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Foreword 

The fourth volume on Advances and Applications of Dezert-Smarandache Theory 
(DSmT) for information fusion collects theoretical and applied contributions of 
researchers working in different fields of applications and in mathematics. The 
contributions (see List of Articles published in this book, at the end of the volume) 
have been published or presented after disseminating the third volume (2009, http://
fs.gallup.unm.edu/DSmT-book3.pdf) in international conferences, seminars,
workshops and journals.  

First Part of this book presents the theoretical advancement of DSmT, dealing with 
Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, 
Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, 
conflicting belief, sources of evidences with different importance and reliabilities, 
importance of sources, pignistic probability transformation, Qualitative reasoning 
under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri 
Method, hierarchical proportional redistribution, basic belief assignment, subjective 
probability measure, neutrosophic logic, Evidence theory, outranking methods, 
Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, 
controlling factor, optimal assignment solution, data association, Transferable Belief 
Model, and others. 

More applications of DSmT have emerged in the past years since the apparition of 
the third book of DSmT 2009. Subsequently, the second part of this volume is about 
applications of DSmT in correlation with Electronic Support Measures, belief function, 
sensor networks, Ground Moving Target  and Multiple target tracking, Vehicle-Born 
Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and 
acoustic sensor, Support Vector Machines, Alarm classification, ability of human 
visual system, Uncertainty Representation and Reasoning Evaluation Framework, 
Threat Assessment, Handwritten Signature Verification, Automatic Aircraft 
Recognition, Dynamic Data-Driven Application System, adjustment of secure 
communication trust analysis, and so on. 

Finally, the third part presents a List of References related with DSmT published or 
presented along the years since its inception in 2004, chronologically ordered. 

We want to thank all the contributors of this fourth volume for their research works 
and their interests in the development of DSmT.  
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We are grateful as well to other colleagues for encouraging us to edit a new 
volume, for sharing with us several ideas and for their questions and comments on 
DSmT through the years.  We thank the International Society of Information Fusion 
(www.isif.org) for diffusing main research works related to information fusion 
(including DSmT) in the international fusion conferences series over the years. 

This book is dedicated to the memory of our good friends and colleagues Dr. Jean-
Pierre Le Cadre, Prof. Pierre Valin (ISIF president 2006) and Prof. Darko Mušicki 
(ISIF President 2008) who have always been very active in ISIF and in the 
organization of past fusion conferences. We will never forget them.

Also, Florentin Smarandache is grateful to The University of New Mexico, U.S.A., 
that many times partially sponsored him to attend international conferences, workshops 
and seminars on Information Fusion, and Jean Dezert is grateful to the Department of 
Information Modeling and Processing (DTIM) at the French Aerospace Lab (Office 
National d’Etudes et de Recherches Aérospatiales), Palaiseau, France, for encouraging
him to carry on this research and for its financial support. 

For the next volume, the authors are pleased to send their articles on DSmT to the 
editors: 

Prof. Florentin Smarandache (fsmarandache@gmail.com)
Dr. Jean Dezert (jdezert@gmail.com). 

The Editors.
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Part 1: 
Theoretical advances 

on DSmT 





Jean Dezert
Florentin Smarandache

Abstract—In this paper, we present a Non-Bayesian condition-
ing rule for belief revision. This rule is truly Non-Bayesian in
the sense that it doesn’t satisfy the common adopted principle
that when a prior belief is Bayesian, after conditioning by X,
Bel(X|X) must be equal to one. Our new conditioning rule for
belief revision is based on the proportional conf ict redistribution
rule of combination developed in DSmT (Dezert-Smarandache
Theory) which abandons Bayes’ conditioning principle. Such
Non-Bayesian conditioning allows to take into account judiciously
the level of conf ict between the prior belief available and
the conditional evidence. We also introduce the deconditioning
problem and show that this problem admits a unique solution
in the case of Bayesian prior; a solution which is not possible
to obtain when classical Shafer and Bayes conditioning rules are
used. Several simple examples are also presented to compare
the results between this new Non-Bayesian conditioning and the
classical one.
Keywords: Belief functions, conditioning, deconditioning,
probability, DST, DSmT, Bayes rule.

I. INTRODUCTION

The question of the updating of probabilities and beliefs
has yielded, and still yields, passionate philosophical and
mathematical debates [3], [6], [7], [9], [12], [13], [17], [20],
[22] in the scientif c community and it arises from the
different interpretations of probabilities. Such question has
been reinforced by the emergence of the possibility and the
evidence theories in the eighties [4], [16] for dealing with
uncertain information. We cannot browse in details here all
the different authors’ opinions [1], [2], [8], [10], [14], [15]
on this important question but we suggest the reader to start
with Dubois & Prade survey [5]. In this paper, we propose a
true Non-Bayesian rule of combination which doesn’t satisfy
the well-adopted Bayes principle stating that P (X |X) = 1
(or Bel(X |X) = 1 when working with belief functions).
We show that by abandoning such Bayes principle, one can
take into account more eff ciently in the conditioning process
the level of the existing conf ict between the prior evidence
and the new conditional evidence. We show also that the
full deconditioning is possible in some specif c cases. Our
approach is based on belief functions and the Proportional
Conf ict Redistribution (mainly PCR5) rule of combination
developed in Dezert-Smarandache Theory (DSmT) framework
[18]. Why we use PCR5 here? Because PCR5 is very eff cient

to combine conf icting sources of evidences1 and because
Dempster’s rule often considered as a generalization of Bayes
rule is actually not deconditionable (see examples in the
sequel), contrariwise to PCR5, that’s why we utilize PCR5.
This paper is organized as follows. In section II, we brief y
recall Dempster’s rule of combination and Shafer’s Condition-
ing Rule (SCR) proposed in Dempster-Shafer Theory (DST)
of belief functions [16]. In section III, we introduce a new
Non-Bayesian conditioning rule and show its difference with
respect to SCR. In section IV, we introduce the dual problem,
called the deconditioning problem. Some examples are given
in section V with concluding remarks in section VI.

II. SHAFER’S CONDITIONING RULE

In DST, a normalized basic belief assignment (bba) m(.)
is def ned as a mapping from the power set 2Θ of the
f nite discrete frame of discernment Θ into [0, 1] such that
m(∅) = 0 and

∑

X∈2Θ m(X) = 1. Belief and plausibility
functions are in one-to-one correspondence with m(.) and are
respectively def ned by Bel(X) =

∑

Z∈2Θ,Z⊆X m(Z) and
Pl(X) =

∑

Z∈2Θ,Z∩X 6=0 m(Z). They are usually interpreted
as lower and upper bounds of a unknown measure of subjective
probability P (.), i.e. Bel(X) ≤ P (X) ≤ Pl(X) for any X . In
DST, the combination of two independent sources of evidence
characterized by m1(.) and m2(.) is done using Dempster’s
rule as follows2:

mDS(X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)
(1)

Shafer’s conditioning rule3 (SCR) is obtained as the result
of Dempster’s combination of the given prior bba m1(.)
with the conditional evidence, say Y represented by a source
m2(.) only focused on Y , that is such that m2(Y ) = 1. In
other words, m(X |Y ) = mDS(X) = (m1 ⊕ m2)(X) using
m2(Y ) = 1 and where ⊕ symbol denotes here Dempster’s

1Due to space limitation, we do not present, nor justify again PCR5 w.r.t.
other rules since this has been widely explained in the literature with many
examples and discussions, see for example [18], Vol. 2. and our web page.

2assuming that the numerator is not zero (the sources are not in total
conf ict).

3also called Dempster’s conditioning by Glenn Shafer in [16].

Non Bayesian Conditioning and Deconditioning

Originally published as: Dezert J., Smarandache F.- Non Bayesian 
conditioning and deconditioning, in Proc. of International 

Workshop on Belief Functions, Brest, France, April 2-4, 2010, 
and reprinted with permission.
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fusion rule (1). It can be shown [16] that the conditional belief
and the plausibility are given by4:

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

(2)
Pl(X |Y ) =

∑

Z∈2Θ

Z∩X 6=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
(3)

When the belief is Bayesian5, i.e. Bel(.|Y ) = Pl(.|Y ) =
P (.|Y ), SCR reduces to classical conditional probability def-
inition (Bayes formula), that is P (X |Y ) = P (X ∩ Y )/P (Y ),
with P (.) = m1(.). Note that when Y = X and as soon
as Bel(X̄) < 1, one always gets from (2), Bel(X |X) = 1
because Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1.
For Bayesian belief, this implies P (X |X) = 1 for any X
such that P1(X) > 0, which we call Bayes principle. Other
alternatives have been proposed in the literature [8], [15],
[21], but almost all of them satisfy Bayes principle and they
are all somehow extensions/generalization of Bayes rule. A
true Non-Bayesian conditioning (called weak conditioning)
was however introduced by Planchet in 1989 in [14] but
it didn’t bring suff cient interest because Bayes principle
is generally considered as the best solution for probability
updating based on different arguments for supporting such
idea. Such considerations didn’t dissuade us to abandon Bayes
principle and to explore new Non-Bayesian ways for belief
updating, as Planchet did in nineties. We will show in next
section why Non-Bayesian conditioning can be interesting.

III. A NON BAYESIAN CONDITIONING RULE

Before presenting our Non Bayesian Conditioning Rule,
it is important to recall brief y the Proportional Conf ict
Redistribution Rule no. 5 (PCR5) which has been proposed
as a serious alternative of Dempster’s rule [16] in Dezert-
Smarandache Theory (DSmT) [18] for dealing with conf icting
belief functions. In this paper, we assume working in the same
fusion space as Glenn Shafer, i.e. on the power set 2Θ of
the f nite frame of discernment Θ made of exhaustive and
exclusive elements.

A. PCR5 rule of combination
Def nition: Let’s m1(.) and m2(.) be two independent6 bba’s,
then the PCR5 rule of combination is def ned as follows
(see [18], Vol. 2 for details, justif cation and examples) when
working in power set 2Θ: mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
] (4)

4Ȳ denotes the complement of Y in the frame Θ.
5the focal elements of m1(.|Y ) are singletons only.
6i.e. each source provides its bba independently of the other sources.

All fractions in (4) having zero denominators are discarded.
The extension and a variant of (4) (called PCR6) for
combining s > 2 sources and for working in other fusion
spaces is presented in details in [18]. Basically, in PCR5 the
partial conf icting masses are redistributed proportionally to
the masses of the elements which are involved in the partial
conf ict only, so that the specif city of the information is
entirely preserved through this fusion process. It has been
clearly shown in [18], Vol. 3, chap. 1 that Smets’ rule7 is
not so useful, nor cogent because it doesn’t respond to new
information in a global or in a sequential fusion process.
Indeed, very quickly Smets fusion result commits the full
of mass of belief to the empty set!!! In applications, some
ad-hoc numerical techniques must be used to circumvent this
serious drawback. Such problem doesn’t occur with PCR5
rule. By construction, other well-known rules like Dubois &
Prade, or Yager’s rule, and contrariwise to PCR5, increase
the non-specif city of the result.

Properties of PCR5:
• (P0): PCR5 rule is not associative, but it is quasi-

associative (see [18], Vol. 2).
• (P1): PCR5 Fusion of two non Bayesian bba’s is a non

Bayesian bba.
Example: Consider Θ = {A, B, C} with Shafer’s model
and with the two non Bayesian bba’s m1(.) and m2(.)
given in Table I. The PCR5 fusion result (rounded at the
fourth decimal) is given in the right column of the Table
I. One sees that mPCR5(.) in a non Bayesian bba since
some of its focal elements are not singletons.

Table I
PCR5 FUSION OF TWO NON BAYESIAN BBA’S.

Focal Elem. m1(.) m2(.) mP CR5(.)

A 0.1 0.2 0.3850
B 0.2 0.1 0.1586
C 0.1 0.2 0.1990

A ∪ B 0.3 0 0.0360
A ∪ C 0 0.5 0.2214

A ∪ B ∪ C 0.3 0 0

• (P2): PCR5 Fusion of a Bayesian bba with a non Bayesian
bba is a non Bayesian bba in general8.
Example: Consider Θ = {A, B, C} with Shafer’s model
and Bayesian and a non Bayesian bba’s m1(.) and m2(.)
to combine as given in Table II. The PCR5 fusion result
is given in the right column of the Table II. One sees that
mPCR5(.) is a non Bayesian bba since some of its focal
elements are not singletons.
This property is in opposition with Dempster’s rule
property (see Theorem 3.7 p. 67 in [16]) which states that
if Bel1 is Bayesian and if Bel1 and Bel2 are combinable,
then Dempster’s rule provides always a Bayesian belief
function. The result of Dempster’s rule noted mDS(.) for

7i.e. the non normalized Dempster’s rule.
8In some cases, it happens that Bayesian ⊕Non-Bayesian = Bayesian. For

example, with Θ = {A, B, C}, Shafer’s model, m1(A) = 0.3, m1(B) =
0.7 and m2(A) = 0.1, m2(B) = 0.2, m2(C) = 0.4 and m2(A∪B) = 0.3,
one gets mPCR5(A) = 0.2162, mPCR5(B) = 0.6134 and mPCR5(C) =
0.1704 which is a Bayesian bba.
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Table II
PCR5 FUSION OF BAYESIAN AND NON BAYESIAN BBA’S.

Focal Elem. m1(.) m2(.) mDS (.) mP CR5(.)

A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

this example is given in Table II for convenience. This is
the major difference between PCR5 and Dempster’s rule,
not to mention the management of conf icting information
in the fusion process of course.
In summary, and using ⊕ symbol to denote the generic
fusion process, one has

– With Dempster’s rule :

Bayesian ⊕ Non-Bayesian = Bayesian

– With PCR5 rule:
Bayesian ⊕ Non-Bayesian = Non-Bayesian (in general)

• (P3): PCR5 Fusion of two Bayesian bba’s is a Bayesian
bba (see [18], Vol. 2, pp. 43–45 for proof).

Example: Θ = {A, B, C} with Shafer’s model and let’s
consider Bayesian bba’s given in the next Table. The
result of PCR5 fusion rule is given in the right column
of Table III. One sees that mPCR5(.) is Bayesian since
its focal elements are singletons of the fusion space 2Θ.

Table III
PCR5 FUSION OF TWO BAYESIAN BBA’S.

Focal Elem. m1(.) m2(.) mDS (.) mP CR5(.)

A 0.1 0.4 0.0870 0.2037
B 0.2 0 0 0.0567
C 0.7 0.6 0.9130 0.7396

B. A true Non Bayesian conditioning rule
Here9 we follow the footprints of Glenn Shafer in the sense

that we consider the conditioning as the result of the fusion
of any prior mass m1(.) def ned on 2Θ with the bba m2(.)
focused on the conditional event Y 6= ∅, i.e. m2(Y ) = 1.
We however replace Dempster’s rule by the more eff cient10

Proportional Conf ict Redistribution rule # 5 (PCR5) given by
(4) proposed in DSmT [18]. This new conditioning rule is
not Bayesian and we use the symbol ‖ (parallel) instead of
classical symbol | to avoid confusion in notations. Let’s give
the expression of m(X ‖ Y ) resulting of the PCR5 fusion of
any prior bba m1(.) with m2(.) focused on Y . Applying (4):

m(X ‖ Y ) = SPCR5
1 (X, Y ) + SPCR5

2 (X, Y ) + SPCR5
3 (X, Y ) (5)

with

SPCR5
1 (X, Y ) ,

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) (6)

9More sophisticated conditioning rules have been proposed in [18], Vol. 2.
10It deals better with partial conf icts than other rules unlike Dempster’s

rule, it does not increase the non-specif city of the result unlike Dubois &
Prade or Yager’s rule, and it does respond to new information unlike Smets
rule.

SPCR5
2 (X, Y ) , m1(X)2

∑

X2∈2Θ

X∩X2=∅

m2(X2)

m1(X) + m2(X2)
(7)

SPCR5
3 (X, Y ) , m2(X)2

∑

X2∈2Θ

X∩X2=∅

m1(X2)

m2(X) + m1(X2)
(8)

where m2(Y ) = 1 for a given Y 6= ∅.

Since Y is the single focal element of m2(.), the term
SPCR5

1 (X, Y ) in (5) is given by
∑

X1∈2Θ

X1∩Y =X

m1(X1), the term

SPCR5
2 (X, Y ) equals δ(X ∩ Y = ∅) · m1(X)2

1+m1(X) , and the term
SPCR5

3 (X, Y ) can be expressed depending on the value of X
with respect to the conditioning term Y :

• If X 6= Y then m2(X 6= Y ) = 0 (by def nition), and
thus SPCR5

3 (X, Y ) = 0.
• If X = Y then m2(X = Y ) = 1 (by def nition), and

thus SPCR5
3 (X, Y ) =

∑

X2∈2Θ

X2∩Y =∅

m1(X2)
1+m1(X2)

Finally, SPCR5
3 (X, Y ) can be written as

SPCR5
3 (X, Y ) = δ(X 6= Y ) · 0

︸ ︷︷ ︸

0

+δ(X = Y )
∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

= δ(X = Y ) ·
∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Finally, m(X ‖ Y ) for X 6= ∅ and Y 6= ∅ are given by

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)

+ δ(X = Y ) ·
∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)
(9)

m(∅ ‖ Y 6= ∅) = 0 by def nition, since PCR5 fusion doesn’t
commit mass on the empty set. m(X ‖ ∅) is kept undef ned11

since it doesn’t make sense to revise a bba by an impossible
event. Based on the classical def nitions of Bel(.) and Pl(.)
functions [16], one has:

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (10)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X 6=∅

m(Z ‖ Y ) (11)

The ”true” unknown (non Bayesian) conditional subjective
probability, denoted P (X ||Y ), must satisfy

Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (12)

11One could also def ne m(∅ ‖ ∅) = 1 and m(X 6= ∅ ‖ ∅) = 0 which
however would not be a normal bba.
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P (X ||Y ) can be seen as an imprecise probability and used
within IPT (Imprecise Probability Theory) [23] if necessary,
or can be approximated from m(.||Y ) using some probabilistic
transforms, typically the pignistic transform [19] or the DSmP
transform [18] (Vol.3, Chap. 3). The search for direct close-
form expressions of Bel(X ‖ Y ) and Pl(X ‖ Y ) from
Bel1(.) and Pl1(.) appears to be an open diff cult problem.

IV. DECONDITIONING

In the previous section we have proposed a new non
Bayesian conditioning rule based on PCR5. This rule follows
Shafer’s idea except that we use PCR5 instead of Dempster’s
rule because we have shown the better eff ciency of PCR5
to deal with conf icting information w.r.t. other rules. In this
section, we also show the great benef t of such PCR5 rule for
the deconditioning problem. The belief conditioning problem
consists in f nding a way to update any prior belief function
(Bel(.), Pl() or m(.)) with a new information related with the
(belief of) occurrence in a given conditional proposition of the
fusion space, say Y , in order to get a new belief function called
conditional belief function. The deconditioning problem is the
inverse (dual) problem of conditioning. It consists to retrieve
the prior belief function from a given posterior/conditional
belief function. Deconditioning has not been investigated in
deep so far in the literature (to the knowledge of the authors)
since is is usually considered as impossible to achieve12,
it may present great interest for applications in advanced
information systems when only a posterior belief is available
(say provided by an human or an AI-expert system), but for
some reason we need to compute a new conditioning belief
based on a different conditional hypothesis. This motivates
our research for developing deconditioning techniques. Since
Bel(.), Pl() are in one-to-one correspondence with the basic
belief assignment (bba) mass m(.), we focus our analysis on
the deconditioning of the conditional bba. More simply stated,
we want to see if for any given conditional bba m(.||Y ) we
can compute m1(.) such that m(.||Y ) = PCR5(m1(.), m2(.))
with m2(Y ) = 1 and where PCR5(m1(.), m2(.)) denotes
the PCR5 fusion of m1(.) with m2(.). Let’s examine the two
distinct cases for the deconditiong problem depending on the
(Bayesian or non-Bayesian) nature of the prior m1(.).

• Case of Bayesian prior m1(.): Let Θ = {θ1, θ2, . . . , θn},
with n ≥ 2, Shafer’s model, where all θi are singletons.
Let m1 : Θ 7→ [0, 1] be a Bayesian bba/mass. In that case,
the deconditioning problem admits a unique solution
and we can always compute m1(.) from m(.||Y ) but
two distinct cases must be analyzed depending on the
cardinality of the conditional term Y .
Case 1: When Y is a singleton, i.e. |Y | = 1. Suppose
m2(Y ) = 1, with Y = θj0 , for j0 ∈ {1, 2, . . . , n},
where j0 is f xed. Since the bba’s m1(.) and m2(.) are
both Bayesian in this case, m(.||Y ) is also a Bayesian
bba (property P3), therefore m(θi||Y ) = ai, where all
ai ∈ [0, 1] with

∑n

i=1 ai = 1. How to f nd m1(.) such

12This truly happens when classical Bayes conditioning is used.

that m(.||Y ) = PCR5(m1(.), m2(.)) ? Let’s denote
m1(θi) = xi, where all xi ∈ [0, 1] and

∑n

i=1 xi = 1.
We need to f nd all these xi. We now combine m1(.)
with m2(.) using PCR5 fusion rule. We transfer xi, for
∀i 6= j0, to θi and θj0 proportionally with respect to
their corresponding masses, xi and 1 respectively: wθi

xi
=

wθj0

1 = xi

xi+1 whence wθi
=

x2
i

xi+1 and wθj0
= xi

xi+1 ,
while αj0 = xj0 +

∑n
i=1
i6=j0

xi

xi+1 or αj0 = 1−
∑n

i=1
i6=j0

x2
i

xi+1 .
Since we need to f nd all unknowns xi, i = 1, . . . , n,
we need to solve x2

i

xi+1 = ai, for i 6= j0 for xi;
since αj0 = xj0 +

∑n
i=1
i6=j0

xi

xi+1 = aj0 , we get xj0 =

aj0 −
∑n

i=1
i6=j0

xi

xi+1 = 1 −
∑n

i=1
i6=j0

xi.
Case 2: When Y is not a singleton, i.e. |Y | > 1 (Y can
be a partial or total ignorance). Suppose m2(Y ) = 1,
with Y = θj1 ∪ θj2 ∪ . . . ∪ θjp

, where all j1, j2, . . . ,
jp are different and they belong to {1, 2, . . . , n}, 2 ≤
p ≤ n. We keep the same notations for m(.||Y ) and
Bayesian m1(.). The set {j1, j2, . . . , jp} is denoted J
for notation convenience. Similarly, using PCR5 rule we
transfer xi, ∀i /∈ J , to xi and to the ignorance Y =
θj1 ∪ . . . ∪ θjp

proportionally with respect to xi and 1
respectively (as done in case 1). So, xi for i /∈ J is found
from solving the equation x2

i

xi+1 = ai, which gives13 xi =

(ai+
√

a2
i + 4ai)/2; and xjr

= ajr
for r ∈ {1, 2, . . . , p}.

• Case of Non-Bayesian prior m1(.):
Unfortunately, when m1(.) is Non-Bayesian, the (PCR5-
based) deconditioning problem doesn’t admit one unique
solution in general (see the example 2.1 in the next
section). But the method used to decondition PCR5 when
m1(.) is Bayesian can be generalized for m1(.) non-
Bayesian in the following way: 1) We need to know the
focal elements of m1(.), then we denote the masses of
these elements by say x1, x2, . . . , xn; 2)Then we combine
using the conjunctive rule m1(.) with m2(Y ) = 1, where
Y can be a singleton or an ignorance; 3) Afterwards, we
use PCR5 rule and we get some results like: fi(x1, ..., xn)
for each element, where i = 1, 2, . . .. Since we know
the results of PCR5 as m(.||Y ) = ai for each focal
element, then we form a system of non-linear equations:
fi(x1, x2, ..., xn) = ai and we need to solve it. Such
systems of equations however can admit several solutions.
We can select a solution satisfying an additional criterion
like by example the minimum (or the maximum) of
specif city depending of the kind of Non-Bayesian prior
we need to use.

V. EXAMPLES

A. Example 1: Conditioning of a Bayesian prior belief
Let’s consider Θ = {A, B, C}, Shafer’s model, and the

prior bba’s m1(.) and m′
1(.) given in Table IV and the

conditional evidence Y = A ∪ B.

13The solution xi = (ai −
q

a2

i
+ 4ai)/2 must be discarded since it is

negative and cannot be considered as a mass of belief.
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Table IV
BAYESIAN PRIORS (INPUTS).

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

The signif cance of having two cases in the Bayesian prior
case is straighforward. We just want to show that two different
priors can yield to the same posterior bba with Bayes/SCR rule
and thus we cannot retrieve these two distinct priors cases from
the posterior bba. We show that the total deconditioning is
possible however when using our non-Bayesian conditioning
rule. SCR and PCR5-based conditioning of m1(.) and m′

1(.)
are given14 in Table V. One sees that SCR of the two distinct
bba’s m1(.) and m′

1(.) yield the same posterior/conditional
bba m(.|Y ) which means that in this very simple Bayesian
prior case, the deconditioning of m(.|Y ) is impossible to
obtain since at least two solutions15 for the prior beliefs are
admissible. The results provided by PCR5-based conditioning
makes more sense in authors’ point of view since it better takes
into account the degree of conf icting information in the con-
ditioning process. One sees that two distinct Bayesian priors
yield two distinct posterior bba’s with PCR5-based condition-
ing. If one examines the belief and plausibility functions, one
gets, using notation ∆(.|Y ) = [Bel(.|Y ), P l(.|Y )], ∆′(.|Y ) =
[Bel′(.|Y ), P l′(.|Y )], ∆(.||Y ) = [Bel(.||Y ), P l(.||Y )] and
∆′(.||Y ) = [Bel′(.||Y ), P l′(.||Y )]:

Table V
CONDITIONAL BBA’S.

Focal Elem. m(.|Y ) m′(.|Y ) m(.||Y ) m′(.||Y )

A 0.5 0.5 0.4900 0.0100
B 0.5 0.5 0.4900 0.0100
C 0 0 0.00039215 0.48505051

A ∪ B 0 0 0.01960785 0.49494949

Table VI
CONDITIONAL LOWER AND UPPER BOUNDS OF CONDITIONAL

PROBABILITIES

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )

∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

The interval ∆(.|Y ) corresponds to lower and upper bounds
of conditional subjective probabilities P (.|Y ) and ∆(.||Y )
corresponds to lower and upper bounds of P (.||Y ) (similarly
for ∆′(.|Y ) and ∆′(.||Y )). From the Table VI, one sees that
the property P2 is verif ed and we get an imprecise conditional
probability. One sees that contrariwise to SCR (equivalent
to Bayes rule in this case), one gets Bel(Y ||Y ) < 1 and
also Pl(Y ||Y ) < 1. ∆(.||Y ) and ∆′(.||Y ) are very different
because priors were also very different. This is an appealing

14Due to space limitation constraints, the verif cation is left to the reader.
15Actually an inf nite number of solutions exists.

property. If one approximates16 the conditional probability by
the mid-value of their lower and upper bounds17, one gets
values given in Table VII.

Table VII
CONDITIONAL APPROXIMATE SUBJECTIVE PROBABILITIES.

2Θ P(.|Y ) = P ′(.|Y ) P(.||Y ) P ′(.||Y )

∅ 0 0 0
A 0.5 0.4998 0.2575
B 0.5 0.4998 0.2575
C 0 0.0004 0.4850

Y = A ∪ B 1 0.9996 0.5150
A ∪ C 0.5 0.5002 0.7425
B ∪ C 0.5 0.5002 0.7425

A ∪ B ∪ C 1 1 1

When the conditioning hypothesis supports the prior
belief (as for m1(.) and m2(.) which are in low conf ict)
the PCR5-based conditioning reacts as SCR (as Bayes
rule when dealing with Bayesian priors) and P (X.||Y ) is
very close to P (.|Y ). When the prior and the conditional
evidences are highly conf icting (i.e. like m′

1(.) and m2(.),
PCR5-based conditioning rule is much more prudent than
Shafer’s rule and that’s why it allows the possibility to have
P (Y ||Y ) < 1. Such property doesn’t violate the fundamental
axioms (nonnegativity, unity and additivity) of Kolmogorov
axiomatic theory of probabilities and this can be verif ed
easily in our example. In applications, it is much better
to preserve all available information and to work directly
with conditional bba’s whenever possible rather than with
approximate subjective conditional probabilities.

The deconditioning of the posterior bba’s m(. ‖ Y ) given
in the Table V is done using the principle described in
section IV (when m1(.) is assumed Bayesian and for case
2). We denote the unknowns m1(A) = x1, m1(B) = x2

and m1(C) = x3. Since Y = A ∪ B and J = {1, 2}, we
solve the following system of equations (with the constraint
xi ∈ [0, 1]): x1 = a1 = 0.49, x2 = a2 = 0.49 and
x2

3/(x3 + 1) = a3 = 0.00039215. Therefore, one gets
after deconditioning m1(A) = 0.49, m1(B) = 0.49 and
m1(C) = 0.02. Similarly, the deconditioning of m′(. ‖ Y )
given in the Table V yields m′

1(A) = 0.01, m′
1(B) = 0.01

and m′
1(C) = 0.98.

Note that, contrarywise to Bayes or to Jeffrey’s rules [8],
[11], [21], it is possible to update the prior opinion about an 
event A even if P (A) = 0 using this Non-Bayesian rule. For 
example, let’s consider Θ = {A, B, C}, Shafer’s model and 
the prior Bayesian mass m1(A) = 0, m1(B) = 0.3 and m1(C) 
= 0.7, i.e. Bel1(A) = P1(A) = P l(A) = 0. Assume that the 
conditional evidence is Y = A∪B, then one gets with SCR 
m(B|A ∪ B) = 1 and with PCR5-based conditioning m(B ‖ A 
∪ B) = 0.30, m(A ∪ B ‖ A ∪ B) = 0.41176 and m(C ‖ A 
∪ B) = 0.28824, which means that P (A|A ∪
B) = 0 with SCR/Bayes rule (i.e. no update on A), whereas
[Bel(A ‖ A ∪ B), P l(A ‖ A ∪ B)] = [0, 0.41176], [Bel(B ‖

16When the lower bound is equal to the upper bound, one gets the exact
probability value.

17More sophisticated transformations could be used instead as explained in
[18], Vol. 3.
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A ∪ B), P l(B ‖ A ∪ B)] = [0.30, 0.71176] and [Bel(C ‖
A ∪ B), P l(C ‖ A ∪ B)] = [0.28823, 0.28823], that is P (A ‖
A ∪ B) ∈ [0, 0.41176]. Typically, if one approximates P (. ‖
A ∪ B) by the mid-value of its lower and upper bounds, one
will obtain P (A ‖ A ∪ B) = 0.20588 (i.e. a true update of
the prior probability of A), P (B ‖ A ∪ B) = 0.50588 and
P (C ‖ A ∪ B) = 0.28824.

B. Example 2: Conditioning of a Non-Bayesian prior belief
Example 2.1: Let’s consider now Θ = {A, B, C}, Shafer’s
model, the conditioning hypothesis Y = A ∪ B and the
following Non-Bayesian priors:

Table VIII
NON-BAYESIAN PRIORS (INPUTS).

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

The conf ict between m1(.) and m2(Y ) = 1 and between
m′

1(.) and m2(Y ) = 1 is 0.10 in both cases. The results of
the conditioning are given in Table IX. One sees that when
distinct priors are Non-Bayesian, it can happen that PCR5-
based conditioning rule yields also the same posterior bba’s.
This result shows that in general with Non-Bayesian priors the
PCR5-based deconditioning cannot provide a unique solution,
unless extra information and/constraints on the prior belief are
specif ed as shown in the next example.

Table IX
CONDITIONAL BBA’S.

Focal Elem. m(.|Y ) m′(.|Y ) m(. ‖ Y ) m′(. ‖ Y )

A 0.222 0.222 0.20 0.20
B 0.333 0.333 0.30 0.30
C 0 0 0.01 0.01

A ∪ B 0.445 0.445 0.49 0.49

Example 2.2: Let’s consider now Θ = {A, B, C, D}, Shafer’s
model, the conditional evidence Y = C ∪D and the posterior
bba m(. ‖ C∪D) given in the right column of the table below:

Table X
CONDITIONAL BBA’S.

Focal Elem. m1(.) mPCR5(.) m(. ‖ A)

A x1
x2
1

1+x1
0.0333

B x2
x2
2

1+x2
0.1667

C ∪ D x3 x3 +
x1

1+x1
+

x2
1+x2

0.8000

If we assume that the focal elements of the prior bba m1(.)
are the same as for the posterior bba m(. ‖ C ∪D), then with
such extra assumption, the deconditioning problem admits a
unique solution which is obtained by solving the system of
three equations according to Table X; that is x2

1

1+x1
= 0.0333,

whence x1 ≈ 0.2; x2
2

1+x2
= 0.1667, whence x2 ≈ 0.5; x3 +

x1

1+x1
+ x2

1+x2
= 0.8000; whence x1 ≈ 0.3. Therefore, the

deconditioning of m(. ‖ C ∪ D) provides the unique Non-
Bayesian solution m1(A) = 0.2, m1(B) = 0.5 and m1(C ∪
D) = 0.3.

VI. CONCLUSIONS

In this paper, we have proposed a new Non-Bayesian con-
ditioning rule (denoted ‖ ) based on the Proportional Conf ict
Redistribution (PCR) rule of combination developed in DSmT
framework. This new conditioning rule offers the advantage to
take fully into account the level of conf ict between the prior
and the conditional evidences for updating belief functions. It
is truly Non-Bayesian since it doesn’t satisfy Bayes principle
because it allows P (X ‖ X) or Bel(X ‖ X) to be less than
one. We have also shown that this approach allows to solve
the deconditioning (dual) problem for the class of Bayesian
priors. More investigations on the deconditioning problem of
Non-Bayesian priors need to be done and comparisons of
this new rule with respect to the main alternatives of Bayes
rule proposed in the literature (typically Jeffrey’s rule and its
extensions, Planchet’s rule, etc) will be presented in details in
a forthcoming publication.
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Multi-criteria decision making based 
on DSmT-AHP

Jean Dezert
Jean-Marc Tacnet

Mireille Batton-Hubert
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Abstract—In this paper, we present an extension of the multi-
criteria decision making based on the Analytic Hierarchy Process
(AHP) which incorporates uncertain knowledge matrices for
generating basic belief assignments (bba’s). The combination of
priority vectors corresponding to bba’s related to each (sub)-
criterion is performed using the Proportional Conf ict Redistribu-
tion rule no. 5 proposed in Dezert-Smarandache Theory (DSmT)
of plausible and paradoxical reasoning. The method presented
here, called DSmT-AHP, is illustrated on very simple examples.

Keywords: Analytic Hierarchy Process, AHP, DSmT, In-
formation Fusion, Decision Making, Multi-Criteria.

I. INTRODUCTION

The Multi-criteria decision-making (MCDM) problem con-
cerns the elucidation of the level of preferences of decision
alternatives through judgments made over a number of criteria
[6]. At the Decision-maker (DM) level, a useful method for
solving MCDM problem must take into account opinions
made under uncertainty and based on distinct criteria with
different importances. The diff culty of the problem increases
if we consider a group decision-making (GDM) problem
involving a panel of decision-makers. Several attempts have
been proposed in the literature to solve the MCGDM problem.
Among the interesting solutions developed, one must cite
the works made by Beynon [3]–[6]. This author developed a
method called DS/AHP which extended the Analytic Hierar-
chy Process (AHP) method of Saaty [15]–[17] with Dempster-
Shafer Theory (DST) [23] of belief functions to take into
account uncertainty and to manage the conf icts between
experts opinions within a hierarchical model approach. In this
paper, we propose to follow Beynon’s approach, but instead
of using DST, we investigate the possibility to use Dezert-
Smarandache Theory (DSmT) of plausible and paradoxical
reasoning developed since 2002 for overcoming DST limita-

tions1 [24]. This new approach will be referred as DSmT-AHP
method in the sequel. DSmT allows to manage eff ciently the
fusion of quantitative (or qualitative) uncertain and possibly
highly conf icting sources of evidences and proposes new
methods for belief conditioning and deconditioning as well [7].
DSmT has been successfully applied in several f elds of appli-
cations (in defense, medicine, satellite surveillance, biometrics,
image processing, etc). In section II, we brief y introduce the
principle of the AHP developed by Saaty. In section III, we
recall the basis of DSmT and its main rule of combination,
called PCR5 (Proportional Conf ict Redistribution rule # 5).
In section IV, we present the DSmT-AHP method for solving
the MCDM problem. The extension of DSmT-AHP method
for solving MCGDM problem is then introduced in section V.
Conclusions are given in Section VI.

II. THE ANALYTIC HIERARCHY PROCESS (AHP)
The Analytic Hierarchy Process (AHP) is a structured

technique developed by Saaty in [8], [15], [16] based on
mathematics and psychology for dealing with complex de-
cisions. AHP and its ref nements are used around the world
in many decision situations (government, industry, education,
healthcare, etc.). It helps the DM to f nd the decision that best
suits his/her needs and his/her understanding of the problem.

1A presentation of these limitations with a discussion is done in Chap 1
of [24], Vol. 3. It is shown clearly that the logical ref nement proposed by
some authors doesn’t bring new insights with respect to what is done when
working directly on the super-power set (i.e. on the minimal ref ned frame
satisfying Shafer’s model). There is no necessity to work with a ref ned frame
in DSmT framework which is very attractive in some real-life problems where
the elements of the ref ned frame do not have any (physical) sense/meaning
or are just impossible to clearly determine physically (as a simple example,
if Mary and Paul have possibly committed a crime alone or together, there
is no way to ref ne these two persons into three f ner exclusive physical
elements satisfying Shafer’s model). Aside the possibility to deal with different
underlying models of the frame, it is worth to note that PCR5 or PCR6 rules
provide a better ability than the other rules to deal eff ciently with highly
conf icting sources of evidences as shown in all f elds of applications where
they have been tested so far.

Originally published as: Dezert J, Tacnet J.-M., Batton-Hubert M., 
Smarandache F. - Multi-criteria decision making based on DSmT/AHP, 
in Proc. of International Workshop on Belief Functions, Brest, France, 

April 2-4, 2010, and reprinted with permission.
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AHP provides a comprehensive and rational framework for
structuring a decision problem, for representing and quantify-
ing its elements, for relating those elements to overall goals,
and for evaluating alternative solutions. The basic idea of
AHP is to decompose the decision problem into a hierarchy
of more easily comprehended sub-problems, each of which
can be analyzed independently. Once the hierarchy is built,
the DM evaluates the various elements of the hierarchy by
comparing them to one another two at a time [21]. In making
the comparisons, the DM can use both objective information
about the elements as well as subjective opinions about the
elements’ relative meaning and importance. The AHP converts
these evaluations to numerical values that are processed and
compared over the entire range of the problem. A numerical
weight or priority is derived for each element of the hierarchy,
allowing diverse and often incommensurable elements to be
compared to one another in a rational and consistent way. This
is the main advantage of AHP with respect to other decision
making techniques. At its f nal step, numerical priorities are
calculated for each of the decision alternatives. These num-
bers represent the alternatives’ relative ability to achieve the
decision goal. The AHP method can be summarized as [19]:
1) Model the problem as a hierarchy containing the decision
goal, the alternatives for reaching it, and the criteria for
evaluating the alternatives.
2) Establish priorities among the elements of the hierarchy by
making a series of judgments based on pairwise comparisons
of the elements.
3) Check the consistency of the judgments and eventually
revise the comparison matrices by reasking the experts when
the consistency in judgments is too low.
4) Synthesize these judgments to yield a set of overall priori-
ties for the hierarchy.
5) Come to a f nal decision based on the results of this process.
Example 1: According to his/her own preferences and using
the Saaty’s 1-9 ordinal scale, a DM wants to buy a car among
four available models belonging to the set Θ = {A, B, C, D}.
To simplify the example, we assume that the objective of DM
is to select one of these cars based only on three criteria
(C1=Fuel economy, C2=Reliability and C3=Style). According
to his/her own preferences, the DM ranks the different criteria
pairwise as follows: 1 - Reliability is 3 times as important as
fuel economy, 2 - Fuel economy is 4 times as important as
style, 3 - Reliability is 5 times as important as style, which
means that the DM thinks that Reliability criteria (C2) is the
most important criteria, followed by fuel economy (C1) and
style is the least important criteria2. The relative importance
of one criterion over another can be expressed using pairwise
comparison matrix (also called knowledge matrix) as follows:

M =
[

1/1 1/3 4/1
3/1 1/1 5/1
1/4 1/5 1/1

]

≈
[

1.0000 0.3333 4.0000
3.0000 1.0000 5.0000
0.2500 0.2000 1.0000

]

where the element mij of the matrix M indicates the relative
importance of criteria Ci with respect to the criteria Cj.

2The relationships between preferences given by a DM may not be transitive
as shown in this example, nevertheless one has to deal with these inputs even
in such situations.

In this example, m13 = 4/1 indicates that the criteria C1
(Fuel economy) is four times as important as the criteria
C3 (Style) for the DM, etc. From this pairwise matrix,
Saaty demonstrated that the ranking of the priorities of the
criteria can be obtained from the normalized eigenvector3,
denoted w, associated with the principal eigenvalue of the
matrix, denoted λ. In this example, one has λ = 3.0857 and
w = [0.2797 0.6267 0.0936]′ which shows that C2 criterion
(reliability) is the most important criterion with the weight
0.6267, then the fuel economy criterion C1 is the second most
important criterion with weight 0.2797, and f nally C3 criterion
(Style) is the least important criterion with weight 0.0936 for
the DM. A similar ranking procedure can be used to f nd the
relative weights of each car A, B, C or D with respect to
each criterion C1, C2 and C3 based on given DM preferences,
hence one will get three new normalized eigenvectors denoted
w(C1), w(C2) and w(C3). By example, if one has the
following normalized vectors

[w(C1)w(C2) w(C3)] =

[

0.2500 0.4733 0.1129
0.1304 0.0611 0.4435
0.5109 0.1832 0.0565
0.1087 0.2824 0.3871

]

then the solution of the MCDM problem (here the selec-
tion of the ”best” car according to the DM multicriteria
preferences) is f nally obtained by multiplying the matrix
[w(C1) w(C2) w(C3] by the criteria ranking vector w. For
this example, one will get:

[

0.2500 0.4733 0.1129
0.1304 0.0611 0.4435
0.5109 0.1832 0.0565
0.1087 0.2824 0.3871

]

×
[

0.2797
0.6267
0.0936

]

=

[

0.3771
0.1163
0.2630
0.2436

]

Based on this result, the car A which has the most important
weight (0.3771) will be selected by the DM. The costs could
also be included in AHP by taking into account the benef t
to cost ratios which will allow to chose alternative with
lowest cost and highest benef t. For example, let’s suppose
that the cost of car A is 21000 euros, the cost of car B is
13000 euros, the cost of car C is 12000 euros and the cost
of car D is 18000 euros, then the normalized cost vector
is [0.3281 0.2031 0.1875 0.2812]′, so that the benef t-cost
ratios are now [0.3771/0.3281 = 1.1492 0.1163/0.2031 =
0.5724 0.2630/0.1875 = 1.4026 0.2436/0.2812 = 0.8663]′.
Taking into account now the cost of vehicles, now the best
solution for the DM is to choose the car C since it offers the
highest benef t-cost ratio.

In this paper we do not focus on the rank reversal problem of
AHP as discussed in [9], [10], [13], [18], [22], but we propose
an extension of AHP using aggregation method developed
in DSmT framework, able to make a difference between
importance of criteria, uncertainty related to the evaluations
of criteria and reliability of the different sources.

3Note that if the relationships on the criteria is transitive, then we can
easily construct the normalized vector of priorities from a system of algebraic
equations, without employing Saaty’s matrix approach. For example if in the
previous example one assumes4 M23 = 12/1 and M32 = 1/12 instead of
5/1 and 1/5, then the normalized weighting vector will be directly obtained
as w = [4/17 12/17 1/17]′.
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III. BASICS OF DSMT
Let Θ = {θ1, θ2, · · · , θn} be a f nite set of n elements

assumed to be exhaustive. Θ corresponds to the frame of
discernment of the problem under consideration. In general,
we assume that elements of Θ are non exclusive in order to
deal with vague/fuzzy and relative concepts [24], Vol. 2. This
is the so-called free-DSm model. In DSmT, there is no need
to work on a ref ned frame consisting in a discrete f nite set
of exclusive and exhaustive hypotheses5 because DSm rules
of combination work for any models of the frame. The hyper-
power set DΘ is def ned as the set of all propositions built from
elements of Θ with ∪ and ∩, see [24], Vol. 1 for examples.
A (quantitative) basic belief assignment (bba) expressing the
belief committed to the elements of DΘ by a given source
is a mapping m(·): DΘ → [0, 1] such that: m(∅) = 0 and
∑

A∈DΘ m(A) = 1. Elements A ∈ DΘ having m(A) > 0 are
called focal elements of m(.). The credibility and plausibility
functions are def ned in almost6 the same manner as in DST
[23]. In DSmT, the Proportional Conf ict Redistribution Rule
no. 5 (PCR5) is used generally to combine bba’s. PCR5
transfers the conf icting mass only to the elements involved
in the conf ict and proportionally to their individual masses,
so that the specif city of the information is entirely preserved
in this fusion process. For example: consider two bba’s m1(.)
and m2(.), A ∩B = ∅ for the model of Θ, and m1(A) = 0.6
and m2(B) = 0.3. With PCR5 the partial conf icting mass
m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed to A and
B only with respect to the following proportions respectively:
xA = 0.12 and xB = 0.06 because

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)

m1(A) + m2(B)
=

0.18

0.9
= 0.2

In this paper, we work in the power set 2Θ since most of read-
ers are usually already familiar with this fusion space. Let’s
m1(.) and m2(.) be two independent7 bba’s, then the PCR5
rule is def ned as follows (see [24], Vol. 2 for full justif cation
and examples): mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2
Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
] (1)

where all denominators in (1) are different from zero. If a
denominator is zero, that fraction is discarded. All proposi-
tions/sets are in a canonical form. A variant of (1), called
PCR6, for combining s > 2 sources and for working in
other fusion spaces (hyper-power sets or super power-sets) is
presented in [24]. Additional properties of PCR5 can be found
in [7]. Extension of PCR5 for combining qualitative bba’s can
be found in [24], Vol. 2 & 3.

5referred as Shafer’s model in the literature.
6We just replace 2Θ by DΘ in the def nitions of credibility and plausibility

functions.
7i.e. each source provides its bba independently of the other sources.

IV. DSMT-AHP FOR SOLVING MCDM
DSmT-AHP aimed to perform a similar purpose as AHP

[15], [16], SMART [28] or DS/AHP [2], [4], etc. that is to f nd
the preferences rankings of the decision alternatives (DA), or
groups of DA. DSmT-AHP approach consists in three steps:

• Step 1: We extend the construction of the matrix for
taking into account the partial uncertainty (disjunctions)
between possible alternatives. If no comparison is avail-
able between elements, then the corresponding elements
in the matrix is zero. Each bba related to each (sub-)
criterion is the normalized eigenvector associated with the
largest eigenvalue of the ”uncertain” knowledge matrix
(as done in standard AHP approach).

• Step 2: We use the DSmT fusion rules, typically the
PCR5 rule, to combine bba’s drawn from step 1 to get a
f nal MCDM priority ranking. This fusion step must take
into account the different importances (if any) of criteria
as it will be explained in the sequel.

• Step 3: Decision-making can be done based either on the
maximum of belief, or on the maximum of the plausibility
of Decision alternatives (DA), as well as on the maximum
of the approximate subjective probability of DA obtained
by different probabilistic transformations.

Example 2: Let’s consider now a set of three cars Θ =
{A, B, C} and the criteria C1=Fuel Economy, C2=Reliability.
Let’s assume that with respect to each criterion the following
”uncertain” knowledge matrices are given:

M(C1) =

[

A B ∪ C Θ

A 1 0 1/3
B ∪ C 0 1 2

Θ 3 1/2 1

]

M(C2) =

[

A B A ∪ C B ∪ C

A 1 2 4 3
B 1/2 1 1/2 1/5

A ∪ C 1/4 2 1 0
B ∪ C 1/3 5 0 1

]

Step 1: (bba’s generation) Applying AHP method, one gets the
following priority vectors w(C1) ≈ [0.0889 0.5337 0.3774]′

and w(C2) ≈ [0.5002 0.1208 0.1222 0.2568]′ which are
identif ed with the bba’s mC1(.) and mC2(.) as follows:
mC1(A) = 0.0889, mC1(B ∪ C) = 0.5337, mC1(A ∪ B ∪
C) = 0.3774 and mC2(A) = 0.5002, mC2(B) = 0.1208,
mC2(A ∪ C) = 0.1222 and mC2(B ∪ C) = 0.2568.
Step 2: (Fusion) When the two criteria have the same full
importance in the hierarchy they are fused with one of the
classical fusion rules. In [4] Beynon proposed to use Demp-
ster’s rule. Here we propose to use the PCR5 fusion rule since
it is known to have a better ability to deal eff ciently with
possibly highly conf icting sources of evidences [24], Vol. 2.
With PCR5, one gets:

Elem. of 2Θ mC1(.) mC2(.) mP CR5(.)

∅ 0 0 0
A 0.0889 0.5002 0.3837
B 0 0 0.1162

A ∪ B 0 0.1208 0
C 0 0 0.0652

A ∪ C 0 0.1222 0.0461
B ∪ C 0.5337 0.2568 0.3887

A ∪ B ∪ C 0.3774 0 0

Step 3: (Decision-making) A f nal decision based on
mPCR5(.) must be taken. Usually, the decision-maker (DM)
is concerned with a single choice among the elements of Θ.
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Many decision-making approaches are possible depending on
the risk the DM is ready to take. A pessimistic DM will
choose the singleton of Θ giving the maximum of credibility
whereas an optimistic DM will choose the element having the
maximum of plausibility. A fair attitude consists usually in
choosing the maximum of approximate subjective probability
of elements of Θ. The result however is very dependent on
the probabilistic transformation (Pignistic, DSmP, Sudano’s,
etc) [24], Vol. 2. Below are the values of the credibility, the
pignistic probability and the plausibility of A, B and C:

Elem. of Θ Bel(.) BetP (.) P l(.)

A 0.3837 0.4068 0.4298
B 0.1162 0.3105 0.5049
C 0.0652 0.2826 0.5000

The car A will be preferred with the pessimistic or pignistic
attitudes, whereas the car B will be preferred if an optimistic
attitude is adopted since one has Pl(B) > Pl(C) > Pl(A).

The MCDM problem deals with several criteria having
different importances and the classical fusion rules cannot
be applied directly as in step 2. In AHP, the fusion is done
from the product of the bba’s matrix with the weighting
vector of criteria. Such AHP fusion is nothing but a simple
componentwise weighted average of bba’s and it doesn’t
actually process eff ciently the conf icting information between
the sources. It doesn’t preserve the neutrality of a full ignorant
source in the fusion. To palliate these problems, we propose
a solution for combining sources of different importances in
the framework of DSmT and DST.

Before going further, it is essential to explain the difference
between the importance and the reliability of a source of
evidence. The reliability is an objective property of a source,
whereas the importance of a source is a subjective character-
istic expressed by the fusion system designer. The reliability
of a source represents its ability to provide the correct as-
sessment/solution of the given problem. It is characterized by
a discounting reliability factor, usually denoted α in [0, 1],
which should be estimated from statistics when available,
or by other techniques [11]. The reliability can be context-
dependent. By convention, we usually take α = 1 when the
source is fully reliable and α = 0 if the source is totally
unreliable. The reliability of a source is usually taken into
account with Shafer’s discounting method [23] def ned by:

(

mα(X) = α · m(X), for X 6= Θ

mα(Θ) = α · m(Θ) + (1 − α)
(2)

The importance of a source is not the same as its reliability
and it can be characterized by an importance factor, denoted β
in [0, 1] which represents somehow the weight of importance
granted to the source by the fusion system designer. The choice
of β is usually not related with the reliability of the source
and can be chosen to any value in [0, 1] by the designer
for his/her own reason. By convention, the fusion system
designer will take β = 1 when he/she wants to grant the
maximal importance of the source in the fusion process, and
will take β = 0 if no importance at all is granted to this
source in the fusion process. The fusion designer must be able
to deal with importance factors in a different way than with

reliability factors since they correspond to distinct properties
associated with a source of information. The importance of
a source is particularly crucial in hierarchical multi-criteria
decision making problems, specially in the AHP [16], [20].
That’s why it is primordial to show how the importance can
be eff ciently managed in evidential reasoning approaches.
The main question we are concerned here is how to deal
with different importances of sources in the fusion process in
such a way that a clear distinction is made/preserved between
reliability and importance? Our preliminary investigations for
the search of the solution of this problem were based on the
self/auto-combination of the sources. But such approach is
very disputable and cannot be used satisfactorily in practice
whatever the fusion rule is adopted because it can be easily
shown that the auto-conf ict tends quickly to 1 after several
auto-fusions [11]. Actually a better approach can be used for
taking into account the importances of the sources and can
be considered as the dual of Shafer’s discounting approach
for reliabilities of sources. The idea was originally introduced
brief y by Tacnet in [24], Vol.3, Chap. 23, p. 613. It consists
to def ne the importance discounting with respect to the
empty set rather than the total ignorance Θ (as done with
Shafer’s discounting). Such new discounting deals easily with
sources of different importances and is very simple to use.
Mathematically, we def ne the importance discounting of a
source m(.) having the importance factor β in [0, 1] by:

(

mβ(X) = β · m(X), for X 6= ∅

mβ(∅) = β · m(∅) + (1 − β)
(3)

Here we allow to deal with non-normal bba since mβ(∅) ≥ 0
as suggested by Smets in [26]. This new discounting pre-
serves the specif city of the primary information since all
focal elements are discounted with same importance factor.
Here we use the positive mass of the empty set as an
intermediate/preliminary step of the fusion process. Clearly
when β = 1 is chosen by the fusion designer, it will mean
that the source must take its full importance in the fusion
process and so the original bba m(.) is kept unchanged.
If the fusion designer takes β = 0, one will deal with
mβ(∅) = 1 which is interpreted as a fully non important
source. m(∅) > 0 is not interpreted as the mass committed
to some conf icting information (classical interpretation), nor
as the mass committed to unknown elements when working
with the open-world assumption (Smets interpretation), but
only as the mass of the discounted importance of a source in
this particular context. Based on this discounting, one adapts
PCR5 (or PCR6) rule for N ≥ 2 discounted bba’s mβ,i(.),
i = 1, 2, . . .N by considering the following extension, denoted
PCR5∅, def ned by: ∀X ∈ 2Θ

mPCR5∅
(X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2
Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
] (4)
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A similar extension can be done for PCR5 and PCR6 formulas
for N > 2 sources given in [24], Vol. 2. A detailed presenta-
tion of this technique with several examples will appear in [25]
and thus it is not reported here. The difference between eqs.
(1) and (4) is that mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0.
Since we usually work with normal bba’s for decision making
support, the combined bba will be normalized. In the AHP
context, the importance factors correspond to the components
of the normalized eigenvector w.
Example 3: Take back example 2 assume that C2 (the relia-
bility) is three times more important than C1 (fuel economy)
so that the knowledge matrix is given by:

M =
[

1/1 1/3
3/1 1/1

]

≈
[

1.0000 0.3333
3.0000 1.0000

]

Its normalized principal eigenvector is w = [0.2500 0.7500]′

and indicates that C2 is three times more important than C1
as expressed in the prior DM preferences for ranking criteria.
w = [w1 w2]

′ can also be obtained directly by solving the
algebraic system of equations w2 = 3w1 and w1 + w2 = 1
with w1, w2 ∈ [0, 1]. If we apply the importance discounting
with β1 = w1 = 0.25 and β2 = w2 = 0.75, one gets the
following discounted bba’s

Elem. of 2Θ mβ1,C1(.) mβ2,C2(.)

∅ 0.7500 0.2500
A 0.0222 0.3751
B 0 0

A ∪ B 0 0.0906
C 0 0

A ∪ C 0 0.0917
B ∪ C 0.1334 0.1926

A ∪ B ∪ C 0.0944 0

With the PCR5∅ fusion of the sources mβ1,C1(.) and
mβ2,C2(.), one gets the results in the table. For decision-
making support, one prefers to work with normal bba’s.
Therefore mPCR5∅

(.) is normalized by redistributing back
mPCR5∅

(∅) proportionally to the masses of other focal el-
ements as shown in the right column of the next table.

Elem. of 2Θ mPCR5∅
(.) mnormalized

PCR5∅
(.)

∅ 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351

A ∪ B 0.0159 0.0461
C 0.0122 0.0355

A ∪ C 0.0161 0.0469
B ∪ C 0.1020 0.2963

A ∪ B ∪ C 0.0065 0.0188

If all sources have the same full importances (i.e. all βi=1),
then mPCR5∅

(.) = mPCR5(.) which is normal because in
such case mβi=1,Ci(.) = mCi(.). From mnormalized

PCR5∅
(.) one

can easily compute the credibility, pignistic probability or
plausibility of each element of Θ for decision-making. In this
example one gets:

Elem. of Θ Bel(.) BetP (.) P l(.)

A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974

If the classical AHP ”fusion” method (i.e. weighted arithmetic
mean) is used directly with bba’s mC1(.) and mC2(.), one
gets:

mAHP (.) =









0 0
0.0889 0.5002

0 0
0 0.1208
0 0
0 0.1222

0.5337 0.2568
0.3774 0









×
[

0.25
0.75

]

=









0
0.3974

0
0.0906

0
0.0917
0.3260
0.0944









which would have provided the following result for decision-
making

Elem. of Θ Bel(.) BetP (.) Pl(.)

A 0.3974 0.5200 0.6741
B 0 0.2398 0.5110
C 0 0.2403 0.5121

In this very simple example, one sees that the importance
discounting technique coupled with PCR5-based fusion rule
(what we call the DSmT-AHP approach) will suggest, as with
classical AHP, to choose the alternative A since the car A has
a bigger credibility (as well as a bigger pignistic probability
and plausibility) than cars B or C. It is however worth to
note that the values of Bel(.), BetP (.) and Pl(.) obtained by
both methods are slightly different. The difference in results
can have a strong impact in practice in the f nal result for
example if the costs of vehicles have also to be included in
the f nal decision (as explained at the end of the example 1).
Note also that the uncertainties U(X) = Pl(X) − Bel(X)
of alternatives X = A, B, C have been seriously diminished
when using DSmT-AHP with respect to what we obtain with
classical AHP as seen in the following table. The uncertainty
reduction is a nice expected property specially important for
decision-making support.

Elem. of Θ U(.) with AHP U(.) with DSmT-AHP
A 0.2767 0.1118
B 0.5110 0.3612
C 0.5121 0.3619

Important remark: If Dempster’s rule is used instead of
PCR5∅ rule, one gets the following results when compar-
ing the fusion of mC1(.) with mC2(.) (i.e. without im-
portance discounting) with the fusion of mβ1=w1=0.25,C1(.)
with mβ2=w2=0.75,C2(.) (i.e. with importance discounting of
criteria C1 and C2):

Elem. of 2Θ mDS(.) mDS,w(.)

∅ 0 0
A 0.3588 0.3588
B 0.0908 0.0908

A ∪ B 0.0642 0.0642
C 0.0918 0.0918

A ∪ C 0.0649 0.0650
B ∪ C 0.3294 0.3294

A ∪ B ∪ C 0 0

Clearly, Dempster’s rule cannot deal properly with impor-
tance discounted bba’s as we have proposed in this work just
because the importance discounting technique preserves the
specif city of the primary information and thus Dempster’s
rule does not make a difference in results when combining
either mC1(.) with mC2(.) or when combining mβ1 6=1,C1(.)
with mβ2 6=1,C2(.) due to the way of processing of the total
conf icting mass of belief. PRC5 deals more eff ciently with
importance discounted bba’s as we have shown in this exam-
ple. So it is not surprising that such discounting technique
has never been proposed and used in DST framework and this
explains why only the classical Shafer’s discounting technique
(the reliability discounting) is generally adopted. By using
Dempster’s rule, the fusion designer has no other choice
but to consider importance and reliability as same notions !
The DSmT framework with PCR5 (or PCR6) rule and the
importance discounting technique proposed here provides an
interesting and simple solution for the fusion of sources with
different importances which makes a clear distinction between
importances and reliabilities of sources.
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V. DSMT-AHP FOR SOLVING MCGDM
Previously, a new approach mixing AHP with DSmT solv-

ing MCDM problem has been presented. In many practical
situations however, the decision must be taken by a group
of n > 1 Decision Makers (GDM), denoted GDM =
{DMi, i = 1, 2, . . . , n}, rather than a single DM, and from
the Multi-Criteria preference rankings of the DMi’s. The
importance (inf uence) of each member of the GDM is usually
non-equivalent [1] and the importance of each DM of the
GDM must be eff ciently taken into account in the f nal
decision-making process. Let’s denote by mDMi(.) the re-
sult of DSmT-AHP approach (see section IV) related with
DMi ∈ GDM . The MCGDM problem consists in combining
all opinions/preferences rankings mDMi(.), i = 1, . . . , n
with their own (possibly different) importances. When all
DMi’s have equal importance, the classical fusion rules8 ⊕
for combining mDMi(.) can be directly used to get the f nal
result mMCGDM (.) = [mDM1 ⊕mDM2 ⊕ . . .⊕mDMn ](.); If
the DMi’s have different importance weights wi, the DSmT-
AHP approach can also be used at the GDM fusion level
using the importance discounting approach presented here. The
result for group decision-making is given by the PCR5∅ fusion
of mβi,DMi(.), with βi = wi and then the result must be
normalized for decision making support. In [6], Beynon used
the classical discounting technique [23] to readjust mDMi(.)
with wi’s and he identif ed the importance factors with the
reliability factors. In our opinions, this is disputable since
importance of a DMi is not necessarily related with its
reliability but rather with the importance in the problem of the
choice of his/her Multi-Criteria to establish his/her ranking, or
it can come from other (political, hierarchical, etc.) reasons.
In our new approach, we make a clear distinction between
notions of importance and reliability and both notions can be
easily taken into account [25] with DSmT-AHP for solving
MCGDM problems, i.e. we can use the classical discounting
technique for taking into the reliabilities of the sources, and
use the importance discounting proposed here for dealing with
the importances of sources.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a new method for Multi-
Criteria Decision-Making (MCDM) and Multi-Criteria Group
Decision-Making (MCGDM) based on the combination of
AHP method developed by Saaty and DSmT. The AHP
method allows to build bba’s from DM preferences of solutions
which are established with respect to several criteria. The
DSmT allows to aggregate eff ciently the (possibly highly
conf icting) bba’s based on each criterion. This DSmT-AHP
method allows to take into account also the different impor-
tances of the criteria and/or of the different members of the
decision-makers group. The application of this DSmT-AHP
approach for the prevention of natural hazards in mountains is
currently under progress, see [24], Vol.3, Chap. 23, and [27].

8typically the PCR5 or PCR6 rules, or eventually Dempster’s rule if the
conf ict between DMi’s is low.
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Abstract-In theories of evidence, several methods have been
proposed to combine a group of basic belief assignments al-
together at a given time. However, in some applications in
defense or in robotics the evidences from different sources are
acquired only sequentially and must be processed in real-time
and the combination result needs to be updated the most recent
information. An approach for combining sequentially unreliable
sources of evidence is presented in this paper. The sources of
evidence are not considered as equi-reliable in the combination
process, and no prior knowledge on their reliability is required.
The reliability of each source is evaluated on the fly by a distance
measure, which characterizes the variation between one source
of evidence with respect to the others. If the source is considered
as unreliable, then its evidence is discounted before entering in
the fusion process. Dempster’s rule of combination and its main
alternatives including Yager’s rule, Dubois and Prade rule, and
PCR5 are adapted to work under different conditions. In this
paper, we propose to select the most adapted combination rule
according to the value of conflicting belief before combining the
evidence. The last part of this paper is devoted to a numerical
example to illustrate the interest of this approach.
Keywords: evidence theory, combination rule, evidence
distance, conflicting belief.

I. INTRODUCTION

Evidence theories1 are widely applied in the field of infor-
mation fusion. A particular attention has been focused on how
to efficiently combine sources of evidence altogether at the
same time (static approach), and many rules aside Dempster’s
rule have been proposed [1], [2], [6], [9]. In many applications
however, the evidences from different sources are acquired
sequentially by different sensors or human experts and the
belief updating and decision-making need to be taken in real-
time which requires a sequential/dynamic approach rather than
a static approach of the fusion problem.

Usually the evidences arising from different independent
sources are often considered equally reliable in the combina-
tion process, when the prior knowledge about the reliability
of each source is unknown. However, all the sources of
evidence to be combined can have different reliabilities in real

applications. If the sources of evidence are considered as equi-
reliable, the unreliable ones may bring a very bad influence
on combination result, and even leads to inconsistent results
and wrong decisions. Thus, the reliability of each source must
be taken account in the fusion process as best as possible
to provide a useful and unbiased result. In this work, we
propose to evaluate on the fly the relability of the sources to
combine based on an evidential distance/reliability measure.
From this reliability measure, one can discount accordingly
the unreliable sources before applying a rule of combination
of basic belief assignments (bba’s).

Many rules, like Dempster’s rule [7] and its alternatives can
be used to combine sources of evidences expressed by bba’s
and they all have their drawbacks and advantages (see [8],
Vol. 1, for a detailed presentation). Dempster’s rule, is usually
considered well adapted for combining the evidences in low
conflict situations and it requires acceptable complexity when
the dimension of the frame of discernment is not too large.
Dempster’s rule however provides counter-intuitive behaviors
when the sources evidences become highly conflicting. To
palliate this drawback, several interesting alternatives have
been proposed when Dempster’s rule doesn’t work well,
mainly: Yager’s rule [9], Dubois and Prade rule (DP rule)
[2], and PCR5 (proportional conflict redistribution rule no 5)
[8] developed in DSmT framework. The difference among
Dempster’s rule and its main alternatives mainly lies in the
distribution of the conflicting belief m⊕(∅) which is generally
used to characterize the total amount of conflict [4] between
sources. In this paper, we propose to select the proper rule
of combination based on the value of the total degree of
conflict m⊕(∅). The last part of this paper presents a numerical
example to show how the approach of sequential adaptive
combination of unreliable sources of evidence works.

II. PRELIMINARIES

A. Basics of Dempster-Shafer theory (DST)

DST [7] is developed in Shafer’s model. In this model,
a fixed set Θ = {θ1, θ2, . . . , θn} is called the frame of
discernment of fusion problem. All the elements in Θ are
mutually exclusive and exhaustive. The set of all subsets of

1DST (Dempster-Shafer Theory) [7] or DSmT (Dezert-Smarandache Theory) [8].
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Θ is called the power set of Θ, and it is denoted 2Θ. For
instance, if Θ = {θ1, θ2, θ3}, then 2Θ = {∅, θ1, θ2, θ3, θ1 ∪
θ2, θ1 ∪ θ3, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3}. A basic belief assignment
(bba), also called mass of belief, is a mapping m : 2Θ → [0, 1]
associated to a given body of evidence B such that m(∅) = 0
and

∑
A∈2Θ m(A) = 1. The credibility (also called belief)

of A ⊆ Θ is defined by Bel(A) =
∑

B∈2Θ

B⊆A

m(B). The

commonality function q(.) and the plausibility function Pl(.)
are also defined by Shafer in [7]. The functions m(.), Bel(.),
q(.) and Pl(.) are in one-to-one correspondence.

Let m1(.) and m2(.) be two bba’s provided by two in-
dependent bodies of evidence B1 and B2 over the frame of
discernment Θ. The fusion/combination of m1(.) with m2(.),
denoted m(.) = [m1 ⊕ m2](.) is obtained in DST with
Dempster’s rule of combination as follows:





m(∅) = 0

m(A) =

∑
X1∩X2=A

m1(X1)m2(X2)

∑
X1∩X2 6=∅

m1(X1)m2(X2)
∀A 6= ∅, A ∈ 2Θ (1)

The degree of conflict between the bodies of evidence B1

and B2 is defined by

m⊕(∅) =
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2) (2)

Dempster’s rule can be directly extended to the combination
of S independent and equally reliable sources. It is a commu-
tative and associative rule of combination and it preserves the
neutral impact of the vacuous belief assignment defined by
mvba(Θ) = 1.

B. Main alternatives to Dempster’s rule

Dempster’s rule yields counterintuitive results when the
evidences highly conflict because of its way of assigning the
mass of conflicting belief m⊕(∅). Thus, a lot of alternatives
to Dempster’s rule have been proposed for overcoming limita-
tions of Dempster’s rule. The main alternative rules including
Yager’s rule [9], DP rule [2] and PCR5 [8] are briefly recalled.

• Yager’s rule: Yager admits the conflicting belief is not
reliable. So m⊕(∅) is transferred to the total ignorance
in Yager’s rule. It is given by m(∅) = 0 and for A 6= ∅,
A ∈ 2Θ by




m(A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ), for A 6= Θ

m(Θ) = m1(Θ)m2(Θ) +
∑

X,Y ∈2Θ

X∩Y =∅
m1(X)m2(Y )

(3)
• Dubois & Prade rule: This rule assumes that if two

sources of evidence are in conflict, one of them is right
but we don’t know which one. Thus, if X ∩ Y = ∅, then
the mass committed to the set X ∩ Y by the conjunctive
operator should be transferred to X ∪ Y . According to

this principle, DP rule is defined by m(∅) = 0 and for
A 6= ∅ and A ∈ 2Θ by

m(A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y )

+
∑

X,Y ∈2Θ

X∩Y =∅
X∪Y =A

m1(X)m2(Y ) (4)

• PCR5 rule: PCR5 transfers the partial conflicting mass
to the elements involved in the conflict, and it is consid-
ered as the most mathematically exact redistribution of
conflicting mass to nonempty sets following the logic of
the conjunctive rule. PCR5 is defined by m(∅) = 0 and
∀A 6= ∅, A ∈ 2Θ by

m(A) =
∑

X1,X2∈2Θ

X1∩X2=A

m1(X1)m2(X2)+

∑

X2∈2Θ

X2∩A=∅

[
m1(A)2m2(X2)

m1(A) + m2(X2)
+

m2(A)2m1(X2)
m2(A) + m1(X2)

] (5)

The details, examples and the extension of PCR5 formula
(5) for S > 2 sources are given in [8].

C. Discounting source of evidence

When the sources of evidences are not considered equally
reliable, it is reasonable to discount each unreliable source si,
i = 1, 2, . . . , S by a reliability factor αi ∈ [0, 1]. Following
the classical discounting method [7], a new discounted bba
m′(.) is obtained from the initial bba m(.) provided by the
unreliable source si as follows




m′(A) = αi ·m(A), A 6= Θ
m′(Θ) = 1−∑

A∈2Θ

A6=Θ

m′(A) (6)

αi = 1 means that the total confidence in the source si, and the
original bba doesn’t need to be discounted. αi = 0 means that
the source is si is totally unreliable and its bba is revised as a
vacouous bba m′(Θ) = 1, which will have a neutral impact in
the fusion process. In practice, the discounting method can be
used efficiently if one has a good estimation of the reliability
factor of each source. We show in the next section how one
can evaluate the relability of a source.

III. EVALUATING THE RELIABILITY OF EACH SOURCE

Without prior knowledge on the reliability of the sources
of evidence, we propose to evaluate the reliability factors of
each source based on the distance between the bba from a
given source si with respect to the others. If the bba of the
given source, say si varies too much with respect to the others,
this source of evidence is considered not reliable and it will
be discounted before to be combined. We will show further
how the discounting/reliability factor can be estimated. We
implicitly assume here that the following principle ”Truth is
reflected by the majority of opinions” holds.
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In [3], Jousselme et al. have proposed the following distance
measure dJ(m1,m2) between two bba’s2 m1 , m1(.) and
m2 , m2(.) defined on the same power set 2Θ:

dJ(m1,m2) =

√
1
2
(m1 −m2)T D(m1 −m2) (7)

where D is a 2|Θ| × 2|Θ| positive matrix whose elements are
defined as Dij , |Ai∩Bj |

|Ai∪Bj | where Ai and Bj are elements of
the power set 2Θ. dJ(m1,m2) ∈ [0, 1] is a distance which
measures the similarity between m1 and m2 considering both
the values and the relative specificity of focal elements of each
bba.

The total degree of conflict m⊕(∅) obtained from all focal
elements which are incompatible doesn’t actually capture the
similarity between bba’s as shown by Martin et al. in [5].

If N pieces of evidence m1, m2, . . . , mN are combined
sequentially, two approaches similarly with [5] could be used
to measure the variation between mj and the others. One
considers the average value dJ between mj and the others
which is given by

dj−1
1 (mj) =

1
j − 1

j−1∑

i=1

dJ(mj ,mj−i) (8)

The other one is simply defined as

dj−1
2 (mj) = dJ(mj ,m

j−1
1 ) (9)

where mj−1
1 , mj−1

1 (.) is obtained by the sequential
combinination of the bba’s m1(.), m2(.),. . . , mj−1(.), i.e.
mj−1

1 (.) = (((m1 ⊕m2)⊕m3) · · · ⊕mj−1)(.) with a fusion
rule such as Dempster’s rule, Yager’s rule, DP rule, PCR5, etc.
The second measure, dj−1

2 (mj), reflects only the difference
between mj and the combined bba mj−1

1 and thus cannot
precisely measure the similarity between mj and the other
individual evidences m1(.), m2(.), . . . , mj−1(.) because some
information on specificities of these individual bba’s has been
lost forever through the fusion process. The following exam-
ples will show the distinction between these two methods.
Example 1: Let’s consider the frame of discernment Θ =
{A,B, C}, Shafer’s model and the same following bba’s

m1(.) : m1(A) = 0.5,m1(B) = 0.2
m1(A ∪B) = m1(C) = m1(Θ) = 0.1

m2(.) : m2(A) = 0.5,m2(B) = 0.2
m2(A ∪B) = m2(C) = m2(Θ) = 0.1

...
mj(.) : mj(A) = 0.5,mj(B) = 0.2

mj(A ∪B) = mj(C) = mj(Θ) = 0.1

The difference between mj(.), for j ≥ 2, and all the bba’s
mi(.), for i < j according to formula (8) gives dj−1

1 (mj) = 0,
which shows correctly that mj(.) is identical to the other bba’s

mi(.), for i < j. If one uses the measure dj−1
2 (mj) defined

in (9), one gets the results plotted in Fig. 1.
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Fig. 1: Variation of the similarity measure dj−1
2 (mj) based on

different fusion rules.

One sees that there exists a variation of the similarity
measure using all different fusion rules with a trend to certain
values when j increases. This is a bad behavior since we know
that mj equals to the others bba’s and we would expect to get
dj−1
2 (mj) = 0 which unfortunately is not the case. That is the

main reason why we abondon the use of dj−1
2 (mj) measure

in the sequel of this work.
Example 2: Let’s consider the frame of discernment Θ =
{A,B, C, D, E}, Shafer’s model, and the following bba’s

m1(.) : m1(A) = 0.6,m1(B) = m1(C) = 0.1
m1(D) = m1(E) = 0.1

m2(.) : m2(Θ) = 1
m3(.) : m3(Θ) = 1

...
mj−1(.) : mj−1(Θ) = 1

mj(.) : mj(A) = 0.6,mj(B) = mj(C) = 1,

mj(D) = mj(E) = 0.1

In this example, mj(.) = m1(.), but mj(.) is quite different
from the others bba’s mi(.), i 6= 1. The similarity measure
dj−1
1 (mj) between mj(.), for j ≥ 3 and the bba’s mi(.),

i < j is dj−1
1 (mj) = 0.2(j−2)

j−1 which shows a trend to 0.2
when j increases. However in such case, one always gets
using Dempster’s rule, Yager’s rule, DP rule or PCR5 rule
dj−1
2 (mj) = 0. From such very simple example, one sees that

one cannot detect the dissimilarity of mj(.) with a majority
of quite distinct bba’s when dj−1

2 (mj) measure is used. This
shows again that dj−1

2 (mj) is actually not very appropriate
for measuring the similarity between a given bba mj(.) and a
set of bba’s. Therefore we will only consider the measure of
similarity dj−1

1 (mj) in the sequel.

2Here for notation convenience, we use the usual vectorial notation m1 and m2 (with boldfaced letter) for representing the entire bba’s usually denoted
m1(.) and m2(.). m1 and m2 are vectors of dimension 2|Θ| × 1. We assume that the bba’s vectors are both ordered using the same order for their
components.
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For managing the computational burden in applications, a
parameter n ≤ j − 1 is introduced in the measure dj−1

1 (mj)
and we define the new measure:

dj−1
n (mj) =

1
min(n, j − 1)

min(n,j−1)∑

i=1

dJ(mj ,mj−i) (10)

The accuracy and the computational complexity of this
similarity measure increases when n tends to j − 1.

Let ’s consider a given discounting tolerance threshold ωd

in [0, 1]. If dj−1
n (mj) ≥ ωd, it indicates that the bba mj(.)

will be considered as not similar enough with respect to other
bba’s and therefore the source sj is considered as unreliable
and must be discounted before entering in the fusion process.
The unreliability of the source sj may be caused by a fault
of the sensor or unexpected noises, condition changes, etc. In
such case, the bba mj(.) needs to be discounted by formula
(6). As proposed by Martin et al. in [5], the reliability factor of

the source sj is chosen as αj = (1− dj−1
n (mj)

λ)
1/λ

where
the parameter λ is defined in the easiest way with λ = 1.
The larger dissimilarity leads to the less reliability factor.
If dj−1

n (mj) < wd, it means that the dissimilarity between
mj(.) with other bba’s is acceptable, and there is no need to
revise/discount mj(.) in such case.

