1

2

∣∣zτj ∣∣2) .
Define the functional

W2(xt(θ)) =
γ

2

k1∑
i=1

∑
j∈Ei

νiaij

∫ 0

−τ
|zj(t+ s)|2 + |zi(t+ s)|2 ds, (A.4)
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with xt(θ) = x(t + θ) ∈ C, θ ∈ [−τ, 0], and C = [−τ, 0] → Rkn the Banach space
of continuous functions mapping the interval [−τ, 0] into Rkn. The norm of an
element xt(θ) ∈ C is defined as |xt(θ)| := supθ∈[−τ,0] |x(t + θ)|. Note the abuse of
notation, however, no confusion may arise. It follows that

Ẇ2(xt(θ)) =
γ

2

k1∑
i=1

∑
j∈Ei

νiaij

(
|zi|2 + |zj |2 − |zτi |2 −

∣∣zτj ∣∣2) . (A.5)

Finally, consider the functionalWs = W1 +W2, then

Ẇs ≤
k1∑
i=1

νi

(
1

2
xTi
(
PA+ATP

)
xi + ωTBT2 Pxi

)

+ γ

k1∑
i=1
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3

2
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,

≤
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(
1
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xTi
(
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)
xi + ωTBT2 Pxi

)
(A.6)

+ γ

k1∑
i=1

∑
j∈Ei

νiaij

(
2 |zi|2 +

1

2
|zj |2 −

1

2
|zi|2

)
,

since νT (Ds − Λs) = 0, it follows that

Ẇs ≤
k1∑
i=1

νi

(
1

2
xTi
(
PA+ATP + 4γd̄PB1B

T
1 P
)
xi

)

+

k1∑
i=1

νiω
TBT2 Pxi.

Consider now the nodes {vk1+1, ..., vk} and the positive semidefinite function

W3(x) =

k∑
i=k1+1

ν
¯
xTi Pxi, (A.7)

with ν
¯

= min(ν1, ..., νk1
), then

Ẇ3 =
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ν
¯
(zTi ui +

1

2
xTi
(
PA+ATP

)
xi + ωTBT2 Pxi), (A.8)
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consider the term
k∑

i=k1+1

zTi ui = −γzTc (F ⊗ Im) zτs − zTc (Lc ⊗ Im) zτc , (A.9)

≤ γ ‖F‖
2

(
|zc|2 + |zτs |2

)
+
γ ‖Lc‖

2

(
|zc|2 + |zτc |2

)
.

Define the functional

W4(xt(θ)) =
γν
¯
‖F‖
2

∫ 0

−τ
|zs(t+ s)|2 ds (A.10)

+
γν
¯
‖Lc‖
2

∫ 0

−τ
|zc(t+ s)|2 ds,

with xt(θ) = x(t+ θ) ∈ C and θ ∈ [−τ, 0]. It follows that

Ẇ4 =
γν
¯
‖F‖
2

(|zs|2 − |zτs |2) +
γν
¯
‖Lc‖
2

(|zc|2 − |zτc |2). (A.11)

Consider the functionalWc = W3 +W4, then

Ẇc ≤
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ν
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+ γν
¯

(‖Lc‖+ ‖F‖)
k∑
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xTi PB1B
T
1 Pxi.

Finally, consider the functionalW = Ws +Wc, it follows that

Ẇ ≤
k∑
i=1

ν
¯

(
1

2
xTi
(
PA+ATP + 2γāPB1B

T
1 P
)
xi

)
(A.13)

+

k∑
i=1

ν̄δ
∣∣BT2 Pxi∣∣ ,

with ν̄ = max(ν1, ..., νk1
) and ā = 2d̄ + ‖F‖ + ‖Lc‖. By assumption, there exist

γ, β ∈ R>0 such that

PA+ATP + βPB2B
T
2 P + 2γāCT2 C2 ≤ 0.
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Let γmax be the largest γ such that the above inequality is satisfied. Then,

Ẇ ≤
k∑
i=1

ν
¯

(
−β

2

∣∣BT2 Pxi∣∣2 +
ν̄δ

ν
¯

∣∣BT2 Pxi∣∣) , (A.14)

≤ −
k∑
i=1

ν
¯
∣∣BT2 Pxi∣∣ (β2 ||BT2 P || |xi| − ν̄δ

ν
¯

)
.

it follows that, Ẇ ≤ 0 for sufficiently large |x|. The functional W (·) is positive
definite and radially unbounded. Hence, there exists a positive constant c > 0

such that Ẇ (x) ≤ 0 for c and x satisfying W (x) ≥ c. Then, solutions starting
in the set {W (x) ≤ c} will remain there for all future time since Ẇ ≤ 0 on the
boundary W (x) = c. Moreover, for any x in the set {c < W (x) ≤ c∗} for some
finite constant c∗ > c > 0, the function Ẇ (x) is negative semidefinite, which
implies that, solutions starting in this set will be trapped in {c ≤ W (x) ≤ c∗} for
all future time. �

A.2 Proof of Lemma 2.11

The stacked closed loop system (2.1),(2.2),(2.24),(2.25) can be written in terms of
the estimation error ε = η − xτ as follows

ẋ = (Ik ⊗A)x− γ(L⊗B1C2)xτ − γ(L⊗B1C2)ε+ (1k ⊗B2)ω, (A.15)
ε̇ = (Ik ⊗ (A+HC1)) ε. (A.16)

The above system is the cascade of the closed-loop system (2.12) with an
exponentially stable estimation error ε. It follows that boundedness of (2.12) im-
plies boundedness of (A.15),(A.16) as long as the matrix (A + HC1) is Hurwitz;
therefore, (2.1),(2.2),(2.24),(2.25) possesses bounded solutions if inequality (2.13)
stated in Lemma 2.2 is satisfied. �

A.3 Proof of Lemma 2.14

The closed-loop stacked system (2.1),(2.3),(2.29),(2.30) can be written in terms of
the stacked prediction error ε = ζ − x as follows

ẋ = (Ik ⊗A)x− γ(L⊗B1C2)x− γ(L⊗B1C2)ε+ (1k ⊗B2)ω, (A.17)
ε̇ = (Ik ⊗A)ε+ (Ik ⊗K1C2)ετ , (A.18)
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which is the cascade of (2.12) with τ = 0 and exponentially stable prediction
error ε. Therefore, boundedness of (A.17) for ε = 0 implies boundedness of
(A.17),(A.18) as long as the roots of the characteristic equation (2.28) belong to
the open left half of the complex plane. Then, we only have to prove bounded-
ness of (A.17) for ε = 0 and τ = 0. First consider the nodes {v1, ..., vk1

}, i.e., the
iSCC of the connected graph. Consider the storage function
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1

2
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νix
T
i Pxi, (A.19)

where νi are the entries of the left eigenvector corresponding to the zero eigen-
value of the Laplacian matrix Ls, i.e., ν = (ν1, ..., νk1)

T , νTLs = νT (Ds − Λs) = 0.
It follows that
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Since νT (Ds − Λs) = 0, it follows that
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.

Consider now the nodes {vk1+1, ..., vk} and the positive semidefinite function

W2(x) =
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¯
xTi Pxi,

with ν
¯
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), then
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consider the term
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2
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It follows that
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Finally, consider the functionW = W1 +W2, it follows that

Ẇ ≤
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)
(A.25)

+

k∑
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ν̄δ
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with ν̄ = max(ν1, ..., νk1
) and ā = ‖F‖+ ‖Lc‖. Then, by assumption

Ẇ ≤
k∑
i=1

ν
¯

(
−β

2

∣∣BT2 Pxi∣∣2 +
ν̄δ

ν
¯

∣∣BT2 Pxi∣∣) , (A.26)

it follows that Ẇ ≤ 0 for sufficiently large |x|. Now, the result follows from the
same arguments presented in the proof of Lemma 2.2. �

A.4 Proof of Theorem 2.8

Boundedness of the solutions follows from Lemma 2.2. Define T ∈ Rk×k as

T =

(
1 0

1 −Ik−1

)
, (A.27)

with 1k−1 = col(1, ..., 1) of dimension k − 1. Introduce a new set of coordinates
z̄ = (T⊗Im)z and ζ̄ = (T⊗Ip)ζ. Define ez = col(z̄2, ..., z̄k) and eζ = col(ζ̄2, ..., ζ̄k).
Then, the synchronization error dynamics is given by

ėζ = (Ik−1 ⊗N1)eζ + (Ik−1 ⊗N2)ez, (A.28)
ėz = (Ik−1 ⊗M1)eζ + (Ik−1 ⊗M2)ez + ũ, (A.29)
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where ũ = col(u1 − u2, ..., u1 − uk), then

ũ(t) = −γ(L̃⊗ Im)ez(t− τ), (A.30)

with

TLT−1 =

(
0 ∗
0 L̃

)
.

The matrix L̃ ∈ R(k−1)×(k−1) has eigenvalues λ2, ..., λk ∈ C>0. Then, the closed
loop system (A.28),(A.29),(A.30) is given by

ėζ = (I ⊗N1)eζ + (I ⊗N2)ez, (A.31)
ėz = (I ⊗M1)eζ + (I ⊗M2)ez − γ(L̃⊗ Im)eτz . (A.32)

Using continuity properties of the solutions and Leibniz’s rule eτz can be written
as follows

eτz = ez −
∫ 0

−τ
ėz(t+ s)ds,

= ez − (I ⊗M1)

∫ 0

−τ
eζ(t+ s)− (I ⊗M2)

∫ 0

−τ
ez(t+ s)ds

+ γ(L̃⊗ Im)

∫ 0

−τ
ez(t+ s− τ)ds, (A.33)

it follows that

ėz(t) = (I ⊗M1)eζ + (I ⊗M2)ez − γ(L̃⊗ Im)ez (A.34)

+ γ

∫ 0

−τ
(L̃⊗M1)eζ(t+ s) + (L̃⊗M2)ez(t+ s)ds

− γ2(L̃2 ⊗ Im)

∫ 0

−τ
ez(t+ s− τ)ds.

By construction (−L̃) is a stable matrix. Under the detectability assumption of
the pair (A,C2), the coordinate transformation can be chosen such that N1 is a
Hurwitz matrix. Then, there exist unique solutions of the Lyapunov equations
(−L̃)Q+Q(−L̃)T = −2µIk−1 andN1R+RNT

1 = −2αIp for some positive definite
matrices R ∈ Rp×p, Q ∈ Rk−1×k−1 and some constants µ, α ∈ R>0. Consider the
following Lyapunov function

V (eζ , ez) =
1

2
eTζ (Ik−1 ⊗R)eζ +

1

2
eTz (Q⊗ Im)ez.
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It follows that

V̇ ≤ −α |eζ |2 − (µγ − ‖Q‖ ‖M2‖) |ez|2

+ (‖R‖ ‖N2‖+ ‖Q‖ ‖M1‖) |eζ | |ez|

+ γ ‖Q‖ ‖M1‖ ˜‖L‖ |ez|
∫ 0

−τ
|eζ(t+ s)| ds

+ γ ‖Q‖ ‖M2‖ ˜‖L‖ |ez|
∫ 0

−τ
|ez(t+ s)| ds

+ γ2 ˜‖L‖2 |ez|
∫ 0

−τ
|ez(t+ s− τ)| ds. (A.35)

Let V (eζ , ez) be a Lyapunov-Razumikhin function such that if

κ2V (eζ , ez) < V (eζ(t+ θ), ez(t+ θ)),

for θ ∈ [−2τ, 0] and some κ > 1 (see, for instance [48], for details about Lyapunov-
Razumikhin functions), then

V̇ ≤ −α |eζ |2 (A.36)

+ (‖Q‖ ‖M1‖ (1 + κγτ ˜‖L‖) + ‖R‖ ‖N2‖) |eζ | |ez|

+ (‖Q‖ ‖M2‖ (1 + κγτ ˜‖L‖) + κγ2τ ˜‖L‖2 − µγ) |ez|2 .

