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Abstract Like Bayesian networks, possibilistic ones compactly encode
joint uncertainty representations over a set of variables. Learning possibi-
listic networks from data in general and from imperfect or scarce data in
particular, has not received enough attention. Indeed, only few works deal
with learning the structure and the parameters of a possibilistic network
from a dataset. This paper provides a preliminary comparative empirical
evaluation of two approaches for learning the parameters of a possibilistic
network from empirical data. The first method is a possibilistic approach
while the second one first learns imprecise probability measures then
transforms them into possibility distributions by means of probability-
possibility transformations. The comparative evaluation focuses on lear-
ning belief networks on datasets with missing data and scarce datasets.

Revue d’intelligence artificielle – no /JFRB, 1-13

veronique
Rectangle

veronique
Rectangle

veronique
Rectangle



2 RIA. Volume 2016 – no /JFRB

1. Introduction

Graphical belief models are compact and powerful representations of uncertain
information. They allow to factorize a joint uncertainty measure such as a joint proba-
bility measure over a set of variables into a set of local measures. This factorization is
often based on the conditional independence relations. Belief networks are either built
from information elicited directly from experts or learnt automatically by machine
learning techniques from empirical data. Possibilistic formalisms are more suitable
for representing qualitative and incomplete information. However, there are only few
works dealing with learning possibilistic networks from data (Kruse, Borgelt, 1995 ;
Borgelt, Kruse, 1998 ; Haddad et al., 2015b ; 2015a). In particular, learning a possi-
bilistic network may be sound in case of small datasets or datasets with missing or
imprecise information (Dubois, Prade, 2016 ; Haddad et al., 2015a ; 2015b).
Learning a graphical belief model comes down in general to i) learn the graphical com-
ponent, also called structure (namely, extract and encode the independence relation-
ships) and ii) learn the parameters (fill the local tables) associated with each variable.
In this paper, we focus on parameter learning of possibilistic networks. Namely, given
a structure and a dataset, the goal is to assess local possibility tables of each variable
in the context of its parents. The main contributions of the paper are:

– An empirical comparison of two main approaches for learning possibility distri-
butions from data on synthetic datasets. This evaluation compares the networks learnt
using two different approaches using a generalized form of the information affinity
measure (Jenhani et al., 2007).

– An empirical comparison of learning naive possibilistic network classifiers from
real datasets. The evaluation here aims to compare the predictive power of possibilistic
classifiers learnt from small datasets containing missing data.

2. Graphical belief models

Belief graphical models such as Bayesian (Darwiche, 2009), credal (Cozman,
2000) and possibilistic networks (C. Borgelt, Kruse, 2003) are powerful tools for
representing and reasoning with uncertain information. Bayesian networks allow to
compactly encode a probability distribution thanks to the conditional independence
relationships existing between the variables. Credal networks, based on the theory of
credal sets, generalize Bayesian networks in order to allow some flexibility regarding
the model parameters. They are for instance used in robustness analysis and for en-
coding incomplete and ill-known knowledge and reasoning with the knowledge of
groups of experts. Possibilistic networks are the counterparts of Bayesian networks
based on possibility theory (Dubois, Prade, 1988 ; Zadeh, 1999), more suited for hand-
ling imperfect, qualitative and partial information.

2.1. Bayesian networks

Bayesian networks (BN ) are well-known probabilistic graphical models
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(Darwiche, 2009). They allow to compactly represent a probability distribution over a
set of variables of interest. A BN=<G,Θ> is specified by:

– A graphical component G with nodes and arcs forming a directed acyclic graph
(DAG). Each node represents a variable Ai of the modeled problem and the edges
encode independence relationships among variables.

– A quantitative component Θ, where each variable Ai is associated with a local
probability distribution p(Ai|par(Ai)) for Ai in the context of its parents par(Ai).