IV. SELECTION OF COMBINATION RULES

After evaluating the reliability of the sources, we have to
select a suitable combination rule. Dempster’s rule is known to
offer pretty good performances when the combined bba’s are
not in too high conflict, otherwise when the conflict becomes
too large it is generally considered safer to use alternative
rules like Yager’s rule, DP rule, and PCR5 rule. The following
examples show the difference between the different approaches
for the fusion of sources of evidences.
Example 3: This is Zadeh’s example [10]. Let’s consider
Θ = {A,B, C} with Shafer’s model and the following bba’s

m1(.) : m1(A) = 0.9,m1(B) = 0.1
m2(.) : m2(B) = 0.1,m2(C) = 0.9

One sees that the two sources are in very high conflict
because the total conflict is m1,2

⊕ (∅) = 0.99. Using Dempster’s
rule, one gets surprisingly m(B) = 1 which is somehow
conterintuitive since m1 and m2 both believe in B with a
little chance, but the fusion result states that B is the only
possible solution with certainty, which seems unreasonable3.
If we use Yager’s rule, DP rule, and PCR5, one gets:
• Yager’s rule: m(B) = 0.01, m(Θ) = 0.99
• DP rule: m(B) = 0.01, m(A ∪B) = 0.09,

m(A ∪ C) = 0.81, m(B ∪ C) = 0.09
• PCR5: m(A) = 0.486, m(B) = 0.028, m(C) = 0.4860
These results are more reasonable in some sense, but they

are not the same. Yager’s rule transfers all the conflicting mass
to total ignorance and produces the least specific result in the

three rules. DP rule distributes the conflicting mass to the
union of the involved sets, which makes the uncertainty of the
result still very large. DP rule produces a less specific result
than PCR5 but DP is a bit more specific than Yager’s rule.
PCR5 provides the most specific result since A and C share
the same bba whereas B keeps a very low belief assignment.

Therefore, in order to avoid to get counterintuitive results,
it is reasonable to use Yager’s rule, DP rule, or PCR5 than
Dempster’s rule as soon as the level of conflict becomes large.
The choice among Yager’s rule, DP rule, and PCR5 depends
on the application and the computational resource one has.
PCR5 is very appropriate if a decision has to be made because
it provides the most specific solution, but PCR5 requires the
most computational burden. Sometimes it better to get less
specific result if we don’t need to take a clear/precise decision
in case of high conflict between sources. In such case, Yager’s
rule and/or DP rule can be used instead. When the level of
conflict between two bba’s is low Dempster’s rule can be
used since it offers a good compromise between computational
complexity and the specificity of the result.
Example 4: Let’s consider Θ = {A,B, C} and

m1(.) : m1(A) = 0.35,m1(B) = 0.3,m1(A ∪B) = 0.15,

m1(C) = 0.2
m2(.) : m2(A) = 0.35,m2(B) = 0.3,m2(A ∪ C) = 0.05,

m2(A ∪B) = m2(C) = m2(Θ) = 0.1
m3(.) : m3(A) = 0.3,m3(B) = 0.3,m3(A ∪B) = 0.2,

m3(C) = m3(A ∪ C) = 0.1

The conflicts between each pair of bba’s are given by
m1,2
⊕ (∅) = 0.455,m1,3

⊕ (∅) = 0.395,m2,3
⊕ (∅) = 0.395. The

levels of these conflicts are not too large according and the
sequential combination m(.) = [[m1⊕m2]⊕m3](.) using the
different rules yields
• Dempster’s rule: m(A) = 0.5868, m(B) = 0.3592,

m(A ∪B) = 0.0202, m(C) = 0.0338
• Yager’s rule: m(A) = 0.3105, m(B) = 0.243, m(C) =

0.0555, m(A ∪ B) = 0.097, m(A ∪ C) = 0.0455,
m(Θ) = 0.2485

• DP rule: m(A) = 0.3255, m(B) = 0.2295, m(C) =
0.0435, m(A ∪ B) = 0.1975, m(A ∪ C) = 0.0575,
m(B ∪ C) = 0.0345, m(Θ) = 0.112

• PCR5: m(A) = 0.4889, m(B) = 0.3941, m(C) =
0.0819, m(A ∪B) = 0.0268, m(A ∪ C) = 0.0083

All the rules provide reasonable results with assigning the
largest belief to A, but Dempster’s rule produces the most
specific result with a less computational effort. Dempster’s
rule is thus well appropriate when m⊕(∅) is not too large.

V. ADAPTIVE COMBINATION OF SEQUENTIAL EVIDENCE

Here we are concerned with the real-time decision-making
problem from the sequential acquisition of bba’s m1(.),
m2(.),. . . , mN (.) defined on a same frame Θ without any

3More generally, one can show that Dempster’s rule can become insensitive to the variation of input bba’s to combine - see [8], Vol. 1, Chap. 5, p. 114 for
example.
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prior knowledge about reliability of each source. We start
with m1(.). When m2(.) is available, one combines it with
m1(.) by a suitable rule according to the value of m1,2

⊕ (∅)
without evaluating the reliability of the two sources. When
mj(.), for j ≥ 3 becomes available at the time j, the reliability
of the source sj is evaluated and mj(.) is discounted (if
necessary) by the approach presented in section III. Before
combining the discounted bba m′

j(.) (or mj(.) when no
discounting occurs) with the last updated bba mj−1

1 (.), the
combination rule is selected according to the value of the
conflict between mj(.) and mj−1

1 (.). We use a threshold
ω∅. If m⊕(∅) < ω∅, Dempster’s rule is selected because it
offers a good compromise between complexity and specificity.
Otherwise, Yager’s rule, DP rule, or PCR5, are selected upon
the actual application to avoid to get counterintuitive results.

The tuning of thresholds ωd and ω∅ is not easy in general.
If the thresholds are too large, one takes the risk to get
counterintuitive results, whereas if they are set to too low
values the non specificity of the result will become large
and even will lead to decision-making under big uncertainty.
Therefore, both thresholds ωd and ω∅ need to be determined by
accumulated experience depending on the actual application .

VI. NUMERICAL EXAMPLE

Let us suppose a multisensor-based target identification
system. From five independent sensors, the system collects five
pieces of evidence sequentially (actually we consider here 2
possible bba’s m5A(.) and m5B(.) for the fifth source). For
decision-making in real-time, the combination result needs to
be updated right after the new evidence arrives. The bba’s
defined on the power set of Θ = {A,B, C} are as follows

m1(.) : m1(A) = 0.8,m1(B) = 0.1,m1(Θ) = 0.1
m2(.) : m2(A) = 0.4,m2(B) = 0.25,

m2(C) = 0.2,m2(B ∪ C) = 0.15,

m3(.) : m3(B) = 0.9,m3(C) = 0.1,

m4(.) : m4(B) = 0.45,m4(C) = 0.45,m4(B ∪ C) = 0.1,

m5A(.) : m5A(A) = 0.5,m5A(A ∪B) = 0.25,

m5A(C) = 0.1,m5A(A ∪ C) = 0.15,

m5B(.) : m5B(B) = 0.5,m5B(A ∪B) = 0.25,

m5B(C) = 0.1,m5B(B ∪ C) = 0.15.

The five pieces of evidence are combined sequentially, and
the results are presented in Table 1. The chosen thresholds are
ωd = 0.6, ω∅ = 0.6 and n = 5.

All the rules provide reasonable results when combining
consistent bba’s m1(.) and m2(.). The bba m3(.) is highly
conflicting with m1(.) and m2(.). If there is no prior in-
formation about the reliability of the sources, we evaluate
the reliability of each source according to its variation with
respect to the others. The average similarity distance between
m3 and m1, m2 is so large that dj−1

n (m3) > ωd. Thus,
m3(.) is considered unreliable. If we combine directly (without
discounting) m3(.) with m2

1(.) using Dempster, Yager, DP
or PCR5, one gets a high belief in B with all the rules.

With the adaptive rule, the bba of m3(.) is discounted with
the reliability factor α = 1 − dj−1

n (m3) to get m′
3(.). The

combination of m′
3(.) with m2

1(.) assigns now the highest
belief in A. This adaptive method is helpful to deal with
the high conflicts caused by the unreliability of the sources.
The difference between m4(.) and m1(.), m2(.), m3(.) is
below the tolerance threshold, but the value of m⊕(∅) between
m4(.) and m3

1(.) is very large, and m⊕(∅) = 0.8334 > ω∅.
The result of Dempster’s rule indicates that the most credible
hypothesis is B, whereas A is not possible to happen, which
is not reasonable. The results produced by Yager’s rule and
DP rule selected in adaptive rule is full of uncertainty, and we
even can’t make a clear decision from them because of their
ways of distributing the mass of conflicting belief. We can get
the specific output that most belief focuses on hypothesis A
only if PCR5 is selected in the adaptive rule. As we can see,
m1(.) and m2(.) strongly support the hypothesis A, whereas
m3(.) and m4(.) strongly support B. It is not easy to be
sure what is the true hypothesis. The adaptive rule tends to
preserve the earlier decision, since it assumes that m1(.) and
m2(.) where totally reliable, and then m3(.) is considered
unreliable and thus discounted. When m5(.) is available, if
m5(.) strongly supports A as with m5A(.), the combination
results of all the adaptive rules commit their highest belief
in A. If m5(.) strongly supports B as with m5B(.), the
combination results will change and assign the highest belief
in B. The results produced by the adaptive rule with selecting
combination rules between Dempster and PCR5 are always
most specific, which is very useful and helpful for decision-
making in real-time. The good performance of adaptive rules
lies in the method of evaluating the reliability of sources and
the way for automatically selecting suitable combination rules.

VII. CONCLUSIONS

An approach for adaptive combination of unreliable sources
of evidence has been proposed in this paper for combining
sequentially the sources without prior knowledge on their
reliabilities. The reliability of each source is evaluated ac-
cording to its similarity with respect to the others which
is measured by an average distance of similarity. When a
source is not reliable enough, its bba is discounted to diminish
its influence in the fusion process and on decision-making.
Before the fusion of the sources, the suitable combination
rule is selected depending on the mass of conflicting belief
m⊕(∅) and the compromise between the computational burden
and the specificity of the result one wants to deal with.
Whenever m⊕(∅) is below the tolerance threshold, Dempster’s
rule can be chosen as a good rule of combination for such a
compromise. Otherwise, Yager’s rule, DP rule, or PCR5 must
be selected to avoid to get counterintuitive results. The choice
among these three rules depends on the application and the
acceptable risk in decision-making errors. PCR5 rule is very
appropriate to use in general for decision-making because
it provides the most specific fusion results, but it requires
more computational resources than other rules. If we want
to keep uncertain results and don’t necessarily need a very
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specific decision in case of high conflict between sources,
Yager’s rule or DP rule can be selected instead. Our numerical
example shows the interest of the proposed approach. The
main difficulty however lies in the tuning of the thresholds ωd,
ω∅ and the parameter n involved in its implementation. These
parameters must be selected by experience depending on the
application. This approach was based on Shafer’s model, but
could be extended to other models proposed in DSmT.

Acknowledgement
This work was supported by a grant from the National Nat-

ural Science Foundation of China(NO.60634030,60775012).

REFERENCES

[1] Y. Deng, W.K. Shi, Z.F. Zhu, Q. Liu, Combining belief functions based
on distance of evidence, Decision Support Systems, Vol. 38, No. 3, pp.
489–493, 2004.

[2] D. Dubois, H. Prade, On the unicity of Dempster’s rule of combination,
International Journal of Intelligent Systems, Vol. 1, No. 2, pp. 133–142,
1986.

[3] A.L. Jousselme, D. Grenier, E. Bossé, A new distance between two bodies
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TABLE I
COMBINATION RESULTS BY DIFFERENT RULES

m2
1 m3

1 m4
1 m5A

1 m5B
1

Dempster’s rule

m(A) = 0.7826
m(B) = 0.1413
m(C) = 0.0435
m(B ∪ C) = 0.0326

m(B) = 0.9536
m(C) = 0.0464

m(B) = 0.9536
m(C) = 0.0464

m(B) = 0.9536
m(C) = 0.0464

m(B) = 0.9867
m(C) = 0.0133

Yager’s rule

m(A) = 0.36
m(B) = 0.065
m(C) = 0.02
m(B ∪ C) = 0.015
m(Θ) = 0.54

m(B) = 0.558
m(C) = 0.0575
m(Θ) = 0.3845

m(B) = 0.4799
m(C) = 0.2046
m(B ∪ C) = 0.0385
m(Θ) = 0.2770

m(A) = 0.1385
m(B) = 0.1296
m(A ∪B) = 0.0692
m(C) = 0.0885
m(A ∪ C) = 0.0415
m(Θ) = 0.5327

m(B) = 0.5993
m(A ∪B) = 0.0692
m(C) = 0.0827
m(B ∪ C) = 0.0473
m(Θ) = 0.2015

DP rule

m(A) = 0.36
m(B) = 0.065
m(A ∪B) = 0.24
m(C) = 0.02
m(A ∪ C) = 0.16
m(B ∪ C) = 0.035
m(Θ) = 0.12

m(B) = 0.414
m(A ∪B) = 0.324
m(C) = 0.0335
m(A ∪ C) = 0.036
m(B ∪ C) = 0.0245
m(Θ) = 0.168

m(B) = 0.4925
m(C) = 0.1249
m(B ∪ C) = 0.2206
m(Θ) = 0.1620

m(A) = 0.081
m(B) = 0.1783
m(A ∪B) = 0.2868
m(C) = 0.1026
m(A ∪ C) = 0.0867
m(B ∪ C) = 0.0493
m(Θ) = 0.2153

m(B) = 0.6897
m(A ∪B) = 0.0405
m(C) = 0.0695
m(B ∪ C) = 0.1691
m(Θ) = 0.0312

PCR5 rule

m(A) = 0.7734
m(B) = 0.1273
m(C) = 0.0653
m(B ∪ C) = 0.0340

m(A) = 0.3902
m(B) = 0.5814
m(C) = 0.0284

m(A) = 0.1942
m(B) = 0.5733
m(C) = 0.2245
m(B ∪ C) = 0.008

m(A) = 0.4025
m(B) = 0.4154
m(A ∪B) = 0.0296
m(C) = 0.1346
m(A ∪ C) = 0.0178
m(B ∪ C) = 0.0001

m(A) = 0.1049
m(B) = 0.7182
m(A ∪B) = 0.0296
m(C) = 0.1334
m(B ∪ C) = 0.0139

dj−1
n (mj)(n = 5) 0.3813 0.6601 0.4994 0.4115 0.4137

Dempster′s rule
with discounting

m(A) = 0.7826
m(B) = 0.1413
m(C) = 0.0435
m(B ∪ C) = 0.0326

m(A) = 0.7216
m(B) = 0.2046
m(C) = 0.0437
m(B ∪ C) = 0.0301

m(B) = 0.7565
m(C) = 0.2255
m(B ∪ C) = 0.018

m(B) = 0.7608
m(C) = 0.2392

m(B) = 0.9194
m(C) = 0.0770
m(B ∪ C) = 0.0036

Adaptive rule
(Dempster&Yager)

m(A) = 0.7826
m(B) = 0.1413
m(C) = 0.0435
m(B ∪ C) = 0.0326

m(A) = 0.7216
m(B) = 0.2046
m(C) = 0.0437
m(B ∪ C) = 0.0301

m(B) = 0.1261
m(C) = 0.0376
m(B ∪ C) = 0.0030
m(Θ) = 0.8334

m(A) = 0.4758
m(B) = 0.0368
m(A ∪B) = 0.2379
m(C) = 0.1067
m(A ∪ C) = 0.1427

m(B) = 0.5550
m(A ∪B) = 0.2172
m(C) = 0.0970
m(B ∪ C) = 0.1308

Adaptive rule
(Dempster&DP)

m(A) = 0.7826
m(B) = 0.1413
m(C) = 0.0435
m(B ∪ C) = 0.0326

m(A) = 0.7216
m(B) = 0.2046
m(C) = 0.0437
m(B ∪ C) = 0.0301

m(B) = 0.1261
m(A ∪B) = 0.3247
m(C) = 0.0376
m(A ∪ C) = 0.3247
m(B ∪ C) = 0.1147
m(Θ) = 0.0722

m(A) = 0.6232
m(B) = 0.0765
m(A ∪B) = 0.126
m(C) = 0.0988
m(A ∪ C) = 0.0755

m(A) = 0.1062
m(B) = 0.5844
m(A ∪B) = 0.1298
m(C) = 0.1429
m(B ∪ C) = 0.0367

Adaptive rule
(Dempster&PCR5)

m(A) = 0.7826
m(B) = 0.1413
m(C) = 0.0435
m(B ∪ C) = 0.0326

m(A) = 0.7216
m(B) = 0.2046
m(C) = 0.0437
m(B ∪ C) = 0.0301

m(A) = 0.4634
m(B) = 0.2975
m(C) = 0.2273
m(B ∪ C) = 0.0118

m(A) = 0.7526
m(B) = 0.1395
m(C) = 0.1079

m(A) = 0.2562
m(B) = 0.6116
m(C) = 0.1283
m(B ∪ C) = 0.0039
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Fusion of Sources of Evidence
with Different Importances and Reliabilities

F. Smarandache 
J. Dezert

J.-M. Tacnet

Abstract – This paper presents a new approach for
combining sources of evidences with different impor-
tances and reliabilities. Usually, the combination of
sources of evidences with different reliabilities is done by
the classical Shafer’s discounting approach. Therefore,
to consider unequal importances of sources, if any, a
similar reliability discounting process is generally used,
making no difference between the notion of importance
and reliability. In fact, in multicriteria decision con-
text, these notions should be clearly distinguished. This
paper shows how this can be done and we provide simple
examples to show the differences between both solutions
for managing importances and reliabilities of sources.
We also discuss the possibility for mixing them in a
global fusion process.

Keywords: Information fusion, DSmT, discounting,
importance, reliability, AHP.

1 Introduction

In many real-life fusion problems, one has to deal
with different sources of information arising from hu-
man reports, artificial intelligence experts systems
and/or physical sensors. The information are usually
imprecise, uncertain, incomplete, qualitative or quanti-
tative and possibly conflicting. The task of information
fusion is to combine all the information in such a way
that one has a better understanding and assessment
of the situation of the complex problem under consid-
eration for decision-making support. Several theoret-
ical frameworks have been proposed in the literature
(Probability theory, Possibilities theory, Imprecise PT,
etc) but the most appealing ones are the theories of
belief functions, originally known as Dempster-Shafer
Theory (DST) [8] and then extended and refined in
Dezert-Smarandache Theory (DSmT) [9] for dealing
with qualitative information, for fusioning highly con-
flicting sources of evidences, for conditioning evidences,
etc. Aside the choice of the “best“ rule of combina-
tion of sources of evidences characterized by their be-

lief functions, more specifically by their basic belief as-
signments (bba’s), or belief masses, the very important
problem concerns the possibility that sources involved
in the fusion process may not have the same reliability,
neither the same importance. The reliability can be
seen as an objective property of a source of evidence,
whereas the importance of a source is a subjective prop-
erty of a source expressed by the fusion system designer.

The reliability of a source represents its ability to pro-
vide the correct assessment/solution of the given prob-
lem. The importance of a source represents somehow
the weight of importance granted to the source by the
fusion system designer. The reliability and importance
represent two distinct notions and the fusion process
must be able to deal with these notions. We show in
this paper how this can be done efficiently through two
discounting techniques using Proportional Conflict Re-
distribution rules no 5 or no 6 (PCR5 or PCR6) de-
veloped in DSmT framework. We will show also that
such solution cannot be used in DST framework us-
ing Dempster’s rule of combination because Dempster’s
rule doesn’t respond to our new importance discounting
(it only responds to reliability discounting1).

The importance of a source is particularly crucial
since it is involved in multi-criteria decision making
(MCDM) problems, like in the Analytic Hierarchy Pro-
cess (AHP) developed by Saaty [6, 7]. That’s why it
is fundamental to show how the importance can be ef-
ficiently managed in evidential reasoning approaches,
in particular in DSmT. The fusion system designer is
still free to make no differences between importance and
reliability and use the classical discounting technique.
In general however, one should consider the importance
and the reliability as two distinct notions and thus they
have to be processed in different ways. This is the pur-
pose of this paper. The application of this technique
in DSmT-AHP is presented in [2] and an application of
both DSmT and AHP for risk expertise and prevention
in mountains has been introduced by Tacnet in [11, 12]

1Known as the classical Shafer’s discounting, see [8].

Originally published as Smarandache F., Dezert J., Tacnet J.-M., 
Fusion of sources of evidence with different importances and 

reliabilities, Fusion 2010, Edinburgh, Scotland, UK, 26-29 July 2010, 
and reprinted with permission.
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and works are still under progress in this field.

This paper is organized as follows. After a brief re-
minder of basics of DSmT for information fusion and
its main fusion rule in section 2, we present the clas-
sical discounting technique for combining sources with
different reliabilities in section 3. In section 4, we intro-
duce in a new solution for taking into account the pos-
sible different importances of sources in the fusion pro-
cess. Section 5 provides simple examples to show and
compare the results obtained from the two discounting
approaches. In section 6 we discuss the more general
problem where one needs to deal with both reliability
and importance at the same level in the fusion process.
Conclusions and perspectives are given in section 7.

2 Basics of DSmT

Let Θ = {θ1, θ2, · · · , θn} be a finite set of n elements
θi, i = 1, . . . , n assumed to be exhaustive. Θ corre-
sponds to the frame of discernment of the problem un-
der consideration. In general (unless introducing some
integrity constraints), we assume that elements of Θ
are non exclusive in order to deal with vague/fuzzy and
relative concepts [9], Vol. 2. This is the so-called free-
DSm model. In DSmT framework, there is no need in
general to work on a refined frame consisting in a dis-
crete finite set of exclusive and exhaustive hypotheses2

because DSm rules of combination work for any models
of the frame, i.e. the free DSm model (no exclusive con-
straint between θi, Shafer’s model (all θi are exclusive)
or any hybrid model (only some θi are truly exclusive).
The power set 2Θ is defined as the set of all proposi-
tions built from elements of Θ with ∪ [8]; Θ generates
2Θ under ∪. The hyper-power set (Dedekind’s lattice)
DΘ is defined as the set of all propositions built from
elements of Θ with ∪ and ∩; Θ generates DΘ under ∪
and ∩, see [9] Vol. 1 for many detailed examples. The
super-power set (Boolean algebra) SΘ is defined as the
set of all propositions built from elements of Θ with ∪
and ∩ and complement c(.); Θ generates SΘ under ∪, ∩
and c(.), see [9] Vol. 3. SΘ can be seen as the minimal
refined frame of Θ. For notation convenience, we use
the generic notation GΘ to represent the fusion space
under consideration depending on the application and
the underlying model chosen for the frame Θ; which
can be either GΘ can be either 2Θ, DΘ or SΘ. In DST
framework, GΘ = 2Θ, whereas in DSmT we usually
work with GΘ = DΘ.

A (quantitative) basic belief assignment (bba) ex-
pressing the belief committed to the elements of GΘ

by a given source/body of evidence is a mapping func-
tion m(·): GΘ → [0, 1] such that: m(∅) = 0 and
∑

A∈GΘ m(A) = 1. Elements A ∈ GΘ having m(A) > 0
are called focal elements of the bba m(.). The general
belief and plausibility functions are defined respectively

2Referred as Shafer’s model in the literature.

in almost the same manner as Shafer in [8], i.e.

Bel(A) =
∑

B∈GΘ,B⊆A

m(B) (1)

Pl(A) =
∑

B∈GΘ,B∩A 6=∅

m(B) (2)

In DSmT, the Proportional Conflict Redistribution
Rule no. 5 (PCR5) has been proposed as a serious
alternative of Dempster’s rule [8] for dealing with
conflicting belief functions. It has been also clearly
shown in [9], Vol. 3, chap. 1 that Smets’ rule3 is not
so efficient, nor cogent because it doesn’t respond to
new information in a global or in a sequential fusion
process. Indeed, very quickly Smets’ fusion result
commits the full mass of belief to the empty set!!!
Therefore in applications, some ad-hoc numerical
techniques must be used to circumvent this serious
drawback. Such problem doesn’t occur with PCR5
rule. By construction, other well-known rules like
Dubois & Prade, or Yager’s rule, and contrariwise to
PCR5, increase the non-specificity of the result. An
introduction to DSmT and PCR5 fusion rule with
justification and several examples can be found in [9],
Vol. 3, Chap. 1, freely downloadable from the web.

Definition of PCR5 (for two sources): Let’s m1(.)
and m2(.) be two independent4 bba’s, then the PCR5
rule of combination for two sources of evidence is de-
fined as follows (see [9], Vol. 2 for details, justification
and examples): mPCR5(∅) = 0 and ∀A ∈ GΘ \ {∅}

mPCR5(A) =
∑

X1,X2∈GΘ

X1∩X2=A

m1(X1)m2(X2)+

∑

X∈GΘ

X∩A=∅

[
m1(A)2m2(X)

m1(A) + m2(X)
+

m2(A)2m1(X)

m2(A) + m1(X)
] (3)

All fractions in (3) having zero denominators are
discarded. In DSmT, we consider all propositions/sets
in a canonical form. We take the disjunctive normal
form, which is a disjunction of conjunctions, and it is
unique in Boolean algebra and simplest. For example,
X = A∩B ∩ (A ∪B ∪C) it is not in a canonical form,
but we simplify the formula and X = A ∩ B is in a
canonical form. Like most of fusion rules5, PCR5 is not
associative and the optimal fusion result is obtained
by combining the sources altogether at the same time
when possible. Some of PCR5 properties can be
found in [1] and it allows non-Bayesian reasoning. An
extension of PCR5 for combining qualitative bba’s can

3i.e. the non normalized Dempster’s rule.
4i.e. each source provides its bba independently of the other

sources.
5Except Dempster’s rule, and conjunctive rule in free DSm

model.
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be found in [9], Vol. 2 & 3.

Basically, the idea of PCR5 is to transfer the conflict-
ing mass only to the elements involved in the conflict
and proportionally to their individual masses, so that
the specificity of the information is entirely preserved
through this fusion process. For example: consider two
bba’s m1(.) and m2(.), A ∩ B = ∅ for the model of Θ,
and m1(A) = 0.6 and m2(B) = 0.3. With PCR5 the
partial conflicting mass m1(A)m2(B) = 0.6 · 0.3 = 0.18
is redistributed to A and B only with respect to the
following proportions respectively: xA = 0.12 and
xB = 0.06 because the proportionalization requires

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)

m1(A) + m2(B)
=

0.18

0.9
= 0.2

Variant of PCR5 (PCR6): The extension and a vari-
ant of (3), called PCR6 has been proposed by Mar-
tin and Osswald in [9], Vol. 2, for combining s > 2
sources and for working in other fusion spaces is pre-
sented in [9]. For two sources, PCR6 coincides with
PCR5. The difference between PCR5 and PCR6 lies
in the way the proportional conflict redistribution is
done as soon as three or more sources are involved in
the fusion. For example, let’s consider three sources
with bba’s m1(.), m2(.) and m3(.), A ∩ B = ∅ for the
model of the frame Θ, and m1(A) = 0.6, m2(B) = 0.3,
m3(B) = 0.1. With PCR5 the partial conflicting mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redis-
tributed back to A and B only with respect to the
following proportions respectively: xPCR5

A = 0.01714
and xPCR5

B = 0.00086 because the proportionalization
requires

xPCR5
A

m1(A)
=

xPCR5
B

m2(B)m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + m2(B)m3(B)

that is

xPCR5
A

0.6
=

xPCR5
B

0.03
=

0.018

0.6 + 0.03
≈ 0.02857

thus
{

xPCR5
A = 0.60 · 0.02857 ≈ 0.01714

xPCR5
B = 0.03 · 0.02857 ≈ 0.00086

With the PCR6 fusion rule, the partial conflicting mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redis-
tributed back to A and B only with respect to the fol-
lowing proportions respectively: xPCR6

A = 0.0108 and
xPCR6

B = 0.0072 because the PCR6 proportionalization
is done as follows:

xPCR6
A

m1(A)
=

xPCR6
B,2

m2(B)
=

xPCR6
B,3

m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + m2(B) + m3(B)

that is

xPCR6
A

0.6
=

xPCR6
B,2

0.3
=

xPCR6
B,3

0.1
=

0.018

0.6 + 0.3 + 0.1
= 0.018

thus










xPCR6
A = 0.6 · 0.018 = 0.0108

xPCR6
B,2 = 0.3 · 0.018 = 0.0054

xPCR6
B,3 = 0.1 · 0.018 = 0.0018

and therefore with PCR6, one gets finally the following
redistributions to A and B:
{

xPCR6
A = 0.0108

xPCR6
B = xPCR6

B,2 + xPCR6
B,3 = 0.0054 + 0.0018 = 0.0072

From the implementation point of view, PCR6 is much
more simple to implement than PCR5 (see Appendix).

3 Reliability discounting
Reliability refers to information quality while impor-

tance refers to subjective preferences of the fusion sys-
tem designer. The reliability of a source represents its
ability to provide the correct assessment/solution of
the given problem. It is characterized by a discount-
ing reliability factor, usually denoted α in [0, 1], which
should be estimated from statistics when available, or
by other techniques [3]. This reliability factor can be
context-dependent. For example, if one knows that
some sensors do not perform well under bad weather
conditions, etc, one will decrease the reliability factor
of information arising from that source accordingly. By
convention, we usually take α = 1 when the source is
fully reliable and α = 0 if the source is totally unre-
liable. Reliability of a source is generally considered6

through Shafer’s discounting method [8], p. 252, which
consists in multiplying the masses of focal elements by
the reliability factor α, and transferring all the remain-
ing discounted mass to the full ignorance Θ. When
α < 1, such very simple reliability discounting tech-
nique discounts all focal elements with the same factor
α and it increases the non specificity of the discounted
sources since the mass committed to the full ignorance
always increases. Mathematically, Shafer’s discounting
technique for taking into account the reliability factor
α ∈ [0, 1] of a given source with a bba m(.) and a frame
Θ is defined by:

{

mα(X) = α · m(X), for X 6= Θ

mα(Θ) = α · m(Θ) + (1 − α)
(4)

4 Importance discounting
The importance of a source is not the same as its re-

liability and it can be characterized by an importance
factor, denoted β in [0, 1]. β factor represents some-
how the weight of importance granted to the source by
the fusion system designer. The choice of β is usually
not related with the reliability of the source and can be
chosen to any value in [0, 1] by the designer for his/her

6More sophisticated methods have been also proposed, see
[4, 5] for example.
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own reason. By convention, the fusion system designer
will take β = 1 when he/she wants to grant the max-
imal importance of the source in the fusion process,
and will take β = 0 if no importance at all is granted
to this source in the fusion process. Typically, if one
has a pool of experts around a table to take important
decision, say politicians, scientific researchers, military
officers, etc, it is possible that one wants to grant more
importance to the voice of a given politician (say the
President) rather than to a military officers or a scien-
tific researcher, even if the scientific researcher is more
reliable in his expertise field than other people. Such
situations occur frequently in real-life problems. The
fusion designer must be able to deal with importance
factors in a different way than with reliability factors
since they correspond to distinct properties associated
with a source of information.

The main question we are concerned in this paper is
how to deal with different importances of sources in the
fusion process in such a way that a clear distinction is
made/preserved between reliability and importance ?

Our preliminary investigations were based on the
self/auto-combination of the sources. For example,
if one has the importances factors β1 = 0.7 for the
source s1 and β2 = 0.3 for the source s2, one could
imagine to combine 7 times the bba m1(.) with it-
self, combine 3 times the bba m2(.) with itself, and
then combine the resulting auto-fusioned bba’s because
such combination would reflect somehow the relative
importance of the source in the fusion process since
β1/β2 = 0.7/0.3 = 7/3. Actually such approach is very
disputable and cannot be used satisfactorily in practice
whatever the fusion rule is adopted. It can be easily
shown that the auto-conflict tends quickly to 1 after
several auto-fusions [3]. In other words, the combina-
tion result of N × β1 bba’s m1(.) with M × β2 bba’s
m2(.) is almost the same for any N and M sufficiently
large, so that the different importances of sources are
not well preserved in such approach. The numerical
complexity of such method must be pointed out since
it would require to compute possibly many auto-fusions
of each source which is a very time-consuming computa-
tional task. For example, if β1 = 0.791 and β2 = 0.209,
it would require to combine at least 791 auto-fusions of
m1(.) with 209 auto-fusions of m2(.) !!!

In this paper, we propose a better solution to con-
sider importances of sources. Our new approach can
be considered as the dual of Shafer’s discounting ap-
proach for reliabilities of sources. The idea was origi-
nally introduced briefly by Tacnet in [9], Vol.3, Chap.
23, p. 613. It consists to define the importance dis-
counting with respect to the empty set rather than the
total ignorance Θ (as done by Shafer in reliability dis-
counting presented in section 3). Such new discounting
technique allows to deal easily with sources of different
importances and is also very simple to use as it will be
shown.

Definition (importance discounting): We define the
importance discounting of a source having the impor-
tance factor β and asociated bba m(.) by

{

mβ(X) = β · m(X), for X 6= ∅

mβ(∅) = β · m(∅) + (1 − β)
(5)

Note that with this importance discounting approach,
we allow to deal with non-normal bba since mβ(∅) ≥ 0.
The interest of this new discounting is to preserve the
specificity of the primary information since all focal
elements are discounted with same importance factor
and no mass is committed back to partial or total
ignorances. Working with positive mass of belief on
the empty set is not new and has been introduced in
nineties by Smets in his transferable belief model [10].
Here we use the positive mass of the empty set as an
intermediate/preliminary step of the fusion process.
Clearly when β = 1 is chosen by the fusion designer, it
will mean that the source must take its full importance
in the fusion process and so the original bba m(.) is
kept unchanged. If the fusion designer takes β = 0, one
will deal with mβ(∅) = 1 which must be interpreted
as a fully non important source. m(∅) > 0 is not
interpreted as the mass committed to some conflicting
information (classical interpretation), nor as the mass
committed to unknown elements when working with
the open-world assumption (Smets interpretation), but
only as the mass of the discounted importance of a
source in this particular context.

Before going further, it is worth to note that
Dempster’s rule cannot deal properly with importance
discounted bba’s proposed in (5) because our impor-
tance discounting technique preserves the specificity
of the primary information and Dempster’s rule does
not make a difference in results when combining m1(.)
with m2(.) or when combining mβ1 6=1(.) with mβ2 6=1(.)
due to the way of processing the total conflicting mass
of belief. This can be stated as the following theorem:

Theorem 1: Dempster’s rule is not responding to
the discounting of sources towards the emptyset.
Proof: Let m1(.) and m2(.) be two bba’s defined
on the fusion space GΘ = {X1, X2, . . . , Xn}. Let
m1(Xi) = ai for all i, with

∑n
i=1 ai = 1, and all

ai in [0, 1], and let m2(Xi) = bi for all i, with
∑n

i=1 bi = 1, and all bi in [0, 1]. m1(∅) = m2(∅) = 0.
After discounting both m1(.) and m2(.) towards the
emptyset with β1 and respectively β2 in [0, 1], we
get: (β1)m1(Xi) = (β1)ai for all i, with

∑n
i=1 ai = 1,

and all ai in [0, 1], also (β1)m1(∅) = 1 − β1, and
(β2)m2(Xi) = (β2)bi for all i, with

∑n

i=1 bi = 1,
and all bi in [0, 1], also (β2)m1(∅) = 1 − β2. If we
apply the conjunctive rule to m1(.) and m2(.) we get:
m12(Xi) = ci, with

∑n

i=1 ci = 1 and ci in [0, 1], where
some Xi could be empty intersections. Suppose the
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non-empty resulted sets after applying the conjunctive
rule are: Xi1 ,. . . , Xip . Then Dempster’s rule gives 
mDS(Xik ) = m12(Xik )/(m12(Xi1 )+. . .+m12(Xip )), for 
1 ≤ k ≤ p. If we apply the conjunctive rule to (β1)m1(.) 
and (β2)m2(.) we get: (β1)(β2)m12(Xi) = (β1)(β2)ci,
with (β1)(β2)ci in [0, 1], where some Xi could be
empty sets, and (β1)(β2)m12(∅7) = 1 − (β1)(β2). Now 
Dempster’s rule normalizes the conjunctive result of
non empty sets by dividing the mass of each nonempty
set by the sum of all non-empty sets. The non-empty
resulted sets after applying the conjunctive rule are the
same: Xi1 , . . . , Xip . Then: (β1)(β2)mDS(Xik ) = 
(β1)(β2)m12(Xik )/((β1)(β2)m12(Xi1 ) + . . . + 
(β1)(β2)m12(Xip )) = m12(Xik )/(m12(Xi1 ) + . . . + 
m12(Xip )) = mDS(Xik ) since the whole fraction is sim-
plified by (β1)(β2), for 1 ≤ k ≤ p. Hence Dempster’s 
rule is not responding to the discounting of sources
towards the empty set.

From Theorem 1, one understands why such impor-
tance discounting technique has never been proposed
and used in DST framework and this explains why the
classical Shafer’s discounting technique (the reliability
discounting) has only been largely adopted so far.
By using Dempster’s rule, the fusion designer has no
other choice but to consider importance and reliability
as same notions! As it will be shown, the DSmT
framework with PCR5 (or PCR6) rule and the impor-
tance discounting technique proposed here provides
an interesting and simple solution for the fusion of
sources with different importances which makes a clear
distinction between importances and reliabilities of
sources.

Fusion of importance discounted bba’s: Based on
this new discounting technique, it is however very sim-
ple to adapt PCR5 or PCR6 fusion rules for combining
the s ≥ 2 discounted bba’s associated with each source
i, i = 1, 2, . . . s. It suffices actually to consider the fol-
lowing extension of PCR5, denoted PCR5∅ and defined
by:

• For two sources (s = 2): ∀A ∈ GΘ (A may be the
empty set too)

mPCR5∅
(A) =

∑

X1,X2∈GΘ

X1∩X2=A

m1(X1)m2(X2)+

∑

X∈GΘ

X∩A=∅

[
m1(A)2m2(X)

m1(A) + m2(X)
+

m2(A)2m1(X)

m2(A) + m1(X)
] (6)

7i.e. the absolute empty set, not that resulted from set inter-
sections which are empty.

• For s ≥ 2 sources: ∀A ∈ GΘ (A may be the empty
set too)

mPCR5∅
(A) = m12...s(A)+

∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2 ,...,Xjt∈GΘ

{j2,...,jt}∈Pt−1({1,...,n})
A∩Xj2∩...∩Xjs =∅

{i1,...,is}∈Ps({1,...,s})

(
∏r1

k1=1 mik1
(A)2) · [

∏t

l=2(
∏rl

kl=rl−1+1 mikl
(Xjl

)]

(
∏r1

k1=1 mik1
(A)) + [

∑t
l=2(

∏rl

kl=rl−1+1 mikl
(Xjl

)]

(7)

where i, j, k, r, s and t in (7) are integers.
m12...s(A) ,

∑

X1,X2,...,Xs∈GΘ

∩s
i=1Xi=A

∏s
i=1 mi(Xi) is the

conjunctive consensus on A between s sources
and where all denominators are different from
zero. If a denominator is zero, that fraction is
discarded; Pk({1, 2, . . . , n}) is the set of all subsets
of k elements from {1, 2, . . . , n} (permutations
of n elements taken by k), the order of elements
doesn’t count.

A similar extension can be done for the PCR6 for-
mula for s > 2 sources given in [9], Vol. 2. More pre-
cisely for any A in GΘ (A may be the empty set too)
we define:

mPCR6∅
(A) = m12...s(A)+

∑

X1,X2,...,Xs−1∈GΘ

Xi 6=A,i∈{1,2,...,s−1}

(∩s−1
i=1 Xi)∩A=∅

s−1
∑

k=1

∑

(i1,i2,...,is)∈P (1,2,...,s)

[mi1(A) + mi2(A) + . . . + mik
(A)]×

∏k

j=1 mij
(A)

∏s−1
p=k+1 mip

(Xp)
∑k

j=1 mij
(A) +

∑s−1
p=k+1 mip

(Xp)
(8)

where P (1, 2, . . . , s) is the set of all permutations of
the elements {1, 2, . . . , s}. It should be observed that
X1, X2, . . . , Xs−1 may be different from each other,
or some of them equal and others different, etc.

As a particular case for s = 3 sources, one gets for
any A in GΘ (A may be the empty set too):

mPCR6∅
(A) = m123(A) +

∑

X,Y ∈GΘ

X 6=A,Y 6=A
X∩Y ∩A=∅

∑

(i1,i2,i3)∈P (1,2,3)

mi1(A)2mi2(X)mi3(Y )

mi1(A) + mi2(X) + mi3(Y )

+ [mi1(A) + mi2(A)] ·
mi1(A)mi2 (A)mi3 (X)

mi1(A) + mi2(A) + mi3(X)
(9)
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where m123(A) is the mass of the conjunctive consensus
on A and P (1, 2, 3) is the set of all permutations of the
elements {1, 2, 3}. It should be observed that X may
be different or equal to Y .

The difference between formulas (3) and (6) is that
mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0. Of course,
since we usually need to work with normal bba’s for
decision-making support, the result mPCR5∅

(.) , or
mPCR6∅

(.), of the fusion of discounted masses mβi
(.)

will be normalized by redistributing the mass of belief
committed to the empty set to the other focal elements
and proportionally to their masses (see next example).

5 Example
For convenience and simplicity, and due to space lim-

itation constraint, we give a very simple example work-
ing on the classical power set 2Θ since most of read-
ers familiar belief functions usually work with this fu-
sion space. Example 1: Let’s consider Θ = {A, B},
Shafer’s model, and two sources with respectively bba’s
m1(.) and m2(.) given by m1(A) = 0.8, m1(B) = 0.2
and m2(A) = 0.4, m2(B) = 0.6.

• Case 1 (no importance discounting): Let’s con-
sider that β1 = 1 and β2 = 1, i.e. the sources
must have the same maximal importance in the
fusion rule. In that case, one gets: mβ1(.) =
m1(.) and mβ2(.) = m2(.) and the bba’s are ac-
tually not discounted. The conjunctive rule gives
m12(A) = 0.32, m12(B) = 0.12 and the mass
m12(A ∩ B = ∅) = 0.56 is redistributed back to
A and B proportionally to their masses following
the PCR5 principle explained in section 2. We get
the following result:

mβ1=1(.) mβ2=1(.) m12(.) mPCR5(.)

∅ 0 0 0.56 0
A 0.8 0.4 0.32 0.64
B 0.2 0.6 0.12 0.36

Table 1: PCR5 fusion of mβ1=1(.) with mβ2=1(.).

• Case 2 (with importance discounting): Let’s take
now the importances factors β1 = 0.2 and β2 = 0.8
(note that in general we don’t need to force the
sum of βi to be one, unless one wants to deal with
relative importances between sources). Applying
importance discounting technique and normaliza-
tion of mPCR5∅

, denoted mnorm
PCR5∅

(.), one gets:

mβ1=0.2(.) mβ2=0.8(.) m12(.) m
norm
PCR5∅

(.)

∅ 0.80 0.20 0.9296 0
A 0.16 0.32 0.0512 0.43
B 0.04 0.48 0.0192 0.57

Table 2: PCR5 fusion of mβ1=0.2(.) with mβ2=0.8(.).

Clearly, one sees in Table 2 the strong impact of the
importance discounting on the result with respect
to what we obtain in Table 1 (i.e. without impor-
tance discounting). Note also that the difference
is very different to what we would have obtained
by taking α1 = 0.2 and α2 = 0.8 and using the
reliability discounting approach as seen in Table 3.

mα1=0.2(.) mα2=0.8(.) m12(.) mPCR5(.)

∅ 0 0 0.0896 0
A 0.16 0.32 0.3392 0.3698
B 0.04 0.48 0.4112 0.4702
A ∪ B 0.80 0.20 0.1600 0.1600

Table 3: PCR5 fusion of mα1=0.2(.) with mα2=0.8(.).

By comparing Table 2 with Table 3, one sees the
clear difference in results obtained by these two
discounting techniques which is normal.

6 Reliability and importance
In this section, we examine the possibility to take into

account both the reliabilities αi and the importances
βi of given sources of evidence characterized by their
bba’s mi(.), i = 1, 2, . . . , s. The main question is how
to deal with these two distinct discounting factors since
in general, but when αi = βi = 1, the reliability and
importance discounting approaches do not commute.
Indeed, it can be easily verified (see in next example)
that mαi,βi

(.) 6= mβi,αi
(.) whenever αi 6= 1 and βi 6= 1.

mαi,βi
(.) denotes the reliability discounting of mi(.)by

αi followed by the importance discounting of mαi
(.)

by βi which explains the notation αi, βi used in index.
Similarly, mβi,αi

(.) denotes the importance discounting
of mi(.) by βi followed by the reliability discounting of
mβi

(.) by αi. To deal both with reliabilities and impor-
tances factors and because of the non commutativity of
these discountings, we propose to proceed the fusion of
the sources in a three-steps process as follows:

Method 1: Step 1: Apply reliability and then impor-
tance discountings to get mαi,βi

(.), i = 1, . . . , s and
combine them with PCR5∅ or PCR6∅ and normalize
the resulting bba; Step 2: Apply importance and then
reliability discountings to get mβi,αi

(.), i = 1, . . . , s and
combine them with PCR5∅ or PCR6∅ and normalize
the resulting bba; Step 3 (mixing/averaging): Combine
the resulting bba’s of Steps 1 and 2 using the arithmetic
mean operator8.
Method 2: Another simplest method which could be
useful for intermediate traceability in some applications
would consist to change Steps 1 & 2 by Step 1’: Apply
reliability discounting only to get mαi

(.) and combine
them with PCR5 or PCR6; Step 2’: Apply importance
discounting only to get mβi

(.) and combine them with

8Other combination rules could be used also like PCR5 or
PCR6, etc., but we don’t see solid justification to use them again
and they require more computations than the simple arithmetic
mean.
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PCR5∅ or PCR6∅ and normalize the result; Step 3’
same as Step 3. Due to space limitation, only Method
1 is briefly illustrated in the following simple example.

Example 2: Let’s take Θ = {A, B, C}, Shafer’s model,
three sources m1(.), m2(.) and m3(.) given in next table
and assume that their reliability factors are α1 = 0.8,
α2 = 0.5, and α3 = 0.2 and their importance factors
are β1 = 0.9, β2 = 0.3 and β3 = 0.6.

m1(.) m2(.) m3(.)

∅ 0 0 0
A 0.8 0.4 0.1
B 0 0.3 0.3
A ∪ B 0.1 0.2 0
C 0 0 0.5
A ∪ C 0.1 0 0
B ∪ C 0 0.1 0
A ∪ B ∪ C 0 0 0.1

Table 4: Sources of evidences.

By applying reliability followed by importance dis-
counting, and by applying importance followed by reli-
ability discounting, one gets:

mα1,β1(.) mα2,β2(.) mα3,β3(.)

∅ 0.1000 0.7000 0.4000
A 00.5760 0.0600 0.0120
B 0 0.0450 0.0360
A ∪ B 0.0720 0.0300 0
C 0 0 0.0600
A ∪ C 0.0720 0 0
B ∪ C 0 0.0150 0
A ∪ B ∪ C 0.1800 0.1500 0.4920

Table 5: Reliability-Importance discounting.

mβ1,α1(.) mβ2,α2(.) mβ3,α3(.)

∅ 0.0800 0.3500 0.0800
A 0.5760 0.0600 0.0120
B 0 0.0450 0.0360
A ∪ B 0.0720 0.0300 0
C 0 0 0.0600
A ∪ C 0.0720 0 0
B ∪ C 0 0.0150 0
A ∪ B ∪ C 0.2000 0.5000 0.8120

Table 6: Importance-Reliability discounting.

The normalized results of the PCR5∅ fusion of
mαi,βi

(.) for i = 1, 2, 3 (Step 1) and PCR5∅ fusion of
mβi,αi

(.) for i = 1, 2, 3 (Step 2) is given in next Table
7 with their arithmetic mean m̄PCR5(.) (Step 3).

7 Conclusions
The proposition of two different discounting tech-

niques is an important contribution to consider both
preferences and reliability in fusion problems for deci-
sion making purposes. In this paper, we have proposed
a new solution for taking into account the different im-
portances of sources of evidence in their combination.

Step 1 Step 2 Step 3

m
norm
PCR5∅,α,β

(.) m
norm
PCR5∅,β,α

(.) m̄PCR5(.)

∅ 0 0 0
A 0.5741 0.4927 0.5334
B 0.0254 0.0244 0.0249
A ∪ B 0.0311 0.0464 0.0388
C 0.0182 0.0182 0.0182
A ∪ C 0.0233 0.0386 0.0310
B ∪ C 0.0032 0.0032 0.0032
A ∪ B ∪ C 0.3247 0.3765 0.3506

Table 7: Results of Steps 1, 2 & 3.

We have shown the clear distinction between the clas-
sical reliability discounting technique and our new im-
portance discounting method which can be used with
extensions of PCR5 and PCR6 fusion rules developed in
DSmT framework. It has been shown also that Demp-
ster’s rule cannot be applied satisfactorily with this im-
portance discounting approach contrariwise to PCR5
and PCR6 rules. The importance and reliability can
now be distinguished in the fusion of sources which in-
troduces a link with Multi-Criteria Decision Problems
in the fusion of sources of information. Applications
of these techniques for risk prevention against natural
catastrophes in mountains are under progress and re-
sults will be published in forthcoming publications.
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Appendix: MatlabTMcode listings

for PCR5 and PCR6
For convenience, we provide two MatlabTMroutines

for PCR5 and PCR6 for the fusion of s ≥ 2 sources
for working with 2Θ, i.e. working with Shafer’s model.
Some adaptations need to be done to work on other
fusion spaces and to work with PCR5∅ and PCR6∅.
No verification of input is done in the routines. It
is assumed that the input matrix BBA is correct,
both in dimension and in content. No attempt for
fast computation, nor memory optimization is done
in these very simple and basic codes. The deriva-
tion of all possible combinations in the loop with
combvec(Combinations,vec) instruction is a very
time-consuming task when the size of the problem
increases and should be done once outside the routines.
The j-th column of the BBA input matrix corresponds
to the (vertical) bba vector mj(.) associated with the
j-th source sj . Each element of a BBA matrix is in
[0,1] and the sum of each column must be one. If N is
the cardinality of the frame Θ and if S is the number
of sources, then the size of the BBA input matrix is
((2N ) − 1)) × S. Each column of the BBA matrix
must use the following binary encoding of elements9

of 2Θ \ {∅}. For example, if Θ = {A, B, C}, then
binary sequence 001 = A, 010 = B, 011 = A ∪ B, . . . ,
111 = A ∪ B ∪C. These codes can be used and shared
for free for research purposes only. Commercial uses of
these codes, or any adaptation of them, is not allowed
without written agreement of the author. The use of
these codes are at the own risk of the user.

9Since one always considers normal input bba’s such that
mj(∅) = 0, j = 1, . . . S, one doesn’t need to store these val-
ues in the BBA matrix. For PCR5∅ and PCR6∅ however, one
needs to include as first row of BBA the mj(∅) ≥ 0 resulting
from importance discounting of the sources and make a proper
adaptation of indexes in the routines.

File : PCR5fusion.m

function [mPCR5,TotalConflict]=PCR5fusion(BBA)

% Author and copyrights: Jean Dezert

% Input: BBA matrix

% Output: mPCR5 = resulting bba after fusion with PCR5

% TotalConflict = level of total conflict between sources

NbrSources=size(BBA,2);

CardTheta=log2(size(BBA,1)+1);

if(NbrSources==1)

mPCR5=BBA(:,1);TotalConflict=0;return

end

Card2PowerTheta=2^(CardTheta)-1;

% All possible combinations

vec=[1:Card2PowerTheta];

Combinations=vec;

for s=1:NbrSources-1

Combinations=combvec(Combinations,vec);

end

Combinations=Combinations’;

mPCR5=zeros(Card2PowerTheta,1);

TotalConflict=0;

NbrComb=size(Combinations,1);

for c=1:NbrComb

PC=Combinations(c,:);

mConj=zeros(1,NbrSources);

for s=1:NbrSources

mConj(s)=BBA(PC(s),s);

end

massConj=prod(mConj,2);

if(massConj>0)

% Check if this is a real partial conflict or not

Intersections=PC(1);

for s=2:NbrSources

X=PC(s);

Intersections=bitand(Intersections,X);

end

if(Intersections~=0) % the intersection is not empty

mPCR5(Intersections)=mPCR5(Intersections)+massConj;

else % the intersection is empty

TotalConflict=TotalConflict+massConj;

% Let’s apply PCR5 rule principle

UQ=unique(PC);

Proportions=0*UQ;

DenPCR5=0;

for u=1:size(UQ,2)

SamePropositions=find(PC==UQ(u));

MassProd=prod(mConj(SamePropositions));

Proportions(u)= MassProd*massConj;

DenPCR5=DenPCR5+MassProd;

end

Proportions=Proportions/DenPCR5;

% PCR5 redistribution

for u=1:size(UQ,2)

mPCR5(UQ(u))=mPCR5(UQ(u))+Proportions(u);

end, end, end, end, return

File : PCR6fusion.m

function [mPCR6,TotalConflict]=PCR6fusion(BBA)

% Author and copyrights: Jean Dezert

% Input: BBA matrix

% Output: mPCR6 = resulting bba after fusion with PCR6

% TotalConflict = level of total conflict between sources

NbrSources=size(BBA,2);

CardTheta=log2(size(BBA,1)+1);

if(NbrSources==1)

mPCR6=BBA(:,1);

TotalConflict=0;

return

end

Card2PowerTheta=2^(CardTheta)-1;

% All possible combinations

vec=[1:Card2PowerTheta];

Combinations=vec;

for s=1:NbrSources-1

Combinations=combvec(Combinations,vec);

end

Combinations=Combinations’;

mPCR6=zeros(Card2PowerTheta,1);

TotalConflict=0;

NbrComb=size(Combinations,1);

for c=1:NbrComb

PC=Combinations(c,:); % particular combination

mConj=zeros(1,NbrSources);

for s=1:NbrSources

mConj(s)=BBA(PC(s),s);

end

massConj=prod(mConj,2);

if(massConj>0)

Intersections=PC(1);

for s=2:NbrSources

X=PC(s);

Intersections=bitand(Intersections,X);

end

if(Intersections~=0) % intersection not empty

mPCR6(Intersections)=mPCR6(Intersections)+massConj;

else % empty intersection

TotalConflict=TotalConflict+massConj;

% PCR6 rule principle

for s=1:NbrSources

Proportion= mConj(s)*(massConj/(sum(mConj,2)));

% Redistribution back to element PC(s)

mPCR6(PC(s))=mPCR6(PC(s))+Proportion;

end, end, end, end, return
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Is Entropy Enough to Evaluate the Probability 
Transformation Approach of Belief Function?

Deqiang Han
Jean Dezert

Chongzhao Han
Yi Yang

Abstract – In Dempster-Shafer Theory (DST) of ev-
idencee and transferable belief model (TBM), the prob-
ability transformation is necessary and crucial for
decision-making. The evaluation of the quality of the
probability transformation is usually based on the en-
tropy or the probabilistic information content (PIC)
measures, which are questioned in this paper. Another
alternative of probability transformation approach is
proposed based on the uncertainty minimization to ver-
ify the rationality of the entropy or PIC as the evalua-
tion criteria for the probability transformation. Accord-
ing to the experimental results based on the comparisons
among different probability transformation approaches,
the rationality of using entropy or Probabilistic Infor-
mation Content (PIC) measures to evaluate probability
transformation approaches is analyzed and discussed.

Keywords: TBM, uncertainty, pignistic probability
transformation, evidence theory, decision-making.

1 Introduction
Evidence theory, as known as Dempster-Shafer Theory
(DST) [1, 2] can reason with imperfect information in-
cluding imprecision, uncertainty, incompleteness, etc.
It is widely used in many fields in information fusion.
There are also some drawbacks and problems in evi-
dence theory, i.e. the high computational complexity,
the counter-intuitive behaviors of Dempster’s combi-
nation rule and the decision-making in evidence the-
ory, etc. Several modified, refined or extended mod-
els were proposed to resolve the problems aforemen-
tioned, such as transferable belief model (TBM) [3] pro-
posed by Philippe Smets and Dezert-Smarandache The-
ory (DSmT) [4] proposed by Jean Dezert and Florentin
Smarandache, etc.

The goal of uncertainty reasoning is the decision-
making. To take a decision, the belief assignment val-
ues for a compound focal element should be at first
assigned to the singletons. So the probability transfor-
mation from belief function is crucial for the decision-
making in evidence theory. The research on probability
transformation has attracted more attention in recent
years.

The most famous probability transformation in evi-
dence theory is the pignistic probability transformation
(PPT) in TBM. TBM has two levels including credal
level and pignistic level. At the credal level, beliefs
are entertained, combined and updated while at the
pignistic level, the PPT maps the beliefs defined on
subsets to the probability defined on singletons, then a
classical probabilistic decision can be made. In PPT,
belief assignment values for a compound focal element
are equally assigned to the singletons belonging to the
focal element. In fact, PPT is designed according to
principle of minimal commitment, which is somehow
related with uncertainty maximization. But the goal
of information fusion at decision-level is to reduce the
uncertainty degree. That is to say more uncertainty
might not be helpful for the decision. PPT uses equal
weights when splitting masses of belief of partial un-
certainties and redistributing them back to singletons
included in them. Other researchers also proposed some
modified probability transformation approaches [5–13]
to assign the belief assignment values of compound fo-
cal elements to the singletons according to some ra-
tio constructed based on some available information.
The typical approaches include the Sudano’s probabili-
ties [8] and the Cuzzolin’s intersection probability [13],
etc. In the framework of DSmT, another probability
transformation approach was proposed, which is called
DSmP [9]. DSmP takes into account both the values of

Originally published as Han D., Dezert J., Han C., Is Entropy Enough to 
Evaluate the Probability Transformation Approach of Belief Function?, 
Fusion 2010, Edinburgh, Scotland, UK, 26-29 July 2010, and reprinted 

with permission.
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the masses and the cardinality of focal elements in the
proportional redistribution process. DSmP can also be
used in Shafer’s model within DST framework.

In almost all the research works on probability trans-
formations, the entropy or Probabilistic Information
Content (PIC) criteria are used to evaluate the prob-
ability transformation approaches. Definitely for the
purpose of decision, less uncertainty should be better
to make a more clear and solid decision. But does the
probability distribution generated from belief functions
with less uncertainty always rational or always be ben-
efit to the decision? We do not think so. In this pa-
per, an alternative probability transformation approach
based on the uncertainty minimization is proposed.
The objective function is established based on the Shan-
non entropy and the constraints are established based
on the given belief and plausibility functions. The ex-
perimental results based on some provided numerical
examples show that the probability distributions gen-
erated based on the proposed alternative approach have
the least uncertainty degree when compared with other
approaches. When using the entropy or PIC to evalu-
ate the proposed probability transformation approach,
the probability distribution with the least uncertainty
seemingly should be the optimal one. But some risky
and strange results can be derived in some cases, which
are illustrated in some numerical examples. It can be
concluded that the entropy or PIC, i.e. the uncertainty
degree might not be enough to evaluate the probability
transformation approach. In another word, the entropy
or PIC might not be used as the only criterion to make
the evaluation.

2 Basics of evidence theory and
probability transformation

2.1 Basics of evidence theory

In Dempster-Shafer theory [2], the elements in the
frame of discernment (FOD) Θ are mutually exclusive.
Define the function 𝑚 : 2Θ → [0, 1] as the basic prob-
ability assignment (BPA, also called mass function),
which satisfies:∑

𝐴⊆Θ
𝑚(𝐴) = 1, 𝑚(∅) = 0 (1)

Belief function and plausibility function are defined
respectively in (2) and (3):

𝐵𝑒𝑙(𝐴) =
∑

𝐵⊆𝐴
𝑚(𝐵) (2)

𝑝𝑙(𝐴) =
∑

𝐴∩𝐵 ∕=∅ 𝑚(𝐵) (3)

and Dempster’s rule of combination is defined as fol-
lows: 𝑚1,𝑚2, ...,𝑚𝑛 are 𝑛mass functions, the new com-

bined evidence can be derived based on (4)

𝑚(𝐴) =

⎧⎨⎩
0, 𝐴 = ∅∑
∩𝐴𝑖=𝐴

∏
1≤𝑖≤𝑛

𝑚𝑖(𝐴𝑖)∑
∩𝐴𝑖 ∕=∅

∏
1≤𝑖≤𝑛

𝑚𝑖(𝐴𝑖)
, 𝐴 ∕= ∅ (4)

Dempster’s rule of combination is used in DST to
accomplish the fusion of bodies of evidence. But the fi-
nal goal of the information fusion at decision-level is to
make the decision. The belief function (or BPA, plausi-
bility function) should be transformed to the probabil-
ity, before the probability-based decision-making. Al-
though there are also some research works on making
decision directly based on belief function or BPA [14],
probability-based decision methods are the develop-
ment trends of uncertainty reasoning and theories [15].
This is because the two-level reasoning and decision
structure proposed by Smets in his TBM is appealing.

2.2 Pignistic transformation

As a type of probability transformation approach, the
classical pignistic probability in TBM framework was
coined by Philippe Smets. TBM is a subjective and
non probabilistic interpretation of evidence theory. It
extends the evidence theory to the open–world propo-
sitions and it has a range of tools for handling belief
functions including discounting and conditioning, etc.
At the credal level of TBM, beliefs are entertained, com-
bined and updated while at the pignistic level, beliefs
are used to make decisions by transforming beliefs to
probability distribution based on pignistic probability
transformation (PPT). The basic idea of the pignistic
transformation consists in transferring the positive be-
lief of each compound (or nonspecific) element onto the
singletons involved in that element split by the cardi-
nality of the proposition when working with normalized
BPAs.
Suppose that Θ = {𝜃1, 𝜃2, ..., 𝜃𝑛} is the FOD. The

PPT for the singletons is illustrated as follows [3]:

BetP𝑚(𝜃𝑖) =
∑

𝜃𝑖∈𝐵, 𝐵⊆2Θ

𝑚(𝐵)

∣𝐵∣ (5)

where 2Θ is the power set of the FOD. Based on the
pignistic probability derived, the corresponding deci-
sion can be made.
But in fact, PPT is designed according to the idea

being similar to uncertainty maximization. In general,
the PPT is just a simple averaging operation. The mass
value is not assigned discriminately to the different sin-
gletons involved. But for information fusion, the aim is
to reduce the degree of uncertainty and to gain a more
consolidated and reliable decision result. The high un-
certainty in PPT might be not helpful for the decision.
Several researchers aim to modify the traditional PPT.
Some typical modified probability transformation ap-
proaches are as follows.
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1) Sudano’s probabilities: Sudano [8] proposed
some interesting alternatives to PPT denoted by PrPl,
PrNPl, PraPl, PrBel and PrHyb, respectively. Sudano
uses different kinds of mappings either proportional to
the plausibility, to the normalized plausibility, to all
plausibilities and to the belief, respectively or a hybrid
mapping.

2) Cuzzolin’s intersection probability: In the
framework of DST, Fabio Cuzzolin [13] proposed an-
other type of transformation. From a geometric inter-
pretation of Dempster’s combination rule, an intersec-
tion probability measure was proposed from the propor-
tional repartition of the total non specific mass (TNSM)
by each contribution of the non-specific masses involved
in it.

3) DSmP: Dezert and Smarandache proposed the
DSmP as follows: Suppose that the FOD is Θ =
{𝜃1, ..., 𝜃𝑛}, the DSmP𝜀(𝜃𝑖)can be directly obtained by:

DSmP𝜀(𝜃𝑖) = 𝑚({𝜃𝑖}) + (𝑚({𝜃𝑖}) + 𝜀)⋅

(
∑

𝑋∈2Θ

𝜃𝑖⊂𝑋
∣𝑋∣≥2

𝑚(𝑋)∑
𝑌 ∈2Θ

𝑌⊂𝑋
∣𝑌 ∣=1

𝑚(𝑌 )+𝜀⋅∣𝑋∣ ) (6)

In DSmP, both the values of the mass assignment and
the cardinality of focal elements are used in the pro-
portional redistribution process. DSmP does an im-
provement of all Sudano, Cuzzolin, and BetP formulas,
in the sense that DSmP mathematically makes a more
accurate redistribution of the ignorance masses to the
singletons involved in ignorance. DSmP works in both
theories: DST and DSmT as well.

There are still some other definitions on modified
PPT such as the iterative and self-consistent approach
PrScP proposed by Sudano in [5] and a modified PrScP
in [12]. Although the approaches aforementioned are
different, all the probability transformation approaches
are evaluated based on the degree of uncertainty. Less
uncertainty means that the corresponding probability
transformation result is better. According to such a
idea, the probability transformation approach should
attempt to enlarge the belief differences among all the
propositions and thus to derive a more reliable decision
result. Is this definitely rational? Is the uncertainty
degree always proper or enough to evaluate the prob-
ability transformation? In the following section, some
uncertainty measures are analyzed and an alternative
probability transformation approach based on uncer-
tainty minimization is proposed to verify the rationality
of the uncertainty degree as the criteria for evaluating
the probability transformation.

3 An alternative probability
transformation based on un-
certainty minimization

3.1 Evaluation criteria for probability
transformation

The metrics depicting the strength of a critical decision
by a specific probability distribution are introduced as
follows:
1) Normalized Shannon entropy
Suppose that 𝑝𝜃 is a probability distribution, where

𝜃 ∈ Θ, ∣Θ∣ = 𝑁 and the ∣Θ∣ represents the cardinality
of the FOD Θ. The evaluation criterion for the proba-
bility distribution derived based on different probability
transformation is as follows [12].

EH =

− ∑
𝜃∈Θ

𝑝𝜃 log2(𝑝𝜃)

log2 𝑁
(7)

The dividend in (7) is the Shannon entropy and the di-
visor in (7) is maximum value of the Shannon entropy
for {𝑝𝜃∣𝜃 ∈ Θ},∣Θ∣ = 𝑁 . Obviously 𝐸𝐻 is normalized.
The larger the 𝐸𝐻 is, the larger the degree of uncer-
tainty is. The less the 𝐸𝐻 is, the less the degree of un-
certainty is. When 𝐸𝐻= 0, there is only one hypothesis
has a probability value of 1 and the rest has 0, the agent
or system can make decision correctly. When 𝐸𝐻= 1,
it is impossible to make a correct decision, because all
the 𝑝𝜃,∀𝜃 ∈ Θ are equal.
2) Probabilistic Information Content
Probabilistic Information Content (PIC) criterion is

an essential measure in any threshold-driven automated
decision system. A PIC value of one indicates the total
knowledge to make a correct decision.

PIC(𝑃 ) = 1 +
1

log2 𝑁
⋅
∑
𝜃∈Θ

𝑝𝜃 log2(𝑝𝜃) (8)

Obviously, PIC = 1 − EH. The PIC is the dual of
the normalized Shannon entropy. A PIC value of zero
indicates that the knowledge to make a correct deci-
sion does not exist (all the hypotheses have an equal
probability value), i.e. one has the maximal entropy.
As referred above, for information fusion at decision-

level, the uncertainty seemingly should be reduced as
much as possible. The less the uncertainty in prob-
ability measure is, the more consolidated and reliable
decision can be made. Suppose such a viewpoint is
always right and according to such an idea, an alter-
native probability transformation of belief function is
proposed.

3.2 Probability transformation of belief
function based on uncertainty min-
imization

To accomplish the probability transformation, the be-
lief function (or the BPA, the plausibility function)
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should be available. The relationship between the prob-
ability and the belief function are analyzed as follows.
Based on the viewpoint of Dempster and Shafer, the

belief function can be considered as a lower probabil-
ity and the plausibility can be considered as an upper
probability. Suppose that 𝑝𝜃 ∈ [0, 1] is a probability
distribution, where 𝜃 ∈ Θ. For a belief function defined
on FOD Θ, suppose that 𝐵 ∈ 2Θ, the inequality (9) is
satisfied:

𝐵𝑒𝑙(𝐵) ≤
∑

𝜃∈𝐵
𝑝𝜃 ≤ 𝑃𝑙(𝐵) (9)

This inequality can be proved according to the proper-
ties of the upper and lower probability.
Probability distributions ⟨𝑝𝜃∣𝜃 ∈ Θ⟩ also must meet

the usual requirements for probability distributions, i.e.{
0 ≤ 𝑝𝜃 ≤ 1,∀𝜃 ∈ Θ∑

𝜃∈Θ 𝑝𝜃 = 1
(10)

It can be taken for granted that there are several proba-
bility distributions {𝑝𝜃∣𝜃 ∈ Θ} consistent with the given
belief function according to the relationships defined in
(9) and (10). This is a multi-answer problem or one-to-
many mapping relation. As referred above, the proba-
bility is used for decision, so the uncertainty seemingly
should be as little as possible. We can select one prob-
ability distribution from all the consistent alternatives
according to the uncertainty minimization criterion and
use the corresponding probability distribution as the re-
sult of the probability transformation.
The Shannon entropy is used here to establish the

objective function. The equations and inequalities in
(9) and (10) are used to establish the constraints. The
problem of probability transform of belief function here
is converted to an optimization problem under con-
straints as follows:

Min
{𝑝𝜃∣𝜃∈Θ}

{
− ∑

𝜃∈Θ

𝑝𝜃 log2(𝑝𝜃)

}

𝑠.𝑡.

⎧⎨⎩ 𝐵𝑒𝑙(𝐵) ≤ ∑
𝜃∈𝐵 𝑝𝜃 ≤ 𝑃𝑙(𝐵)

0 ≤ 𝑝𝜃 ≤ 1,∀𝜃 ∈ Θ∑
𝜃∈Θ 𝑝𝜃 = 1

(11)

Given belief function (or the BPA, the plausibility), by
solving (11), a probability distribution can be derived,
which has least uncertainty measured by Shannon en-
tropy and thus is seemingly more proper to be used in
decision procedure.
It is clear that the problem of finding a minimum en-

tropy probability distribution does not admit a unique
solution in general. The optimization algorithm used
is the Quasi-Newton followed by a global optimization
algorithm [16] to alleviate the effect of the local ex-
tremum problem. Other intelligent optimization algo-
rithms [17, 18] can also be used,such as Genetic Algo-
rithm (GA), Particle Swarm Optimization (PSO), etc.

4 Analysis based on examples
At first, two numerical examples are first provided to
illustrate some probability transformation approaches.
To make the different approaches reviewed and pro-
posed in this paper more comparable, the examples
in [6, 12] are directly used here. The PIC is used to
evaluate the probability transformation.

4.1 Example 1

For FOD Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4}, the corresponding BPA
is as follows:

𝑚({𝜃1}) = 0.16, 𝑚({𝜃2}) = 0.14, 𝑚({𝜃3}) = 0.01,
𝑚({𝜃4}) = 0.02,
𝑚({𝜃1, 𝜃2}) = 0.20, 𝑚({𝜃1, 𝜃3}) = 0.09,
𝑚({𝜃1, 𝜃4}) = 0.04, 𝑚({𝜃2, 𝜃3}) = 0.04,
𝑚({𝜃2, 𝜃4}) = 0.02, 𝑚({𝜃3, 𝜃4}) = 0.01,
𝑚({𝜃1, 𝜃2, 𝜃3}) = 0.10, 𝑚({𝜃1, 𝜃2, 𝜃4}) = 0.03,
𝑚({𝜃1, 𝜃3, 𝜃4}) = 0.03, 𝑚({𝜃2, 𝜃3, 𝜃4}) = 0.03,
𝑚(Θ) = 0.08.

The corresponding belief functions are calculated and
listed as follows:

𝐵𝑒𝑙({𝜃1}) = 0.16, 𝐵𝑒𝑙({𝜃2}) = 0.14,
𝐵𝑒𝑙({𝜃3}) = 0.01, 𝐵𝑒𝑙({𝜃4}) = 0.02,
𝐵𝑒𝑙({𝜃1, 𝜃2}) = 0.50, 𝐵𝑒𝑙({𝜃1, 𝜃3}) = 0.26,
𝐵𝑒𝑙({𝜃1, 𝜃4}) = 0.22, 𝐵𝑒𝑙({𝜃2, 𝜃3}) = 0.19,
𝐵𝑒𝑙({𝜃2, 𝜃4}) = 0.18, 𝐵𝑒𝑙({𝜃3, 𝜃4}) = 0.04,
𝐵𝑒𝑙({𝜃1, 𝜃2, 𝜃3}) = 0.74, 𝐵𝑒𝑙({𝜃1, 𝜃2, 𝜃4}) = 0.61,
𝐵𝑒𝑙({𝜃1, 𝜃3, 𝜃4}) = 0.36, 𝐵𝑒𝑙({𝜃2, 𝜃3, 𝜃4}) = 0.27,
𝐵𝑒𝑙(Θ) = 1.00.

The corresponding plausibility functions are calcu-
lated and listed as follows:

𝑃𝑙({𝜃1}) = 0.73, 𝑃 𝑙({𝜃2}) = 0.64, 𝑃 𝑙({𝜃3}) = 0.39,
𝑃 𝑙({𝜃4}) = 0.26,
𝑃 𝑙({𝜃1, 𝜃2}) = 0.96, 𝑃 𝑙({𝜃1, 𝜃3}) = 0.82,
𝑃 𝑙({𝜃1, 𝜃4}) = 0.81, 𝑃 𝑙({𝜃2, 𝜃3}) = 0.78,
𝑃 𝑙({𝜃2, 𝜃4}) = 0.74, 𝑃 𝑙({𝜃3, 𝜃4}) = 0.50,
𝑃 𝑙({𝜃1, 𝜃2, 𝜃3}) = 0.98, 𝑃 𝑙({𝜃1, 𝜃2, 𝜃4}) = 0.99,
𝑃 𝑙({𝜃1, 𝜃3, 𝜃4}) = 0.86, 𝑃 𝑙({𝜃2, 𝜃3, 𝜃4}) = 0.84,
𝑃 𝑙(Θ) = 1.00.

Suppose the probability distribution as the unknown
variables. Based on the plausibility functions and the
belief functions, the constraints and the objective func-
tion can be established according to (11). The probabil-
ity distribution can be derived based on the minimiza-
tion. The results of some other probability transforma-
tion approaches are also calculated. All the results are
listed in Table 1 (on the next page) to make the com-
parison between the approach proposed in this paper
(denoted by Un min) and other available approaches.

4.2 Example 2

For FOD Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4}, the corresponding BBA
is as follows:

𝑚({𝜃1}) = 0.05, 𝑚({𝜃2}) = 0.00, 𝑚({𝜃3}) = 0.00,
𝑚({𝜃4}) = 0.00,
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Table 1 Probability Transformation Results of
Example 1 based on Different Approaches

𝜃1 𝜃2 𝜃3 𝜃4 PIC
BetP [3] 0.3983 0.3433 0.1533 0.1050 0.0926
PraPl [8] 0.4021 0.3523 0.1394 0.1062 0.1007
PrPl [8] 0.4544 0.3609 0.1176 0.0671 0.1638
PrHyb [8] 0.4749 0.3749 0.0904 0.0598 0.2014
PrBel [8] 0.5176 0.4051 0.0303 0.0470 0.3100
FPT[11] 0.5176 0.4051 0.0303 0.0470 0.3100
DSmP 0[9] 0.5176 0.4051 0.0303 0.0470 0.3100
PrScP [10] 0.5403 0.3883 0.0316 0.0393 0.3247
PrBP1 [12] 0.5419 0.3998 0.0243 0.0340 0.3480
PrBP2 [12] 0.5578 0.3842 0.0226 0.0353 0.3529
PrBP3 [12] 0.0605 0.3391 0.0255 0.0309 0.3710
Un min 0.7300 0.2300 0.0100 0.0300 0.4813

𝑚({𝜃1, 𝜃2}) = 0.39, 𝑚({𝜃1, 𝜃3}) = 0.19,
𝑚({𝜃1, 𝜃4}) = 0.18,𝑚({𝜃2, 𝜃3}) = 0.04,
𝑚({𝜃2, 𝜃4}) = 0.02, 𝑚({𝜃3, 𝜃4}) = 0.01,
𝑚({𝜃1, 𝜃2, 𝜃3}) = 0.04, 𝑚({𝜃1, 𝜃2, 𝜃4}) = 0.02,
𝑚({𝜃1, 𝜃3, 𝜃4}) = 0.03, 𝑚({𝜃2, 𝜃3, 𝜃4}) = 0.03,
𝑚(Θ) = 0.00.

The corresponding belief functions are calculated and
listed as follows:

𝐵𝑒𝑙({𝜃1}) = 0.05, 𝐵𝑒𝑙({𝜃2}) = 0.00,
𝐵𝑒𝑙({𝜃3}) = 0.00, 𝐵𝑒𝑙({𝜃4}) = 0.00,
𝐵𝑒𝑙({𝜃1, 𝜃2}) = 0.44, 𝐵𝑒𝑙({𝜃1, 𝜃3}) = 0.24,
𝐵𝑒𝑙({𝜃1, 𝜃4}) = 0.23, 𝐵𝑒𝑙({𝜃2, 𝜃3}) = 0.04,
𝐵𝑒𝑙({𝜃2, 𝜃4}) = 0.02, 𝐵𝑒𝑙({𝜃3, 𝜃4}) = 0.01,
𝐵𝑒𝑙({𝜃1, 𝜃2, 𝜃3}) = 0.71, 𝐵𝑒𝑙({𝜃1, 𝜃2, 𝜃4}) = 0.66,
𝐵𝑒𝑙({𝜃1, 𝜃3, 𝜃4}) = 0.46, 𝐵𝑒𝑙({𝜃2, 𝜃3, 𝜃4}) = 0.10,
𝐵𝑒𝑙(Θ) = 1.00.