Define χ = γτ , it is easy to verify that (A.36) is negative definite if

γ > γ′ :=
(‖R‖ ‖N2‖+ ‖Q‖ ‖M1‖)2

4µα
+
‖Q‖ ‖M2‖

µ
, (A.37)

and

(γ − γ′)
κ ˜‖L‖ ‖Q‖

>

(
‖M2‖+

˜‖L‖
‖Q‖γ

)
χ

+

(‖M1‖ (‖R‖ ‖N2‖+ ‖Q‖ ‖M1‖)
2αµ

)
χ

+
κ ˜‖L‖ ‖Q‖ ‖M1‖2

4αµ
χ2.

Hence, it can be concluded that (A.36) is negative definite if γ is sufficiently large
and χ is sufficiently small. Thus, there exist a constant χ′ such that (A.36) is nega-
tive definite for γ > γ′ and γτ < χ′. Then, ultimate boundedness of the solutions
and the Lyapunov-Razumikhin theorem [48] implies that the set {eζ = 0, ez = 0}
is a global attractor for γ > γ′ and γτ < χ′. �
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A.5 Proof of Theorem 2.12

Boundedness of the solutions follows from Lemma 2.11. The closed-loop stacked
system (2.1),(2.2),(2.24),(2.25) can be written in terms of synchronization errors
eζ , ez (with eζ and ez as in the proof of Theorem 2.8), and the estimation error
eε = col(ε1 − ε2, ..., ε1 − εk) as follows

ėζ = (I ⊗N1)eζ + (Ik−1 ⊗N2)ez, (A.38)
ėz = (I ⊗M1)eζ + (I ⊗M2)ez − γ(L̃⊗ Im)eτz − γ(L̃⊗ C2)eε, (A.39)
ėε = (I ⊗ (A+HC1)) eε, (A.40)

which is the cascade of the closed-loop system (A.31),(A.32) with an exponen-
tially stable estimation error eε. Then, using Theorem 2.8, it can be concluded that
exponential stability of (A.31),(A.32) implies exponential stability of (A.38)-(A.40)
as long as the matrixA+HC1 is Hurwitz, γ > γ′, and γτ < χ′ with γ′ and χ′ as in
the proof of Theorem 2.8. �

A.6 Proof of Theorem 2.15

Ultimate boundedness of the solutions follows fromLemma 2.14. The closed-loop
stacked system (2.1),(2.3),(2.29),(2.30) can be written in terms of synchronization
errors eζ , ez (with eζ and ez as in the proof of Theorem 2.8), and the prediction
error eε = col(ε1 − ε2, ..., ε1 − εk) as follows

ėζ = (I ⊗N1)eζ + (I ⊗N2)ez, (A.41)
ėz = (I ⊗M1)eζ + (I ⊗M2)ez − γ(L̃⊗ Im)ez − γ(L̃⊗ C2)eε, (A.42)
ėε = (I ⊗A) eε + (I ⊗K1C2) eτε , (A.43)

which is the cascade of (A.31),(A.32) with τ = 0 and an exponentially stable
prediction error eε. Therefore, exponential stability of (A.31),(A.32) for τ = 0

and eε = 0 implies asymptotic stability of (A.41),(A.42),(A.43) as long as (A.43)
is asymptotically stable. Then, we only have to prove the asymptotic stability of
(A.43). Using Leibniz’s rule, the error dynamics (A.43) can be written as

ėε = (I ⊗A+K1C2) eε − (I ⊗K1C2A)

∫ 0

−τ
eε(t+ s)ds

−
(
I ⊗ (K1C2)

2
)∫ 0

−τ
eε(t+ s− τ)ds. (A.44)
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Under the detectability assumption of the pair (A,C2), there existsmatrixK1 such
that A + K1C2 is Hurwitz. Then, there exists a unique solution of the Lyapunov
equation (A+K1C2)G+G(A+K1C2)T = −2κIn for some positive definitematrix
G ∈ Rn×n and somepositive constantκ ∈ R>0. Consider the following Lyapunov
function

V (eε) =
1

2
eTε (Ik−1 ⊗G)eε,

then

V̇ ≤ −κ |eε|2 + ‖G‖ ‖K1‖ ‖C2‖ ‖A‖ |eε|
∫ 0

−τ
|eε(t+ s)| ds

+ ‖G‖ ‖K1‖2 ‖C2‖2 |eε|
∫ 0

−τ
|eε(t+ s− τ)| ds. (A.45)

Let V (eε) be a Lyapunov-Razumikhin function such that if

κ2eε(t)
T (Ik−1 ⊗G)eε(t) < eTε (t+ θ)(Ik−1 ⊗G)eε(t+ θ),

for θ ∈ [−2τ, 0] and some κ > 1, then

V̇ (eε) ≤ −
(
κ − τκc1 ‖G‖ ‖A‖ − τκc21 ‖G‖

)
|eε|2 (A.46)

with c1 = ‖K1‖ ‖C2‖. Straightforward computations show that

τ < τ ′ :=
κ

κc1 (‖A‖+ c1)
, (A.47)

implies that V̇ (eε) ≤ −σ |eε|2 for some σ > 0. Which proves the asymptotic sta-
bility of the set eε = 0. Therefore, for τ < τ ′ and γ > γ′ with γ′ as in (A.37), all the
systems asymptotically synchronize. �

A.7 Proof of Lemma 3.4

By assumption, each systems is strictly C1-semipassive with radially unbounded
function V (xi). Consider the functionW1 ∈ C1(Rkn,R≥0) defined as

W1(xi) =

k∑
i=1

νiV (xi), (A.48)

where νi are the entries of the left eigenvector corresponding to the zero eigen-
value of the Laplacian matrix L, i.e., ν = (ν1, ..., νk)

T and νTL = νT (D −A) = 0.
Since the communication graph is assumed to be strongly connected, it follows
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that all the entries νi of the left eigenvector ν are strictly positive [113, 129]. Then,
by assumption (H3.4)

Ẇ1(xi) ≤
k∑
i=1

νiz
T
i ui − νiH(xi). (A.49)

Consider the term
k∑
i=1

νiz
T
i ui = γ

k∑
i=1

∑
j∈Ei

νiaijz
T
i (ẑj − ẑi). (A.50)

The observation error (3.11) is given by

εi = ẑi − zi → ẑi = εi + zi, (A.51)

substitution of the righthand side of (A.51) in (A.50) yields

k∑
i=1

νiz
T
i ui = γ

k∑
i=1

∑
j∈Ei

νiaijz
T
i (zj − zi) + γ

k∑
i=1

∑
j∈Ei

νiaijz
T
i (εj − εi). (A.52)

Using Young’s inequality, we can rewrite (A.52) as follows

k∑
i=1

νiz
T
i ui ≤

γ

2

k∑
i=1

∑
j∈Ei

νiaij

(
|zj |2 − |zi|2

)
(A.53)

+
γ

2

k∑
i=1

∑
j∈Ei

νiaij

(
2 |zi|2 + |εi|2 + |εj |2

)
.

Since νT (D −A) = 0, it follows that

k∑
i=1

νiz
T
i ui ≤

γ

2

k∑
i=1

∑
j∈Ei

νiaij

(
2 |zi|2 + |εi|2 + |εj |2

)
. (A.54)

By assumption (H3.3), the origin of the estimation error dynamics (3.13) is uni-
formly asymptotically stable with radially unbounded Lyapunov function V0(εi)

such that (3.15) is satisfied. Consider the functionW2 ∈ C1(Rkp,R>0) defined as

W2(εi) =

k∑
i=1

1 +
γ

κ

∑
j∈Ei

νiaij

V0(εi), (A.55)

it follows that

Ẇ2(εi) ≤ −
k∑
i=1

γ∑
j∈Ei

νiaij |εi|2 + κ |εi|2
 . (A.56)
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Finally, define the function

W (xi, εi) = W1(xi) +W2(εi), (A.57)

combining the previous results and after some straightforward computations yields

Ẇ ≤ γ

2

k∑
i=1

∑
j∈Ei

νiaij

(
2 |zi|2 + |εj |2 − |εi|2

)
−

k∑
i=1

νiH(xi)− κ
k∑
i=1

|εi|2 ,

since νT (D −A) = 0, then

Ẇ ≤ −
k∑
i=1

νi

(
H(xi)− γdi |zi|2 + κ |εi|2

)
, (A.58)

it follows that Ẇ < 0 for sufficiently large |ς|with ς = col(x1, ..., xk, ε1, ..., εk) and
κ > 0. The function W is positive definite and radially unbounded by construc-
tion. Hence, there exists a constant σ > 0 such that Ẇ (ς) < 0 for σ and ς satisfying
W (ς) ≥ σ. Then, solutions starting in the set {W (ς) ≤ σ} will remain there for
all future time since Ẇ is negative on the boundary W (ς) = σ. Moreover, for
any ς in the set {W (ς) ≥ σ∗} with σ∗ > σ, the function Ẇ (ς) is negative, which
shows that, in this set, W (ς) will decrease monotonically until the solutions en-
ter the set {W (ς) ≤ σ} again. Therefore, the solutions of the closed-loop system
(3.1),(3.2),(3.14) exist and are ultimately bounded for all γ < γmax and κ > 0. �

A.8 Proof of Theorem 3.5

The existence and uniqueness of the solutions of the coupled systems follows from
smoothness of the righthand side of the closed-loop system. By Lemma 3.4, the
solutions are ultimately bounded for all t ≥ 0, then

lim
t→∞

sup |zi(t)| ≤ Bz,
lim
t→∞

sup |ζi(t)| ≤ Bζ , (A.59)

lim
t→∞

sup |εi(t)| ≤ Bε,

for some finite constants Bz,Bζ ,Bε ∈ R>0. Let ζ = col(ζ1, ζ2, ..., ζk) ∈ Rk(n−m)

and ε = col(ε1, ε2, ..., εk) ∈ Rkm. DefineM ∈ Rk×k as

M :=

(
1 01×(k−1)

1(k−1)×1 −Ik−1

)
. (A.60)
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Introduce the new coordinates z̄ := (M ⊗ Im)z, ζ̄ := (M ⊗ In−m)ζ, and
ε̄ = (M ⊗ Im)ε. Notice that z̄1 = z1, z̄2 = z1 − z2, . . . , z̄k = z1 − zk,
ζ̄1 = ζ1, ζ̄2 = ζ1 − ζ2, . . . , ζ̄k = ζ1 − ζk, and ε̄1 = ε1, ε̄2 = ε1 − ε2, . . . , ε̄k = ε1 − εk.
Define z̃ = col(z̄2, ..., z̄k), ζ̃ = col(ζ̄2, ..., ζ̄k), and ε̃ = col(ε̄2, ..., ε̄k). Note that
z̃ = ζ̃ = 0 implies that the systems synchronize. Assumptions (H3.3) and (H3.5)
and Proposition 3.2 imply the existence of positive definite radially unbounded
functions V1 : Rkm → R≥0 and V2 : R(k−1)(n−m) → R≥0 such that

