10 research outputs found

    Possibilistic networks parameter learning: Preliminary empirical comparison

    Get PDF
    International audienceLike Bayesian networks, possibilistic ones compactly encode joint uncertainty representations over a set of variables. Learning possibilistic networks from data in general and from imperfect or scarce data in particular, has not received enough attention. Indeed, only few works deal with learning the structure and the parameters of a possibilistic network from a dataset. This paper provides a preliminary comparative empirical evaluation of two approaches for learning the parameters of a possibilistic network from empirical data. The first method is a possibilistic approach while the second one first learns imprecise probability measures then transforms them into possibility distributions by means of probability-possibility transformations. The comparative evaluation focuses on learning belief networks on datasets with missing data and scarce datasets

    MPE inference in conditional linear gaussian networks

    Get PDF
    Given evidence on a set of variables in a Bayesian network, the most probable explanation (MPE) is the problem of nding a con guration of the remaining variables with maximum posterior probability. This problem has previously been addressed for discrete Bayesian networks and can be solved using inference methods similar to those used for finding posterior probabilities. However, when dealing with hybrid Bayesian networks, such as conditional linear Gaussian (CLG) networks, the MPE problem has only received little attention. In this paper, we provide insights into the general problem of fi nding an MPE con guration in a CLG network. For solving this problem, we devise an algorithm based on bucket elimination and with the same computational complexity as that of calculating posterior marginals in a CLG network. We illustrate the workings of the algorithm using a detailed numerical example, and discuss possible extensions of the algorithm for handling the more general problem of fi nding a maximum a posteriori hypothesis (MAP)

    On the algebraic structure of conditional events: 13th European conference, ECSQARU 2015, Compiègne, France, July 15-17, 2015.

    Get PDF
    This paper initiates an investigation of conditional measures as simple measures on conditional events. As a first step towards this end we investigate the construction of conditional algebras which allow us to distinguish between the logical properties of conditional events and those of the conditional measures which we can be attached to them. This distinction, we argue, helps us clarifying both concepts

    Decrement Operators in Belief Change

    Full text link
    While research on iterated revision is predominant in the field of iterated belief change, the class of iterated contraction operators received more attention in recent years. In this article, we examine a non-prioritized generalisation of iterated contraction. In particular, the class of weak decrement operators is introduced, which are operators that by multiple steps achieve the same as a contraction. Inspired by Darwiche and Pearl's work on iterated revision the subclass of decrement operators is defined. For both, decrement and weak decrement operators, postulates are presented and for each of them a representation theorem in the framework of total preorders is given. Furthermore, we present two sub-types of decrement operators

    Synergies between machine learning and reasoning - An introduction by the Kay R. Amel group

    Get PDF
    This paper proposes a tentative and original survey of meeting points between Knowledge Representation and Reasoning (KRR) and Machine Learning (ML), two areas which have been developed quite separately in the last four decades. First, some common concerns are identified and discussed such as the types of representation used, the roles of knowledge and data, the lack or the excess of information, or the need for explanations and causal understanding. Then, the survey is organised in seven sections covering most of the territory where KRR and ML meet. We start with a section dealing with prototypical approaches from the literature on learning and reasoning: Inductive Logic Programming, Statistical Relational Learning, and Neurosymbolic AI, where ideas from rule-based reasoning are combined with ML. Then we focus on the use of various forms of background knowledge in learning, ranging from additional regularisation terms in loss functions, to the problem of aligning symbolic and vector space representations, or the use of knowledge graphs for learning. Then, the next section describes how KRR notions may benefit to learning tasks. For instance, constraints can be used as in declarative data mining for influencing the learned patterns; or semantic features are exploited in low-shot learning to compensate for the lack of data; or yet we can take advantage of analogies for learning purposes. Conversely, another section investigates how ML methods may serve KRR goals. For instance, one may learn special kinds of rules such as default rules, fuzzy rules or threshold rules, or special types of information such as constraints, or preferences. The section also covers formal concept analysis and rough sets-based methods. Yet another section reviews various interactions between Automated Reasoning and ML, such as the use of ML methods in SAT solving to make reasoning faster. Then a section deals with works related to model accountability, including explainability and interpretability, fairness and robustness. Finally, a section covers works on handling imperfect or incomplete data, including the problem of learning from uncertain or coarse data, the use of belief functions for regression, a revision-based view of the EM algorithm, the use of possibility theory in statistics, or the learning of imprecise models. This paper thus aims at a better mutual understanding of research in KRR and ML, and how they can cooperate. The paper is completed by an abundant bibliography

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Remote Sensing and Geosciences for Archaeology

    Get PDF
    This book collects more than 20 papers, written by renowned experts and scientists from across the globe, that showcase the state-of-the-art and forefront research in archaeological remote sensing and the use of geoscientific techniques to investigate archaeological records and cultural heritage. Very high resolution satellite images from optical and radar space-borne sensors, airborne multi-spectral images, ground penetrating radar, terrestrial laser scanning, 3D modelling, Geographyc Information Systems (GIS) are among the techniques used in the archaeological studies published in this book. The reader can learn how to use these instruments and sensors, also in combination, to investigate cultural landscapes, discover new sites, reconstruct paleo-landscapes, augment the knowledge of monuments, and assess the condition of heritage at risk. Case studies scattered across Europe, Asia and America are presented: from the World UNESCO World Heritage Site of Lines and Geoglyphs of Nasca and Palpa to heritage under threat in the Middle East and North Africa, from coastal heritage in the intertidal flats of the German North Sea to Early and Neolithic settlements in Thessaly. Beginners will learn robust research methodologies and take inspiration; mature scholars will for sure derive inputs for new research and applications
    corecore