The corresponding plausibility functions are calcu-
lated and listed as follows:

𝑃𝑙({𝜃1}) = 0.90, 𝑃 𝑙({𝜃2}) = 0.54, 𝑃 𝑙({𝜃3}) = 0.34,
𝑃 𝑙({𝜃4}) = 0.29,
𝑃 𝑙({𝜃1, 𝜃2}) = 0.99, 𝑃 𝑙({𝜃1, 𝜃3}) = 0.98,
𝑃 𝑙({𝜃1, 𝜃4}) = 0.96, 𝑃 𝑙({𝜃2, 𝜃3}) = 0.77,
𝑃 𝑙({𝜃2, 𝜃4}) = 0.76, 𝑃 𝑙({𝜃3, 𝜃4}) = 0.56,
𝑃 𝑙({𝜃1, 𝜃2, 𝜃3}) = 1.00, 𝑃 𝑙({𝜃1, 𝜃2, 𝜃4}) = 1.00,
𝑃 𝑙({𝜃1, 𝜃3, 𝜃4}) = 1.00, 𝑃 𝑙({𝜃2, 𝜃3, 𝜃4}) = 0.95,
𝑃 𝑙(Θ) = 1.00.

Suppose the probability distribution as the unknown
variables. Based on the plausibility functions and the
belief functions, the constraints and the objective func-
tion can be established according to (11). The probabil-
ity distribution can be derived based on the minimiza-
tion. The results of some other probability transfor-
mation approaches are also calculated. All the results
are listed in Table 2 to make the comparison between
the approach proposed in this paper and other available
approaches.

N/A in Table 2 means ”Not available”. DSmP 0
means the parameter 𝜀 in DSmP is 0.

Table 2 Probability Transformation Results of
Example 2 based on Different Approaches

𝜃1 𝜃2 𝜃3 𝜃4 PIC
PrBel [8] N/A due to 0 value of singletons
FPT[11] N/A due to 0 value of singletons
PrScP [10] N/A due to 0 value of singletons
PrBP1 [12] N/A due to 0 value of singletons
PraPl [8] 0.4630 0.2478 0.1561 0.1331 0.0907
BetP [3] 0.4600 0.2550 0.1533 0.1317 0.0910
PrPl [8] 0.6161 0.2160 0.0960 0.0719 0.2471
PrBP2 [12] 0.6255 0.2109 0.0936 0.0700 0.2572
PrHyb [8] 0.6368 0.2047 0.0909 0.0677 0.2698
DSmP 0[9] 0.5162 0.4043 0.0319 0.0477 0.3058
PrBP3 [12] 0.8823 0.0830 0.0233 0.0114 0.5449
Un min 0.9000 0.0900 0.0000 0.0100 0.7420

Based on the experimental results listed in Table 1
and Table 2, it can be concluded that the probabil-
ity derived based on the proposed approach (denoted
by Un min) has significantly lower uncertainty when
compared with the other probability transformation ap-
proaches. The difference among all the propositions can
be further enlarged, which is seemingly helpful for the
more consolidated and reliable decision.

Important remark: In fact, there exist fatal deficien-
cies in the probability transformation based uncertainty
minimization, which are illustrated in following exam-
ples.

4.3 Example 3

The FOD and BPA are as follows [4]:

Θ = {𝜃1, 𝜃2}, 𝑚({𝜃1}) = 0.3,
𝑚({𝜃2}) = 0.1, ,𝑚({𝜃1, 𝜃2}) = 0.6

Based on different approaches, the experimental re-
sults are derived as listed in Table 3

Table 3 Probability Transformation Results of
Example 3 based on Different Approaches

𝜃1 𝜃2 PIC
BetP 0.6000 0.4000 0.0291
PrPl 0.6375 0.3625 0.0553
PraPl 0.6375 0.3625 0.0553
PrHyb 0.6825 0.3175 0.0984
DSmP 0.001 0.7492 0.2508 0.1875
PrBel 0.7500 0.2500 0.1887
DSmP 0 0.7500 0.2500 0.1887
Un min 0.9000 0.1000 0.5310

DSmP 0 means the parameter 𝜀 in DSmP is 0 and
DSmP 0.001 means the parameter 𝜀 in DSmP is 0.001.
Is the probability transformation based on PIC max-

imization (i.e. entropy minimization) rational ?
It can be observed, in our very simple example

3, that all the mass of belief 0.6 committed {𝜃1, 𝜃2}
is actually redistributed only to the singleton {𝜃1}
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using the Un min transformation in order to get the
maximum of PIC.

A deeper analysis shows that with Un min transfor-
mation, the mass of belief 𝑚{𝜃1, 𝜃2} > 0 is always fully
distributed back to {𝜃1} as soon as 𝑚({𝜃1}) > 𝑚({𝜃2})
in order to obtain the maximum of PIC (i.e. the min-
imum of entropy). Even in very particular situations
where the difference between masses of singletons is
very small like in the following example:

Θ = {𝜃1, 𝜃2}, 𝑚({𝜃1}) = 0.1000001,
𝑚({𝜃2}) = 0.1, 𝑚({𝜃1, 𝜃2}) = 0.7999999.

This previous modified example shows that the prob-
ability obtained from the minimum entropy principle
yields a counter-intuitive result, because 𝑚({𝜃1}) is
almost the same as 𝑚({𝜃2}) and so there is no solid rea-
son to obtain a very high probability for 𝜃1 and a small
probability for 𝜃2. Therefore, the decision based on the
result derived from Un min transformation is too risky.
Sometimes uncertainty can be useful, and sometimes it
is better to not take a decision than to take the wrong
decision. So the criterion of uncertainty minimization
is not sufficient for evaluating the quality/efficiency of a
probability transformation. There are also other prob-
lems in the probability transformation based on uncer-
tainty minimization principle, which are illustrated in
our next example.

4.4 Example 4

The FOD and BPA are as follows: Θ = {𝜃1, 𝜃2, 𝜃3},
with ,

𝑚({𝜃1, 𝜃2}) = 𝑚({𝜃2, 𝜃3}) = 𝑚({𝜃1, 𝜃3}) = 1/3.

Using the probability transformation based on uncer-
tainty minimization, we can derive six different proba-
bility distributions yielding the same minimal entropy,
which are listed as follows:

𝑃 ({𝜃1}) = 1/3, 𝑃 ({𝜃2}) = 2/3, 𝑃 ({𝜃3}) = 0;

𝑃 ({𝜃1}) = 1/3, 𝑃 ({𝜃2}) = 0, 𝑃 ({𝜃3}) = 2/3;

𝑃 ({𝜃1}) = 0, 𝑃 ({𝜃2}) = 1/3, 𝑃 ({𝜃3}) = 2/3;

𝑃 ({𝜃1}) = 0, 𝑃 ({𝜃2}) = 2/3, 𝑃 ({𝜃3}) = 1/3;

𝑃 ({𝜃1}) = 2/3, 𝑃 ({𝜃2}) = 1/3, 𝑃 ({𝜃3}) = 0;

𝑃 ({𝜃1}) = 2/3, 𝑃 ({𝜃2}) = 0, 𝑃 ({𝜃3}) = 1/3.

It is clear that the problem of finding a probabil-
ity distribution with minimal entropy does not admit a
unique solution in general. So if we use the probabil-
ity transformation based on uncertainty minimization,
there might exist several probability distributions de-
rived as illustrated in this Example 4. How to choose
a unique one? In Example 4, depending on the choice
of the admissible probability distribution, the decision
results derived are totally different which is a serious
problem for decision-making support.

From our analysis, it can be concluded that the max-
imization of PIC criteria (or equivalently the minimiza-
tion of Shannon entropy) is not sufficient for evaluating
the quality of a probability transformation and other
criteria have to be found to give more acceptable prob-
ability distribution from belief functions. The search
for new criteria for developing new transformations is
a very open and challenging problem. Until finding
new better probability transformation, we suggest to
use DSmP as one of the most useful probability trans-
formation. Based on the experimental results shown in
Examples 1–3, we see that the DSmP can always be
computed and generate a probability distribution with
less uncertainty and it is also not too risky, i.e. DSmP
can achieve a better tradeoff between a high PIC value
(i.e. low uncertainty) and the risk in decision-making.

5 Conclusion

Probability transformation of belief function can be
considered as a probabilistic approximation of belief
assignment, which aims to gain more reliable decision
results. In this paper, we focus on the evaluation crite-
ria of the probability transformation function. Experi-
mental results based on numerical examples show that
the maximization of PIC criteria proposed by Sudano
is insufficient for evaluating the quality of a probability
transformation. More rational criteria have to be found
and to better justify the use of a probability transfor-
mation with respect to another one.

All the current probability transformations devel-
oped so far redistribute the mass of partial ignorances
to the belief of singletons included in it. The redistri-
bution is based either only on the cardinality of partial
ignorances, or eventually also on a proportionalization
using the masses of singletons involved in partial igno-
rances. However when the mass of a singleton involved
in a partial ignorance is zero, some probability trans-
formations, like Cuzzolin’s transformation by example,
do not work at all and that’s why the 𝜀 parameter has
been introduced in DSmP transformation to make it
working in all cases. In future, we plan to develop
a more comprehensive and rational criterion, which
can take both the risk and the uncertainty degree into
consideration, to evaluate the quality of a probability
transformation and to find an optimal probability
distribution from any basic belief assignment.
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Algebraic Generalization of Venn Diagram 
Florentin Smarandache 

Abstract. 

It is easy to deal with a Venn Diagram for 1 ≤ n ≤ 3 sets.  When n gets larger, the picture 
becomes more complicated, that's why we thought at the following codification.  That’s 
why we propose an easy and systematic algebraic way of dealing with the representation 
of intersections and unions of many sets. 

Introduction. 

Let's first consider 1 ≤ n ≤ 9, and the sets S1, S2, …, Sn. 
Then one gets 2n-1 disjoint parts resulted from the intersections of these n sets.  Each part 
is encoded with decimal positive integers specifying only the sets it belongs to.  Thus: 
part 1 means the part that belongs to S1 (set 1) only, part 2 means the part that belongs to 
S2 only, ..., part n means the part that belongs to set Sn only. 
Similarly, part 12 means that part which belongs to S1 and S2 only, i.e. to S1∩S2 only. 
Also, for example part 1237 means the part that belongs to the sets S1, S2, S3, and S7 only, 
i.e. to the intersection S1∩S2∩S3∩S7 only. And so on. This will help to the construction 
of a base formed by all these disjoint parts, and implementation in a computer program of 
each set from the power set P(S1



S2



…



Sn) using a binary number. 
The sets S1, S2, …, Sn, are intersected in all possible ways in a Venn diagram. Let 1 ≤ k ≤ 
n be an integer.  Let’s denote by: i1i2…ik the Venn diagram region/part that belongs to the 
sets Si1 and Si2 and … and Sik only, for all k and all n. The part which is outside of all sets 
(i.e. the complement of the union of all sets) is noted by 0 (zero). Each Venn diagram will 
have 2n disjoint parts, and each such disjoint part (except the above part 0) will be formed 
by combinations of k numbers from the numbers: 1, 2, 3, …, n.  

Example. 

Let see an example for n = 3, and the sets S1, S2, and S3. 

Fig. 1. 
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Unions and Intersections of Sets. 

This codification is user friendly in algebraically doing unions and intersections in a simple 
way.   
Union of sets Sa, Sb, …, Sv is formed by all disjoint parts that have in their index either the 
number a, or the number b, …, or the number v.  
While intersection of Sa, Sb, …, Sv is formed by all disjoint parts that have in their index all 
numbers a, b, …, v.  
For n = 3 and the above diagram:  
S1∪S23 = {1, 12, 13, 23, 123}, i.e. all disjoint parts that include in their indexes either the 
digit 1, or the digits 23;   
and S1∩S2 = {12, 123}, i.e. all disjoint parts that have in their index the digits 12.  

Remarks. 

When n ≥ 10, one uses one space in between numbers:  for example, if we want to represent 
the disjoint part which is the intersection of S3, S10, and S27 only, we use the notation [3 10 
27], with blanks in between the set indexes.  
Depending on preferences, one can use other character different from the blank in 
between numbers, or one can use the numeration system in base n+1, so each 
number/index will be represented by a unique character. 
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Importance of Sources using the Repeated Fusion 
Method and the Proportional Conflict Redistribution 

Rules #5 and #6  

Florentin Smarandache  
Jean Dezert 

Abstract. 
We present in this paper some examples of how to compute by hand the PCR5 fusion rule for 
three sources, so the reader will better understand its mechanism. 
We also take into consideration the importance of sources, which is different from the classical 
discounting of sources.  

1. Introduction.

Discounting of Sources. 
Discounting a source m1(.) with the coefficient 0 ≤ α ≤ 1 and a source m2(.) with a coefficient     
0 ≤ β ≤ 1 (because we are not very confident in them), means to adjust them to m1’(.) and m2’(.) 
such that: 
m1’(A) = α⋅m1(A) for A ≠ Θ (total ignorance), and m1’(Θ ) = α⋅m1(Θ )+ 1-α, 
and m2’(A) = β⋅m2(A) for A ≠ Θ (total ignorance), and m2’(Θ ) = β⋅m2(Θ )+ 1- β. 

Importance of Sources using Repeated Fusion. 
But if a source is more important than another one (since a such source comes from a more 
important person with a decision power, let’s say an executive director), for example if source 
m2(.) is twice more important than source m1(.), then we can combine m1(.) with m2(.) and with 
m2(.), so we repeated m2(.) twice.  Doing this procedure, the source which is repeated (combined) 
more times than another source attracts the result towards its masses – see an example below. 
Jean Dezert has criticized this method since if a source is repeated say 4 times and other source is 
repeated 6 times, then combining 4 times m1(.) with 6 times m2(.) will give a result different from 
combining 2 times m1(.) with 3 times m2(.), although 4/6 = 2/3.  In order to avoid this, we take 
the simplified fraction n/p, where gcd(n, p) =1, where gcd is the greatest common divisor of the 
natural numbers n and p. 
This method is still controversial since after a large number of combining n times m1(.) with p 
times m2(.) for n+p sufficiently large, the result is not much different from a previous one which 
combines n1 times m1(.) with p1 times m2(.) for n1+p1 sufficiently large but a little less than n+p, 
so the method is not well responding for large numbers. 

Originally published as a scientific note 2010 in HAL archive. https://
hal.archives-ouvertes.fr/hal-00471839. Printed with permission.
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A more efficacy method of importance of sources consists in taking into consideration the 
discounting on the empty set and then the normalization (see especially paper [1] and also[2]). 

2. Using 5PCRm for 3 Sources. 
Example calculated by hand for combining three sources using PCR5 fusion rule. 

Let’s say that ( )2 .m  is 2 times more important than ( )1 .m ; therefore we fusion m1(.), 
m2(.), m2(.). 

1

2

2

122

          A         B       A B  A B=
     0.1       0.7       0.2   
     0.4       0.1       0.5   
     0.4       0.1       0.5   

  0.193   0.274   0.050   0.483  

m
m
m
m

Φ∪ ∩

21 1

1

1

2

0.005 0.05
0.1 0.7 0.5 0.7 7

0.000714
0.000714

0.003572

A BA B

A

B

A B

zx y

x
y
z

⎡
= = = =⎢

⎢
=⎢

⎢ =⎢
=⎢⎣

∪

∪

22 2

2

2

2

0.14 0.07 0.7
0.4 0.7 0.5 1.6 0.8 8

0.035000
0.061250

0.043750

A BA B

A

B

A B

zx y

x
y
z

⎡
= = = = =⎢

⎢
=⎢

⎢ =⎢
=⎢⎣

∪

∪

33 3

3

3

3

0.008 0.08
0.4 0.1 0.2 0.7 7

0.004571
0.001143

0.002286

A BA B

A

B

A B

zx y

x
y
z

⎡
= = = =⎢

⎢
≅⎢

⎢ ≅⎢
≅⎢⎣

∪

∪

44 4

4

4

4

(0.4)(0.1)(0.2) 0.008 0.08
0.4 0.1 0.2 0.7 0.7 7

0.004571
0.001143

0.002286

A BA B

A

B

A B

zx y

x
y
z

⎡
= = = = =⎢

⎢
≅⎢

⎢ ≅⎢
≅⎢⎣

∪

∪
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55 5

5

5

5

0.14 1.4
0.4 0.7 0.5 1.6 16

0.035000
0.061250

0.043750

A BA B

A

B

A B

zx y

x
y
z

⎡
= = = =⎢

⎢
≅⎢

⎢ ≅⎢
≅⎢⎣

∪

∪

66 6

6

6

6
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0.000714
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0.003572
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A

B

A B

zx y

x
y
z

⎡
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⎢
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⎢ ≅⎢
≅⎢⎣

∪

∪
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6

6

(0.1)(0.1)(0.1) 0.001
0.1 (0.1)(0.1) 0.1 0.01 0.11
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A B

A

B

x y

x
y

⎡ = = =⎢ +⎢
≅⎢

⎢ ≅⎢
⎢⎣

8 8

8

8

(0.4)(0.7)(0.1) 0.028 2.8
0.4 (0.7)(0.1) 0.1 0.01 0.47 47
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0.004170

A B

A

B

x y

x
y
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10 10
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8

(0.1)(0.4)(0.1) 0.004 0.4 0.2
(0.1)(0.4) 0.1 0.04 0.1 0.14 14 7
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0.002857

A B
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x y
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12 12

12

12

(0.4)(0.4)(0.7) 0.112 11.2
(0.1)(0.4) 0.1 0.16 0.7 0.86 86

0.020837
0.091163

A B

A

B

x y

x
y

⎡ = = = =⎢ +⎢
≅⎢

⎢ ≅⎢
⎢⎣

5
122

               A B             A B
   0.345262   0.505522   0.149216PCRm

∪

If we didn’t double m2(.) in the fusion rule, we’d get a different result. 
Let’s suppose we only fusion m1(.) with m2(.): 

1

2

12

              A              B              A B       A B=
         0.1            0.7              0.2   
         0.4            0.1              0.5   
        0.17          0.44             

m
m
m

Φ∪ ∩

5
12

0.10          0.29 
    0.322        0.668            0.100       0PCRm

And now we compare the fusion results: 

5
122

5
12

               A        B      A B
   0.345   0.506   0.149 - (sec )
   0.322   0.668   0.100 - 

PCR

PCR

m three sources ond source doubled ; importance of  sources considered;
m two sources; importance of

− −

∪

. sources not considered

The more times we repeat m2(.) the closer 5
12...2
PCRm (A)  m2(A)=0.4, 5

12...2
PCRm (B)  m2(B)=0.1, and         

 5
12...2
PCRm (A ∪ B)  m2(A ∪ B)=0.5. Therefore, doubling, tripling, etc. a source, the mass of each 

element in the frame of discernment tends towards the mass value of that element in the repeated 
source (since that source is considered to have more importance than the others). 

For the readers who want to do the previous calculation with a computer, here it is the 5PCRm
Formula for 3 Sources: 

( ) ( ) ( )
( ) ( ) ( )

2
1 2 3

5 123
, 1 2 3

( )PCR
X Y G
A X Y A
A X Y

m A m X m Y
m A m

m A m X m YΘ∈
≠ ≠ ≠

=Φ

⎛
⎜= + +
⎜ + +⎝

∑
∩ ∩

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2
1 2 3 1 2 3

1 2 3 1 2 3

m Y m A m X m X m Y m A
m Y m A m X m X m Y m A

⎞
⎟+ + +
⎟+ + + + ⎠
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2 2
1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3X G
A X

m A m X m X m X m A m X m X m X m A
m A m X m X m X m A m X m X m X m AΘ∈

=Φ

⎛ ⎞
⎜ ⎟+ + + +
⎜ ⎟+ + + + + +⎝ ⎠

∑
∩

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2
1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3X G
A X

m A m A m X m X m A m A m A m X m A
m A m A m X m X m A m A m A m X m AΘ∈

=Φ

⎛ ⎞
⎜ ⎟+ + +
⎜ ⎟+ + + + + +⎝ ⎠

∑
∩

 

3. Similarly, let’s see the 6PCRm  Formula for 3 Sources: 

( ) ( ) ( )
( ) ( ) ( )

2
1 2 3

6 123
, 1 2 3

( )PCR
X Y G
A X Y A
A X Y

m A m X m Y
m A m

m A m X m YΘ∈
≠ ≠ ≠

=Φ

⎛
⎜= + +
⎜ + +⎝

∑
∩ ∩

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2
1 2 3 1 2 3

1 2 3 1 2 3

m Y m A m X m X m Y m A
m Y m A m X m X m Y m A

⎞
⎟+ + +
⎟+ + + + ⎠

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2 2
1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3X G
A X

m A m X m X m X m A m X m X m X m A
m A m X m X m X m A m X m X m X m AΘ∈

=Φ

⎛ ⎞
⎜ ⎟+ + + +
⎜ ⎟+ + + + + +⎝ ⎠

∑
∩

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2
1 2 3 1 2 3

1 2 3X G
A X

m A m A m X m A m A m X
m A m A m XΘ∈

=Φ

⎛ +
⎜+ +
⎜ + +⎝

∑
∩

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2
1 2 3 1 2 3

1 2 3

m X m A m A m X m A m A
m X m A m A

+
+ +

+ +
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2
1 2 3 1 2 3

1 2 3

m A m X m A m A m X m A
m A m X m A

⎞+
⎟+
⎟+ + ⎠

 

4. A General Formula for 6PCR  for 2s ≥  Sources.

{ }

1 2
1 21 2 1

1

1

1

6 12...
1 ( , ,..., ) (1,2,..., ), ,...,

, 1,2,..., 1

( ) ( ) ( ) ... ( )
k

ss
i

s

i
i

s

PCR s i i i
k i i i P sX X X G

X A i s

X A

m A m m A m A m A
Θ

−

−

=

−

= ∈∈
≠ ∈ −

⎛ ⎞
⎜ ⎟ =Φ
⎜ ⎟
⎝ ⎠

⎤⎡= + + + + ⋅⎣ ⎦∑ ∑ ∑

∩∩

1 2 1

1 2 1

1

1

( ) ( )... ( ) ( )... ( )
( ) ( ) ... ( ) ( ) ... ( )

k k s

k k s

i i i i i s k

i i i i i s k

m A m A m A m X m X
m A m A m A m X m X

+

+

−

−

⋅
+ + + + + +

where P(1, 2, …, s) is the set of all permutations of the elements {1, 2, …, s}. 

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

51



It should be observed that X1, X2, …, Xs-1 may be different from each other, or some of them 
equal and others different, etc.

We wrote this PCR6 general formula in the style of PCR5, different from Arnaud Martin & 
Christophe Oswald’s notations, but actually doing the same thing.  In order not to complicate the 
formula of PCR6, we did not use more summations or products after the third Sigma. 

As a particular case: 

1 1 1 3

1 2 31 2 1 1 3
1 2
1 1

2
1 2

6 123
1 ( , , ) (1,2,3), 1 2

,

( ) ... ( ) ( )... ( ) ( )... ( )
( )

( ) ... ( ) ( ) ... ( )
k k k

k k

i i i i i i
PCR

k i i i PX X G i i i i
X A X A
X X A

m A m A m A m A m X m X
m A m

m A m A m X m X
+

Θ
+= ∈∈

≠ ≠
=Φ

⎡ ⎤+ +⎣ ⎦= +
+ + + + +∑ ∑ ∑

∩ ∩

where (1, 2,3)P is the set of permutations of the elements { }1,2,3 . 
It should also be observed that 1X  may be different from or equal to 2X . 

Conclusion. 

The aim of this paper was to show how to manually compute PCR5 for 3 sources on some 
examples, thus better understanding its essence.  And also how to take into consideration the 
importance of sources doing the Repeated Fusion Method. We did not present the Method of 
Discounting to the Empty Set in order to emphasize the importance of sources, which is better 
than the first one, since the second method was the main topic of paper [2]. 

We also presented the PCR5 formula for 3 sources (a particular case when n=3), and the general 
formula for PCR6 in a different way but yet equivalent to Martin-Oswald’s PCR6 formula. 
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Abstract

This paper proposes a new solution for reducing the number of sources
of evidence to be combined in order to diminish the complexity of the fusion
process required in some applications where the real-time constraint and
strong computing resource limitation are of prime importance. The basic
idea consists in selecting, among the whole set of sources of evidence, only the
biggest subset of sources which are not too contradicting based on a criterion
of Evidence Supporting Measure of Similarity (ESMS) in order to process
solely the coherent information received. The ESMS criterion serves actually
as a generic tool for outlier source identification and rejection. Since the
ESMS between several belief functions can be defined using several distance
measures, we browse the most common ones in this paper and we describe
in detail the principle of our Generalized Fusion Machine (GFM). The last
part of the paper shows the improvement of the performances of this new
approach with respect to the classical one in a real-data based and real-time
experiment for robot perception using sonar sensors.

Key words:
Information fusion; Belief function; Complexity reduction; Robot
perception; DSmT; Measure of similarity; Distance; Lattice.
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1. Introduction

Information fusion (IF) has gained more and more interest in the scien-
tific community since the end of nineties because of the development of so-
phisticated multisensor and hybrid (involving human feedbacks in the loop)
systems in many fields of applications (robotics, defense, security, medicine,
etc.). IF appears through many scientific international conferences and work-
shops [11]. The main theories useful for information fusion are the Proba-
bility theory [16, 25] (and more recently the Imprecise Probability Theory
[38]), the Possibility Theory [8] (based on Fuzzy Sets theory [42]), Neutro-
sophic Set Theory [15] and belief function theories, mainly Dempster-Shafer
theory (DST) [29] and more recently Dezert-Smarandache theory (DSmT)
[31, 32, 33].

In this work, we concentrate our attention on belief functions theories and
specially on DSmT because of its ability to deal efficiently with uncertain,
imprecise and conflicting quantitative and qualitative information. Basically,
in DST, a basic belief assignment (bba) m(.) is a mapping from the power
set 2Θ (see section 2.2 for details) of the frame of discernment Θ into [0, 1]
such that

m(∅) = 0 and
∑

X∈2Θ

m(X) = 1.

In DST, Θ represents the set of exclusive and exhaustive possibilities for the
solution of the problem under consideration. In DSmT, Θ can be a set of
possible non exclusive elements and the definition of bba is extended to the
lattice structures of hyper-power set DΘ, and to super-power set SΘ in UFT
(Unification of Fusion Theories) [30, 32], Chap. 8 - see also section 2.3 for a
brief presentation and [7, 10] and [33] for definitions, details and examples.
In general m(.) is not a measure of probability, except in the case when its
focal elements (i.e. the elements which have a strictly positive mass of be-
lief) are singletons; in such case, m(.) is called a Bayesian bba [29] which
can be considered as a subjective probability measure. In belief function
theories, the main information fusion problem consists in finding an efficient
way for combining several sources of evidence s1, s2, . . . , sn characterized
by their bba’s m1(.), m2(.), . . . , mn(.) assumed for simplicity here defined
on the same fusion space, either 2Θ, DΘ, or SΘ depending on the underlying
model associated with the nature of the frame Θ. The difficulty in infor-
mation fusion arises from the fact that the sources can be conflicting (i.e.
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one source commits some belief in a proposition A whereas another source
commits some belief in a proposition B but A and B are known to be truly
exclusive (A ∩ B = ∅)) and one needs a solution for dealing with conflict-
ing information in the fusion process. In DST, Shafer proposes Dempster’s
rule of combination as the fusion operator for combining sources of evidence
whereas in DSmT the recommended fusion operator is the PCR5 (Propor-
tional Conflict redistribution rule # 5) rule of combination, see [29] and [33]
for discussions and comparisons of these rules. PCR5 is more complex than
Demspter’s rule but it offers a better ability to deal with conflicting infor-
mation.

Both rules however become intractable in some applications having only
low computational capacities (as in some autonomous onboard systems by
example) because their complexity increases drastically with the number n
of sources to combine and/or with the size of the frame Θ, specially in the
worst case (i.e. when a strict positive mass of belief is committed to all ele-
ments of the fusion space). To circumvent this problem, one has to play on
both sides: 1) reducing the number of sources to combine and 2) reducing
the size of the frame Θ. In this paper, we propose a solution only for re-
ducing the number of sources to combine because we are not concerned in
our application of robot perception by the second aspect since in this ap-
plication our frame Θ has only two elements representing the emptiness or
occupancy states of the grid cells of the perceived map of the environment.
To expect good performances of such limited-resource fusion scheme, it seems
natural to search and combine altogether only the sources which are coher-
ent (which are not too conflicting) according to a given measure of similarity.

Such idea has been already investigated by several authors who have
proposed some distance measures between two evidential sources in different
fields of applications. For example, Tessem [35] in 1993 proposed the distance
dij = maxθl∈Θ|BetPi(θl) − BetPj(θl)|) according to the pignistic probability
transform BetP (.). In 1997, Bauer [1] introduced two other measures of error
to take a decision based on pignistic probability distribution after approxi-
mation. In 1998, Zouhal and Denoeux [43] also introduced a distance based
on mean square error between pignistic probability. In 1999, Petit-Renaud
[26] has defined a measure directly on the power set of Θ and proposed an
error criterion between two belief structures based on the generalized Haus-
dorff distance. In 2001, Jousselme et al. [14] proposed in DST framework
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a new distance measure dij = 1 − 1√
2

√

m2
1 + m2

2 − 2〈m1, m2〉 between two

basic belief assignments (bba’s) for measuring their similarity (closeness).
In 2006, Ristic and Smets [27, 28] have defined in the TBM (Transferable
Belief Model) framework a TBM-distance between bba’s to solve the associ-
ation of uncertain combat ID declarations. These authors recall also the
Bhattacharya distance dij =

√

1 − ∑

A∈F〉

∑

B∈F|

√

mi(A)mj(B) between

two bba’s. In 2006 also, Diaz et al. [6] proposed a new measure of simi-
larity between bba’s based on Tversky’s similarity measure [37]. Note that
in belief function theories, the direct use of classical measures used in Proba-
bility theory (say like Kullback Leibler (KL) distance [3]) cannot be applied
directly because bba’s are not probability measures in general.

In this paper, we develop an Evidence Support Measure of Similarity
(ESMS) in a generalized fusion space according to different lattices [7, 10]
for reducing the number of sources of evidence to combine and thus reducing
the complexity of the computational burden. As shown in the next sections,
we propose several possible measures of distance for ESMS and we compare
their performances in our specific application of mobile robot perception.
The purpose of this paper is not to select, nor to justify, the best measure
of distance for ESMS but only to show the practical advantage of using the
ESMS criteria as a generic tool for reducing the complexity of the fusion with
keeping good performances for our application.

This paper is organized as follows. In section 2, we briefly recall the
main paradigms for dealing with uncertain information. In section 3, we
give a general mathematical definition of ESMS between two basic belief
assignments and we establish some basic properties of ESMS. In section 4,
we extend and present different possible ESMS functions (distance measures)
fitting with the different mathematical paradigms listed in section 2. A
comparison of the performances of five possible distances is made through
a simple example in section 5. The simulation presented in section 6 shows
in details how ESMS filter is used within GFM scheme. An application
of ESMS filter in GFM for mobile robot perception with real-data (sonar
sensors measurements) and in real-time is presented in section 7 to show the
advantages of the approach proposed here. The conclusion is given in section
8.
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2. The main paradigms for dealing with uncertainties

2.1. Probability Theory and Bayes’ rule.

The (axiomatic) Probability Theory [16] is the most achieved theory for
dealing with randomness. We will not present this theory in details since
there exist dozens of very good classical books devoted to it, see for exam-
ple [25]. We just recall that a random experiment is an experiment (action)
whose result is uncertain before it is performed and a trial is a single per-
formance of the random experiment. An outcome is the result of a trial and
the sample space Θ is the set of all possible outcome of the random experi-
ment. An event is the subset of the sample space Θ to which a probability
measure can be assigned. Two events Ai and Aj are said exclusive (disjoint)
if Ai ∩ Aj = ∅, ∀i 6= j, where the empty set ∅ represents the impossible
event. The sure event is the sample space Θ. The probability theory is based
on Set Theory and the measure theory on sets. The following axioms have
been identified as necessary and sufficient for probability P (.) as a measure:
Axiom 1) (nonnegativity) 0 ≤ P (A) ≤ 1, Axiom 2) (unity) P (Θ) = 1, and
Axiom 3) (finite additivity1), if A1, A2, . . ., An are disjoint events, then
P (A1 ∪ A2 ∪ . . . ∪ An) =

∑n

i=1 P (Ai). Events which are subsets of the sam-
ple space are put in one-to-one correspondence with propositions in belief
fuction theory [29], pages 35-37 and that’s why we use indifferently the ter-
minology set, event or proposition in this paper. The probabilistic inference
is (usually) carried out by Bayes’ rule according to:

∀B, P (B) > 0, P (Ai|B) =
P (Ai ∩ B)

P (B)
=

P (B|Ai)P (Ai)
∑n

j=1 P (B|Aj)P (Aj)
(1)

where the sample space Θ has been partitioned into exhaustive and ex-
clusive events A1, A2, . . . , An, i.e. such that Ai ∩ Aj = ∅, (i 6= j) and
A1 ∪ A2 ∪ . . . ∪ An = Θ; P (.) is an a priori probability measure defined
on Θ satisfying Kolmogorov’s axioms. In Bayes formula, it is assumed that
the denominator is strictly positive. A generalization of this rule has been
proposed by Jeffrey [12, 13] for working in circumstances where the parochial-
ist assumption is not a reasonable assumption, i.e. when P (B|B) = 1 is a
fallacy, see [13, 22] for details and examples.

1Another axiom related to the countable additivity can be also considered as the fourth
axiom of the probability theory.
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Using the classical terminology adopted in belief function theories (DST
and/or DSmT) and considering for example Θ = {A, B}, a discrete proba-
bility measure P (·) can be interpreted as a specific Bayesian belief mass m(.)
such that

m(A) + m(B) = 1 (2)

2.2. Dempster-Shafer Theory (DST)

In DST [29], the frame of discernment Θ of the fusion problem under
consideration consists in a discrete finite set of n exhaustive and exclusive
elementary hypotheses θi, i.e. Θ = {θ1, θ2, . . . , θn}. This is called Shafer’s
model of the problem. Such model assumes that an ultimate refinement of
the problem is possible, exists and is achievable, so that elements θi, i =
1, 2, . . . , n are well precisely defined and identified in such a way that we are
sure that they are truly exclusive and exhaustive (closed-world assumption).
The set of all subsets of Θ is called the power set of Θ and is denoted 2Θ.
Its cardinality is 2|Θ|. Since 2Θ is closed under ∪ and all θi, i = 1, 2, . . . , n
are exclusive, it defines a Boolean algebra. All composite propositions built
from elements of Θ with ∪ operator such that:

1) ∅, θ1, . . . , θn ∈ 2Θ;

2) If A, B ∈ 2Θ, then A ∪ B ∈ 2Θ;

3) No other elements belong to 2Θ, except those obtained by using rules
1) or 2).

Shafer defines a basic belief assignment (bba), also called mass function, as
a mapping m(.) : 2Θ → [0, 1] satisfying m(∅) = 0 and the normalization
condition. Typically, when Θ = {A, B} and Shafer’s model holds, in DST
one works with m(.) such that

m(A) + m(B) + m(A ∪ B) = 1 (3)

m(A ∪ B) allows us to commit some belief on the disjunction A ∪ B which
represents the ignorance in choosing between A and B. From this very sim-
ple example, one sees clearly the ability of DST to offer a better modeling
for a total ignorant/vacuous source of information by setting m(A∪B) = 1,
whereas in Probability Theory one would be forced to adopt the principle of
insufficient reason (as known also as the principle of indifference) to justify
taking m(A) = m(B) = 1/2 as default belief mass for representing a total
ignorant body of evidence.
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In DST framework, the combination of two belief assignments m1(.) and
m2(.) is done using Dempster’s rule of combination which can be seen as
the normalized version of the conjunctive rule in order to remove the total
conflicting mass and to get a proper normalized belief mass after the combi-
nation [29]. Dempster’s rule is mathematically defined by m(∅) = 0 and for
X 6= ∅ by

m(X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)
(4)

Dempster’s formula is defined if and only if the two sources of evidence
are not fully conflicting; that is when

∑

X1,X2∈2Θ

X1∩X2=∅
m1(X1)m2(X2) 6= 1.

2.3. Dezert-Smarandache Theory (DSmT)

In DSmT framework [31, 32, 33], the frame Θ = {θ1, θ2, . . . , θn} is a finite
set of n exhaustive elements which are not necessary exclusive. The prin-
ciple of the third excluded middle and Shafer’s model are refuted in DSmT
(but can be introduced if needed depending on the model of the frame one
wants to deal with), since for a wide class of fusion problems, the nature of
hypotheses can be only vague and imprecise or crude approximation of the
reality and none ultimate refinement is achievable. As a simple example, if
we consider two suspects Peter (P ) and Mary (M) in some criminal investi-
gations, it may be possible that Peter has committed the crime alone, as well
as Mary, or maybe Peter and Mary have committed the crime together. In
that case, one has to consider the possibility for P ∩ M 6= ∅ but there is no
way to refine the original frame Θ = {P, M} into a finer one with exclusive
finer elements say as Θ′ = {P \ (P ∩M), P ∩M, M \ (P ∩M)} because there
is no physical meaning and no possible occurrence of the atomic granules
P \ (P ∩ M) and M \ (P ∩ M). In other words, the finer exclusive elements
of the refined frame satisfying Shafer’s model cannot always be well identi-
fied and precisely separated and they may have no sense at all. This is the
main reason why DSmT allows as foundation the possibility to deal with non
exclusive, partially overlapped or vague elements and refute Shafer’s model
and third excluded middle assumptions. DSmT proposes to work on a fusion
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space defined by Dedekind’s lattice also called hyper-power set DΘ in DSmT.

The hyper-power set is defined as the set of all composite propositions
built from elements of Θ with ∩ and ∪ operators such that [5]:

1) ∅, θ1, . . . , θn ∈ DΘ;

2) If A, B ∈ DΘ, then A ∪ B ∈ DΘ and A ∩ B ∈ DΘ;

3) No other elements belong to DΘ, except those obtained by using rules
1) or 2).

Following Shafer’s idea, Dezert and Smarandache define a (generalized) basic
belief assignment (or mass) as a mapping m(.) : DΘ → [0, 1] such that:

m(∅) = 0 and
∑

X∈DΘ

m(X) = 1.

Typically, when Θ = {A, B} and Shafer’s model doesn’t hold, in DSmT
one works with m(.) such that

m(A) + m(B) + m(A ∪ B) + m(A ∩ B) = 1 (5)

which appears actually as a direct and natural mathematical extension of (2)
and (3).

Actually DSmT offers also the advantage to work with Shafer’s model
or with any hybrid model if some integrity constraints between elements of
the frame are known to be true and must be taken into account in the fu-
sion process. DSmT allows to solve static and/or dynamic2 fusion problems
in the same general mathematical framework. For notation convenience, one
denotes by GΘ the generalized fusion space or generalized power set including
integrity constraints (i.e. exclusivity as well as possible non-existence restric-
tions between some elements of Θ), so that GΘ = DΘ when no constraint
enters in the model, or GΘ = 2Θ when one wants to work with Shafer’s
model (see [31] for details and examples), or GΘ = Θ when working with
probability model. If one wants to work with the space closed under union
∪, intersection ∩, and complementarity C operators, then GΘ = SΘ, i.e. the
super-power set (see next section). A more general introduction of DSmT

2i.e. when the frame and/or its model change with time.
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can be found in Chapter 1 of [33].

In DSmT, the fusion of two sources of evidences characterized by m1(.)
and m2(.) is defined by mPCR5(∅) = 0 and ∀X ∈ GΘ \ {∅}

mPCR5(X) = m12(X) +
∑

Y ∈GΘ

X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (6)

where all sets involved in formulas are in canonical form; m12(X) ≡ m∩(X) =
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2) corresponds to the conjunctive consensus on X

between the n = 2 sources and where all denominators are different from
zero. If a denominator is zero, that fraction is discarded. A general formula
of PCR5 for the fusion of n > 2 sources has been proposed in [32].

2.4. Unification of Fusion Theory (UFT)

Recently Smarandache has proposed in [30, 32] an extension of DSmT by
considering a super-power set SΘ as the Boolean algebra on Θ, i.e. SΘ =
(Θ,∩,∪, c(.)). In other words, SΘ is assumed to be closed under union ∪,
intersection ∩, and complement c(.) of sets respectively. With respect to the
partial ordering relation, the inclusion ⊆, the minimum element is the empty
set ∅, and the maximal element is the total ignorance I =

⋃n
i=1 θi. Since it

extends the power set space through the closed operation of ∩, ∪ and c(.)
operators, that is, UFT not only considers the non-exclusive situation among
the elements, but also consider the exclusive, exhaustive, non-exhaustive
situations, and even open and closed world. Typically, when Θ = {A, B} ,
in UFT one works with m(.) such that

m(A) + m(B) + m(A ∩ B) + m(A ∪ B)

+ m(c(A)) + m(c(B)) + m(c(A) ∪ c(B)) = 1 (7)

3. Evidence Support Measure of Similarity (ESMS)

Definition 3.1. Let’s consider a discrete and finite frame Θ and the fusion
space GΘ including integrity constraints of the model associated with Θ. The
infinite set of basic belief assignments defined on GΘ is denoted by mGΘ . An
Evidence Support Measure of Similarity (ESMS) of two (generalized) basic
belief assignments m1(.) and m2(.) in mGΘ is the functionSim(., .) : mGΘ ×
mGΘ → [0, 1] satisfying the following conditions:
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1) Symmetry: ∀m1(.), m2(.) ∈ mGΘ , Sim(m1, m2) = Sim(m2, m1);

2) Consistency: ∀m(.) ∈ mGΘ , Sim(m, m) = 1;

3) Non-negativity: ∀m1(.), m2(.) ∈ mGΘ , Sim(m1, m2) ≥ 0

We will say that m2(.) is more similar to m1(.) than m3(.) if and only if
Sim(m1, m2) ≥ Sim(m1, m3). The maximum degree of similarity is naturally
obtained when both bba’s m1(.) and m2(.) coincide, which is expressed by
consistency condition 2). The equality Sim(m1, m2) = 0 must be obtained
when bba’s have no focal elements in common, in particular whenever m1(.) is
focused on X ∈ GΘ, which is denoted mX

1 (.) and corresponds to m1(X) = 1,
and m2(.) is focused on Y ∈ GΘ, i.e. m2(.) = mY

2 (.) such that m2(Y ) = 1,
with X ∩ Y = ∅.

Theorem 3.1. For any bba m1(.) ∈ mGΘ (which is a |GΘ|-dimensional
vector) and any small positive real number ε, there exists at least one bba
m2(.) ∈ mGΘ for a given distance measure3 d(., .) such that d(m1, m2) ≤ ε.

Proof: Let’s take m2(.) = m1(.), then d(m1, m2) = d(m1, m1) = d(m2, m2) =
0 < ε which completes the proof.

Definition 3.2. (Agreement of evidence) : If there exist two basic belief
assignments m1(.) and m2(.) in mGΘ such that for some distance measure
d(., .), one has d(m1, m2) ≤ ε with ε > 0, then ε is called the agreement
of evidence supporting measure between m1(.) and m2(.) with respect to the
chosen distance d(., .). m1(.) and m2(.) are said ε-consistent with respect to
the distance d(., .).

Theorem 3.2. The smaller ε > 0 is, the closer the distance d(m1, m2) be-
tween m1(.) and m2(.) is, that is, the more similar or consistent m1(.) and
m2(.) are.

Proof: According to the Definition 3.2, if the evidence measure between
m1(.) and m2(.) is ε-consistent, then d(m1, m2) ≤ ε. Let’s take ε = 1 −
Sim(m1, m2); when ε becomes smaller and smaller, Sim(m1, m2) becomes
greater and greater, according to the definition of ESMS and thus more simi-
lar or consistent m1(.) and m2(.) become. Finally, if ε = 1−Sim(m1, m2) = 0,

3Here we don’t specify the distance measure and keep it only as a generic distance. Ac-
tually d(., .) can be any distance measure. In practice, the Euclidean distance is frequently
used.
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then m1(.) and m2(.) are totally consistent.

From the previous definitions and theorems, the ESMS appears as an in-
teresting measure for evaluating the degree of similarity between two sources.
We propose to use ESMS in a pre-processing/thresholding technique in order
to reduce the complexity of the combination of sources of evidence by keeping
in the fusion process only the sources which are ε-consistent. ε is actually
a threshold parameter which has to be tuned by the system designer and
which depends on the application and computational resources.

4. Several possible ESMS

In this section we propose several possibilities for choosing an ESMS
function Sim(., .) satisfying theorem 3.1.

4.1. Euclidean ESMS function SimE(m1, m2)

Definition 4.1. Let Θ = {θ1, . . . , θn} (n > 1), m1(.) and m2(.) in mGΘ ,
Xi the i-th (generic) element of GΘ and |GΘ| the cardinality of GΘ. The
following simple Euclidean ESMS function can be extended from [14]:

SimE(m1, m2) = 1 − 1√
2

√
√
√
√

|GΘ|
∑

i=1

(m1(Xi) − m2(Xi))
2 (8)

The following theorem establishes that SimE(m1, m2) is an ESMS func-
tion.

Theorem 4.1. SimE(m1, m2) defined in (8) is an ESMS function.

Proof:

1) Let’s prove that SimE(m1, m2) ∈ [0, 1]. If SimE(m1, m2) > 1, from

(8) one would get 1√
2

√
∑|GΘ|

i=1 (m1(Xi) − m2(Xi))
2 < 0 which is impos-

sible, so that SimE(m1, m2) ≤ 1. Let’s prove SimE(m1, m2) ≥ 0 or

equivalently from (8),
∑|GΘ|

i=1 (m1(Xi) − m2(Xi))
2 ≤ 2. This inequality

is equivalent to
∑|GΘ|

i=1 m1(Xi)
2 +

∑|GΘ|
i=1 m2(Xi)

2 ≤ 2 + 2
∑|GΘ|

i=1 m1(Xi)
m2(Xi). We denote it (i) for short. (i) always holds because one has

(
∑|GΘ|

i=1 m1(Xi)
2+

∑|GΘ|
i=1 m2(Xi)

2) ≤ ([
∑|GΘ|

i=1 m1(Xi)]
2+[

∑|GΘ|
i=1 m2(Xi)]

2)
and thus
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(
∑|GΘ|

i=1 m1(Xi)
2 +

∑|GΘ|
i=1 m2(Xi)

2) ≤ 2 because [
∑|GΘ|

i=1 ms(Xi)]
2 = 1 for

s = 1, 2 (ms(.) being normalized bba). Therefore inequality (i) holds
and thus SimE(m1, m2) ≥ 0.

2) It is easy to check that SimE(m1, m2) satisfies the first condition of
Definition 3.1.

3) If m1(.) = m2(.), then SimE(m1, m2) = 1 because

|GΘ|
∑

i=1

(m1(Xi) − m2(Xi))
2 = 0.

Thus the second condition of Definition 3.1 is also satisfied.

4) Non-negativity has been proven above in the first part. Herein we use
a particular case to show that Sim(m1, m2)=0, i.e. there exist mX

1 and
mY

2 for some X, Y ∈ GΘ \ {∅} such that X 6= Y , then according to (8),

one gets
∑|GΘ|

i=1 (m1(Xi) − m2(Xi))
2 = [mX

1 (X)]
2

+ [mY
2 (Y )]

2
= 2 and

thus one has SimE(mX
1 , mY

2 ) = 1 − (
√

2/
√

2) = 0, so that SimE(., .)
verifies the third condition of Definition 3.1.

4.2. Jousselme ESMS function SimJ(m1, m2)

Definition 4.2. Let m1(.) and m2(.) be two basic belief assignments in mGΘ

provided by the sources of evidence S1 and S2. Given a |GΘ|×|GΘ| assumed4

positive definite matrix D = [Dij ], where Dij = |Xi ∩ Xj|/|Xi ∪ Xj|, with
Xi, Xj ∈ GΘ. Then, Jousselme ESMS function can be redefined from the
Jousselme et al. measure [14]:

SimJ (m1, m2) = 1 − 1√
2

√

(m1 − m2)TD(m1 − m2) (9)

or equivalently

SimJ (m1, m2) = 1 − 1√
2

√

m2
1 + m2

2 − 2〈m1, m2〉

4Actually, Jousselme et al. in [14] did not prove that D = [Dij = |Xi ∩ Xj |/|Xi ∪ Xj |]
is truly a positive definite matrix. D is until now assumed to be positive definite. This is
only a conjecture and proving it is not a trivial problem.
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where 〈m1, m2〉 is the scalar product defined as

〈m1, m2〉 =

|GΘ|
∑

i=1

|GΘ|
∑

j=1

Dijm1(Xi)m2(Xj)

Xi, Xj ∈ GΘ, i, j = 1, . . . , s, |GΘ|; ‖m‖2 represents the squared norm of the
vector (bba) m, i.e. ‖m‖2 = 〈m, m〉.

Theorem 4.2. SimJ(m1, m2) defined in formula (9) is an ESMS function.

Proof:

1) Since the matrix D is conjectured to be a positive definite matrix,
SimJ(m1, m2) satisfies the condition of symmetry.

2) If m1 is equal to m2, according to (9), one gets SimJ(m1, m2) = 1. In
other hand, if SimJ(m1, m2) = 1, then the condition m1 = m2 holds.
That is, the condition of consistency is satisfied.

3) According to (9), it can be drawn that SimJ (m1, m2) ≤ SimE(m1, m2),
and since the minimum value of SimJ(m1, m2) is zero, then SimJ(m1, m2)
is non-negative.

4) According to the definition of SimJ(m1, m2), we can easily verify that
SimJ(m1, m2) is a true distance measure between m1 and m2.

Actually SimE(m1, m2) is nothing but a special case of SimJ (m1, m2)
when taking D as the |GΘ| × |GΘ| identity matrix.

4.3. Ordered ESMS function SimO(m1, m2)

The definition of this (partial) ordered-based ESMS function is similar
to SimJ (m1, m2) but instead of using Jousselme’s matrix D = [Dij ], where
Dij = |Xi ∩ Xj|/|Xi ∪ Xj |, with Xi, Xj ∈ GΘ, we choose the DSm matrix
S = [Sij ] where Sij = s(Xi ∩ Xj)/s(Xi ∪ Xj). Therefore, one has

SimO(m1, m2) = 1 − 1√
2

√

(m1 − m2)TS(m1 − m2) (10)

The function s(X) corresponds to the intrinsic informational content of
the proposition X defined in details in [31] (Chap. 3) which is used for
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partially ordering the elements of GΘ. More precisely, s(X) is the sum of the
inverse of the length of the components of Smarandache’s code5 of X.

As a simple example, let’s take Θ = {θ1, θ2} with free DSm model (i.e
i.e. when all elements are non-exclusive two by two), then the partially6

ordered hyper-power set GΘ is given by GΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2}
because s(∅) = 0, s(θ1 ∩ θ2) = 1/2, s(θ1) = 1 + 1/2, s(θ2) = 1 + 1/2 and
s(θ1 ∪ θ2) = 1 + 1 + 1/2 since Smarandache’s codes of ∅, θ1, θ2, θ1 ∩ θ2 and
θ1 ∪ θ2 are respectively given by {< . >} (empty code), {< 1 >, < 12 >},
{< 2 >, < 12 >}, {< 12 >} and {< 1 >, < 12 >, < 2 >}. The matrix S is
defined by7

S =









s(θ1∩θ2)
s(θ1∩θ2)

s(θ1∩θ2)
s(θ1)

s(θ1∩θ2)
s(θ2)

s(θ1∩θ2)
s(θ1∪θ2)

s(θ1∩θ2)
s(θ1)

s(θ1)
s(θ1)

s(θ1∩θ2)
s(θ1∪θ2)

s(θ1)
s(θ1∪θ2)

s(θ1∩θ2)
s(θ2)

s(θ1∩θ2)
s(θ1∪θ2)

s(θ2)
s(θ2)

s(θ2)
s(θ1∪θ2)

s(θ1∩θ2)
s(θ1∪θ2)

s(θ1)
s(θ1∪θ2)

s(θ2)
s(θ1∪θ2)

s(θ1∪X2)
s(θ1∪θ2)









=







1 1/3 1/3 1/5
1/3 1 1/5 3/5
1/3 1/5 1 3/5
1/5 3/5 3/5 1







It is easy to verify the positiveness of the matrix S by checking the positivity
of all its eigenvalues which are λ1 = 0.800 > 0, λ2 ≈ 0.835 > 0, λ3 ≈ 0.205 >
0 and λ4 ≈ 2.160 > 0. We have verified the positiveness of matrix S for
Card(Θ) = n ≤ 5. Since a general proof of the positiveness of D and S
seems difficult to obtain, we can only make a conjecture on the positiveness
of S presently.

4.4. ESMS function SimB(m1, m2)

Another ESMS function based on Bhattacharya’s distance is defined as
follows:

Definition 4.3. Let m1(.), m2(.) be two basic belief assignments in mGΘ, the
ESMS function SimB(m1, m2) is defined by:

5Smarandache code is a representation of disjoint parts of the Venn diagram of the
frame Θ under consideration. This code depends of the model for Θ. For example, let’s
take Θ = {θ1, θ2}. If θ1 ∩ θ2 = ∅ (Shafer’s model) is assumed, then the code of θ1 is
< 1 >, whereas if θ1 ∩ θ2 6= ∅ (free DSm model) is assumed, then the code of θ1 will be
{< 1 >, < 12 >}. The length of a component of a code is the number of characters between
< and > in Smarandache’s notation. For example, the length of component < 12 > is 2.
See [31], pp. 42–43 for details.

6This is a partial order since s(θ1) = s(θ2).
7Actually, one works with GΘ \{∅}, and thus the column and row corresponding to the

empty set do not enter in the definition of S.
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SimB(m1, m2) = 1 −
√

1 −
∑

Xi∈F

√

m1(Xi)m2(Xi) (11)

where F is the core of sources S1 and S2 , i.e. the set of elements of GΘ

having a positive belief mass: F = {X ∈ GΘ|m1(X) > 0 or m2(X) > 0}.

Theorem 4.3. SimB(m1, m2) defined in formula (11) is an ESMS function.

Proof:

1) Since
∑

Xi∈F

√

m1(Xi)m2(Xi) =
∑

Xi∈F

√

m2(Xi)m1(Xi) then SimB(m1, m2)

satisfies the condition of symmetry.

2) if m1(.) = m2(.), according to (11),

∑

Xi∈F

√

m1(Xi)m2(Xi) =
∑

Xi∈F
m1(Xi) = 1

and therefore SimB(m1, m1) = 1. In other hand, if SimB(m1, m2) = 1,
then the condition m1(.) = m2(.) holds. That is, the condition of
consistency is satisfied.

3) From the definition of bba,
∑

Xi∈F
m1(Xi) = 1. Therefore,

∑

Xi∈F

√

m1(Xi)m2(Xi) ∈ [0, 1].

According to (11), it can be drawn that SimB(m1, m2) ∈ [0, 1]; that is,
the minimum value of SimB(m1, m2) is zero. Therefore, SimB(m1, m2)
is a non-negative measure.

4) According to the definition of SimB(m1, m2), we can easily verify that
SimB(m1, m2) is a true distance measure between m1 and m2.

5. Comparison of ESMS functions

In this section we analyze the performances of the five ESMS functions
aforementioned through a very simple example, where Θ = {θ1, θ2, θ3}. We
assume the free DSm model for Θ. In such case, GΘ = DΘ has eighteen
non-empty elements ai, i = 1, 2, . . . , s, . . . , 18. GΘ is closed under ∩ and ∪
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operators according to Dedekind’s lattice. Of course, we also may choose
other theoretical frameworks in a similar way according to the appropriate
model of GΘ.

Let’s assume that θ2 is the true identity of the object under considera-
tion. Its optimal belief assignment is denoted m2(.) , {m2(θ2) = 1, m2(X) =
0 for X ∈ GΘ \ {θ2}}. We perform a comparison of the four ESMS functions
in order to show the evolution of the measure of similarity between m1(.) and
m2(.) when m1(.) is varying from an uniform distributed bba to m2(.). More
precisely, we start our simulation by choosing m1(.) with all elements in DΘ

uniformly distributed, i.e. m1(ai) = 1/18, for i = 1, 2, . . . , s, . . . , 18. Then,
step by step we increase the mass of belief of θ2 by a constant increment
∆ = 0.01 until reaching m1(θ2) = 1. In the meantime the mass m1(X) of
belief of all elements X 6= θ2 of GΘ take value [1 − m1(θ2)]/17 in order to
work with a normalized bba m1(). The basic belief mass committed to empty
set is always zero, i.e. m1(∅) = m2(∅) = 0.

The degree of similarity of the four ESMS functions are plotted in Figure
1. The speed of convergence8 of a similarity measure is characterized by the
angle α of the slope of the curve at origin, or by its tangent. Based on this
speed of convergence criterion, the analysis of the figure 1 yields the following
remarks:

1) According to Figure 1., tan(αB) ≈ 0.86, tan(αE) ≈ 0.68, tan(αO) ≈ 0.6
and tan(αJ) ≈ 0.57. SimJ (m1, m2) has the slowest convergence speed,
then SimO(m1, m2) takes second place.

2) SimE(m1, m2) has a faster speed of convergence than SimO(m1, m2)
and SimJ (m1, m2) because it doesn’t consider the intrinsic complexity
of the elements in GΘ.

3) The speed of convergence of SimB(m1, m2) is the fastest. When m1(.)
and m2(.) become very similar, SimB(m1, m2) becomes very quickly
close to 1. But if a small dissimilarity between m1() and m2() occurs,
then SimB(m1, m2) becomes very small which actually makes it very
sensitive to small dissimilarity perturbations.

8Here the convergence speed refers to how much the global agreement degree (similar-
ity) is between m1(.) and m2(.) with the continuous decrease of m1(θ2).
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Figure 1: Comparison of performance among ESMS functions.

4) In summary, one sees that no definitive conclusion about the best choice
among these four ESMS functions can be drawn in general, but if one
considers as important the speed of convergence criterion of the dis-
similarity/ difference between two evidential sources, SimB(m1, m2) is
the best choice, because it is very sensitive to such difference, whereas
SimJ(m1, m2) is the worst choice with respect to such criterion.

6. Simulation results

We present a simulation result to show how the ESMS filter performs
in generalized fusion machine (GFM), and its advantage. Let’s take a 2D
frame of discernment Θ = {θ1, θ2} and consider twenty equireliable sources
of evidence according to the Table 1. We consider the free DSm model
and the fusion space is the hyper-power set DΘ = {θ1, θ2, θ1 ∩ θ2, θ1 ∪ θ2}.
Sc1 denotes the barycentre of the front 10 belief masses, while Sc2 denotes
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the barycentre9 of all belief masses . The measure of similarity based on
Euclidean ESMS function defined in equation (8) has been used here, but
any other measures of similarity could be used instead. In this example if
we take 0.75 for the threshold value we see from the Table 1 and for the 10
front sources of evidences, that the measures of similarity of S5 and S10 with
respect to Sc1 are lower than 0.75. Therefore, the sources S5 and S10 will be
discarded/filtered of the fusion process. If the threshold value is set to 0.8,
then the sources S5, S10, S4 and S8 will be discarded. That is, the higher the
given threshold is, the less the number of information sources through the
filter is.

9Let’s denote k = |GΘ| the cardinality of GΘ and consider S independent sources of
evidence. If all sources are equireliable, the barycentre of belief masses of the S sources is
given by: ∀j = 1, . . . , k, m̄(Xj) = 1

S

∑S

s=1
ms(Xj), see [18] for details.

S m(θ1) m(θ2) m(θ1 ∩ θ2) m(θ1 ∪ θ2) SimE

S1 0.3 0.4 0.2 0.1 0.8735

0.3 0.2 0.4 0.1 0.800

0.4 0.1 0.2 0.3 0.8268

0.7 0.1 0.1 0.1 0.7592

0.1 0.8 0.1 0.0 0.5550

0.5 0.2 0.2 0.1 0.9106

0.4 0.3 0.1 0.2 0.9368

0.3 0.1 0.2 0.4 0.7592

0.4 0.5 0.1 0.0 0.8103

0.8 0.1 0.0 0.1 0.6806

0.42 0.28 0.16 0.14 1.0000

0.5 0.0 0.2 0.3 0.7569

0.2 0.6 0.1 0.1 0.7205

0.4 0.3 0.2 0.1 0.9360

0.9 0.1 0.0 0.0 0.6230

0.5 0.2 0.1 0.2 0.9100

0.5 0.3 0.0 0.2 0.8900

0.5 0.0 0.1 0.4 0.7205

0.7 0.2 0.1 0.0 0.7807

0.1 0.7 0.1 0.1 0.6217

0.3 0.6 0.1 0.0 0.7390

S2

S3

S4

S5

S6

S7

S8

S9

S10

Sc1

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

Sc2 0.44 0.29 0.13 0.14 1.0000

Table 1: A list of given sources of evidences.
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Figure 2: The procedure flow chart of DSmT-based generalized fusion machine.
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In order to embed ESMS function to GFM [19], we give its working
principle summarized in Figure 2, whose main steps of the algorithm for
implementing the GFM are enumerated as follows:

1) Initialization of the parameters: the number of sources of evidence is
set to zero, (i.e. one has initially no source, s = 0), so that the number
of sources in the filter window is n = 0.

2) Include10 a source of evidence Ŝs and then test if the number of sources
s is less than 2. If s ≥ 2, then go to next step, otherwise include/take
into account another source of evidence Ŝ2.

3) Based on the barycentre of gbba of the front n ≤ 10 evidence sources,
the degrees of similarity are computed according to the formula (8),
and compared with a prior tuned threshold. If it is larger than the
threshold, then let n = n + 1. Otherwise, introduce a new source of
evidence Ŝs+1.

4) If n = 1, the current source, say S, is not involved in the fusion process.
If n = 2, then the fusion step must apply between S and Ŝ2 with
classical DSm rule [31], i.e. the conjunctive consensus. We then use
PCR5 rule [32] to redistribute the remaining partial conflicts only to
the sets involved in the corresponding partial conflicts. We get a new
combined source affected with same index S. If 2 < n ≤ 10, after the
current evidence source Ŝs is combined with the final source of evidence
produced last time, a new source of evidence is obtained and assigned
to S again. Whenever n ≤ 10, go back to step 2), otherwise, the current
source of evidence Ŝs under test has been accepted by the ESMS filter,
Ŝi is assigned to Ŝi−1, i ∈ [2, s, 10], and Ŝs is assigned to Ŝ10. Then, Ŝ10

is combined with the last source S, the combined result is reassigned11

to S, and then, go back to step 2).

5) Test whether to stop or not12: if no, then introduce a new source of
evidence Ŝs+1, otherwise stop and exit.

We show two simulation results in Figures 3 and 4 following the working
principle of GFM, when we use the sources of evidences listed in Table 1.

10We assume the free DSm model and consider that the general basic belief assignments
are given.

11In this work, we use also an ESMS filter window in a sliding mode.
12In our experiment, judge whether the mobile robot stops receiving sonar’s data.
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The comparison of Figures 3 and 4 yields the following remarks:

1) On the Figure 3, we don’t see the real advantage of ESMS filter since
the convergence to θ1 without ESMS filter (green curve) is better than
with ESMS filter in terms of improving fusion precision. This is because
some useful information sources are filtered and thrown away with the
increase of the threshold, the number of information sources to enter
into the final fusion will become fewer and fewer. Generally speaking,
this yields a slower speed of convergence to θ1. For example, for one
source S3 in the Table 1, if S3 is combined with itself once accord-
ing to (6), the combinational result is S = [mN (θ1), mN(θ2), mN(θ1 ∩
θ2), mN(θ1 ∪ θ2)]

13 = [0.5707, 0.0993, 0.1680, 0.1620] . If twice, the re-
sult is S = [0.6765, 0.0852, 0.1429, 0.0954]. If thrice, then the result is
S = [0.7453, 0.00693, 0.1216, 0.0638]. More the combinational times is,
nearer by 1 mN(θ1) is and nearer by 0 mN (θ2) is .Therefore, ESMS
filter might also result in losing some useful information, while it filter
some bad information.

2) On the Figure 4, one sees the role played by the ESMS filter. When
there are highly conflicting sources, the result of the fusion process will
not converge if the ESMS filter is not used. With the fine tuning of the
ESMS threshold, the convergence becomes better and better because
ESMS filter processes the fused information, and withdraws the sources
which might cause the results to be incorrect or imprecise, so that it
improves the fusion precision and correctness.

3) The reduction of computing burden is obtained. Even if we have intro-
duced an ESMS preprocessing step, it turns out that finally a drastic
reduction of computing burden is obtained because we can significantly
reduce the number of sources to combine with ESMS criterion.

4) We increase the applicability of the classical rules of combination. Since
we reduce the number of conflicting sources of evidence thanks to the
ESMS preprocessing, the degree of conflict between sources to combine
is kept low. Therefore, classical rules, like Dempster’s rule, which do
not perform well in high conflicting situations can be used also in appli-
cations like the one studied here. Without ESMS preprocessing step,
the classical fusion rules cannot work very well [23, 29]. Therefore, we
extend their domain of applicability when using ESMS filtering step.

13mN (·) refers to the new generalized basic belief assignment
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Figure 3: Fusion result of the front 10 sources using different thresholds (0 ∼ 0.9).
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Figure 4: Fusion result of the total 20 sources using different thresholds (0 ∼ 0.9).
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7. An application in mobile robot perception

The information acquired in building grid map using sonar sensors on
a mobile robot is usually uncertain, imprecise and even highly conflicting.
Such application in autonomous robot perception and navigation provides
a good platform to verify experimentally the capability of the ESMS filter
in GFM. Although there exist many methods of building map based either
on Probability theory [36], FST (Fuzzy System Theory) [24], DST [34], GST
(Grey System Theory) [39, 40, 41], or DSmT [20], we just compare the perfor-
mances of the map building using a classical fusion machine without ESMS
filter (i.e. CFMW) with respect to the classical fusion machine with ESMS
filter (called GFM) in the DSmT framework only. A detailed comparison
between our current ESMS-based approach with other methods is given in
a companion paper in [21] where we show that ESMS-based approach out-
performs other approaches using almost the same experimental conditions
and inputs. In order to further reduce the measurement noises, we improve
our past belief assignment model of sonar sensors in DSmT framework14 as
follows:

m(θ1) =







(1 − ρ/(R − 2ε)) × (1 − λ/2) if

{

Rmin ≤ ρ ≤ R − ε

0 ≤ ϕ ≤ ω/2

0 otherwise

(12)

m(θ2) =







exp(−3(ρ − R)2) × λ if

{

Rmin ≤ ρ ≤ R + ε

0 ≤ ϕ ≤ ω/2

0 otherwise

(13)

14We assume that there are only two focal elements θ1 and θ2 in the frame of discernment.
Elements of hyper-power set are θ1,θ2, θ1∩θ2 and θ1∪θ2. θ1 represents the emptiness of a
given grid cell, θ2 represents the occupancy for a given grid cell, θ1∩θ2 means that there is
some conflict between two sonar measurements for the same grid cell and θ1∪θ2 represents
the ignorance for a grid cell because of the possible lack of measurement acquisition.
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m(θ1∩θ2) =







1 − (2(ρ − (R − ε)/R)2) if

{

Rmin ≤ ρ ≤ R + ε

0 ≤ ϕ ≤ ω/2

0 otherwise

(14)

m(θ1 ∪ θ2) =

{

tan(2(ρ − R)) × (1 − λ) if R ≤ ρ ≤ R + ε

0 otherwise
(15)

Where, λ is given by (see [9] for justification)

λ =

{

1 − (2ϕ/ω)2 if 0 ≤ |ϕ| ≤ ω/2

0 otherwise
(16)

The parameters R, ρ, ε, Rmin, ω, and ϕ in formulas (12)-(16) were defined and
used in [19, 20, 21]. R is the range measurement. ρ is the distance between
the grid cell and sonar’s emitting point. ε is the range measurement error.
Rmin is the minimal range distance of sonar sensors. ω is the scattering angle
of sonar. ϕ is the angle between the line (from the grid cell to sonar emitting
point) and the sonar’s emitting direction. The following functions C1 and C2

play an important role in reducing noises in the process of map building. C1

function, proposed by Wang in [39, 40, 41], is a constrict function15 for sonar
measurements defined by:

C1 =







0 if ρ > ρl2
ρl2

−ρ

ρl2
−ρl1

if ρl1 ≤ ρ ≤ ρl2

1 if ρ < ρl2

(17)

Where, ρl1 and ρl2 represents the upper and lower limits of valid measure-
ments. C2 is the constraint function16 for sonar’s uncertainty defined as
follows:

C2 =







(ρ−R+0.5ε

0.5ε
)2 if ρ − R > −0.5ε

(ρ−R−0.5ε

0.5ε
)2 if ρ − R < 0.5ε

0 if | ρ − R |> 0.5ε

(18)

15The main idea is that the sonar readings must be discounted according to sonar
characteristics.

16The main idea consists in committing high belief assignments to sonar readings close
to the sonar sensor.
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Where, the product of C1 and C2 is multiplied by the belief assignment
function, i.e. m(θ2), m(θ1 ∩ θ2), m(θ1 ∪ θ2) respectively.

The experiment is performed by running Pioneer II mobile robot with 16
sonar detectors in the indoor laboratory environment as shown in Figure 5.
The environment’s size is 4550mm × 3750mm. The environment is divided
into 91×75 rectangular cells having the same size according to the grid map
method. The robot starts to move from the location (1 m, 0.6 m), which faces
towards 0 degree. We take the corner of left bottom as the global coordinate
origin of the map. Objects/obstacles in rectangular grid map are sketched
in Figure 6. The processing steps of our intelligent perception and fusion
system have been implemented with our software Toolbox developed under
C++ 6.0 and with OpenGL server as a client end. When the robot moves in
the environment, the server end collects much information (i.e. the location
of robot, sensors measurements, velocity, etc.) from the mobile robot and its
sensors onboard. Through the protocol of TCP/IP, the client end can get
any information from the server end and fuse them.

Since our environment is small,the robot moves less time or a short dis-
tance. Then one only considers the self-localization method based on δ-
NFAM17 method [17, 19] with the search from θ − δθ to θ + δθ. In order to
reduce the computation burden, the restricted spreading arithmetic has been
used. The flow chart of this procedure for this experiment is given in Figure
7. Its main steps are the following ones:

1) Initialize the parameters of the robot (location, velocity, etc.).

2) Acquire 16 sonar measurements, and robot’s location from odometer,
when the robot is running in the environment. We can calibrate the
robot’s pose with our δ-NFAM method [17, 19]. Here we set the first
timer, of which interval is 100 ms.

3) Compute gbba of the fan-form area detected by each sonar sensor ac-
cording to the formulas in [20].

4) Apply the DSmT-based GFM, that is, adopt Euclidean information
filter to choose basic consistent sources of evidence according to the
formula (8). Then combine the consistent sources with the DSm con-
junctive rule [4, 5, 31] and compute gbbas after combination. Then,

17One has taken δθ = 5o in our experiment.
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redistribute partial conflicting masses to the gbbas of sets involved in
the partial conflict only with the PCR5 rule [32].

5) Compute the belief of occupancy Bel(θ2) of some grid cells according
to [31]. Save them into the map matrix and then go to step 6).

6) Update the map of the environment (here we set the second timer,
of whose interval is 100 ms). Generally speaking, more the times of
scanning map are, more accurate the final map reconstructed is. At
the same time, also test whether the robot stops receiving the detecting
data: if yes, then stop fusion and exit, otherwise, go back to step 2).

Figure 5: The real experimental environment.
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Figure 6: Global coordinate system for the experiment.

In this experiment, we obtain the maps built by the GFM before and after
improving the sonar model as shown in Figure 8 and 9 respectively. In order
to show the advantage of the ESMS filter in the GFM, we also compare our
approach with the classical fusion machine which doesn’t use the ESMS filter
(called CFMW). The maps built by the CFMW before and after improving
the sonar model are shown in Figures 10 and 11 respectively. Whenever the
map is built before or after improving the sonar model, one sees that the
GFM always outperforms the CFMW because one obtains clearer boundary
outlines and less noises in the map reconstruction. In addition, the ESMS
information filter coupled with PCR5 fusion rule, allows to reduce drastically
the computational burden because ESMS filter can filter the outlier-sources.
With the GFM approach, only the most consistent sources of evidence are
combined and this allows to reduce the uncertainty in the fusion result and
to improve the robot perception of the surrounded environment.
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Figure 7: Flow chart of the map building with the GFM.
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Figure 8: Map building based on the GFM before improving the sonar model.

Figure 9: Map building based on the GFM after improving the sonar model.
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Figure 10: Map building based on the CFMW before improving the sonar model.

Figure 11: Map building based on the CFMW after improving the sonar model.
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8. Conclusions

In this paper, a general Evidence Supporting Measure of Similarity (ESMS)
between two basic belief assignments has been proposed. ESMS can be used
on different fusion spaces (lattice structures) and with different distance mea-
sures. This approach allows to select the most coherent subset of sources
of evidence available and to reject outlier-sources which are too conflicting
with other sources. Hence, a drastic reduction of computational burden is
possible with keeping good performances which is very attractive for real-
time applications having limited computing resources. The hybrid of ESMS
with the sophisticated and efficient PCR5 fusion rule of DSmT, called GFM
(Generalized Fusion Machine), is specially useful and interesting in robotic
applications involving real-time perception and navigation systems. The real
application of GFM for mobile robot perception from sonar sensors presented
in this work shows clearly a substantial improvement of the fusion result in
map building/estimation of the surrounded environment. This work shows
also the crucial role played by the most advanced fusion techniques for ap-
plications in robotics.
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Contradiction Measures and Specificity Degrees 
of Basic Belief Assignments

Florentin Smarandache
Arnaud Martin

Christophe Osswald

Abstract—In the theory of belief functions, many measures
of uncertainty have been introduced. However, it is not always
easy to understand what these measures really try to represent.
In this paper, we re-interpret some measures of uncertainty in
the theory of belief functions. We present some interests and
drawbacks of the existing measures. On these observations, we
introduce a measure of contradiction. Therefore, we present some
degrees of non-specificity and Bayesianity of a mass. We propose
a degree of specificity based on the distance between a mass and
its most specific associated mass. We also show how to use the
degree of specificity to measure the specificity of a fusion rule.
Illustrations on simple examples are given.
Keywords: Belief function, uncertainty measures, speci-
ficity, conflict.

I. INTRODUCTION

The theory of belief functions was first introduced by [1]
in order to represent some imprecise probabilities with upper
and lower probabilities. Then [15] proposed a mathematical
theory of evidence.

Let Θ be a frame of discernment. A basic belief assignment
(bba) m is the mapping from elements of the powerset 2Θ onto
[0, 1] such that: ∑

X∈2Θ

m(X) = 1. (1)

The axiom m(∅) = 0 is often used, but not mandatory. A
focal element X is an element of 2Θ such that m(X) 6= 0..
The difference of a bba with a probability is the domain of
definition. A bba is defined on the powerset 2Θ and not only
on Θ. In the powerset, each element is not equivalent in terms
of precision. Indeed, θ1 ∈ Θ is more precise than θ1∪θ2 ∈ 2Θ.

In the case of the DSmT introduced in [17], the bba are
defined on an extension of the powerset: the hyper powerset
noted DΘ, formed by the closure of Θ by union and inter-
section. The problem of signification of each focal element is
the same as in 2Θ. For instance, θ1 ∈ Θ is less precise than
θ1 ∩ θ2 ∈ DΘ. In the rest of the paper, we will note GΘ for
either 2Θ or DΘ.

In order to try to quantify the measure of uncertainty such
as in the set theory [5] or in the theory of probabilities
[16], some measures have been proposed and discussed in

the theory of belief functions [2], [7], [8], [21]. However,
the domain of definition of the bba does not allow an ideal
definition of measure of uncertainty. Moreover, behind the
term of uncertainty, different notions are hidden.

In the section II, we present different kinds of measures
of uncertainty given in the state of art, we discuss them and
give our definitions of some terms concerning the uncertainty.
In section III, we introduce a measure of contradiction and
discuss it. We introduce simple degrees of uncertainty in the
section IV, and propose a degree of specificity in the section
V. We show how this degree of specificity can be used to
measure the specificity of a combination rule.

II. MEASURES OF UNCERTAINTY ON BELIEF FUNCTIONS

In the framework of the belief functions, several functions
(we call them belief functions) are in one to one correspon-
dence with the bba: bel, pl and q. From these belief functions,
we can define several measures of uncertainty. Klir in [8]
distinguishes two kinds of uncertainty: the non-specificity
and the discord. Hence, we recall hereafter the main belief
functions, and some non-specificity and discord measures.

A. Belief functions

Hence, the credibility and plausibility functions represent
respectively a minimal and maximal belief. The credibility
function is given from a bba for all X ∈ GΘ by:

bel(X) =
∑

Y⊆X,Y 6≡∅

m(Y ). (2)

The plausibility is given from a bba for all X ∈ GΘ by:

pl(X) =
∑

Y ∈GΘ,Y ∩X 6≡∅

m(Y ). (3)

The commonality function is also another belief function given
by:

q(X) =
∑

Y ∈GΘ,Y⊇X

m(Y ). (4)

These functions allow an implicit model of imprecise and
uncertain data. However, these functions are monotonic by
inclusion: bel and pl are increasing, and q is decreasing. This

Originally published as: Smarandache F., Martin A., Osswald C -  
Contradiction Measures and Specificity Degrees of Basic Belief Assignments, 

in Proceedings of the 14th International Conference on Information Fusion, 
Chicago, IL, USA, 5-8 July 2011, and reprinted with permission.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

87



is the reason why the most of time we use a probability to take
a decision. The most used projection into probability subspace
is the pignistic probability transformation introduced by [18]
and given by:

betP(X) =
∑

Y ∈GΘ,Y 6≡∅

|X ∩ Y |
|Y |

m(Y ), (5)

where |X| is the cardinality of X , in the case of the DSmT
that is the number of disjoint elements corresponding in the
Venn diagram.