V̇1(ε, x) ≤ −κ |ε|2 ∀ ε, x, (A.61)

V̇2(ζ̃, z̃)
∣∣∣
z̃=0
≤ −α|ζ̃|2, (A.62)

for some constant α > 0 and κ as in (H3.3). Smoothness of the vector fields and
boundedness of the solutions of the closed-loop system implies

V̇2(ζ̃, z̃)− V̇2(ζ̃, 0) ≤ c2|ζ̃| |z̃| , (A.63)

for some positive constant c2. Notice that

MLM−1 =

(
0 ∗
0 L̃

)
,

where the matrix L̃ ∈ R(k−1)×(k−1) has eigenvalues λ2, ..., λk ∈ C>0. Note that
spec(L̃) = spec(L)\{0}. The stacked estimation error is defined as ε = ẑ − z, then
the controller (3.14) can be written in matrix form as follows

u = −γ (L⊗ Im) ẑ

= −γ (L⊗ Im) z − γ (L⊗ Im) ε. (A.64)

Moreover, denote ũ = col((u1 − u2), ..., (u1 − uk)), it follows that

ũ = −γ
(
L̃⊗ Im

)
z̃ − γ

(
L̃⊗ Im

)
ε̃, (A.65)

and the closed-loop system can be written as

˙̃z = ã(z̃, ζ̃, z1, ζ1)− γ
(
L̃⊗ Im

)
z̃ − γ

(
L̃⊗ Im

)
ε̃, (A.66)

where

ã(z̃, ζ̃, z1, ζ1) =

 a(z1, ζ1)− a(z1 − z̃1, ζ1 − ζ̃1)
...

a(z1, ζ1)− a(z1 − z̃k−1, ζ1 − ζ̃k−1)

 . (A.67)

Since L̃ is a stable matrix, it follows that there exists a unique solution of the
Lyapunov equation (−L̃)TP +P(−L̃) +Q = 0 for some positive definite matrices
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P, Q ∈ R(k−1)×(k−1). Let P be such that ‖P‖ = 1 and (−L̃)TP + P(−L̃) = −2µI

for some constant µ > 0, and consider the positive definite function

V3(z̃) =
1

2
z̃T (P ⊗ Im) z̃,

then

V̇3(z̃) ≤ z̃T (P ⊗ Im)
(
ã(z̃, ζ̃, z1, ζ1)− γ

(
L̃⊗ Im

)
ε̃
)

−γ
2
z̃T
((

L̃⊗ Im
)T

(P ⊗ Im) + (P ⊗ Im)
(
L̃⊗ Im

))
z̃,

≤ z̃T (P ⊗ Im)
(
ã(z̃, ζ̃, z1, ζ1)

)
+ γ ˜‖L‖ |z̃| |ε̃| − γµ |z̃|2 . (A.68)

Ultimate boundedness of solutions and smoothness of the vector fields imply

z̃T (P ⊗ Im)
(
ã(z̃, ζ̃, z1, ζ1)

)
≤ c3 |z̃| |ζ̃|+ c4 |z̃|2 , (A.69)

for some positive constants c3 and c4. Consider the function

V(ε, ζ̃, z̃) = V1(ε) + V2(ζ̃) + V3(z̃),

then

V̇(ε, ζ̃, z̃) ≤ −κ |ε|2−α|ζ̃|2−(µγ − c4) |z̃|2 +(c2 + c3) |z̃| |ζ̃|+γc5 ˜‖L‖ |z̃| |ε| , (A.70)

for some positive constant c5. Straightforward computations show that

γ > γ′ :=
1

µ

(
(c2 + c3)

2

4α
+ c4

)
, (A.71)

κ > κ′ :=

(
c5 ˜‖L‖

)2
4µ

(
γ2

γ − γ′
)
, (A.72)

implies that

V̇(z̃, ζ̃, ε) ≤ −σ
(
|z̃|2 +

∣∣∣ζ̃∣∣∣2 + |ε|2
)
, (A.73)

for some positive constant σ. This proves the Lyapunov stability of the set
{col(z̃, ζ̃, ε) = 0}. Moreover, since V is radially unbounded then {col(z̃, ζ̃, ε) = 0}
is a global attractor for γ > γ′ and κ > κ′. �
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A.9 Proof of Lemma 4.8

First, we prove boundedness of the closed-loop system (4.1),(4.2),(4.21),(4.22). By
assumption, each system (4.1),(4.3) is strictly semipassivewith radially unbounded
function V (xi). Define the functional

W1(xt(θ)) =

k∑
i=1

νi
(
V (xi) +

γ

2

∑
j∈Ei

aij

0∫
−τ

|zj(t+ s)|2 ds
)
,

with x = col(x1, ..., xk), xt(θ) = x(t + θ) ∈ C, θ ∈ [−τ, 0], C = [−τ, 0] → Rkn the
Banach space of continuous functions mapping the interval [−τ, 0] into Rkn, and
νi denoting the entries of the left eigenvector corresponding to the zero eigenvalue
of the Laplacian matrix L, i.e., ν = (ν1, ..., νk)

T and νTL = νT (D −A) = 0. The
graph is assumed to be strongly connected, it follows that the vector ν has strictly
positive real entries [29, 129], i.e., νi > 0 for all i. Then, by the semipassivity
assumption in Lemma 4.8, it follows that

Ẇ1(xt(θ)) ≤
k∑
i=1

νi
(
zTi ui −H(xi)

)
+

k∑
i=1

νi

γ
2

∑
j∈Ei

aij

(
|zj |2 − |zτj |2

) . (A.74)

Define the variable
εzi := ẑi − zi = C2 (x̂i − xi) , (A.75)

using (4.11), it follows that

εzi = C2 (N2ρ̂i +N3yi −N2ρi −N3yi) ,

= C2N2 (ρ̂i − ρi) , (A.76)
= C2N2εi,

then ẑi can be written as
ẑi = zi + C2N2εi. (A.77)

Consider the term
k∑
i=1

νiz
T
i ui = γ

k∑
i=1

∑
j∈Ei

νiaijz
T
i (ẑτj − ẑi). (A.78)

substitution of (A.77) in (A.78) yields
k∑
i=1

νiz
T
i ui = γ

k∑
i=1

∑
j∈Ei

νiaijz
T
i (zτj − zi) (A.79)

+ γ

k∑
i=1

∑
j∈Ei

νiaijz
T
i C2N2(ετj − εi),
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by Young’s inequality it follows that

k∑
i=1

νiz
T
i ui ≤

γ

2

k∑
i=1

∑
j∈Ei

νiaij

(
|zτj |2 − |zi|2

)
(A.80)

+
γc

2

k∑
i=1

∑
j∈Ei

νiaij

(
2 |zi|2 + |εi|2 + |ετj |2

)
,

with c = ‖C2‖‖N2‖. Consider the functional

W2(εt(θ)) =

k∑
i=1

νi

1 +
γc

κ

∑
j∈Ei

aij

V0(εi) (A.81)

+
γc

2

k∑
i=1

∑
j∈Ei

νiaij

0∫
−τ

|εj(t+ s)|2 ds,

with V0(εi) from (H4.5). Then

Ẇ2 ≤
k∑
i=1

νi

(
− κ|εi|2 +

γc

2

∑
j∈Ei

aij(|εj |2 − |ετj |2 − 2|εi|2)
)
.

Finally, define the functional W (xt(θ), εt(θ)) = W1 + W2. Using the fact that
νT (D −A) = 0 and combining the previous results yields

Ẇ ≤ −
k∑
i=1

νi

(
H(xi) + κ |εi|2 − γcdi |zi|2

)
. (A.82)

Then by assumption (H4.6), Ẇ < 0 for κ > 0 and sufficiently large |ς| with
ς = col(x, ε). The functional W is radially unbounded by construction. Hence,
there exists a constant σ > 0 such that Ẇ (ς) < 0 for σ and ς satisfyingW (ς) ≥ σ.
Then, solutions starting in the set {W (ς) ≤ σ} will remain there for all future
time since Ẇ is negative on the boundary W (ς) = σ. Moreover, for any ς in
the set {W (ς) ≥ σ∗} with σ∗ > π, the function Ẇ (ς) is negative, which shows
that, in this set,W (ς) will decrease monotonically until the solutions enter the set
{W (ς) ≤ σ} again. Therefore, it can be concluded that the solutions of the closed
loop system (4.1),(4.2),(4.21),(4.22) exist and are ultimately bounded for all τ ≥ 0

and γ < γmax. Now consider the closed-loop system (4.1),(4.2),(4.21),(4.23) and
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the positive definite functional

W =

k∑
i=1

νi

1 +
γc

κ

∑
j∈Ei

aij

V0(εi) +

k∑
i=1

νiV (xi) (A.83)

+
γc

2

k∑
i=1

∑
j∈Ei

νiaij

0∫
−τ

(
|εi(t+ s)|2 + |εj(t+ s)|2

)
ds

+
γ

2

k∑
i=1

∑
j∈Ei

νiaij

0∫
−τ

(
|zi(t+ s)|2 + |zj(t+ s)|2

)
ds.

Using the same machinery as before an after some straightforward computations
yields

Ẇ ≤ −
k∑
i=1

νi
(
H(xi) + κ|εi|2 − γc̃di|zi|2

)
, (A.84)

with c̃ = ‖C2‖‖N2‖+ 2. The result follows from the same arguments presented in
the first part of the proof. �

A.10 Proof of Theorem 4.11

First, we prove that the closed-loop system (4.1),(4.2),(4.21),(4.22) asymptotically
synchronize. The existence and uniqueness of the solutions follows from
smoothness of the right-hand side of the closed loop system. By Lemma 4.8, the
solutions exist for all t ≥ 0 and are ultimately bounded. Let ζ = col(ζ1, ..., ζk) ∈
Rk(n−m) and ε = col(ε1, ..., εk) ∈ Rkp. DefineM ∈ Rk×k as

M :=

(
1 0

1 −Ik−1

)
. (A.85)

Introduce the set of coordinates, z̄ = (M ⊗ Im)z, ζ̄ = (M ⊗ In−m)ζ, and
ε̄ = (M ⊗ Im)ε. Note that, z̄1 = z1, z̄2 = z1 − z2, . . . , z̄k = z1 − zk, ζ̄1 = ζ1,
ζ̄2 = ζ1 − ζ2, . . . , ζ̄k = ζ1 − ζk, and ε̄1 = ε1, ε̄2 = ε1 − ε2, . . . , ε̄k = ε1 − εk. Define,
z̃ = col(z̄2, . . . , z̄k), ζ̃ = col(ζ̄2, . . . , ζ̄k), and ε̃ = col(ε̄2, . . . , ε̄k). Note that z̃ = ζ̃ = 0

implies that the systems synchronize. Assumptions (H4.5) and (H4.2) imply the
existence of positive definite radially unbounded functions V1 : Rkp → R≥0 and
V2 : R(k−1)(n−m) → R≥0 such that

V̇1(ε, x) ≤ −κ |ε|2 , ∀ ε, x, (A.86)

V̇2(ζ̃, z̃)
∣∣∣
z̃=0
≤ −α|ζ̃|2, (A.87)
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for some constant α > 0 and κ as in (4.24). Smoothness of the vector fields and
boundedness of the solutions of the closed-loop system implies

V̇2(ζ̃, z̃)− V̇2(ζ̃, 0) ≤ c2 ˜|ζ| |z̃| , (A.88)

for some positive constant c2. Notice that

MLM−1 =

(
0 ∗
0 L̃

)
.