The joint probability distribution encoded by a Bayesian network is computed using
the following chain rule:

P (A1, .., An) =

n∏
i=1

P (Ai|par(Ai)) (1)

2.2. Credal networks

Credal networks are probabilistic graphical models based on imprecise probabili-
ties. These latter could be encoded using different representations such as the vertex-
based representation (where the credal set is convex and it is characterized by its ex-
treme points), the interval-based representation (where each event is associated with
an interval of probability degrees), etc. A credal network CN=<G,K> is a probabi-
listic graphical model where

– G=<V , E> is a directed acyclic graph (DAG) encoding conditional indepen-
dence relationships where V ={A1, A2, .., An} is the set of variables of interest (Di

denotes the domain of variable Ai) and E is the set of arcs of G.
– K={K1,K2, ..,Kn} is a collection of local credal sets, each Ki is associated

with the variable Ai in the context of its parents par(Ai).

Such credal networks are called separately specified credal networks as the only constraints
on probabilities are specified in local tables for each variable in the context of its
parents. Note that in practice, in local tables, one can either specify a set of ex-
treme points characterizing the credal set as in JavaBayes 1 software or directly local
interval-based probability measures.
A credal network CN can be seen as a set of Bayesian networks BN s, each encoding
a joint probability distribution. One can compute an interval-based joint probability
distribution as follows:

P (a1a2..an) = min
p∈ext(CN )

(p(a1a2..an)) (2)

P (a1a2..an) = max
p∈ext(CN )

(p(a1a2..an)) (3)

In Equations 2 and 3, p(a1a2..an) is computed with the chain rule (see Equation 1).
Note that the vertices of ext(CN ) can be obtained by considering only the set of
vertices of the local credal sets Ki associated with the variables (Cozman, 2000).

1. http://www.cs.cmu.edu/~javabayes/Home/
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2.3. Possibilistic networks

A possibilistic network PN=<G,Θ> is specified by:
i) A graphical component G consisting of a directed acyclic graph (DAG) where

vertices represent the variables and edges represent direct dependence relationships
between variables.

ii) A numerical component Θ allowing to weight the uncertainty relative to each
variable using local possibility tables. The possibilistic component consists in a set
of local possibility tables θi=π(Ai|par(Ai)) for each variable Ai in the context of its
parents par(Ai) in the network PN .

Note that all the local possibility distributions θi must be normalized, namely ∀i=1..n,
for each parent context par(ai), maxai∈Di

(π(ai | par(ai))=1. See in Figure 1 an
example of a Bayesian network and an example of a possibilistic one.
In the possibilistic setting, the joint possibility distribution is factorized using the fol-
lowing possibilistic counterpart of the chain rule:

π(a1, a2, .., an) = ⊗ni=1(π(ai|par(ai))). (4)

where ⊗ denotes the product or the min-based operator depending on the quantitative
or the qualitative interpretation of the possibilistic scale (Dubois, Prade, 1988). In this
work, we are interested only in product-based possibilistic networks since we view
possibility degrees as upper bounds of probability degrees.

3. Learning the parameters of a possibilistic network

Learning the parameters of a possibilistic network is the problem of assessing the
entries of local possibility tables π(Ai|par(Ai)) for each variable Ai given a struc-
ture S and a dataset D. The structure here is assumed to be given (eg. when learning
naive classifiers, the structure is fixed in advance by assumption) or learnt automati-
cally. There are basically two ways to learn the parameters (Haddad et al., 2015a ;
2015b): i) Transformation-based approach (TA for short) and ii) Possibilistic-based
approach (PA for short). Note that the authors in (Serrurier, Prade, 2015) propose a
possibilistic-based method for learning the structure of a Bayesian network.

3.1. Transformation-based approach

This approach consists in first learning the parameters of a probabilistic network
then transforming the obtained probabilistic network into a possibilistic one (Haddad
et al., 2015a ; 2015b ; Benferhat et al., 2015 ; Slimen et al., 2013). Transformations
can be useful in various contexts such as using the existing tools (e.g. algorithms and
software) developed in one setting rather than developing everything from scratch for
the other setting or exploiting information provided in different uncertainty languages
as it is often the case in some multiple expert applications.
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Many probability-possibility transformations exist (Dubois et al., 2004 ; Klir, Geer,
1993 ; Zadeh, 1999) but most of the works deal with the desirable properties and pro-
pose transformations satisfying such properties. Among these transformations, the op-
timal transformation (OT ) (Dubois et al., 2004) is defined as follows:

πi =
∑

j/pj≤pi

pj , (5)

where πi (resp. pi) denotes π(ωi) (resp. p(ωi)). The transformation of Equation 5
transforms p into π and guarantees that the obtained possibility distribution π is the
most specific 2 (hence most informative) one that is consistent and preserving the order
of interpretations.