From this probability, we can use the measure of uncertainty
given in the theory of probabilities such as the Shannon
entropy [16], but we loose the interest of the belief functions
and the information given on the subsets of the discernment
space Θ.

B. Non-specificity

The non-specificity in the classical set theory is the impre-
cision of the sets. Such as in [14], we define in the theory of
belief functions, the non-specificity related to vagueness and
non-specificity.

Definition The non-specificity in the theory of belief
functions quantifies how a bba m is imprecise.

The non-specificity of a subset X is defined by Hartley
[5] by log2(|X|). This measure was generalized by [2] in the
theory of belief functions by:

NS(m) =
∑

X∈GΘ, X 6≡∅

m(X) log2(|X|). (6)

That is a weighted sum of the non-specificity, and the weights
are given by the basic belief in X . Ramer in [13] has shown
that it is the unique possible measure of non-specificity in the
theory of belief functions under some assumptions such as
symmetry, additivity, sub-additivity, continuity, branching and
normalization.

If the measure of the non-specificity on a bba is low, we can
consider the bba is specific. Yager in [21] defined a specificity
measure such as:

S(m) =
∑

X∈GΘ, X 6≡∅

m(X)

|X|
. (7)

Both definitions corresponded to an accumulation of a
function of the basic belief assignment on the focal elements.
Unlike the classical set theory, we must take into account the
bba in order to quantify (to weight) the belief of the imprecise
focal elements. The imprecision of a focal element can of
course be given by the cardinality of the element.

First of all, we must be able to compare the non-specificity
(or specificity) between several bba’s, event if these bba’s are
not defined on the same discernment space. That is not the
case with the equations (6) and (7). The non-specificity of the
equation (6) takes its values in [0, log2(|Θ|)]. The specificity
of the equation (7) can have values in [ 1

|Θ| , 1]. We will show
how we can easily define a degree of non-specificity in [0, 1].
We could also define a degree of specificity from the equation

(7), but that is more complicated and we will later show how
we can define a specificity degree.

The most non-specific bba’s for both equations (6) and (7)
are the total ignorance bba given by the categorical bba mΘ :
m(Θ) = 1. We have NS(m) = log2(|Θ|) and S(m) = 1

|Θ| .
This categorical bba is clearly the most non-specific for us.
However, the most specific bba’s are the Bayesian bba’s. The
only focal elements of a Bayesian bba are the simple elements
of Θ. On these kinds of bba m we have NS(m) = 0 and
S(m) = 1. For example, we take the three Bayesian bba’s
defined on Θ = {θ1, θ2, θ3} by:

m1(θ1) = m1(θ2) = m1(θ3) = 1/3, (8)
m2(θ1) = m2(θ2) = 1/2, m2(θ3) = 0, (9)
m3(θ1) = 1, m3(θ2) = m3(θ3) = 0. (10)

We obtain the same non-specificity and specificity for these
three bba’s.

That hurts our intuition; indeed, we intuitively expect that
the bba m3 is the most specific and the m1 is the less specific.
We will define a degree of specificity according to a most
specific bba that we will introduce.

C. Discord

Different kinds of discord have been defined as extensions
for belief functions of the Shannon entropy, given for the
probabilities. Some discord measures have been proposed from
plausibility, credibility or pignistic probability:

E(m) = −
∑
X∈GΘ

m(X) log2(pl(X)), (11)

C(m) = −
∑
X∈GΘ

m(X) log2(bel(X)), (12)

D(m) = −
∑
X∈GΘ

m(X) log2(betP(X)), (13)

with E(m) ≤ D(m) ≤ C(m). We can also give the Shanon
entropy on the pignistic probability:

−
∑
X∈GΘ

betP(X) log2(betP(X)). (14)

Other measures have been proposed, [8] has shown that these
measures can be resumed by:

−
∑
X∈GΘ

m(X) log2(1− Conm(X)), (15)

where Con is called a conflict measure of the bba m on
X . However, in our point of view that is not a conflict
such presented in [20], but a contradiction. We give the both
following definitions:

Definition A contradiction in the theory of belief functions
quantifies how a bba m contradicts itself.

Definition (C1) The conflict in the theory of belief functions
can be defined by the contradiction between 2 or more bba’s.

In order to measure the conflict in the theory of belief
functions, it was usual to use the mass k given by the
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conjunctive combination rule on the empty set. This rule is
given by two basic belief assignments m1 and m2 and for all
X ∈ GΘ by:

mc(X) =
∑

A∩B=X

m1(A)m2(B) := (m1 ⊕m2)(X). (16)

k = mc(∅) can also be interpreted as a non-expected solution.
In [21], Yager proposed another conflict measure from the

value of k given by − log2(1− k).
However, as observed in [9], the weight of conflict given

by k (and all the functions of k) is not a conflict measure
between the basic belief assignments. Indeed this value is
completely dependant of the conjunctive rule and this rule
is non-idempotent - the combination of identical basic belief
assignments leads generally to a positive value of k. To
highlight this behavior, we defined in [12] the auto-conflict
which quantifies the intrinsic conflict of a bba. The auto-
conflict of order n for one expert is given by:

an =

(
n
⊕
i=1

m

)
(∅). (17)

The auto-conflict is a kind of measure of the contradiction,
but depends on the order. We studied its behavior in [11].
Therefore we need to define a measure of contradiction
independent on the order. This measure is presented in the
next section III.

III. A CONTRADICTION MEASURE

The definition of the conflict (C1) involves firstly to measure
it on the bba’s space and secondly that if the opinions of two
experts are far from each other, we consider that they are in
conflict. That suggests a notion of distance. That is the reason
why in [11], we give a definition of the measure of conflict
between experts assertions through a distance between their
respective bba’s. The conflict measure between 2 experts is
defined by:

Conf(1, 2) = d(m1,m2). (18)

We defined the conflict measure between one expert i and the
other M − 1 experts by:

Conf(i, E) =
1

M − 1

M∑
j=1,i6=j

Conf(i, j), (19)

where E = {1, . . . ,M} is the set of experts in conflict with i.
Another definition is given by:

Conf(i,M) = d(mi,mM ), (20)

where mM is the bba of the artificial expert representing the
combined opinions of all the experts in E except i.

We use the distance defined in [6], which is for us the most
appropriate, but other distances are possible. See [4] for a
comparison of distances in the theory of belief functions. This
distance is defined for two basic belief assignments m1 and
m2 on GΘ by:

d(m1,m2) =

√
1

2
(m1 −m2)TD(m1 −m2), (21)

where D is an G|Θ| ×G|Θ| matrix based on Jaccard distance
whose elements are:

D(A,B) =


1, ifA = B = ∅,

|A ∩B|
|A ∪B|

, ∀A,B ∈ GΘ.
(22)

However, this measure is a total conflict measure. In order
to define a contradiction measure we keep the same spirit.
First, the contradiction of an element X with respect to a bba
m is defined as the distance between the bba’s m and mX ,
where mX(X) = 1, X ∈ GΘ, is the categorical bba:

Contrm(X) = d(m,mX), (23)

where the distance can also be the Jousselme distance on the
bba’s. The contradiction of a bba is then defined as a weighted
contradiction of all the elements X of the considered space
GΘ:

Contrm = 2
∑
X∈GΘ

m(X)d(m,mX). (24)

The factor 2 is given to obtain values in [0, 1] as shown in
the following illustration.

A. Illustration
First we note that for all categorical bbas mY , the contra-

diction given by the equation (23) gives ContrmY
(Y ) = 0

and the contradiction given by the equation (24) brings also
ContrmY

= 0. Considering the bba m1(θ1) = 0.5 and
m1(θ2) = 0.5, we have Contrm1

= 1. That is the maximum
of the contradiction, hence the contraction of a bba takes its
values in [0, 1].

Figure 1. Bayesian bba’s

θ1

0.5
θ2

0.5
θ3

0
m1:

θ1

0.6
θ2

0.3
θ3

0.1
m2:

Taking the Bayesian bba given by: m2(θ1) = 0.6, m2(θ2) =
0.3, and m2(θ3) = 0.1. We obtain:

Contrm2
(θ1) ' 0.36,

Contrm2
(θ2) ' 0.66,

Contrm2
(θ3) ' 0.79

The contradiction for m2 is Contrm2 = 0.9849.
Take m3({θ1, θ2, θ3}) = 0.6, m3(θ2) = 0.3, and m3(θ3) =

0.1; the masses are the same than m2, but the highest one is
on Θ = {θ1, θ2, θ3} instead of θ1. We obtain:

Contrm3
({θ1, θ2, θ3}) ' 0.28,

Contrm3
(θ2) ' 0.56,

Contrm3
(θ3) ' 0.71
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Figure 2. Non-dogmatic bba
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The contradiction for m3 is Contrm3 = 0.8092. We can see
that the contradiction is lowest thanks to the distance taking
into account the imprecision of Θ.

Figure 3. Focal elements of cardinality 2

θ1
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θ3

0.6

0.1

0.3

m4:

If we consider now the same mass values but on
focal elements of cardinality 2: m4({θ1, θ2}) = 0.6,
m4(θ1, θ3) = 0.3, and m4(θ2, θ3) = 0.1. We obtain:

Contrm4
({θ1, θ2}) ' 0.29,

Contrm4
({θ1, θ3}) ' 0.53,

Contrm4
({θ2, θ3}) ' 0.65

The contradiction for m4 is Contrm4
= 0.80.

Fewer of focal elements there are, smaller the contradiction
of the bba will be, and more the focal elements are precise,
higher the contradiction of the bba will be.

IV. DEGREES OF UNCERTAINTY

We have seen in the section II that the measure non-
specificity given by the equation (6) take its values in a space
dependent on the size of the discernment space Θ. Indeed, the
measure of non-specificity takes its values in [0, log2(|Θ|)].

In order to compare some non-specificity measures in an
absolute space, we define a degree of non-specificity from the
equation (6) by:

δNS(m) =
∑

X∈GΘ, X 6≡∅

m(X)
log2(|X|)
log2(|Θ|)

=
∑

X∈GΘ, X 6≡∅

m(X) log|Θ|(|X|).
(25)

Therefore, this degree takes its values into [0, 1] for all bba’s
m, independently of the size of discernment. We still have

Table I
EVALUATION OF BAYESIANITY ON EXAMPLES

m1 m2 m3 m4 m5 m6 mΘ

θ1 0.4 0.3 0.1 0.3 0 0 0

θ2 0.1 0.1 0.3 0.1 0 0 0

θ3 0.1 0.1 0.1 0.1 0 0 0

θ1 ∪ θ2 0.3 0.3 0.5 0 0.6 0.6 0

θ1 ∪ θ3 0.1 0.2 0 0 0.4 0 0

θ2 ∪ θ3 0 0 0 0 0 0 0

Θ 0 0 0 0.5 0 0.4 1

δB 0.75 0.68 0.68 0.5 0.37 0.23 0

δNS 0.25 0.32 0.32 0.5 0.63 0.77 1

δNS(mΘ) = 1, where mΘ is the categorical bba giving the
total ignorance. Moreover, we obtain δNS(m) = 0 for all
Bayesian bba’s.

From the definition of the degree of non-specificity, we can
propose a degree of specificity such as:

δB(m) = 1−
∑

X∈GΘ, X 6≡∅

m(X)
log2(|X|)
log2(|Θ|)

= 1−
∑

X∈GΘ, X 6≡∅

m(X) log|Θ|(|X|).
(26)

As we observe already the degree of non-specificity given
by the equation (26) does not really measure the specificity
but the Bayesianity of the considered bba. This degree is equal
to 1 for Bayesian bba’s and not one for other bba’s.

Definition The Bayesianity in the theory of belief functions
quantify how far a bba m is from a probability.

We illustrate these degrees in the next subsection.

A. Illustration

In order to illustrate and discuss the previous introduced
degrees we take some examples given in the table I. The
bba’s are defined on 2Θ where Θ = {θ1, θ2, θ3}. We only
consider here non-Bayesian bba’s, else the values are still
given hereinbefore.

We can observe for a given sum of basic belief on the
singletons of Θ the Bayesianity degree can change according
to the basic belief on the other focal elements. For example,
the degrees are the same for m2 and m3, but different for m4.
For the bba m4, note that the sum of the basic beliefs on the
singletons is equal to the basic belief on the ignorance. In this
case the Bayesianity degree is exactly 0.5. That is conform to
the intuitive signification of the Bayesianity. If we look m5 and
m6, we first note that there is no basic belief on the singletons.
As a consequence, the Bayesianity is weaker. Moreover, the
bba m5 is naturally more Bayesian than m6 because of the
basic belief on Θ.

We must add that these degrees are dependent on the
cardinality of the frame of discernment for non Bayesian bba’s.
Indeed, if we consider the given bba m1 with Θ = {θ1, θ2, θ3},
the degree δB = 0.75. Now if we consider the same bba
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with Θ = {θ1, θ2, θ3, θ4} (no beliefs are given on θ4), the
Bayesianity degree is δB = 0.80. The larger is the frame, the
larger becomes the Bayesianity degree.

V. DEGREE OF SPECIFICITY

In the previous section, we showed the importance to con-
sider a degree instead of a measure. Moreover, the measures
of specificity and non-specificity given by the equations (7)
and (6) give the same values for every Bayesian bba’s as seen
on the examples of the section II.

We introduce here a degree of specificity based on compar-
ison with the bba the most specific. This degree of specificity
is given by:

δS(m) = 1− d(m,ms), (27)

where ms is the bba the most specific associated to m and
d is a distance defined onto [0, 1]. Here we also choose the
Jousselme distance, the most appropriated on the bba’s space,
with values onto [0, 1]. This distance is dependent on the size
of the space GΘ, we have to compare the degrees of specificity
for bba’s defined from the same space. Accordingly, the main
problem is to define the bba the most specific associated to
m.

A. The most specific bba

In the theory of belief functions, several partial orders
have been proposed in order to compare the bba’s [3]. These
partial ordering are generally based on the comparisons of
their plausibilities or their communalities, specially in order
to find the least-committed bba. However, comparing bba’s
with plausibilities or communality can be complex and without
unique solution.

The problem to find the most specific bba associated to a bba
m does not need to use a partial ordering. We limit the specific
bba’s to the categorical bba’s: mX(X) = 1 where X ∈ GΘ

and we will use the following axiom and proposition:
Axiom For two categorical bba’s mX and mY , mX is more

specific than mY if and only if |X| < |Y |.
In case of equality, the both bba’s are isospecific.
Proposition If we consider two isospecific bba’s mX and

mY , the Jousselme distance between every bba m and mX is
equal to the Jousselme distance between m and mY :

∀m, d(m,mX) = d(m,mY ) (28)

if and only if m(X) = m(Y ).
Proof The proof is obvious considering the equations (21)

and (22). As the both bba’s mX and mY are categoric there is
only one non null term in the difference of vectors m−mX and
m−mY . These both terms aX and aY are equal, because mX

and mY are isospecific and so according to the equation (22)
D(Z,X) = D(Z, Y ) ∀Z ∈ GΘ. Therefore m(X) = m(Y ),
that proves the proposition �

We define the most specific bba ms associated to a bba
m as a categorical bba as follows: ms(Xmax) = 1 where
Xmax ∈ GΘ.

Therefore, the matter is now how to find Xmax. We propose
two approaches:

First approach, Bayesian case
If m is a Bayesian bba we define Xmax such as:

Xmax = arg max(m(X), X ∈ Θ). (29)

If there exist many Xmax (i.e. having the same
maximal bba and giving many isospecific bba’s),
we can take any of them. Indeed, according to the
previous proposition, the degree of specificity of m
will be the same with ms given by either Xmax

satisfying (29).
First approach, non-Bayesian case

If m is a non-Bayesian bba, we can define Xmax in
a similar way such as:

Xmax = arg max

(
m(X)

|X|
, X∈ GΘ, X 6≡∅

)
. (30)

In fact, this equation generalizes the equation (29).
However, in this case we can also have several Xmax

not giving isospecific bba’s. Therefore, we choose
one of the more specific bba, i.e. believing in the
element with the smallest cardinality. Note also that
we keep the terms of Yager from the equation (7).

Second approach
Another way in the case of non-Bayesian bba m is
to transform m into a Bayesian bba, thanks to one of
the probability transformation such as the pignistic
probability. Afterwards, we can apply the previous
Bayesian case. With this approach, the most specific
bba associated to a bba m is always a categorical
bba such as: ms(Xmax) = 1 where Xmax ∈ Θ and
not in GΘ.

B. Illustration

In order to illustrate this degree of specificity we give some
examples. The table II gives the degree of specificity for
some Bayesian bba’s. The smallest degree of specificity of
a Bayesian bba is obtained for the uniform distribution (m1),
and the largest degree of specificity is of course obtain for
categorical bba (m8).

The degree of specificity increases when the differences
between the mass of the largest singleton and the masses
of other singletons are getting bigger: δS(m3) < δS(m4) <
δS(m5) < δS(m6). In the case when one has three disjoint
singletons and the largest mass of one of them is 0.45 (on θ1),
the minimum degree of specificity is reached when the masses
of θ2 and θ3 are getting further from the mass of θ1 (m6). If
two singletons have the same maximal mass, bigger this mass
is and bigger is the degree of specificity: δS(m2) < δS(m3).

In the case of non-Bayesian bba, we first take a simple
example:

m1(θ1) = 0.6, m1(θ1 ∪ θ2) = 0.4 (31)
m2(θ1) = 0.5, m2(θ1 ∪ θ2) = 0.5. (32)

For these two bba’s m1 and m2, both proposed approaches
give the same most specific bba: mθ1 . We obtain δS(m1) =
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Table II
ILLUSTRATION OF THE DEGREE OF SPECIFICITY ON BAYESIAN BBA.

θ1 θ2 θ3 δS

m1 1/3 1/3 1/3 0.423

m2 0.4 0.4 0.2 0.471

m3 0.45 0.45 0.10 0.493

m4 0.45 0.40 0.15 0.508

m5 0.45 0.3 0.25 0.523

m6 0.45 0.275 0.275 0.524

m7 0.6 0.3 0.1 0.639

m8 1 0 0 1

0.7172 and δS(m2) = 0.6465. Therefore, m1 is more specific
than m2. Remark that these degrees are the same if we
consider the bba’s defined on 2Θ2 and 2Θ3 , with Θ2 = {θ1, θ2}
and Θ3 = {θ1, θ2, θ3}. If we now consider Bayesian bba
m3(θ1) = m3(θ2) = 0.5, the associated degree of specificity
is δS(m3) = 0.5. As expected by intuition, m2 is more specific
than m3.

We consider now the following bba:

m4(θ1) = 0.6, m1(θ1 ∪ θ2 ∪ θ3) = 0.4. (33)

The most specific bba is also mθ1 , and we have δS(m4) =
0.6734. This degree of specificity is naturally smaller than
δS(m1) because of the mass 0.4 on a more imprecise focal
element.

Let’s now consider the following example:

m5(θ1 ∪ θ2) = 0.7, m5(θ1 ∪ θ3) = 0.3. (34)

We do not obtain the same most specific bba with both
proposed approaches: the first one will give the categorical
bba mθ1∪θ2 and the second one mθ1 . Hence, the first degree
of specificity is δS(m5) = 0.755 and the second one is
δS(m5) = 0.111. We note that the second approach produces
naturally some smaller degrees of specificity.

C. Application to measure the specificity of a combination rule

We propose in this section to use the proposed degree of
specificity in order to measure the quality of the result of
a combination rule in the theory of belief functions. Indeed,
many combination rules have been developed to merge the
bba’s [10], [19]. The choice of one of them is not always
obvious. For a special application, we can compare the pro-
duced results of several rules, or try to choose according to the
special proprieties wanted for an application. We also proposed
to study the comportment of the rules on generated bba’s
[12]. However, no real measures have been used to evaluate
the combination rules. Hereafter, we only show how we can
use the degree of specificity to evaluate and compare the
combination rules in the theory of belief functions. A complete
study could then be done for example on generated bba’s.
We recall here the used combination rules, see [10] for their
description.

The Dempster rule is the normalized conjunctive combi-
nation rule of the equation (16) given for two basic belief
assignments m1 and m2 and for all X ∈ GΘ, X 6≡ ∅ by:

mDS(X) =
1

1− k
∑

A∩B=X

m1(A)m2(B). (35)

where k is either mc(∅) or the sum of the masses of the
elements of ∅ equivalence class for DΘ.

The Yager rule transfers the global conflict on the total
ignorance Θ:

mY(X) =

 mc(X) if X ∈ 2Θ \ {∅,Θ}
mc(Θ) +mc(∅) if X = Θ
0 if X = ∅

(36)

The disjunctive combination rule is given for two basic
belief assignments m1 and m2 and for all X ∈ GΘ by:

mDis(X) =
∑

A∪B=X

m1(A)m2(B). (37)

The Dubois and Prade rule is given for two basic belief
assignments m1 and m2 and for all X ∈ GΘ, X 6≡ ∅ by:

mDP(X) =
∑

A∩B=X

m1(A)m2(B)+
∑

A∪B=X

A∩B≡∅

m1(A)m2(B). (38)

The PCR rule is given for two basic belief assignments m1

and m2 and for all X ∈ GΘ, X 6≡ ∅ by:

mPCR(X) = mc(X) +∑
Y ∈GΘ,

X∩Y≡∅

(
m1(X)2m2(Y )

m1(X)+m2(Y )
+

m2(X)2m1(Y )

m2(X)+m1(Y )

)
, (39)

The principle is very simple: compute the degree of speci-
ficity of the bba’s you want combine, then calculate the degree
of specificity obtained on the bba after the chosen combination
rule. The degree of specificity can be compared to the degrees
of specificity of the combined bba’s.

In the following example given in the table III we com-
bine two Bayesian bba’s with the discernment frame Θ =
{θ1, θ2, θ3}. Both bba’s are very contradictory. The values
are rounded up. The first approach gives the same degree of
specificity than the second one except for the rules mDis, mDP

and mY. We observe that the smallest degree of specificity is
obtained for the conjunctive rule because of the accumulated
mass on the empty set not considered in the calculus of the
degree. The highest degree of specificity is reached for the
Yager rule, for the same reason. That is the only rule given a
degree of specificity superior to δS(m1) and to δS(m2). The
second approach shows well the loss of specificity with the
rules mDis, mY and mDP having a cautious comportment.
With the example, the degree of specificity obtained by the
combination rules are almost all inferior to δS(m1) and to
δS(m2), because the bba’s are very conflicting. If the degrees
of specificity of the rule such as mDS and mPCR are superior
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Table III
DEGREES OF SPECIFICITY FOR COMBINATION RULES ON BAYESIAN BBA’S.

m1 m2 mc mDS mY mDis mDP mPCR

∅ 0 0 0.76 0 0 0 0 0

θ1 0.6 0.2 0.12 0.50 0.12 0.12 0.12 0.43

θ2 0.1 0.6 0.06 0.25 0.06 0.06 0.06 0.37

θ3 0.3 0.2 0.06 0.25 0.06 0.06 0.06 0.20

θ1 ∪ θ2 0 0 0 0 0 0.38 0.38 0

θ1 ∪ θ3 0 0 0 0 0 0.18 0.18 0

θ2 ∪ θ3 0 0 0 0 0 0.20 0.20 0

Θ 0 0 0 0 0.76 0 0 0

ms 1- mθ1 mθ2 mθ1 mθ1 mΘ mθ1∪θ2 mθ1∪θ2 mθ1
ms 2- mθ1 mθ2 mθ1 mθ1 mθ1 mθ1 mθ1 mθ1
δS 1- 0.639 0.655 0.176 0.567 0.857 0.619 0.619 0.497

δS 2- 0.639 0.655 0.176 0.567 0.457 0.478 0.478 0.497

to δS(m1) and to δS(m2), that means that the bba’s are not
in conflict.

Let’s consider now a simple non-Bayesian example in
table IV.

Figure 4. Two non-Bayesian bba’s
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VI. CONCLUSION

First, we propose in this article a reflection on the mea-
sures on uncertainty in the theory of belief functions. A lot
of measures have been proposed to quantify different kind
of uncertainty such as the specificity - very linked to the
imprecision - and the discord. The discord, we do not have
to confuse with the conflict, is for us a contradiction of a
source (giving information with a bba in the theory of belief
functions) with oneself. We distinguish the contradiction and
the conflict that is the contradiction between 2 or more bba’s.
We introduce a measure of contradiction for a bba based on
the weighted average of the conflict between the bba and the
categorical bba’s of the focal elements.

The previous proposed specificity or non-specificity mea-
sures are not defined on the same space. Therefore that is
difficult to compare them. That is the reason why we propose

Table IV
DEGREES OF SPECIFICITY FOR COMBINATION RULES ON NON-BAYESIAN

BBA’S.

m1 m2 mc mDS mY mDis mDP mPCR

∅ 0 0 0.47 0 0 0 0 0

θ1 0.4 0.2 0.2 0.377 0.2 0.08 0.2 0.39

θ2 0.1 0.3 0.17 0.321 0.17 0.03 0.17 0.28

θ3 0.3 0.1 0.12 0.226 0.12 0.03 0.12 0.24

θ1 ∪ θ2 0.2 0.1 0.04 0.076 0.04 0.31 0.18 0.06

θ1 ∪ θ3 0 0 0 0 0 0.1 0.1 0

θ2 ∪ θ3 0 0.2 0 0 0 0.18 0.1 0.03

Θ 0 0.1 0 0 0.47 0.27 0.13 0

ms 1- mθ1 mθ2 mθ1 mθ1 mθ1 mθ1∪θ2 mθ1 mθ1
ms 2- mθ1 mθ2 mθ1 mθ1 mθ1 mθ1 mθ1 mθ1
δS 1- 0.553 0.522 0.336 0.488 0.389 0.609 0.428 0.497

δS 2- 0.553 0.522 0.336 0.488 0.389 0.456 0.428 0.497

the use of degree of uncertainty. Moreover these measures give
some counter-intuitive results on Bayesian bba’s. We propose
a degree of specificity based on the distance between a mass
and its most specific associated mass that we introduce. This
most specific associated mass can be obtained by two ways and
give the nearest categorical bba for a given bba. We propose
also to use the degree of specificity in order to measure the
specificity of a fusion rule. That is a tool to compare and
evaluate the several combination rules given in the theory of
belief functions.
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[11] A. Martin, A.-L. Jousselme and C. Osswald, “Conflict measure for the
discounting operation on belief functions,” International Conference on
Information Fusion, Cologne, Germany, 30 June-3 July 2008.

[12] C. Osswald and A. Martin, “Understanding the large family of Dempster-
Shafer theory’s fusion operators - a decision-based measure”, Interna-
tional Conference on Information Fusion, Florence, Italy, 10-13 July
2006.

[13] A. Ramer, “Uniqueness of information measure in the theory of evi-
dence”, Fuzzy Sets and Systems, vol. 24, pp. 183-196, 1987.

[14] B. Ristic and Ph. Smets, “The TBM global distance measure for
association of uncertain combat ID declarations”, Information fusion,
vol. 7(3), pp. 276-284, 2006.

[15] G. Shafer, A mathematical theory of evidence. Location: Princeton
University Press, 1976.

[16] C.E. Shannon, “A mathematical theory of communication”, Bell System
Technical Journal, vol. 27, pp. 379-423, 1948.

[17] F. Smarandache and J. Dezert, Applications and Advances of DSmT for
Information Fusion. American Research Press Rehoboth, 2004.

[18] Ph. Smets, “Constructing the pignistic probability function in a context
of uncertainty”, in Uncertainty in Artificial Intelligence, vol. 5, pp. 29–39,
1990.

[19] Ph. Smets, “Analyzing the combination of conflicting belief functions”,
Information Fusion, vol. 8, no. 4, pp. 387-412, 2007.

[20] M.J. Wierman, “Measuring Conflict in Evidence Theory”, IFSA World
Congress and 20th NAFIPS International Conference, vol. 3(21),
pp. 1741-1745, 2001.

[21] R.R. Yager, “Entropy and Specificity in a Mathematical Theory of
Evidence”, International Journal of General Systems, vol. 9, pp. 249-
260, 1983.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

94



Evidential Reasoning for Multi-Criteria Analysis 
Based on DSmT-AHP

Jean Dezert
Jean-Marc Tacnet

Abstract

In this paper, we present an extension of the multi-criteria decision making based on the Analytic Hierarchy Process (AHP)
which incorporates uncertain knowledge matrices for generating basic belief assignments (bba’s). The combination of priority
vectors corresponding to bba’s related to each (sub)-criterion is performed using the Proportional Conflict Redistribution rule no.
5 proposed in Dezert-Smarandache Theory (DSmT) of plausible and paradoxical reasoning. The method presented here, called
DSmT-AHP, is illustrated on very simple examples.

Keywords: Analytic Hierarchy Process (AHP), Dezert-Smarandache Theory (DSmT), Evidential Reasoning, Information Fusion,
Decision Making, Multi-Criteria Analysis (MCA).

I. INTRODUCTION

In many real-life contexts, decisions are based on imperfect information provided by several more or less reliable and conflicting
sources. Several recent developments have tried to introduced belief function theory [24] into the AHP framework. A first
attempt has been done to consider imprecise evaluations of alternatives using the Dempster-Shafer theory and the Dempster
rule [2]. However, the classical fusion rules such as Dempster rule is known to poorly take conflict into account. Another new
framework called ER-MCDA has been proposed to mix a multi-criteria decision making method called Analytic Hierarchy
Process (AHP) and uncertainty theories including fuzzy sets, possibility and belief function theories [28]. The principle of
the ER −MCDA methodology is to use AHP to analyze the decision problem and to replace the aggregation step by two
successive fusion processes [29]. Its main objective is to take into account both information imperfection, source reliability
and conflict. When doing this, an important problem occurs since the importance of criteria is a different concept than the
classical reliability concept developped and used in the belief theory context. This article presents a new development related
to the use of fusion in the context of multicriteria decision analysis, focusing on the special case of AHP. First, we present
a method called DSmT-AHP which is an adapted version of AHP allowing to consider imprecise and uncertain evaluation of
alternatives. Secondly, we describe a new fusion rule that has been developped on the basis of the PCR rule proposed in the
context of DSmT Theory to implement this method. This new rule is also used in the context of the ER-MCDA method.

II. DSMT-AHP APPROACH

We present briefly the extension of Saaty’s AHP method [17] using an aggregation method developed in Dezert-Smarandache
Theory (DSmT) framework [25] of evidential reasoning (ER), able to make a difference between importance of criteria,
uncertainty related to the evaluations of criteria and reliability of the different sources. This method has been introduced for
the first time in [8] and applied for risk prevention of natural hazards in mountains in [29]. Before explaining the principle of
DSmT-AHP, it is necessary to recall some basics of DSmT at first to make the paper self-consistent for readers not familiar with
this theoretical framework. All basis with many detailed examples can be obtained freely by downloading the three volumes
given in [25] from the web.

A. DSmT basics

Let start with Θ = {θ1, θ2, · · · , θn} be a finite set of n elements assumed to be exhaustive. Θ corresponds to the frame of
discernment of the problem under consideration. In general, we assume that elements of Θ are non exclusive in order to deal
with vague/fuzzy and relative concepts [25], Vol. 2. This is the so-called free-DSm model. In DSmT, there is no need to
work on a refined frame consisting in a discrete finite set of exclusive and exhaustive hypotheses (referred as Shafer’s model),
because DSm rules of combination work for any models of the frame. The hyper-power set DΘ is defined as the set of all
propositions built from elements of Θ with ∪ and ∩, see [25], Vol. 1 for examples. A (quantitative) basic belief assignment
(bba) expressing the belief committed to the elements of DΘ by a given source is a mapping m(·): DΘ → [0, 1] such that:
m(∅) = 0 and

∑
A∈DΘ m(A) = 1. Elements A ∈ DΘ having m(A) > 0 are called focal elements of m(.). The credibility

Originally published as Dezert J., Tacnet J.-M., Evidential 
Reasoning for Multi-Criteria Analysis based on DSmT-AHP, 

ISAHP 2011, Italy, June 2011, and reprinted with permission.
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and plausibility functions are defined in almost the same manner as in Dempster-Shafer Theory (DST) [24] except that 2Θ is
replaced by DΘ in their definitions. In DSmT, the Proportional Conflict Redistribution Rule no. 5 (PCR5) is used generally to
combine bba’s. PCR5 transfers the conflicting mass only to the elements involved in the conflict and proportionally to their
individual masses, so that the specificity of the information is entirely preserved in this fusion process. For simplicity, we work
in the power set 2Θ since most of readers are usually already familiar with this fusion space. Let’s m1(.) and m2(.) be two
independentbba’s, then the PCR5 rule is defined as follows: mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) +
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (1)

where all denominators in (1) are different from zero. If a denominator is zero, that fraction is discarded. All propositions/sets
are in a canonical form. A variant of (1), called PCR6, for combining s > 2 sources and for working in other fusion spaces
(hyper-power sets or super power-sets) is presented in [25]. Additional properties of PCR5 can be found in [7]. Extension of
PCR5 for combining qualitative bba’s can be found in [25], Vol. 2 & 3.
As a simple example, let’s consider two bba’s m1(.) and m2(.), A ∩ B = ∅ for the model of Θ, and m1(A) = 0.6 and
m2(B) = 0.3. With PCR5 the partial conflicting mass m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed to A and B only with
respect to the following proportions respectively: xA = 0.12 and xB = 0.06 because

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)

m1(A) +m2(B)
=

0.18

0.9
= 0.2

B. DSmT-AHP approach

DSmT-AHP aimed to perform a similar purpose as AHP [16], [17], SMART [30] or DS/AHP [2], [4], etc. that is to find the
preferences rankings of the decision alternatives (DA), or groups of DA. DSmT-AHP approach consists in three steps:

• Step 1: We extend the construction of the matrix for taking into account the partial uncertainty (disjunctions) between
possible alternatives. If no comparison is available between elements, then the corresponding elements in the matrix is
zero. Each bba related to each (sub-) criterion is the normalized eigenvector associated with the largest eigenvalue of the
”uncertain” knowledge matrix (as done in standard AHP approach).

• Step 2: We use the DSmT fusion rules, typically the PCR5 rule, to combine bba’s drawn from step 1 to get a final Multi-
Criteria Decision-Making (MCDM) priority ranking. This fusion step must take into account the different importances (if
any) of criteria as it will be explained in the sequel.

• Step 3: Decision-making can be done based either on the maximum of belief (also called credibility), or on the maximum
of the plausibility of Decision alternatives (DA), as well as on the maximum of the approximate subjective probability of
DA obtained by different probabilistic transformations like the Pignistic, DSmP, or Sudano’s transformations [25], Vol. 2.

The MCDM problem deals with several criteria having different importances and the classical fusion rules cannot be applied
directly as in step 2. In AHP, the fusion is done from the product of the bba’s matrix with the weighting vector of criteria.
Such AHP fusion is nothing but a simple componentwise weighted average of bba’s and it doesn’t actually process efficiently
the conflicting information between the sources. It doesn’t preserve the neutrality of a full ignorant source in the fusion. To
palliate these problems, we recall the new solution for combining sources of different importances proposed in [26]. The
reliability is an objective property of a source, whereas the importance of a source is a subjective characteristic expressed by
the fusion system designer. The reliability of a source represents its ability to provide the correct assessment/solution of the
given problem. It is characterized by a discounting reliability factor, usually denoted α in [0, 1], which should be estimated
from statistics when available, or by other techniques [12]. The reliability can be context-dependent. By convention, we usually
take α = 1 when the source is fully reliable and α = 0 if the source is totally unreliable. The reliability of a source is usually
taken into account with Shafer’s discounting method [24] defined by:{

mα(X) = α ·m(X), for X ̸= Θ

mα(Θ) = α ·m(Θ) + (1− α)
(2)

The importance of a source is not the same as its reliability and we characterize it by an importance factor β in [0, 1] which
represents somehow the weight of importance granted to the source by the fusion system designer. The choice of β is usually
not related with the reliability of the source and can be chosen to any value in [0, 1] by the designer for his/her own reason. By
convention, the fusion system designer will take β = 1 when he/she wants to grant the maximal importance of the source in the
fusion process, and will take β = 0 if no importance at all is granted to this source in the fusion process. The fusion designer
must be able to deal with importance factors in a different way than with reliability factors since they correspond to distinct
properties associated with a source of information. The importance of a source is particularly crucial in hierarchical multi-
criteria decision making problems, specially in the AHP [17], [21]. That’s why it is primordial to show how the importance
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can be efficiently managed in evidential reasoning approaches. To take into account the importance of the sources we use the
dual of Shafer’s discounting approach for reliabilities of sources as originally introduced briefly by Tacnet in [25], Vol.3, Chap.
23, p. 613. It consists to define the importance discounting with respect to the empty set rather than the total ignorance Θ (as
done with Shafer’s discounting). Such new discounting deals easily with sources of different importances and is very simple
to use. Mathematically, we define the importance discounting of a source m(.) having the importance factor β in [0, 1] by:{

mβ(X) = β ·m(X), for X ̸= ∅
mβ(∅) = β ·m(∅) + (1− β)

(3)

Here we allow to deal with non-normal bba since mβ(∅) ≥ 0 as suggested by Smets in [27]. This new discounting preserves
the specificity of the primary information since all focal elements are discounted with same importance factor. Here we use
the positive mass of the empty set as an intermediate/preliminary step of the fusion process. Clearly when β = 1 is chosen
by the fusion designer, it will mean that the source must take its full importance in the fusion process and so the original bba
m(.) is kept unchanged. If the fusion designer takes β = 0, one will deal with mβ(∅) = 1 which is interpreted as a fully non
important source. m(∅) > 0 is not interpreted as the mass committed to some conflicting information (classical interpretation),
nor as the mass committed to unknown elements when working with the open-world assumption (Smets interpretation), but
only as the mass of the discounted importance of a source in this particular context. Based on this discounting, one adapts
PCR5 (or PCR6) rule for N ≥ 2 discounted bba’s mβ,i(.), i = 1, 2, . . . N by considering the following extension, denoted
PCR5∅, defined by: ∀X ∈ 2Θ

mPCR5∅(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) +
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (4)

A similar extension can be done for PCR5 and PCR6 formulas for N > 2 sources given in [25], Vol. 2. A detailed presentation
of this technique with several examples has been done in [26] and thus it is not reported here due to space limitation
constraints. The difference between eqs. (1) and (4) is that mPCR5(∅) = 0 whereas mPCR5∅(∅) ≥ 0. Since we usually work
with normal bba’s for decision making support, the combined bba will be normalized. In the AHP context, the importance
factors correspond to the components of the normalized eigenvector w. It is important to note that such importance discounting
method cannot be used in DST when using Dempster-Shafer’s rule of combination because this rule is not responding to the
discounting of sources towards the empty set (see Theorem 1 in [26] for proof).

We have shown how the reliability and importance of sources can be taken into account in the fusion process separately. The
possibility to take them into account jointly is more difficult, because in general the reliability and importance discounting
approaches do not commute, but when αi = βi = 1. Indeed, it can be easily verified that mαi,βi(.) ̸= mβi,αi(.) whenever
αi ̸= 1 and βi ̸= 1. mαi,βi(.) denotes the reliability discounting of mi(.) by αi followed by the importance discounting of
mαi(.) by βi which explains the notation αi, βi used in index. Similarly, mβi,αi(.) denotes the importance discounting of
mi(.) by βi followed by the reliability discounting of mβi(.) by αi. In order to deal both with reliabilities and importances
factors and because of the non commutativity of these discountings, we have proposed two methods in [26] to proceed the
fusion of the sources in a three-steps process as follows:

• Method 1: Step 1: Apply reliability and then importance discountings to get mαi,βi(.), i = 1, . . . , s and combine them
with PCR5∅ or PCR6∅ and normalize the resulting bba; Step 2: Apply importance and then reliability discountings to get
mβi,αi(.), i = 1, . . . , s and combine them with PCR5∅ or PCR6∅ and normalize the resulting bba; Step 3 (mixing/averaging):
Combine the resulting bba’s of Steps 1 and 2 using the arithmetic mean operator1.

• Method 2: Another simplest method which could be useful for intermediate traceability in some applications would consist
to change Steps 1 & 2 by Step 1’: Apply reliability discounting only to get mαi(.) and combine them with PCR5 or PCR6;
Step 2’: Apply importance discounting only to get mβi(.) and combine them with PCR5∅ or PCR6∅ and normalize the
result; Step 3’ same as Step 3. Due to space limitation, only Method 1 is briefly illustrated in the following simple example.

1Other combination rules could be used also like PCR5 or PCR6, etc., but we don’t see solid justification to use them again and they require more
computations than the simple arithmetic mean.
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C. A simple example

Let’s consider a set of three cars Θ = {A,B,C} with Shafer’s model, and only two criteria C1=Fuel Economy, C2=Reliability.
Let’s assume that with respect to each criterion the following ”uncertain” preferences matrices are given:

M(C1) =

 A B ∪ C Θ
A 1 0 1/3

B ∪ C 0 1 2
Θ 3 1/2 1

 , M(C2) =


A B A ∪ C B ∪ C

A 1 2 4 3
B 1/2 1 1/2 1/5

A ∪ C 1/4 2 1 0
B ∪ C 1/3 5 0 1


• Step 1 (bba’s generation): Applying AHP method, one gets the following priority vectors w(C1) ≈ [0.0889 0.5337 0.3774]′

and w(C2) ≈ [0.5002 0.1208 0.1222 0.2568]′ which are identified with the bba’s mC1(.) and mC2(.) as follows:
mC1(A) = 0.0889, mC1(B ∪ C) = 0.5337, mC1(A ∪ B ∪ C) = 0.3774 and mC2(A) = 0.5002, mC2(B) = 0.1208,
mC2(A ∪ C) = 0.1222 and mC2(B ∪ C) = 0.2568.

• Step 2 (Fusion): When the two criteria have the same full importance in the hierarchy they are fused with one of the classical
fusion rules. In [4] Beynon proposed to use Dempster’s rule. Here we propose to use the PCR5 fusion rule since it is known
to have a better ability to deal efficiently with possibly highly conflicting sources of evidences [25], Vol. 2. With PCR5, one
gets:

Elem. of 2Θ mC1(.) mC2(.) mPCR5(.)
∅ 0 0 0
A 0.0889 0.5002 0.3837
B 0 0 0.1162

A ∪B 0 0.1208 0
C 0 0 0.0652

A ∪ C 0 0.1222 0.0461
B ∪ C 0.5337 0.2568 0.3887

A ∪B ∪ C 0.3774 0 0

• Step 3 (Decision-making): A final decision based on mPCR5(.) must be taken. Usually, the decision-maker (DM) is
concerned with a single choice among the elements of Θ. Many decision-making approaches are possible depending on the
risk the DM is ready to take. A pessimistic DM will choose the singleton of Θ giving the maximum of credibility whereas an
optimistic DM will choose the element having the maximum of plausibility. A fair attitude consists usually in choosing the
maximum of approximate subjective probability of elements of Θ. The result however is very dependent on the probabilistic
transformation (Pignistic, DSmP, Sudano’s, etc) [25], Vol. 2. We recall2 that the credibility Bel(.), the pignistic probability
BetP(.) and the plausibility Pl(.) functions satisfy for any A ∈ 2Θ the following inequality:

Bel(A) ≤ BetP(A) ≤ Pl(A) (5)

where Bel(A), Pl(A) and BetP(A) are defined from any bba m(.) by the following formulas:

Bel(A) =
∑
B⊆A
B∈2Θ

m(B) and Pl(A) =
∑

B∩A̸=∅
B∈2Θ

m(B) (6)

BetP(A) =
∑
Y ∈2Θ

|Y ∩A|
|Y |

m(Y ) (7)

and where |Y | denotes the cardinality of Y . By convention one takes |∅|/|∅| = 1.
Below are the values of the credibility, the pignistic probability and the plausibility of A, B and C:

Elem. of Θ Bel(.) BetP(.) Pl(.)
A 0.3837 0.4068 0.4298
B 0.1162 0.3105 0.5049
C 0.0652 0.2826 0.5000

The car A will be preferred with the pessimistic (based on max of Bel(.)) or pignistic attitudes, whereas the car B will be
preferred if an optimistic attitude is adopted since one has Pl(B) > Pl(C) > Pl(A).

2In this example, we work with Shafer’s model for the frame Θ so that DΘ = 2Θ.
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Now, if we assume that C2 (the reliability) is three times more important than C1 (fuel economy) so that the preference matrix
between these two criteria is given by:

M =

[
1/1 1/3
3/1 1/1

]
≈

[
1.0000 0.3333
3.0000 1.0000

]
Its normalized principal eigenvector is w = [0.2500 0.7500]′ which indicates that C2 is indeed three times more important
than C1 as expressed in the prior DM preferences for ranking criteria. w = [w1 w2]

′ can also be obtained directly by solving
the algebraic system of equations w2 = 3w1 and w1 + w2 = 1 with w1, w2 ∈ [0, 1]. If we apply the importance discounting
with β1 = w1 = 0.25 and β2 = w2 = 0.75, one gets the following discounted bba’s

Elem. of 2Θ mβ1,C1(.) mβ2,C2(.)
∅ 0.7500 0.2500
A 0.0222 0.3751
B 0 0

A ∪B 0 0.0906
C 0 0

A ∪ C 0 0.0917
B ∪ C 0.1334 0.1926

A ∪B ∪ C 0.0944 0

With the PCR5∅ fusion of the sources mβ1,C1(.) and mβ2,C2(.), one gets the results in the table. For decision-making support,
one prefers to work with normal bba’s. Therefore mPCR5∅(.) is normalized by redistributing back mPCR5∅(∅) proportionally
to the masses of other focal elements as shown in the right column of the next table.

Elem. of 2Θ mPCR5∅(.) mnormalized
PCR5∅

(.)
∅ 0.6558 0
A 0.1794 0.5213
B 0.0121 0.0351

A ∪B 0.0159 0.0461
C 0.0122 0.0355

A ∪ C 0.0161 0.0469
B ∪ C 0.1020 0.2963

A ∪B ∪ C 0.0065 0.0188

If all sources have the same full importances (i.e. all βi=1), then mPCR5∅(.) = mPCR5(.) which is normal because in such
case mβi=1,Ci(.) = mCi(.). From mnormalized

PCR5∅
(.) one can easily compute the credibility Bel(.), the pignistic probability BetP(.)

or the plausibility Pl(.) for each element of Θ for decision-making. In this example one gets:

Elem. of Θ Bel(.) BetP(.) Pl(.)
A 0.5213 0.5741 0.6331
B 0.0351 0.2126 0.3963
C 0.0355 0.2134 0.3974

If the classical AHP fusion method (i.e. weighted arithmetic mean) is used directly with bba’s mC1(.) and mC2(.), one gets:

mAHP (.) =



0 0
0.0889 0.5002

0 0
0 0.1208
0 0
0 0.1222

0.5337 0.2568
0.3774 0


×
[
0.25
0.75

]
=



0
0.3974

0
0.0906

0
0.0917
0.3260
0.0944


which would have provided the following result for decision-making

Elem. of Θ Bel(.) BetP(.) Pl(.)
A 0.3974 0.5200 0.6741
B 0 0.2398 0.5110
C 0 0.2403 0.5121

In this very simple example, one sees that the importance discounting technique coupled with PCR5-based fusion rule (what
we call the DSmT-AHP approach) will suggest, as with classical AHP, to choose the alternative A since the car A has a bigger
credibility (as well as a bigger pignistic probability and plausibility) than cars B or C. It is however worth to note that the
values of Bel(.), BetP(.) and Pl(.) obtained by both methods are slightly different. The difference in results can have a strong
impact in practice in the final result for example if the costs of vehicles have also to be included in the final decision. Note

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

99



also that the uncertainties U(X) = Pl(X) − Bel(X) of all alternatives X = A,B,C have been seriously diminished when
using DSmT-AHP with respect to what we obtain with classical AHP as seen in the following table. The uncertainty reduction
is a nice expected property specially important for decision-making support.

Elem. of Θ U(.) with AHP U(.) with DSmT-AHP
A 0.2767 0.1118
B 0.5110 0.3612
C 0.5121 0.3619

III. CONCLUSIONS

In this paper, we have presented a new method for Multi-Criteria Decision-Making (MCDM) and Multi-Criteria Group Decision-
Making (MCGDM) based on the combination of AHP method developed by Saaty and DSmT. The AHP method allows to
build bba’s from DM preferences of solutions which are established with respect to several criteria. The DSmT allows to
aggregate efficiently the (possibly highly conflicting) bba’s based on each criterion. This DSmT-AHP method allows to take
into account also the different importances of the criteria and/or of the different members of the decision-makers group. The
application of this DSmT-AHP approach and specially the new fusion rule has been introduced in an application case for the
prevention of natural hazards in mountains and snow avalanches, see [25], Vol.3, Chap. 23, and [29].
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Cautious OWA and Evidential Reasoning 
for Decision Making under Uncertainty

Jean-Marc Tacnet
Jean Dezert

Abstract—To make a decision under certainty, multicriteria
decision methods aims to choose, rank or sort alternatives on
the basis of quantitative or qualitative criteria and preferences
expressed by the decision-makers. However, decision is often
done under uncertainty: choosing alternatives can have different
consequences depending on the external context (or state of the
word). In this paper, a new methodology called Cautious Ordered
Weighted Averaging with Evidential Reasoning (COWA-ER) is
proposed for decision making under uncertainty to take into
account imperfect evaluations of the alternatives and unknown
beliefs about groups of the possible states of the world (scenarii).
COWA-ER mixes cautiously the principle of Yager’s Ordered
Weighted Averaging (OWA) approach with the efficient fusion
of belief functions proposed in Dezert-Smarandache Theory
(DSmT).
Keywords: fusion, Ordered Weighted Averaging (OWA),
DSmT, uncertainty, information imperfection, multi-
criteria decision making (MCDM)

I. INTRODUCTION

A. Decisions under certainty, risk or uncertainty

Decision making in real-life situations are often difficult
multi-criteria problems. In the classical Multi-Criteria De-
cision Making (MCDM) framework, those decisions consist
mainly in choosing, ranking or sorting alternatives, solutions
or more generally potential actions [17] on the basis of
quantitative or qualitative criteria. Existing methods differs on
aggregation principles (total or partial), preferences weight-
ing, and so on. In total aggregation multicriteria decision
methods such as Analytic Hierarchy Process (AHP) [19], the
result for an alternative is a unique value called synthesis
criterion. Possible alternatives (Ai) belonging to a given set
A = {A1, A2, . . . , Aq} are evaluated according to preferences
(represented by weights wj) expressed by the decision-makers
on the different criteria (Cj) (see figure 1).

Decisions are often taken on the basis of imperfect infor-
mation and knowledge (imprecise, uncertain, incomplete) pro-
vided by several more or less reliable sources and depending
on the states of the world: decisions can be taken in certain,
risky or uncertain environment. In a MCDM context, decision
under certainty means that the evaluations of the alternative
are independent from the states of the world. In other cases,
alternatives may be assessed differently depending on the
scenarii that are considered.

Figure 1. Principle of a multi-criteria decision method based on a total
aggregation principle.

In the classical framework of decision theory under uncer-
tainty, Expected Utility Theory (EUT) states that a decision
maker chooses between risky or uncertain alternatives or
actions by comparing their expected utilities [14]. Let us
consider an example of decision under uncertainty (or risk)
related to natural hazards management. On the lower parts of
torrent catchment basin or an avalanche path, risk analysis
consists in evaluating potential damage caused due to the
effects of hazard (a phenomenon with an intensity and a
frequency) on people and assets at risk. Different strategies
(Ai) are possible to protect the exposed areas. For each of
them, damage will depend on the different scenarii (Sj) of
phenomenon which can be more or less uncertain. An action
Ai (e.g. building a protection device, a dam) is evaluated
through its potential effects rk to which are associated utilities
u(rk) (protection level of people, cost of protection, . . . ) and
probabilities p(rk) (linked to natural events or states of nature
Sk). The expected utility U(a) of an action a is estimated
through the sum of products of utilities and probabilities of
all potential consequences of the action a:

U(Ai) =
∑

u(rk) · p(rk) (1)

Originally published as Tacnet J.-M., Dezert J., Cautious 
OWA and Evidential Reasoning for Decision Making under 
Uncertainty, in Proc. Of Fusion 2011 Conf., Chicago, July, 

2011, and reprinted with permission.
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When probabilities are known, decision is done under risk.
When those probabilities becomes subjective, the prospect
theory (subjective expected utility theory - SEUT) [12] can
apply :

• the objective utility (e.g. cost) u(rk) is replaced by a
subjective function (value) denoted v(u(rk)) ;

• the objective weighting p(rk) is replaced by a subjective
function π(p(rk)).

v(·) is the felt subjective value in response of the expected
cost of the considered action, and π(·) is the felt weighting
face to the objective probability of the realisation of the result.
Prospect theory shows that the function v(·) is asymmetric:
loss causes a negative reaction intensity stronger than the pos-
itive reaction caused by the equivalent gain. This corresponds
to an aversion to risky choices in the area of earnings and a
search of risky choices in the area of loss.

In a MCDM context, information imperfection concerns
both the evaluation of the alternatives (in any context of
certainty, risk or ignorance) and the uncertainty or lack of
knowledge about the possible states of the world. Uncertainty
and imprecision in multi-criteria decision models has been
early considered [16]. Different kinds of uncertainty can be
considered: on the one hand the internal uncertainty is linked
to the structure of the model and the judgmental inputs re-
quired by the model, on the other hand the external uncertainty
refers to lack of knowledge about the consequences about a
particular choice.

B. Objectives and goals

Several decision support methods exist to consider both
information imperfection, sources heterogeneity, reliability,
conflict and the different states of the world when evaluating
the alternatives as summarized on figure 2. A more complete
review can be found in [28]. Here we just remind some
recent examples of methods mixing MCDM approaches and
Evidential Reasoning1(ER).

Figure 2. Information imperfection in the different decision support methods

• Dempster-Shafer-based AHP (DS-AHP) has introduced
a merging of Evidential Reasoning (ER) with Analytic

1Evidential Reasoning refers to the use of belief functions as theoretical
background, not to a specific theory of belief functions (BF) aimed for
combining, or conditioning BF. Actually, Dempster-Shafer Theory (DST) [21],
Dezert-Smarandache Theory (DSmT) [22], and Smets’ TBM [25] are different
approaches of Evidential Reasoning.

Hierachy Process (AHP) [19] to consider the imprecision
and the uncertainty in evaluation of several alternatives.
The idea is to consider criteria as sources [1], [3] and
derive weights as discounting factors in the fusion process
[5];

• Dezert-Smarandache-based (DSmT-AHP) [8] takes into
account the partial uncertainty (disjunctions) between
possible alternatives and introduces new fusion rules,
based on Proportional Conflict Redistribution (PCR) prin-
ciple, which allow to consider differences between impor-
tance and reliability of sources [23];

• ER-MCDA [28], [29] is based on AHP, fuzzy sets theory,
possibility theory and belief functions theory too. This
method considers both imperfection of criteria evalua-
tions, importance and reliability of sources.

Introducing ignorance and uncertainty in a MCDM process
consists in considering that consequences of actions (Ai)
depend of the state of nature represented by a finite set
S = {S1, S2, . . . , Sn}. For each state, the MCDM method
provides an evaluation Cij . We assume that this evaluation
Cij done by the decision maker corresponds to the choice
of Ai when Sj occurs with a given (possibly subjective)
probability. The evaluation matrix is defined as C = [Cij ]
where i = 1, . . . , q and j = 1, . . . , n.



S1 · · · Sj · · · Sn

A1 C11 · · · C11 · · · C1n
...

...
Ai Ci1 · · · Cij · · · Cin
...

...
Aq Cq1 · · · Cqj · · · Cqn

 = C (2)

Existing methods using evidential reasoning and MCDM
have, up to now, focused on the case of imperfect evaluation
of alternatives in a context of decision under certainty. In
this paper, we propose a new method for decision under
uncertainty that mixes MCDM principles, decision under
uncertainty principles and evidential reasoning. For this
purpose, we propose a framework that considers uncertainty
and imperfection for scenarii corresponding to the state of
the world.

This paper is organized as follows. In section II, we
briefly recall the basis of DSmT. Section III presents two
existing methods for MCDM under uncertainty using belief
functions theory: DSmT-AHP as an extension of Saaty’s multi-
criteria decision method AHP , and Yager’s Ordered Weighted
Averaging (OWA) approach for decision making with belief
structures. The contribution of this paper concerns the section
IV where we describe an alternative to the classical OWA,
called cautious OWA method, where evaluations of alternatives
depend on more or less uncertain scenarii. The flexibility
and advantages of this COWA method are also discussed.
Conclusions and perspectives are given in section V.
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II. BELIEF FUNCTIONS AND DSMT

Dempster-Shafer Theory (DST) [21] offers a powerful math-
ematical formalism (the belief functions) to model our belief
and uncertainty on the possible solutions of a given problem.
One of the pillars of DST is Dempster-Shafer rule (DS) of
combination of belief functions. The purpose of the devel-
opment of Dezert-Smarandache Theory (DSmT) [22] is to
overcome the limitations of DST by proposing new underlying
models for the frames of discernment in order to fit better
with the nature of real problems, and new combination and
conditioning rules for circumventing problems with DS rule
specially when the sources to combine are highly conflicting.
In DSmT, the elements θi, i = 1, 2, . . . , n of a given frame Θ
are not necessarily exclusive, and there is no restriction on θi
but their exhaustivity. Some integrity constraints (if any) can
be include in the underlying model of the frame. Instead of
working in power-set 2Θ, we classically work on hyper-power
set DΘ (Dedekind’s lattice) - see [22], Vol.1 for details and
examples. A (generalized) basic belief assignment (bba) given
by a source of evidence is a mapping m : DΘ → [0, 1] such
that

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1 (3)

The generalized credibility and plausibility functions are de-
fined in almost the same manner as within DST, i.e.

Bel(A) =
∑
B⊆A
B∈DΘ

m(B) and Pl(A) =
∑

B∩A̸=∅
B∈DΘ

m(B) (4)

In this paper, we will work with Shafer’s model of the frame
Θ, i.e. all elements θi of Θ are assumed truly exhaustive and
exclusive (disjoint). Therefore DΘ = 2Θ and the generalized
belief functions reduces to classical ones. DSmT proposes
a new efficient combination rules based on proportional
conflict redistribution (PCR) principle for combining highly
conflicting sources of evidence. Also, the classical pignistic
transformation BetP (.) [26] is replaced by the by the more
effective DSmP (.) transformation to estimate the subjective
probabilities of hypotheses for classical decision-making. We
just recall briefly the PCR fusion rule # 5 (PCR5) and Dezert-
Smarandache Probabilistic (DSmP) transformation. All details,
justifications with examples on PCR5 and DSmP can be found
freely from the web in [22], Vols. 2 & 3 and will not be
reported here.
• The Proportional Conflict Redistribution Rule no. 5:

PCR5 is used generally to combine bba’s in DSmT framework.
PCR5 transfers the conflicting mass only to the elements
involved in the conflict and proportionally to their individual
masses, so that the specificity of the information is entirely
preserved in this fusion process. Let m1(.) and m2(.) be
two independent2 bba’s, then the PCR5 rule is defined as
follows (see [22], Vol. 2 for full justification and examples):
mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}

2i.e. each source provides its bba independently of the other sources.

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (5)

where all denominators in (5) are different from zero. If a
denominator is zero, that fraction is discarded. Additional
properties of PCR5 can be found in [9]. Extension of PCR5
for combining qualitative bba’s can be found in [22], Vol. 2 &
3. All propositions/sets are in a canonical form. A variant of
PCR5, called PCR6 has been proposed by Martin and Osswald
in [22], Vol. 2, for combining s > 2 sources. The general
formulas for PCR5 and PCR6 rules are given in [22], Vol. 2
also. PCR6 coincides with PCR5 for the fusion of two bba’s.

• DSmP probabilistic transformation: DSmP is a serious
alternative to the classical pignistic transformation BetP since
it increases the probabilistic information content (PIC), i.e.
it reduces Shannon entropy of the approximate subjective
probability measure drawn from any bba – see [22], Vol. 3,
Chap. 3 for details and the analytic expression of DSmPϵ(.).
When ϵ > 0 and when the masses of all singletons are
zero, DSmPϵ(.) = BetP (.), where the well-known pignistic
transformation BetP (.) is defined by Smets in [26].

In the Evidential Reasoning framework, the decisions are
usually achieved by computing the expected utilities of the acts
using either the subjective/pignistic BetP{.} (usually adopted
in DST framework) or DSmP (.) (as suggested in DSmT
framework) as the probability function needed to compute
expectations. Usually, one uses the maximum of the pignistic
probability as decision criterion. The maximum of BetP{.} is
often considered as a balanced strategy between the two other
strategies for decision making: the max of plausibility (opti-
mistic strategy) or the max. of credibility (pessimistic strat-
egy). The max of DSmP (.) is considered as more efficient
for practical applications since DSmP (.) is more informative
(it has a higher PIC value) than BetP (.) transformation. The
justification of DSmP as a fair and useful transformation for
decision-making support can also be found in [10]. Note that
in the binary frame case, all the aforementioned decision
strategies yields same final decision.

III. BELIEF FUNCTIONS AND MCDM

Two simple methods for MCDM under uncertainty are
briefly presented: DSmT-AHP approach and Yager’s OWA
approach. The new Cautious OWA approach that we propose
will be developed in the next section.

A. DSmT-AHP approach

DSmT-AHP aimed to perform a similar purpose as AHP
[18], [19], SMART [30] or DS/AHP [1], [3], etc. that is to find
the preferences rankings of the decision alternatives (DA), or
groups of DA. DSmT-AHP approach consists in three steps:

• Step 1: we extend the construction of the matrix for taking
into account the partial uncertainty (disjunctions) between
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possible alternatives. If no comparison is available be-
tween elements, then the corresponding elements in the
matrix is zero. Each bba related to each (sub-) criterion
is the normalized eigenvector associated with the largest
eigenvalue of the ”uncertain” knowledge matrix (as done
in standard AHP approach).

• Step 2: we use the DSmT fusion rules, typically the PCR5
rule, to combine bba’s drawn from step 1 to get a final
MCDM priority ranking. This fusion step must take into
account the different importances (if any) of criteria as it
will be explained in the sequel.

• Step 3: decision-making can be based either on the
maximum of belief, or on the maximum of the plausibility
of DA, as well as on the maximum of the approximate
subjective probability of DA obtained by different prob-
abilistic transformations.

The MCDM problem deals with several criteria having
different importances and the classical fusion rules cannot be
applied directly as in step 2. In AHP, the fusion is done from
the product of the bba’s matrix with the weighting vector of
criteria. Such AHP fusion is nothing but a simple component-
wise weighted average of bba’s and it doesn’t actually process
efficiently the conflicting information between the sources. It
doesn’t preserve the neutrality of a full ignorant source in
the fusion. To palliate these problems, we have proposed a
new solution for combining sources of different importances
in [23]. Briefly, the reliability of a source is usually taken into
account with Shafer’s discounting method [21] defined by:{

mα(X) = α ·m(X), for X ̸= Θ

mα(Θ) = α ·m(Θ) + (1− α)
(6)

where α ∈ [0; 1] is the reliability discounting factor. α = 1
when the source is fully reliable and α = 0 if the source is
totally unreliable. We characterize the importance of a source
by an importance factor β in [0, 1]. β factor is usually not
related with the reliability of the source and can be chosen
to any value in [0, 1] by the designer for his/her own reason.
By convention, β = 1 means the maximal importance of the
source and β = 0 means no importance granted to this source.
From this β factor, we define the importance discounting by{

mβ(X) = β ·m(X), for X ̸= ∅
mβ(∅) = β ·m(∅) + (1− β)

(7)

Here, we allow to deal with non-normal bba since mβ(∅) ≥ 0
as suggested by Smets in [24]. This new discounting preserves
the specificity of the primary information since all focal ele-
ments are discounted with same importance factor. Based on
this importance discounting, one can adapt PCR5 (or PCR6)
rule for N ≥ 2 discounted bba’s mβ,i(.), i = 1, 2, . . . N to
get with PCR5∅ fusion rule (see details in [23]) a resulting
bba which is then normalized because in the AHP context,
the importance factors correspond to the components of the
normalized eigenvector w. It is important to note that such
importance discounting method cannot be used in DST when
using Dempster-Shafer’s rule of combination because this rule

is not responding to the discounting of sources towards the
empty set (see Theorem 1 in [23] for proof). The reliability
and importance of sources can be taken into account easily
in the fusion process and separately. The possibility to take
them into account jointly is more difficult, because in general
the reliability and importance discounting approaches do not
commute, but when αi = βi = 1. In order to deal both with
reliabilities and importances factors and because of the non
commutativity of these discountings, two methods have also
been proposed in [23] and not reported here.

B. Yager’s OWA approach

Let’s introduce Yager’s OWA approach [33] for decision
making with belief structures. One considers a collection of q
alternatives belonging to a set A = {A1, A2, . . . , Aq} and
a finite set S = {S1, S2, . . . , Sn} of states of the nature.
We assume that the payoff/gain Cij of the decision maker
in choosing Ai when Sj occurs are given by positive (or null)
numbers. The payoffs q × n matrix is defined by C = [Cij ]
where i = 1, . . . , q and j = 1, . . . , n as in eq. (2). The
decision-making problem consists in choosing the alternative
A∗ ∈ A which maximizes the payoff to the decision maker
given the knowledge on the state of the nature and the payoffs
matrix C. A∗ ∈ A is called the best alternative or the
solution (if any) of the decision-making problem. Depending
the knowledge the decision-maker has on the states of the
nature, he/she is face on different decision-making problems:
1 – Decision-making under certainty: only one state of
the nature is known and certain to occur, say Sj . Then the
decision-making solution consists in choosing A∗ = Ai∗ with
i∗ , argmaxi{Cij}.
2 – Decision-making under risk: the true state of the nature
is unknown but one knows all the probabilities pj = P (Sj),
j = 1, . . . , n of the possible states of the nature. In this
case, we use the maximum of expected values for decision-
making. For each alternative Ai, we compute its expected
payoff E[Ci] =

∑
j pj · Cij , then we choose A∗ = Ai∗ with

i∗ , argmaxi{E[Ci]}.
3 – Decision-making under ignorance: one assumes no
knowledge about the true state of the nature but that it belongs
to S. In this case, Yager proposes to use the OWA operator
assuming a given decision attitude taken by the decision-
maker. Given a set of values/payoffs c1, c2, ..., cn, OWA con-
sists in choosing a normalized set of weighting factors W =
[w1, w2, . . . wn] where wj ∈ [0, 1] and

∑
j wj = 1 and for any

set of values c1, c2, ..., cn compute OWA(c1, c2, . . . , cn) as

OWA(c1, c2, . . . , cn) =
∑
j

wj · bj (8)

where bj is the jth largest element in the collection c1, c2, ...,
cn. As seen in (8), the OWA operator is nothing but a simple
weighted average of ordered values of a variable.
Based on such OWA operators, the idea consists for each
alternative Ai, i = 1, . . . , q to choose a weighting vector
Wi = [wi1, wi2, . . . win] and compute its OWA value Vi ,
OWA(Ci1, Ci2, . . . , Cin) =

∑
j wij · bij where bij is the
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jth largest element in the collection of payoffs Ci1, Ci2,. . . ,
Cin. Then, as for decision-making under risk, we choose
A∗ = Ai∗ with i∗ , argmaxi{Vi}. The determination of Wi

depends on the decision attitude taken by the decision-maker.
The pessimistic attitude considers for all i = 1, 2, . . . , q,
Wi = [0, 0, . . . , 0, 1]. In this case, we assign to Ai the least
payoff and we choose the best worst (the max of least payoffs).
It is a Max-Min strategy since i∗ = argmaxi(minj Cij).
The optimistic attitude considers for all i = 1, 2, . . . , q,
Wi = [1, 0, . . . , 0, 0]. We commit to Ai its best payoff and
we select the best best. It is a Max-Max strategy since
i∗ = argmaxi(maxj Cij). Between these two extreme atti-
tudes, we can define an infinity of intermediate attitudes like
the normative/neutral attitude (when or all i = 1, 2, . . . , q,
Wi = [1/n, 1/n, . . . , 1/n, 1/n]) which corresponds to the
simple arithmetic mean, or Hurwicz attitude (i.e. a weighted
average of pessimistic and optimistic attitudes), etc. To justify
the choice of OWA method, Yager defines an optimistic index
α ∈ [0, 1] from the components of Wi and proposes to
compute (by mathematical programming) the best weighting
vector Wi corresponding to a priori chosen optimistic index
and having the maximal entropy (dispersion). If α = 1
(optimistic attitude) then of course Wi = [1, 0, . . . , 0, 0] and
if α = 0 (pessimistic attitude) then Wi = [0, 0, . . . , 0, 1]. I
theory, Yager’s method doesn’t exclude the possibility to adopt
an hybrid attitude depending on the alternative we consider. In
other words, we are not forced to consider the same weighting
vectors for all alternatives.

Example 1: Let’s take states S = {S1, S2, S3, S4}, alterna-
tives A = {A1, A2, A3} and the payoffs matrix:


S1 S2 S3 S4

A1 10 0 20 30
A2 1 10 20 30
A3 30 10 2 5

 (9)

If one adopts the pessimistic attitude in choosing W1 =
W2 = W3 = [0, 0, 0, 1], then one gets for each alterna-
tive Ai, i = 1, 2, 3 the following values of OWA’s: V1 =
OWA(10, 0, 20, 30) = 0, V2 = OWA(1, 10, 20, 30) = 1 and
V3 = OWA(30, 10, 2, 5) = 2. The final decision will be the
alternative V3 since it offers the best expected payoff.

If one adopts the optimistic attitude in choosing W1 =
W2 = W3 = [1, 0, 0, 0], then one gets for each alterna-
tive Ai, i = 1, 2, 3 the following values of OWA’s: V1 =
OWA(10, 0, 20, 30) = 30, V2 = OWA(1, 10, 20, 30) = 30 and
V3 = OWA(30, 10, 2, 5) = 30. All alternatives offer the same
expected payoff and thus the final decision must be chosen
randomly or purely ad-hoc since there is no best alternative.

If one adopts the normative attitude in choosing W1 =
W2 = W3 = [1/4, 1/4, 1/4, 1/4] (i.e. one assumes that
all states of nature are equiprobable), then one gets: V1 =
OWA(10, 0, 20, 30) = 60/4, V2 = OWA(1, 10, 20, 30) =
61/4 and V3 = OWA(30, 10, 2, 5) = 47/4. The final decision
will be the alternative V2 since it offers the best expected
payoff.

4 – Decision-making under uncertainty: this corresponds
to the general case where the knowledge on the states of
the nature is characterized by a belief structure. Clearly, one
assumes that a priori knowledge on the frame S of the different
states of the nature is given by a bba m(.) : 2S → [0, 1]. This
case includes all previous cases depending on the choice of
m(.). Decision under certainty is characterized by m(Sj) = 1;
Decision under risk is characterized by m(s) > 0 for some
states s ∈ S; Decision under full ignorance is characterized
by m(S1∪S2∪ . . .∪Sn) = 1, etc. Yager’s OWA for decision-
making under uncertainty combines the schemes used for
decision making under risk and ignorance. It is based on the
derivation of a generalized expected value Ci of payoff for
each alternative Ai as follows:

Ci =
r∑

k=1

m(Xk)Vik (10)

where r is the number of focal elements of the belief structure
(S,m(.)). m(Xk) is the mass of belief of the focal element
Xk ∈ 2S , and Vik is the payoff we get when we select
Ai and the state of the nature lies in Xk. The derivation
of Vik is done similarly as for the decision making under
ignorance when restricting the states of the nature to the subset
of states belonging to Xk only. Therefore for Ai and a focal
element Xk, instead of using all payoffs Cij , we consider
only the payoffs in the set Mik = {Cij |Sj ∈ Xk} and
Vik = OWA(Mik) for some decision-making attitude chosen
a priori. Once generalized expected values Ci, i = 1, 2, . . . , q
are computed, we select the alternative which has its highest
Ci as the best alternative (i.e. the final decision). The principle
of this method is very simple, but its implementation can be
quite greedy in computational resources specially if one wants
to adopt a particular attitude for a given level of optimism,
specially if the dimension of the frame S is large: one needs to
compute by mathematical programming the weighting vectors
generating the optimism level having the maximum of entropy.
As illustrative example, we take Yager’s example3 [33] with
a pessimistic, optimistic and normative attitudes.

Example 2: Let’s take states S = {S1, S2, S3, S4, S5} with
associated bba m(S1 ∪ S3 ∪ S4) = 0.6, m(S2 ∪ S5) = 0.3
and m(S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5) = 0.1. Let’s also consider
alternatives A = {A1, A2, A3, A4} and the payoffs matrix:

C =


7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4

 (11)

The r = 3 focal elements of m(.) are X1 = S1 ∪ S3 ∪ S4,
X2 = S2 ∪ S5 and X3 = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5. X1 and
X2 are partial ignorances and X3 is the full ignorance. One
considers the following submatrix (called bags by Yager) for

3There is a mistake/typo error in original Yager’s example [33].
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the derivation of Vik, for i = 1, 2, 3, 4 and k = 1, 2, 3.

M(X1) =


M11

M21

M31

M41

 =


7 12 13
12 5 11
9 3 10
6 11 15



M(X2) =


M12

M22

M32

M42

 =


5 6
10 2
13 9
9 4



M(X3) =


M13

M23

M33

M43

 =


7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4

 = C

• Using pessimistic attitude, and applying the OWA op-
erator on each row of M(Xk) for k = 1 to r, one
gets finally4: V (X1) = [V11, V21, V31, V41]

t
= [7, 5, 3, 6]

t,
V (X2) = [V12, V22, V32, V42]

t
= [5, 2, 9, 4]

t and V (X3). =
[V13, V23, V33, V43]

t
= [5, 2, 3, 4]

t. Applying formula (10)
for i = 1, 2, 3, 4 one gets finally the following generalized
expected values using vectorial notation:

[C1, C2, C3, C4]
t
=

r=3∑
k=1

m(Xk) · V (Xk) = [6.2, 3.8, 4.8, 5.2]
t

According to these values, the best alternative to take is A1

since it has the highest generalized expected payoff.
• Using optimistic attitude, one takes the max value of each

row, and applying OWA on each row of M(Xk) for k = 1 to
r, one gets: V (X1) = [V11, V21, V31, V41]

t
= [13, 12, 10, 15]

t,
V (X2) = [V12, V22, V32, V42]

t
= [6, 10, 13, 9]

t, and V (X3) =
[V13, V23, V33, V43]

t
= [13, 12, 13, 15]

t. One finally gets
[C1, C2, C3, C4]

t
= [10.9, 11.4, 11.2, 13.2]

t and the best al-
ternative to take with optimistic attitude is A4 since it has the
highest generalized expected payoff.
• Using normative attitude, one takes W1 = W2 =

W3 = W4 = [1/|Xk|, 1/|Xk|, . . . , 1/|Xk|] where |Xk| is the
cardinality of the focal element Xk under consideration. The
number of elements in Wi is equal to |Xk|. The generalized
expected values are [C1, C2, C3, C4]

t
= [9.1, 8.3, 8.4, 9.4]

t

and the best alternative with the normative attitude is A4 (same
as with optimistic attitude) since it has the highest generalized
expected payoff.

C. Using expected utility theory

In this section, we propose to use a much simpler ap-
proach than OWA Yager’s approach for decision making under
uncertainty. The idea is to approximate the bba m(.) by a
subjective probability measure through a given probabilistic
transformation. We suggest to use either BetP or (better)
DSmP transformations for doing this as explained in [22]
(Vol.3, Chap. 3). Let’s take back the previous example and
compute the BetP (.) and DSmPϵ(.) values from m(.).

4where Xt denotes the transpose of X .

One gets the same values in this particular example for any
ϵ > 0 because we don’t have singletons as focal elements of
m(.), which is normal. Here BetP (S1) = DSmP (S1) =
0.22, BetP (S2) = DSmP (S2) = 0.17, BetP (S3) =
DSmP (S3) = 0.22, BetP (S4) = DSmP (S4) = 0.22
and BetP (S5) = DSmP (S2) = 0.17. Based on these
probabilities, we can compute the expected payoffs for each
alternative as for decision making under risk (e.g. for C1, we
get 7 · 0.22+ 5 · 0.17+ 12 · 0.22+ 13 · 0.22+6 · 0.17 = 8.91).
For the 4 alternatives, we finally get:

EBetP [C] = EDSmP [C] = [8.91, 8.20, 8.58, 9.25]
t

According to these values, one sees that the best alternative
with this pignistic or DSm attitude is A4 (same as with
Yager’s optimistic or normative attitudes) since it offers the
highest pignistic or DSm expected payoff. This much simpler
approach must be used with care however because there is a
loss of information through the approximation of the bba m(.)
into any subjective probability measure. Therefore, we do not
recommend to use it in general.

IV. THE NEW COWA-ER APPROACH

Yager’s OWA approach is based on the choice of given
attitude measured by an optimistic index in [0, 1] to get the
weighting vector W . How is chosen such an index/attitude ?
This choice is ad-hoc and very disputable for users. What to
do if we don’t know which attitude to adopt ? The rational
answer to this question is to consider the results of the two
extreme attitudes (pessimistic and optimistic ones) jointly and
try to develop a new method for decision under uncertainty
based on the imprecise valuation of alternatives. This is the
approach developed in this paper and we call it Cautious OWA
with Evidential Reasoning (COWA-ER) because it adopts the
cautious attitude (based on the possible extreme attitudes) and
ER, as explained in the sequel.