Since spec(L̃) = spec(L)\{0}, it follows that the matrix L̃ ∈ R(k−1)×(k−1) has
eigenvalues λ2, ..., λk ∈ C>0, [129]. The stacked estimation error is given by
ε = ρ̂− ρ, then the controller (4.22) can be written in matrix form as follows

u = − γ(D ⊗ Im)ẑ + γ(A⊗ Im)ẑτ

= − γ(D ⊗ Im)z − γ(D ⊗ C2N2)ε (A.89)
+ γ(A⊗ Im)zτ + γ(A⊗ C2N2)ετ .

Using continuity properties of the solutions, and Leibniz’s rule, zτ and ετ can be
written as

zτ = z −
∫ 0

−τ
ż(t+ s)ds, ετ = ε−

∫ 0

−τ
ε̇(t+ s)ds, (A.90)

it follows that

u = −γ(L⊗ Im)z − γ(L⊗ C2N2)ε (A.91)

− γ
∫ 0

−τ
(A⊗ Im)ż(t+ s)ds+ (A⊗ C2N2)ε̇(t+ s)ds,

with Laplacian matrix L = D −A. Denote ũ = col((u1 − u2), ..., (u1 − uk)), then

ũ = −γ(L̃⊗ Im)z̃ − γ(L̃⊗ C2N2)ε̃ (A.92)

− γ
∫ 0

−τ
(Ã⊗ Im) ˙̃z(t+ s)ds+ (Ã⊗ C2N2) ˙̃ε(t+ s)ds,

with
MAM−1 =

(
0 ∗
0 Ã

)
.

Then, the closed-loop system can be written as
˙̃z = ã(z̃, ζ̃, z1, ζ1)− γ(D̃ ⊗ Im)z̃ − γ(D̃ ⊗ C2N2)ε̃

+ γ(Ã⊗ Im)z̃τ + γ(Ã⊗ C2N2)ε̃τ , (A.93)

= ã(z̃, ζ̃, z1, ζ1)− γ(L̃⊗ Im)z̃ − γ(L̃⊗ C2N2)ε̃

− γ(Ã⊗ Im)

∫ 0

−τ
˙̃z(t+ s)ds− γ(Ã⊗ C2N2)

∫ 0

−τ
˙̃ε(t+ s)ds, (A.94)
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where

ã(z̃, ζ̃, z1, ζ1) =

 a(z1, ζ1)− a(z1 − z̃1, ζ1 − ζ̃1)
...

a(z1, ζ1)− a(z1 − z̃k−1, ζ1 − ζ̃k−1)

 .

Likewise, ˙̃ε is given by
˙̃ε = φ̃(ε̃, x̃, ε1, x1), (A.95)

with

φ̃(ε̃, x̃, ε1, x1) :=

 φ(ε1, x1)− φ(ε1 − ε̃1, x1 − x̃1)
...

φ(ε1, x1)− φ(ε1 − ε̃k−1, x1 − x̃k−1)

 ,

and φ(·) defined in (4.17). Substitution of (A.93) and (A.95) in (A.94) yields

˙̃z = ã(z̃, ζ̃, z1, ζ1)− γ(L̃⊗ I)z̃ − γ(L̃⊗ C2N2)ε̃ (A.96)

− γ(Ã⊗ I)

∫ 0

−τ
ã(z̃, ζ̃, z1, ζ1)(t+ s)ds

+ γ2(ÃD̃ ⊗ I)

∫ 0

−τ
z̃(t+ s) + (I ⊗ C2N2)ε̃(t+ s)ds

− γ2(Ã2 ⊗ I)

0∫
−τ

z̃(t+ s− τ) + (I ⊗ C2N2)ε̃(t+ s− τ)ds

− γ(Ã⊗ C2N2)

∫ 0

−τ
φ̃(ε̃, x̃, ε1, x1)(t+ s)ds.

Without loss of generality, it will be assumed that D = Ik. Then, by construction
‖Ã‖ ≤ 1 and ‖D̃‖ = 1. Since L̃ is a stable matrix, it follows that there exists a
unique solution of the Lyapunov equation (−L̃)TP + P (−L̃) + Q = 0 for some
P = PT > 0 and Q = QT > 0. Let (−L̃)TP + P (−L̃) = −2µI for some constant
µ > 0, and consider the positive definite function V3(z̃) = 1

2 z̃
T (P ⊗ Im) z̃. Then

V̇3(z̃) ≤ −γµ|z̃|2 + z̃T (P ⊗ I)(ã(z̃, ζ̃, z1, ζ1)− γ(L̃⊗ C2N2)ε̃)

+ γ |z̃| ‖P‖
∫ 0

−τ

∣∣∣ã(z̃, ζ̃, z1, ζ1)(t+ s)
∣∣∣ ds

+ γ2 |z̃| ‖P‖
∫ 0

−τ
(|z̃(t+ s)|+ c |ε̃(t+ s)|)ds

+ γ2 |z̃| ‖P‖
∫ 0

−τ
(|z̃(t+ s− τ)|+ c|ε̃(t+ s− τ)|)ds

+ γc |z̃| ‖P‖
∫ 0

−τ

∣∣∣φ̃(ε̃, x̃, ε1, x1)(t+ s)
∣∣∣ ds, (A.97)
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with c = ‖C2‖‖N2‖. In addition, ultimate boundedness of the solutions and
smoothness of the functions a(·) and φ(·) imply that

z̃T (P ⊗ I)ã(z̃, ζ̃, z1, ζ1) ≤ c3 |z̃| |ζ̃|+ c4 |z̃|2 ,
z̃T (PÃ⊗ C2N2)φ̃(ε̃, x̃, ε1, x1) ≤ c̃2 |z̃| |ε̃|+ c̃3 |z̃| |ζ̃|+ c̃4 |z̃|2 ,

for some positive constants c3, c4, c̃2, c̃3, c̃4 ∈ R>0. Let the function
V(ε, ζ̃, z̃) := V1(ε) + V2(ζ̃) + V3(z̃) be a Lyapunov-Razumikhin function such that
if V(ε, ζ̃, z̃) > κ2V(ε(t + θ), ζ̃(t + θ), z̃(t + θ)) for θ ∈ [−2τ, 0] and some constant
κ > 1, then

V̇ ≤ −κ |ε|2 − α|ζ̃|2 − (µγ − κc5Ξ− 2κ ‖P‖ γΞ− c4) |z̃|2

+
√
k
(
c ‖P‖ ˜‖L‖γ + 2κc ‖P‖ γΞ + κc6Ξ

)
|ε| |z̃|

+ (c7 + κc8Ξ) |ζ̃||z̃|, (A.98)

for some positive constants c5, c6, c7, c8 ∈ R>0 and Ξ = γτ . Some straightforward
algebra shows that (A.98) is negative definite if

µ > µ′ :=
1

γ
(
(c7 + κc8Ξ)2

4α
+ κc5Ξ + c4) + 2κ ‖P‖Ξ,

κ > κ′ :=
k
(
c ‖P‖ ˜‖L‖γ + 2κc ‖P‖ γΞ + κc6Ξ

)2

4γ(µ− µ′) ,

hence, it can be concluded that (A.98) is negative definite if γ is sufficiently large,
Ξ is sufficiently small, and κ > κ′; hence, there exist constants γ′, Ξ′, and κ′ such
that (A.98) is negative definite if γ > γ′, Ξ < Ξ′ and κ > κ′. Then, ultimate
boundedness of the solutions and the Lyapunov-Razumikhin theorem implies
that the set {col(ε, ζ̃, z̃) = 0} is a global attractor for γ > γ′, Ξ < Ξ′, and κ > κ′. �

A.11 Proof of Theorem 5.4

The existence and uniqueness of the solutions of the coupled systems follows
from smoothness of the righthand side of the closed-loop system. By Lemma 5.2,
solutions are ultimately bounded for all t ≥ 0. If there exists a solution X of
the matrix equation (Ik −Π)L = X (Ik −Π) for a given permutation matrix Π,
then the set N defined in Lemma 5.3 defines a linear invariant manifold for the
coupled systems (5.14),(5.15). Define the stacked estimation error
ε := col(ε1, . . . , εk) ∈ Rkm, semipassive output z := col(z1, . . . , zk) ∈ Rkm, and
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internal state ζ := col(ζ1, . . . , ζk) ∈ Rk(n−m). Note that z ∈ ker (Ikm −Π⊗ Im)

and ζ ∈ ker
(
Ik(n−m) −Π⊗ In−m

)
define equations of the form

zi − zj = 0, ζi − ζj = 0, (A.99)

for some i, j ∈ I. Let IΠ be the set of pairs (i, j) for which (A.99) is satisfied. We
want to show that zi − zj = 0, ζi − ζj = 0, and εi = 0 restricted to IΠ are globally
asymptotically stable under the conditions supplied in the Theorem 5.4. Define

ζ̄ : =
(
Ik(n−m) −Π⊗ In−m

)
ζ,

z̄ : = (Ikm −Π⊗ Im) z.

Note that (H5.4) implies that the internal dynamics (5.20) are exponentially
convergent systems with inputs zi. Assumptions (H5.1) and (H5.4), smoothness
of the vector fields, and boundedness of the solutions of the closed-loop system
imply the existence of positive definite radially unbounded functions V1(ε) and
V2(ζ̄) such that

V̇1(ε, x) ≤ −κ|ε|2 ∀ ε, x,
V̇2(ζ̄, z̄) ≤ −α

∣∣ζ̄∣∣2 + c1|ζ̄||z̄|,

for some constants c1, α ∈ R>0 and κ as in (5.13). Let

V3(z) =
1

2
|z̄|2 =

1

2

∑
(i,j)∈IΠ

|zi − zj |2.

By Lemma 5.3, there exists X such that (I − Π)L = X(I − Π). Then, the time
derivative of V3(z̄) along the trajectories of the closed-loop system is given by

V̇3(ζ, z, ε) =
∑

(i,j)∈IΠ

|zi − zj |T (a(ζi, zi)− a(ζj , zj))

− γ

2
z̄T ((X +XT )⊗ Im)z̄ − γ

2
z̄T ((X +XT )⊗ Im)ε̄,

with ε̄ = (Ikm −Π⊗ Im)ε. Again, using smoothness of the vector fields, ultimate
boundedness of the solutions, and assumption (H5.3) it follows that

V̇3 ≤ (c2 − γλ′)|z̄|2 + c3|z̄||ζ̄|+ γλ̄|z̄||ε̄|,

for some constants c2, c3 ∈ R>0, λ̄ > 0 being the largest eigenvalue of the
symmetric matrix 1

2 (X + XT ), and λ′ the largest number such that (H5.3) holds.
Let V = V1 + V2 + V3, then from the previous results, it follows that

V̇ ≤ (c2 − γλ′)|z̄|2 − κ|ε|2 − α|ζ̄|2 + (c1 + c3)|ζ̄||z̄|+ γλ̄c4|z̄||ε|, (A.100)
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for some constant c4 ∈ R>0. Straightforward computations show that

γ > γ′ :=
1

λ′

(
(c1 + c3)2

4α
+ c2

)
, (A.101)

κ > κ′ :=
λ̄2

4λ′

(
γ2

γ − γ′
)
, (A.102)

implies V̇ ≤ −σ(|z̄|2 + |ζ̄|2 + |ε|2), for some positive constant σ. Hence, V̇ is nega-
tive definite for γ > γ′ and κ > κ′, and therefore the set N contains a globally
asymptotically stable subset for γ > γ′ and κ > κ′. �

A.12 Proof of Proposition 6.6

Using continuity of the solutions and Leibniz’s rule (see [48] for details), ε̃1τ can
be written as

ε̃1τ = ε̃1 −
∫ 0

−τ
˙̃ε1(t+ s)ds, (A.103)

substitution of (A.103) in (6.32),(6.33) yields

˙̃ε1 = −κε̃1 + κ

∫ 0

−τ
˙̃ε1(t+ s)ds− aε̃1 − bε̃2 − 3cy2ε̃2, (A.104)

˙̃ε2 = ε̃1. (A.105)

Consider the C1-function V : R2 → R≥0 given by

V =
1

2
(λκ+ λa+ b) ε̃22 + λε̃1ε̃2 +

1

2
ε̃21, (A.106)

for some positive constant λ ∈ (0, κ+ a]. Notice that for any λ in this interval, it is
ensured that (A.106) is positive definite. It can be proved that y(t) in (6.26), (6.27)
is uniform bounded, i.e., there exists a constant δ > 0 such that |y(t)|2 < δ, for
all t ≥ 0. Then, the derivative of (A.106) along the trajectories of (A.104),(A.105)
satisfies

V̇ = − (κ+ a− λ) ε̃21 − 3cy2ε̃1ε̃2 − λ
(
b+ 3cy2

)
ε̃22 + κ (λε̃2 + ε̃1)

∫ 0

−τ
˙̃ε1(t+ s)ds

≤ − (κ+ a− λ) ε̃21 + 3cδ |ε̃1| |ε̃2| − λbε̃22 + κ (λε̃2 + ε̃1)

∫ 0

−τ
˙̃ε1(t+ s)ds, (A.107)
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substitution of (6.32) in (A.107) yields

V̇ ≤ − (κ+ a− λ) ε̃21 + 3cδ |ε̃1| |ε̃2| − λbε̃22 (A.108)

+ κ (λ |ε̃2|+ |ε̃1|)
∫ 0

−τ
κ |ε̃1(t+ s− τ)|+ a |ε̃1(t+ s)| ds

+ κ (λ |ε̃2|+ |ε̃1|)
∫ 0

−τ
b |ε̃2(t+ s)|+ 3cδ |ε̃2(t+ s)| ds.

Let V (·) in (A.106) be a Lyapunov-Razumikhin function such that if
α2V (ε̃(t)) < V (ε̃(t + θ)) for θ ∈ [−2τ, 0] and some α > 1 (see [48], for details
about Lyapunov-Razumikhin functions), then

V̇ ≤ − (κ+ a− λ) ε̃21 + 3cδ |ε̃1| |ε̃2| − λbε̃22
+ ακτ (λ |ε̃2|+ |ε̃1|) ((κ+ a) |ε̃1|+ (b+ 3cδ) |ε̃2|)

≤ − (κ+ a− λ− (κ+ a)κατ) ε̃21 − (λb− κατλ (b+ 3cδ)) ε̃22

+ ((κ+ a)κατλ+ (b+ 3cδ)κατ + 3cδ) |ε̃1| |ε̃2| .

Define χ := κτ , then

V̇ ≤ − ((κ+ a) (1− αχ)− λ) ε̃21 − λ (b− αχ (b+ 3cδ)) ε̃22

+ (3cδ + α (b+ 3cδ)χ+ λα (κ+ a)χ) |ε̃1| |ε̃2| , (A.109)

by Young’s inequality, it follows that |ε̃1| |ε̃2| ≤ ε
2 |ε̃2|

2
+ 1

2ε |ε̃1|
2, for some constant

ε > 0, then

V̇ ≤ −
(

(κ+ a) (1− αχ)− λ− 1

2ε
(3cδ + α (b+ 3cδ)χ+ λα (κ+ a)χ)

)
ε̃21

− λ
(
b− αχ (b+ 3cδ)− ε

2
(3cδ + α (b+ 3cδ)χ+ λα (κ+ a)χ)

)
ε̃22, (A.110)

taking ε = b
3cδ and after some straightforward algebra, it can be concluded that

(A.110) is negative definite if the following inequalities are satisfied

3cδ > χ

(
α (b+ 3cδ) + λα (κ+ a) +

6αcδ

b
(b+ 3cδ)

)
,

(κ+ a) > χ(b+ 3cδ + (κ+ a)

(
λ+

2b

3cδ

)
)
3cδα

2b
+ λ+

9c2δ2

2b
.

It follows that V̇ is negative definite if κ is sufficiently large and χ is sufficiently
small. Thus, there exist constants γ̄ and χ̄ such that (A.110) is negative definite if
γ > γ̄ and κγ < χ̄ and by the Lyapunov-Razumikhin theorem [48], the
origin of (6.32),(6.33) is globally asymptotically stable for all τ and κ in this
region. �
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A.13 Proof of Lemma 7.2

The boundedness assumption in Lemma 7.2 and smoothness of the right-hand
side of the closed-loop system imply that the solutions of (7.4)-(7.6),(7.13)-(7.15)
exist and are unique. The prediction error is defined as εi = xi − ητ2i and the pre-
diction error dynamics is given by (7.16),(7.17). Assumption (H7.1), Proposition
1.5, smoothness of the functions a(·) and q(·), and boundedness of the
solutions imply the existence of a positive definite radially unbounded function
V0 : Rn−m → R≥0 such that

V̇0(ε1i, ε2i) ≤ −α|ε1i|2 + c0|ε1i| |ε2i| , (A.111)

for some constantsα, c0 ∈ R>0, see Section 5 in Ref. [104] for further details. Using
Leibniz’s rule ετ2i can be written as

ετ2i = ε2i −
∫ 0

−τ
ε̇2i(t+ s)ds, (A.112)

it follows that the prediction error dynamics (7.17) can be written as

ε̇2i = a(ζi, yi)− a(ζi − ε1i, yi − ε2i)

− κε2i + κ

∫ 0

−τ
ε̇2i(t+ s)ds, (A.113)

substitution of (7.17) in (A.113) yields

ε̇2i = a(ζi, yi)− a(ζi − ε1i, yi − ε2i) (A.114)

− κε2i − κ2

∫ 0

−τ
ε2i(t+ s− τ)ds

+ κ

∫ 0

−τ
(a(ζi, yi)(t+ s)− a(ζi − ε1i, yi − ε2i)(t+ s))ds.

Consider the function V1(ε2i) = 1
2ε
T
2iε2i. Then

V̇1 ≤ εT2i (a(ζi, yi)− a(ζi − ε1i, yi − ε2i)) (A.115)

− κ |ε2i|2 − κ2εT2i

∫ 0

−τ
ε2i(t+ s− τ)ds

+ κεT2i

∫ 0

−τ
(a(ζi, yi)(t+ s)− a(ζi − ε1i, yi − ε2i)(t+ s)) ds.

Ultimate boundedness of the solutions and smoothness of the function a(·) imply
that

εT2i (a(ζi, yi)− a(ζi − ε1i, yi − ε2i)) ≤ c1 |ε2i|2 + c2|ε2i||ε1i|,
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for some constants c1, c2 ∈ R>0. Let the function V1(ε1i, ε2i) := V0(ε1i) + V1(ε2i)

be a Lyapunov-Razumikhin function such that if V1(εi(t)) > κ2V1(εi(t + θ)) for
θ ∈ [−2τ, 0] and some constant κ > 1, then

V̇1 ≤ −α |ε1i|2 −
(
κ− c1 − κκ2τ − κκτc1

)
|ε2i|2 (A.116)

+ (c0 + c2 + κκτc2) |ε1i| |ε2i| .

The constant κ can be arbitrarily close to one as long as it is greater than one.
Then, for the sake of simplicity, we take κ on the boundary κ = 1 for the rest of
the analysis. Some simple algebra shows that (A.116) is negative definite if(

κ− κ′
)
−
(
κ+

c̄1
c̄2

)
κτ − 1

2c̄2
(κτ)2 > 0, (A.117)

with

κ′ :=
(c0 + c2)

2

4α
+ c1, (A.118)

c̄1 :=
2αc1 + c0c2 + c22

c22
, c̄2 :=

2α

c22
. (A.119)

All the constants in (A.117) are positive by construction and κ and τ are nonnega-
tive by definition. Then, a necessary condition for (A.117) to be satisfied is that
κ > κ′. After some straightforward computations (A.117) can be rewritten as
follows

τ < −
(
c̄2 +

c̄1
κ

)
±
√(

c̄2 +
c̄1
κ

)2

+ 2c̄2
(κ− κ′)
κ2

. (A.120)

The total time-delay τ is nonnegative by definition. Hence, in order to satisfy
(A.120), it is sufficient to consider the possible positive values of the right-hand
side of (A.120), i.e., the positive square root. Then, inequality (A.120) amounts to

τ < ϕ(κ) := −
(
c̄2 +

c̄1
κ

)
+

√(
c̄2 +

c̄1
κ

)2

+ 2c̄2
(κ− κ′)
κ2

. (A.121)

We are only interested in possible values of κ, τ ∈ R≥0 such that (A.121) is satis-
fied. Then, we restrict the function ϕ(κ) to the set J := [κ′,∞). Next, we prove
that the function ϕ : J → R≥0 is unimodal. The function ϕ(·) is continuous and
real-valued on J . Moreover, it is strictly positive on the interior of J , it has a root
at κ = κ′, i.e., ϕ(κ′) = 0, and

lim
κ→∞

ϕ(κ) = lim
κ→∞

2c̄2

(
1
κ − κ′

κ2

)
(
c̄2 + c̄1

κ

)
+
√

(c̄2 + c̄1
κ )2 + 2c̄2

(
1
κ − κ′

κ2

)
=

2c̄2 (0)

(c̄2 + 0) +
√

(c̄2 + 0)2 + 2c̄2 (0)
=

0

2c̄2
= 0.
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The function ϕ(·) is differentiable on J , then we can compute its local extrema by
computing its critical points. It is easy to verify that ∂ϕ(κ)

∂κ = 0 only for κ = κ∗1 and
κ = κ∗2 with

κ∗1 =

(
1 +

1

1 + 2c̄1

)
κ′ +

√
2c̄21c̄2κ

′(1 + 2c̄1 + 2c̄2κ′)
c̄2(1 + 2c̄1)

, (A.122)

κ∗2 =

(
1 +

1

1 + 2c̄1

)
κ′ −

√
2c̄21c̄2κ

′(1 + 2c̄1 + 2c̄2κ′)
c̄2(1 + 2c̄1)

. (A.123)

Then, κ = κ∗1 and κ = κ∗2 are the critical points of ϕ(κ) and ϕ(κ∗1) and ϕ(κ∗2) are the
corresponding global extrema. Notice that κ∗1 > κ′; therefore, κ∗1 belongs to the
interior of J . It is difficult to visualize from (A.123) whether κ∗2 is contained in J .
Then, we rewrite (A.123) in a more suitable manner. After some algebra (A.123)
can be written as follows

κ∗2 =
2c̄2κ

′ − c̄21
c̄2

(
1 + c̄1 + c̄1

√
1 + 1+2c̄1

c̄2κ′

) . (A.124)

Notice that the denominator of (A.124) is strictly positive, then the sign of κ∗2 is
solely determined by the numerator. Substitution of (A.118) and (A.119) in the
numerator of (A.124) yields