In case where the probabilistic model is a credal one (Bayesian networks where
local tables encode sets of probability measures), one can make use of imprecise pro-
bability - possibility transformations turning for instance an interval-based probability
distribution (IPD) into a possibilistic one. For instance, the transformation proposed
in (Masson, Denoeux, 2006) allows to find a possibility distribution dominating all
the probability measures defined by probability intervals. This transformation tries
on the one hand to preserve the order of interpretations induced by the IPD and the
dominance principle requiring that ∀φ⊆Ω, P (φ)≤Π(φ) on the other hand. Such trans-
formations correspond to viewing possibility degrees as upper bounds of probability
degrees (Dubois et al., 1993). There are two main drawbacks with the transformation
proposed in (Masson, Denoeux, 2006) : i) its computational cost (it considers in the
worst case N ! linear extensions where N is the size of the distribution to transform)
and ii) the fact that this transformation does not guarantee that the obtained distribu-
tion is optimal in terms of specificity. Indeed, it was shown in (Destercke et al., 2007)
that the transformation of (Masson, Denoeux, 2006) results in a loss of information
as it is not the most specific one dominating the considered interval-based probability
distribution.
In (Destercke et al., 2007), the authors claim that any upper generalizedR-cumulative
distribution F built from one linear extension can be viewed as a possibility distribu-
tion and it also dominates all the probability distributions that are compatible with the
IPD. Let Cl be a linear extension compatible with the partial orderM induced by an
IPD. Let φ1, φ2..φn be subsets of Ω such that φi={ωj |ωj ≤Cl ωi}. The upper cumu-
lative distribution F built from one linear extension Cl is as follows (see (Destercke et
al., 2007) for more details):

F (φi) = min(
∑
ωj∈φi

uj , 1−
∑
ωj 6∈φi

lj) (6)

The obtained cumulative distribution F is a possibility distribution dominating the
IPD and it is such that P (φi)=Π(Ai). The advantage of such a transformation, also
called p-box transformation, is its low computational cost (linear in the size of do-
mains) and the fact that the obtained distribution is better in terms of specificity (mea-
ning that the transformation process losses less information).

2. Let π′ and π′′ be two possibility distributions, π′ is more specific than π′′ iff ∀ωi∈Ω, π′(ωi)≤π′′(ωi)
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Now, using a probability-possibility transformation, one can turn a Bayesian or
credal network BN into a possibilistic network PN only by turning every local pro-
bability table into a possibilistic one while preserving the structure of the network in
order to preserve the conditional independences encoded by BN .

EXEMPLE 1. — Let BN be the Bayesian network of Figure 1 over two variables A
and B having the domains DA={a1, a2} and DB={b1, b2, b3} respectively.

FIGURE 1. Example of a Bayesian network BN and the possibilistic network PN
obtained from BN using the optimal transformation OT .

�

3.2. Possibilistic-based approach

One view of possibility theory is to consider a possibility distribution π on a va-
riable Ai as a counter function of a random set (Shafer et al., 1976) pertaining to Di,
the domain of Ai. A random set in Di is a random variable which takes its values on
subsets of Di. More formally, let Di be a finite domain. A basic probability assign-
ment or mass function is a mapping m : 2Di 7−→[0, 1] such that

∑
ai⊆Di

(m(ai))=1
and m(∅)=0. A set ai⊆Di such that m(ai)>0 is called a focal set.

The possibility degree of an event ai is the probability of the possibility of the
event i.e. the probability of the disjunction of all events (focal sets) a′i in which this
event is included (C. Borgelt et al., 2009):

π(ai) =
∑

a′i|ai∩a′i 6=∅

m(a′i) (7)

A random set is said to be consistent if there is at least one element ai contained in
all focal sets a′i and the possibility distribution induced by a consistent random set
is, thereby, normalized. Exploring this link between possibility theory and random
sets theory has been extensively studied, in particular, in learning tasks, we cite for
instance (C. Borgelt et al., 2009 ; Joslyn, 1997). In what follows, we investigate this
link to learn possibilistic networks parameters from imprecise data.