Let’s take back the previous example and take the pes-
simistic and optimistic valuations of the expected payoffs.
The expected payoffs E[Ci] are imprecise since they belong
to interval [Cmin

i , Cmax
i ] where bounds are computed with

extreme pessimistic and optimistic attitudes, and one has

E[C] =


E[C1]
E[C2]
E[C3]
E[C4]

 ⊂


[6.2; 10.9]
[3.8; 11.4]
[4.8; 11.2]
[5.2; 13.2]


Therefore, one has 4 sources of information about the

parameter associated with the best alternative to choose.
For decision making under imprecision, we propose to use
here again the belief functions framework and to adopt the
following very simple COWA-ER methodology based on the
following four steps:

• Step 1: normalization of imprecise values in [0, 1];
• Step 2: conversion of each normalized imprecise value

into elementary bba mi(.);
• Step 3: fusion of bba mi(.) with an efficient combination

rule (typically PCR5);
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• Step 4: choice of the final decision based on the resulting
combined bba.

Let’s describe in details each step of COWA-ER. In step 1,
we divide each bound of intervals by the max of the bounds
to get a new normalized imprecise expected payoff vector
EImp[C]. In our example, one gets:

EImp[C] =


[6.2/13.2; 10.9/13.2]
[3.8/13.2; 11.4/13.2]
[4.8/13.2; 11.2/13.2]
[5.2/13.2; 13.2/13.2]

 ≈


[0.47; 0.82]
[0.29; 0.86]
[0.36; 0.85]
[0.39; 1.00]


In step 2, we convert each imprecise value into its bba
according to a very natural and simple transformation [7].
Here, we need to consider as frame of discernment, the finite
set of alternatives Θ = {A1, A2, A3, A4} and the sources
of belief associated with them obtained from the normalized
imprecise expected payoff vector EImp[C]. The modeling for
computing a bba associated to the hypothesis Ai from any
imprecise value [a; b] ⊆ [0; 1] is very simple and is done as
follows: 

mi(Ai) = a,

mi(Āi) = 1− b

mi(Ai ∪ Āi) = mi(Θ) = b− a

(12)

where Āi is the complement of Ai in Θ. With such simple
conversion, one sees that Bel(Ai) = a, Pl(Ai) = b. The
uncertainty is represented by the length of the interval [a; b]
and it corresponds to the imprecision of the variable (here the
expected payoff) on which is defined the belief function for
Ai. In the example, one gets:

Alternatives Ai mi(Ai) mi(Āi) mi(Ai ∪ Āi)
A1 0.47 0.18 0.35
A2 0.29 0.14 0.57
A3 0.36 0.15 0.49
A4 0.39 0 0.61

Table I
BASIC BELIEF ASSIGNMENTS OF THE ALTERNATIVES

In step 3, we need to combine bba’s mi(.) by an efficient
rule of combination. Here, we suggest to use the PCR5 rule
proposed in DSmT framework since it has been proved very
efficient to deal with possibly highly conflicting sources of
evidence. PCR5 has been already applied successfully in all
applications where it has been used so far [22]. We call
this COWA-ER method based on PCR5 as COWA-PCR5.
Obviously, we could replace PCR5 rule by any other rule (DS
rule, Dubois& Prade, Yager’s rule, etc and thus define easily
COWA-DS, COWA-DP, COWA-Y, etc variants of COWA-
ER. This is not the purpose of this paper and this has no
fundamental interest in this presentation. The result of the
combination of bba’s with PCR5 for our example is given
in of Table II.

The last step 4 is the decision-making from the resulting bba
of the fusion step 3. This problem is recurrent in the theory
of belief functions and several attitudes are also possible as

Focal Element mPCR5(.)
A1 0.2488
A2 0.1142
A3 0.1600
A4 0.1865

A1 ∪A4 0.0045
A2 ∪A4 0.0094

A1 ∪A2 ∪A4 0.0236
A3 ∪A4 0.0075

A1 ∪A3 ∪A4 0.0198
A2 ∪A3 ∪A4 0.0374

A1 ∪A2 ∪A3 ∪A4 0.1883

Table II
FUSION OF THE FOUR ELEMENTARY BBA’S WITH PCR5

explained at the end of section II. Table III shows what are
the values of credibilities, plausibilities, BetP and DSmPϵ=0

for each alternative in our example.

Ai Bel(Ai) BetP (Ai) DSmP (Ai) Pl(Ai)
A1 0.2488 0.3126 0.3364 0.4850
A2 0.1142 0.1863 0.1623 0.3729
A3 0.1600 0.2299 0.2242 0.4130
A4 0.1865 0.2712 0.2771 0.4521

Table III
CREDIBITITY AND PLAUSIBILITY OF Ai

Based on the results of Table III, it is interesting to note
that, in this example, there is no ambiguity in the decision
making whatever the attitude is taken by the decision-maker
(the max of Bel, the max of Pl, the max of BetP or the max of
DSmP), the decision to take will always be A1. Such behavior
is probably not general in all problems, but at least it shows
that in some cases like in Yager’s example, the ambiguity in
decision can be removed when using COWA-PCR5 instead of
OWA which is an advantage of our approach. It is worth to
note that Shannon entropy of BetP is HBetP = 1.9742 bits is
bigger than Shannon entropy of DSmP is HDSmP = 1.9512
bits which is normal since DSmP has been developed for
increasing the PIC value.
Advantages and extension of COWA-ER: COWA-PCR5
allows also to take easily a decision, not only on a single alter-
native, but also if one wants on a group/subset of alternatives
satisfying a min of credibility (or plausibility level) selected by
the decision-maker. Using such approach, it is of course very
easy to discount each bba mi(.) entering in the fusion process
using reliability or importance discounting techniques which
makes this approach more appealing and flexible for the user
than classical OWA. COWA-PCR5 is simpler to implement
because it doesn’t require the evaluation of all weighting
vectors for the bags by mathematical programming. Only
extreme and very simple weighting vectors [1, 0, . . . , 0] and
[0, . . . , 0, 1] are used in COWA-ER. Of course, COWA-ER can
also be extended directly for the fusion of several sources of
informations when each source can provide a payoffs matrix. It
suffices to apply COWA-ER on each matrix to get the bba’s of
step 3, then combine them with PCR5 (or any other rule) and
then apply step 4 of COWA-ER. We can also discount each
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source easily if needed. All these advantages makes COWA-
ER approach very flexible and appealing for MCDM under
uncertainty. In summary, the original OWA approach considers
several alternatives Ai evaluated in the context of different
uncertain scenarii and includes several ways (pessimistic,
optimistic, hurwicz, normative) to interpret and aggregate the
evaluations with respect to a given scenario. COWA-ER uses
simultaneously the two extreme pessimistic and optimistic
decision attitudes combined with an efficient fusion rule as
shown on Figure 3. In order to save computational resources
(if required), we also have proposed a less efficient OWA
approach using the classical concept of expected utility based
on DSmP or BetP.

Figure 3. COWA-ER: Two evolutions of Yager’s OWA method.

V. CONCLUSION

In this work, Yager’s Ordered Weighted Averaging (OWA)
operators are extended and simplified with evidential reasoning
(ER) for MCDM under uncertainty. The new Cautious OWA-
ER method is very flexible and requires less computational
load than classical OWA. COWA-ER improves the existing
framework for MCDM since it can deal also with several
more or less reliable sources. Further developments are now
planned to combine uncertainty about states of the world with
the imperfection and uncertainty of alternatives evaluations
as previously introduced in the ER-MCDA and DSmT-AHP
methods in order to connect them with COWA-ER.
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Sigmoidal Model for Belief Function-
Based Electre Tri Method

Jean Dezert 
Jean-Marc Tacnet

Abstract. Main decision-making problems can be described into choice, ranking or
sorting of a set of alternatives or solutions. The principle of Electre TRI (ET) method
is to sort alternatives ai according to criteria g j into categories Ch whose lower and
upper limits are respectively bh and bh+1. The sorting procedure is based on the
evaluations of outranking relations based f rstly on calculation of partial concor-
dance and discordance indexes and secondly on global concordance and credibility
indexes. In this paper, we propose to replace the calculation of the original concor-
dance and discordance indexes of ET method by a more effective sigmoidal model.
Such model is part of a new Belief Function ET (BF-ET) method under development
and allows a comprehensive, elegant and continuous mathematical representation of
degree of concordance, discordance and the uncertainty level which is not directly
taken into account explicitly in the classical Electre Tri.

1 Introduction

The Electre Tri (ET) method, developed by Yu [13], remains one of the most suc-
cessful and applied methods for multiple criteria decision aiding (MCDA) sorting
problems [5]. ET method assigns a set of given alternatives ai ∈ A, i = 1,2, . . . ,n ac-
cording to criteria g j, j = 1,2, . . . ,m to a pre-define (and ordered) set of categories
Ch ∈C, h= 1,2, . . . , p+1 whose lower and upper limits are respectively bh and bh+1
for all h = 1, . . . , p), with b0 ≤ b1 ≤ b2 ≤ . . . ≤ bh−1 ≤ bh ≤ . . . ≤ bp. The assign-
ment of an alternative ai to a category Ch (limited by profile bh and bh+1 ) consists
in four steps involving at f rst the computation of global concordance c(ai,bh) and
discordance d(ai,bh) indexes1 (steps 1 & 2), secondly their fusion into a credibility

1 Themselves computed from partial concordance and discordance indexes based on a given

set criteria g j(.), j ∈ J.

Originally published as Dezert J., Tacnet J.-M., Sigmoidal Model 
for Belief Function-based Electre Tri method, in Belief 2012, 

Compiègne, May 2012, and reprinted with permission.
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index ρ(ai,bh) (step 3), and f nally the decision and choice of the category based
on the evaluations of outranking relations [13, 6] (step 4). The partial concordance
index c j(ai,bh) measures the concordance of ai and bh in the assertion ”ai is at least
as good as bh”. The partial discordance index d j(ai,bh) measures the opposition of
ai and bh in the assertion ”ai is at least as good as bh”. The global concordance
index c(ai,bh) measures the concordance of ai and bh on all criteria in the asser-
tion ”ai outranks bh”. The degree of credibility of the outranking relation denoted
as ρ(ai,bh) expresses to which extent ”ai outranks bh” according to c(ai,bh) and
d j(ai,bh) for all criteria. The main steps of ET method are described below:

1. Concordance Index: The concordance index c(ai,bh) ∈ [0,1] between the al-
ternative ai and the category Ch is computed as the weighted average of partial
concordance indexes c j(ai,bh), that is

c(ai,bh) = ∑
j∈J

wjc j(ai,bh) (1)

where the weights wi ∈ [0,1] represent the relative importance of each crite-
rion g j(.) in the evaluation of the global concordance index. They must sat-
isfy ∑ j∈J wj = 1. The partial concordance index c j(ai,bh) ∈ [0,1] based on
a given criterion g j(.) is computed from the difference of the criteria eval-
uated for the prof l bh, and the criterion evaluated for the alternative ai. If
the difference g j(bh)− g j(ai) is less (or equal) to a given preference thresh-
old q j(g j(bh)) then ai and Ch are considered as different based on the crite-
rion g j(.) so that a preference of ai with respect to Ch can be clearly done.
If the difference g j(bh)− g j(ai) is strictly greater to another given threshold
p j(g j(bh)) then ai and Ch are considered as indifferent (similar) based on g j(.)).
When g j(bh)− g j(ai) ∈ [q j(g j(bh)), p j(g j(bh))], the partial concordance index
c j(ai,bh) is computed from a linear interpolation. Mathematically, the partial
concordance index is obtained by:

c j(ai,bh)�

⎧
⎪⎨

⎪⎩

1 if g j(bh)− g j(ai)≤ q j(g j(bh))

0 if g j(bh)− g j(ai)> p j(g j(bh))
g j(ai)+p j(g j(bh))−g j(bh)

p j(g j(bh))−q j(g j(bh))
otherwise

(2)

2. Discordance Index: The discordance index between the alternative ai and the
category Ch depends on a possible veto condition expressed by the choice of a
veto threshold v j(g j(bh)) imposed on some criterion g j(.). The (global) discor-
dance index d(ai,bh) is computed from the partial discordance indexes:

d j(ai,bh)�

⎧
⎪⎨

⎪⎩

1 if g j(bh)− g j(ai)> v j(g j(bh))

0 if g j(bh)− g j(ai)≤ p j(g j(bh))
g j(bh)−g j(ai)−p j(g j(bh))

v j(g j(bh))−p j(g j(bh))
otherwise

(3)
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One defi es by V the set of indexes j ∈ J where the veto applies (where the
partial discordance index is greater than the global concordance index), that is

V � { j ∈ J|d j(ai,bh)> c(ai,bh)} (4)

Then a global discordance index can be define [12] as

d(ai,bh)�
{

1 if V = /0
∏ j∈V

1−d j(ai,bh)
1−c j(ai,bh)

if V �= /0
(5)

3. Global Credibility Index: In ET method, the (global) credibility index ρ(ai,bh)
is computed by the simple discounting of the concordance index c(ai,bh) given
by (1) by the discordance index (discounting factor) d(ai,bh) given in (5). Math-
ematically, this is given by

ρ(ai,bh) = c(ai,bh)d(ai,bh) (6)

4. Assignment Procedure: The assignment of a given action ai to a certain cate-
gory Ch results from the comparison of ai to the profil defi ing the lower and
upper limits of the categories. For a given category limit bh, this comparison re-
lies on the credibility of the assertions ai outranks bh. Once all credibility indexes
ρ(ai,bh) for i = 1,2, . . . ,m and h = 1,2, . . . ,k have been computed, the assign-
ment matrix M � [ρ(ai,bh)] is available for helping in the f nal decision-making
process. In ELECTRE TRI method, a simple λ -cutting level strategy (for a given
choice of λ ∈ [0.5,1]) is used in order to transform the fuzzy outranking relation
into a crisp one to determine if each alternative outranks (or not) each category.
This is done by testing if ρ(ai,bh) ≥ λ . If the inequality is satisfie , it means
that indeed ai outranks the category Ch. Based on outranking relations between
all pairs of alternatives and prof les of categories, two approches are proposed
in ELECTRE TRI to f nally assign the alternatives into categories, see [5] for
details:

• Pessimistic (conjunctive) approach: ai is compared with bk, bk−1, bk−2, . . . ,
until ai outranks bh where h ≤ k. The alternative ai is then assigned to the
highest category Ch if ρ(ai,bh)≥ λ for a given threshold λ .

• Optimistic (disjunctive) approach: ai is compared with b1, b2, . . . bh, . . . until
bh outranks ai. The alternative ai is assigned to the lowest category Ch for
which the upper prof le bh is preferred to ai.

The objective and motivation of this paper is to develop a new Belief Function based
ET method taking into account the potential of BF to model uncertainties. The whole
BF-ET method is under development and will be presented and evaluated on a de-
tailed practical example in a forthcoming publication. Due to space limitation con-
straints, we just present here what we propose to compute the new concordance and
discordance indexes useful in our BF-ET.
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2 Limitations of the Classical Electre Tri

ET method remains rather based on heuristic approach than on a theoretical one for
each of its steps. Belief functions can improve ET method because of their ability
to model and manage conf icting as well as uncertainty information in a theoretical
framework. We only focus here on steps 1 and 2 and we propose a solution to over-
come their limitations in the next section.

Example 1: Let’s consider g j(ai) ∈ [0,100], and let’s take g j(bh) = 50 and the fol-
lowing thresholds: q j(g j(bh)) = 20 (indifference threshold), p j(g j(bh)) = 25 (pref-
erence threshold) and v j(g j(bh) = 40 (veto threshold). Then the local concordance
and discordances indexes obtained in steps 1 and 2 of ET are shown on the Fig. 1.
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cj(ai,bh) and dj(ai,bh) − ELECTRE TRI modeling

 

cj(ai,bh)
dj(ai,bh)

Fig. 1 Example of partial concordance and discordance indexes.

From this very simple example, one sees that ET modeling of partial concordance
and discordance indexes is not very satisfactory since there is no clear (explicit
and consistent) modeling of the uncertainty area where the action ai is not totally
discordant, nor totally concordant with the prof le bh. In such simplistic modeling,
there exist points g j(ai) (lying on the slope of the blue or red curves) that can be
not totally concordant while being totally not discordant (and vice-versa), which is
counter-intuitive and rather abnormal. This drawback will be solved using our new
sigmoidal basic belief assignment (bba) modeling presented in the next section.

3 Sigmoidal Model for Concordance and Discordance Indexes

In fact, there are several ways to compute partial concordances and discordances
indexes and to combine them in order to provide the global credibility indexes
ρ(ai,bh). Electre Tri proposes a simple and basic approach based on hard threshold-
ing techniques for doing this. It can fail to work efficie tly in practice in some cases,
or may require a lot of experience to calibrate/tune all setting parameters in order to
apply it to get pertinent results for decision-making support. Usually, a sensitivity
analysis must be done very carefully before applying ET in real applications. Here,
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we propose a more f exible approach based on sigmoidal modeling where no hard
thresholding technique is required.

In ET approach, we are mainly concerned in the evaluation of the credibility in-
dexes ρ(ai,bh) ∈ [0,1] for i = 1,2, . . . ,m and h = 1,2, . . . ,k (step 3) from which the
f nal decision (assignment) will be drawn in step 4. Step 3 is conditioned by the
results of steps 1 and 2 which can be improved using belief functions. For such pur-
pose, we consider, a binary frame of discernment2 Θ � {c, c̄} where c means that
the alternative ai is concordant with the assertion ”ai is at least as good as prof le
bh”, and c̄ means that the alternative ai is opposed (discordant) to this assertion. This
must obviously be done with all the assertions to check in the ET framework. The
basic idea is for each pair (ai,bh) to evaluate its bba mih(.) define on the power-set
of Θ , denoted 2Θ . Such bba’s have of course to be def ned from the combination
(fusion) of the local bba’s m j

ih(.) evaluated from each possible criteria g j(.) (as in
steps 1 and 2). The main issue is to derive the local bba’s m j

ih(.) def ned in 2Θ from
the knowledge of the criteria g j(.) and preference, indifference and veto thresholds
p j(g j(bh)), q j(g j(bh)) and v j(g j(bh)) respectively. It turns out that this can be easily
obtained from the new method of construction of bba presented in [4] and adapted
here in the ET context as follows:
• Let g j(ai) be the evaluation of the criterion g j(.) for the alternative ai, follow-
ing ET approach when g j(ai) ≥ g j(bh)− q j(g j(bh)) then the belief in concordance
c must be high (close to one), whereas it must be low (close to zero) as soon as
g j(ai) < g j(bh)− p j(g j(bh)). Similarly, the belief in discordance c̄ must be high
(close to one) if g j(ai) < g j(bh)− v j(g j(bh)), and it must be low (close to zero)
when g j(ai) ≥ g j(bh)− p j(g j(bh)). Such behavior can be modeled directly from
the sigmoid functions def ned by fs,t (g)� 1/(1+ e−s(g−t)) where g is the criterion
magnitude of the alternative under consideration; t is the abscissa of the inf ec-
tion point of the sigmoid. s/4 is the slope3 of the tangent at the inf ection point. It
can be easily verif ed that the bba m j

ih(.) satisfying the expected behavior can be
obtained by the fusion4 of the two following simple bba’s def ned by: where the
abscisses of inf ection points are given by tc = g j(bh)− 1

2 (p j(g j(bh))+q j(g j(bh)))

and tc̄ = g j(bh)− 1
2 (p j(g j(bh))+v j(g j(bh))) and the parameters sc and sc̄ are given

by5 sc = 4/(p j(g j(bh))− q j(g j(bh))) and sc̄ = 4/(v j(g j(bh))− p j(g j(bh))).

Table 1 Construction of m1(.) and m2(.).

focal element m1(.) m2(.)
c fsc,tc(g) 0
c̄ 0 f−sc̄,tc̄(g)

c∪ c̄ 1− fsc,tc(g) 1− f−sc̄ ,tc̄(g)
2 Here we assume that Shafer’s model holds, that is c∩ c̄ = /0.
3 i.e. the ratio of the vertical and horizontal distances between two points on a line; zero if

the line is horizontal, undef ned if it is vertical.
4 With averaging rule, PCR5 rule, or Dempster-Shafer rule [8].
5 The coeff cient 4 appearing in sc and sc̄ expressions comes from the fact that for a sigmoid

of parameter s, the tangent at its inf ection point is s/4.
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• From the setting of threshold parameters p j(g j(bh)), q j(g j(bh)) and v j(g j(bh)),
it is easy to compute the parameters of the sigmoids (tc,sc) and (tc̄, tc̄), and thus to
get the values of bba’s m1(.) and m2(.). Once this has been done the local bba
m j

ih(.) is computed by the fusion (denoted ⊕) of bba’s m1(.) and m2(.), that is
m j

ih(.) = [m1⊕m2](.). As shown in [4], the choice of a particular rule of combination
(Dempster, PCR5, or hybrid rule) has only a little impact on the result of the com-
bined bba m j

ih(.). But since PCR5 proposes a better management of conf icting bba’s
yielding to more specif c results than with other rules [1], we use it to combine m1(.)

with m2(.) to compute m j
ih(.) associated with the criterion g j(.) and the pair (ai,bh).

In adopting such sigmoidal modeling, we get now from mj
ih(.) a fully consistent

and elegant representation of local concordance c j(ai,bh) (step 1 of ET), local dis-
cordance d j(ai,bh) (step 2 of ET), as well as of the local uncertainty u j(ai,bh) by
considering: c j(ai,bh)� m j

ih(c) ∈ [0,1], d j(ai,bh)� m j
ih(c̄) ∈ [0,1] and u j(ai,bh)�

m j
ih(c∪ c̄) ∈ [0,1]. Of course, one has also c j(ai,bh)+ d j(ai,bh)+ u j(ai,bh) = 1.

4 Example of a Sigmoidal Model

If one takes back the example 1, the inf ection points of the sigmoids f1(g) �
fsc,tc(g) and f2(g)� f−sc̄,tc̄(g) have the following abscisses tc = 50− (25+20)/2=
27.5 and tc̄ = 50−(25+40)/2= 17.5 and parameters sc = 4/(25−20)= 4/5= 0.8
and sc̄ = 4/(40−25)= 4/15≈ 0.2666. The two sigmoids f1(g j(ai)) and f2(g j(ai))
are shown on the Fig. 2.
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Sigmoids used in BF−ELECTRE TRI modeling
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Fig. 2 f1(g j(ai)) and f2(g j(ai)) sigmoids.

It is interesting to note the resemblance of Fig. 2 with Fig. 1. From these sig-
moids, the bba’s m1(.) and m2(.) are computed according to Table 1 and shown on
the Figure 3.
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Fig. 3 Bba’s m1(.) and m2(.) to combine.

The construction of the consistent bba m j
ih(.) is obtained by the PCR5 fusion of

the bba’s m1(.) and m2(.). The result is shown on Fig. 4.
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bba mPCR5(.) = PCR5 fusion of m1(.) with m2(.)
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Fig. 4 m j
ih(.) obtained from the PCR5 fusion of m1(.) with m2(.).

From this new sigmoidal modeling, we can compute the local bba’s m j
ih(.) de-

rived from the knowledge of criterion g j(.) and setting parameters. This is a smooth
appealing and elegant technique to build all the local bba’s: no hard thresholding is
necessary because of the continuity of sigmoid functions.

One can then compute the global concordance and discordance indexes of steps
1 and 2 from the computation of the combined bba mih(.) resulting of the fusion of
local bba’s m j

ih(.) taking eventually into account their importance and reliability6 (if
one wants). This can be done using the recent fusion techniques proposed in [9],
or by a simple weighted averaging. From mih(.) we can use the same credibility
index as in step 3 of ET, or just skip this third step and def ne a decision-making
based directly on the bba mih(.) using classical approaches used in belief function
framework (say the max of belief, plausibility, or pignistic probability, etc).

6 In classical ET, the reliability of criteria is not taken into account.
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5 Conclusions

After a brief presentation of the classical ET method, we have proposed a new ap-
proach to model and compute the concordance and discordance indexes based on
belief functions in order to overcome the limitations of steps 1 and 2 of the ET ap-
proach. The advantages of our modeling is to provide an elegant and simple way not
only to compute the concordance and discordance indexes, but also the uncertainty
level that may occur when information appears partially concordant and discordant.
The Improvements of other steps of ET method are under development. In future
reaserch works, we will evaluate and compare on real MCDA problem our BF-ET
with the original ET method and with other belief functions based methods already
available in MCDA frameworks [10, 11].
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Hierarchical Proportional Redistribution Principle
for Uncertainty Reduction and BBA Approximation∗

Jean Dezert
Deqiang Han
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Jean-Marc Tacnet

Abstract—Dempster-Shafer evidence theory is very important
in the fields of information fusion and decision making. However,
it always brings high computational cost when the frames of
discernments to deal with become large. To reduce the heavy
computational load involved in many rules of combinations, the
approximation of a general belief function is needed. In this paper
we present a new general principle for uncertainty reduction
based on hierarchical proportional redistribution (HPR) method
which allows to approximate any general basic belief assignment
(bba) at a given level of non-specificity, up to the ultimate level
1 corresponding to a Bayesian bba. The level of non-specificity
can be adjusted by the users. Some experiments are provided to
illustrate our proposed HPR method.

Index Terms—Belief functions, hierarchical proportional redis-
tribution (HPR), evidence combination, belief approximation.

I. INTRODUCTION

Dempster-Shafer evidence theory, also called belief function
theory [1], is an interesting and flexible tool to deal with
imprecision and uncertainty for approximate reasoning. It
has been widely used in many applications, e.g., information
fusion, pattern recognition and decision making [2].

Although evidence theory is successful in uncertainty mod-
eling and reasoning, high computational cost is a drawback
which is often raised against evidence theory [2]. In fact, the
computational cost of evidence combination increases expo-
nentially with respect to the size of the frame of discernment
(FOD) [3]–[5]. To resolve such a problem, three major types
of approaches have been proposed by he researchers.

The first type is to propose efficient procedures for perform-
ing exact computations. For example, Kennes [6] proposed an
optimal algorithm for Dempster’s rule of combination. Bar-
nett’s work [7] and other works [8] are also the representatives.

The second type is composed of Monte-Carlo techniques.
See details in the paper of Moral and Salmeron [9].

The third type is to approximate (or simplify) a belief
function to a simpler one. The papers of Voorbraak [4], Dubois
and Prade [10] are seminal works in this type of approaches.
Tessem proposed the famous 𝑘−𝑙−𝑥 approximation approach

∗This work was supported by National Natural Science Foundation of
China (Grant No.61104214), Fundamental Research Funds for the Cen-
tral Universities, China Postdoctoral Science Foundation (No.20100481337,
No.201104670)and Research Fund of Shaanxi Key Laboratory of Electronic
Information System Integration (No.201101Y17).

[3]. Grabisch proposed some approaches [11], which can build
a bridge between belief functions and other types of uncer-
tainty measures or functions, e.g., probabilities, possibilities
and 𝑘-additive belief function (those belief functions whose
cardinality of the focal elements are at most of 𝑘). Based on
pignistic transformation in transferable belief model (TBM),
Burger and Cuzzolin proposed two types of 𝑘-additive belief
functions [12]. Denœux uses hierarchical clustering strategy
to implement the inner and outer approximation of belief
functions [13].

In this paper, we focus on the approximation approach of
belief functions. This first reason obviously is that it can reduce
the computational cost of evidence combination. Furthermore,
human find that it is not intuitive to attach meaning to focal
elements with large cardinality [14]. Belief approximation can
either reduce the number or the cardinalities of focal elements,
or both of them can be reduced. Thus by using belief function
approximation, we can obtain a representation which is more
intuitive and easier to process. We propose a new method
called hierarchical proportional redistribution (HPR), which is
a general principle for uncertainty reduction, to approximate
any general basic belief assignment (bba) at a given level of
non-specificity, up to the ultimate level 1 corresponding to a
Bayesian bba. That is, our proposed approach can generate
an intermediate object between probabilities and original be-
lief function. The level of non-specificity can be controlled
by the users through the adjusting of maximum cardinality
of remaining focal element. Our proposed approach can be
considered as a generalized k-additive belief approximation.
Some experiments are provided to illustrate our proposed
HPR approach and to compare it with other approximation
approaches.

II. BASICS IN EVIDENCE THEORY

In Dempster-Shafer evidence theory [1], the frame of
discernment (FOD) denoted by Θ is a basic concept. The
elements in Θ are mutually exclusive. Suppose that 2Θ denotes
the powerset of FOD and define the function 𝑚 : 2Θ → [0, 1]
as the basic belief assignment (bba) satisfying:∑

𝐴⊆Θ
𝑚(𝐴) = 1, 𝑚(∅) = 0 (1)

Originally published as Dezert J., Han D., Liu Z., Tacnet J.-M., 
Hierarchical Proportional Redistribution principle for uncertainty 

reduction and bba approximation, WCICA2012 Beijing, China, 
July 2012, and reprinted with permission.
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A bba is also called a mass function. Belief function (𝐵𝑒𝑙)
and plausibility function (𝑃𝑙) are defined below, respectively:

𝐵𝑒𝑙(𝐴) =
∑

𝐵⊆𝐴
𝑚(𝐵) (2)

𝑝𝑙(𝐴) =
∑

𝐴∩𝐵 ∕=∅ 𝑚(𝐵) (3)

Suppose that 𝑚1,𝑚2, ...,𝑚𝑛 are 𝑛 mass functions, Dempster’s
rule of combination is defined in (4):

𝑚(𝐴) =

⎧⎨⎩
0, 𝐴 = ∅∑
∩𝐴𝑖=𝐴

∏
1≤𝑖≤𝑛

𝑚𝑖(𝐴𝑖)∑
∩𝐴𝑖 ∕=∅

∏
1≤𝑖≤𝑛

𝑚𝑖(𝐴𝑖)
, 𝐴 ∕= ∅ (4)

Dempster’s rule of combination is used in DST to imple-
ment the combination of bodies of evidence (BOEs).

Evidence theory has been widely used in many application
fields due to its capability of approximate reasoning and
processing of uncertain information. However, as referred
in introduction section, there also exists the drawback of
high computational cost in evidence combination. Several
approaches have been proposed accordingly, which includes
efficient algorithms [6]–[8] for evidence combination, the
Monte-Carlo techniques and the approach of belief function
approximation [9]. We prefer to use the belief approximation
approach [10]–[13] to reduce the computational cost needed
in the combination operation because the approximation ap-
proach reduces the computational cost and also allow to deal
with smaller-size focal elements, which is more intuitive for
human to catch the meaning [14]. In the next section, we recall
some well-known basic approximation approaches.

III. BBA APPROXIMATION APPROACHES

1) 𝑘 − 𝑙 − 𝑥 approach: The approach of 𝑘 − 𝑙 − 𝑥 was
proposed by Tessem [3]. The simplified or compact bba
obtained by using 𝑘 − 𝑙 − 𝑥 satisfies:

1) keep no less than 𝑘 focal elements;
2) keep no more than 𝑙 focal elements;
3) the mass assignment to be deleted is no greater than 𝑥.
In algorithm of 𝑘−𝑙−𝑥, the focal elements of a original bba

are sorted according to their mass assignments. Such algorithm
chooses the first 𝑝 focal elements such that 𝑘 ≤ 𝑝 ≤ 𝑙
and such that the sum of the mass assignments of these
first 𝑝 focal elements is no less than 1 − 𝑥. The deleted
mass assignments are redistributed to the other focal elements
through a normalization.

2) 𝑘-additive belief function approximation: Given a bba
𝑚 : 2Θ → [0, 1], the 𝑘-additive belief function [11], [12]
induced by the mass assignment is defined in Eq.(5). Suppose
that 𝐵 ⊆ Θ,⎧⎨⎩ 𝑚𝑘(𝐵) = 𝑚(𝐵) +

∑
𝐴⊃𝐵,𝐴⊆Θ,∣𝐴∣>𝑘

𝑚(𝐴)⋅∣𝐵∣
𝒩 (∣𝐴∣,𝑘) , ∀ ∣𝐵∣ ≤ 𝑘

𝑚𝑘(𝐵) = 0, ∀ ∣𝐵∣ > 𝑘
(5)

where

𝒩 (∣𝐴∣ , 𝑘) =
𝑘∑

𝑗=1

( ∣𝐴∣
𝑗

)
⋅ 𝑗 =

𝑘∑
𝑗=1

∣𝐴∣!
(𝑗 − 1)!(∣𝐴∣ − 𝑗)!

(6)

is average cardinality of the subsets of 𝐴 of size at most 𝑘.
It can be seen that for 𝑘-additive belief approximation, the

maximum cardinality of available focal elements is no greater
than 𝑘.

In this section, 𝑘 − 𝑙 − 𝑥 approach and 𝑘-additive belief
function approximation approach are introduced, which will
be compared with our proposed approach introduced in next
section. There also other types of bba approximation approx-
imation approaches, see details in related references.

IV. HIERARCHICAL PROPORTIONAL REDISTRIBUTION
APPROXIMATION

In this paper we propose a hierarchical bba approximation
approach called hierarchical proportional redistribution (HPR),
which provides a new way to reduce step by step the mass
committed to uncertainties. Ultimately an approximate mea-
sure of subjective probability can be obtained if needed, i.e.
a so-called Bayesian bba in [1]. It must be noticed that this
procedure can be stopped at any step in the process and thus
it allows to reduce the number of focal elements in a given
bba in a consistent manner to diminish the size of the core
of a bba and thus reduce the complexity (if needed) when
applying also some complex rules of combinations. We present
here the general principle of hierarchical and proportional
reduction of uncertainties in order to obtain approximate bba’s
at different non-specificity level we expect. The principle of
redistribution of uncertainty to more specific elements of the
core at any given step of the process follows the proportional
redistribution already proposed in the (non hierarchical) DSmP
transformation proposed recently in [5]. Thus the proposed
HPR can be considered as a bba approximation approach
inspired by the idea of DSmP.

Let’s first introduce two new notations for convenience and
for concision:

1) Any element of cardinality 1 ≤ 𝑘 ≤ 𝑛 of the power
set 2Θ will be denoted, by convention, by the generic
notation 𝑋(𝑘). For example, if Θ = {𝐴,𝐵,𝐶}, then
𝑋(2) can denote the following partial uncertainties
𝐴 ∪ 𝐵, 𝐴 ∪ 𝐶 or 𝐵 ∪ 𝐶, and 𝑋(3) denotes the total
uncertainty 𝐴 ∪𝐵 ∪ 𝐶.

2) The proportional redistribution factor (ratio) of width 𝑛
involving elements 𝑋 and 𝑌 of the powerset is defined
as (for 𝑋 ∕= ∅ and 𝑌 ∕= ∅)

𝑅𝑠(𝑌,𝑋) ≜ 𝑚(𝑌 ) + 𝜖 ⋅ ∣𝑋∣∑
𝑌⊂𝑋

∣𝑋∣−∣𝑌 ∣=𝑠
𝑚(𝑌 ) + 𝜖 ⋅ ∣𝑋∣ (7)

where 𝜖 is a small positive number introduced here to
deal with particular cases where

∑
𝑌⊂𝑋

∣𝑋∣−∣𝑌 ∣=𝑠
𝑚(𝑌 ) = 0.

By convention, we will denote 𝑅(𝑌,𝑋) ≜ 𝑅1(𝑌,𝑋)
when we use the proportional redistribution factors of
width 𝑠 = 1.

The HPR is obtained by a step by step (recursive) proportional
redistribution of the mass 𝑚(𝑋(𝑘)) of a given uncertainty
𝑋(𝑘) (partial or total) of cardinality 2 ≤ 𝑘 ≤ 𝑛 to all the least
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specific elements of cardinality 𝑘−1, i.e. to all possible 𝑋(𝑘−
1), until 𝑘 = 2 is reached. The proportional redistribution is
done from the masses of belief committed to 𝑋(𝑘−1) as done
classically in DSmP transformation. The ”hierarchical” masses
𝑚ℎ(.) are recursively (backward) computed as follows. Here
𝑚ℎ(𝑘) represents the approximate bba obtained at the step 𝑛−𝑘
of HPR, i.e., it has the maximum focal element cardinality of
𝑘.

𝑚ℎ(𝑛−1)(𝑋(𝑛− 1)) = 𝑚(𝑋(𝑛− 1))+∑
𝑋(𝑛)⊃𝑋(𝑛−1)

𝑋(𝑛),𝑋(𝑛−1)∈2Θ

[𝑚(𝑋(𝑛)) ⋅𝑅(𝑋(𝑛− 1), 𝑋(𝑛))];

𝑚ℎ(𝑛−1)(𝐴) = 𝑚(𝐴),∀∣𝐴∣ < 𝑛− 1

(8)

𝑚ℎ(𝑛−1)(⋅) is the bba obtained at the first step of HPR
(𝑛 − (𝑛 − 1) = 1), the maximum focal element cardinality
of 𝑚ℎ(𝑛−1) is 𝑛− 1.

𝑚ℎ(𝑛−2)(𝑋(𝑛− 2)) = 𝑚(𝑋(𝑛− 2))+∑
𝑋(𝑛−1)⊃𝑋(𝑛−2)

𝑋(𝑛−2),𝑋(𝑛−1)∈2Θ

[𝑚ℎ(𝑛−1)(𝑋(𝑛−1))⋅𝑅(𝑋(𝑛−2), 𝑋(𝑛−1))]

𝑚ℎ(𝑛−2)(𝐴) = 𝑚ℎ(𝑛−1)(𝐴),∀∣𝐴∣ < 𝑛− 2

(9)

𝑚ℎ(𝑛−2)(⋅) is the bba obtained at the second step of HPR
(𝑛− (𝑛− 2) = 2), the maximum focal element cardinality of
𝑚ℎ(𝑛−2) is 𝑛− 2.

This hierarchical proportional redistribution process can
be applied similarly (if one wants) to compute 𝑚ℎ(𝑛−3)(.),
𝑚ℎ(𝑛−4)(.), ..., 𝑚ℎ(2)(⋅), 𝑚ℎ(1)(⋅) with

𝑚ℎ(2)(𝑋(2)) = 𝑚(𝑋(2))+∑
𝑋(3)⊃𝑋(2)

𝑋(3),𝑋(2)∈2Θ

[𝑚ℎ(3)(𝑋(3)) ⋅𝑅(𝑋(2), 𝑋(3))]

𝑚ℎ(2)(𝐴) = 𝑚ℎ(3)(𝐴),∀∣𝐴∣ < 𝑛− 2

(10)

𝑚ℎ(2)(⋅) is the bba obtained at the first step of HPR (𝑛− 2),
the maximum focal element cardinality of 𝑚ℎ(2) is 2.

Mathematically, for any 𝑋(1) ∈ Θ, i.e. any 𝜃𝑖 ∈ Θ a
Bayesian belief function can be obtained by HPR approach
in deriving all possible steps of proportional redistributions of
partial ignorances in order to get

𝑚ℎ(1)(𝑋(1)) = 𝑚(𝑋(1))+∑
𝑋(2)⊃𝑋(1)

𝑋(1),𝑋(2)∈2Θ

[𝑚ℎ(2)(𝑋(2)) ⋅𝑅(𝑋(1), 𝑋(2))] (11)

In fact, 𝑚ℎ(1)(⋅) is a probability transformation, called here
the Hierarchical DSmP (HDSmP). Since 𝑋(𝑛) is unique and
corresponds only to the full ignorance 𝜃1 ∪ 𝜃2 ∪ . . . ∪ 𝜃𝑛, the
expression of 𝑚ℎ(𝑋(𝑛− 1)) in Eq.(10) just simplifies as

𝑚ℎ(𝑛−1)(𝑋(𝑛− 1)) = 𝑚ℎ(𝑋(𝑛− 1))+

𝑚(𝑋(𝑛)) ⋅𝑅(𝑋(𝑛− 1), 𝑋(𝑛)) (12)

Because of the full proportional redistribution of the masses
of uncertainties to the elements least specific involved in
these uncertainties, no mass of belief is lost during the step
by step hierarchical process and thus at any step of HPR,
the sum of masses of belief is kept to one, and of course the
Hierarchial DSmP also satisfies

∑
𝑋(1)∈2Θ 𝑚ℎ(𝑋(1)) = 1.

Remark: For some reasons depending of applications, it is
also possible to easily modify this HPR approach with little
effort into a constrained HPR version (CHPR for short) by
forcing the masses of some partial ignorances of cardinality
𝑘+1 to be (proportionally) redistributed back only to a subset
of the partial ignorances of cardinality 𝑘 included in them.
This possibility has not be detailed here due to space limitation
constraint and its little technical interest.

V. EXAMPLES

In this section we show in details how HPR can be applied
on very simple different examples. So let’s examine the
three following examples based on a simple 3D frame of
discernment Θ = {𝜃1, 𝜃2, 𝜃3} satisfying Shafer’s model.

A. Example 1

Let’s consider the following bba:

𝑚(𝜃1) = 0.10, 𝑚(𝜃2) = 0.17, 𝑚(𝜃3) = 0.03,

𝑚(𝜃1 ∪ 𝜃2) = 0.15, 𝑚(𝜃1 ∪ 𝜃3) = 0.20,

𝑚(𝜃2 ∪ 𝜃3) = 0.05, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30.

We apply the hierarchical proportional redistribution (HPR)
principle with 𝜖 = 0 in this example because there is no
mass of belief equal to zero. It can be verified that the result
obtained with small positive 𝜖 parameter remains (as expected)
numerically very close to that obtained with 𝜖 = 0.

The first step of HPR consists in redistributing back 𝑚(𝜃1∪
𝜃2∪𝜃3) = 0.30 committed to the full ignorance to the elements
𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3 only, because these elements
are the only elements of cardinality 2 that are included in
𝜃1 ∪ 𝜃2 ∪ 𝜃3. Applying the Eq. (8) with 𝑛 = 3, one gets when
𝑋(2) = 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃1 ∪ 𝜃2 the following masses.

𝑚ℎ(2)(𝜃1 ∪ 𝜃2) = 𝑚(𝜃1 ∪ 𝜃2) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃2, 𝑋(3))

= 0.15 + (0.30 ⋅ 0.375) = 0.2625

because 𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) = 0.15
0.15+0.20+0.05 = 0.375.

Similarly, one gets

𝑚ℎ(2)(𝜃1 ∪ 𝜃3) = 𝑚(𝜃1 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃3, 𝑋(3))

= 0.20 + (0.30 ⋅ 0.5) = 0.35
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because 𝑅(𝜃1 ∪ 𝜃3, 𝑋(3)) = 0.20
0.15+0.20+0.05 = 0.5, and also

𝑚ℎ(2)(𝜃2 ∪ 𝜃3) = 𝑚(𝜃2 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

= 0.05 + (0.30 ⋅ 0.125) = 0.0875

because 𝑅(𝜃2 ∪ 𝜃3, 𝑋(3)) = 0.05
0.15+0.20+0.05 = 0.125.

Now, we go to the next step of HPR principle and one
needs to redistribute the masses of partial ignorances 𝑋(2)
corresponding to 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3 back to the
singleton elements 𝑋(1) corresponding to 𝜃1, 𝜃2 and 𝜃3. We
use Eq. (11) for doing this as follows:

𝑚ℎ(1)(𝜃1) = 𝑚(𝜃1) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃3)

≈ 0.10 + (0.2625 ⋅ 0.3703) + (0.35 ⋅ 0.7692)
= 0.10 + 0.0972 + 0.2692 = 0.4664

because

𝑅(𝜃1, 𝜃1 ∪ 𝜃2) =
0.10

0.10 + 0.17
≈ 0.3703

𝑅(𝜃1, 𝜃1 ∪ 𝜃3) =
0.10

0.10 + 0.03
≈ 0.7692

Similarly, one gets

𝑚ℎ(1)(𝜃2) = 𝑚(𝜃2) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃2, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃2, 𝜃2 ∪ 𝜃3)

≈ 0.10 + (0.2625 ⋅ 0.6297) + (0.0875 ⋅ 0.85)
= 0.17 + 0.1653 + 0.0744 = 0.4097

because

𝑅(𝜃2, 𝜃1 ∪ 𝜃2) =
0.17

0.10 + 0.17
≈ 0.6297

𝑅(𝜃2, 𝜃2 ∪ 𝜃3) =
0.17

0.17 + 0.03
= 0.85

and also

𝑚ℎ(1)(𝜃3) = 𝑚(𝜃3) +𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃1 ∪ 𝜃3)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃2 ∪ 𝜃3)

≈ 0.03 + (0.35 ⋅ 0.2307) + (0.0875 ⋅ 0.15)
= 0.03 + 0.0808 + 0.0131 = 0.1239

because

𝑅(𝜃3, 𝜃1 ∪ 𝜃3) =
0.03

0.10 + 0.03
≈ 0.2307

𝑅(𝜃3, 𝜃2 ∪ 𝜃3) =
0.03

0.17 + 0.03
= 0.15

Hence, the result of final step of HPR is:

𝑚ℎ(1)(𝜃1) = 0.4664, 𝑚ℎ(1)(𝜃2) = 0.4097,

𝑚ℎ(1)(𝜃3) = 0.1239.

We can easily verify that

𝑚ℎ(1)(𝜃1) +𝑚ℎ(1)(𝜃2) +𝑚ℎ(1)(𝜃3) = 1.

1 2 3{ , , }   

1 2{ , }  1 3{ , }  2 3{ , }  

1{ } 2{ } 3{ } 

Step 1

Step 2

Figure 1. Illustration of Example 1

Table I
EXPERIMENTAL RESULTS OF HPR FOR EXAMPLE 1.

Focal elements
𝑚ℎ(𝑘)(⋅) - approximate baa
𝑘 = 3 𝑘 = 2 𝑘 = 1

𝜃1 0.1000 0.1000 0.4664
𝜃2 0.1700 0.1700 0.4097
𝜃3 0.0300 0.0300 0.1239
𝜃1 ∪ 𝜃2 0.1500 0.2625 0.0000
𝜃1 ∪ 𝜃3 0.2000 0.3500 0.0000
𝜃2 ∪ 𝜃3 0.0500 0.0875 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3000 0.0000 0.0000

The procedure can be illustrated in Fig. 1 below. The
approximate bba at each step with different maximum focal
elements’ cardinality are listed in Table I.

To compare our proposed HPR with the approach of 𝑘 −
𝑙 − 𝑥, we set the parameters of 𝑘 − 𝑙 − 𝑥 to obtain bba’s
with equal focal element number with HPR at each step. In
Example 1, for HPR at first step, it can obtain a bba with 6
focal elements. Thus we set 𝑘 = 𝑙 = 6, 𝑥 = 0.4 for 𝑘 − 𝑙 − 𝑥
to obtain a bba with 6 focal elements. Similarly, for HPR at
second step, it can obtain a bba with 3 focal elements. Thus
we set 𝑘 = 𝑙 = 3, 𝑥 = 0.4 for 𝑘−𝑙−𝑥. Based on the approach
of 𝑘 − 𝑙 − 𝑥, the results are in Table II.

Table II
EXPERIMENTAL RESULTS OF 𝑘 − 𝑙− 𝑥 FOR EXAMPLE 1

Focal elements
𝑚(⋅) obtained by 𝑘 − 𝑙− 𝑥
𝑘 = 𝑙 = 6 𝑘 = 𝑙 = 3

𝜃1 0.1031 0.0000
𝜃2 0.1753 0.2573
𝜃3 0.0000 0.0000
𝜃1 ∪ 𝜃2 0.1546 0.0000
𝜃1 ∪ 𝜃3 0.2062 0.2985
𝜃2 ∪ 𝜃3 0.0515 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3093 0.4478

B. Example 2

Let’s consider the following bba:

𝑚(𝜃1) = 0, 𝑚(𝜃2) = 0.17, 𝑚(𝜃3) = 0.13,

𝑚(𝜃1 ∪ 𝜃2) = 0.20, 𝑚(𝜃1 ∪ 𝜃3) = 0.20,

𝑚(𝜃2 ∪ 𝜃3) = 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30

The first step of HPR consists in redistributing back 𝑚(𝜃1∪
𝜃2∪𝜃3) = 0.30 committed to the full ignorance to the elements
𝜃1 ∪ 𝜃2, and 𝜃1 ∪ 𝜃3 only, because these elements are the only
elements of cardinality 2 that are included in 𝜃1 ∪ 𝜃2 ∪ 𝜃3.
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Applying Eq. (8) with 𝑛 = 3, one gets when 𝑋(2) = 𝜃1 ∪ 𝜃2,
𝜃1 ∪ 𝜃3 and 𝜃1 ∪ 𝜃2 the following masses

𝑚ℎ(2)(𝜃1 ∪ 𝜃2) = 𝑚(𝜃1 ∪ 𝜃2) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃2, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.5) = 0.35

because

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) =
0.20

0.20 + 0.20 + 0.00
= 0.5

Similarly, one gets

𝑚ℎ(2)(𝜃1 ∪ 𝜃3) = 𝑚(𝜃1 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃3, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.5) = 0.35

because

𝑅(𝜃1 ∪ 𝜃3, 𝑋(3)) =
0.20

0.20 + 0.20 + 0.00
= 0.5

and also

𝑚ℎ(2)(𝜃2 ∪ 𝜃3) = 𝑚(𝜃2 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

= 0.00 + (0.3 ⋅ 0.0) = 0.0

because

𝑅(𝜃2 ∪ 𝜃3, 𝑋(3)) =
0.0

0.20 + 0.20 + 0.00
= 0

Now, we go to the next step of HPR principle and one
needs to redistribute the masses of partial ignorances 𝑋(2)
corresponding to 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3 back to the
singleton elements 𝑋(1) corresponding to 𝜃1, 𝜃2 and 𝜃3. We
use Eq. (11) for doing this as follows:

𝑚ℎ(1)(𝜃1) = 𝑚(𝜃1) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃3)

≈ 0.00 + (0.35 ⋅ 0.00) + (0.35 ⋅ 0.00)
= 0.00 + 0.00 + 0.00 = 0.00

because

𝑅(𝜃1, 𝜃1 ∪ 𝜃2) =
0.00

0.00 + 0.17
= 0.00

𝑅(𝜃1, 𝜃1 ∪ 𝜃3) =
0.00

0.00 + 0.13
= 0.00

Similarly, one gets

𝑚ℎ(1)(𝜃2) = 𝑚(𝜃2) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃2, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃2, 𝜃2 ∪ 𝜃3)

≈ 0.17 + (0.35 ⋅ 1) + (0.00 ⋅ 0.5667)
= 0.17 + 0.35 + 0.00 = 0.52

because
𝑅(𝜃2, 𝜃1 ∪ 𝜃2) =

0.17

0.00 + 0.17
= 1

𝑅(𝜃2, 𝜃2 ∪ 𝜃3) =
0.17

0.17 + 0.13
≈ 0.5667

and also

𝑚ℎ(1)(𝜃3) = 𝑚(𝜃3) +𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃1 ∪ 𝜃3)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃2 ∪ 𝜃3)

≈ 0.13 + (0.35 ⋅ 1) + (0.00 ⋅ 0.4333)
= 0.13 + 0.35 + 0.00 = 0.48

because
𝑅(𝜃3, 𝜃1 ∪ 𝜃3) =

0.13

0.13 + 0.00
= 1

𝑅(𝜃3, 𝜃2 ∪ 𝜃3) =
0.13

0.17 + 0.13
≈ 0.4333

Hence, the result of final step of HPR is

𝑚ℎ(1)(𝜃1) = 0.00, 𝑚ℎ(1)(𝜃2) = 0.52, 𝑚ℎ(1)(𝜃3) = 0.48

and we can easily verify that

𝑚ℎ(1)(𝜃1) +𝑚ℎ(1)(𝜃2) +𝑚ℎ(1)(𝜃3) = 1.

The HPR procedure of Example 2 with 𝜖 = 0 is Fig. 2.

1 2 3{ , , }   

1 2{ , }  1 3{ , }  

1{ } 2{ } 3{ } 

Step 1

Step 2

Figure 2. Illustration of Example 2.

If one takes 𝜖 = 0, there is no mass that will be reassigned
to {𝜃2 ∪ 𝜃3} as illustrated in Fig. 2. But if one takes 𝜖 > 0,
HPR procedure of Example 2 is the same as that illustrated in
Fig. 1, i.e., there also exist masses redistributed to {𝜃2 ∪ 𝜃3}
as illustrated in Fig. 1. That’s the difference between Fig. 1
and Fig. 2.

Suppose that 𝜖 = 0.001, the HPR calculation procedure is
as follows.

The first step of HPR consists in distributing back 𝑚(𝜃1 ∪
𝜃2∪𝜃3) = 0.30 committed to the full ignorance to the elements
𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3. Applying the Eq. (8) with 𝑛 = 3,
one gets when 𝑋(2) = 𝜃1∪𝜃2, 𝜃1∪𝜃3 and 𝜃1∪𝜃2 the following
masses

𝑚ℎ(2)(𝜃1 ∪ 𝜃2) = 𝑚(𝜃1 ∪ 𝜃2) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃2, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.4963) = 0.3489

because

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) =
0.20 + 0.001 ⋅ 3

(0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3)
= 0.4963

𝑚ℎ(2)(𝜃1 ∪ 𝜃3) = 𝑚(𝜃1 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃3, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.4963) = 0.3489
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because

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) =
0.20 + 0.001 ⋅ 3

(0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3)
= 0.4963

𝑚ℎ(2)(𝜃2 ∪ 𝜃3) = 𝑚(𝜃2 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

= 0.00 + (0.3 ⋅ 0.0073) = 0.0022

because

𝑅(𝜃2 ∪ 𝜃3, 𝑋(3)) =
0.001 ⋅ 3

(0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3)
= 0.0073

Now, we go to the next step of HPR principle and one
needs to redistribute the masses of partial ignorances 𝑋(2)
corresponding to 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3 back to the
singleton elements 𝑋(1) corresponding to 𝜃1, 𝜃2 and 𝜃3. We
use Eq. (11) for doing this as follows:

𝑚ℎ(1)(𝜃1) = 𝑚(𝜃1) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃3)

≈ 0.00 + (0.3489 ⋅ 0.0115) + (0.3489 ⋅ 0.0149)
= 0.00 + 0.0040 + 0.0052 = 0.0092

because

𝑅(𝜃1, 𝜃1 ∪ 𝜃2) =
0.00 + 0.001 ⋅ 2

(0.00 + 0.001 ⋅ 2) + (0.17 + 0.001 ⋅ 2)
= 0.0115

𝑅(𝜃1, 𝜃1 ∪ 𝜃3) =
0.00 + 0.001 ⋅ 2

(0.00 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2)
= 0.0149

Similarly, one gets

𝑚ℎ(1)(𝜃2) = 𝑚(𝜃2) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃2, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃2, 𝜃2 ∪ 𝜃3)

≈ 0.17 + (0.3489 ⋅ 0.9885) + (0.0022 ⋅ 0.5658)
= 0.17 + 0.3449 + 0.0012 = 0.5161

because

𝑅(𝜃2, 𝜃1 ∪ 𝜃2) =
0.17 + 0.001 ⋅ 2

(0.00 + 0.001 ⋅ 2) + (0.17 + 0.001 ⋅ 2)
= 0.9885

𝑅(𝜃2, 𝜃2 ∪ 𝜃3) =
0.17 + 0.001 ⋅ 2

(0.17 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2)
≈ 0.5658

and also

𝑚ℎ(1)(𝜃3) = 𝑚(𝜃3) +𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃1 ∪ 𝜃3)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃2 ∪ 𝜃3)

≈ 0.13 + (0.3489 ⋅ 0.9851) + (0.0022 ⋅ 0.4342)
= 0.13 + 0.3437 + 0.0009 = 0.4746

because

𝑅(𝜃3, 𝜃1 ∪ 𝜃3) =
0.13 + 0.001 ⋅ 2

(0.13 + 0.001 ⋅ 2) + (0.00 + 0.001 ⋅ 2)
= 0.9851

𝑅(𝜃3, 𝜃2 ∪ 𝜃3) =
0.13 + 0.001 ⋅ 2

(0.17 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2)
≈ 0.4342

Hence, the final result of HPR approximation is

𝑚ℎ(1)(𝜃1) = 0.0092, 𝑚ℎ(1)(𝜃2) = 0.5161,

𝑚ℎ(1)(𝜃3) = 0.4746

and we can easily verify that

𝑚ℎ(1)(𝜃1) +𝑚ℎ(1)(𝜃2) +𝑚ℎ(1)(𝜃3) = 1.

The bba’s obtained in each step are listed in Table III (𝜖 = 0)
and Table IV (𝜖 = 0.001)

Table III
EXPERIMENTAL RESULTS OF HPR FOR EXAMPLE 2 (𝜖 = 0.001)

Focal elements
𝑚ℎ(𝑘)(⋅) - approximate baa
𝑘 = 3 𝑘 = 2 𝑘 = 1

𝜃1 0.0000 0.0000 0.0000
𝜃2 0.1700 0.1700 0.5200
𝜃3 0.1300 0.1300 0.4800
𝜃1 ∪ 𝜃2 0.2000 0.3500 0.0000
𝜃1 ∪ 𝜃3 0.2000 0.3500 0.0000
𝜃2 ∪ 𝜃3 0.0000 0.0000 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3000 0.0000 0.0000

Table IV
EXPERIMENTAL RESULTS OF HPR FOR EXAMPLE 2 (𝜖 = 0.001)

Focal elements
𝑚ℎ(𝑘)(⋅) - approximate baa
𝑘 = 3 𝑘 = 2 𝑘 = 1

𝜃1 0.0000 0.0000 0.0092
𝜃2 0.1700 0.1700 0.5141
𝜃3 0.1300 0.1300 0.4746
𝜃1 ∪ 𝜃2 0.2000 0.3489 0.0000
𝜃1 ∪ 𝜃3 0.2000 0.3489 0.0000
𝜃2 ∪ 𝜃3 0.0000 0.0022 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3000 0.0000 0.0000

When using 𝑘− 𝑙−𝑥 approach, the results are in Table V.

Table V
EXPERIMENTAL RESULTS OF 𝑘 − 𝑙− 𝑥 FOR EXAMPLE 2

Focal elements
𝑚(⋅) obtained by 𝑘 − 𝑙− 𝑥
𝑘 = 𝑙 = 6 𝑘 = 𝑙 = 3

𝜃1 0.0000 0.0000
𝜃2 0.1700 0.0000
𝜃3 0.1300 0.0000
𝜃1 ∪ 𝜃2 0.2000 0.2857
𝜃1 ∪ 𝜃3 0.2000 0.2857
𝜃2 ∪ 𝜃3 0.0000 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3000 0.4286
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C. Example 3

Let’s consider the following bba:

𝑚(𝜃1) = 0, 𝑚(𝜃2) = 0, 𝑚(𝜃3) = 0.70,

𝑚(𝜃1 ∪ 𝜃2) = 0, 𝑚(𝜃1 ∪ 𝜃3) = 0,

𝑚(𝜃2 ∪ 𝜃3) = 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30

In this example, the mass assignments for all the focal ele-
ments with cardinality size 2 equal to zero. For HPR, when
𝜖 > 0, 𝑚(𝜃2 ∪ 𝜃3) will be divided equally and redistributed to
{𝜃1 ∪ 𝜃2}, {𝜃1 ∪ 𝜃3} and {𝜃2 ∪ 𝜃3}. Because the ratios are

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) = 𝑅(𝜃1 ∪ 𝜃3, 𝑋(3)) = 𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

=
0.00 + 0.001 ⋅ 3

(0.00 + 0.001 ⋅ 3) ⋅ 3 = 0.3333

For HPR, when 𝜖 = 0, it can not be executed directly. This
can show the necessity for the using of 𝜖.

The bba’s obtained through HPR𝜖=0.001 at different steps
are listed in Table VI

Table VI
EXPERIMENTAL RESULTS OF HPR FOR EXAMPLE 3 (𝜖 = 0.001)

Focal elements
𝑚ℎ(𝑘)(⋅) - approximate baa
𝑘 = 3 𝑘 = 2 𝑘 = 1

𝜃1 0.0000 0.0000 0.0503
𝜃2 0.0000 0.0000 0.0503
𝜃3 0.7000 0.7000 0.8994
𝜃1 ∪ 𝜃2 0.0000 0.1000 0.0000
𝜃1 ∪ 𝜃3 0.0000 0.1000 0.0000
𝜃2 ∪ 𝜃3 0.0000 0.1000 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3000 0.0000 0.0000

When using 𝑘− 𝑙−𝑥 approach, the results are in Table VII.

Table VII
EXPERIMENTAL RESULTS OF 𝑘 − 𝑙 − 𝑥 FOR EXAMPLE 3

Focal elements
𝑚(⋅) obtained by 𝑘 − 𝑙 − 𝑥
𝑘 = 𝑙 = 6 𝑘 = 𝑙 = 3

𝜃1 0.0000 0.0000
𝜃2 0.0000 0.0000
𝜃3 0.7000 0.7000
𝜃1 ∪ 𝜃2 0.0000 0.0000
𝜃1 ∪ 𝜃3 0.0000 0.0000
𝜃2 ∪ 𝜃3 0.0000 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.3000 0.3000

D. Example 4 (vacuous bba)

Let’s consider the following bba:

𝑚(𝜃1) = 0, 𝑚(𝜃2) = 0, 𝑚(𝜃3) = 0,

𝑚(𝜃1 ∪ 𝜃2) = 0, 𝑚(𝜃1 ∪ 𝜃3) = 0,

𝑚(𝜃2 ∪ 𝜃3) = 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 1

In this example, the mass assignments for all the focal el-
ements with cardinality size less than 3 equal to zero. For
HPR, when 𝜖 > 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) will be divided equally
and redistributed to {𝜃1 ∪ 𝜃2}, {𝜃1 ∪ 𝜃3} and {𝜃2 ∪ 𝜃3}.

Similarly, the mass assignments for focal elements with
cardinality of 2 obtained in intermediate step will be divided
equally and redistributed to singletons. This is due to 𝜖 > 0.

For HPR, when 𝜖 = 0, it can not be executed directly. This
can show the necessity for the using of 𝜖. The bba’s obtained
through HPR𝜖=0.001 at different steps are listed in Table VIII.

Table VIII
EXPERIMENTAL RESULTS OF HPR FOR EXAMPLE 4 (𝜖 = 0.001)

Focal elements
𝑚ℎ(𝑘)(⋅) - approximate baa
𝑘 = 3 𝑘 = 2 𝑘 = 1

𝜃1 0.0000 0.0000 0.3333
𝜃2 0.0000 0.0000 0.3333
𝜃3 0.0000 0.0000 0.3333
𝜃1 ∪ 𝜃2 0.0000 0.3333 0.0000
𝜃1 ∪ 𝜃3 0.0000 0.3333 0.0000
𝜃2 ∪ 𝜃3 0.0000 0.3333 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 1.0000 0.0000 0.0000

When using 𝑘− 𝑙−𝑥 approach, the results are in Table IX.
Table IX

EXPERIMENTAL RESULTS OF 𝑘 − 𝑙− 𝑥 FOR EXAMPLE 3

Focal elements
𝑚(⋅) obtained by 𝑘 − 𝑙− 𝑥
𝑘 = 𝑙 = 6 𝑘 = 𝑙 = 3

𝜃1 0.0000 0.0000
𝜃2 0.0000 0.0000
𝜃3 0.0000 0.0000
𝜃1 ∪ 𝜃2 0.0000 0.0000
𝜃1 ∪ 𝜃3 0.0000 0.0000
𝜃2 ∪ 𝜃3 0.0000 0.0000
𝜃1 ∪ 𝜃2 ∪ 𝜃3 1.0000 1.0000

From the results of Example 1 – Example 4, we can see
that based on 𝑘 − 𝑙 − 𝑥, the users can control the number of
focal elements but can not control the maximum cardinality
of focal elements. Although based on 𝑘 − 𝑙 − 𝑥, the number
of focal elements can be reduced, the focal elements with big
cardinality might also be remained. This is not good for further
reducing computational cost and not good for human to catch
the meaning.

E. Example 5

More generally, an approximation method 1 (giving 𝑚1(.))
is considered better than a method 2 (giving 𝑚2(.)) if both
conditions are fulfilled: 1) if Jousselme’s distance of 𝑚1(.)
to original bba 𝑚(.) is smaller than the distance of 𝑚2(.)
to original bba 𝑚(.), i.e. 𝑑(𝑚1,𝑚) < 𝑑(𝑚2,𝑚); 2) if the
approximate non-specificity value 𝑈(𝑚1) is closer (and lower)
to the true non-specificity value 𝑈(𝑚) than 𝑈(𝑚2), where
Jousselme’s distance is defined in [16], and non-specificity
[17] is given by 𝑈(𝑚) =

∑
𝐴⊆Θ

𝑚(𝐴) log2 ∣𝐴∣.

In this example, we make a comparison between HPR
(method 1) and 𝑘-additive approach (method 2). We consider
the FoD Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5} and we generate randomly
𝐿 = 30 bba’s by using the algorithm given below [15]:

Input: Θ : Frame of discernment;
𝑁𝑚𝑎𝑥: Maximum number of focal elements
Output: 𝐵𝑒𝑙: Belief function (under the form of a bba, 𝑚)
Generate the power set of Θ: 𝒫(Θ);
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Generate a random permutation of 𝒫(Θ) → ℛ(Θ);
Generate a integer between 1 and 𝑁𝑚𝑎𝑥 → 𝑘;
FOReach First 𝑘 elements of ℛ(Θ) do
Generate a value within [0, 1] → 𝑚′

𝑘;
END Normalize the vector 𝑚′(.) = [𝑚′

1, ...,𝑚
′
𝑘] → 𝑚(.)

(that is 𝑚(𝐴𝑘) = 𝑚𝑘);
Algorithm 1: Random generation of bba.

We compute and plot 𝑑(𝑚𝑗
1,𝑚), 𝑑(𝑚𝑗

2,𝑚), 𝑈(𝑚), 𝑈(𝑚𝑗
1)

and 𝑈(𝑚𝑗
2) for several levels of approximation for 𝑗 =

1, 2, . . . , 𝐿 (where 𝑗 is the index of the Monte-Carlo run). The
results are shown in Fig. 3 and indicate clearly the superiority
of HPR over the 𝑘-additive approach.
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Figure 3. Illustration of Example 5.

We further use the Normalized Mean Square Error (NMSE)
statistics defined by

𝑁𝑀𝑆𝐸𝑖 =
1

𝐿

𝐿∑
𝑗=1

(𝑈(𝑚𝑗
𝑖 )− 𝑈(𝑚))

2

Var(�⃗�𝑖)
(13)

to evaluate the global quality of the approximation of the non-
specificity by HPR (if 𝑖 = 1) and by 𝑘-additive method (if 𝑖 =
2). �⃗�𝑖 = [𝑒1𝑖 , . . . , 𝑒

𝑗
𝑖 , . . . , 𝑒

𝐿
𝑖 ] is the approximation error vector

of method #i where 𝑒𝑗𝑖 = 𝑈(𝑚𝑗
𝑖 ) − 𝑈(𝑚), for 𝑗 = 1, ..., 𝐿.

Var(�⃗�𝑖) is the variance of �⃗�𝑖. The NMSE results are given in
Table X below.

Table X
NMSE RESULTS OF EXAMPLE 5

Max size of focal element 4 3 2
k-additive method 3.9003 21.8118 69.0191
HPR method 3.9003 19.0264 61.9468

Table X shows that HPR outperforms 𝑘-additive method
since it provides a lower NMSE, which means that in terms
of information loss, HPR is better (it generates less loss) than
the 𝑘-additive approximation method.

VI. CONCLUSIONS

We have proposed a new interesting and useful hierarchical
method, called HPR, to approximate any bba. The non-
specificity degree can be easily controlled by the user. Some
examples were provided to show how HPR works, and to show
its rationality and advantage in comparison with some well-
known bba approximation approaches. In future works, we
will compare this HPR method with more bba approximation
methods. In this paper, we have used only the distance of
evidence and non-specificity as performance criteria. We plan
to develop a more efficient evaluation criteria for capturing
more aspects of the information expressed in a bba to measure
the global performances of a method, and to design a better
bba approximation approach (if possible).
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Hierarchical DSmP Transformation for Decision-Making 
under Uncertainty

Jean Dezert
Deqiang Han
Zhun-ga Liu 

Jean-Marc Tacnet

Abstract—Dempster-Shafer evidence theory is widely used for
approximate reasoning under uncertainty; however, the decision-
making is more intuitive and easy to justify when made in
the probabilistic context. Thus the transformation to approx-
imate a belief function into a probability measure is crucial
and important for decision-making based on evidence theory
framework. In this paper we present a new transformation of
any general basic belief assignment (bba) into a Bayesian belief
assignment (or subjective probability measure) based on new
proportional and hierarchical principle of uncertainty reduction.
Some examples are provided to show the rationality and efficiency
of our proposed probability transformation approach.
Keywords: Belief functions, probabilistic transformation,
DSmP, uncertainty, decision-making.

I. INTRODUCTION

Dempster-Shafer evidence theory (DST) [1] proposes a
mathematical framework for approximate reasoning under
uncertainty thanks to belief functions. Thus it is widely used in
many fields of information fusion. As any theory, DST is not
exempt of drawbacks and limitations, like its inconsistency
with the probability calculus, its complexity and the miss
of a clear decision-making process. Aside these weaknesses,
the use of belief functions remains flexible and appealing
for modeling and dealing with uncertain and imprecise in-
formation. That is why several modified models and rules of
combination of belief functions were proposed to resolve some
of the drawbacks of the original DST. Among the advances
in belief function theories, one can underline the transferable
belief model (TBM) [2] proposed by Smets, and more recently
the DSmT [3] proposed by Dezert and Smarandache.

The ultimate goal of approximate reasoning under uncer-
tainty is usually the decision-making. Although the decision-
making can be done based on evidence expressed by a belief
function [4], the decision-making is better established in a
probabilistic context: decisions can be evaluated by assessing
their ability to provide a winning strategy on the long run in a
game theory context, or by maximizing return in a utility the-
ory framework. Thus to take a decision, it is usually preferred
to transform (approximate) a belief function into a probability
measure. So the quality of such probability transformation
is crucial for the decision-making in the evidence theory.
The research on probability transformation has attracted more
attention in recent years.

The classical probability transformation in evidence theory
is the pignistic probability transformation (PPT) [2] in TBM.
TBM has two levels: the credal level, and the pignistic level.
Beliefs are entertained, combined and updated at the credal
level while the decision making is done at the pignistic level.
PPT maps the beliefs defined on subsets to the probability
defined on singletons. In PPT, belief assignments for a com-
pound focal element are equally assigned to the singletons
included. In fact, PPT is designed according to the principle
of minimal commitment, which is somehow related with
uncertainty maximization.

Other researchers also proposed some modified probability
transformation approaches [5]–[13] to assign the belief assign-
ments of compound focal elements to the singletons according
to some ratio constructed based on some available information.
The representative transformations include Sudano’s probabil-
ity transformations [8] and Cuzzolin’s intersection probability
transformation [13], etc. In the framework of DSmT, another
probability transformation approach was proposed, which is
called DSmP [9]. DSmP takes into account both the values
of the masses and the cardinality of focal elements in the
proportional redistribution process. DSmP can also be used in
both DSmT and DST. For a probability transformation, it is
always evaluated by using probabilistic information content
(PIC) [5] (PIC being the dual form of Shannon entropy),
although it is not enough or comprehensive [14]. A probabil-
ity transformation providing a high probabilistic information
content (PIC) is preferred in fact for decision-making since
naturally it is always easier to take a decision when the
uncertainty is reduced.

In this paper we propose a new probability transformation,
which can output a probability with high but not exagger-
ated PIC. The new approach, called HDSmP (standing for
Hierarchical DSmP) is implemented hierarchically and it fully
utilize the information provided by a given belief function.
Succinctly, for a frame of discernment (FOD) with size 𝑛, for
𝑘 = 𝑛 down to 𝑘 = 2, the following step is repeated: the belief
assignment of a focal element with size 𝑘 is proportionally
redistributed to the focal elements with size 𝑘 − 1. The
proportion is defined by the ratio among mass assignments of
focal elements with size 𝑘−1. A parameter 𝜖 is introduced in
the formulas to avoid division by zero and warranty numerical

Originally published as Dezert J., Han D., Liu Z., Tacnet J.-M., Hierarchical 
DSmP transformation for decision-making under uncertainty, in Proc. of 

Fusion 2012, Singapore, July 2012, and reprinted with permission.
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robustness of the result. HDSmP corresponds to the last step
of the hierarchical proportional redistribution method for basic
belief assignment (bba) approximation presented briefly in
[16] and in more details in [17]. Some examples are given at
the end of this paper to illustrate our proposed new probability
transformation approach. Comparisons of our new HDSmP
approach with the other well-known approaches with related
analyses are also provided.

II. EVIDENCE THEORY AND PROBABILITY
TRANSFORMATIONS

A. Brief introduction of evidence theory

In Dempster-Shafer theory [1], the elements in the frame of
discernment (FOD) Θ are mutually exclusive. Suppose that 2Θ

represents the powerset of FOD, and one defines the function
𝑚 : 2Θ → [0, 1] as the basic belief assignment (bba), also
called mass function satisfying:∑

𝐴⊆Θ
𝑚(𝐴) = 1, 𝑚(∅) = 0 (1)

Belief function (𝐵𝑒𝑙) and plausibility function (𝑃𝑙) are
defined below, respectively:

𝐵𝑒𝑙(𝐴) =
∑

𝐵⊆𝐴
𝑚(𝐵) (2)

𝑃𝑙(𝐴) =
∑

𝐴∩𝐵 ∕=∅ 𝑚(𝐵) (3)

Suppose that 𝑚1,𝑚2, ...,𝑚𝑛 are 𝑛 mass functions, Dempster’s
rule of combination is defined in (4):

𝑚(𝐴) =

⎧⎨⎩
0, 𝐴 = ∅∑
∩𝐴𝑖=𝐴

∏
1≤𝑖≤𝑛

𝑚𝑖(𝐴𝑖)∑
∩𝐴𝑖 ∕=∅

∏
1≤𝑖≤𝑛

𝑚𝑖(𝐴𝑖)
, 𝐴 ∕= ∅ (4)

Dempster’s rule of combination is used in DST to accom-
plish the fusion of bodies of evidence (BOEs). However, the
final goal for decision-level information fusion is decision
making. The beliefs should be transformed into probabilities,
before the probability-based decision-making. Although there
are also some research works on making decision directly
based on belief function or bba [4], probability-based decision
methods are more intuitive and have become the current
trend to decide under uncertainty from approximate reasoning
theories [15]. Some existing and well-known probability trans-
formation approaches are briefly reviewed in the next section.

B. Probability transformations used in DST framework

A probability transformation (or briefly a “probabilization”)
is a mapping 𝑃𝑇 : 𝐵𝑒𝑙Θ → 𝑃Θ, where 𝐵𝑒𝑙Θ means
the belief function defined on Θ and 𝑃Θ represents a
probability measure (in fact a probability mass function,
pmf) defined on Θ. Thus the probability transformation
assigns a Bayesian belief function (i.e. probability measure)
to any general (i.e. non-Bayesian) belief function. It is a
reason why the transformations from belief functions to
probability distributions are sometimes called also Bayesian
transformations.

The major probability transformation approaches used so
far are:

a) Pignistic transformation
The classical pignistic probability was proposed by Smets

[2] in his TBM framework which is a subjective and a non-
probabilistic interpretation of DST. It extends the evidence
theory to the open-world propositions and it has a range of
tools including discounting and conditioning to handle belief
functions. At the credal level of TBM, beliefs are entertained,
combined and updated. While at the pignistic level, beliefs are
used to make decisions by resorting to pignistic probability
transformation (PPT). The pignistic probability obtained is
always called betting commitment probability (in short, BetP).
The basic idea of pignistic transformation consists of trans-
ferring the positive belief of each compound (or nonspecific)
element onto the singletons involved in that compound element
split by the cardinality of the proposition when working with
normalized bba’s.

Suppose that Θ = {𝜃1, 𝜃2, ..., 𝜃𝑛} is the FOD. The PPT for
the singletons is defined as [2]:

BetP𝑚(𝜃𝑖) =
∑

𝜃𝑖∈𝐵, 𝐵∈2Θ

𝑚(𝐵)

∣𝐵∣ (5)

PPT is designed according to an idea similar to uncertainty
maximization. In PPT, masses are not assigned discriminately
to different singletons involved. For information fusion, the
aim is to reduce the degree of uncertainty and to gain a more
consolidated and reliable decision result. High uncertainty in
PPT might not be helpful for the decision. To overcome this,
some typical modified probability transformation approaches
were proposed which are summarized below.

b) Sudano’s probabilities
Sudano [8] proposed Probability transformation propor-

tional to Plausibilities (PrPl), Probability transformation pro-
portional to Beliefs (PrBel), Probability transformation pro-
portional to the normalized Plausibilities (PrNPl), Probability
transformation proportional to all Plausibilities (PraPl) and
Hybrid Probability transformation (PrHyb), respectively. As
suggested by their names, different kinds of mappings were
used. For the belief function defined on the FOD Θ =
{𝜃1, ..., 𝜃𝑛}, they are respectively defined by

PrPl(𝜃𝑖) = 𝑃𝑙({𝜃𝑖}) ⋅
∑

𝑌 ∈2Θ,𝜃𝑖∈𝑌

𝑚(𝑌 )∑
∪𝑗𝜃𝑗=𝑌

𝑃𝑙({𝜃𝑗}) (6)

PrBel(𝜃𝑖) = 𝐵𝑒𝑙({𝜃𝑖}) ⋅
∑

𝑌 ∈2Θ,𝜃𝑖∈𝑌

𝑚(𝑌 )∑
∪𝑗𝜃𝑗=𝑌

𝐵𝑒𝑙({𝜃𝑗}) (7)

PrNPl(𝜃𝑖) =
𝑃𝑙({𝜃𝑖})∑
𝑗

𝑃𝑙({𝜃𝑗}) (8)

PraPl(𝜃𝑖) = 𝐵𝑒𝑙({𝜃𝑖}) +
1−∑

𝑗 𝐵𝑒𝑙({𝜃𝑗})∑
𝑗 𝑃𝑙({𝜃𝑗}) ⋅ 𝑃𝑙({𝜃𝑖}) (9)
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PrHyb(𝜃𝑖) = PraPl(𝜃𝑖) ⋅
∑

𝑌 ∈2Θ,𝜃𝑖∈𝑌

𝑚(𝑌 )∑
∪𝑗𝜃𝑗=𝑌

PraPl(𝜃𝑗)
(10)

c) Cuzzolin’s intersection probability
From a geometric interpretation of Dempster’s rule of

combination, an intersection probability measure was proposed
by Cuzzolin [12] from the proportional repartition of the
total nonspecific mass (TNSM) for each contribution of the
nonspecific masses involved.