2c̄2κ
′ − c̄21 = −4αc1 (c0c2 + αc1)

c22
, (A.125)

which is strictly negative. It follows that κ∗2 is strictly negative as well; in con-
sequence, κ∗2 is not contained on J , i.e., κ∗2 /∈ J . Then, the function ϕ(·) has
a unique extremum on J and it is given by ϕ(κ∗1). Finally, given that ϕ(κ′) =

0, limκ→∞ ϕ(κ) = 0, φ(κ) is strictly positive on the interior of J , and ϕ(κ∗1) is
the unique extremum on J , it follows that ϕ(κ∗1) is a unique local maximum
on J ; therefore, it can be concluded that the function ϕ(·) is a unimodal func-
tion in the sense of Definition 7.1. Hence, (A.116) is negative definite if κ > κ′

and τ < ϕ(κ). Then, ultimate boundedness of the solutions and the Lyapunov-
Razumikhin theorem imply that the set {εi = 0} is a global attractor for κ > κ′ and
τ < ϕ(κ). �

A.14 Proof of Lemma 7.4

By assumption each system (7.4),(7.6) is strictly C1-semipassive with input uτ2i ,
output yi, and radially unbounded function V (xi). Define the functionW1(x) :=∑k
i=1 νiV (xi), where x = col(x1, ..., xk) and the constants νi denote the entries of
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the left eigenvector corresponding to the zero eigenvalue of the Laplacian matrix
L, i.e., ν = (ν1, ..., νk)

T and νTL = νT (D −A) = 0. Note that L is singular by
construction. Moreover, since it is assumed that the graph is strongly connected,
then the zero eigenvalue is simple. Using the Perron-Frobenius theorem [29], it
can be shown that the vector ν has strictly positive real entries, i.e., νi > 0 for all
i. Then, by assumption

Ẇ1(x) ≤
k∑
i=1

νi
(
yTi u

τ2
i −H(xi)

)
. (A.126)

Consider the term

k∑
i=1

νiy
T
i u

τ2
i = γ

k∑
i=1

∑
j∈Ei

νiaijy
T
i (ητ22j − ητ22i ), (A.127)

using Young’s inequality it follows that

k∑
i=1

νiy
T
i u

τ2
i ≤

γ

2

k∑
i=1

∑
j∈Ei

νiaij

(
2 |yi|2 + |ητ22j |2 + |ητ22i |2

)
.

Notice that if κ = 0 and ui = 0, the predictor dynamics (7.19),(7.20) is the same
as (7.4),(7.5) with uτ2 = 0. Therefore, strict C1-semipassivity of (7.4),(7.5) implies
strict C1-semipassivity of (7.19)-(7.20) with radially unbounded function V (ηi),
output η2i, and input wi = ui + κyτ1i − κητ2i. Define the functional

W2(ηt(θ)) =

k∑
i=1

νi

(
V (ηi) + γ

∑
j∈Ei

aij

0∫
−τ2

|η2i(t+ s)|2 ds

+
κ

2

0∫
−τ1

|yi(t+ s)|2 ds+
κ

2

0∫
−τ

|η2i(t+ s)|2 ds
)
,

with η = col(η1, ..., ηk), ηt(θ) = η(t + θ) ∈ C, θ ∈ [−τ, 0], and C = [−τ, 0] → Rkn

the Banach space of continuous functions mapping the interval [−τ, 0] into Rkn.
Then, by assumption

Ẇ2 =

k∑
i=1

νi

(
ηT2iwi −H(ηi) + γ

∑
j∈Ei

aij

(
|η2i|2 − |ητ22i |2

)

+
κ

2

(
|yi|2 − |yτ1i |2 + |η2i|2 − |ητ2i|2

))
. (A.128)
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Consider the term
k∑
i=1

νiη
T
2iwi =

k∑
i=1

νi

(
γ
∑
j∈Ei

aijη
T
2i (η2j − η2i) + κηT2iy

τ1
i − κηT2iητ2i

)
,

using Young’s inequality it follows that

k∑
i=1

νiη
T
2iwi ≤

k∑
i=1

νi

(
γ

2

∑
j∈Ei

aij

(
|η2j |2 − |η2i|2

)
+ κ |η2i|2 +

κ

2
|yτ1i |

2
+
κ

2
|ητ2i|2

)
.

Finally, define the functionalW (xt(θ), ηt(θ)) := W1+W2, with xt(θ) = x(t+θ) ∈ C
and θ ∈ [−τ, 0]. Then, combining the previous results

Ẇ ≤
k∑
i=1

νi

(
−H(xi)−H(ηi) +

κ

2
|yi|2 + γ

∑
j∈Ei

aij |yi|2

+
3κ

2
|η2i|2 +

γ

2

∑
j∈Ei

aij

(
2 |η2i|2 + |η2j |2 − |η2i|2

)

+
γ

2

∑
j∈Ei

aij
(
|ητ22j |2 − |ητ22i |2

))
, (A.129)

using νT (D −A) = 0 and maxi∈I
∑
j∈Ei aij = 1, it follows that

Ẇ ≤
k∑
i=1

νi

(
−H(xi) +

(
γ +

3κ

2

)
|yi|2

)

+

k∑
i=1

νi

(
−H(ηi) +

(
γ +

3κ

2

)
|η2i|2

)
. (A.130)

The functionH(·) is strictly positive if its argument is sufficiently large. Moreover,
by assumption (H7.2), there exists a positive constant R ∈ R>0 such that |xi| > R

implies that H(xi)− δ|yi|2 > 0 for some δ ∈ R>0. Let δ̄ be the largest δ that satis-
fies (H7.2), then for (γ, κ) satisfying γ + 3κ

2 ≤ δ̄ and for sufficiently large |ς| with
ς := col(x, η), it follows that Ẇ < 0. The functional W is radially unbounded
and positive definite by construction. Hence, there exists a constant σ ∈ R>0 such
that Ẇ (ς) < 0 for σ and ς satisfyingW (ς) ≥ σ. Then, solutions starting in the set
{W (ς) ≤ σ}will remain there for future time since Ẇ is negative on the boundary
W (ς) = σ. Moreover, for any ς in the set {W (ς) ≥ σ∗} with σ∗ > σ, the function
Ẇ (ς) is strictly negative, which implies that, in this set,W (ς) will decrease mono-
tonically until the solutions enter the set {W (ς) ≤ σ} again. Therefore, it can be
concluded that the solutions of the closed loop system (7.4),(7.5),(7.19)-(7.22) exist
and are ultimately bounded for any finite τ ≥ 0 and (γ, κ) satisfying γ + 3κ

2 ≤ δ̄.
�
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A.15 Proof of Theorem 7.6

The existence and uniqueness of the solutions follows from smoothness of the
right-hand side of the closed-loop system. By Lemma 7.4, the solutions exist for all
t ∈ [−τ,+∞] and are ultimately bounded. Let ζ = col(ζ1, ..., ζk) ∈ Rk(n−m), y =

col(y1, . . . , yk) ∈ Rkm, ε1 = col(ε11, . . . , ε1k) ∈ Rk(n−m), and ε2 = col(ε21, . . . , ε2k) ∈
Rkm. DefineM ∈ R(k−1)×k as

M :=
(
1(k−1)×1 −Ik−1

)
. (A.131)

Introduce the set of coordinates ζ̃ = (M ⊗ In−m)ζ, ỹ = (M ⊗ Im)y, ε̃1 = (M ⊗
In−m)ε1, and ε̃2 = (M ⊗ Im)ε2. Note that, ỹ1 = y1 − y2, . . . , ỹk−1 = y1 − yk,
ζ̃1 = ζ1 − ζ2, . . . , ζ̃k−1 = ζ1 − ζk, ε̃11 = ε11 − ε12, . . . , ε̃1(k−1) = ε11 − ε1k, and
ε̃21 = ε21− ε22, . . . , ε̄2(k−1) = ε21− ε2k. Then, it follows that ỹ = ζ̃ = 0 implies that
the systems are synchronized. Assumption (H7.1), Proposition 1.5, smoothness
of the vector fields, and boundedness of the solutions imply the existence of a
positive definite function V2 : R(k−1)(n−m) → R≥0, ζ̃ 7→ V2(ζ̃) such that

V̇2(ζ̃, ỹ) ≤ −α|ζ̃|2 + c0 ˜|ζ| |ỹ| , (A.132)

for some constants α, c0 ∈ R>0, see Section 5 in Ref. [104] for further details.
Notice that

M̃ =

(
1 0

1 −Ik−1

)
→ M̃LM̃−1 =

(
0 ∗
0 L̃

)
, (A.133)

where L denotes the Laplacian matrix. By assumption, the communication graph
is strongly connected and the interconnections are mutual, i.e., aij = aji. Then,
the Laplacian matrix is symmetric and its eigenvalues are real. Moreover, the
matrix L has an algebraically simple eigenvalue λ1 = 0 and 1 = col(1, . . . , 1) ∈
Rk is the corresponding eigenvector [29]. Applying Gerschgorin’s theorem [138]
about localization of eigenvalues, it can be concluded that the eigenvalues of L
are nonnegative, i.e., L is positive semidefinite. Since spec(L̃) = spec(L)\{0}, it
follows that the matrix L̃ ∈ R(k−1)×(k−1) has eigenvalues λ2, ..., λk ∈ R>0 with
0 < λ2 ≤ · · · ≤ λk. The stacked prediction errors are given by ε1 = ζ − ητ21 and
ε2 = y−ητ22 with η1 = col(η11, ..., η1k) ∈ Rk(n−m) and η2 = col(η21, ..., η2k) ∈ Rkm.
Then, the controller (7.21) can be written in matrix form as follows

u(t) = −γ (L⊗ Im) η2(t)

= −γ (L⊗ Im) y(t+ τ2) + γ (L⊗ Im) ε2(t+ τ2), (A.134)

where u = col(u1, ..., uk) ∈ Rkm. Denote ũ := col((u1 − u2), ..., (u1 − uk)), it
follows that

ũ(t) = −γ
(
L̃⊗ Im

)
ỹ(t+ τ2) + γ

(
L̃⊗ Im

)
ε̃2(t+ τ2), (A.135)
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with L̃ as in (A.133). Then, in the new coordinates, the closed-loop system is given
by

˙̃
ζ = q̃(ỹ, ζ̃, y1, ζ1), (A.136)
˙̃y = ã(ỹ, ζ̃, y1, ζ1)− γ(L̃⊗ Im)ỹ(t) + γ(L̃⊗ Im)ε̃2(t), (A.137)

where

ã(ỹ, ζ̃, y1, ζ1) =

 a(y1, ζ1)− a(y1 − ỹ1, ζ1 − ζ̃1)
...

a(y1, ζ1)− a(y1 − ỹk−1, ζ1 − ζ̃k−1)

 , (A.138)

and

q̃(ỹ, ζ̃, y1, ζ1) =

 q(y1, ζ1)− q(y1 − ỹ1, ζ1 − ζ̃1)
...

q(y1, ζ1)− q(y1 − ỹk−1, ζ1 − ζ̃k−1)

 . (A.139)

Since L is symmetric, then there exists a nonsingular matrix U ∈ R(k−1)×(k−1)

such that ‖U‖ = 1 and UL̃U−1 = Λ, where Λ denotes a diagonal matrix with the
nonzero eigenvalues of L as entries. Introduce new coordinates ȳ = (U ⊗ Im)ỹ

and for consistency of notation ζ̄ = ζ̃. In the new coordinates, the closed-loop
system can be written as