Given a DAG and an imprecision degree Si, let Dij = {d(l)
ij } be a dataset re-

lative to a variable Ai, d
(l)
ij ∈ Dij (resp. d(l)

ij ⊆ Dij) if data are precise (resp.
imprecise). The number of occurrences Ai = aik such that Pa(Ai) = j, denoted
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by Nijk, is the number of times Ai = aik such that Pa(Ai) = j appears in Dij :
Nijk = card({l s.t. Ai = aiks.t.Pa(Ai) = j ∈ d(l)

ij }).

ˆπ(A = aik|Pa(Ai) = j) =
Nijk∑ri
k=1Nijk

∗ Si (8)

where qi is card(Pa(Xi)), ri = card(Di) and Si corresponds to the imprecision
degree relative to a variable Ai. To obtain normalized possibility distributions, we
divide each obtained distribution by its maximum. It is evident that this operation
eliminates Si. However, we could assign to each value of Xi an imprecision degree
which could be either set by an expert or inferred from the dataset to learn from.

4. Experimental study 1: How similar are possibilistic networks where the
parameters are learnt using different approaches?

This section provides experimental results comparing the two approaches for lear-
ning the parameters of a possibilistic network from imprecise data.

4.1. Experimentation setup

In this experiment, given a dataset D and a network structure (DAG) S , we com-
pare learning a possibilistic network parameters using two approaches, TA and PA.
We denote by GTA (resp. GPA) the possibilistic network having the structure S and
its parameters are learnt over the dataset D using the transformation-based approach
TA based on the p-box transformation (resp. the possibilistic-based approach PA).
When learning belief graphical models like Bayesian or possibilistic networks from
data, the evaluation is generally carried out by comparing reference networks with
the learnt ones. Reference networks are graphical models that are either chosen by
an expert or randomly generated. From the reference model, a dataset is generated
following the distribution encoded by the reference model. This dataset is then used
to learn models using the approach to be evaluated. The problem then comes down to
compare the learnt model with the reference one. A comparison may take into account
only the joint measures encoded by the learnt and the reference models. In addition,
one may want also to take into account the structure of the learnt and reference mo-
dels. Given that we are only interested in comparing possibilistic networks with same
structure, there is no need to consider the graphical component in our comparisons.
One simple but costly way of comparing the reference network with the learnt one is
to compare only the joint distribution encoded by the reference model with the learnt
model distribution. An example of similarity measure for possibility distributions is
information affinity (Jenhani et al., 2007). However the size of the distribution may be
very huge (it fact, it is exponential in the number of variables of the network) making
it impossible to compare joint possibility distributions. We propose a heuristic method
that compares the networks’ local distributions locally and aggregates the results to
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provide an overall similarity score of two possibilistic networks.
Information affinity (Jenhani et al., 2007) is defined as follows:

InfoAff(π1, π2) = 1− d(π1, π2) + Inc(π1, π2)

2
(9)

where d(π1, π2) represents the mean Manhattan distance between possibility distri-
butions π1 and π2 and defined as follows: d(π1, π2)= 1

N

∑N
i=1 |π1(ωi) − π2(ωi)|.

As for Inc(π1, π2), it is a measure of inconsistency and it assesses the conflict de-
gree between π1 and π2. Namely, Inc(π1, π2)=1-maxωi∈Ω(π1(ωi) ∧ π2(ωi)) where
π1(ωi) ∧ π2(ωi) denotes a combination operation of two possibility distributions. In
(Jenhani et al., 2007) , the min operator is used in a qualitative setting. In a quantitative
setting, a product operator can be used as well.