CuzzP(𝜃𝑖) = 𝑚({𝜃𝑖}) + 𝑃𝑙({𝜃𝑖})−𝑚({𝜃𝑖})∑
𝑗 (𝑃𝑙({𝜃𝑗})−𝑚({𝜃𝑗})) ⋅ TNSM (11)

where

TNSM = 1−
∑

𝑗
𝑚({𝜃𝑗}) =

∑
𝐴∈2Θ,∣𝐴∣>1

𝑚(𝐴) (12)

d) DSmP transformation
DSmP proposed recently by Dezert and Smarandache is

defined as follows:

DSmP𝜖(𝜃𝑖) = 𝑚({𝜃𝑖})
+ (𝑚({𝜃𝑖}) + 𝜖) ⋅

∑
𝑋∈2Θ

𝜃𝑖⊂𝑋
∣𝑋∣≥2

𝑚(𝑋)∑
𝑌 ∈2Θ

𝑌⊂𝑋
∣𝑌 ∣=1

𝑚(𝑌 ) + 𝜖 ⋅ ∣𝑋∣ (13)

In DSmP, both the mass assignments and the cardinality
of focal elements are used in the proportional redistribution
process. The parameter of 𝜖 is used to adjust the effect of
focal element’s cardinality in the proportional redistribution,
and to make DSmP defined and computable when encoun-
tering zero masses. DSmP made an improvement compared
with Sudano’s, Cuzzolin’s and PPT formulas, in that DSmP
mathematically makes a more judicious redistribution of the
ignorance masses to the singletons involved and thus increases
the PIC level of the resulting approximation. Moreover, DSmP
works for both theories of DST and DSmT.

There are still some other definitions on modified PPT such
as the iterative and self-consistent approach PrScP proposed
by Sudano in [5], and a modified PrScP in [11]. Although
the aforementioned probability transformation approaches are
different, they are all evaluated according to the degree of
uncertainty. The classical evaluation criteria for a probability
transformation are the following ones:

1) Normalized Shannon Entropy
Suppose that 𝑃 (𝜃) is a probability mass function (pmf),

where 𝜃 ∈ Θ, ∣Θ∣ = 𝑁 and the ∣Θ∣ represents the cardinality
of the FOD Θ. An evaluation criterion for the pmf obtained
from different probability transformation is as follows [12]:

EH =

− ∑
𝜃∈Θ

𝑃 (𝜃) log2(𝑃 (𝜃))

log2 𝑁
(14)

i.e., the ratio of Shannon entropy and the maximum of
Shannon entropy for {𝑃 (𝜃)∣𝜃 ∈ Θ},∣Θ∣ = 𝑁 . Clearly EH

is normalized. The larger EH is, the larger the degree of

uncertainty is. The smaller EH is, the smaller the degree
of uncertainty is. When EH= 0, one hypothesis will have
probability 1 and the rest with zero probabilities. Therefore
the agent or system can make decision without error. When
EH= 1, it is impossible to make a correct decision, because
𝑃 (𝜃), for all 𝜃 ∈ Θ are equal.

2) Probabilistic Information Content
Probabilistic Information Content (PIC) criterion [5] is an

essential measure in any threshold-driven automated decision
system. The PIC value of a pmf obtained from a probability
transformation indicates the level of the total knowledge one
has to draw a correct decision.

PIC(𝑃 ) = 1 +
1

log2 𝑁
⋅
∑
𝜃∈Θ

𝑃 (𝜃) log2(𝑃 (𝜃)) (15)

Obviously, PIC = 1 − EH. The PIC is the dual of the
normalized Shannon entropy. A PIC value of zero indicates
that the knowledge to take a correct decision does not exist (all
hypotheses have equal probabilities, i.e., one has the maximal
entropy).

Less uncertainty means that the corresponding probability
transformation result is better to help to take a decision.
According to such a simple and basic idea, the probability
transformation approach should attempt to enlarge the belief
differences among all the propositions and thus to achieve a
more reliable decision result.

III. THE HIERARCHICAL DSMP TRANSFORMATION

In this paper, we propose a novel probability transformation
approach called hierarchical DSmP (HDSmP), which provides
a new way to reduce step by step the mass committed to
uncertainties until to obtain an approximate measure of
subjective probability, i.e. a so-called Bayesian bba in [1]. It
must be noticed that this procedure can be stopped at any
step in the process and thus it allows to reduce the number
of focal elements in a given bba in a consistent manner to
diminish the size of the core of a bba and thus reduce the
complexity (if needed) when applying also some complex
rules of combinations. We present here the general principle
of hierarchical and proportional reduction of uncertainties
in order to finally obtain a Bayesian bba. The principle of
redistribution of uncertainty to more specific elements of the
core at any given step of the process follows the proportional
redistribution already proposed in the (non hierarchical)
DSmP transformation proposed recently in [3].

Let’s first introduce two new notations for convenience and
for concision:

1) Any element of cardinality 1 ≤ 𝑘 ≤ 𝑛 of the power
set 2Θ will be denoted, by convention, by the generic
notation 𝑋(𝑘). For example, if Θ = {𝐴,𝐵,𝐶}, then
𝑋(2) denotes the following partial uncertainties 𝐴∪𝐵,
𝐴∪𝐶 or 𝐵∪𝐶, and 𝑋(3) denotes the total uncertainty
𝐴 ∪𝐵 ∪ 𝐶.

2) The proportional redistribution factor (ratio) of width 𝑠
involving elements 𝑌 and 𝑋 of the powerset is defined
as (for 𝑋 ∕= ∅ and 𝑌 ∕= ∅)
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𝑅𝑠(𝑌,𝑋) ≜ 𝑚(𝑌 ) + 𝜖 ⋅ ∣𝑋∣∑
𝑌 ⊂𝑋

∣𝑋∣−∣𝑌 ∣=𝑠
(𝑚(𝑌 ) + 𝜖 ⋅ ∣𝑋∣) (16)

where 𝜖 is a small positive number introduced here to
deal with particular cases where

∑
𝑌⊂𝑋

∣𝑋∣−∣𝑌 ∣=𝑠
𝑚(𝑌 ) = 0.

In HDSmP, we just need to use the proportional redis-
tribution factors of width 𝑛 = 1, and so we will just
denote 𝑅(𝑌,𝑋) ≜ 𝑅1(𝑌,𝑋) by convention.

The HDSmP transformation is obtained by a step by step
(recursive) proportional redistribution of the mass 𝑚(𝑋(𝑘))
of a given uncertainty 𝑋(𝑘) (partial or total) of cardinality
2 ≤ 𝑘 ≤ 𝑛 to all the least specific elements of cardinality
𝑘 − 1, i.e. to all possible 𝑋(𝑘 − 1), until 𝑘 = 2 is reached.
The proportional redistribution is done from the masses of
belief committed to 𝑋(𝑘 − 1) as done classically in DSmP
transformation. Mathematically, HDSmP is defined for any
𝑋(1) ∈ Θ, i.e. any 𝜃𝑖 ∈ Θ by

𝐻𝐷𝑆𝑚𝑃 (𝑋(1)) = 𝑚(𝑋(1))+∑
𝑋(2)⊃𝑋(1)

𝑋(1),𝑋(2)∈2Θ

[𝑚ℎ(𝑋(2)) ⋅𝑅(𝑋(1), 𝑋(2))] (17)

where the ”hierarchical” masses 𝑚ℎ(.) are recursively (back-
ward) computed as follows:

𝑚ℎ(𝑋(𝑛− 1)) = 𝑚(𝑋(𝑛− 1))+∑
𝑋(𝑛)⊃𝑋(𝑛−1)

𝑋(𝑛),𝑋(𝑛−1)∈2Θ

[𝑚(𝑋(𝑛)) ⋅𝑅(𝑋(𝑛− 1), 𝑋(𝑛))]

𝑚ℎ(𝐴) = 𝑚(𝐴),∀∣𝐴∣ < 𝑛− 1

(18)

𝑚ℎ(𝑋(𝑛− 2)) = 𝑚(𝑋(𝑛− 2))+∑
𝑋(𝑛−1)⊃𝑋(𝑛−2)

𝑋(𝑛−2),𝑋(𝑛−1)∈2Θ

[𝑚ℎ(𝑋(𝑛− 1)) ⋅𝑅(𝑋(𝑛− 2), 𝑋(𝑛− 1))]

𝑚ℎ(𝐴) = 𝑚(𝐴),∀∣𝐴∣ < 𝑛− 2

...
(19)

𝑚ℎ(𝑋(2)) = 𝑚(𝑋(2))+∑
𝑋(3)⊃𝑋(2)

𝑋(3),𝑋(2)∈2Θ

[𝑚ℎ(𝑋(3)) ⋅𝑅(𝑋(2), 𝑋(3))]

𝑚ℎ(𝐴) = 𝑚(𝐴),∀∣𝐴∣ < 2

(20)

Actually, it is worth to note that 𝑋(𝑛) is in fact unique and
it corresponds only to the full ignorance 𝜃1 ∪ 𝜃2 ∪ . . . ∪ 𝜃𝑛.
Therefore, the expression of 𝑚ℎ(𝑋(𝑛 − 1)) in Eq. (18) just
simplifies as

𝑚ℎ(𝑋(𝑛−1)) = 𝑚(𝑋(𝑛−1))+𝑚(𝑋(𝑛))⋅𝑅(𝑋(𝑛−1), 𝑋(𝑛))

Because of the full proportional redistribution of the masses
of uncertainties to the elements least specific involved in these
uncertainties, no mass of belief is lost during the step by step
hierarchical process and thus one gets finally a Bayesian bba
satisfying

∑
𝑋(1)∈2Θ 𝐻𝐷𝑆𝑚𝑃 (𝑋(1)) = 1.

IV. EXAMPLES

In this section we show in details how HDSmP can be
applied on very simple different examples. So let’s examine
the three following examples based on a simple 3D frame of
discernment Θ = {𝜃1, 𝜃2, 𝜃3} satisfying Shafer’s model.

A. Example 1

Let’s consider the following bba:

𝑚(𝜃1) = 0.10, 𝑚(𝜃2) = 0.17, 𝑚(𝜃3) = 0.03,

𝑚(𝜃1 ∪ 𝜃2) = 0.15, 𝑚(𝜃1 ∪ 𝜃3) = 0.20,

𝑚(𝜃2 ∪ 𝜃3) = 0.05, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30.

We apply HDSmP with 𝜖 = 0 in this example because there
is no mass of belief equal to zero. It can be verified that the
result obtained with a small positive 𝜖 parameter remains (as
expected) numerically very close to the result obtained with
𝜖 = 0. This verification is left to the reader.

The first step of HDSmP consists in redistributing back
𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30 committed to the full ignorance
to the elements 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3 only, because
these elements are the only elements of cardinality 2 that are
included in 𝜃1∪𝜃2∪𝜃3. Applying the Eq. (18) with 𝑛 = 3, one
gets when 𝑋(2) = 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃1 ∪ 𝜃2 the following
masses

𝑚ℎ(𝜃1 ∪ 𝜃2) = 𝑚(𝜃1 ∪ 𝜃2) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃2, 𝑋(3))

= 0.15 + (0.3 ⋅ 0.375) = 0.2625

because 𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) = 0.15
0.15+0.20+0.05 = 0.375.

Similarly, one gets

𝑚ℎ(𝜃1 ∪ 𝜃3) = 𝑚(𝜃1 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃3, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.5) = 0.35

because 𝑅(𝜃1 ∪ 𝜃3, 𝑋(3)) = 0.20
0.15+0.20+0.05 = 0.5, and also

𝑚ℎ(𝜃2 ∪ 𝜃3) = 𝑚(𝜃2 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

= 0.05 + (0.3 ⋅ 0.125) = 0.0875

because 𝑅(𝜃2 ∪ 𝜃3, 𝑋(3)) = 0.05
0.15+0.20+0.05 = 0.125.

Now, we go to the next step of HDSmP and one needs to
redistribute the masses of partial ignorances 𝑋(2) correspond-
ing to 𝜃1∪𝜃2, 𝜃1∪𝜃3 and 𝜃2∪𝜃3 back to the singleton elements
𝑋(1) corresponding to 𝜃1, 𝜃2 and 𝜃3. We use directly HDSmP
in Eq. (17) for doing this as follows:
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𝐻𝐷𝑆𝑚𝑃 (𝜃1) = 𝑚(𝜃1) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃3)

≈ 0.10 + (0.2625 ⋅ 0.3703) + (0.35 ⋅ 0.7692)
= 0.10 + 0.0972 + 0.2692 = 0.4664

because

𝑅(𝜃1, 𝜃1 ∪ 𝜃2) =
0.10

0.10 + 0.17
≈ 0.3703

𝑅(𝜃1, 𝜃1 ∪ 𝜃3) =
0.10

0.10 + 0.03
≈ 0.7692

Similarly, one gets

𝐻𝐷𝑆𝑚𝑃 (𝜃2) = 𝑚(𝜃2) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃2, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃2, 𝜃2 ∪ 𝜃3)

≈ 0.10 + (0.2625 ⋅ 0.6297) + (0.0875 ⋅ 0.85)
= 0.17 + 0.1653 + 0.0744 = 0.4097

because

𝑅(𝜃2, 𝜃1 ∪ 𝜃2) =
0.17

0.10 + 0.17
≈ 0.6297

𝑅(𝜃2, 𝜃2 ∪ 𝜃3) =
0.17

0.17 + 0.03
= 0.85

and also

𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 𝑚(𝜃3) +𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃1 ∪ 𝜃3)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃2 ∪ 𝜃3)

≈ 0.03 + (0.35 ⋅ 0.2307) + (0.0875 ⋅ 0.15)
= 0.03 + 0.0808 + 0.0131 = 0.1239

because

𝑅(𝜃3, 𝜃1 ∪ 𝜃3) =
0.03

0.10 + 0.03
≈ 0.2307

𝑅(𝜃3, 𝜃2 ∪ 𝜃3) =
0.03

0.17 + 0.03
= 0.15

Hence, the final result of HDSmP transformation is:

𝐻𝐷𝑆𝑚𝑃 (𝜃1) = 0.4664, 𝐻𝐷𝑆𝑚𝑃 (𝜃2) = 0.4097,

𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 0.1239.

and we can easily verify that

𝐻𝐷𝑆𝑚𝑃 (𝜃1) +𝐻𝐷𝑆𝑚𝑃 (𝜃2) +𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 1.

The procedure can be illustrated in Fig. 1 below.

1 2 3{ , , }   

1 2{ , }  1 3{ , }  2 3{ , }  

1{ } 2{ } 3{ } 

Step 1

Step 2

Figure 1. Illustration of Example 1

Table I
EXPERIMENTAL RESULTS FOR EXAMPLE 1.

Approaches
Propositions

EH𝜃1 𝜃2 𝜃3
BetP 0.3750 0.3700 0.2550 0.9868
PrPl 0.4045 0.3681 0.2274 0.9747
PrBel 0.4094 0.4769 0.1137 0.8792
DSmP 0 0.4094 0.4769 0.1137 0.8792
DSmP 0.001 0.4094 0.4769 0.1137 0.8792
HDSmP 0 0.4664 0.4097 0.1239 0.8921
HDSmP 0.001 0.4664 0.4097 0.1239 0.8921

The classical DSmP transformation [3] and the other trans-
formations (BetP [2], PrBel and PrPl [8]) are compared with
HDSmP for this example in Table I. It can be seen in Table I
that the normalized entropy EH of HDSmP is relatively small
but not too small among all the probability transformations
used. In fact it is normal that the entropy drawn form HDSmP
is a bit bigger than the entropy drawn from DSmP, because
there is a ”dilution” of uncertainty in the step-by-step redis-
tribution, whereas such dilution of uncertainty is absent in the
direct DSmP transformation.

B. Example 2

Let’s consider the following bba:

𝑚(𝜃1) = 0, 𝑚(𝜃2) = 0.17, 𝑚(𝜃3) = 0.13,

𝑚(𝜃1 ∪ 𝜃2) = 0.20, 𝑚(𝜃1 ∪ 𝜃3) = 0.20,

𝑚(𝜃2 ∪ 𝜃3) = 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30

The first step of HDSmP consists in redistributing back
𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30 committed to the full ignorance to
the elements 𝜃1∪𝜃2, and 𝜃1∪𝜃3 only, because these elements
are the only elements of cardinality 2 that are included in
𝜃1∪𝜃2∪𝜃3. Applying the Eq. (18) with 𝑛 = 3, one gets when
𝑋(2) = 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃1 ∪ 𝜃2 the following masses

𝑚ℎ(𝜃1 ∪ 𝜃2) = 𝑚(𝜃1 ∪ 𝜃2) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃2, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.5) = 0.35

because 𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) = 0.20
0.20+0.20+0.00 = 0.5.

Similarly, one gets

𝑚ℎ(𝜃1 ∪ 𝜃3) = 𝑚(𝜃1 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃3, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.5) = 0.35

because 𝑅(𝜃1 ∪ 𝜃3, 𝑋(3)) = 0.20
0.20+0.20+0.00 = 0.5, and also

𝑚ℎ(𝜃2 ∪ 𝜃3) = 𝑚(𝜃2 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

= 0.00 + (0.3 ⋅ 0.0) = 0

because 𝑅(𝜃2 ∪ 𝜃3, 𝑋(3)) = 0.0
0.20+0.20+0.00 = 0.

Now, we go to the next and last step of HDSmP principle,
and one needs to redistribute the masses of partial ignorances
𝑋(2) corresponding to 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3 back to
the singleton elements 𝑋(1) corresponding to 𝜃1, 𝜃2 and 𝜃3.
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We use directly HDSmP in Eq. (17) for doing this as follows:

𝐻𝐷𝑆𝑚𝑃 (𝜃1) = 𝑚(𝜃1) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃3)

≈ 0.00 + (0.35 ⋅ 0.00) + (0.35 ⋅ 0.00)
= 0.00 + 0.00 + 0.00 = 0

because

𝑅(𝜃1, 𝜃1 ∪ 𝜃2) =
0.00

0.00 + 0.17
= 0.00

𝑅(𝜃1, 𝜃1 ∪ 𝜃3) =
0.00

0.00 + 0.13
= 0.00

Similarly, one gets

𝐻𝐷𝑆𝑚𝑃 (𝜃2) = 𝑚(𝜃2) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃2, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃2, 𝜃2 ∪ 𝜃3)

≈ 0.17 + (0.35 ⋅ 1) + (0.00 ⋅ 0.5667)
= 0.17 + 0.35 + 0.00 = 0.52

because
𝑅(𝜃2, 𝜃1 ∪ 𝜃2) =

0.17

0.00 + 0.17
= 1

𝑅(𝜃2, 𝜃2 ∪ 𝜃3) =
0.17

0.17 + 0.13
≈ 0.5667

and also

𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 𝑚(𝜃3) +𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃1 ∪ 𝜃3)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃2 ∪ 𝜃3)

≈ 0.13 + (0.35 ⋅ 1) + (0.00 ⋅ 0.4333)
= 0.13 + 0.35 + 0.00 = 0.48

because
𝑅(𝜃3, 𝜃1 ∪ 𝜃3) =

0.13

0.13 + 0.00
= 1

𝑅(𝜃3, 𝜃2 ∪ 𝜃3) =
0.13

0.17 + 0.13
≈ 0.4333

Hence, the final result of HDSmP transformation is:

𝐻𝐷𝑆𝑚𝑃 (𝜃1) = 0.4664, 𝐻𝐷𝑆𝑚𝑃 (𝜃2) = 0.4097,

𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 0.1239.

and we can easily verify that

𝐻𝐷𝑆𝑚𝑃 (𝜃1) +𝐻𝐷𝑆𝑚𝑃 (𝜃2) +𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 1.

The HDSmP procedure of Example 2 with 𝜖 = 0 is Fig. 2.
The HDSmP procedure of Example 2 with 𝜖 > 0 is the same
as that illustrated in Fig. 1. When one takes 𝜖 > 0, there exist
masses redistributed to {𝜃2 ∪ 𝜃3}. If one takes 𝜖 = 0, there
is no mass edistributed to {𝜃2 ∪ 𝜃3}. That’s the difference
between Fig. 1 and Fig. 2.

Let’s suppose that one takes 𝜖 = 0.001, then the HDSmP
calculation procedure is as follows:
∙ Step 1: The first step of HDSmP consists in distributing back
𝑚(𝜃1∪ 𝜃2∪ 𝜃3) = 0.30 committed to the full ignorance to the
elements 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3. Applying the formula

1 2 3{ , , }   

1 2{ , }  1 3{ , }  

1{ } 2{ } 3{ } 

Step 1

Step 2

Figure 2. Illustration of Example 2.

(III) with 𝑛 = 3, one gets when 𝑋(2) = 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and
𝜃1 ∪ 𝜃2 the following masses

𝑚ℎ(𝜃1 ∪ 𝜃2) = 𝑚(𝜃1 ∪ 𝜃2) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃2, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.4963) = 0.3489

because

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) =
0.20 + 0.001 ⋅ 3

(0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3)
= 0.4963

𝑚ℎ(𝜃1 ∪ 𝜃3) = 𝑚(𝜃1 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃3, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.4963) = 0.3489

because

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) =
0.20 + 0.001 ⋅ 3

(0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3)
= 0.4963

𝑚ℎ(𝜃2 ∪ 𝜃3) = 𝑚(𝜃2 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

= 0.00 + (0.3 ⋅ 0.0073) = 0.0022

because

𝑅(𝜃2 ∪ 𝜃3, 𝑋(3)) =
0.001 ⋅ 3

(0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3)
= 0.0073

∙ Next step: one needs to redistribute the masses of partial
ignorances 𝑋(2) corresponding to 𝜃1∪𝜃2, 𝜃1∪𝜃3 and 𝜃2∪𝜃3
back to the singleton elements 𝑋(1) corresponding to 𝜃1, 𝜃2
and 𝜃3. We use directly HDSmP in Eq. (17) for doing this as
follows:

𝐻𝐷𝑆𝑚𝑃 (𝜃1) = 𝑚(𝜃1) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃3)

≈ 0.00 + (0.3489 ⋅ 0.0115) + (0.3489 ⋅ 0.0149)
= 0.00 + 0.0040 + 0.0052 = 0.0092

because

𝑅(𝜃1, 𝜃1 ∪ 𝜃2) =
0.00 + 0.001 ⋅ 2

(0.00 + 0.001 ⋅ 2) + (0.17 + 0.001 ⋅ 2)
= 0.0115

𝑅(𝜃1, 𝜃1 ∪ 𝜃3) =
0.00 + 0.001 ⋅ 2

(0.00 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2)
= 0.0149
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Similarly, one gets

𝐻𝐷𝑆𝑚𝑃 (𝜃2) = 𝑚(𝜃2) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃2, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃2, 𝜃2 ∪ 𝜃3)

≈ 0.17 + (0.3489 ⋅ 0.9885) + (0.0022 ⋅ 0.5658)
= 0.17 + 0.3449 + 0.0012 = 0.5161

because

𝑅(𝜃2, 𝜃1 ∪ 𝜃2) =
0.17 + 0.001 ⋅ 2

(0.00 + 0.001 ⋅ 2) + (0.17 + 0.001 ⋅ 2)
= 0.9885

𝑅(𝜃2, 𝜃2 ∪ 𝜃3) =
0.17 + 0.001 ⋅ 2

(0.17 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2)
≈ 0.5658

and also

𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 𝑚(𝜃3) +𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃1 ∪ 𝜃3)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃2 ∪ 𝜃3)

≈ 0.13 + (0.3489 ⋅ 0.9851) + (0.0022 ⋅ 0.4342)
= 0.13 + 0.3437 + 0.0009 = 0.4746

because

𝑅(𝜃3, 𝜃1 ∪ 𝜃3) =
0.13 + 0.001 ⋅ 2

(0.13 + 0.001 ⋅ 2) + (0.00 + 0.001 ⋅ 2)
= 0.9851

𝑅(𝜃3, 𝜃2 ∪ 𝜃3) =
0.13 + 0.001 ⋅ 2

(0.17 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2)
≈ 0.4342

Hence, the final result of HDSmP transformation is:

𝐻𝐷𝑆𝑚𝑃 (𝜃1) = 0.0092, 𝐻𝐷𝑆𝑚𝑃 (𝜃2) = 0.5161,

𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 0.4746.

and we can easily verify that

𝐻𝐷𝑆𝑚𝑃 (𝜃1) +𝐻𝐷𝑆𝑚𝑃 (𝜃2) +𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 1.

We also calculate some other probability transformations
and the results are listed in Table II.

Table II
EXPERIMENTAL RESULTS FOR EXAMPLE 2.

Approaches
Propositions

EH𝜃1 𝜃2 𝜃3
BetP 0.3000 0.3700 0.3300 0.9966
PrPl 0.3125 0.3683 0.3192 0.9975
PrBel NaN NaN NaN NaN
DSmP 0 0.0000 0.5400 0.4600 0.6280
DSmP 0.001 0.0037 0.5381 0.4582 0.6479
HDSmP 0 0.0000 0.5200 0.4800 0.6302
HDSmP 0.001 0.0092 0.5161 0.4746 0.6720

It can be seen in Table II that the normalized entropy EH

of HDSmP is relatively small but not too small among all the
probability transformations used.

C. Example 3

Let’s consider the following bba:

𝑚(𝜃1) = 0, 𝑚(𝜃2) = 0, 𝑚(𝜃3) = 0.70,

𝑚(𝜃1 ∪ 𝜃2) = 0, 𝑚(𝜃1 ∪ 𝜃3) = 0,

𝑚(𝜃2 ∪ 𝜃3) = 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30

In this example, the mass assignments for all the focal ele-
ments with cardinality size 2 equal to zero. For HDSmP, when
𝜖 > 0, 𝑚(𝜃2 ∪ 𝜃3) will be divided equally and redistributed to
{𝜃1 ∪ 𝜃2}, {𝜃1 ∪ 𝜃3} and {𝜃2 ∪ 𝜃3}. Because the ratios are

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) = 𝑅(𝜃1 ∪ 𝜃3, 𝑋(3)) = 𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

=
0.00 + 0.001 ⋅ 3

(0.00 + 0.001 ⋅ 3) ⋅ 3 = 0.3333

One sees that with the parameter 𝜖 = 0, HDSmP cannot be
computed (division by zero) and that is why it is necessary to
use 𝜖 > 0 in such particular case. The results of HDSmP and
other probability transformations are listed in Table III.

Table III
EXPERIMENTAL RESULTS FOR EXAMPLE 3.

Approaches
Propositions

EH𝜃1 𝜃2 𝜃3
BetP 0.1000 0.1000 0.8000 0.5871
PrPl 0.0562 0.0562 0.8876 0.3911
PrBel NaN NaN NaN NaN
DSmP 0 0.0000 0.0000 1.0000 0.0000
DSmP 0.001 0.0004 0.0004 0.0092 0.0065
HDSmP 0 NaN NaN NaN NaN
HDSmP 0.001 0.0503 0.0503 0.8994 0.3606

It can be seen in Table III that the normalized entropy EH

of HDSmP is relatively small but not the smallest among all
the probability transformations used. Naturally, and as already
pointed out, HDSmP𝜖=0 cannot be computed in such example
because of division by zero. But with the use of the parameter
𝜖 = 0.001, the mass of 𝑚(𝜃1∪𝜃2∪𝜃3) becomes equally divided
and redistributed to the focal elements with cardinality of 2.
This justify the necessity of the use of parameter 𝜖 > 0 in
some particular cases when there exist masses equal to zero.

D. Example 4 (vacuous bba)

Let’s consider the following particular bba, called the vacu-
ous bba since it represents a fully ignorant source of evidence:

𝑚(𝜃1) = 0, 𝑚(𝜃2) = 0, 𝑚(𝜃3) = 0,

𝑚(𝜃1 ∪ 𝜃2) = 0, 𝑚(𝜃1 ∪ 𝜃3) = 0,

𝑚(𝜃2 ∪ 𝜃3) = 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 1

In this example, the mass assignments for all the focal ele-
ments with cardinality less than 3 equal to zero. For HDSmP,
when 𝜖 > 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) will be divided equally and
redistributed to {𝜃1 ∪ 𝜃2}, {𝜃1 ∪ 𝜃3} and {𝜃2 ∪ 𝜃3}. Similarly,
the mass assignments for focal elements with cardinality of
2 (partial ignorances) obtained at the intermediate step will
be divided equally and redistributed to singletons included in
them. This redistribution is possible for the existence of 𝜖 > 0
in HDSmP formulas. HDSmP cannot be applied and computed
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in such example if one takes 𝜖 = 0, and that is why one needs
to use 𝜖 > 0 here. The results of HDSmP and other probability
transformations are listed in Table IV.

Table IV
EXPERIMENTAL RESULTS FOR EXAMPLE 4.

Approaches
Propositions

EH𝜃1 𝜃2 𝜃3
BetP 0.3333 0.3333 0.3333 1.0000
PrPl 0.3333 0.3333 0.3333 1.0000
PrBel NaN NaN NaN NaN
DSmP 0 NaN NaN NaN NaN
DSmP 0.001 0.3333 0.3333 0.3333 1.0000
HDSmP 0 NaN NaN NaN NaN
HDSmP 0.001 0.3333 0.3333 0.3333 1.0000

It can be seen in Tables I – IV that the normalized entropy
EH of HDSmP is always moderate among the other probability
transformations it is compared with, and it is normal to get an
entropy value with HDSmP bigger than with DSmP because of
dilution of uncertainty through the procedure of HDSmP. We
have already shown that the entropy criteria is not enough in
fact to evaluate the quality a probability transformation [14],
and always a compromise must be found between entropy level
and numerical robustness of the transformation. Although the
entropy should be as small as possible for decision-making,
exaggerate small entropy is not always preferred. Because of
the way the mass of (partial) ignorances is proportionally
redistributed, it is clear that if the mass assignment for a
singleton equals to zero in the original bba, then after applying
DSmP or HDSmP transformations this mass is unchanged and
is kept to zero. This behavior may appear a bit intuitively
surprising at the first glance specially if some masses of partial
ignorances including this singleton are not equal to zero.
This behavior is however normal in the spirit of proportional
redistribution because one wants to reduce the PIC value so
that if one has no strong support (belief) in a singleton in
the original bba, we expect also to have no strong support in
this singleton after the transformation is applied which makes
perfectly sense. Of course if such behavior is considered as
too optimistic or not acceptable because it appears too risky
in some applications, it is always possible to choose another
transformation instead. The final choice is always left in the
hands of the user, or the fusion system designer.

V. CONCLUSIONS

Probability transformation is very crucial for decision-
making in evidence theory. In this paper a novel interesting and
useful hierarchical probability transformation approach called
HDSmP has been proposed, and HDSmP always provides a
moderate value of entropy which is necessary for an easier
and reliable decision-making support. Unfortunately the PIC
(or entropy) level is not the unique useful criterion to evaluate
the quality of a probability transformation in general. At least
the numerical robustness of the method is also important and
must be considered seriously as already shown in our previous
works. Therefore, to evaluate any probability transformation
more efficiently and to outperform existing transformations

(including DSmP and HDSmP) a more general comprehensive
evaluation criteria need to be found. The search for such a
criteria is under investigations.
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Neutrosophic Masses & Indeterminate Models
Applications to Information Fusion 

Florentin Smarandache 

Abstract—In this paper we introduce the indeterminate models in 
information fusion, which are due either to the existence of some 
indeterminate elements in the fusion space or to some 
indeterminate masses. The best approach for dealing with such 
models is the neutrosophic logic. 

Keywords: neutrosophic logic; indeterminacy; indeterminate 
model; indeterminate element; indeterminate mass; indeterminate 
fusion rules; DSmT; DST; TBM; 

I.  INTRODUCTION 
In this paper we introduce for the first time the notions of 

indeterminate mass (bba), indeterminate element, indeterminate 
intersection, and so on. We give an example of neutrosophic 
dynamic fusion using two classical masses, defined on a 
determinate frame of discernment, but having indeterminate 
intersections in the super-power set S Θ (the fusion space). We
also adjust several classical fusion rules (PCR5 and DSmH) to 
work for indeterminate intersections instead of empty 
intersections. 

References [3]-[13] show a wide variety of applications of 
the neutrosophic logic and set, based on indeterminacy, in 
information technology. 

Let Θ be a frame of discernment, defined as:  

  1 2{ , ,..., }, 2n nφ φ φΘ = ≥ ,   (1)  

and its Super-Power Set (or fusion space): 

 Θ = Θ ∪ ∩( , , ,C)S  (2) 

which means the set Θ  closed under union, intersection, and 
respectively complement. 

This paper is organized as follows: we present the 
neutrosophic logic, the indeterminate masses, elements and 
models, and give an example of indeterminate intersection. 

II. INDETERMINATE MASS 

A. Neutrosophic Logic 
Neutrosophic Logic (NL) [1] started in 1995 as a 

generalization of the fuzzy logic, especially of the intuitionistic 
fuzzy logic. A logical proposition P is characterized by three 
neutrosophic components:  

 NL(P) =(T, I, F)  (3) 

where T is the degree of truth, F the degree of falsehood, and I 
the degree of indeterminacy (or neutral, where the name 
“neutro-sophic” comes from, i.e. neither truth nor falsehood but 
in between – or included-middle principle), and with: 

 T, I, F ⊆ ]-0,1+[  (4) 

where ]-0,1+[ is a non-standard interval. 

In this paper, for technical proposal, we can reduce this interval 
to the standard interval [0, 1]. 

The main distinction between neutrosophic logic and 
intuitionistic fuzzy logic (IFL) is that in NL the sum T+I+F of 
the components, when T, I, and F are crisp numbers, does not 
need to necessarily be 1 as in IFL, but it can also be less than 1 
(for incomplete/missing information), equal to 1 (for complete 
information), or greater than 1 (for paraconsistent/contradictory 
information). 

The combination of neutrosophic propositions is done using the 
neutrosophic operators (especially ∧ , ∨ ). 

B. Neutrosophic Mass 
We recall that a classical mass m(.) is defined as: 

 : [0,1]m S Θ →     (5) 

such that 

( ) 1
X S

m X
Θ∈

=∑    (6) 

Originally published as Smarandache F., Neutrosophic Masses & 
Indeterminate Models, in Proc. of Fusion 2012, Singapore, July 

2012, and reprinted with permission.
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We extend this classical basic belief assignment (mass) m(.) 
to a neutrosophic basic belief assignment (nbba) (or 
neutrosophic mass) mn( .) in the following way. 

  3: [0,1]nm S Θ →    (7)  

with  

   mn(A) = (T(A), I(A), F(A))    (8) 

where T(A) means the (local) chance that hypothesis A occurs, 
F(A) means the (local) chance that hypothesis A does not occur 
(nonchance), while I(A) means the (local) indeterminate chance 
of A (i.e. knowing neither if A occurs nor if A doesn’t occur), 

such that: 

[ ( ) ( ) ( )] 1
X S

T X I X F X
Θ∈

+ + =∑ .   (9) 

In a more general way, the summation (9) can be less than 1 
(for incomplete neutrosophic information), equal to 1 (for 
complete neutrosophic information), or greater than 1 (for 
paraconsistent/conflicting neutrosophic information). But in 
this paper we only present the case when summation (9) is 
equal to 1.  

Of course, 

0 ( ), ( ), ( ) 1T A I A F A≤ ≤ .   (10) 

A basic belief assignment (or mass) is considered 
indeterminate if there exist at least an element A S Θ∈ such 
that I(A) > 0, i.e. there exists some indeterminacy in the chance 
of at least an element A for occurring or for not occurring. 
Therefore, a neutrosophic mass which has at least one element 
A with I(A) > 0 is an indeterminate mass. 

A classical mass m(.) as defined in equations (5) and 
(6) can be extended under the form of a neutrosophic mass 
mn’(.) in the following way: 

3' : [0,1]nm S Θ →    (11)  

with  

   mn’(A) = (m(A), 0, 0)   (12) 

but reciprocally it does not work since I(A) has no 
correspondence in the definition of the classical mass. 

We just have T(A) = m(A) and F(A) = m(C(A)), where C(A) is 
the complement of A. The non-null I(A) can, for example, be 
roughly approximated by the total ignorance mass m( Θ ), or 
better by the partial ignorance mass m( IΘ ) where IΘ is the 
union of all singletons that have some non-zero indeterminacy, 
but these mean less accuracy and less refinement in the fusion.  

If I(X) = 0 for all X S Θ∈ , then the neutrosophic mass is 
simply reduced to a classical mass. 

III. INDETERMINATE ELEMENT

We have two types of elements in the fusion space S Θ , 
determinate elements (which are well-defined), and 
indeterminate elements (which are not well-defined; for 
example: a geographical area whose frontiers are vague; or 
let’s say in a murder case there are two suspects, John – who is 
known/determinate element – but he acted together with 
another man X (since the information source saw John together 
with an unknown/unidentified person) – therefore X is an 
indeterminate element).  

Herein we gave examples of singletons as indeterminate 
elements just in the frame of discernment Θ , but 
indeterminate elements can also result from the combinations 
(unions, intersections, and/or complements) of determinate 
elements that form the super-power set S Θ . For example, A 
and B can be determinate singletons (we call the elements in 
Θ as singletons), but their intersection A ∩ B can be an 
indeterminate (unknown) element, in the sense that we might 
not know if A ∩ B=φ or A ∩ B ≠ φ .  

Or A can be a determinate element, but its complement 
C(A) can be indeterminate element (not well-known), and 
similarly for determinate elements A and B, but their A ∪ B 
might be indeterminate. 

Indeterminate elements in S Θ can, of course, result from 
the combination of indeterminate singletons too. All depends 
on the problem that is studied. 

A frame of discernment which has at least an indeterminate 
element is called indeterminate frame of discernment. 
Otherwise, it is called determinate frame of discernment.  
Similarly we call an indeterminate fusion space ( S Θ ) that 
fusion space which has at least one indeterminate element. Of 
course an indeterminate frame of discernment spans an 
indeterminate fusion space. 

An indeterminate source of information is a source which 
provides an indeterminate mass or an indeterminate fusion 
space. Otherwise it is called a determinate source of 
information. 

IV. INDETERMINATE MODEL

An indeterminate model is a model whose fusion space is 
indeterminate, or a mass that characterizes it is indeterminate. 

Such case has not been studied in the information fusion 
literature so far. In the next sections we’ll present some 
examples of indeterminate models. 

V. CLASSIFICATION OF MODELS 
In the classical fusion theories all elements are considered 

determinate in the Closed World, except in Smets’ Open World 
where there is some room (i.e. mass assigned to the empty set) 
for a possible unknown missing singleton in the frame of 
discernment.  So, the Open World has a probable indeterminate 
element, and thus its frame of discernment is indeterminate. 
While the Closed World frame of discernment is determinate. 
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In the Closed World in Dezert-Smarandache Theory there 
are three models classified upon the types of singleton 
intersections: Shafer’s Model (where all intersections are 
empty), Hybrid Model (where some intersections are empty, 
while others are non-empty), and Free Model (where all 
intersections are non-empty). 

We now introduce a fourth category, called Indeterminate 
Model (where at least one intersection is 
indeterminate/unknown, and in general at least one element of 
the fusion space is indeterminate). We do this because in 
practical problems we don’t always know if an intersection is 
empty or nonempty. As we still have to solve the problem in 
the real time, we have to work with what we have, i.e. with 
indeterminate models. 

The indeterminate intersection cannot be refined (because 
not knowing if A ∩ B is empty or nonempty, we’d get two 
different refinements: {A, B} when intersection is empty, and 
{A\B, B\A, A ∩ B} when intersection is nonempty). 

The percentage of indeterminacy of a model depends on the 
number of indeterminate elements and indeterminate masses. 

By default: the sources, the masses, the elements, the 
frames of discernment, the fusion spaces, and the models are 
supposed determinate. 

VI. AN EXAMPLE OF INFORMATION FUSION WITH AN 
INDETERMINATE MODEL 

We present the below example. 

Suppose we have two sources, m1(.) and m2(.), such that: 
A B C A ∪ B ∪ C A ∩ B 

= 

Ind. 

A ∩ C

= 

φ  

B ∩ C

  = 

Ind. 

m1 0.4 0.2 0.3 0.1 

m2 0.1 0.3 0.2 0.4 

m12 .21 .17 .20 .04 .14 .11 .13

Table 1 

Applying the conjunction rule to m1 and m2 we get m12(.) as 
shown in Table 1. 

The frame of discernment is Θ = {A, B, C}. We know that 
A ∩ C is empty, but we don’t know the other two intersections: 
we note them as A∩B = ind. and B∩C = ind,. where ind. 
means indeterminate. 

Using the Conjunctive Rule to fusion m1 and m2, we get m12(.):  

12 1 2

,

\ , ( ) ( ) ( )
X Y S
A X Y

A S m A m X m Yφ
Θ

Θ

∈
= ∩

∀ ∈ = ∑ .   (13) 

Whence: m12(A)=0.21, m12(B)=0.17, m12(C)=0.20, 
m12(A ∪ B ∪ C)=0.04, and for the intersections: 

m12(A ∩ B)=0.14, m12(A ∩ C)=0.11, m12(B ∩ C)=0.13.  

We then use the PCR5 fusion rule style to redistribute the 
masses of these three intersections. We recall PCR5 for two 
sources: 

  (14) 

1 2 2 1
12 5 12

1 2 2 1

2 2

\{ }

\ ,
( ) ( ) ( ) ( )( ) ( ) [ ]

( ) ( ) ( ) ( )
PCR

X S
X A

A S
m A m X m A m Xm A m A

m A m X m A m Xφ
φ

φ

Θ

Θ

∈
∩ =

∀ ∈

= + +
+ +∑

a) m12(A∩C)=0.11 is redistributed back to A and C
because A∩C=φ , according to the PCR5 style. 

Let α1 and α2 be the parts of mass 0.11 redistributed back to 
A, and γ1 and γ2 be the parts of mass 0.11 redistributed back to 
C. 
We have the following proportionalizations: 

1 1 0.4 0.2 0.133333
0.4 0.2 0.4 0.2
α γ ⋅

= = =
+

, 

whence α1 = 0.4(0.133333) ≈ 0.053333 
and γ1 = 0.2(0.13333) ≈ 0.026667. 
Similarly: 

2 2 0.1 0.3 0.075
0.1 0.3 0.1 0.3
α γ ⋅

= = =
+

, 

whence α2 = 0.1(0.075) = 0.0075 
and γ2 = 0.3(0.075) = 0.0225. 
Therefore the mass of A, which can also be noted as T(A) in a 
neutrosophic mass form, receives from 0.11 back:  
α1+α2 = 0.053333+0.0075 = 0.060833, 
while the mass of C, or T(C) in a neutrosophic form, receives 
from 0.11 back:  
γ1+γ2 = 0.026667+0.0225= 0.049167. 
We verify our calculations: 0.060833+0.049167=0.11. 

b) m12(A∩B)=0.14 is redistributed back to the
indeterminate parts of the masses of A and B respectively, 
namely I(A) and I(B) as noted in the neutrosophic mass form, 
because A∩B=Ind. We follow the same PCR5 style as done in 
classical PCR5 for empty intersections (as above). 
Let α3 and α4 be the parts of mass 0.14 redistributed back to 
I(A), and β1 and β2 be the parts of mass 0.14 redistributed 
back to I(B). 
We have the following proportionalizations: 

3 1 0.4 0.3 0.171429
0.4 0.3 0.4 0.3
α β ⋅

= = =
+

, 

whence α3 = 0.4(0.171429) ≈ 0.068572 
and β1 = 0.3(0.171429) ≈ 0.051428. 
Similarly: 

4 2 0.1 0.2 0.066667
0.1 0.2 0.1 0.2
α β ⋅

= = =
+

whence α4 = 0.1(0.066667) ≈ 0.006667 
and β2 = 0.2(0.066667) ≈ 0.013333. 
Therefore, the indeterminate mass of A, I(A) receives from 
0.14 back: 
α3+ α4 = 0.068572+0.006667=0.075239 
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and the indeterminate mass of B, I(B), receives from 0.14 
back: 
β1+ β2 = 0.051428+0.013333=0.064761. 

c) Analougously, m12(B∩C)=0.13 is redistributed back
to the indeterminate parts of the masses of B and C 
respectively, namely I(B) and I(C) as noted in the neutrosophic 
mass form, because B∩C=Ind. also following the PCR5 style. 
Whence I(B) gets back 0.065 and I(C) also gets back 0.065. 
       Finally we sum all results obtained from firstly using the 
Conjunctive Rule [Table 1] and secondly redistributing the 
intersections masses with PCR5 [sections a), b), and c) from 
above]: 

T(A) T(B) T(C) T( Θ ) I(A) I(B) I(C) 

m12 .21 .17 .20 .04 
addi-
tions 

.0075 
.053 
333 

 .022
5 

.026 
667 

 .068 
572 
.006 
667 

.051 
428 
.013 
333 
.02 

.045 

.04 
.045 

m12PCR5I .270 
833 

.17 .249 
167 

.04 .075 
239 

.129 
761 

.065 

Table 2 

where Θ = A ∪ B ∪ C is the total ignorance. 

VII. BELIEF, DISBELIEF, AND UNCERTAINTY 

In classical fusion theory there exist the following functions: 

Belief in A with respect to the bba m(.) is: 

\{ }

( ) ( )
X S
X A

Bel A m X
φΘ∈

⊆

= ∑  (15) 

Disbelief in A with respect to the bba m(.) is: 

\{ }

( ) ( )
X S
X A

Dis A m X
φ

φ
Θ∈

∩ =

= ∑  (16) 

Uncertainty in A with respect to the bba m(.) is: 

\{ }

( )

( ) ( )
X S
X A
X C A

U A m X
φ

φ
φ

Θ∈
∩ ≠
∩ ≠

= ∑ ,         (17) 

where C(A) is the complement of A with respect to the total 
ignorance Θ . 
Plausability of A with respect to the bba m(.) is: 

\{ }

( ) ( )
X S
X A

Pl A m X
φ

φ
Θ∈

∩ ≠

= ∑             (18) 

VIII. NEUTROSOPHIC BELIEF, NEUTROSOPHIC DISBELIEF, AND
NEUTROSOPHIC UNDECIDABILITY 

Let’s consider a neutrosophic mass mn(.) as defined in 
formulas (7) and (8), mn(X) = (T(X), I(X), F(X)) for all 
X S Θ∈ . 

We extend formulas (15)-(18) from m(.) to mn(.): 

Neutrosophic Belief in A with respect to the nbba mn(.) is: 

\{ } \{ }

( ) ( ) ( )
X S X S
X A X A

NeutBel A T X F X
φ φ

φ
Θ Θ∈ ∈

⊆ ∩ =

= +∑ ∑        (19)

Neutrosophic Disbelief in A with respect to the nbba mn(.) 
is: 

\{ } \{ }

( ) ( ) ( )
X S X S
X A X A

NeutDis A T X F X
φ φ

φ
Θ Θ∈ ∈

∩ = ⊆

= +∑ ∑    (20)

    Neutrosophic Uncertainty in A with respect to the nbba 
mn(.) is        

\{ } \{ }

( ) ( )

\{ }

( )

( ) ( ) ( )

[ ( ) ( )]

X S X S
X A X A
X C A X C A

X S
X A
X C A

NeutU A T X F X

T X F X

φ φ
φ φ

φ φ

φ
φ

φ

Θ Θ

Θ

∈ ∈
∩ ≠ ∩ ≠
∩ ≠ ∩ ≠

∈
∩ ≠
∩ ≠

= +

= +

∑ ∑

∑
   (21)  

We now introduce the Neutrosophic Global 
Indeterminacy in A with respect to the nbba mn(.) as a sum of 
local indeterminacies of the elements included in A: 

\{ }

( ) ( )
X S
X A

NeutGlobInd A I X
φΘ∈

⊆

= ∑       (22) 

And afterwards we define another function called 
Neutrosophic Undecidability about A with respect to the 
nbba mn(.): 

NeutUnd(A) = NeutU(A) + NeutGlobInd(A)            (23) 

or 
 (24) 

\{ } \{ }

( )

( ) [ ( ) ( )] ( )
X S X S
X A X A
X C A

NeutUnd A T X F X I X
φ φ

φ
φ

Θ Θ∈ ∈
∩ ≠ ⊆
∩ ≠

= + +∑ ∑

Neutrosophic Plausability of A with respect to the nbba 
mn(.) is: 

\{ } \{ }
( )

( ) ( ) ( )
X S Y S
X A C Y A

NeutPl A T X F Y
φ φ

φ φ
Θ Θ∈ ∈

∩ ≠ ∩ ≠

= +∑ ∑          (25) 

In the previous example let’s compute NeutBel(.), 
NeutDis(.), and NeutUnd(.): 

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

136



A B C A ∪ B ∪ C
NeutBel 0.270833 0.17 0.249167 0.73 
NeutDis 0.419167 0.52 0.440833 0 

NeutGlobInd 0.115239 0.169761 0.105 0 
Total 0.805239 

≠ 
1 

0.859761 
≠ 
1 

0.795 
≠ 
1 

0.73 
≠ 
1 

Table 3 

As we see, for indeterminate model we cannot use the 
intuitionistic fuzzy set or intuitionistic fuzzy logic since the 
sum NeutBel(X)+NeutDis(X)+NeutGlobInd(X) is less than 1. 
In this case we use the neutrosophic set or logic which can 
deal with incomplete information.  
The sum is less than 1 because there is missing information 
(we don’t know if some intersections are empty or not). 

For example:  
NeutBel(A)+NeutDis(A)+NeutGlobInd(A)=0.805239 
=1-I(B)-I(C).  
Similarly,  
NeutBel(B)+NeutDis(B)+NeutGlobInd(B)=0.859761 
=1-I(A)-I(C).  
NeutBel(C)+NeutDis(C)+NeutGlobInd(C)=0.795 
=1-I(A)-I(B)  
and  
NeutBel(A ∪ B ∪ C)+NeutDis(A ∪ B ∪ C ) 
+NeutGlobInd(A ∪ B ∪ C)=0.73=1-I(A)-I(B)-I(C). 

IX. NEUTROSOPHIC DYNAMIC FUSION

        A Neutrosophic Dynamic Fusion is a dynamic fusion 
where some indeterminacy occurs: with respect to the mass or 
with respect to some elements. 
       The solution of the above indeterminate model which has 
missing information, using the neutrosophic set, is consistent 
in the classical dynamic fusion in the case we receive part (or 
total) of the missing information.  

  In the above example, let’s say we find out later in the 
fusion process that A∩B = φ . That means that the mass of
indeterminacy of A, I(A)=0.075239, is transferred to A, and 
the masses of indeterminacy of B (resulted from A∩B only) - 
i.e. 0.051428 and 0.13333 - are transferred to B. We get: 

 A B C Θ  I(A) I(B) I(C) A�B A�C

m .270 
833 

.17 .249 
167 

.04 0 .065 .065 0 0

+ .075 
239 

.051 
428 
.013 
333 

mN .346 
072 

.234 
761 

.249 
167 

.04 0 .065 .065 0 0

Table 4 

where Θ =A ∪ B ∪ C is the total ignorance. 

The sum NeutBel(X)+NeutDis(X)+NeutBlogInd(X) increases 
towards 1, as indeterminacy I(X) decreases towards 0, and 
reciprocally. 
      When we have complete information we get 
NeutBel(X)+NeutDis(X)+NeutGlobInd(X)=1 and in this case 
we have an intuitionistic fuzzy set, which is a particular case 
of the neutrosophic set. 
       Let’s suppose once more, considering the neutrosophic 
dynamic fusion, that afterwards we find out that B C φ∩ ≠ . 
Then, from Table 4 the masses of indeterminacies of B, I(B) 
(0.065 = 0.02 + 0.045, resulted from B C∩ which was 
considered indeterminate at the beginning of the neutrosophic 
dynamic fusion), and that of C, I(C)=0.065, go now to 
B C∩ . Thus, we get: 

A B C Θ  I(A) I(B) I(C) A�B A�C B�C

mN .346
072 

.234
761 

.249
167 

.04 0 .065 .065 0 0 0

-/+  -.0 
65 

-.0
65 

+.0
65 
+.0 
65 

mNN .346
072 

.234
761 

.249
167 

.04 0 0 0 0 0 .13

Table 5 

X. MORE REDISTRIBUTION VERSIONS FOR INDETERMINATE 
INTERSECTIONS OF DETERMINATE ELEMENTS 

      Besides PCR5, it is also possible to employ other fusion 
rules for the redistribution, such as follows: 

a. For the masses of the empty intersections we can use
PCR1-PCR4, URR, PURR, Dempster’s Rule, etc. (in
general any fusion rule that first uses the conjunctive
rule, and then a redistribution of the masses of empty
intersections).

b. For the masses of the indeterminate intersections we
can use DSm Hybrid (DSmH) rule to transfer the
mass 12( .)m X Y ind∩ = to X Y∪ , since

X Y∪ is a kind of uncertainty related to X, Y. In
our opinion, a better approach in this case would be
to redistributing the empty intersection masses using
the PCR5 and the indeterminate intersection masses
using the DSmH, so we can combine two fusion rules
into one:

Let m1(.) and m2(.) be two masses. Then: 
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12 5 / 1 2

1 2 2 1

1 2 2 1

1 2

1 2

1 2

, \{ }

2 2

\{ }

, \{ }
.

, \{ }
{ } {( .) ( )}

2

( ) ( ) ( )

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ([

PCR DSmH

X Y S
X Y A

X S
X A

X Y S
X Y ind
X Y A

X Y S
X Y A X Y ind X Y A

m A m X m Y

m A m X m A m X
m A m X m A m X

m X m Y

m X m Y

m A m

φ

φ
φ

φ

φ

Θ

Θ

Θ

Θ

∈
∩ =

∈
∩ =

∈
∩ =
∪ =

∈
∩ = ∨ ∩ = ∧ ∪ =

=

+ +
+ +

+

=

+

∑

∑

∑

∑

2 1

1 2 2 1

2

\{ }

) ( ) ( ) ]
( ) ( ) ( ) ( )X S

X A

X m A m X
m A m X m A m Xφ

φ
Θ∈

∩ =

+
+ +∑

  (26) 

    Yet, the best approach, for an indeterminate intersection 
resulted from the combination of two classical masses m1(.) 
and m2(.) defined on a determinate frame of discernment, is 
the first one: 

- Use the PCR5 to combine the two sources: formula 
(14). 

- Use the PCR5-ind [adjusted from classical PCR5 
formula (14)] in order to compute the indeterminacies 
of each element involved in indeterminate 
intersections : 

1 2 2 1
12 5

1 2 2 1

2 2

\{ }
.

\ ,
( ) ( ) ( ) ( )( ( )) [ ]
( ) ( ) ( ) ( )

PCR Ind

X S
X A ind

A S
m A m X m A m Xm I A
m A m X m A m Xφ

φ

Θ

Θ

∈
∩ =

∀ ∈

= +
+ +∑

         (27) 
- Compute NeutBel(.), NeutDis(.), NeutGlobInd(.) of 

each element. 

CONCLUSION 

In this paper we introduced for the first time the 
notions of indeterminate mass (bba), indeterminate element, 
indeterminate intersection, and so on. We gave an example of 
neutrosophic dynamic fusion using two classical masses, 
defined on a determinate frame of discernment, but having 
indeterminate intersections in the super-power set S Θ (the
fusion space). We adjusted several classical fusion rules (PCR5 
and DSmH) to work for indeterminate intersections instead of 
empty intersections. 

Then we extended the classical Bel(.), Dis(.) {also 
called Dou(.), i.e Dough} and the uncertainty U(.) functions to 
their respectively neutrosophic correspondent functions that use 
the neutrosophic masses, i.e. to the NeutBel(.), NeutDis(.), 
NeutU(.) and to the undecidability function NeutUnd(.) . We 
have also introduced the Neutrosophic Global Indeterminacy 
function, NeutGlobInd(.), which together with NeutU(.) form 
the NeutUnd(.) function. 

In our first example the mass of A∩B is determined (it 
is equal to 0.14), but the element A∩B is indeterminate (we 
don’t know if it empty or not). 

But there are cases when the element is determinate (let’s say a 
suspect John), but its mass could be indeterminate as given by a 
source of information {for example mn(John) = (0.4, 0.1, 0.2), 
i.e. there is some mass indeterminacy: I(John) = 0.2 > 0}. 

These are the distinctions between the indeterminacy of an 
element, and the indeterminacy of a mass. 
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Extended PCR Rules for Dynamic Frames
Florentin Smarandache

Jean Dezert

Abstract—In most of classical fusion problems modeled from
belief functions, the frame of discernment is considered as static.
This means that the set of elements in the frame and the
underlying integrity constraints of the frame are fixed forever
and they do not change with time. In some applications, like in
target tracking for example, the use of such invariant frame is
not very appropriate because it can truly change with time. So it
is necessary to adapt the Proportional Conflict Redistribution
fusion rules (PCR5 and PCR6) for working with dynamical
frames. In this paper, we propose an extension of PCR5 and
PCR6 rules for working in a frame having some non-existential
integrity constraints. Such constraints on the frame can arise in
tracking applications by the destruction of targets for example.
We show through very simple examples how these new rules can
be used for the belief revision process.
Keywords: Information fusion, DSmT, integrity con-
straints, belief functions.

I. INTRODUCTION

In most of classical fusion problems using belief functions,
the frame of discernment Θ = {θ1, θ2, . . . , θn} is considered
static. This means that the set of elements in the frame
(assumed to be non-empty and distinct) and the underlying
integrity constraints of the frame1 are fixed and they do not
change with time. In some applications however, like in target
tracking and battlefield surveillance for example, the use of
such invariant frame is not very appropriate because it can
truly change with time depending on the evolution of the
events. So it is necessary to adapt the Proportional Conflict
Redistribution fusion rules (PCR5 and PCR6) for working
with dynamical frames. In this paper, we study in details how
to work with PCR5 or PCR6 fusion rules in a dynamical
frame subject to non-existential integrity constraint, when one
or several elements of the frame disappear. This phenomena
can occur in some applications, specially in defense and
battlefield surveillance when foe targets (considered as element
of the frame) can be shot and entirely destroyed and the
initial belief one has on threat assessment must be revised
according to the knowledge one has on this new fact obtained
from intelligence services or observations systems. We show
through very simple examples how this problem can be solved
using PCR principle.
Example 1: Let’s consider the set of three targets at a given
time k to be Θk = {θ1, θ2, θ3} with θi 6= ∅, i = 1, 2, 3 and
assume that Θk satisfies Shafer’s model (i.e. the targets are all

1This is also called the model for Θ which can correspond to DSm free,
DSm hybrid or Shafer’s models in DSmT framework [4].

distinct and exhaustive) and we work with normalized bba’s.
Suppose one has two basic belief assignments (bba) m1(.) and
m2(.) defined with respect to the power-set of Θk given by
two distinct sources of evidence to characterize their beliefs
in the most threatening target. Let’s assume that one receives
at k + 1 a new information confirming that one target, say
target θ3, has been destroyed. The problem one needs to solve
is how to combine efficiently m1(.) and m2(.) taking into
account this new non-existential integrity constraint θ3 ≡ ∅ in
the new model of the frame to establish the most threatening
and surviving targets belonging to Θk+1 = {θ1, θ2}.

The contribution of this paper is to propose a solution
to such kind of belief revision problem involving dynamical
frames including non-existential constraints on some of its
elements. This paper is organized as follows. In section 1, we
briefly recall the basis of DSmT (Dezert-Smarandache Theory)
[4] and its main rule of combination (PCR5 and PCR6) for
the fusion of bba’s in a static frame. In section 2, we present
an improvement/adaptation of PCR rules to work on frames
with non-existential constraints (dynamical frames). In section
3, we apply our method on some examples. Conclusions are
then given in section 4.

II. BASICS OF DSMT

The purpose of the development of Dezert-Smarandache
Theory (DSmT) [4] is to overcome the limitations of
Dempster-Shafer Theory (DST) [3] mainly by proposing new
underlying models for the frames of discernment in order to
fit better with the nature of real problems, and by proposing
new efficient combination and conditioning rules. In DSmT
framework, the elements θi, i = 1, 2, . . . , n of a given
frame Θ are not necessarily exclusive, and there is no re-
striction on θi but their exhaustivity. The hyper-power set
DΘ in DSmT, the hyper-power set is defined as the set of
all composite propositions built from elements of Θ with
operators ∪ and ∩. For instance, if Θ = {θ1, θ2}, then
DΘ = {∅, θ1, θ2, θ1 ∩ θ2, θ1 ∪ θ2}. The hyper-power set DΘ

reduces to classical power-set 2Θ as soon as we assume
exclusivity between the elements of the frame (this is Shafer’s
model). A (generalized) basic belief assignment (bba for short)
is defined as the mapping m : DΘ → [0, 1]. The generalized
belief and plausibility functions are defined in almost the same
manner as in DST. More precisely, from a general frame Θ,
we define a map m(.) : DΘ → [0, 1] associated to a given

Originally published as Smarandache F., Dezert J., Extended 
PCR Rules for Dynamic Frames, Proc. Of Fusion 2012, 

Singapore, July 2012, and reprinted with permission.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

139



body of evidence B as

m(∅) = 0 and
∑
A∈DΘ

m(A) = 1 (1)

The quantity m(A) is called the generalized basic belief
assignment/mass (or just ”bba” for short) of A.
The generalized credibility and plausibility functions are de-
fined in almost the same manner as within DST, i.e.

Bel(A) =
∑
B⊆A
B∈DΘ

m(B) and Pl(A) =
∑

B∩A6=∅
B∈DΘ

m(B) (2)

Two models2 (the free model and hybrid model) in DSmT can
be used to define the bba’s to combine. In the free DSm model,
the sources of evidence are combined without taking into
account integrity constraints. When the free DSm model does
not hold because the true nature of the fusion problem under
consideration, we take into account some known integrity
constraints3 and define bba’s to combine using the proper
hybrid DSm model. Aside offering the possibility to work with
different underlying models (not only Shafer’s model as within
DST), DSmT offers also new efficient combination rules based
on proportional conflict redistribution (PCR rules no 5 and no
6) for combining highly conflicting sources of evidence. PCR5
transfers the conflicting mass only to the elements involved in
the conflict and proportionally to their individual masses, so
that the specificity of the information is entirely preserved in
this fusion process. (see [4], Vol. 2 for full justification and
examples): mPCR5(∅) = 0 and ∀X ∈ DΘ \ {∅}

mPCR5(X) =
∑

X1,X2∈D
Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
X2∈DΘ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (3)

where all denominators in (3) are different from zero. If a
denominator is zero, that fraction is discarded. The prop-
erties of PCR5 can be found in [2]. Extension of PCR5
for combining qualitative bba’s can be found in [4], Vol.
2 & 3. All propositions/sets are in a canonical form. A
variant of PCR5, called PCR6 has been proposed by Martin
and Osswald in [4], Vol. 2, for combining s > 2 sources.
The general formulas for PCR5 and PCR6 rules are given
in [4], Vol. 2 also. PCR6 coincides with PCR5 when one
combines two sources. The difference between PCR5 and
PCR6 lies in the way the proportional conflict redistribution
is done as soon as three or more sources are involved in
the fusion. From the implementation point of view, PCR6 is
much more simple to implement than PCR5. For convenience,
very basic (not optimized) Matlab codes of PCR5 and PCR6
fusion rules can be found in [4], [5] and from the toolboxes
repository on the web [7]. In DSmT framework, the classical

2Actually, Shafer’s model, considering all elements of the frame as truly
exclusive, can be viewed as a special case of hybrid model.

3but non-existential integrity constraints as shown in Example 2.

pignistic transformation BetP (.) is replaced by the more
effective DSmP (.) transformation to estimate the subjective
probabilities of hypotheses for decision-making support once
the combination of bba’s has been done if compromise attitude
is chosen. The max of credibility (pessimistic decision attitude)
or max of plausibility (optimistic decision attitude) are also
possible depending on the preference of decision maker. This
topic is out of the scope of this paper and readers interested
in decision-making based on DSmP must refer to [4], Vol.3
freely available on the web.

III. WORKING WITH NON-EXISTENTIAL CONSTRAINTS

In this section we show how this problem can be solved
from the classical Shafer’s approach and then we show how
it can be solved with PCR rules to get more specific results.

A. Shafer’s approach

Let’s consider a finite and discrete frame Θk =
{θ1, θ2, . . . , θn} satisfying Shafer’s model with all θi 6= ∅ at
a given time k, and two bba’s m1,k(.) and m2,k(.) provided
by two distinct sources of evidences. Each bba is defined in
the power set 2Θk . Let’s assume now that at time k+ 1 extra
knowledge is given about the non-existence of some elements
of Θk. We denote such non-existential constraint as NE (the
set of Non Existing elemnts). For example, if NEk+1 = {θ1}
means that actually θ1 = ∅, NEk+1 = {θ1, θ2} means that both
θ1 = ∅ and θ2 = ∅, and so on. The new frame of discernment
we have to work with is then given by Θk+1 = Θk \NEk+1.
The question is how to combine at time k+1 the two original
bba’s m1,k(.) and m2,k(.) one had in taking into account our
knowledge on the revised frame Θk+1 obtained from Θk and
NEk+1 ?

Dempster-Shafer Theory (DST) [3] offers a mathematical
tool for answering to this question: Dempster-Shafer belief
conditioning rule (DSCR) which consists in combining with
Dempster-Shafer’s rule the prior bba m(.) with the condition-
ing bba mc(.) which is only focused on the conditioning event
X , i.e. for which mc(X) = 1. Mathematically, mDS(.|X) is
then defined4 by

mDS(.|X) = [m⊕mc](.) (4)

where ⊕ corresponds here to Dempster-Shafer’s rule of com-
bination and mc(X) = 1.

For solving this fusion problem under non-existential in-
tegrity constraints, three methods are a priori possible based
on DSCR:
• The Fusion-Conditioning approach (FC): It consists to
combine the sources at first and then apply Dempster-Shafer
conditioning rule. This corresponds to the following formula:

mDS-FC(.|Θk+1) = [[m1,k ⊕m2,k]⊕mc,k](.) (5)

where ⊕ corresponds here to Dempster-Shafer’s rule of com-
bination and mc,k(Θk+1) = 1. Note that mc,k(.) refers to the
conditioning bba defined in 2Θk .

4if m(.) and mc(.) are not in total contradiction of course.
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• The Conditioning-Fusion approach (CF): It consists to
apply the DS conditioning to the sources at first and then
combine the conditioned bba’s with Dempster-Shafer rule.
This corresponds to the following formula:

mDS-CF (.|Θk+1) = [m1,k ⊕mc,k]⊕ [m2,k ⊕mc,k](.) (6)

• The Global Conditioning approach (GC): It consists to
combine all the bba’s altogether in a single step of fusion.
This corresponds to the following formula:

mDS-GC(.|Θk+1) = [m1,k ⊕m2,k ⊕mc,k](.) (7)

Because of the commutativity and associativity of DS rule
and since [mc ⊕ mc](.) = mc(.) for any conditioning bba
focused on only one specific element X , the three previous
methods provide exactly the same results. This makes Shafer’s
approach very appealing since there is no ambiguity in the
choice of the method to apply.

B. Example 1 (continued)

Let’s take back the Example 1 and consider the two arbitrary
prior bba’s given in Table I.

bba’s\focal elem. θ1 θ2 θ3 θ1 ∪ θ2
Prior: m1,k(.) 0.2 0.4 0.3 0.1
Prior: m2,k(.) 0.3 0.1 0.4 0.2
Conditioning: mc,k(.) 0 0 0 1
DS-FC: mDS-FC(.) 0.4643 0.4643 0 0.0714
DS-CF: mDS-CF (.) 0.4643 0.4643 0 0.0714
DS-GC: mDS-GC(.) 0.4643 0.4643 0 0.0714

Table I
EXAMPLE 1: RESULTS WITH DS-BASED CONDITIONING.

Because in this example Θk = {θ1, θ2, θ3} and
NEk+1 = {θ3} then Θk+1 = {θ1, θ2} (only targets θ1

and θ2 survive) and therefore the conditioning bba mc,k(.)
is defined by mc,k(θ1 ∪ θ2) = 1. In applying DSCR,
one gets with three methods the same following result:
mDS-GC(.|Θk+1) = mDS-CF (.|Θk+1) = mDS-FC(.|Θk+1)
as shown in the last three rows of Table I). This symmetrical
result in θ1 and θ2 is very surprising since clearly the
input bba’s are asymmetrical in θ1 and θ2 and we don’t
see any intuitive nor rational justification to consider such
DSCR-based behavior as efficient for applications.

• Direct approach: Note that this result can be also simply
obtained in a direct manner using DS rule for combining
m1,k(.) with m2,k(.) and in taking into account the constraint
θ3 = ∅ in the DS formula. In this example 1, one gets:

m12(θ1) = m1,k(θ1)m2,k(θ1) +m1,k(θ1)m2,k(θ1 ∪ θ2)

+m2,k(θ1)m1,k(θ1 ∪ θ2) = 0.13

m12(θ2) = m1,k(θ2)m2,k(θ2) +m1,k(θ2)m2,k(θ1 ∪ θ2)

+m2,k(θ2)m1,k(θ1 ∪ θ2) = 0.13

m12(θ1 ∪ θ2) = m1,k(θ1 ∪ θ2)m1,k(θ1 ∪ θ2) = 0.02

For θ3, one has m12(θ3) = m1,k(θ3)m1,k(θ3) = 0.12. Since
actually θ3 = ∅, then m12(θ3 = ∅) = 0.12 must be added to
mass already committed to the empty set coming from other

possible conflicting conjunctions so that finally one will get
the total conflicting mass m12(∅) = 0.72. After normalization
step, we finally get

mDS(θ1) =
m12(θ1)

1−m12(∅)
= 0.13/0.28 = 0.4643

mDS(θ2) =
m12(θ2)

1−m12(∅)
= 0.13/0.28 = 0.4643

mDS(θ1 ∪ θ2) =
m12(θ1 ∪ θ2)

1−m12(∅)
= 0.02/0.28 = 0.0714

• Advantages of DS approach: The main interest of this
DSCR-based methods lies in the fact that DSCR can be
interpreted as a generalization of Bayesian conditioning and
that the conditioning and the DS fusion commute, so that
the three methods FC, CF or GC based all on DSCR coincide.

• Drawbacks of DS approach: Although attractive, DSCR ap-
proach cannot however circumvent the problem inherent to DS
rule itself when the sources to combine are highly conflicting
or are in worst case in total conflict. Even if the sources are
not too conflicting, DSCR can yield to questionable results as
pointed out in Example 1 (i.e. symmetrical results based on
asymmetrical inputs) – see Table I.

C. Example 2

This example is an extension of Zadeh’s example including
non-existential constraint. Let’s take Θ = {θ1, θ2, θ3, θ4}
satisfying Shafer’s model and the following prior bba’s given
in Table II, and let’s assume at time k + 1 that we learn
θ4 = ∅, so that Θk+1 = {θ1, θ2, θ3}. Applying all previous
methods, provide same counter-intuitive result mDS(θ3) = 1
as in classical Zadeh’s example.

bba’s\focal elem. θ1 θ2 θ3 θ4 θ1 ∪ θ2 ∪ θ3
Prior: m1,k(.) 0.98 0 0.01 0.01 0
Prior: m2,k(.) 0 0.98 0.01 0.01 0
Conditioning: mc,k(.) 0 0 0 0 1
DS-FC: mDS-FC(.) 0 0 1 0 0
DS-CF: mDS-CF (.) 0 0 1 0 0
DS-GC: mDS-GC(.) 0 0 1 0 0

Table II
EXAMPLE 2–A: RESULTS WITH DS-BASED CONDITIONING.

This example can be generalized as in Table III where all
bba’s are normalized and the non-existential constraint is A4∪
. . . ∪ An = ∅. The result of DSCR approach is given in the
right column of Table III.
for n ≥ 1, where ε1, ε2, and δij are very tiny positive numbers
in [0,1], a1 and a2 are positive numbers closer to 1, but smaller
than 1, and the sum on each column is 1; all intersections
Ai ∩ Aj are empty, where Ai can be singletons or unions of
singletons. So, this is a Bayesian and non-Bayesian example.

D. Example 3

Here we give two very simple classes of examples with
Bayesian or non-Bayesian bba’s where DSCR cannot be
applied to solve the problem. We assume Shafer’s model for
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Focal elem.\ bba’s m1,k(.) m2,k(.) mc,k(.) mDS(.)
A1 a1 0 0 0
A2 0 a2 0 0
A3 ε1 ε2 0 1
A4 δ11 δ21 0 0
...

...
...

...
...

An δ1n δ2n 0 0
A1 ∪A2 ∪A3 0 0 1 0

Table III
GENERALIZATION OF EXAMPLE 2–A.

the frames. In example 3–A, the non-existential constraint is
θ1 = ∅ and the parameters a and b belong to [0, 1].

bba’s\focal elem. θ1 θ2 θ3 θ2 ∪ θ3
Prior: m1,k(.) a 0 1-a 0
Prior: m2,k(.) b 1-b 0 0
Conditioning: mc,k(.) 0 0 0 1

Table IV
BBA’S FOR EXAMPLE 3–A. (BAYESIAN CASE WITH θ1 = ∅ )

Example 3–A gives 0/0 when using Dempster-Shafer’s
conditioning rule.

In example 3–B, we consider non-Bayesian bba’s. The pa-
rameters a and b belong to [0; 1]. The non-existential constraint
is θ1 = θ2 = ∅.

bba’s\focal elem. θ1 ∪ θ2 θ3 θ4
Prior: m1,k(.) a 0 1-a
Prior: m2,k(.) b 1-b 0
Conditioning: mc,k(.) 0 0 1

Table V
BBA’S FOR EXAMPLE 3–B. (NON-BAYESIAN CASE WITH θ1 ∪ θ2 = ∅ )

An infinity of Bayesian or Non Bayesian classes with
total conflicting sources can be constructed where DSCR rule
cannot be applied.

E. DSmT approach

Since the PCR5 or PCR6 circumvent the problem of DS
rule for combining potentially highly conflicting sources
of evidence, it is natural to try at first to use the same
methodology for solving the problem just in replacing the
DS fusion operator ⊕ by PCR5 (or PCR6) fusion operators.
This is called PCR5CR (PCR5-based conditioning rule) or
PCR6CR if one prefers to use PCR6. Unfortunately, the
solution based on these PCR rules is not so simple because
PCR rules are not associative and thus the result one gets
highly depends on the conditioning method we adopt: FC,
CF or Global. Moreover, the direct approach based on
classical/original PCR5 rule under non-existential constraint
cannot be applied as it will be shown from Example 1.
That’s why we propose a new solution to solve this important
problem in the sequel.

Example 1 (continued): Let’s take back example 1 and exam-
ine the results given by PCR5-FC, PCR5-CF and PCR5-GC
methods5. The results are given in Table VI.

bba’s\focal elem. θ1 θ2 θ3 θ1 ∪ θ2
Prior: m1,k(.) 0.2 0.4 0.3 0.1
Prior: m2,k(.) 0.3 0.1 0.4 0.2
Conditioning: mc,k(.) 0 0 0 1
PCR5-FC: mPCR5-FC(.) 0.2664 0.2927 0.3320 0.1089
PCR5-CF: mPCR5-CF (.) 0.3526 0.3822 0.0470 0.2182
PCR5-GC: mPCR5-GC(.) 0.1811 0.1975 0.1597 0.4617

Table VI
EXAMPLE 1: RESULTS WITH PCR5-BASED CONDITIONING.

From Table VI, one sees clearly that the original PCR5
rule used for solving this example generates different results
depending the method (PCR5-FC, PCR5-CF or PCR5-GC)
which is not very satisfactory, and that all methods commit
a positive mass to θ3 = ∅ which is not acceptable since we
assume to work within Shafer’s model in this example.

Direct approach: If we now use a direct PCR5-based ap-
proach for trying to solve the problem, we need to replace
θ3 by ∅ in the bba’s inputs and apply the PCR5∅ fusion rule
proposed in [5]. PCR5∅ fusion formula is same as PCR5
fusion formula (3) except that X ∈ DΘ where DΘ includes
the empty set as well. In clear, PCR5∅ fusion rule allows ∅
as focal element (as in Smets’ TBM). If we apply this PCR5∅
direct fusion, one will get results in Table VII consistent with
the result of the last row of Table VI which is normal.

bba’s\focal elem. θ1 θ2 ∅ θ1 ∪ θ2
Prior: m1,k(.) 0.2 0.4 0.3 0.1
Prior: m2,k(.) 0.3 0.1 0.4 0.2
Conditioning: mc,k(.) 0 0 0 1
mPCR5∅-Direct(.) 0.1811 0.1975 0.1597 0.4617

Table VII
BBA’S FOR EXAMPLE 1 AND PCR5∅-DIRECT RESULTS.