˙̄ζ = q̄(ȳ, ζ̄, y1, ζ1), (A.140)
˙̄y = ā(ȳ, ζ̄, y1, ζ1)− γ(Λ⊗ Im)ȳ(t) + γ (Λ⊗ Im) ε̄2(t), (A.141)

where ε̄2 = (U ⊗ Im)ε̃2, ā(ȳ, ζ̄, y1, ζ1) := (U ⊗ Im)ã((U−1 ⊗ Im)ȳ, ζ̄, y1, ζ1), and
q̄(ȳ, ζ̄, y1, ζ1) := q̃((U−1 ⊗ Im)ȳ, ζ̄, y1, ζ1). Notice that ȳ = ζ̄ = 0 implies that the
systems are synchronized because U is nonsingular. Since stability is invariant
under a change of coordinates and ‖U‖ = 1, then from (A.132), it follows that
there exists a positive definite function V̄2 : R(k−1)(n−m) → R≥0, ζ̄ 7→ V̄2(ζ̄) such
that

˙̄V2(ζ̄, ȳ) ≤ −α|ζ̄|2 + c0 ¯|ζ| |ȳ| , (A.142)

for some constants α, c0 ∈ R>0. Consider the function V3(ȳ) = 1
2 ȳ
T ȳ. Then

V̇3 ≤ −γλ2|ȳ|2 + ȳT (ā(ȳ, ζ̄, y1, ζ1) + γ(Λ⊗ Im)ε̄2). (A.143)

Ultimate boundedness of the solutions and smoothness of the function a(·) imply
that

ȳT ā(ȳ, ζ̄, y1, ζ1) ≤ c1 |ȳ|2 + c2 |ȳ| |ζ̄|,
γȳT (Λ⊗ Im)ε̄2 ≤ γλk |ȳ| |ε̄2|,
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for some positive constants c1, c2 ∈ R>0. Consider the function V2(ζ̄, ȳ) = V̄2(ζ̄)+

V3(ȳ), then

V̇2 ≤ −(γλ2 − c1) |ȳ|2 + (c2 + c0) |ȳ| |ζ̄| − α|ζ̄|2 + γλk |ȳ| |ε̄2|.

Next, from the proof of Lemma 7.2, consider the function

V3(ε1, ε2) =

k∑
i=1

V1(ε1i, ε2i) =

k∑
i=1

V0(ε1i) + V1(ε2i), (A.144)

withV0(·) andV1(·) from (A.111) and (A.115), respectively. Let the functionV3(ε1, ε2)

be a Lyapunov-Razumikhin function such that if V3(ε1(t), ε2(t)) > κ2V(ε1(t +

θ), ε2(t + θ)), for θ ∈ [−2τ, 0] and some constant κ > 1, then from the proof of
Lemma 7.2, it follows that

V̇3 ≤ −α |ε1|2 −
(
κ− c1 − κκ2τ − κκτc1

)
|ε2|2

+ (c0 + c2 + κκτc2) |ε1| |ε2| .

Finally, consider the function V(x̄, ε) = V2(ζ̄, ȳ) +V3(ε1, ε2) with x̄ = col(ζ̄, ȳ) and
ε = col(ε1, ε2). Then, using the fact that |ε̄2| ≤ ‖M‖|ε2| =

√
k|ε2|, taking κ on the

boundary κ = 1, and combining the previous results, it follows that

V̇ ≤ −α|ζ̄|2 − (γλ2 − c1) |ȳ|2 + (c0 + c2) |ȳ| |ζ̄| (A.145)

− α |ε1|2 −
(
κ− c1 − κ2τ − κτc1

)
|ε2|2

+ (c0 + c2 + κτc2) |ε1| |ε2|+ γ
√
kλk |ȳ| |ε2|.

Some straightforward algebra shows that (A.145) is negative definite if the follow-
ing inequalities are satisfied

γ > γ′ :=
1

λ2

(
c1 +

(c0 + c2)2

4α

)
=
κ′

λ2
, (A.146)

(
κ− κ̄(γ)

)
−
(
κ+

c̄1
c̄2

)
κτ − 1

c̄2
(κτ)2 > 0, (A.147)

with constants κ′, c̄1, c̄2 ∈ R>0 from the proof of Lemma 7.2, defined in (A.118)
and (A.119), and {

κ̄(γ) := κ′ + σ′γ2

γ−γ′ ,

σ′ :=
kλ2
k

4λ2
.

(A.148)

Since the constants in (A.146) and (A.147) are positive by construction and κ, τ ,
and γ are nonnegative by definition, then a necessary condition for (A.147) to be
satisfied is that κ > κ̄(γ). We are only interested in possible values of κ, τ, γ ∈ R≥0
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such that (A.146) and (A.147) are satisfied. Then, we restrict the function κ̄(γ) to
the set Γ := (γ′,∞). It is easy to verify that the function κ̄ : Γ → [κ̄(2γ′),∞)

is strictly positive, continuous, and real-valued on Γ. Notice that the inequality
(A.147) has the same structure as (A.117), which is the inequality that has to be
satisfied to render the origin of the prediction error dynamics (7.16),(7.17) asymp-
totically stable. The only difference between them is that the delay-free term in
(A.117) depends solely on κ while in (A.147) depends on both κ and γ. Then, as
in the proof of Lemma 7.2, the inequality (A.147) amounts to

τ < ϕ̄(κ, γ) := −
(
c̄2 +

c̄1
κ

)
+

√(
c̄2 +

c̄1
κ

)2

+ 2c̄2
(κ− κ̄(γ))

κ2
. (A.149)

Again, we are only interested in possible values of κ, τ, γ ∈ R≥0 such that (A.146)
and (A.147) are satisfied. Then, we restrict the function ϕ̄(κ, γ) to the setwhereκ >
κ̄(γ) and γ > γ′, i.e., restricted to K := {κ, γ ∈ [κ̄(2γ′),∞) × Γ | κ > κ̄(γ) }. The
function ϕ̄ : K → R≥0 is continuous and real-valued on K. Moreover, it is strictly
positive on the interior of K, it is zero on the curve κ = κ̄(γ), i.e., (ϕ̄ ◦ κ̄)(γ) = 0,
and limκ→∞ ϕ̄(κ, γ) = 0 for all γ ∈ Γ. The function ϕ̄(·) is differentiable on K,
then we can compute its local extrema by computing its critical points. It is easy
to verify that ∂ϕ̄(κ,γ)

∂κ = 0 only for κ = κ̄∗3(γ) and κ = κ̄∗4(γ) with

κ̄∗3 =

(
1 +

1

1 + 2c̄1

)
κ̄(γ) +

√
2c̄21c̄2κ̄(γ)(1 + 2c̄1 + 2c̄2κ̄(γ))

c̄2(1 + 2c̄1)
, (A.150)

κ̄∗4 =

(
1 +

1

1 + 2c̄1

)
κ̄(γ)−

√
2c̄21c̄2κ̄(γ)(1 + 2c̄1 + 2c̄2κ̄(γ))

c̄2(1 + 2c̄1)
. (A.151)

Likewise, ∂ϕ̄(κ,γ)
∂γ = 0 only for γ = 0 and γ = 2γ′ = 2κ′

λ2
. Notice that κ̄∗3(γ) > κ̄(γ)

for all γ ∈ Γ; therefore, κ̄∗3(γ) belongs to the interior ofK. It is difficult to visualize
from (A.151) whether κ̄∗4(γ) is contained in K. Then, we rewrite (A.151) in a more
suitable manner. After some algebra (A.151) can be written as κ̄∗4(κ̄) = A(κ̄)κ̄(γ)

with

A(κ̄) :=

(
1 +

1

1 + 2c̄1

)
−
c̄1
√

4 + 2
c̄2κ̄(γ) + 4c̄1

c̄2κ̄(γ)

1 + 2c̄1
. (A.152)

Hence, if A(κ̄) < 1 for all κ̄ ∈ [κ̄(2γ′),∞), it follows that κ̄∗4(κ̄) = A(κ̄)κ̄(γ) < κ̄(γ)

for all γ ∈ Γ and therefore κ̄∗4(κ̄) /∈ K. It is easy to check that the function A(κ̄)

does not have any critical points, limκ̄→0+A(κ̄) = −∞, and limκ̄→∞A(κ̄) = 2
1+2c̄1

.
Then, the functionA(κ̄) does not have any local maxima on the interval (0,∞) and
its greatest value occurs at infinity. It follows that A(κ̄) < 1 for all κ̄ ∈ [κ̄(2γ′),∞)

if 2
1+2c̄1

< 1, which is trivially true from the definition of c̄1 in (A.119). Hence, it
can be concluded that the function ϕ̄(κ, γ) has a unique extremum on K and it is
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given by ϕ̄(κ̄∗3(2γ′), 2γ′). Finally, given that ϕ̄(κ̄(γ), γ) = 0, limκ→∞ ϕ̄(κ, γ) = 0 for
all γ ∈ Γ, ϕ̄(κ, γ) is strictly positive on the interior of K, and ϕ̄(κ̄∗3(2γ′), 2γ′) is the
unique extremum onK. It follows that ϕ̄(κ̄∗3(2γ′), 2γ′) is the unique maximum on
K and the function ϕ̄(κ, γ) is concave. Then, ultimate boundedness of the solu-
tions and the Lyapunov-Razumikhin theorem imply that the set {col(ε, ζ̄, z̄) = 0}
(and therefore {col(ε, ζ̃, z̃) = 0} as well) is a global attractor if τ < ϕ(κ), γ > γ′,
κ > κ̄(γ), τ < ϕ̄(κ, γ), and (γ, κ) ∈ N with N the boundedness set defined in
Lemma 7.4. �
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Appendix B

Auxiliary Technical Results of
Chapter 8

B.1 Ultimately Bounded Solutions

In order to have the synchronization problem well-defined, we require the
solutions of the time-delayed coupled systems to be bounded on the whole
positive time-axis. Using the notion of semipassivity, we present conditions at the
level of the dynamics of the individual systems that ensure the whole network to
have uniformly ultimately bounded solutions. We emphasize that these results are
non-trivial. Even if the solutions of individual systems are bounded the solutions
of (time-delayed) coupled systems may grow unbounded. To simplify notation,
we let xi := col(zi, yi) and rewrite system (8.1) as{

ẋi = f(xi, ui),

yi = h(xi),
(B.1)

with i ∈ I, state xi ∈ Rn, input ui ∈ Rm, output yi ∈ Rm, and sufficiently smooth
functions f : Rn ×Rm → Rn and h : Rn → Rm.

Definition B.1. [107]. Consider the system (B.1) and a non-negative function
V ∈ Cr(Rn,R≥0), which is called the storage function. Assume that along solutions
xi of (B.1) for a given input ui defined on [t0, t], we have

V (xi(t))− V (xi(t0)) ≤
∫ t

t0

(
(yTi ui)(s)−H(xi(s))

)
ds, (B.2)

with H ∈ C(Rn,R). Then, system (B.1) is called:

187
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1. Cr-semi-passive, with respect to input ui and output yi, if (B.2) is satisfied with the
function H(·) non-negative outside some ball B = B(0, R) ⊂ Rn, i.e., ∃R > 0

such that |xi(t)| > R→ H(xi(t)) ≥ 0;

2. strictly Cr-semi-passive, with respect to input ui and output yi, if (B.2) is satisfied
with the function H(·) positive outside some ball B = B(0, R) ⊂ Rn.

Remark B.2. If the storage function V ∈ C1, then (B.2) may be replaced by

V̇ (xi(t)) ≤ (yTi ui)(t)−H(xi(t))

along solutions xi of (B.1) for given input ui.