EXEMPLE 2. — Let Ω={ω1, ω2, ω3, ω4} and let π1 and π2 be two possibility distri-
butions such that π1=(1, .8, .4, 0) and π2=(.9, 1, .2, .2). Then InfoAff(π1, π2)=1-
d(π1,π2)+Inc(π1,π2)

2 =1-d(0,175+0,1)
2 = .8625. �

The measure of Equation 9 satisfies many natural properties such as non-negativity,
symmetry, upper bound and non-degeneracy, lower bound, inclusion and permutation.
However, it cannot be directly applied for assessing the similarity of two possibilistic
networks. Now, in order to assess the similarity between two possibilistic networks
G1 and G2 having the same structure (same DAG), then it may be relevant to com-
pare locally every local possibility distribution πi1 in the network G1 with πi2, namely
its corresponding distribution in G2. This can be done for instance using an aggre-
gation function (in this work, we use the mean) that takes into account all the local
distributions and returns a global similarity score between G1 and G2.

GrInfoAff(G1, G2) =
1

N
(
∑
i=1..N

InfoAff(πi1, π
i
2)), (10)

where N stands for the number of local distributions of the networks.

4.2. Benchmarks

We first generated a set of possibilistic networks with different features (number
of variables, number of parents per variable, rate of imprecise data, etc.). For each
possibilistic networkG, we generate datasets according toG. More precisely, for each
possibilistic networkG (characterized by its number of variables denoted # variables,
the mean number of parents per node denoted µ variables and the mean domain size
of variables µ domain), we generate many datasets (with different sizes). Regarding
the dataset generation process, it consists in generating an imprecise dataset represen-
tative of its possibility distribution. The sampling process constructs a database of N
(predefined) observations by instantiating all variables w.r.t. their possibility distribu-
tions using the α-cut notion expressed as follows:

α− cutAi = {ai ∈ Di s.t. π(ai) ≥ α} (11)
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where α is randomly generated from [0,1].

Obviously, variables are most easily processed w.r.t. a topological order, since this
ensures that all parents are instantiated. Instantiating a parentless variable corresponds
to computing its α-cut. Instantiating a conditioned variable Ai s.t. Pa(Ai = A) cor-
responds to computing the α-cut of π(Ai|Pa(Ai) = A) computed as follows:

π(Ai|Pa(Ai) = A) = max
ai∈A

(π(Ai|ai), π(ai)) (12)

Table 1 gives the details on the generated possibilistic networks and the corresponding
datasets.

Tableau 1. Datasets properties used in experiments 1.

Name # variables µ parents µ domain # datasets
Net10 10 1.6 3.9 9
Net20 20 2.65 3.41 8
Net30 30 2.76 3.48 7

4.3. Results

Table 2 gives the results of computing the similarity on each dataset Di, the possi-
bilistic network GTAi (resp. GPAi ) learnt using the TA (resp. PA) approach with the
reference network Gi used to generate Di.

Tableau 2. Results of experiments 1.

Dataset TA PA

Net10 0.63 0.8
Net20 0.64 0.8
Net30 0.67 0.8

The results of Table 2 show that on the one hand the learnt possibilistic networks
using the TA approach are close to the reference ones. Namely, they have rather a
good similarity with the reference possibilistic networks used to generate the datasets.
Moreover, the obtained similarity scores do not seem to be affected by the number
of variables, variable domains size, etc. Regarding the possibilistic networks learnt
using the PA approach, their similarity scores are slightly better, but this is expected
as the datasets generation process and the PA approach have the same view of pos-
sibility degrees. Such results also rise the issue of similarity measures on possibilistic
networks which is still an open issue.

5. Experimental study 2: Predictive power of possibilistic network classifiers
where the parameters are learnt using different approaches

In this section, we evaluate the predictive power of credal network classifiers
(Corani, Zaffalon, 2008) with respect to their possibilistic network counterparts. More
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precisely, we compare on many datasets the classification efficiency of naive credal
classifier (NCC for short) and the corresponding possibilistic classifiers obtained ei-
ther using the possibilistic-based approach (PNCPA) or using the transformation-
based approach (PNCTA). Moreover, we compare our results to naive Bayes classi-
fier (NBC) as a baseline.

5.1. Experimentation setup

In order to evaluate the NCC classifier, we use the following measures used in
(Corani, Zaffalon, 2008).

– Determinacy (Det): It is the percentage of predictions outputting a unique (precise) class
label.