Example 2 (continued): Let’s take back example 2 and exam-
ine the results given by PCR5-FC, PCR5-CF and PCR5-GC
methods. The results are given in Table VIII (rounded when
possible at the fourth decimal).

bba’s\focal elem. θ1 θ2 θ3 θ4 ≡ ∅ θ1 ∪ θ2 ∪ θ3
Prior: m1,k(.) 0.98 0 0.01 0.01 0
Prior: m2,k(.) 0 0.98 0.01 0.01 0
Conditioning: mc,k(.) 0 0 0 0 1
mPCR5-FC (.) 0.49960202 0.49960202 0.00039798 0.00000016 0.00039782
mPCR5-CF (.) 0.49970100 0.49970100 0.00049796 0.00000007 0.00009997
mPCR5-GC (.) 0.32762253 0.32762253 0.00020045 0.00010047 0.34445402

Table VIII
EXAMPLE 2–A: RESULTS WITH PCR5-FC, PCR5-CF & PCR5-GC.

Example 3 (continued): Let’s take back example 3–A with
a = b = 0.9 and 1 − a = 1 − b = 0.1. The results given by
PCR5-FC, PCR5-CF and PCR5-GC are given in Table IX.

5i.e. FC, CF and GC approaches when using PCR5 rule of combination
instead of DS rule.
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bba’s\focal elem. θ1 ≡ ∅ θ2 θ3 θ2 ∪ θ3
Prior: m1,k(.) 0.9 0 0.1 0
Prior: m2,k(.) 0.9 0.1 0 0
Conditioning: mc,k(.) 0 0 0 1
mPCR5-FC(.) 0.4791 0.0140 0.0140 0.4929
mPCR5-CF (.) 0.4421 0.0605 0.0605 0.4369
mPCR5-GC(.) 0.4435 0.0053 0.0053 0.5458

Table IX
EXAMPLE 3–A: RESULTS WITH PCR5-FC, PCR5-CF & PCR5-GC.

In summary, one has shown from very simple examples
that original PCR5-based approaches cannot be used directly
to solve the problem because they generate a non normalized
bba (i.e. a bba with a positive value committed to ∅) and
moreover the result depends the choice of the methods because
of non associativity of PCR5 (or PCR6 as well). It is worth
to note however that the results provided by the PCR5-
based approaches commit different masses on non-empty focal
lements contrariwise to DS-based approaches. In the next
section we present new approaches for trying to solve the
problem.

IV. EXTENDED PCR RULES

In this section we propose several ways to deal with the
fusion of sources under non-existential integrity constraints
since original PCR5 (or PCR6) cannot be applied directly.
This is the main reason why new solutions have to be found
and this is the main contribution of this paper.

A. Simple solution based on normalization

A simple solution would consist to use original PCR5
or direct PCR5∅ rules with a normalization final step (not
included in original formulas) consisting in dividing all the
mass of non-empty focal elements by (1−m(∅)). This method
can be applied only when m(∅) < 1 of course. In example 1,
one will get results given in Table X.

bba’s \ focal elem. θ1 θ2 θ3 θ1 ∪ θ2
Prior: m1,k(.) 0.2 0.4 0.3 0.1
Prior: m2,k(.) 0.3 0.1 0.4 0.2
Conditioning: mc,k(.) 0 0 0 1
Normalized PCR5-FC bba 0.3988 0.4382 0 0.1630
Normalized PCR5-CF bba 0.3700 0.4010 0 0.2290
Normalized PCR5-GC bba 0.2155 0.2350 0 0.5495
Normalized PCR5∅ bba 0.2155 0.2350 0 0.5495
Normalized PCR6-GC bba 0.2133 0.2326 0 0.5541
Normalized PCR6∅ bba 0.2133 0.2326 0 0.5541

Table X
BBA’S FOR EXAMPLE 1 AND PCR5CR-BASED RESULTS AFTER

NORMALIZATION.

Note that another result can be obtained from PCR5 and CF
approach if one first normalizes the bba’s mPCR5

1 (.|θ1∪θ2) =
m1,k ⊕mc,k(.), and mPCR5

2 (.|θ1 ∪ θ2) = m2,k ⊕mc,k(.) and
then if we apply original PCR5 formula to combine them. We
denote this method as PCR5-CnF (n standing for the position
where the normalization step is done). In this case, one will
get: mPCR5-CnF (θ1) = 0.391, mPCR5-CnF (θ2) = 0.414 and

mPCR5-CnF (θ1 ∪ θ2) = 0.195 which is still different from
previous results.

As one sees, all methods including a normalization step
provide now different results and all agree that θ2 corresponds
to the hypothesis that has highest belief or plausibility. There
is no ambiguity in the choice between θ1 and θ2 contrariwise
to DS approach. The least uncertainty level is obtained with
PCR5− FCn approach in this example.

B. A more efficient solution

Here we propose another way to solve the problem us-
ing new extended PCR5 fusion formulas denoted PCR5a,
PCR5b and PCR5c.
• The PCR5a fusion rule: mPCR5a(∅) = 0 and ∀A ∈ GΘ\∅

mPCR5a(A) = m12(A)+∑
X∈GΘ\∅
X∩A=∅

[
m1(A)2m2(X)

m1(A) +m2(X)
+

m2(A)2m1(X)

m2(A) +m1(X)
]

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+m12(A) ·
∑
X,Y ∈∅m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)

(8)

In PCR5a rule, one transfers the remaining conflicting
masses proportionally with respect to the non-null masses
resulted from the conjunctive rule.
• The PCR5b fusion rule: mPCR5b(∅) = 0 and∀A ∈ GΘ\∅

mPCR5b(A) = m12(A)+∑
X∈GΘ\∅
X∩A=∅

[
m1(A)2m2(X)

m1(A) +m2(X)
+

m2(A)2m1(X)

m2(A) +m1(X)
]

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+

∑
X,Y ∈∅m1(X)m2(Y )

Card({Z|Z ∈ GΘ \ ∅,m12(Z) 6= 0})
(9)

In PCR5b rule, one uniformly transfers the remaining conflict-
ing masses to all non-null masses resulted from the conjunctive
rule.
• The PCR5c fusion rule: mPCR5c(∅) = 0 and∀A ∈ GΘ\∅

mPCR5c(A) = m12(A)+∑
X∈GΘ\∅
X∩A=∅

[
m1(A)2m2(X)

m1(A) +m2(X)
+

m2(A)2m1(X)

m2(A) +m1(X)
]

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+
∑

X,Y ∈∅,A=It

m1(X)m2(Y ) (10)

In PCR5c rule, one transfers all remaining conflicting masses
to the total ignorance It.
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For PCR5a–PCR5c formulas (8)–(10) (and the next DSmHa–
DSmHc, DSa–DSc formulas too) if a denominator is equal
to zero, then its respective fraction is discarded, and∑
X,Y ∈∅m1(X)m2(Y ) is transferred to the total ignorance. In

this case all three PCR5a–c coincide. Similarly, all DSmHa–c
coincide, and all DSa–c coincide as well. In the above formu-
las, m12(A) is the mass obtained by the classical conjunctive
consensus obtained by

m12(A) =
∑

X1,X2∈GΘ

X1∩X2=A

m1(X1)m2(X2) (11)

GΘ is the fusion space (power-set, hyper-power set or super-
power set) depending on the underlying model chosen for the
frame Θ and ∅ is the set of all empty sets that occur in the
fusion due to the integrity constraints.
Remarks:

1) If no constraint occurs (i.e. no focal element becoming
empty), then all PCR5a–PCR5c formulas coincide with
classical PCR5 fusion rule. All these extended PCR5
rules can be extended for combining N > 2 sources of
evidences.

2) If all information about m1(.) and m2(.) and constraints
(the sets which become empty in the fusion space) come
simultaneously, we can use any of these three formulas.

3) PCR5a formula is the best. PCR5a and PCR5b for-
mulas keep the specificity resulted after applying the
conjunctive rule. PCR5c rule is less specific (and not
recommended).

4) These formulas can be modified easily into PCR6a–
PCR6c formulas by applying PCR6 redistribution prin-
ciple to m1(.) and m2(.) and transferring the remaining
mass committed to empty set as in PCR5a–PCR5c
formulas.

5) In the case when the information comes sequentially, we
combine it in that order.

PCR5a is better than PCR5b and PCR5c because PCR5a
is more specific than both of them. Its bigger specificity is
due to the fact that all masses of degenerated intersections
m12(A ∩ B), where A = B = ∅, are redistributed
proportionally to all non-empty elements resulted from the
conjunctive rule. While PCR5c redistributes this whole
degenerated mass to the total ignorance (hence the lowest
specificity among this group of three related formulas), and
PCR5b uniformly splits this whole degenerated mass to all
non-empty elements (but this means that PCR5b gives the
same amount to each non-empty element, while PCRa gives
more generated mass to the elements which have a bigger
mass from the conjunctive rule).

Except Smets’ fusion rule in TBM, we can adapt many
fusion rules which are based on the conjunctive rule, including
PCR6 too of course. We can adapt in three ways, correspond-
ing to the previous PCR5a–PCR5c improved rules, replacing
only the PCR5 first summation in all three formulas with

DSmH summation S2 [4], Vol.1. For example, the DSmHa,
DSmHa and DSmHc extended rules are given by:
• DSmHa fusion rule: mDSmHa(∅) = 0 and ∀A ∈ GΘ \ ∅

mDSmHa(A) = m12(A) +
∑

X∈GΘ\∅
X∩Y=∅
X∪Y=A

m1(X)m2(Y )

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+m12(A) ·
∑
X,Y ∈∅m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)

(12)

• DSmHb fusion rule: mDSmHb(∅) = 0 and ∀A ∈ GΘ \ ∅

mDSmHb(A) = m12(A) +
∑

X∈GΘ\∅
X∩Y=∅
X∪Y=A

m1(X)m2(Y )

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+

∑
X,Y ∈∅m1(X)m2(Y )

Card({Z|Z ∈ GΘ \ ∅,m12(Z) 6= 0})
(13)

• DSmHc fusion rule: mDSmHc(∅) = 0 and ∀A ∈ GΘ \ ∅

mDSmHc(A) = m12(A) +
∑

X∈GΘ\∅
X∩Y=∅
X∪Y=A

m1(X)m2(Y )

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+
∑

X,Y ∈∅,A=It

m1(X)m2(Y ) (14)

DSmH classic rule [4] (Vol.1) redistributes the whole
conflicting mass of the form m12(A ∩ B), with A = B = ∅,
resulted from the conjunctive rule, to the total ignorance;
DSmH classic is equivalent (gives the same result) as
DSmHc. But DSmHa and DSmHb are more specific than
DSmHc (=DSmH classic) from exactly the same reason as
explained before regarding the more specificity of PCR5a
with respect to PCR5 and PCR5b. DSmHa is the most
specific among all three DSmHa–DSmHc. That’s why
we need DSmHa. In addition, in the three formulas of
DSmHa–DSmHc we can condensed the first two summations
(m12(A) +

∑
. . .+

∑
. . .+ . . .) into one summation only, i.e

under the first summation we can write X,Y ∈ GΘ (so X , Y
can be empty as well) and the second summation disappears
(it is absorbed by the first).

Similarly for Dempster-Shafer’s extended rule in the DSm
way, we replace in all first three formulas the first PCR5
summation by

m12(A) ·

∑
X,Y ∈∅
X∩Y=∅

m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)
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• DSa fusion rule: mDSa(∅) = 0 and ∀A ∈ GΘ \ ∅

mDSa(A) = m12(A) +m12(A) ·

∑
X,Y ∈∅
X∩Y=∅

m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+m12(A) ·
∑
X,Y ∈∅m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)

(15)

• DSb fusion rule: mDSb(∅) = 0 and ∀A ∈ GΘ \ ∅

mDSb(A) = m12(A) +m12(A) ·

∑
X,Y ∈∅
X∩Y=∅

m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+

∑
X,Y ∈∅m1(X)m2(Y )

Card({Z|Z ∈ GΘ \ ∅,m12(Z) 6= 0})
(16)

• DSc fusion rule: mDSc(∅) = 0 and ∀A ∈ GΘ \ ∅

mDSc(A) = m12(A) +m12(A) ·

∑
X,Y ∈∅
X∩Y=∅

m1(X)m2(Y )∑
Z∈GΘ\∅m12(Z)

+
∑
X∈∅

[m1(A)m2(X) +m2(A)m1(X)]

+
∑

X,Y ∈∅,A=It

m1(X)m2(Y ) (17)

Note that all these extended fusion rules are however not
associative and therefore if one has several sources available
at a given time to combine, the combination must be applied
with all sources together to get optimal fusion result.

C. Example 1 (continued)

Let’s examine in details the results obtained on Example
1 with all these extended fusion formulas. Because θ3 = ∅
and Shafer’s model is assumed for Θk, the set of elements
becoming empty is ∅ = {θ1 ∩ θ2, θ1 ∩ θ3, θ2 ∩ θ3, (θ1 ∪ θ2) ∩
θ3, θ3} and one has: m12(θ1∩θ2) = 0.14, m12(θ1∩θ3) = 0.17,
m12(θ2 ∩ θ3) = 0.19, m12((θ1 ∪ θ2)∩ θ3) = 0.10, m12(θ3) =
0.12. m12(θ1 ∩ θ2 ∈ ∅) = 0.14 is redistributed back to θ1 and
θ2 using PCR5 principle:
x1θ1

0.2
=
y1θ2

0.1
=

0.02

0.3
=

0.2

3
,

x2θ1

0.3
=
y2θ2

0.4
=

0.12

0.7
=

1.2

7

x1θ1 = 0.2
0.2

3
≈ 0.013 x2θ1 = 0.3

1.2

7
≈ 0.051

y1θ2 = 0.1
0.2

3
≈ 0.007 y2θ2 = 0.4

1.2

7
≈ 0.069

m12(θ1 ∩ θ3 ∈ ∅) = 0.17 is all redistributed back to θ1 since
θ3 = ∅ (non-existential constraint). m12(θ2 ∩ θ3 ∈ ∅) = 0.19
is all redistributed back to θ2 since θ3 = ∅ (non-existential
constraint). m12((θ1∪θ2)∩θ3) ∈ ∅) = 0.10 is all redistributed
back to θ1 ∪ θ2 since θ3 = ∅ (non-existential constraint).
While m12(θ3 = ∅) = 0.12 is redistributed differently in each
PCR5a, PCR5b and PCR5c formulas:

1) In PCR5a:

xθ1
0.13

=
yθ2
0.13

=
zθ1∪θ2
0.02

=
0.12

0.28
=

3

7

whence xθ1 = yθ2 = 0.13 · 3/7 ≈ 0.056 and zθ1∪θ2 =
0.02 · 3/7 ≈ 0.008.

2) In PCR5b: xθ1 = yθ2 = zθ1∪θ2 = 0.12/3 = 0.04.
3) In PCR5c: zθ1∪θ2 = 0.12.
Finally, one then gets results shown in the Table XI. From

these results, one sees that PCR5a rules provides the most
specific result since the mass committed to the uncertainty
is lowest with respect to what we get with PCR5b, PCR5c
and other PCR5-based normalized conditioning rules given in
the Table X. PCR5b is also a bit better (more specific) than
PCR5-based normalized conditioning rules also. As we see
and as expected from the theory PCR5c is less specific than
PCR5a and PCR5b. If we use DSmHa-DSmHc fusion rules
on this example, m12(θ1 ∩ θ2 ∈ ∅) = 0.14 is all redistributed
back to θ1 ∪ θ2 using DSmH principle [4], Vol.1. The other
conflicting masses are redistributed respectively in the same
way in PCR5a–PCR5c rules. The same example for Dempster-
Shafer’s rule extended in DSm style: m12(θ1∩θ2 ∈ ∅) = 0.14
is all redistributed back to θ1, θ2, and θ1 ∪ θ2 since they are
non-empty proportionally with respect to their conjunctive rule
masses 0.13, 0.13 and respectively 0.02:

xθ1
0.13

=
yθ2
0.13

=
zθ1∪θ2
0.02

=
0.14

0.28
= 0.5

whence xθ1 = yθ2 = 0.13(0.5) = 0.065 and zθ1∪θ2 =
0.02(0.5) = 0.010. The other conflicting masses are redis-
tributed respectively in the same way as in PCR5a–PCR5c
rules. The results obtained with DSmHa–DSmHc and DSa–
DSc rules are given in Table XI. In this example, one sees that
PCR5a is the most specific rule and in all cases, the rational
decision to take will be θ2 without ambiguity contrariwise to
DSCR approach.

bba’s \ focal elem. θ1 θ2 θ3 ≡ ∅ θ1 ∪ θ2
Prior: m1,k(.) 0.2 0.4 0.3 0.1
Prior: m2,k(.) 0.3 0.1 0.4 0.2
mPCR5a 0.420 0.452 0 0.128
mPCR5b 0.404 0.436 0 0.160
mPCR5c 0.364 0.396 0 0.240
mDSa 0.421 0.441 0 0.138
mDSb 0.405 0.425 0 0.170
mDSc 0.365 0.385 0 0.250
mDSmHa 0.356 0.376 0 0.268
mDSmHb 0.340 0.360 0 0.300
mDSmHc 0.300 0.320 0 0.380

Table XI
EXAMPLE 1: PCR5A–C & DSA–C & DSMHA–C RESULTS.

V. EXAMPLES

Here we present the solution of Examples 2–A, 3A–3B
obtained with our new extended PCR5a–PCR5c rules of com-
bination for solving the fusion of bba’s under non-existential
constraints in degenerate cases.
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A. Example 2 (continued)

Let’s consider the Example 2–A and apply PCR5a–PCR5c
formulas. Using the PCR5 principle, m12(θ1 ∩ θ2) = 0.98 ·
0.98 = 0.9604 is redistributed back to θ1 and θ2 with the same
proportions xθ1 = xθ2 = 0.4802; m12(θ1∩θ3) = 0.98·0.01 =
0.0098 is redistributed to θ1 and θ3 with xθ1 = 0.00970101
and xθ3 = 0.00009899; m12(θ2∩θ3) = 0.0098 is redistributed
to θ2 and θ3 with xθ2 = 0.00970101 and xθ3 = 0.00009899;
m12(θ1 ∩ θ4) = 0.0098 is transferred to θ1 only since
θ4 ≡ ∅; m12(θ2 ∩ θ4) = 0.0098 is transferred to θ2 only
since θ4 ≡ ∅; m12(θ3 ∩ θ4) = 0.0002 is transferred to θ3 only
since θ4 ≡ ∅; Since only m12(θ3) 6= 0 with θ3 6= ∅ the mass
m12(θ4) = 0.0001 is transferred to θ3 in both PCR5a and
PCR5b formulas. But in PCR5c rule, m12(θ4) is transferred
to the total ignorance It = θ1 ∪ θ2 ∪ θ3. The final results
obtained with PCR5a, PCR5b (same as with PCR5a for this
example) and PCR5c are given in Table XII below.

focal el.\bba’s m1,k m2,k mPCR5a,b(.) mPCR5c(.)
θ1 0.98 0 0.49970101 0.49970101
θ2 0 0.98 0.49970101 0.49970101
θ3 0.01 0.01 5.9798 · 10−4 4.9798 · 10−4

θ4 ≡ ∅ 0.01 0.01 0 0
θ1 ∪ θ2 ∪ θ3 0 0 0 0.0001

Table XII
EXAMPLE 2–A: RESULTS WITH PCR5A–C

B. Example 3 (continued)

In Example 3–A, θ1 becomes empty and therefore: m12(θ1∩
θ2) = a(1 − b) goes to θ2, m12(θ1 ∩ θ3) = b(1 − c) goes to
θ3 and m12(θ2 ∩ θ3) = 1− a− b+ ab is split between θ2 and
θ3 proportionally to 1− b and 1− a respectively:

xθ2
1− b

=
xθ3

1− a
=

1− a− b+ ab

2− a− b
Therefore, one gets finally

xθ2 =
1− a− 2b+ ab+ b2 − ab2

2− a− b

xθ3 =
1− 2a− b+ 2ab+ a2 − a2b

2− a− b
Since θ1 = ∅, m12(θ1) = ab is redistributed to θ2 ∪ θ3 in
PCR5a–PCR5c formulas because all m12(X) = 0 for X 6= ∅.
The final results are given in Table XIII depending on the
values of parameters a and b

Cases a 6= 1, b 6= 1 a = b = 1
focal elem. \ bba’s mPCR5a,b,c(.) mPCR5a,b,c(.)
θ1 0 0
θ2 a(1− b) +

(1−b)(1−a−b+ab
2−a−b

0

θ3 b(1− a) +
(1−a)(1−a−b+ab

2−a−b
0

θ2 ∪ θ3 ab 1

Table XIII
EXAMPLE 3–A: RESULTS WITH PCR5A–PCR5C

Extended PCR5 rules for Example 3–B give same results as
for Example 3–A, where we replace θ1 by θ1 ∪ θ2, θ2 by θ3,
and θ3 by θ4, and θ2 ∪ θ3 by θ3 ∪ θ4. If we take by example,
a = b = 0.9 and 1 − a = 1 − b = 0.1 in examples 3–A and
3–B then we will finally obtain for Examples 3–A & 3–B:

bba’s\focal elem. θ1 θ2 θ3 θ2 ∪ θ3
mPCR5a−c(.) 0 0.095 0.095 0.810
mDSmHa−c(.) 0 0.090 0.090 0.820
mDSa−c(.) 0 0.090 0.090 0.820

Table XIV
EXAMPLE 3–A: RESULTS WITH a = b = 0.9 AND 1− a = 1− b = 0.1

bba’s\focal elem. θ1 ∪ θ2 θ3 θ4 θ3 ∪ θ4
mPCR5a−c(.) 0 0.095 0.095 0.810
mDSmHa−c(.) 0 0.090 0.090 0.820
mDSa−c(.) 0 0.090 0.090 0.820

Table XV
EXAMPLE 3–B: RESULTS WITH a = b = 0.9 AND 1− a = 1− b = 0.1

Dempster-Shafer’s rule cannot be applied in these examples
since it gives 0/0.

VI. CONCLUSIONS

In this paper we extend the classical PCR5 and DSmH
combination fusion rules to two ensembles of new fusion rule
formulas, PCR5a–PCR5c and respectively DSmHa–DSmHc,
in order to be able to take into consideration the non-
existence constraints (i.e. when some sets become empty) that
may occur during a dynamic fusion. Further, we show that
the same DSmT extension procedure applied to PCR5 and
DSmH can be applied to Dempster’s rule and other rules as
well. We provide several examples with these PCR5a–PCR5c
and DSmHa–DSmHc rules, and also with Dempster-Shafer
conditioning rule (DSCR). We have presented some classes of
counter-examples to DSCR. If we have two sources, what to do
first Fusion and then Conditioning, or Conditioning and then
Fusion? A simple answer would be to do them in the order we
receive the information. But in the case we receive all of them
simultaneously, it is better to use these new extended rules
depending on the specificity quality we want to get, PCR5a
being the most specific rule.
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A Fuzzy-Cautious OWA Approach with 
Evidential Reasoning
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Abstract—Multi-criteria decision making (MCDM) is to make
decisions in the presence of multiple criteria. To make a decision
in the framework of MCDM under uncertainty, a novel fuzzy -
Cautious OWA with evidential reasoning (FCOWA-ER) approach
is proposed in this paper. Payoff matrix and belief functions of
states of nature are used to generate the expected payoffs, based
on which, two Fuzzy Membership Functions (FMFs) representing
optimistic and pessimistic attitude, respectively can be obtained.
Two basic belief assignments (bba’s) are then generated from
the two FMFs. By evidence combination, a combined bba is
obtained, which can be used to make the decision. There is no
problem of weights selection in FCOWA-ER as in traditional
OWA. When compared with other evidential reasoning-based
OWA approaches such as COWA-ER, FCOWA-ER has lower
computational cost and clearer physical meaning. Some experi-
ments and related analyses are provided to justify our proposed
FCOWA-ER.

Index Terms—Evidence theory, OWA, belief function, uncer-
tainty, decision making, information fusion.

I. INTRODUCTION

In real-life situations, decision making always encounters
difficult multi-criteria problems [1]. In classical Multi-Criteria
Decision Making (MCDM) framework, the ordered weighted
averaging (OWA) approach proposed by Yager [2] has been
increasingly used in wide range of successful applications for
the aggregation of decision making problems such as image
processing, fuzzy control, market prediction and expert sys-
tems, etc [3]. OWA is a generalized mean operator providing
flexibility in the aggregation. Thus the aggregation can be
bounded between minimum and maximum operators. This
flexibility of the OWA operator is implemented by using the
concept of orness (optimism) [4], which is a surrogate for
decision maker’s attitude. One important issue in the OWA
aggregation is the determination of the associated weights.
Many approaches [5]–[10] have been proposed to determine
the weights in OWA. See the related references for details.

In multi-criteria decision making, decisions are often made
under uncertainty, which are provided by several more or less
reliable sources and depend on the states of the world: deci-
sions can be taken in certain, risky or uncertain environment.
To implement the decision making under uncertainty, many
approaches were proposed including DS-AHP [11], DSmT-
AHP [12] and ER-MCDA [13], etc. Especially for the OWA
under uncertainty, Yager proposed an OWA approach with

evidence reasoning [14]. In our previous work, a cautious
OWA with evidential reasoning (COWA-ER) was proposed to
take into account the imperfect evaluations of the alternatives
and the unknown beliefs about groups of the possible states
of the world. COWA-ER mixes MCDM principles, decision
under uncertainty principles and evidential reasoning. There
is no step of weights selection in COWA-ER, which is good
for the practical use. Recently, we find that there also exists
drawbacks in COWA-ER. More precisely, the computational
cost of the combination of different evidences by COWA- ER
highly depends on the number of alternatives we encounter
in decision making. When the number of alternatives is large,
the computational cost will increase significantly.

In this paper, we propose a modified COWA-ER ap-
proach, called Fuzzy-Cautious OWA with Evidential Rea-
soning (FCOWA-ER), by using a different way to manage
the uncertainty caused by weights selection. Payoff matrix
together with the belief structure (knowledge of the states
of the nature) are used to generate two Fuzzy Membership
Functions (FMFs) representing the optimistic and pessimistic
attitude, respectively. Then two bba’s can be obtained based
on the two FMF’s by using 𝛼-cut approach. Based on evidence
combination, the combined bba can be obtained and the final
decision can be made. The FCOWA-ER approach doesn’t
need a (ad-hoc) selection of weights as in the traditional
OWA. When compared with COWA-ER, FCOWA-ER has less
computational cost and clearer physical meaning because it
requires only one combination operation regardless of the
number of alternatives. The proposed FCOWA-ER can be
seen as a trade-off between the optimistic and the pessimistic
attitudes. The preference of the two attitudes can be adjusted
by the users using discounting factors in the combination
of evidences. Some experiments and related analyses are
provided to show the rationality and efficiency of this new
FCOWA-ER approach.

II. MULTI-CRITERIA DECISION MAKING UNDER
UNCERTAINTY

Multi-criteria decision making (MCDM) refers to making
decisions in the presence of multiple, usually conflicting or
discordant, criteria. Consider the following matrix 𝐶 provided
to a decision maker:

Originally published as Han D., Dezert J., Tacnet J.-M., Han C., A Fuzzy-
Cautious OWA Approach with Evidential Reasoning, in Proc. Of Fusion 2012, 

Singapore, July 2012, and reprinted with permission.
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𝑆1 ⋅ ⋅ ⋅ 𝑆𝑗 ⋅ ⋅ ⋅ 𝑆𝑛

𝐴1

...
𝐴𝑖

...
𝐴𝑞

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶11 ⋅ ⋅ ⋅ 𝐶1𝑗 ⋅ ⋅ ⋅ 𝐶1𝑛

...
... ...

𝐶𝑖1 𝐶𝑖𝑗 𝐶𝑖𝑛

...
𝐶𝑞1

⋅ ⋅ ⋅
...

𝐶𝑞𝑗

...
⋅ ⋅ ⋅ 𝐶𝑞𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 𝐶

In the above each 𝐴𝑖 corresponds to a possible alternative
available to the decision maker. Each 𝑆𝑗 corresponds to a
possible value of the variable called the state of nature. 𝐶𝑖𝑗

corresponds to the payoff to be received by the decision maker
if he selects action 𝐴𝑖 and the state of nature is 𝑆𝑗 . The
problem encountered by the decision maker in MCDM is to
select the action which gives him the optimum payoff.

Among all the available MCDM approaches, Ordered
Weighted Averaging (OWA) is a very important one, which
is introduced below.

A. Ordered Weighted Averaging (OWA)

OWA was proposed by Yager in [2]. An OWA operator of
dimension 𝑛 is a function 𝐹 : ℝ𝑛 → ℝ that has associated
with a weighting vector1 𝑊 = [𝑤1, 𝑤2, ..., 𝑤𝑛]

𝑇 such that
𝑤𝑖 ∈ [0, 1] and

∑𝑛
𝑖=1 𝑤𝑖 = 1. For any set of values 𝑎1, ..., 𝑎𝑛

𝐹 (𝑎1, ..., 𝑎𝑛) =
∑𝑛

𝑖=1
(𝑤𝑖 ⋅ 𝑏𝑖) (1)

where 𝑏𝑖 is the 𝑖th largest element in the collection 𝑎1, ..., 𝑎𝑛.
It should be noted that the weights in the OWA operator are
associated with a position in the ordered arguments rather than
a particular argument.

The OWA operator depends on the associated weights,
hence the weights determination is very crucial. Some com-
monly used weights selection strategies are as follows [14]:

1) Pessimistic Attitude: If 𝑊 = [0, 0, ..., 1]𝑇 , then

𝐹 (𝑎1, 𝑎2, ..., 𝑎𝑛) = min𝑗 [𝑎𝑗 ].

2) Optimistic Attitude: If 𝑊 = [1, 0, ..., 0]𝑇 , then

𝐹 (𝑎1, 𝑎2, ..., 𝑎𝑛) = max𝑗 [𝑎𝑗 ].

3) Hurwicz Strategy: If 𝑊 = [𝛼, 0, ..., 1− 𝛼]𝑇 , then

𝐹 (𝑎1, 𝑎2, ..., 𝑎𝑛) = 𝛼 ⋅max𝑗 [𝑎𝑗 ] + (1− 𝛼) ⋅min[𝑎𝑗 ].

4) Normative Strategy: If 𝑊 = [1/𝑛, 1/𝑛, ..., 1/𝑛]𝑇 , then

𝐹 (𝑎1, 𝑎2, ..., 𝑎𝑛) = (1/𝑛) ⋅
∑𝑛

𝑖=1
𝑎𝑖.

The OWA operator can be seen as the decision-making
under ignorance, because in classical OWA, there is no knowl-
edge about the true state of the nature but that it belongs to a
finite set. It should be noted that the pessimistic and optimistic
strategies provide limited classes of OWA operators. There
also exist other strategies to determine the weights, e.g., the
weights generation based on entropy maximization. See related
references [5]–[10] for details.

1where 𝑋 is a vector or a matrix and 𝑋𝑇 denotes the transpose of 𝑋 .

Based on such OWA operators, for each alternative
𝐴𝑖, 𝑖 = 1, . . . , 𝑞, we can choose a weighting vector
𝑊𝑖 = [𝑤𝑖1, 𝑤𝑖2, . . . 𝑤𝑖𝑛] and compute its OWA value 𝑉𝑖 ≜
𝐹 (𝐶𝑖1, 𝐶𝑖2, . . . , 𝐶𝑖𝑛) =

∑
𝑗 𝑤𝑖𝑗 ⋅ 𝑏𝑖𝑗 where 𝑏𝑖𝑗 is the 𝑗th

largest element in the collection of payoffs 𝐶𝑖1, 𝐶𝑖2, . . . , 𝐶𝑖𝑛.
Then, as for decision-making under ignorance, we choose
𝐴∗ = 𝐴𝑖∗ with 𝑖∗ ≜ argmax𝑖{𝑉𝑖}.

B. Uncertainty in MCDM context
Decisions are often made based on imperfect information

and knowledge (imprecise, uncertain, incomplete) provided
by several more or less reliable sources and depend on the
states of the world: decisions can be taken in certain, risky or
uncertain environment [15]. In a MCDM context, the decision
under uncertainty means that the evaluations of the alternative
are dependent on the state of the world.

Introducing the ignorance and the uncertainty in a MCDM
process consists in considering that consequences of alterna-
tives (𝐴𝑖) depend on the state of nature represented by a finite
set 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑛}. For each state, the MCDM method
provides an evaluation 𝐶𝑖𝑗 . We assume that this evaluation
𝐶𝑖𝑗 done by the decision maker corresponds to the choice of
𝐴𝑖 ∈ {𝐴1, ..., 𝐴𝑞} when 𝑆𝑗 occurs with a given (possibly
subjective) probability. The evaluation matrix is defined as
𝐶 = [𝐶𝑖𝑗 ] where 𝑖 = 1, ..., 𝑞 and 𝑗 = 1, ..., 𝑛.

Since the payoff to the decision maker depends upon the
state of nature, his procedure for selecting the best alternative
depends upon the type of knowledge he has about the state of
nature. For representing the uncertainty for the state of nature,
the belief functions introduced in Dempster-Shafer Theory
(DST) [16] (known also as the Evidence Theory) can be used.
This is briefly introduced below.

C. Basics of Evidence Theory
In DST, the elements in the frame of discernment (FOD)

denoted by Θ are mutually exclusive and exhaustive. Suppose
2Θ denotes the powerset of FOD. One defines the function
𝑚 : 2Θ → [0, 1] as the basic belief assignment (bba, also
called mass function) if it satisfies:∑

𝐴⊆Θ
𝑚(𝐴) = 1, 𝑚(∅) = 0 (2)

The belief function (𝐵𝑒𝑙) and the plausibility function (𝑃𝑙)
are defined below, respectively:

𝐵𝑒𝑙(𝐴) =
∑

𝐵⊆𝐴
𝑚(𝐵) (3)

𝑃𝑙(𝐴) =
∑

𝐴∩𝐵 ∕=∅
𝑚(𝐵) (4)

Let us consider two bba’s 𝑚1(.) and 𝑚2(.) defined over the
FOD Θ. Their corresponding focal elements2 are 𝐴1, ..., 𝐴𝑘

and 𝐵1, ..., 𝐵𝑙. If 𝑘 =
∑

𝐴𝑖∩𝐵𝑗=∅ 𝑚1(𝐴𝑖)𝑚2(𝐵𝑗) < 1, the
function 𝑚 : 2Θ → [0, 1] denoted by

𝑚(𝐴) =

⎧⎨⎩
0, 𝐴 = ∅∑

𝐴𝑖∩𝐵𝑗=𝐴
𝑚1(𝐴𝑖)𝑚2(𝐵𝑗)

1− ∑
𝐴𝑖∩𝐵𝑗=∅

𝑚1(𝐴𝑖)𝑚2(𝐵𝑗)
, 𝐴 ∕= ∅ (5)

2a focal element 𝑋 of a bba 𝑚(.) is an element of the power set of the
FOD such that 𝑚(𝑋) > 0.
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is also a bba. The rule defined in Eq. (5) is called Dempster’s
rule of combination.

D. MCDM with belief structures

Yager proposed an approach for decision making with belief
structures [14]. One considers a collection of 𝑞 alternatives
belonging to 𝐴 = {𝐴1, 𝐴2, ..., 𝐴𝑞} and a finite set 𝑆 =
{𝑆1, 𝑆2, ..., 𝑆𝑛} of states of the nature. We assume that the
payoff/gain 𝐶𝑖𝑗 of the decision maker in choosing 𝐴𝑖 when
𝑆𝑗 occurs are given by positive (or null) numbers. The payoffs
𝑞 × 𝑛 matrix is defined by 𝐶 = [𝐶𝑖𝑗 ] where 𝑖 = 1, ..., 𝑞
and 𝑗 = 1, ..., 𝑛 as in eq. (2). The decision-making problem
consists in choosing the alternative 𝐴∗ ∈ 𝐴 which maximizes
the payoff to the decision maker given the knowledge on the
state of the nature and the payoffs matrix 𝐶. 𝐴∗ ∈ 𝐴 is called
the best alternative or the solution (if any) of the decision-
making problem.

In Yager’s approach, the knowledge on the state of the
nature is characterized by a belief structure. Clearly, one
assumes that a priori knowledge on the frame 𝑆 of the different
states of the nature is given by a bba 𝑚(.) : 2𝑆 → [0, 1].
Decision under certainty is characterized by 𝑚(𝑆𝑗) = 1;
Decision under risk is characterized by 𝑚(𝑆𝑗) > 0 for some
states 𝑆𝑗 ∈ 𝑆; Decision under full ignorance is characterized
by 𝑚(𝑆1 ∪ 𝑆2 ∪ ...∪ 𝑆𝑛) = 1, etc. Yager’s OWA for decision
making under uncertainty combines the schemes used for
decision making under risk and ignorance. It is based on the
derivation of a generalized expected value 𝐶𝑖 of payoff for
each alternative 𝐴𝑖 as follows:

𝐶𝑖 =
∑𝑟

𝑘=1
𝑚(𝑋𝑘)𝑉𝑖𝑘 (6)

where 𝑟 is the number of focal elements of the belief structure.
𝑚(𝑋𝑘) is the mass assignment of the focal element 𝑋𝑘 ∈ 2𝑆 .
𝑉𝑖𝑘 is the payoff we get when we select alternative 𝐴𝑖 and
the state of nature lies in 𝑋𝑘. The derivation of 𝑉𝑖𝑘 is done
similarly as for the decision making under ignorance (i.e., the
procedure of OWA) when restricting the states of the nature
to the subset of states belonging to 𝑋𝑘 only. One can choose
different strategies to determinate the weights. Actually, 𝐶𝑖 is
essentially the expected value of the payoffs under 𝐴𝑖. Select
the alternative with highest 𝐶𝑖 as the optimal one.

E. Cautious OWA with Evidential Reasoning

Yager’s OWA approach is based on the choice of a given
attitude measured by an optimistic index in [0, 1] to get the
weighting vector 𝑊 . How to choose such an index/attitude?
This choice is ad-hoc and very disputable for users. In our
previous work [15] we have only considered jointly the two
extreme attitudes (pessimistic and optimistic ones) jointly and
developed a method called Cautious OWA with Evidential
Reasoning (COWA-ER) for decision under uncertainty based
on the imprecise evaluation of alternatives.

In COWA-ER, the pessimistic and optimistic OWA are used
respectively to construct the intervals of expected payoffs for
different alternatives. For example, if there exist 𝑞 alternatives,

the expected payoffs are as follows.

𝐸[𝐶] =

⎡⎢⎢⎣
𝐸[𝐶1]
𝐸[𝐶2]

...
𝐸[𝐶𝑞]

⎤⎥⎥⎦ =

⎡⎢⎢⎣
[𝐶min

1 , 𝐶max
1 ]

[𝐶min
2 , 𝐶max

2 ]
...

[𝐶min
𝑞 , 𝐶max

𝑞 ]

⎤⎥⎥⎦
Therefore, one has 𝑞 sources of information about the

parameter associated with the best alternative to choose.
For decision making under imprecision, the belief functions
framework is used again. COWA-ER includes four steps:

∙ Step 1: normalization of imprecise values in [0, 1];
∙ Step 2: conversion of each normalized imprecise value

into elementary bba 𝑚𝑖(.);
∙ Step 3: fusion of bba 𝑚𝑖(.) with some combination rule;
∙ Step 4: choice of the final decision based on the resulting

combined bba.
In step 2, we convert each imprecise value into its bba
according to a very natural and simple transformation [17].
Here, we need to consider the finite set of alternatives
Θ = {𝐴1, 𝐴2, . . . , 𝐴𝑞} as the frame of discernment and the
sources of belief associated with them are obtained from the
normalized imprecise expected payoff vector 𝐸𝐼𝑚𝑝[𝐶]. The
modeling for computing a bba associated to 𝐴𝑖 from any
imprecise value [𝑎; 𝑏] ⊆ [0; 1] is simple and is done as follows:⎧⎨⎩

𝑚𝑖(𝐴𝑖) = 𝑎,

𝑚𝑖(𝐴𝑖) = 1− 𝑏

𝑚𝑖(𝐴𝑖 ∪𝐴𝑖) = 𝑚𝑖(Θ) = 𝑏− 𝑎

(7)

where 𝐴𝑖 is the 𝐴𝑖’s complement in Θ. With such a conver-
sion, one sees that 𝐵𝑒𝑙(𝐴𝑖) = 𝑎, 𝑃𝑙(𝐴𝑖) = 𝑏. The uncertainty
is represented by length of the interval [𝑎; 𝑏] and corresponds
to the imprecision of the variable (here the expected payoff)
on which the belief function for 𝐴𝑖 is defined.

III. A NOVEL FUZZY-COWA-ER

The COWA-ER has its rationality and can well process the
MCDM under uncertainty. However the complexity and the
computational time of the combination of COWA-ER method
is highly dependent on the number of alternatives used for
decision-making. When the number of alternatives is large,
the computational cost will increase significantly. In COWA-
ER, each expected interval is used as the information sources,
however, these expected intervals are jointly obtained and thus
these information sources are relatively correlated, which is
harmful for the followed evidence combination. In this paper,
we propose modified COWA-ER called Fuzzy-COWA-ER.
Before presenting the principle of FCOWA-ER, we first recall
that the pessimistic and optimistic OWA versions are used
respectively to construct the intervals of expected payoffs for
different alternatives as follows:

𝐸[𝐶] =

⎡⎢⎢⎣
𝐸[𝐶1]
𝐸[𝐶2]

...
𝐸[𝐶𝑞]

⎤⎥⎥⎦ =

⎡⎢⎢⎣
[𝐶min

1 , 𝐶max
1 ]

[𝐶min
2 , 𝐶max

2 ]
...

[𝐶min
𝑞 , 𝐶max

𝑞 ]

⎤⎥⎥⎦
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A. Principle of FCOWA-ER

In COWA-ER, each row of the expected payoff 𝐸[𝐶] is used
as information sources while in FCOWA-ER, we consider the
two columns of 𝐸[𝐶] as two information sources, representing
the pessimistic and the optimistic attitude, respectively. The
column-wise normalized expected payoff is

𝐸𝐹𝑢𝑧𝑧𝑦[𝐶] =

⎡⎢⎢⎣
𝑁min

1 , 𝑁max
1

𝑁min
2 , 𝑁max

2

...
𝑁min

𝑞 , 𝑁max
𝑞

⎤⎥⎥⎦
where 𝑁min

𝑖 ∈ [0, 1] (𝑖 = 1, ..., 𝑞) represents the normalized
value in the column of pessimistic attitude and 𝑁max

𝑖 ∈ [0, 1]
represents the normalized value in the column of optimistic
attitude. The vectors [𝑁min

1 , ..., 𝑁min
𝑞 ] and [𝑁max

1 , ..., 𝑁max
𝑞 ]

can be seen as two fuzzy membership functions (FMFs)
representing the possibilities of all the alternatives: 𝐴1, ..., 𝐴𝑞.

The principle of FCOWA-ER includes the following steps:
∙ Step 1: normalize each column in 𝐸[𝐶], respectively, to

obtain 𝐸𝐹𝑢𝑧𝑧𝑦[𝐶];
∙ Step 2: conversion of two normalized columns, i.e., two

FMFs into two bba’s 𝑚𝑃𝑒𝑠𝑠(.) and 𝑚𝑂𝑝𝑡𝑖(.);
∙ Step 3: fusion of bba’s 𝑚𝑃𝑒𝑠𝑠(.) and 𝑚𝑂𝑝𝑡𝑖(.) with some

combination rule;
∙ Step 4: choice of the final decision based on the resulting

combined bba.
In Step 2, we implement the conversion of the FMF into

the bba by using 𝛼-cut approach as follows:
Suppose the FOD is Θ = {𝐴1, 𝐴2, ..., 𝐴𝑞} and the FMF is

𝜇(𝐴𝑖), 𝑖 = 1, ..., 𝑞, the corresponding bba introduced in [18]
is used to generate 𝑀 𝛼-cut (0 < 𝛼1 < 𝛼2 < ⋅ ⋅ ⋅ < 𝛼𝑀 ≤ 1),
where 𝑀 ≤ ∣Θ∣ = 𝑛.{

𝐵𝑗 = {𝐴𝑖 ∈ Θ∣𝜇(𝐴𝑖) ≥ 𝛼𝑗}
𝑚(𝐵𝑗) =

𝛼𝑗−𝛼𝑗−1

𝛼𝑀

(8)

𝐵𝑗 , for 𝑗 = 1, ...,𝑀 , (𝑀 ≤ ∣Θ∣) represents the focal element.
For simplicity, here we set 𝑀 = 𝑞 and 0 < 𝛼1 < 𝛼2 < ⋅ ⋅ ⋅ <
𝛼𝑞 ≤ 1 as the sort of 𝜇(𝐴𝑖).

B. Example of FCOWA-ER versus COWA-ER and OWA

Example 1: Let’s take states 𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5} with
the associated bba 𝑚(.) given by:⎧⎨⎩𝑚(𝑆1 ∪ 𝑆3 ∪ 𝑆4) = 0.6

𝑚(𝑆2 ∪ 𝑆5) = 0.3

𝑚(𝑆1 ∪ 𝑆2 ∪ 𝑆3 ∪ 𝑆4 ∪ 𝑆5) = 0.1

Let’s also consider alternatives 𝐴 = {𝐴1, 𝐴2, 𝐴3, 𝐴4} and
the payoffs matrix:

𝐶 =

⎡⎢⎣ 7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4

⎤⎥⎦ (9)

1) Implementation of OWA: The 𝑟 = 3 focal elements of
𝑚(.) are 𝑋1 = 𝑆1 ∪ 𝑆3 ∪ 𝑆4, 𝑋2 = 𝑆2 ∪ 𝑆5 and 𝑋3 =
𝑆1 ∪ 𝑆2 ∪ 𝑆3 ∪ 𝑆4 ∪ 𝑆5. 𝑋1 and 𝑋2 are partial ignorance
and 𝑋3 is the full ignorance. One considers the following
submatrix (called bags by Yager) for the derivation of 𝑉𝑖𝑘, for
𝑖 = 1, 2, 3, 4 and 𝑘 = 1, 2, 3.

𝑀(𝑋1) =

⎡⎢⎣𝑀11

𝑀21

𝑀31

𝑀41

⎤⎥⎦ =

⎡⎢⎣ 7 12 13
12 5 11
9 3 10
6 11 15

⎤⎥⎦

𝑀(𝑋2) =

⎡⎢⎣𝑀12

𝑀22

𝑀32

𝑀42

⎤⎥⎦ =

⎡⎢⎣ 5 6
10 2
13 9
9 4

⎤⎥⎦

𝑀(𝑋3) =

⎡⎢⎣𝑀13

𝑀23

𝑀33

𝑀43

⎤⎥⎦ =

⎡⎢⎣ 7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4

⎤⎥⎦ = 𝐶

∙ Using pessimistic attitude, and applying the OWA op-
erator on each row of 𝑀(𝑋𝑘) for 𝑘 = 1 to 𝑟, one
gets finally: 𝑉 (𝑋1) = [𝑉11, 𝑉21, 𝑉31, 𝑉41]

𝑇
= [7, 5, 3, 6]

𝑇 ,
𝑉 (𝑋2) = [𝑉12, 𝑉22, 𝑉32, 𝑉42]

𝑇
= [5, 2, 9, 4]

𝑇 and 𝑉 (𝑋3). =
[𝑉13, 𝑉23, 𝑉33, 𝑉43]

𝑇
= [5, 2, 3, 4]

𝑇 . Applying formula (6)
for 𝑖 = 1, 2, 3, 4 one gets finally the following generalized
expected values using vectorial notation:

[𝐶1, 𝐶2, 𝐶3, 𝐶4]
𝑇 =

∑𝑟=3

𝑘=1
𝑚(𝑋𝑘) ⋅ 𝑉 (𝑋𝑘) = [6.2, 3.8, 4.8, 5.2]𝑇

According to these values, the best alternative to take is 𝐴1

since it has the highest generalized expected payoff.

∙ Using optimistic attitude, one takes the max value of each
row, and applying OWA on each row of 𝑀(𝑋𝑘) for 𝑘 = 1 to 𝑟,
one gets: 𝑉 (𝑋1) = [𝑉11, 𝑉21, 𝑉31, 𝑉41]

𝑇
= [13, 12, 10, 15]

𝑇 ,
𝑉 (𝑋2) = [𝑉12, 𝑉22, 𝑉32, 𝑉42]

𝑇
= [6, 10, 13, 9]

𝑇 , and
𝑉 (𝑋3) = [𝑉13, 𝑉23, 𝑉33, 𝑉43]

𝑇
= [13, 12, 13, 15]

𝑇 . One fi-
nally gets [𝐶1, 𝐶2, 𝐶3, 𝐶4]

𝑇
= [10.9, 11.4, 11.2, 13.2]

𝑇 and
the best alternative to take with optimistic attitude is 𝐴4 since
it has the highest generalized expected payoff. Then we have
expected payoff as

𝐸[𝐶] =

⎡⎢⎣𝐸[𝐶1]
𝐸[𝐶2]
𝐸[𝐶3]
𝐸[𝐶4]

⎤⎥⎦ ⊂

⎡⎢⎣[6.2; 10.9][3.8; 11.4]
[4.8; 11.2]
[5.2; 13.2]

⎤⎥⎦
2) Implementation of COWA-ER: Let’s describe in details

each step of COWA-ER. In step 1, we divide each bound of
intervals by the max of the bounds to get a new normalized
imprecise expected payoff vector 𝐸𝐼𝑚𝑝[𝐶]. In our example,
one gets:

𝐸𝐼𝑚𝑝[𝐶] =

⎡⎢⎣[6.2/13.2; 10.9/13.2][3.8/13.2; 11.4/13.2]
[4.8/13.2; 11.2/13.2]
[5.2/13.2; 13.2/13.2]

⎤⎥⎦ ≈

⎡⎢⎣[0.47; 0.82][0.29; 0.86]
[0.36; 0.85]
[0.39; 1.00]

⎤⎥⎦
In step 2, we convert each imprecise value into its bba

according to a very natural and simple transformation [17].
Here, we need to consider the finite set of alternatives Θ =
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{𝐴1, 𝐴2, 𝐴3, 𝐴4} as FOD. The sources of belief associated
with them are obtained from the normalized imprecise ex-
pected payoff vector 𝐸𝐼𝑚𝑝[𝐶]. The modeling for computing
a bba associated to the hypothesis 𝐴𝑖 from any imprecise
value [𝑎; 𝑏] ⊆ [0; 1] is very simple and is done as in (7).
where 𝐴𝑖 is the complement of 𝐴𝑖 in Θ. With such a simple
conversion, one sees that 𝐵𝑒𝑙(𝐴𝑖) = 𝑎, 𝑃𝑙(𝐴𝑖) = 𝑏. The
uncertainty is represented by the length of the interval [𝑎; 𝑏]
and it corresponds to the imprecision of the variable (here
the expected payoff) on which the belief function for 𝐴𝑖 is
defined. In the example, one gets:

TABLE I
BBA’S OF THE ALTERNATIVES USED IN COWA-ER.

Alternatives 𝐴𝑖 𝑚𝑖(𝐴𝑖) 𝑚𝑖(𝐴𝑖) 𝑚𝑖(𝐴𝑖 ∪𝐴𝑖)
𝐴1 0.47 0.18 0.35
𝐴2 0.29 0.14 0.57
𝐴3 0.36 0.15 0.49
𝐴4 0.39 0 0.61

In step 3, we use Dempster’s rule of combination to obtain3

the combined bba, which is listed in Table II.

TABLE II
FUSION OF 4 BBA’S WITH DEMPSTER’S RULE FOR COWA-ER.

Focal Element 𝑚𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟(.)
𝐴1 0.2522
𝐴2 0.1151
𝐴3 0.1627
𝐴4 0.1894

𝐴1 ∪𝐴4 0.0087
𝐴2 ∪𝐴4 0.0180
𝐴3 ∪𝐴4 0.0137

𝐴1 ∪𝐴2 ∪𝐴4 0.0368
𝐴1 ∪𝐴3 ∪𝐴4 0.0279
𝐴2 ∪𝐴3 ∪𝐴4 0.0576

𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.1179

In step 4, we use Pignistic Transformation to obtain the
bba’s corresponding pignistic probability listed in Table III.
More efficient (but complex) transformations, like DSmP,
could be used instead [19]. Based on the pignistic probability
obtained, the decision result is 𝐴1.

TABLE III
PIGNISTIC PROBABILITY BASED ON COWA-ER.

Focal Element 𝐵𝑒𝑡𝑃 (.)
𝐴1 0.3076
𝐴2 0.1851
𝐴3 0.2275
𝐴4 0.2798

3) Implementation of FCOWA-ER: In step 1 of FCOWA-
ER, we normalize each column in 𝐸[𝐶], respectively. In our
example, one gets:

𝐸𝐹𝑢𝑧𝑧𝑦[𝐶] =

⎡⎢⎣[6.2/6.2; 10.9/13.2][3.8/6.2; 11.4/13.2]
[4.8/6.2; 11.2/13.2]
[5.2/6.2; 13.2/13.2]

⎤⎥⎦ ≈

⎡⎢⎣[1.0000; 0.8258][0.6129; 0.8636]
[0.7742; 0.8485]
[0.8387; 1.0000]

⎤⎥⎦
3Other combination rules can be used instead to circumvent the limitations

of Dempsters rule discuseed in [19], [20].

Then we obtain two FMFs, which are
𝜇1 = [1, 0.6129, 0.7742, 0.8387];
𝜇2 = [0.8258, 0.8636, 0.8485, 1.0000].
In step 2, by using 𝛼-cut approach, 𝜇1 and 𝜇2 are converted

into two bba’s 𝑚𝑃𝑒𝑠𝑠(.) and 𝑚𝑂𝑝𝑡𝑖(.) as listed in Table IV.
In Step 3, we use Dempster’s rule4 to combine 𝑚𝑃𝑒𝑠𝑠(.) and

TABLE IV
THE TWO BBA’S TO COMBINE OBTAINED FROM FMFS.

Focal Element 𝑚𝑃𝑒𝑠𝑠(.) Focal Element 𝑚𝑂𝑝𝑡𝑖(.)
𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.6129 𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.8257

𝐴1 ∪𝐴3 ∪𝐴4 0.1613 𝐴2 ∪𝐴3 ∪𝐴4 0.0227
𝐴1 ∪𝐴4 0.0645 𝐴2 ∪𝐴4 0.0152

𝐴1 0.1613 𝐴4 0.1364

𝑚𝑂𝑝𝑡𝑖(.) to get 𝑚𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟(.) as listed in Table V.

TABLE V
FUSION OF TWO BBA’S WITH DEMPSTER’S RULE FOR FCOWA-ER.

Focal Element 𝑚𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟(.)
𝐴1 0.1370
𝐴4 0.1227

𝐴1 ∪𝐴4 0.0549
𝐴2 ∪𝐴4 0.0096
𝐴3 ∪𝐴4 0.0038

𝐴1 ∪𝐴3 ∪𝐴4 0.1370
𝐴2 ∪𝐴3 ∪𝐴4 0.0143

𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.5207

In step 4, we use again the Pignistic Transformation to
get the pignistic probabilities listed in Table VI. Based on

TABLE VI
PIGNISTIC PROBABILITY BASED ON FCOWA-ER.

Focal Element 𝐵𝑒𝑡𝑃 (.)
𝐴1 0.3403
𝐴2 0.1397
𝐴3 0.1826
𝐴4 0.3374

these probabilities, the decision result is also 𝐴1. The decision
results of COWA-ER and FCOWA-ER are the same.

IV. ANALYSES ON FCOWA-ER

A. On computational complexity

In FCOWA-ER, only two bba’s are involved in the combi-
nation. That is to say only one combination step is needed.
Whereas in the original COWA-ER, if there exists 𝑞 alterna-
tives, there should be 𝑞 − 1 evidence combination operations
to do. Furthermore, the bba’s obtained in the FCOWA-ER
by using 𝛼-cut are consonant support (nested in order). This
will bring less computational complexity when compared with
the bba’s generated in the original COWA-ER. In summary,
it is clear that the new proposed FCOWA-ER has lower
computational complexity.

4In fact, and more generally the choice of a rule of combination is entirely
left to the preference of the user in our FCOWA-ER methodology.
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B. On physical meaning

In this new FCOWA-ER approach, the two different infor-
mation sources are pessimistic OWA and optimistic OWA. The
combination result can be regarded as a tradeoff between these
two attitudes. the physical or practical meaning is relatively
clear. Furthermore, if the decision-maker has preference on
pessimistic or optimistic attitude, one can use discounting in
evidence combination to satisfy one’s preference. We can set
the preference of pessimistic attitude as 𝜆𝑝 and set the the
preference of optimistic attitude as 𝜆𝑜. Then the discounting
factor can be obtained as{

𝛽 = 𝜆𝑜/𝜆𝑝, 𝜆𝑜 ≤ 𝜆𝑝

𝛽 = 𝜆𝑝/𝜆𝑜, 𝜆𝑝 < 𝜆𝑜
(10)

Then according to the discounting method [16], one will take:{
𝑚𝛽(𝑋) = 𝛽 ⋅𝑚(𝑋), for 𝑋 ∕= Θ

𝑚𝛽(Θ) = 𝛽 ⋅𝑚(Θ) + (1− 𝛽)
(11)

If 𝜆𝑜 ≤ 𝜆𝑝, then 𝑚(.) in (11) should be 𝑚𝑂𝑝𝑡𝑖(.); If
𝜆𝑝 ≤ 𝜆𝑜, then 𝑚(.) in (11) should be 𝑚𝑃𝑒𝑠𝑠(.); By using
the discounting and choosing a combination rule, the decision
maker’s has a flexibility in his decision-making process.

C. On management of uncertainty

In the FCOWA-ER, we first define the bba vertically
taking into account the uncertainty between alternatives for
the pessimist attitude and for the optimistic attitude. Then
we combine two columns. The uncertainty incorporated in
the FMF obtained, which represents the possibility of each
alternative to be chosen as the final decision result. Based
on 𝛼-cut approach, the FMF is transformed into bba. The
uncertainty is thus transformed to the bba. Although based on
each column, only the information of pessimistic or optimistic
is used, the combination operation followed can use both the
two information sources (pessimistic and optimistic attitudes).
Thus the available information can be fully used in FCOWA-
ER. In COWA-ER, the modeling for each row (interval) takes
into account the true uncertainty one has on the bounds of
payoff for each alternative, then after modeling each bba
𝑚𝑖(.), one combines them ”vertically” to take into account
the uncertainty between alternatives.

Although the ways to manage the uncertainty incorporated
in are different for COWA-ER and FCOWA-ER, they both
utilize (differently) the whole available information.

D. On robustness to error scoring

Based on many experiments, we have observed that almost
all the decision results given by FCOWA-ER agree5 with
COWA-ER results and are rational. However when the dif-
ference among the values in payoff matrix is significant, the
COWA-ER can yield to wrong decisions whereas FCOWA-ER
yields to rational decisions as illustrated in Example 2 below.

5when using the same rule of combination in steps 3, and the same
probabilistic transformation in steps 4.

Example 2 Let’s take states 𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5} with
associated bba 𝑚(𝑆1 ∪ 𝑆2 ∪ 𝑆3 ∪ 𝑆4 ∪ 𝑆5) = 1, and consider
alternatives 𝐴 = {𝐴1, 𝐴2, 𝐴3, 𝐴4} and the payoffs matrix:

𝐶 =

⎡⎢⎣12 11 10 120 7
9 10 6 110 3
7 13 5 100 6
6 2 3 150 4

⎤⎥⎦ (12)

We see that the difference between max value and min value
of each line is significant. For example, in the fourth row of
𝐶, only 𝑆4 brings extremely high score for 𝐴4 whereas other
states bring homogeneous low score values for 𝐴4. Whatever
state of nature we consider 𝑆1, 𝑆2,. . . , or 𝑆5, 𝐴1 is either the
top 1 or top 2 choice according to the ranks of the alternatives
for states 𝑆𝑖, 𝑖 = 1, . . . , 5 as shown below:

𝐴1 𝐴2 𝐴3 𝐴4

𝑆1 1 2 3 4
𝑆2 2 3 1 4
𝑆3 1 2 3 4
𝑆4 2 3 4 1
𝑆5 1 4 2 3

So, intuitively, according to the principle of majority voting,
the decision result should be 𝐴1 but not 𝐴4. According to
rank-level fusion, the decision result should also be 𝐴1.

The expected payoffs are:

𝐸[𝐶] =

⎡⎢⎣ [7, 120]
[3, 110]
[5, 100]
[2, 150]

⎤⎥⎦
∙ Using COWA-ER, one has

𝐸𝐼𝑚𝑝[𝐶] =

⎡⎢⎣ [0.0467, 0.8000]
[0.0200, 0.7333]
[0.0333, 0.6667]
[0.0133, 1.0000]

⎤⎥⎦
The bba’s to combine are listed in Table VII and the

combination results by using Dempster’s rule are in Table VIII.

TABLE VII
EXAMPLE 2: BBA’S OF THE ALTERNATIVES USED IN COWA-ER.

Alternatives 𝐴𝑖 𝑚𝑖(𝐴𝑖) 𝑚𝑖(𝐴𝑖) 𝑚𝑖(𝐴𝑖 ∪𝐴𝑖)
𝐴1 0.0467 0.2000 0.7533
𝐴2 0.0200 0.2667 0.7133
𝐴3 0.0333 0.3333 0.6334
𝐴4 0.0133 0 0.9867

The pignistic probabilities listed in IX indicate that the
decision result6 of COWA-ER is 𝐴4.

∙ Using FCOWA-ER, one has

𝐸𝐹𝑢𝑧𝑧𝑦[𝐶] =

⎡⎢⎣ [1.0000, 0.8000]
[0.4286, 0.7333]
[0.7143, 0.6667]
[0.2857, 1.0000]

⎤⎥⎦
In FCOWA-ER, the bba’s to combine are listed in Table X
and their Dempster’s combination is listed in Table XI.
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TABLE VIII
EXAMPLE 2: DEMPSTER’S FUSION OF 4 BBA’S FOR COWA-ER.

Focal Element 𝑚𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟(.)
𝐴1 0.0438
𝐴2 0.0182
𝐴3 0.0309
𝐴4 0.0297

𝐴1 ∪𝐴4 0.0664
𝐴2 ∪𝐴4 0.0471
𝐴3 ∪𝐴4 0.0335

𝐴1 ∪𝐴2 ∪𝐴4 0.1775
𝐴1 ∪𝐴3 ∪𝐴4 0.1261
𝐴2 ∪𝐴3 ∪𝐴4 0.0895

𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.3373

TABLE IX
EXAMPLE 2: PIGNISTIC PROBABILITY BASED ON COWA-ER.

Focal Element 𝐵𝑒𝑡𝑃 (.)
𝐴1 0.2625
𝐴2 0.2152
𝐴3 0.2038
𝐴4 0.3185

TABLE X
EXAMPLE 2: BBA’S OF THE ALTERNATIVES USED IN FCOWA-ER.

Focal Element 𝑚𝑃𝑒𝑠𝑠(.) Focal Element 𝑚𝑂𝑝𝑡𝑖(.)
𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.2857 𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.6667

𝐴1 ∪𝐴2 ∪𝐴3 0.1429 𝐴1 ∪𝐴3 ∪𝐴4 0.0667
𝐴1 ∪𝐴3 0.2857 𝐴3 ∪𝐴4 0.0667

𝐴1 0.2857 𝐴1 0.1999

TABLE XI
EXAMPLE 2: DEMPSTER’S FUSION OF THE TWO BBA’S FOR FCOWA-ER.

Focal Element 𝑚𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟(.)
𝐴1 0.3223
𝐴4 0.0667

𝐴1 ∪𝐴2 0.0111
𝐴1 ∪𝐴3 0.2222
𝐴1 ∪𝐴4 0.0222

𝐴1 ∪𝐴2 ∪𝐴3 0.1111
𝐴1 ∪𝐴2 ∪𝐴4 0.0222

𝐴1 ∪𝐴2 ∪𝐴3 ∪𝐴4 0.2222

The pignistic transformation of 𝑚𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟(.) yields to the
pignistic probabilities listed in Table XII.

TABLE XII
EXAMPLE 2: PIGNISTIC PROBABILITY BASED ON FCOWA-ER.

Focal Element 𝐵𝑒𝑡𝑃 (.)
𝐴1 0.5500
𝐴2 0.1056
𝐴3 0.2037
𝐴4 0.1407

Based on the pignistic probabilities, the decision result
obtained with FCOWA-ER is now 𝐴1, which is the correct
one. In this example, FCOWA-ER shows its robustness when
compared with COWA-ER.

E. On the normalization procedures

In fact, there exist at least three normalization procedures
that we briefly recall below. Suppose x is the original vector

6based on max of 𝐵𝑒𝑡𝑃 (.).

input, xi represents the 𝑖th dimension of x. 𝑦𝑖 represents the
𝑖th dimension of the normalized vector y, then we examine
the following three types of normalization:

1) Type I: 𝑦𝑖 = 𝑥𝑖/max(x)
2) Type II: 𝑦𝑖 = (𝑥𝑖 −min(x))/(max(x)−min(x))
3) Type III: 𝑦𝑖 = 𝑥𝑖/

∑
𝑗(𝑥𝑗)

To verify wether the decision results of COWA-ER and
the new FCOWA-ER can be affected by the normalization
procedure, we did some tests as follows. We randomly
generate payoff matrices and use all the three types of
normalization approaches in COWA-ER and FCOWA-
ER respectively. Then we make comparisons among the
results obtained. We repeat the experiment 50 times (50
Monte-Carlo runs). Based on our simulation results, we
find that normalization approaches can affect the decision
results of COWA-ER and FCOWA-ER, although the ratio of
disagreement among different normalization approach is small
(about 1 to 2 times of disagreement out of 50 experiments in
average). Example 3 is a case where the disagreement occurs
due to the different types of normalization.

Example 3: We consider the following payoff matrix

𝐶 =

⎡⎢⎣15 5 30
5 40 40
40 30 30
15 10 40

⎤⎥⎦
The bba is 𝑚(𝑋1) = 0.5439, 𝑚(𝑋2) = 0.3711,
𝑚(𝑋3) = 0.0849, where 𝑋1 = 𝑆2 ∪ 𝑆3, 𝑋2 = 𝑆1 ∪ 𝑆2 and
𝑋3 = 𝑆1 ∪ 𝑆3.

∙ Using COWA-ER, based on normalization Type I, Type
II and Type III, we can obtain the corresponding expected
payoffs

𝐸𝐼 [𝐶] =

[
[0.1462, 0.6108]
[0.6009, 1.0000]
[0.7500, 0.8640]
[0.2606, 0.7680]

]

𝐸𝐼𝐼 [𝐶] =

[
[0.0000, 0.5442]
[0.5326, 1.0000]
[0.7072, 0.8407]
[0.1340, 0.7283]

]

𝐸𝐼𝐼𝐼 [𝐶] =

[
[0.0292, 0.1221]
[0.1202, 0.2000]
[0.1500, 0.1728]
[0.0521, 0.1536]

]
Then we obtain the pignistic probabilities listed in Table

XIII. From Table XIII, one sees that the decision result with
Type III normalization is 𝐴2 while those of Type I and Type
II yields 𝐴3.

TABLE XIII
EXAMPEL 3: PIGNISTIC PROB. FOR TYPES I, II & III AND COWA-ER.

Focal Element 𝐵𝑒𝑡𝑃𝐼(.) 𝐵𝑒𝑡𝑃𝐼𝐼(.) 𝐵𝑒𝑡𝑃𝐼𝐼𝐼(.)
𝐴1 0.0587 0.0388 0.1690
𝐴2 0.3203 0.3324 0.3180
𝐴3 0.5223 0.5444 0.2920
𝐴4 0.0987 0.0844 0.2210
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∙ Using FCOWA-ER, based on normalization of Type I,
Type II and Type III, we get the corresponding expected
payoffs

𝐸𝐼 [𝐶] =

[
[0.1950, 0.6108]
[0.8013, 1.0000]
[1.0000, 0.8640]
[0.3475, 0.7680]

]

𝐸𝐼𝐼 [𝐶] =

[
[0.0000, 0.0000]
[0.7531, 1.0000]
[1.0000, 0.6506]
[0.1894, 1.4040]

]

𝐸𝐼𝐼𝐼 [𝐶] =

[
[0.0832, 0.1884]
[0.3419, 0.3084]
[0.4267, 0.2664]
[0.1483, 1.2368]

]

Then we can get the pignistic probabilities listed in Table
XIV. From Table XIV, one sees that the decision with Type II
normalization is 𝐴2 while those of Type I and Type III yields
𝐴3.

TABLE XIV
EXAMPLE 3: PIGNISTIC PROBABILITY BASED ON FCOWA-ER

Focal Element 𝐵𝑒𝑡𝑃𝐼(.) 𝐵𝑒𝑡𝑃𝐼𝐼(.) 𝐵𝑒𝑡𝑃𝐼𝐼𝐼(.)
𝐴1 0.0306 0.0000 0.0306
𝐴2 0.4118 0.5421 0.4118
𝐴3 0.4763 0.4300 0.4763
𝐴4 0.0813 0.0279 0.0813

So in a little percentage of cases, we must be cautious when
choosing a normalization procedure and so far there is no
clear theoretical answer for the choice of the most adapted
normalization procedure. We prefer the Type I normalization
procedure since it is very simple and intuitively appealing.

V. CONCLUSION

In this paper, we have proposed a fuzzy cautious OWA
method using evidential reasoning (FCOWA-ER) to implement
the multi-criteria decision making, where evidence theory,
fuzzy membership functions and OWA are used jointly. This
method has less computational complexity and has clearer
physical meaning. Furthermore, it is more robust to the error
scoring in MCDM. Experimental results and related analyses
show that our FCOWA-ER is interesting and flexible because
its three main specifications can be adapted easily for working:
1) with other rules of combination than Dempster’s rule,
2) with other probabilistic transformations than BetP, and
3) with different normalization procedures. Of course the
performances of FCOWA-ER depend on the choice of these
three main specifications taken by the MCDM system designer.
The method to generate the bba from the FMF based on 𝛼-
cut depends on the selection of the parameter vector of 𝛼.
The impact of the choice of the specifications as well as 𝛼
to evaluate the performance of FCOWA-ER will be further
analyzed in our future works. This paper was devoted to the
theoretical developemnt of FCOWA-ER and its evaluation for
applications to real MCDM problems is part of our future
research works.
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Soft ELECTRE TRI Outranking 
Method Based on Belief Functions

Jean Dezert
Jean-Marc Tacnet

Abstract—Main decisions problems can be described into
choice, ranking or sorting of a set of alternatives. The classical
ELECTRE TRI (ET) method is a multicriteria-based outranking
sorting method which allows to assign alternatives into a set
of predetermined categories. ET method deals with situations
where indifference is not transitive and solutions can sometimes
appear uncomparable. ET suffers from two main drawbacks:
1) it requires an arbitrary choice of �-cut step to perform the
outranking of alternatives versus prof les of categories, and 2) an
arbitrary choice of attitude for f nal assignment of alternatives
into the categories. ET f nally gives a f nal binary (hard) assign-
ment of alternatives into categories. In this paper we develop
a soft version of ET method based on belief functions which
circumvents the aforementioned drawbacks of ET and allows to
obtain both a soft (probabilistic) assignment of alternatives into
categories and an indicator of the consistency of the soft solution.
This Soft-ET approach is applied on a concrete example to show
how it works and to compare it with the classical ET method.
Keywords: ELECTRE TRI, information fusion, belief
functions, outranking methods, multicriteria analysis.

I. INTRODUCTION

Multi-criteria decision analysis aims to choose, sort or rank
alternatives or solutions according to criteria involved in the
decision-making process. The main steps of a multi-criteria
analysis consist in identifying decision purposes, def ning
criteria, eliciting preferences between criteria, evaluating al-
ternatives or solutions and analyzing sensitivity with regard to
weights, thresholds, etc. A difference has to be done between
total and partial aggregation methods:

∙ Total aggregation methods such as the Multi-Attribute
Utility Theory (M.A.U.T.) [1], [2] synthesizes in a unique
value the partial utility related to each criterion and
chosen by the decision-maker (DM). Each partial utility
function transforms any quantitative evaluation of cri-
terion into an utility value. The additive method is the
simplest method to aggregate those utilities.

∙ Partial aggregation methods which are not based on the
principle of preference transitivity. The ELECTRE TRI
(ET) outranking method inspired by Roy [3] and f nalized
by Yu in [4] belongs to this family and it is the support
of the research work presented in this paper.

ELECTRE TRI (electre tree) is an evolution of the
ELECTRE methods introduced in 1960’s by Roy [5] which

remain widespread methods used in operational research.
The acronym ELECTRE stands for ”ELimination Et Choix
Traduisant la REalité (Elimination and Choice Expressing the
Reality). ET is simpler and more general than the previ-
ous ELECTRE methods which have specif cities given their
context of applications. A good introduction to ET methods
with substantial references and detailed historical survey can
be found in [6] and additional references in [7]. This paper
proposes a methodology inspired by the ET method able to
help decision based on imperfect information for soft assign-
ment of alternatives into a given set of categories def ned by
predeterminate prof les. Our method, called ”Soft ELECTRE
TRI” (or just SET for short), is based on belief functions. It
allows to circumvent the problem of arbitrary choice of �-cut
of the outranking step of ET, and the ad-choice of attitude
in the f nal assignment step of ET as well. Contrariwise to
ET which solves the hard assignment problem, SET proposes
a new solution for solving the assignment problem in a soft
manner. This paper is organized as follows. In Section II, we
recall the principles of ET method with its main steps. In
Section III, we present in details our new SET method with
emphasize on its differences with classical ET. In Section IV,
we apply ET and SET on a concrete example proposed by
Maystre [8] to show how they work and to make a comparison
between the two approaches. Section V concludes this paper
and proposes some perspectives of this work.

II. THE ELECTRE TRI (ET) METHOD

Outranking methods like the ET method presented in
this section are relevant for Multi-Criteria Decision Analysis
(MCDA) [6] when:

∙ alternatives are evaluated on an ordinal scale;
∙ criteria are strongly heterogeneous by nature (e.g. com-

fort, price, pollution);
∙ compensation of the loss on one criterion by a gain on

an another is unacceptable;
∙ small differences of evaluations are not individually

signif cant while the accumulation of several of these
differences may become signif cant.

We are concerned with an assignment problem in complex
situations where several given alternatives have to be assigned
to known categories based on multiple criteria. The categories

Originally published as Dezert J., Tacnet J.-M., Soft ELECTRE TRI outranking 
method based on belief functions, Proc. Of Fusion 2012, Singapore, July 2012, 

and reprinted with permission.
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are def ned by prof les values (bounds) for each criteria
involved in the problem under consideration as depicted in
Fig. 1 below.

Figure 1: ET aims to assign a category to alternatives.

The ET method is a multicriteria-based outranking sorting
method proposing a hard assignment of alternatives ai in
categories Cℎ. More precisely, the alternatives ai ∈ A,
i = 1, . . . , na are committed to ordered categories Cℎ ∈ C,
ℎ = 1, . . . , nℎ according to criteria cj , j ∈ J = {1, . . . , ng}.
Each category Cℎ is delimited by the set of its lower and
upper limits bℎ−1 and bℎ with respect to their evaluations
gj(bℎ−1) and gj(bℎ) for each criterion cj (gj(.) represents
the evaluations of alternatives, prof les for a given criterion
cj). By convention, b0 ≤ b1 . . . ≤ bnℎ

. b0 is the lower
(minimal) prof le bound and bnℎ

is the upper (maximal)
prof le bound. The overall prof le bℎ is def ned through the
set of values {g1(bℎ), g2(bℎ), . . . , gng(bℎ)} represented by the
vertical lines joining the yellow dots in Fig. 1. The outranking
relations are based on the calculation of partial concordance
and discordance indices from which global concordance and
credibility indices [4], [9] are derived based on an arbitrary
�-cut strategy. The f nal assignment (sorting procedure) of
alternatives to categories operated by ET is a hard (binary)
assignment based on an arbitrary selected attitude choice
(optimistic or pessimistic). ET method can be summarized by
the following steps:

∙ ET-Step 1: Computation of partial concordance indices
cj(ai, bℎ) and cj(bℎ, ai)), and partial discordances indices
dj(ai, bℎ) and dj(bℎ, ai));

∙ ET-Step 2: Computation of the global (overall) concor-
dance indices c(ai, bℎ) and c(bℎ, ai) to obtain credibility
indices �(ai, bℎ) and �(bℎ, ai);

∙ ET-Step 3: Computation of the fuzzy outranking rela-
tion grounded on the credibility indices �(ai, bℎ) and
�(bℎ, ai); and apply a �-cut to get the crisp outranking
relation;

∙ ET-Step 4: Final hard (binary) assignment of ai into Cℎ

is based on the crisp outranking relation and in adopting
either a pessimistic (conjunctive), or an optimistic (dis-

junctive) attitude.
Let’s explain a bit more in details the steps of ET and the

computation of the indices necessary for the implementation
of the ET method.