Remark B.3. System (B.1) is Cr-passive (strictly Cr-passive) if it is Cr-semi-passive
(strictly Cr-semi-passive) with H(·) being positive semi-definite (positive definite).

In light of Remark B.3, a (strictly) Cr-semi-passive system behaves like a (strictly)
passive system for large |xi(t)|. From a physical point of view, one may think of
a semi-passive system as a passive system with a limited amount of free energy.
The class of strictly semi-passive systems includes, e.g., the chaotic Lorenz system
[104] and many models that describe the action potential dynamics of individual
neurons [136].

Theorem B.4. [132]. Consider a network of k coupled systems (8.1),(8.2) on the simple
and strongly connected graph G = (V, E , A). Letw1, w2, w3 : [0,∞)→ [0,∞) be strictly
increasing functions and w1(0) = w2(0) = w3(0) = 0. Suppose that the systems (8.1)
are strictly C1-semi-passive with a storage function V (·) satisfying

w1(|xi(t)|) ≤ V (xi(t)) ≤ w2(|xi(t)|),
and the function H(·) is such that

H(xi(t)) ≥ w3(|xi(t)|)−M,

for some constant M ≥ 0. Then, the solutions of the coupled systems (8.1),(8.2) are
uniformly ultimately bounded.

Theorem B.5. [132]. Consider a network of k coupled systems (8.1),(8.3) on the simple
and strongly connected graph G = (V, E , A). Letw1, w2, w3 : [0,∞)→ [0,∞) be strictly
increasing functions and w1(0) = w2(0) = w3(0) = 0. Suppose that the systems (8.1)
are strictly C1-semi-passive with a storage function V (·) satisfying

w1(|xi(t)|) ≤ V (xi(t)) ≤ w2(|xi(t)|),
and the function H(·) is such that

H(xi(t)) ≥ 2γmax|yi(t)|2 + w3(|xi(t)|)−M,

for some constants γmax > 0 and M ≥ 0. Then, the solutions of the coupled systems
(8.1),(8.3) are uniformly ultimately bounded for γ ∈ [0, γmax).
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Notice that the conditions for boundedness of the solutions in networks of full
delay coupled systems depend directly on the coupling strength γ. We remark
that, under the assumptions of Theorem B.5, the solutions of the network of cou-
pled systems (8.1),(8.3) are uniformly bounded for coupling strengths larger than
γmax provided that the time-delay τ is sufficiently small. This result, which is
partly presented in Ref. [130], is beyond the scope of this paper. In particular, for
the systems that we consider in the next sections the constant γmax can be chosen
arbitrarily large.

B.2 NecessaryConditions for Partial Synchronization

Proposition B.6. [135]. Assume that A = AT is the adjacency matrix of a simple and
strongly connected graph, and that the row sums of A all equal 1. Then A has eigenvalues
1 = λ1 > λ2 ≥ . . . ≥ λk ≥ −1. Given a permutation matrix Π that commutes with A,
let ΛΠ be the set of eigenvalues of A with eigenvectors in the set range(I −Π). Then

• γ∗ < γ̄ only if the largest element of ΛΠ is strictly smaller than λ2;

• χ∗ > χ̄ only if all elements of ΛΠ are in absolute value is strictly smaller than
max{|λ2|, |λk|}.

Proposition B.7. [135]. Suppose that L = LT is the Laplacian matrix of a simple and
strongly connected graph. Then L has eigenvalues 0 = λ1 < λ2 ≤ . . . ≤ λk. Given a
permutation matrix Π that commutes with L, let ΛΠ be the set of eigenvalues of L with
eigenvectors in the set range(I −Π). Then

• γ′ < γ̄ only if the smallest element of ΛΠ is strictly larger than λ2;

• χ′ > χ̄ only if all elements of ΛΠ are strictly smaller than λk.
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Samenvatting

Geregelde Synchronisatie in Netwerken van Diffusief
Gekoppelde Dynamische Systemen

Er zijnminimaal twee cruciale aspecten die in beschouwingmoetenworden geno-
men wanneer synchronisatie in netwerken van dynamische systemen wordt
bestudeerd. Ten eerste moet de dynamica van de individuele systemen worden
bekeken, bijvoorbeeld hun ingangs-uitgangsstabiliteit of hun mate van homogen-
iteit. Ten tweede moet de uitwisseling van informatie tussen deze systemen wor-
den beschouwd, m.a.w. er moet worden bekeken hoe de systemen in het netwerk
informatie over hun toestand communiceren met aangrenzende systemen. Dit
proefschrift bestudeert de relatie van deze twee aspecten tot het optreden van
synchroon gedrag in netwerken van gekoppelde dynamische systemen. In het
bijzonder wordt voor bepaalde klassen van systemen onderzocht welke netwerk-
structuren en koppelingen leiden tot synchronisatie van de onderling verbonden
systemen. In een netwerk resulteert informatie uitwisseling tussen de systemen
onvermijdelijk in tijdsvertragingen vanwege de tijd die nodig is om gegevens te
verzenden van het ene systeem naar het andere systeem. Het effect van deze
door het netwerk geïnduceerde tijdvertragingen op voorgestelde synchronisatie
schema’s wordt onderzocht.

Allereerst wordt gefocust op synchronisatie in netwerken van lineaire tijdinvari-
ante systemen. Van ieder systeem in het netwerk wordt aangenomen dat het
passief en detecteerbaar is met betrekking tot de koppelingsvariabelen (de meet-
bare uitgang). De systemen zijn diffusief gekoppeld met een tijdvertraging. Dat
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wil zeggen dat zij gekoppeld zijn via gewogen, vertraagde verschillen van hun
uitgang. We leiden voorwaarden af die ultieme begrensdheid van de oplossin-
gen van de gekoppelde systemen garanderen gebruik makend van de passiviteit
van de individuele systemen en Lyapunov-Krasovskii functionalen. Als detecteer-
baarheid wordt aangenomen en wordt aangenomen dat aan een aantal andere
milde voorwaarden is voldaan wordt bewezen dat er altijd een gebied bestaat in
de parameterruimte opgespannen door de koppelingssterkte en de tijdvertrag-
ing, het zogenaamde synchronisatiegebied, waarbij de systemen synchroniseren.
Vervolgensworden voorspellings-gebaseerde diffusieve dynamische koppelingen
voorgesteld die nog steeds synchroon gedrag laten zien als tijdvertragingen in de
communicatie toenemen. Anders gesteld, door voorspellingen te introduceren in
de koppelingen wordt bewezen dat het synchronisatiegebied kan worden verg-
root. Bovendienwordenwaarnemer-gebaseerde diffusieve dynamische koppelin-
gen voorgesteld om de klassen van synchroniserende systemen uit breiden. Door
waarnemers in de gesloten lus op te nemen is de aanname van passiviteit m.b.t.
demeetbare uitgang nietmeer nodig zolang passiviteit gegarandeerd ism.b.t. een
andere uitgangsfunctie.

Vervolgens worden een aantal van deze resultaten uitgebreid naar een bepaalde
klasse van niet-lineaire systemen. De begrippen passiviteit en detecteerbaarheid
die worden gebruikt bij lineaire systemen worden vervangen door respectievelijk
semi-passiviteit en convergentie voor het niet-lineaire geval. Semi-passiviteit en
convergentie worden hierbij niet aangenomen m.b.t. de meetbare uitgang. Dit
wordt verondersteld te gelden m.b.t. een andere uitgangsfunctie die niet direct
wordt gemeten. Indien er echter een niet-lineaire waarnemer bestaat die de semi-
passieve uitgang schat op basis van metingen van de beschikbare uitgang, kan
dezeworden gebruikt om eenwaarnemer-gebaseerde diffusieve dynamische kop-
peling te construeren om de systemen onderling te verbinden. Een algemene aan-
pak is ontwikkeld om de waarnemer dynamica te construeren door gebruik te
maken van de begrippen immersie en invariantie. Voldoende voorwaarden wor-
den afgeleid m.b.t. de systemen, de koppelingen, de convergentiesnelheid van
de waarnemer en de tijdvertraging die begrensdheid van de oplossingen alsmede
synchronisatie van de gekoppelde systemen garanderen.

Het mogelijk optreden van gedeeltelijke synchronisatie wordt ook bestudeerd.
Gedeeltelijke synchronisatie is het verschijnsel, waarbij een aantal, minimaal twee,
systemen in het netwerk synchroniseren maar niet met ieder systeem in het net-
werk. Door gebruik te maken van symmetrieën in het netwerk kunnen lineair in-
variante hypervlakken van de gekoppelde systemen worden geïdentificeerd. In-
dien deze hypervlakken aantrekkend zijn, kunnen de systemen in het netwerk
gedeeltelijke synchronisatie vertonen. Bewezen wordt dat een lineaire invariant
hypervlak gedefinieerd door een symmetrie in het netwerk aantrekkend is, als de
interactie tussen de systemen voldoende sterk is en de convergentiesnelheid van
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de waarnemer hoog genoeg is. Vervolgens wordt een resultaat m.b.t. netwerk
synchronisatie gepresenteerd voor het geval dat er een andere tijdvertraging op-
treedt bij het meten van de uitgang als bij de datatransmissie van de regelaars.
Voorspeller-gebaseerde diffusieve dynamische koppelingen gebaseerd ophet con-
cept van anticiperende synchronisatie worden voorgesteld om de systemen te
verbinden. Aangetoond wordt dat de tijdvertraging bij deze koppelingen toe kan
nemen terwijl synchroon gedrag behouden blijft. Dit betekent dat het mogelijk
is om het synchronisatiegebied significant uit te breiden door voorspellers te ge-
bruiken.

In het laatste deel van het proefschrift worden een aantal experimentele resultaten
gepresenteerd m.b.t. synchronisatie in een netwerk met diffusieve statische kop-
pelingen met tijdvertraging. Hierbij is gebruik gemaakt van een experimentele
opstelling bestaande uit een elektronisch equivalent van een aantal gekoppelde
zenuwcellen gebaseerd op het Hindmarsh-Rosemodel. Het is belangrijk om op te
merken dat in een praktische situatie niet verwacht kan worden dat de dynamica
van de systemen in het netwerk volledig identiek is. De informatie die wordt uit-
gewisseld tussen de systemen zal vervuild zijnmet een zekeremate van ruis en de
systemen zelf zullen onderling ook (kleine) verschillen vertonen. Vanwege deze
inherente imperfecties kan niet verwacht worden dat de verschillen tussen de toe-
standen van de systemen naar nul convergeren. Het is noodzakelijk om een ver-
schil tussen deze toestanden toe te staan. Dit verschil moet uiteraard klein genoeg
zijn om te kunnen constateren dat deze systemen ’praktisch gesynchroniseerd’
zijn. Daarom wordt het begrip (gedeeltelijke) praktische synchronisatie ingevo-
erd. Dit begrip drukt uit dat in experimenten systemen (gedeeltelijk) gesynchro-
niseerd genoemdmogenworden indien de verschillen tussen hun uitgangen klein
genoeg zijn op een lang, maar eindig, tijdinterval. Eerst wordt praktische syn-
chronisatie van twee diffusief gekoppelde elektronische Hindmarsh-Rose circuits
bestudeerd. Vervolgens worden drie experimentele studies gepresenteerd m.b.t.
gedeeltelijke praktische synchronisatie. Ten slotte wordt de relatie tussen de voor-
waarden voor synchronisatie van symmetrisch gekoppelde systemen en de net-
werktopologie experimenteel onderzocht.
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