– Single-Accuracy (SiAcc): It denotes the percentage of correct classifications when the
predictions of NCC are precise.

– Set-Accuracy (SetAcc): It is the proportion of imprecise predictions containing the right
class label.

The evaluation mode used in this experiment is a 10-fold cross validation.

5.1.1. Benchmarks

The experimental study is carried out on the following datasets where some data
values are missing. Note the missing data is assumed to be not missing at random. The
first four datasets of Table 3 are real datasets used in the literature for evaluating classi-
fiers with missing data (http://sci2s.ugr.es/keel/missing.php). The remaining ones are
collected from different sources.

Tableau 3. Datasets used in our experiments.

Name # instances # variables # classes % missing
breast 286 9 2 4 %

housevotes 435 16 2 24 %
mushroom 8124 22 2 31 %

post-operative 90 8 3 3 %
audiology 226 70 24 98%

sick 3772 30 2 20%
primary-tumor 339 18 21 46%

kr-vs-kp 3196 37 2 0 %
crx 690 16 2 2%

5.1.2. Results

Table 4 gives the results of evaluating the NCC classifier on the datasets of Table
3.

The results of Table 4 show good single accuracy rates with high determinacy rates
except for the post-operative, audiology and primary-tumor datasets. Typically,
it’s on small datasets with many classes where the NCC is not efficient.
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Tableau 4. Results of the NCC classifier on the datasets of Table 3.

Dataset Det SiAcc SetAcc
breast 92.43 % 74.08 % 100 %

housevotes 99.52 % 90.26 % 100 %
mushroom 96.10 % 99.56 % 100 %

post-operative 49.67 % 67.57 % 84.36 %
audiology 7.76% 99.55% 99.03%

sick 98.93% 97.54% 100%
primary-tumor 13.59% 77.11% 63.37%

kr-vs-kp 99.18% 88.16% 100%
crx 94.01% 86.34% 100%

Table 5 gives the results of evaluating theNBC (Naive Bayes Classifier), PNCTA
and PNCPA classifiers on the datasets of Table 3.

Tableau 5. Results of the NBC, PNCPA and PNCTA classifiers on the datasets of
Table 3.
% of correct classifications

Dataset NBC PNCPA PNCTA
breast 72.88% 72.73 % 70.27%

housevotes 90.11 % 89.19 % 58.71 %
mushroom 95.73 % 77.35 % 85.34 %

post-operative 68.11 % 67.78 % 71.11%
audiology 72.79% 55.90% 11.54%

sick 96.97% 95.53% 94.41%
primary-tumor 49.54% 28.42% 43.42%

kr-vs-kp 87.82% 85.86% 86.89%
crx 85.38% 85.80% 91.01%

Results of Table 5 show that classifiersNBC, PNCPA and PNCTA have most of
the time comparable results in terms of correct classification rates on some datases but
they show real performances on some other datasets. This is also valid for the results
of the NCC classifier. Now, comparing PNCPA and PNCTA, this latter achieves
better results on two datasets while the former has better classification rates on the
two other datasets. It is not obvious what makes a given approach better, a thourough
analysis of the properties of the datasets is needed to help understanding such results.

6. Discussions and concluding remarks

This paper provides preliminary results comparing two methods for assessing the
parameters of a possibilistic network given a structure and a dataset. The first expe-
riment shows that the possibilistic-based method learns better and more information
in terms of information affinity than the method based on the probability-possibility
transformation. This is not surprising since the data was generated according to the
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possibility distributions of the reference networks. This also confirms that there is
some information loss when transforming probability distributions into possibilistic
ones. Another important result is that the classifiers based on possibilistic networks
have somehoww comparable efficiency with naive Bayes and credal classifiers. On
the other hand, the possibilistic classifiers where the parameters have been learned
with two different approaches have basically comparable results. Overall, these results
show that no system really outperforms the others on all the datasets. Such results are
preliminary but encouraging, a further comparative study on a large number of bench-
marks and problems (classification and inference in general), will be needed to really
compare the two approaches. The question that also arises is how to know for a given
or a particular dataset which kind of classifier to use?
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