A. ET-Step 1: Partial indices

In ET method, the partial concordance index cj(ai, bℎ)
(resp. cj(bℎ, ai)) expresses to which extent the evaluations of
ai and bℎ (respectively bℎ and ai)) are concordant with the
assertion ”ai is at least as good as bℎ” (respectively ”bℎ is
at least as good as ai”). cj(ai, bℎ) ∈ [0, 1], based on a given
criterion gj(.), is computed from the difference of the criterion
evaluated for the prof le bℎ, and the same criterion evaluated
for the alternative ai. If the difference1 gj(bℎ)− gj(ai) is less
(or equal) to a given indifference threshold qj(bℎ) then ai and
bℎ are considered indifferent based on the criterion gj(.). If the
difference gj(bℎ)−gj(ai) is strictly greater to given preference
threshold pj(bℎ) then ai and bℎ are considered different
based on gj(.). When gj(bℎ) − gj(ai) ∈ [qj(bℎ), pj(bℎ)],
the partial concordance index cj(ai, bℎ) is computed from
a linear interpolation corresponding to a weak difference.
Mathematically, the partial concordance indices cj(ai, bℎ) and
cj(bℎ, ai) are obtained by:

cj(ai, bℎ) ≜

⎧



⎨



⎩

0 if gj(bℎ)− gj(ai) ≥ pj(bℎ)

1 if gj(bℎ)− gj(ai) < qj(bℎ)
gj(ai)+pj(bℎ)−gj(bℎ)

pj(bℎ)−qj(bℎ)
otherwise

(1)

and

cj(bℎ, ai) ≜

⎧



⎨



⎩

0 if gj(ai)− gj(bℎ) ≥ pj(bℎ)

1 if gj(ai)− gj(bℎ) < qj(bℎ)
gj(bℎ)+pj(bℎ)−gj(ai)

pj(bℎ)−qj(bℎ)
otherwise.

(2)

The partial discordance index dj(ai, bℎ) (resp. dj(bℎ, ai))
expresses to which extent the evaluations of ai and bℎ (resp.
bℎ and ai) is opposed to the assertion ”ai is at least as good as
bℎ” (resp.”bℎ is at least as good as ai”). These indices depend
on a possible veto condition expressed by the choice of a veto
threshold vj(bℎ) (such as vj(bℎ) ≥ pj(bℎ) ≥ qj(bℎ) ≥ 0)
imposed on some criterion gj(.). They are def ned by [4], [9]:

dj(ai, bℎ) ≜

⎧



⎨



⎩

0 if gj(bℎ)− gj(ai) < pj(bℎ)

1 if gj(bℎ)− gj(ai) ≥ vj(bℎ)
gj(bℎ)−gj(ai)−pj(bℎ)

vj(bℎ)−pj(bℎ)
otherwise

(3)

and

dj(bℎ, ai) ≜

⎧



⎨



⎩

0 if gj(ai)− gj(bℎ) ≤ pj(bℎ)

1 if gj(ai)− gj(bℎ) > vj(bℎ)
gj(ai)−gj(bℎ)−pj(bℎ)

vj(bℎ)−pj(bℎ)
otherwise.

(4)

1For convenience, we assume here an increasing preference order. A
decreasing preference order [9] can be managed similarly by multiplying
criterion values by -1.
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B. ET-Step 2: Global concordance and credibility indices
∙ The global concordance indices: The global concor-

dance index c(ai, bℎ) (respectively c(bℎ, ai)) expresses to
which extent the evaluations of ai and bℎ on all criteria
(respectively bℎ and ai) are concordant with the asser-
tions ”ai outranks bℎ” (respectively ”bℎ outranks ai”).
In ET method, c(ai, bℎ) (resp. c(bℎ, ai)) is computed
by the weighted average of partial concordance indices
cj(ai, bℎ) (resp. cj(bℎ, ai)). That is

c(ai, bℎ) =

ng
∑

j=1

wjcj(ai, bℎ) (5)

and

c(bℎ, ai) =

ng
∑

j=1

wjcj(bℎ, ai) (6)

where the weights wj ∈ [0, 1] represent the relative
importance of each criterion gj(.) in the evaluation of
the global concordance indices. The weights add to
one. Since all cj(ai, bℎ) and cj(ai, bℎ) belong to [0; 1],
c(ai, bℎ) and c(bℎ, ai) given by (5) and (6) also belong
to [0; 1].

∙ The global credibility indices: The degree of credibility
of the outranking relation denoted as �(ai, bℎ) (respec-
tively �(bℎ, ai)) expresses to which extent ”ai outranks
bℎ” (respectively ”bℎ outranks ai”) according to the
global concordance index c(ai, bℎ) and the discordance
indices dj(ai, bℎ) for all criteria (respectively c(bℎ, ai)
and dj(bℎ, ai)). In ET method, these credibility indices
�(ai, bℎ) (resp. �(bℎ, ai)) are computed by discounting
(weakening) the global concordance indices c(ai, bℎ)
given by (5) (resp. c(bℎ, ai) given by (6)) by a discounting
factor �(ai, bℎ) in [0; 1] (resp. �(bℎ, ai)) as follows:

{

�(ai, bℎ) = c(ai, bℎ)�(ai, bℎ)

�(bℎ, ai) = c(bℎ, ai)�(bℎ, ai)
(7)

The discounting factors �(ai, bℎ) and �(bℎ, ai) are de-
f ned by [9], [10]:

�(ai, bℎ) ≜

{

1 if V1 = ∅
∏

j∈V1

1−dj(ai,bℎ)
1−c(ai,bℎ)

if V1 ∕= ∅
(8)

�(bℎ, ai) ≜

{

1 if V2 = ∅
∏

j∈V2

1−dj(bℎ,ai)
1−c(bℎ,ai)

if V2 ∕= ∅
(9)

where V1 (resp. V2) is the set of indexes j where the
partial discordance indices dj(ai, bℎ) (reps. dj(bℎ, ai)) is
greater than the global concordance index c(ai, bℎ) (resp.
c(bℎ, ai)), that is:

V1 ≜ {j ∈ J∣dj(ai, bℎ) > c(ai, bℎ)} (10)

V2 ≜ {j ∈ J∣dj(bℎ, ai) > c(bℎ, ai)} (11)

C. ET-Step 3: Fuzzy and crisp outranking process
Outranking relations result from the transformation of fuzzy

outranking relation (corresponding to credibility indices) into a
crisp outranking relation2 S done by means of a �-cut [9]. � is
called cutting level. � is the smallest value of the credibility in-
dex �(ai, bℎ) compatible with the assertion ”ai outranks bℎ”.
Similarly � is the smallest value of the credibility index
�(bℎ, ai) compatible with the assertion ”bℎ outranks ai”. In
practice the choice of � value is not easy and is done arbitrary
or based on a sensitivity analysis. More precisely, the crisp
outranking relation S is def ned by

{

�(ai, bℎ) ≥ � =⇒ ai S bℎ

�(bℎ, ai) ≥ � =⇒ bℎ S ai
(12)

Binary relations of preference (>), indifference (I), incom-
parability (R) are def ned according to (13):

⎧







⎨







⎩

aiIbℎ ⇐⇒ ai S bℎ and bℎ S ai

ai > bℎ ⇐⇒ ai S bℎ and not bℎ S ai

ai < bℎ ⇐⇒ not ai S bℎ and bℎ S ai

aiRbℎ ⇐⇒ not ai S bℎ and not bℎ S ai

(13)

D. ET-Step 4: Hard assignment procedure
Based on outranking relations between all pairs of alterna-

tives and prof les of categories, two attitudes can be used in
ET to assign each alternative ai into a category Cℎ [6]. These
attitudes yields to a hard assignment solution where each
alternative belongs or doesn’t belong to a category (binary
assignment) and there is no measure of the conf dence of the
assignment in this last step of ET method. The pessimistic and
optimistic hard assignments are realized as follows:

∙ Pessimistic hard assignment: ai is compared with bk,
bk−1, bk−2, . . . , until ai outranks bℎ where ℎ ≤ k. The
alternative ai is then assigned to the highest category Cℎ,
that is ai → Cℎ, if �(ai, bℎ) ≥ �.

∙ Optimistic hard assignment: ai is compared successively
to b1, b2, . . . bℎ, . . . until bℎ outranks ai. The alternative
ai is assigned to the lowest category Cℎ, ai → Cℎ, for
which the upper prof le bℎ is preferred to ai.

III. THE NEW SOFT ELECTRE TRI (SET) METHOD

The objective and motivation of this paper are to improve
the appealing ET method in order to provide a soft assignment
procedure of alternatives into categories, and to eliminate the
drawback concerning both the choice of �-cut level in ET-Step
3 and the choice of attitude in ET-Step 4. Soft assignment
ref ects the conf dence one has in the assignment which can
be a very useful property in applications requiring multi
criteria decision analysis. To achieve such purpose and due to
long experience in working with belief functions (BF), it has
appeared clearly that BF can be very useful for developing a
”soft-assignment” version of the classical ET presented in the
previous section. We call this new method the ”Soft ELECTRE

2It is denoted S because Outranking translates to ”Surclassement” in
French.
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TRI” method (SET for short) and we present it in details in
this section.

Before going further, it is necessary to recall brief y the def-
inition of a mass of belief m(.) (also called basic belief assign-
ment, or bba), a credibility function Bel(.) and the plausibility
function Pl(.) def ned over a f nite set Θ = {�1, �2, . . . , �n}
of mutually exhaustive and exclusive hypotheses. Belief func-
tions have been introduced by Shafer in his development of
Dempster-Shafer Theory (DST), see [11] for details. In DST,
Θ is called the frame of discernment of the problem under
consideration. By convention the power-set (i.e. the set of all
subsets of Θ) is denoted 2Θ since its cardinality is 2∣Θ∣. A
basic belief assignment provided by a source of evidence is a
mapping m(.) : 2Θ → [0, 1] satisfying

m(∅) = 0 and
∑

X∈2Θ

m(X) = 1 (14)

The measures of credibility and plausibility of any proposition
X ∈ 2Θ are def ned from m(.) by

Bel(X) ≜
∑

Y⊆X

Y ∈2Θ

m(Y ) (15)

Pl(X) ≜
∑

Y ∩X ∕=∅
Y ∈2Θ

m(Y ) (16)

Bel(X) and Pl(X) are usually interpreted as lower
and upper bounds of the unknown probability of X .
U(X) = Pl(X) − Bel(X) ref ects the uncertainty on X .
The belief functions are well adapted to model uncertainty
expressed by a given source of evidence. For information
fusion purposes, many solutions have been proposed in
the literature [12] to combine bba’s eff ciently for pooling
evidences arising from several sources.

As for the classical ET method, there are four main steps
in our new SET method. However, the SET steps are different
from the ET steps. The four steps of SET, that are actually
very specif c and improves the ET steps, are:

∙ SET-Step 1: Computation of partial concordance indices
cj(ai, bℎ) and cj(bℎ, ai), partial discordances indices
dj(ai, bℎ) and dj(bℎ, ai), and also partial uncertainty
indices uj(ai, bℎ) and uj(bℎ, ai) thanks to a smooth
sigmoidal model for generating bba’s [13].

∙ SET-Step 2: Computation of the global (overall) con-
cordance indices c(ai, bℎ), c(bℎ, ai), discordance indices
d(ai, bℎ), d(bℎ, ai), and uncertainty indices u(ai, bℎ),
u(bℎ, ai);

∙ SET-Step 3: Computation of the probabilized outranking
relations grounded on the global indices of SET-Step 2.
The probabilization is directly obtained and thus elimi-
nates the arbitrary �-cut strategy necessary in ET.

∙ SET-Step 4: Final soft assignment of ai into Cℎ based
on combinatorics of probabilized outranking relations.

Let’s explain in details the four steps of SET and the
computation of the indices necessary for the implementation
of the SET method.

A. SET-Step 1: Partial indices
In SET, a sigmoid model is proposed to replace the original

truncated trapezoidal model for computing concordance and
discordance indices of the ET method. The sigmoidal model
has been presented in details in [13] and is only brief y recalled
here. We consider a binary frame of discernment3 Θ ≜ {c, c̄}
where c means that the alternative ai is concordant with the
assertion ”ai is at least as good as prof le bℎ”, and c̄ means that
the alternative ai is opposed (discordant) to this assertion. We
can compute a basic belief assignment (bba) miℎ(.) def ned
on 2Θ for each pair (ai, bℎ). miℎ(.) is def ned from the
combination (fusion) of the local bba’s mj

iℎ(.) evaluated from
each possible criteria gj(.) as follows: mj

iℎ(.) = [m1⊕m2](.)
is obtained by the fusion4 (denoted symbolically by ⊕) of the
two following simple bba’s def ned by:

focal element m1(.) m2(.)
c fsc,tc(g) 0
c̄ 0 f−sc̄,tc̄(g)

c ∪ c̄ 1− fsc,tc(g) 1− f−sc̄,tc̄(g)

Table I: Construction of m1(.) and m2(.).

where fs,t(g) ≜ 1/(1+e−s(g−t)) is the sigmoid function; g is
the criterion magnitude of the alternative under consideration;
t is the abscissa of the inf ection point of the sigmoid. The
abscisses of inf ection points are given by tc = gj(bℎ) −
1
2 (pj(bℎ) + qj(bℎ)) and tc̄ = gj(bℎ) −

1
2 (pj(bℎ) + vj(bℎ))

and the parameters sc and sc̄ are given by5 sc = 4/(pj(bℎ)−
qj(bℎ)) and sc̄ = 4/(vj(bℎ)− pj(bℎ)).

From the setting of threshold parameters pj(bℎ), qj(bℎ) and
vj(bℎ) (the same as for ET method), it is easy to compute the
parameters of the sigmoids (tc, sc) and (tc̄, sc̄), and thus to
get the values of bba’s m1(.) and m2(.) to compute mj

iℎ(.).
We recommend to use the PCR5 fusion rule6 since it offers
a better management of conf icting bba’s yielding to more
specif c results than with other rules. Based on this sigmoidal
modeling, we get now from mj

iℎ(.) a fully consistent and
eff cient representation of local concordance cj(ai, bℎ), local
discordance dj(ai, bℎ) and the local uncertainty uj(ai, bℎ) by
considering:

⎧



⎨



⎩

cj(ai, bℎ) ≜ mj
iℎ(c) ∈ [0, 1]

dj(ai, bℎ) ≜ mj
iℎ(c̄) ∈ [0, 1]

uj(ai, bℎ) ≜ mj
iℎ(c ∪ c̄) ∈ [0, 1].

(17)

Of course, a similar approach must be adapted (not
reported here due to space limitation restraint) to

3Here we assume that Shafer’s model holds, that is c ∩ c̄ = ∅.
4with averaging rule, PCR5 rule, or Dempster-Shafer rule [14].
5The coeff cient 4 appearing in sc and sc̄ expressions comes from the fact

that for a sigmoid of parameter s, the tangent at its inf ection point is s/4.
6see [15] for details on PCR5 with many examples.
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compute cj(bℎ, ai) = mj
ℎi(c), dj(bℎ, ai) = mj

ℎi(c̄) and
uj(bℎ, ai) = mj

ℎi(c ∪ c̄).

Example 1: Let’s consider only one alternative ai and gj(.)
in range [0, 100], and let’s take gj(bℎ) = 50 and the following
thresholds: qj(bℎ) = 20 (indifference threshold), pj(bℎ) = 25
(preference threshold) and vj(bℎ) = 40 (veto threshold) for the
prof le bound bℎ. Then, the inf ection points of the sigmoids
f1(g) ≜ fsc,tc(g) and f2(g) ≜ f−sc̄,tc̄(g) have the following
abscisses: tc = 50− (25+ 20)/2 = 27.5 and tc̄ = 50− (25+
40)/2 = 17.5 and parameters: sc = 4/(25− 20) = 4/5 = 0.8
and sc̄ = 4/(40 − 25) = 4/15 ≈ 0.2666. The construction
of the consistent bba mj

iℎ(.) is obtained by the PCR5 fusion
of the bba’s m1(.) and m2(.) given in Table I. The result is
shown in Fig. 2.

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

gj(ai)

Sigmoid model with increasing preferences

 

cj(ai,bh)
dj(ai,bh)
uj(ai,bh)

Figure 2: mj
iℎ(.) corresponding to partial indices.

The blue curve corresponds to cj(ai, bℎ), the red plot
corresponds to dj(ai, bℎ) and the green plot to uj(ai, bℎ) when
gj(ai) varies in [0; 100]. cj(bℎ, ai), dj(bℎ, ai) and uj(bℎ, ai)
can easily be obtained by mirroring (horizontal f ip) the curves
around the vertical axis at the mid-range value gj(ai) = 50.

B. SET-Step 2: Global indices
As explained in SET-Step 1, the partial indices are en-

capsulated in bba’s mj
iℎ(.) for alternative ai versus prof le

bℎ (aivs.bℎ), and encapsulated in bba’s mj
ℎi(.) for prof le

bℎ versus alternative ai (bℎvs.ai). In SET, the global indices
c(ai, bℎ), d(ai, bℎ) and u(ai, bℎ) are obtained by the fusion
of the ng bba’s mj

iℎ(.). Similarly, the global indices c(bℎ, ai),
d(bℎ, ai) and u(bℎ, ai) are obtained by the fusion of the ng

bba’s mj
ℎi(.). More precisely, one must compute:
{

miℎ(.) = [m1
iℎ ⊕m2

iℎ ⊕ . . .⊕m
ng

iℎ ](.)

mℎi(.) = [m1
ℎi ⊕m2

ℎi ⊕ . . .⊕m
ng

ℎi ](.)
(18)

To take into account the weighting factor wj of the criterion
valued by gj(.), we suggest to use as fusion operator ⊕ either:

∙ the weighting averaging fusion rule (as in ET method)
which is simple and compatible with probability calculus
and Bayesian reasoning,

∙ or the more sophisticated operator def ned by the PCR5
fusion rule adapted for importance discounting presented

in details in [16] which belongs to the family of non-
Bayesian fusion operators.

Once the bba’s miℎ(.) and mℎi(.) have been computed, the
global indices are def ned by:

⎧



⎨



⎩

c(ai, bℎ) ≜ miℎ(c)�(ai, bℎ)

d(ai, bℎ) ≜ miℎ(c̄)�(ai, bℎ)

u(ai, bℎ) ≜ 1− c(ai, bℎ)− d(ai, bℎ).

(19)

The discounting factors �(ai, bℎ) and �(ai, bℎ) are def ned by

�(ai, bℎ) ≜

{

1 if V� = ∅
∏

j∈V�

1−dj (ai,bℎ)

1−miℎ(c)
if V� ∕= ∅

(20)

�(ai, bℎ) ≜

{

1 if V� = ∅
∏

j∈V�

1−cj (ai,bℎ)

1−miℎ(c̄)
if V� ∕= ∅

(21)

with

{

V� ≜ {j ∈ J∣dj(ai, bℎ) > miℎ(c)}

V� ≜ {j ∈ J∣cj(bℎ, ai) > miℎ(c̄)}
(22)

c(bℎ, ai), d(bℎ, ai) and u(bℎ, ai) are similarly computed
using dual formulas of (19)–(22).

The belief and plausibility of the outranking propositions
X = ”ai > bℎ” and Y = ”bℎ > ai” are then given by

{

Bel(X) = c(ai, bℎ)

Bel(Y ) = c(bℎ, ai)
(23)

and

{

Pl(X) = 1− d(ai, bℎ) = c(ai, bℎ) + u(ai, bℎ)

Pl(Y ) = 1− d(bℎ, ai) = c(bℎ, ai) + u(bℎ, ai)
(24)

C. SET-Step 3: Probabilized outranking
We have seen in SET-Step 2 that the outrankings X =

”ai > bℎ” and Y = ”bℎ > ai” can be characterized by their
imprecise probabilities P (X) ∈ [Bel(X); Pl(X)] and P (Y ) ∈
[Bel(Y ); Pl(Y )]. Figure 3 shows an example with P (X) ∈
[0.2; 0.8] and P (Y ) ∈ [0.1; 0.5]

Figure 3: Imprecise probabilities of outrankings.

Solving the outranking problem consists in choosing (de-
ciding) if f nally X dominates Y (in such case we must
decide X as being the valid outranking), or if Y dominates
X (in such case we decide Y as being the valid outrank-
ing). Unfortunately, such hard (binary) assignment cannot
be done in general7 because it must be drawn from the
unknown probabilities P (X) in [Bel(X); Pl(X)] and P (Y )

7but in cases where the bounds of probabilities P (X) and P (Y ) do not
overlap.
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in [Bel(Y ); Pl(Y )] where a partial overlapping is possible
between intervals [Bel(X); Pl(X)] and [Bel(Y ); Pl(Y )] (see
Fig. 3). A soft (probabilized) outranking solution is possible
by computing the probability that X dominates Y (or that Y
dominates X) by assuming uniform distribution of unknown
probabilities between their lower and upper bounds. To get the
probabilized outrankings, we just need to compute PX>Y ≜

P (P (X) > P (Y )) and PY >X ≜ P (P (Y ) > P (X)) which
are precisely computable by the ratio of two polygonal areas,
or can be estimated using sampling techniques.

Figure 4: Probabilization of outranking.

More precisely

{

PX>Y = A(X)/(A(X) +A(Y ))

PY >X = A(Y )/(A(X) +A(Y ))
(25)

where A(X) is the partial area of the rectangle A = U(X)×
U(Y ) under the line P (X) = P (Y ) (yellow area in Fig. 4) and
A(Y ) is the area of the rectangle A = U(X)× U(Y ) above
the line P (X) = P (Y ) (orange area in Fig. 4). Of course,
A = A(X)+A(Y ) and PX>Y = 1−PY >X . As a f nal result
for the example of Fig. 3, and according to (25) and Fig. 4,
we f nally get the following probabilized outrankings:
{

ai > bℎ with probabilityPX>Y = 0.195/0.24 = 0.8125

bℎ > ai with probabilityPY >X = 0.045/0.24 = 0.1825

For notation convenience, we denote the probabilities of
outrankings as Piℎ ≜ PX>Y with X = ”ai > bℎ” and Y =
”bℎ > ai”. Reciprocally, we denote Pℎi ≜ PY >X = 1− Piℎ.

D. SET-Step 4: Soft assignment procedure
From the probabilized outrankings obtained in SET-Step

3, we are now able to make directly the soft assignment
of alternatives ai to categories Cℎ def ned by their prof les
bℎ. This is easily obtained by the combinatorics of all
possible sequences of outrankings taking into account their
probabilities. Moreover, this soft assignment mechanism
provides also the probability �i ≜ P (ai → ∅) ref ecting
the impossibility to make a coherent outranking. Our soft
assignment procedure doesn’t require arbitrary choice of

attitude contrariwise to what is proposed in the classical
ET method. For simplicity, we present the soft assignment
procedure in the example 2 below, which can be adapted to
any number nℎ ≥ 2 of categories.

Example 2: Let’s consider one alternative ai to be assigned
to categories C1, C2 and C3 based on multiple criteria (taking
into account indifference, preference and veto conditions) and
intermediate prof les b1 and b2. Because b0 and b3 are the min
and max prof les, one has always P (Xi0 = ”ai > b0”) = 1
and P (Xi3 = ”ai > b3”) = 0. Let’s assume that at the SET-
Step 3 one gets the following soft outranking probabilities Piℎ

as given in Table II.

Prof les bℎ → b0 b1 b2 b3
Outranking probas ↓

Piℎ 1 0.7 0.2 0

Table II: Soft outranking probabilities.

From combinatorics, only the following outranking se-
quences Sk(ai), k = 1, 2, 3, 4 can occur with non null
probabilities P (Sk(ai)) as listed in Table III, where P (Sk(ai))

Prof les bℎ → b0 b1 b2 b3 P (Sk(ai))
Outrank sequences ↓ ↓

S1(ai) > > > < 0.14
S2(ai) > > < < 0.56
S3(ai) > < < < 0.24
S4(ai) > < > < 0.06

Table III: Probabilities of outranking sequences.

have been computed by the product of the probability of each
outranking involved in the sequence, that is:

P (S1(ai)) = 1× 0.7× 0.2× 1 = 0.14

P (S2(ai)) = 1× 0.7× (1− 0.2)× 1 = 0.56

P (S3(ai)) = 1× (1− 0.7)× (1− 0.2)× 1 = 0.24

P (S4(ai)) = 1× (1− 0.7)× 0.2× 1 = 0.06

The assignment of ai into a category Cℎ delimited by bounds
bℎ−1 and bℎ depends on the occurrence of the outranking
sequences. Given S1(ai) with probability P (S1(ai)) = 0.14,
ai must be assigned to C3 because ai outranks b0, b1 and
b2; Given S2(ai) with probability 0.56, ai must be assigned
to C2 because ai outranks only b0 and b1; Given S3(ai)
with probability 0.24, ai must be assigned to C1 because
ai outranks only b0. Given S4(ai) with probability 0.06,
ai cannot be reasonably assigned to categories because of
inherent inconsistency of the outranking sequence S4(ai) since
ai cannot outperform b2 and simultaneously underperform
b1 because by prof le ordering one has b2 > b1. Therefore
the inconsistency indicator is given by �i = P (ai → ∅) =
P (S4(ai)) = 0.06. Finally, the soft assignment probabilities
P (ai → Cℎ) and the inconsistency indicator obtained by SET-
Step 4 are given in Table IV.
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Categories Cℎ → C1 C2 C3 ∅
Assignment probas ai ↓

P (ai → Cℎ) 0.24 0.56 0.14 �i = 0.06

Table IV: SET Soft Assignment result.

IV. APPLICATION EXAMPLE : ENVIRONMENTAL CONTEXT

In this section, we compare ET and SET methods applied
to an assignment problem related to an environmental context
proposed originally in [8]. It corresponds to the choice of the
location of an urban waste resource recovery disposal which
aims to re-use the recyclable part of urban waste produced by
several communities. Indeed, this disposal must collect at least
20000m3 of urban waste per year to be economically viable.
It must be a collective unit and the best possible location
has to be identif ed. Each community will have to bring its
urban waste production to the disposal: the transport costs are
valuated in tons by kilometer per year (t.km/year). Building
such a disposal is generally not easily accepted by popula-
tion, particularly when the environmental inconveniences are
already high. This initial environmental status is measured by
a specif c criterion. Building an urban waste disposal implies
to use a wide area that could be used for other activities such
as a sport terrain, touristic equipments, a natural zone, etc.
This competition with other activities is measured by a specif c
criterion.

A. Alternatives, criteria and prof les def nition
In our example, 7 possible locations (alternatives/choices)

ai, i = 1, 2, . . . , 7, for urban waste resource recovery disposal
are compared according to the following 5 criteria gj , j =
1, 2, . . . , 5 :

g1 = Terrain price (decreasing preference);
g2 = Transport costs (decreasing preference);
g3 = Environment status (increasing preference);
g4 = Impacted population (increasing preference);
g5 = Competition activities (increasing preference).

∙ Price of terrain (g1) is expressed in e/m2 with decreasing
preferences (the lower is the price, the higher is the
preference);

∙ Transport costs (g2) are expressed in t.km/year with
decreasing preferences (the lower is the cost, the higher
is the preference);

∙ The environment status (g3) corresponds to the initial en-
vironmental inconvenience level expressed by population
with an increasing direction of preferences. The higher is
the environment status, the lower are the initial environ-
mental inconveniences. It is rated with an integer between
0 and 10 (highest environment status corresponding to the
lowest initial environmental inconveniences);

∙ Impacted population (g4) is an integrated criterion to
measure negative effects based on subjective and qual-
itative criteria. It corresponds to the status of the envi-
ronment with an increasing direction of preferences. The

higher is the evaluation, the lower are the negative effects.
It is rated with an real number between 0 (great number
of impacted people) and 10 (very few people impacted);

∙ Activities competition (g5) is an integrated criterion,
evaluated by a real number, that measures the competition
level between activities with an increasing direction of
preferences. The higher is the evaluation, the lower is the
competition with other activities on the planned location
(tourism, sport, natural environment . . . ).

The evaluations of the 7 alternatives are summarized in
Table V, and he alternatives (possible locations) are compared
to the 2 decision prof les b1 and b2 described in Table VI.
The weights, indifference, preference and veto thresholds for
criteria gj are described in Table VII.

Criteria gj → g1 g2

Choices ai ↓ (e/m2) (t ⋅ km/year)
a1 −120 −284
a2 −150 −269
a3 −100 −413
a4 −60 −596
a5 −30 −1321
a6 −80 −734
a7 −45 −982

(a) Choices ai and criteria g1 and g2.

Criteria gj → g3 g4 g5
Choices ai ↓ {0, 1, . . . , 10} [0, 10] {0, 1, . . . , 100}

a1 5 3.5 18
a2 2 4.5 24
a3 4 5.5 17
a4 6 8.0 20
a5 8 7.5 16
a6 5 4.0 21
a7 7 8.5 13

(b) Choices ai and criteria g3, g4 and g5.

Table V: Inputs of ET (7 alternatives according to 5 criteria).

Prof les bℎ → b1 b2
Criteria gj ↓

g1 : e/m2 −100 -50
g2 : t ⋅ km/year −1000 −500
g3 : {0, 1, . . . , 10} 4 7
g4 : [0, 10] 4 7
g5 : {0, 1, . . . , 100} 15 20

Table VI: Evaluation prof les.

Thresholds → wj qj pj vj
Criteria gj ↓ (weight) (indifference) (preference) (veto)
g1 : e/m2 0.25 15 40 100
g2 : t ⋅ km/year 0.45 80 350 850
g3 : {0, 1, . . . , 10} 0.10 1 3 5
g4 : [0, 10] 0.12 0.5 3.5 4.5
g5 : {0, 1, . . . , 100} 0.08 1 5 8

Table VII: Thresholds.

B. Results of classical ELECTRE TRI
After applying ET-Steps 1 and 3 of the classical ET method

described in Section II with a � = 0.75 for the �-cut strategy,
one gets the outranking relations listed in Table VIII.

The f nal hard assignments obtained by ET method using
the pessimistic and optimistic attitudes are listed in Table IX.

C. Results of the new Soft ELECTRE TRI
After applying SET-Steps 1 and 3 of the SET method8

described in Section III, one gets the probabilities of soft
outrankings listed in Table X.

8We have used here the PCR5 fusion rule with importance discounting [16],
and a sampling technique to compute the probabilities Piℎ.
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b0 b1 b2 b3
a1 > > < <
a2 > R R <
a3 > > < <
a4 > > I <
a5 > R < <
a6 > > < <
a7 > > < <

Table VIII: Outranking relations obtained with ET (� = 0.75).

C1 C2 C3

a1 0 1 0
a2 1 0 0
a3 0 1 0
a4 0 1 0
a5 1 0 0
a6 0 1 0
a7 0 1 0
(a) Pessimistic attitude.

C1 C2 C3

a1 0 1 0
a2 0 0 1
a3 0 1 0
a4 0 0 1
a5 0 1 0
a6 0 1 0
a7 0 1 0
(b) Optimistic attitude.

Table IX: Hard assignments obtained with ET (� = 0.75).

Prof les bℎ → b0 b1 b2 b3
Outranking probas ↓

P1ℎ 1 0.9858 0.6211 0
P2ℎ 1 0.8908 0.1812 0
P3ℎ 1 0.9999 0.0570 0
P4ℎ 1 1.0000 0.0807 0
P5ℎ 1 0.2142 0.0145 0
P6ℎ 1 0.9996 0.0006 0
P7ℎ 1 0.9975 0.0106 0

Table X: Probabilities of soft outranking relations by SET.

The f nal soft assignments obtained by the SET method are
listed in Table XI.

C1 C2 C3 ∅
a1 0.0054 0.3735 0.6123 �1 = 0.0088
a2 0.0894 0.7294 0.1614 �2 = 0.0198
a3 0.0001 0.9429 0.0570 �3 = 0
a4 0 0.9193 0.0807 �4 = 0
a5 0.7744 0.2111 0.0031 �5 = 0.0114
a6 0.0004 0.9990 0.0006 �6 = 0
a7 0.0025 0.9869 0.0106 �7 = 0

Table XI: SET Soft Assignment matrix [P (ai → Cℎ)].

D. Discussion
From Table XI, we can get a hard assignment solution

(if needed) by assigning each alternative to the category
corresponding to the maximum of P (ai → Cℎ), ℎ = 1, 2, . . ..
With SET, it is also theoretically possible to ”assign” ai to
none category if �i (inconsistency level) is too high. The soft
assignments for ai, i = 3, . . . 7 (see Tables IX,XI) are com-
patible with the hard assignments with the pessimistic or the
optimistic attitudes. In fact, only the soft assignments for a1
and a2 having the highest probabilities P (a1 → C3) = 0.6123
and P (a2 → C2) = 0.7294 appear incompatible with ET
hard assignments (pessimistic or optimistic). The discrepancy

between these soft and hard assignments solutions is not due to
SET method but comes from the arbitrary choice of the level
of the �-cut strategy used in ET method. Another arbitrary
choice of �-cut will generate different ET hard assignments
which can in fact become fully compatible with SET soft
assignments. For example, if one takes � = 0.5, it can be
verif ed that SET soft assignments are now compatible with
ET hard assignments for all alternatives in this example. The
soft assignments approach of SET is interesting since it doesn’t
depend on � values even if the inf uence of both sigmoids
parameters def nition, choice of fusion rule, probabilisation
method . . . could be further studied.

V. CONCLUSIONS

A new outranking sorting method, called Soft ELECTRE
TRI (SET), inspired from the classical ELECTRE TRI and
based on beliefs functions and advanced fusion techniques is
proposed. SET method uses the same inputs as ET (same
criteria and thresholds def nitions) but in a more effective
way and provides a soft (probabilized) assignment solution.
SET eliminates the inherent problem of classical ET due
to the arbitrary choice of a �-cut strategy which forces to
adopt either a pessimistic or optimistic attitude for the f nal
hard assignment of alternatives to categories. The interest
of SET over ET method is demonstrated on a preexisting
environmental context scenario.
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On The Validity of Dempster-Shafer Theory
Jean Dezert
Pei Wang

Albena Tchamova

Abstract—We challenge the validity of Dempster-Shafer The-
ory by using an emblematic example to show that DS rule
produces counter-intuitive result. Further analysis reveals that
the result comes from a understanding of evidence pooling which
goes against the common expectation of this process. Although
DS theory has attracted some interest of the scientific community
working in information fusion and artificial intelligence, its
validity to solve practical problems is problematic, because it is
not applicable to evidences combination in general, but only to
a certain type situations which still need to be clearly identified.
Keywords: Dempster-Shafer Theory, DST, Mathematical
Theory of Evidence, belief functions.

I. INTRODUCTION

Dempster-Shafer Theory (DST), also known as the Theory
of Evidence or the Theory of Belief Functions, was introduced
by Shafer in 1976 [1], based on Dempster’s previous works
[2]–[4]. This theory offers an elegant theoretical framework for
modeling uncertainty, and provides a method for combining
distinct bodies of evidence collected from different sources.
In the past more than three decades, DST has been used
in many applications, in fields including information fusion,
pattern recognition, and decision making [5].

Even so, starting from Zadeh’s criticism [6]–[8], many
questions have arisen about the validity and the consistency
of DST when combining uncertain and conflicting evidences
expressed as basic belief assignments (bba’s). Beside Zadeh’s
example, there have been several detailed analysis on this
topic by Lemmer [9], Voorbraak [10] and Wang [11]. Other
authors like Pearl [12], [13] and Walley [14], and more
recently Gelman [15], have also warned the “belief function
community” about the validity of Dempster-Shafer’s rule (DS
rule for short) for combining distinct pieces of evidences
based on different analyses and contexts. Since the mid-1990’s,
many researchers and engineers working with belief functions
in applications have observed and recognized that DS rule
is problematic for evidence combination, specially when the
sources of evidence are high conflicting.

In response to this challenge, various attempts have been
made to circumvent the counter-intuitive behavior of DS
rule. They either replace Dempster-Shafer’s rule by alternative
rules, listed for example in [16] (Vol. 1), or apply novel
semantic interpretations to the functions [16]–[18].

Before going further in our discussion, let us recall two of
Shafer’s statements about DST:

The burden of our theory is that this rule [Dempster’s
rule of combination] corresponds to the pooling of
evidence: if the belief functions being combined are
based on entirely distinct bodies of evidence and the
set Θ discerns the relevant interaction between those
bodies of evidence, then the orthogonal sum gives
degree of belief that are appropriate on the basis of
combined evidence. [1] (p. 6)
This formalism [whereby propositions are repre-
sented as subsets of a given set] is most easily
introduced in the case where we are concerned with
the true value of some quantity. If we denote the
quantity by θ and the set of its possible values by Θ,
then the propositions of interest are precisely those
of the form “The true value of θ is in T ,” where T
is a subset of Θ. [1] (p. 36)

These two statements are very important since they are
related to two fundamental questions on DST that are central
in this discussion on the validity of DS theory:

1) What is the meaning of “pooling of evidence” used by
Shafer? Does it correspond to an experimental protocol?

2) When “the true value of θ is in T ” is asserted by
a source of evidence, are we getting absolute truth
(based on the whole knowledge accessible by everyone
eventually) or relative truth (based on the partial
knowledge accessible by the source at the moment)?

This paper starts with a very emblematic example to show
what we consider as really problematic in DS rule behavior,
which corresponds to the possible “dictatorial power” of a
source of evidence with respect to all others and thus reflecting
the minority opinion. We demonstrate that the problem is in
fact not merely due to the level of conflict between sources
to combine, but comes from the underlying interpretations of
evidence and degree of belief on which the combination rule
is based. Such interpretations do not agree with the common
usage of those notions where an opinion based on certain
evidence can be revised by (informative) evidence from other
sources.

Originally published as Dezert J., Wang P., Tchamova A., On 
The Validity of Dempster-Shafer Theory, in Proc. of Fusion 2012, 

Singapore, July 2012, and reprinted with permission.
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This work is based on our preliminary ideas presented in the
Spring School on Belief Functions Theory and Applications
(BFTA) in April 2011 [19], and on many fruitful discussions
with colleagues using belief functions. Their stimulating com-
ments, especially when they disagree, help us to clarify and
present our ideas.1 In Section II we briefly recall basics of DST
and DS rule. In Section III, we describe the example and its
strange (counter-intuitive) result. In Section IV we present a
general analysis on the validity of DST, and we conclude our
analysis in Section V.

II. BASICS OF DST

Let Θ = {θ1, θ2, . . . , θn} be a frame of discernment of a
problem under consideration containing n distinct elements θi,
i = 1, . . . , n.

A basic belief assignment (bba, also called a belief mass
function) m(.) : 2Θ → [0, 1] is a mapping from the power
set of Θ (i.e. the set of subsets of Θ), denoted 2Θ, to [0, 1],
that must satisfy the following conditions: 1) m(∅) = 0,
i.e. the mass of empty set (impossible event) is zero; 2)∑

X∈2Θ m(X) = 1, i.e. the mass of belief is normalized to
one. Here m(X) represents the mass of belief exactly commit-
ted to X . An element X ∈ 2Θ is called a focal element if and
only if m(X) > 0. The set F(m) , {X ∈ 2Θ|m(X) > 0}
of all focal elements of a bba m(.) is called the core of the
bba. By definition, a Bayesian bba m(.) is a bba having only
focal elements of cardinality 1. The vacuous bba characterizing
full ignorance is defined by mv(.) : 2Θ → [0; 1] such that
mv(X) = 0 if X 6= Θ, and mv(Θ) = 1.

From any bba m(.), the belief function Bel(.) and the plau-
sibility function Pl(.) are defined as ∀X ∈ 2Θ : Bel(X) =∑

Y |Y⊆X m(Y ) and Pl(X) =
∑

Y |X∩Y 6=∅m(Y ). Bel(X)
represents the whole mass of belief that comes from all subsets
of Θ included in X . Pl(X) represents the whole mass of belief
that comes from all subsets of Θ compatible with X (i.e., those
intersecting X).

The DS rule of combination [1] is an operation denoted
⊕, which corresponds to the normalized conjunction of mass
functions. Based on Shafer’s description, given two indepen-
dent and distinct sources of evidences characterized by bba
m1(.) and m2(.) on the same frame of discernment Θ, their
combination is defined by mDS(∅) = 0, and ∀X ∈ 2Θ \ {∅}

mDS(X) = [m1 ⊕m2](X) =
m12(X)

1−K12
(1)

where
m12(X) ,

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) (2)

corresponds to the conjunctive consensus on X between the
two sources of evidence. K12 is the total degree of conflict

1Our presentation is not based on a previous statistical argumentation
developed in [20], since it appears for some strong proponents of DST
as an invalid approach to criticize DS rule. In this paper we adopt a
simpler argumentation based only on common sense and simple considerations
manipulating witnesses reports.

between the two sources of evidence defined by

K12 , m12(∅) =
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2) (3)

When K12 = m12(∅) = 1, the two sources are said in total
conflict and their combination cannot be applied since DS rule
(1) is mathematically undefined, because of 0/0 indeterminacy
[1]. DS rule is commutative and associative, which makes it
attractive from engineering implementation standpoint, since
the combinations of sources can be done sequentially instead
globally and the order doesn’t matter. Moreover, the vacuous
bba is a neutral element for the DS rule, i.e. [m ⊕mv](.) =
[mv ⊕m](.) = m(.) for any bba m(.) defined on 2Θ, which
seems to be an expected2 property, i.e. a full ignorant source
doesn’t impact the fusion result.

The conditioning of a given bba m(.) by a conditional
element Z ∈ 2Θ \ {∅} has been also proposed by Shafer
[1]. This function m(.|Z) is obtained by DS combination of
m(.) with the bba mZ(.) only focused on Z, i.e. such that
mZ(Z) = 1. For any element X of the power set 2Θ this is
mathematically expressed by

m(X|Z) = [m⊕mZ ](X) = [mZ ⊕m](X) (4)

It has been proved [1] (p. 67) that this rule of conditioning
expressed in terms of plausibility functions yields to the
formula

Pl(X|Z) = Pl(X ∩ Z)/P l(Z) (5)

which is very similar to the well-known Bayes formula
P (X|Z) = P (X ∩ Z)/P (Z). Partially because of this, DST
has been widely considered as a generalization of Bayesian
inference [3], [4], or equivalently, that probability theory is a
special case of the Mathematical Theory of Evidence when
manipulating Bayesian bba’s.

Despite of the appealing properties of DS rule, its apparent
similarity with Bayes formula for conditioning, and many
attempts to justify its foundations, several challenges on the
theory’s validity have been put forth in the last decades, and
remain unanswered. For instance, an experimental protocol
to test DST was proposed by Lemmer in 1985 [9], and
his analysis shows an inherent paradox (contradiction) of
DST. Following a different approach, an inconsistency in the
fundamental postulates of DST was proved by Wang in 1994
[11]. Some other related works questioning the validity of
DST based on different argumentations have been listed in
the introduction of this paper.

In the following, we identify the origin of the problem of
DS rule under the common interpretation of the “pooling” of
evidence, and why it is very risky to use it in very sensitive
applications, specially where security, defense and safety are
involved.

2A detailed discussion about this ”expected” property can be found in [20].

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

164



III. A SIMPLE EXAMPLE AND ITS STRANGE RESULT

To see the problem in combining evidence with DS rule,
let us analyze an emblematic example. Consider a frame
of discernment with three elements only, Θ = {A,B,C},
satisfying Shafer’s request, i.e. the elements of the frame are
truly exhaustive and exclusive. As in Zadeh’s example, we
interpret the problem as medical diagnosis, where A, B and C
correspond to three distinct pathologies (say A = brain tumor,
B = concussion and C = meningitis) of a patient. In such a
situation, it is reasonable to assume that these pathologies do
not occur simultaneously, so Shafer’s assumptions truly hold.

We suppose that two distinct doctors (or more generally,
two witnesses) provide their own medical diagnostic (or more
generally, a testimony) of the same patient, based on their own
knowledges and expertises, after analyzing symptoms, IRM
images, or any useful medical results. The diagnostics (testi-
monies) of the two distinct sources of evidences correspond
to the two non-Bayesian bba’s given by the doctors listed in
Table I. The parameters a, b1, and b2 can take any value, as
long as a ∈ [0, 1], b1, b2 > 0, and b1 + b2 ∈ [0, 1].

Focal elem. \ bba’s m1(.) m2(.)
A a 0

A ∪B 1− a b1
C 0 1− b1 − b2

A ∪B ∪ C 0 b2

Table I
INPUT BBA’S m1(.) AND m2(.).

The two distinct sources are assumed to be truly indepen-
dent (the diagnostic of Doctor 1 is done independently of
the diagnostic of Doctor 2 and from different medical results,
images supports, etc, and conversely) so that we are allowed to
apply DS rule to combine the two bba’s m1(.) and m2(.). Both
doctors are also assumed to have the same level of expertise
and they are equally reliable. Note that in this very simple
parametric example the focal elements of bba’s are not nested
(consonant), and there really does exist a conflict between
the two sources (as it will be shown in the derivations). It
is worth to note also that the two distinct sources are truly
informative since none of them corresponds to the vacuous
belief assignment representing a full ignorant source, so it is
reasonable to expect for both bba’s to be taken into account
(and to have an impact) in the fusion process. Here we use
the notion of “conflict” as defined by Shafer in [1] (p. 65) and
recalled by (3).

When applying DS rule of combination, one gets:

1) Using the conjunctive operator:

m12(A) = a(b1 + b2) (6)
m12(A ∪B) = (1− a)(b1 + b2) (7)

K12 = m12(∅) = 1− b1 − b2 (conflicting mass)
(8)

2) and After normalizing by 1 −K12 = b1 + b2, the final

result is as follows:

mDS(A) =
m12(A)

1−K12
=
a(b1 + b2)

b1 + b2
= a = m1(A) (9)

mDS(A ∪B) =
m12(A ∪B)

1−K12
=

(1− a)(b1 + b2)

b1 + b2
= 1− a = m1(A ∪B) (10)

Surprisingly, after combining the two sources of evidences
with Dempster-Shafer’s rule, we see that in this case the
medical diagnostic of Doctor 2 doesn’t count at all, because
one gets mDS(.) = m1(.). Though Doctor 2 is not a fully
ignorant source and he/she has same reliability as Doctor
1, nevertheless his/her report (whatever it is when changing
values of b1 and b2) doesn’t count. We see that the level of
conflict K12 = 1−b1−b2 between the two medical diagnostics
doesn’t matter in fact in the DS fusion process, since it can be
chosen at any high or low level, depending on the choice of
b1 + b2. Based on DST analysis, the Doctor 2 plays the same
role as a vacuous/ignorant source of evidence even if he/she
is informative (not vacuous), and truly conflicting (according
to Shafer’s definition) with Doctor 1.

This result goes against common sense. It casts serious
doubt on the validity of DS rule, as well as its usefulness
for applications, and interrogates on the real meaning of
Shafer’s pooling of evidence process. This example seems
more crucial than the examples discussed in the existing
literature in showing intolerable flaws in DST behavior, since
in this example the level of conflict (whatever it is) between the
sources doesn’t play a role at all, so that it cannot be argued
that in such a case DS must not be applied because of the
high conflicting situation. In fact such a situation can occur in
real applications and is not anecdotal, and the results obtained
by DS rule can yield dramatical consequences. From Zadeh’s
example [6] and all the debates about it in the literature, it
has been widely (though not completely) admitted that DS is
not recommended when the conflict between sources is high.
Our example brings out a more important question since it
reveals that the problem of the behavior of DS rule is not due
to the (high) level of conflict between the sources, but from
something else — we can choose a low conflict level, but the
result is still the same, so the problem remains.

We can see the situation better by generalizing from this
example. What make this example special and emblematic of
DS behavior is the fact that Pl1(C) = 0. It not only means that
Doctor 1 completely rules out the possibility of C, but also that
this opinion cannot be changed by taking new evidence into
consideration. This is the case, because according to Shafer’s
definition [1] (p. 43), Pl1(C) = 0 means for every X ∈ 2Θ

that X ∩ C 6= ∅, m1(X) = 0. When DS rule is applied to
combine m1(.) and an arbitrary m′(.), for every Y ∈ 2Θ

that Y ∩ C 6= ∅, mDS(Y ) = 0, because it is the sum of
some products, each of them take one of the above m1(X)
as a factor. Consequently, PlDS(C) = 0, no matter what the
other body of evidence is. Actually in such situations DS rule
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doesn’t perform a fusion between sources’ opinions, but an
exclusion, ruling out the conflicting hypothesis considered by
the second source.

Put it in another way, the effective frame of discernment
of Doctor 1 is not really {A,B,C}, but {A,B}, because the
pathology C has been ruled out of the frame by Doctor 1,
since the focal elements of m1(.) are A and A ∪ B only.
The above analysis tells us that when different supports (i.e.
sets of focal elements) are combined according to DS rule,
the resulting bba will be defined in the intersection of the
supports of each source, under the condition that it is not
empty (otherwise the evidence is total conflicting, and the rule
is not applicable). Furthermore, all of the original bba will be
normalized on this common support before being combined.
This is the very fundamental principle on which is based DST
and the combination of evidence proposed by Shafer.

More precisely in our example, the adjusted bba m′2(.) of
Doctor 2 is described in Tables II- III and IV.

Focal elem. \ bba’s m1(.) m2(.)
A a 0

A ∪B 1− a b1
C ≡ ∅ 0 1− b1 − b2

A ∪B ∪ ∅ = A ∪B 0 b2

Table II
STEP 1 OF ADJUSTMENT OF m2(.).

Focal elem. \ bba’s m1(.) m2(.)
A a 0

A ∪B 1− a b1 + b2
C ≡ ∅ 0 1− b1 − b2

Table III
STEP 2 OF ADJUSTMENT OF m2(.).

Focal elem. \ bba’s m1(.) m′2(.)
A a 0

A ∪B 1− a b1+b2
1−(1−b1−b2)

= 1

Table IV
ADJUSTED AND NORMALIZED BBA’S m1(.) AND m′2(.).

After this adjustment, the bba m′2(.) of Doctor 2 becomes
the vacuous bba, which has no impact to the result. This
perfectly explains the result produced by DS rule, but doesn’t
suffice to fully justify its real usefulness for applications.

In general, given two frames of discernment to be combined,
if one is a proper subset of the other, the result is asymmetric
— the smaller frame always wins the competition, though the
other one does not always become vacuous.

Again, here we see that the result is not from any specialty
of our emblematic example, but directly from conjunctive
nature of the DS rule. As Shafer wrote: “A basic idea of the
theory of belief functions is the idea of evidence whose only
direct effect on the frame Θ is to support a subset A1, and
an implicit aspect of this idea is that when this evidence is
combined with further evidence whose only direct effect on
Θ is to establish a compatible subset A2, the support for A1

is inherited by A1 ∩A2.” [21]

Now the fundamental question becomes: should evidence
combination be treated in this way?

IV. EVALUATING THE VALIDITY OF DST
After sharing the above result we found with other re-

searchers in the field, we got three types of response, which
can be roughly categorized as:

1) This result does not show that DST is wrong, but that
there are situations where it is not applicable. This
example contains conflicting evidence, so DST should
not be applied.

2) This result does not show that DST is wrong, and this
result is exactly the correct one. It is your intuition that
is wrong.

3) This result shows that DST is wrong, since it is un-
reasonable to let one expert’s opinion to completely
suppress the other opinions.

The first response is not very satisfactory because it tells
us that DST should not be applied when evidences conflict. If
we admit such a response, what is the real purpose in using
DS rule in practical applications using belief functions, since
most of them do involve conflicting sources? In agreeing with
the first response, we see that DS rule reduces to the strict
conjunctive rule which should be used only in limited cases
where there is no conflict between sources. It is not obvious
to see why the conjunctive rule even in these cases is well-
adapted for the pooling of evidence. In fact, in the context
on no conflicting sources, the conjunctive rule corresponds
just to the selection of the most specific source, rather than a
combination (pooling) of evidences.

Each of the two last responses is supported by a long
argument, which sounds reasonable until they are put together
— how can we have such different opinions on such a simple
example? Can DST be used to combine them to provide a
final conclusion based on the pooled evidence?

Instead of trying to apply DS rule (if possible) or to analyze
the above responses one by one, we will temporarily step back
from this concrete case, and discuss a meta-level problem first,
that is, when a mathematical theory is applied to a practical
situation, how to decide the validity of this application? In
what sense the result is “right” or “wrong”?

Of course, there are some trivial cases where the solution
is obvious. If the result is deterministic and there is an
objective way to check it, then the conclusion is conclusive.
Unfortunately, in the field of uncertain reasoning, it is not
that simple. In the above example, we cannot use the disease
the patient has (assume we finally become certain about it)
to decide whether DST is correctly applied to it, though it
may influence our degree of belief about the theory. Actually,
this is exactly how “evidence” is different from “proof” in
deciding the truthfulness of a conclusion — while a proof can
determine the truth-value of a statement conclusively, evidence
can only do so tentatively, because in realistic situations there
is always further evidence to come.

Another relatively simple situation is that an internal in-
consistency is found in the mathematical theory. In that case
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the theory is clearly “wrong”, and is not good for any
normal usage. This is not the case here, neither. There are
inconsistencies founded about DST, such as [11], but it is
between the theory and its semantic interpretations (that is,
between what it is claimed to do and what it actually does),
rather than within the (uninterpreted) mathematical structure
of the theory.

What we are facing is a more complicated situation, where
the result produced by a theory “sounds wrong”, that is, it
conflicts with our intuition, experience, or belief. DST is not
the only theory that has run into this kind of trouble, and
there are indeed three logical possibilities, as represented by
the responses listed previously. What to make the situation
more complicated is the existence of two types of researchers,
with very different motivations in this context:
• A: There are people who start with a domain problem,

which is called “belief revision”, “evidential reasoning”,
“data fusion”, and so on, by different researchers. They
are looking for a mathematical tool for this job.

• B: There are people who start with a mathematical model
that has some properties they like, DST in this case, and
are looking for proper practical applications for it.

In general, both motivations are legitimate, but it is crucial
that they should not be confused with each other. We belong to
Type A, and are evaluating DST with respect to the problem
we have in mind, to which DST is often claimed to be a
solution. For this reason, we argue that DST failed to do the
job. Some objection to our conclusion comes from people of
Type B, to them DST can be called “wrong” only when an
internal inconsistency is found, otherwise the theory is always
correct, and all mistakes are cased by its human users. Here
we are not criticizing DST in that sense. Using the above
example, we conclude DST to be “wrong” because it fails to
properly handle evidence combination, or in other words, what
it claims to do does not match what it actually does, as the
defect proved in [11].

To support our conclusion with evidence (rather than with
intuition), we start from an analysis of the task of “evidence
combination” (or call it “data fusion”). As mentioned above,
“evidence” has an impact on “degree of belief” in a system
doing evidential reasoning, like “proof” has on “truth-value”
in a system using classical logic, except here the impact is
tentative and inconclusive (i.e. it doesn’t provide an absolute
truth). This is exactly why evidence combination becomes nec-
essary (while there is no corresponding operation in classical
logic) — in a system that is open to new evidence, it needs
to use new evidence to adjust its degree of belief, and the
“rule” here should be similar to the rule used to merge the
opinions of different experts. In both cases, each opinion has
some evidential support, though none of them can be treated
as absolutely certain.

This is according to the above understanding of “evidence
combination” that DST’s result in the above example is con-
sidered as “wrong”, simple because it allows certain opinion
to become immune to revision. To be concrete, what if the
previous example consists of 100 doctors, and all of them,

except Doctor 1, consider C the most likely disease the patient
has, though they cannot completely rule out the possibility of
A and B. On the other hand, Doctor 1, for some unspecified
reason, considers C impossible, and A more likely than B. In
this case, DST will still completely accept Doctor 1’s opinion,
and ignore the judgment of the other 99 experts. We don’t
believe anyone will consider this judgment reasonable.

Based on conjunction, DS rule supports the dictatorial
power of a source, by accepting the minority opinion as
effective solution for “pooling” evidences, no matter that the
general a priori assumption applying DS rule is all sources
of information are equally reliable, which means all sources’
opinions should be taken into account on equal terms. From
a theoretical point of view, we don’t think this type of belief
should be allowed in evidential reasoning; from a practical
point of view, such a treatment can lead to serious conse-
quences, since it means that some errors in one evidence
channel cannot be corrected by other channels, no matter how
many and how strong.

To us, the only possible way to justify DST in similar situ-
ations is to change what we mean by “evidence combination”.
According to Shafer’s treatment, “evidence combination” be-
comes a process similar to constraint satisfaction, where each
piece of evidence put some absolute restriction on where
the final result can be, and their combination corresponds to
“to reach a consensus by mutual constraining”. According
to this interpretation, Doctor 1 has the right to suppress all
the other opinions and therefore can dictates his opinion.
If we want to consider each doctor’s opinion as absolute
truth (following Shafer’s interpretation), though sometimes
underspecified, then the result becomes acceptable. But in
this case, the validity and usefulness of DS rule is strongly
conditioned by the justification of the fact that each doctor
does really have access to the absolute truth on the proposition
under consideration. How can this be done in practice? From
what knowledge can a doctor get an absolute truth on a
proposition? The answers to these very important questions
for validating DS rule haven’t been given in the literature so
far (to the authors knowledge).

Furthermore, if every doctor is allowed to claim this kind
of absolute truth, there is nothing preventing different doctors
from announcing different “truths”, which leads to “total
conflict” situation that cannot be resolved by Dempster’s rule.
Therefore, the theory faces a paradox: it must either ban the
claim of any unrevisable belief, or find a way to handle the
conflict among such beliefs. To accept unrevisable beliefs only
from a single source does not sound reasonable.

The difference between the two interpretations of “evidence
combination” are semantic and philosophical. According to
our interpretation, when there are competing opinions sup-
ported by distinct evidences, none of them has “absolute
truth”, but each has some “relative truth”, with respect to
the supporting evidence, so in the combination process all
the opinions can be more or less revised, and the result is
usually a compromise; According to Shafer’s interpretation, if
one source considers an element in the frame of discernment
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as impossible, this judgment will be taken as absolute truth,
and is therefore unrevisable by the other opinions.

Though it is possible to imagine certain situations, such
as Shafer’s “random coding” scenario [21], where DST can
produce reasonable results, we believe our interpretation of
“evidence combination” better matches the common sense
meaning of the phrase, as well as the most practical needs
in this domain.

It is true that every mathematical theory has its limited
applicable domain, and we are not demanding DST to be
“universal”. However, here the situation is that DST is often
presented as a general mechanism for evidential reasoning.
Even though it has been widely acknowledged in the com-
munity that DST cannot properly handle (highly) conflicting
evidence, its cause has not been clearly analyzed, nor is
the applicable situations of the theory clearly specified. The
above analysis answers these questions: conflicting evidence
(whatever they are, in high or in low conflict) cannot be
handled well by DST, since they cannot be seen as “partial
truth” anymore.

The last important point to underline is the about DS condi-
tioning rule (4) and the formula (5) for conditional plausibility.
Let consider Θ and two bba’s m1(.) and m2(.) defined on
2Θ and their DS combination mDS(.) = [m1 ⊕ m2](.) and
let assume a conditioning element Z 6= ∅ in 2Θ and the
bba mZ(Z) = 1, then mDS(.|Z) = [mDS ⊕ mZ ](.) =
[m1 ⊕ m2 ⊕ mZ ](.). Because mDS(.) = [m1 ⊕ m2](.) is
inconsistent with the probability calculus [10], [11], [14], [15],
[20], then mDS(.|Z) is also inconsistent. Therefore for any
X in 2Θ, the conditional plausibility Pl(X|Z) expressed by
Pl(X|Z) = Pl(X ∩Z)/P l(Z) (with apparent similarity with
Bayes formula) obtained from mDS(.|Z) is not compatible
with the conditional probability as soon as several sources of
evidences are involved.

V. CONCLUSIONS

In this paper, through a very simple example, we have
shown and explained what we consider as a very serious flaw
of DS reasoning, which has generated strong controversies in
the last three decades. The problem is: given the mathematical
property of the combination rule, in certain situation the
judgment expressed by a single information source will be
effectively treated as absolute truth that will dominate the
final result, no matter what judgments the other sources have.
Such a result is in total disagreement with the common-sense
notion of “evidence combination”, “information fusing”, or
whatever the process is called, because in such a process, each
information or evidence source should always be considered
only as having local or relative truth. In summary, we believe
DST has been often and widely used in situations where it
should not, and such applications are wrong. After several
decades of existence, proponents of DST need to clearly
identify the situations where its model may be truly applicable
and what real experimental “pooling” of evidence process DS
rule corresponds to. This question is not what this paper is
discussing, but is left for future research and discussions.
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Hierarchical Proportional 
Redistribution for bba Approximation

Jean Dezert
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Abstract. Dempster’s rule of combination is commonly used in the fiel  of infor-
mation fusion when dealing with belief functions. However, it generally requires a 
high computational cost. To reduce it, a basic belief assignment (bba) 
approxima-tion is needed. In this paper we present a new bba approximation 
approach called hierarchical proportional redistribution (HPR) allowing to 
approximate a bba at any given level of non-specificity  Two examples are given 
to show how our new HPR works.

1 Introduction

Dempster-Shafer Theory (DST), also called Theory of Evidence [10], has been
widely used in many applications, e.g., information fusion, pattern recognition and
decision making [11]. Although it is appealing in uncertainty modeling, while ap-
pearing more controversial for consistent reasoning, the high computational cost
remains problematic which is often raised against its use [11]. To resolve such a
problem, three major types of approaches have been proposed.

The f rst is to propose eff cient procedures for performing exact computations
[1, 8]. The second is composed of Monte-Carlo techniques [9]. The third is to

Originally published as Dezert J., Han D., Liu 
Z., Tacnet J.-M., Hierarchical proportional 

redistribution for bba approximation, in 
Belief 2012, Compiègne, May 2012, and 

reprinted with permission.

approximate a belief function to a simpler one. The papers of Voorbraak [13],
Dubois and Prade [5] are seminal works of this type. Other representative works
include k− l − x [3] and k-additive belief function [2, 6]. Denœux uses hierarchical
clustering to implement the inner and outer approximation [3].
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In this paper, we propose a new method called hierarchical proportional redistri-
bution (HPR) to approximate any general basic belief assignment (bba) at a given
level of non-specificit [4], up to the ultimate level 1 corresponding to a Bayesian
bba [10]. The level of non-specif city can be controlled by the users through the
adjustment of the maximum cardinality of remaining focal elements. For the ap-
proximated bba obtained by HPR, the maximum cardinality of the focal elements
is k. Thus HPR can be considered as a generalized k-additive belief approximation.
Some examples are given to show how our proposed HPR method works, and to
compare it with other approximations.

2 Basics of Dempster-Shafer Theory (DST)

In DST [10], the frame of discernment (FoD) is a set Θ of mutual exhaustive and
exclusive elements. m(.) : 2Θ → [0,1] is a basic belief assignment (bba), also called
mass function, if it satisfie

∑A⊆Θ m(A) = 1, m( /0) = 0. (1)

Belief function (Bel) and plausibility function (Pl) are define as

Bel(A) = ∑B⊆A m(B) and Pl(A) = ∑A∩B �= /0 m(B). (2)

Suppose that m1,m2, ...,mn are n bba’s, then Dempster’s rule of combination is de-
fi ed by

m(A) =

⎧
⎪⎨

⎪⎩

0, A = /0
∑

∩Ai=A
∏

1≤i≤n
mi(Ai)

∑
∩Ai �= /0

∏
1≤i≤n

mi(Ai)
, A �= /0 (3)

This rule is used in DST to combine pieces of evidence expressed by bba’s. As re-
ferred above, Dempster’s combination has high computational cost and three types
of approaches have been proposed to reduce it. We prefer belief approximation ap-
proaches [2, 3, 6, 12] since they both reduce the computational cost of the combina-
tion and allow to deal with smaller-size focal elements, which is more intuitive for
human to catch the meaning and interpret fusion results [2].

3 Two bba Approximation Approaches

1) k− l −x approximation: This was proposed by Tessem [12]. The simplif ed bba
obtained by k− l−x approach satisfie : a) keep no less than k focal elements; b) keep
no more than l focal elements; c) the mass assignment to be deleted is no greater
than x. In k− l − x, the focal elements of a original bba are sorted by their masses.
Such an algorithm chooses the f rst p focal elements such that k ≤ p ≤ l and such
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that the sum of the masses of these fi st p focal elements is no less than 1− x. The
deleted masses are redistributed to the other focal elements through a normalization.

2) k-additive belief function approximation: Given m(.) : 2Θ → [0,1], one kind of
k-additive belief function [2, 6] induced by the mass m(.) is def ned by

⎧
⎨

⎩

mk(B) = m(B)+ ∑
A⊃B,A⊆Θ ,|A|>k

m(A)·|B|
N (|A|,k) , ∀|B| ≤ k

mk(B) = 0, ∀|B|> k
(4)

where B ⊆Θ and

N (|A| ,k) =
k
∑
j=1

( |A|
j

)

· j =
k
∑
j=1

|A|!
( j−1)!(|A|− j)!

(5)

is the average cardinality of the subsets of A of size at most k. For k-additive belief
approximation, the maximum cardinality of available focal elements is no greater
than k. Other bba approximation methods can be found in related references.

4 Hierarchical Proportional Redistribution Approximation

In this paper we propose a new bba approximation approach called hierarchical
proportional redistribution (HPR), which provides a new way to reduce step-by-
step the mass committed to uncertainties. Ultimately an approximate measure of
subjective probability can be obtained if needed, i.e. a so-called Bayesian bba in
[10]. Our proposed procedure can be stopped at any step in the process and thus it
allows to reduce the number of focal elements of a given bba in a simple manner to
diminish the size of the core [10] of a bba. Thus we can reduce the complexity (if
needed) when applying also some complex rules of combinations. By using HPR,
we can obtain approximate bba’s at any different non-specif city level that we want.
Let us f rst introduce two new notations for convenience and conciseness:

1. Any element of cardinality 1 ≤ k ≤ n of the power set 2Θ will be denoted X(k)
by convention. For example, if Θ = {A,B,C}, then X(2) can denote the following
partial uncertainties A∪B, A∪C or B∪C, and X(3) denotes the total uncertainty
A∪B∪C.

2. The proportional redistribution factor (ratio) of width s involving elements X and
Y of the powerset is define by (for X �= /0 and Y �= /0)

Rs(Y,X)� m(Y )+ ε · |X |
∑ Y⊂X
|X |−|Y |=s

m(Y )+ ε · |X | (6)

where ε is a small positive number introduced here to deal with particular cases
where ∑ Y⊂X

|X |−|Y |=s
m(Y ) = 0.

By convention, we will denote R(Y,X) � R1(Y,X) when we use the proportional
redistribution factors of width s = 1, as we use in this paper for this HPR method.
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The HPR is a step-by-step (recursive) proportional redistribution of the mass m(X(k))
of a given uncertainty X(k) (partial or total) of cardinality 2 ≤ k ≤ n to all the least
specifi elements of cardinality k − 1, i.e., to all possible X(k − 1), until k = 2 is
reached. The proportional redistribution is done from the masses of belief com-
mitted to X(k− 1) as done classically in DSmP transformation. The “hierarchical”
masses mh(.) are recursively (backward) computed as follows. Here mh(k) represents
the approximate bba obtained at the step n−k of HPR, i.e., it has the maximum focal
element cardinality of k.

mh(n−1)(X(n−1)) = m(X(n−1))+∑ X(n)⊃X(n−1),
X(n),X(n−1)∈2Θ

[m(X(n)) ·R(X(n−1),X(n))];

mh(n−1)(A) = m(A),∀|A|< n−1
(7)

mh(n−1)(·) is the bba obtained at the f rst step of HPR (n− (n−1) = 1), the maximum
focal element cardinality of mh(n−1) is n−1.

mh(n−2)(X(n−2)) = m(X(n−2))
+∑ X(n−1)⊃X(n−2)

X(n−2),X(n−1)∈2Θ

[mh(n−1)(X(n−1)) ·R(X(n−2),X(n−1))]

mh(n−2)(A) = mh(n−1)(A),∀|A|< n−2

(8)

mh(n−2)(·) is the bba obtained at the second step of HPR (n− (n−2) = 2), the maxi-
mum focal element cardinality of mh(n−2) is n−2.

This hierarchical proportional redistribution process can be applied similarly (if
one wants) to compute mh(n−3)(.), mh(n−4)(.), ..., mh(2)(·), mh(1)(·) with

mh(2)(X(2)) = m(X(2))+∑ X(3)⊃X(2)
X(3),X(2)∈2Θ

[mh(3)(X(3)) ·R(X(2),X(3))]

mh(2)(A) = mh(3)(A),∀|A|< n−2

(9)

mh(2)(·) is the bba obtained at the f rst step of HPR (n − 2), the maximum focal
element cardinality of mh(2) is 2.

Mathematically, for any X(1) ∈ Θ , i.e. any θi ∈Θ a Bayesian belief function can
be obtained by HPR method in deriving all possible steps of proportional redistri-
butions of partial ignorances in order to get

mh(1)(X(1)) = m(X(1))+ ∑
X(2)⊃X(1)

X(1),X(2)∈2Θ

[mh(2)(X(2)) ·R(X(1),X(2))] (10)

In fact, mh(1)(·) is a probability transformation, called here the Hierarchical DSmP
(HDSmP). Since X(n) is unique and corresponds only to the full ignorance θ1 ∪θ2 ∪
. . .∪θn, the expression of mh(X(n−1)) in Eq.(9) just simplifie as

mh(n−1)(X(n− 1)) = mh(X(n− 1))+m(X(n)) ·R(X(n−1),X(n)) (11)

For the full proportional redistribution of the masses of uncertainties to the elements
least specifi involved in these uncertainties, no mass is lost during the step-by-step
hierarchical process and thus at any step of HPR, the sum of masses is kept to one.
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5 Examples

5.1 Example 1

Let’s consider the following bba over Θ = {θ1,θ2,θ3}:

m(θ1) = 0.10, m(θ2) = 0.17, m(θ3) = 0.03, m(θ1 ∪θ2) = 0.15,
m(θ1 ∪θ3) = 0.20, m(θ2 ∪θ3) = 0.05, m(θ1 ∪θ2 ∪θ3) = 0.30.

We apply the HPR with ε = 0 in this example because there is no mass of belief
equal to zero. It can be verif ed that the result obtained with small positive ε param-
eter remains (as expected) numerically very close to what is obtained with ε = 0.

• Step 1: The f rst step of HPR consists in redistributing back m(θ1 ∪θ2 ∪θ3) = 0.30
committed to the full ignorance to the elements θ1 ∪ θ2, θ1 ∪ θ3 and θ2 ∪ θ3 only,
because these elements are the only elements of cardinality 2 that are included in
θ1 ∪ θ2 ∪ θ3. Applying the Eq. (8) with n = 3, one gets when X(2) = θ1 ∪ θ2, θ1 ∪ θ3
and θ1 ∪θ2 the following masses.

mh(2)(θ1 ∪θ2) = m(θ1 ∪θ2)+m(X(3)) ·R(θ1 ∪θ2,X(3)) = 0.15+(0.30 ·0.375) = 0.2625

because R(θ1 ∪θ2,X(3)) = 0.15
0.15+0.20+0.05 = 0.375.

Similarly, one gets

mh(2)(θ1 ∪θ3) = m(θ1 ∪θ3)+m(X(3)) ·R(θ1 ∪θ3,X(3)) = 0.20+(0.30 ·0.5) = 0.35

because R(θ1 ∪θ3,X(3)) = 0.20
0.15+0.20+0.05 = 0.5, and also

mh(2)(θ2 ∪θ3) = m(θ2 ∪θ3)+m(X(3)) ·R(θ2 ∪θ3,X(3)) = 0.05+(0.30 ·0.125) = 0.0875

because R(θ2 ∪θ3,X(3)) = 0.05
0.15+0.20+0.05 = 0.125.

• Step 2 Now, we go to the next step of HPR principle and one needs to redistribute
the masses of partial ignorances X(2) corresponding to θ1 ∪ θ2, θ1 ∪ θ3 and θ2 ∪ θ3
back to the singleton elements X(1) corresponding to θ1, θ2 and θ3. We use Eq. (10)
for doing this as follows:

mh(1)(θ1) = m(θ1)+mh(θ1 ∪θ2) ·R(θ1,θ1 ∪θ2) +mh(θ1 ∪θ3) ·R(θ1,θ1 ∪θ3)

≈ 0.10+(0.2625 ·0.3703)+(0.35 ·0.7692) = 0.10+0.0972+0.2692 = 0.4664

because R(θ1,θ1 ∪θ2) =
0.10

0.10+0.17 ≈ 0.3703 and R(θ1,θ1 ∪θ3) =
0.10

0.10+0.03 ≈ 0.7692
Similarly, one gets

mh(1)(θ2) = m(θ2)+mh(θ1 ∪θ2) ·R(θ2,θ1 ∪θ2)+mh(θ2 ∪θ3) ·R(θ2,θ2 ∪θ3)

≈ 0.10+(0.2625 ·0.6297)+(0.0875 ·0.85) = 0.17+0.1653+0.0744 = 0.4097

because R(θ2,θ1 ∪ θ2) =
0.17

0.10+0.17 ≈ 0.6297 and R(θ2,θ2 ∪ θ3) =
0.17

0.17+0.03 = 0.85. and
also

mh(1)(θ3) = m(θ3)+mh(θ1 ∪θ3) ·R(θ3,θ1 ∪θ3)+mh(θ2 ∪θ3) ·R(θ3,θ2 ∪θ3)

≈ 0.03+(0.35 ·0.2307)+(0.0875 ·0.15) = 0.03+0.0808+0.0131 = 0.1239
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because R(θ3,θ1 ∪θ3) =
0.03

0.10+0.03 ≈ 0.2307 and R(θ3,θ2 ∪θ3) =
0.03

0.17+0.03 = 0.15
Hence, the result of f nal step of HPR is:

mh(1)(θ1) = 0.4664, mh(1)(θ2) = 0.4097, mh(1)(θ3) = 0.1239.

We can easily verify that mh(1)(θ1)+mh(1)(θ2)+mh(1)(θ3) = 1.
To compare HPR with the approach of k− l −x, we set the parameters of k− l −x

to obtain bba’s with equal focal element number with HPR at each step. In Example
1, for HPR at fir t step, it can obtain a bba with 6 focal elements. Thus we set
k = l = 6,x = 0.4 for k− l−x to obtain a bba with 6 focal elements. Similarly, for HPR
at second step, it can obtain a bba with 3 focal elements. Thus we set k = l = 3,x = 0.4
for k− l −x. Based on HPR and k− l −x, the results are shown in Table 1.

Table 1 Experimental results of Example 1.

Focal elements
mh(k)(·) - approximate bba m(·) obtained by k− l −x
k = 3 k = 2 k = 1 k = l = 6 k = l = 3

θ1 0.1000 0.1000 0.4664 0.1031 0.0000
θ2 0.1700 0.1700 0.4097 0.1753 0.2573
θ3 0.0300 0.0300 0.1239 0.0000 0.0000
θ1∪θ2 0.1500 0.2625 0.0000 0.1546 0.0000
θ1∪θ3 0.2000 0.3500 0.0000 0.2062 0.2985
θ2∪θ3 0.0500 0.0875 0.0000 0.0515 0.0000
θ1∪θ2 ∪θ3 0.3000 0.0000 0.0000 0.3093 0.4478

5.2 Example 2

Let’s consider Θ = {θ1,θ2,θ3}, and the bba m(θ3) = 0.7 and m(θ1 ∪ θ2 ∪ θ3) = 0.30.
Here, the masses of all the focal elements with cardinality size 2 equal to zero.
For HPR, when ε > 0, m(θ1 ∪ θ2 ∪ θ3) will be divided equally and redistributed to
{θ1 ∪ θ2}, {θ1 ∪ θ3} and {θ2 ∪ θ3}. Because the ratios are (taking for example ε =
0.001)

R(θ1 ∪θ2,X(3)) = R(θ1 ∪θ3,X(3)) = R(θ2 ∪θ3,X(3)) =
0.00+0.001 ·3

(0.00+0.001 ·3) ·3 = 0.3333

In this case, HPR cannot work directly when ε = 0. This shows the necessity for
the use of ε > 0. The bba’s obtained from HPRε=0.001 and k − l − x are listed in
Table 2.

From the results of Examples 1 & 2, we can see that based on k− l − x, the users
can control the number of focal elements but cannot control the maximum cardinal-
ity of focal elements. Although based on k− l −x, the number of focal elements can
be reduced, the focal elements with big cardinality might also be kept. This is not
good for further reducing computational cost. But with the proposed HPR method,
users can easily control both the non-specif city of approximated bba’s and the focal
element’s size.
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Table 2 Experimental results of Example 2 (ε = 0.001)

Focal elements
mh(k)(·) - approximate bba m(·) obtained by k− l −x
k = 3 k = 2 k = 1 k = l = 6 k = l = 3

θ1 0.0000 0.0000 0.0503 0.0000 0.0000
θ2 0.0000 0.0000 0.0503 0.0000 0.0000
θ3 0.7000 0.7000 0.8994 0.7000 0.7000
θ1∪θ2 0.0000 0.1000 0.0000 0.0000 0.0000
θ1∪θ3 0.0000 0.1000 0.0000 0.0000 0.0000
θ2∪θ3 0.0000 0.1000 0.0000 0.0000 0.0000
θ1∪θ2 ∪θ3 0.3000 0.0000 0.0000 0.3000 0.3000

5.3 Example 3

In this work, an approximation method 1 (giving m1(.)) is considered better than a
method 2 (giving m2(.)) if both conditions are fulf lled: 1) if the distance between
m1(.) and original bba m(.) is smaller than the distance between m2(.) and origi-
nal bba m(.), i.e. d(m1,m)< d(m2,m); 2) if the approximate non-specif city value
U(m1) is closer (and lower) to the true non-specif city value U(m) than U(m2). We
have used Jousselme’s distance [7] which has been proved recently to be a strict
distance metric because it is commonly used in applications. The Non-specificit
[4] is given by U(m) = ∑A⊆Θ m(A) log2 |A|. In this example, we make a compari-
son between HPR (method 1) and k-additive approach (method 2). We have taken
Θ = {θ1,θ2,θ3,θ4,θ5} and generated randomly 30 bba’s using the algorithm given in
[7]. We compute and plot d(m1,m), d(m2,m), U(m), U(m1) and U(m2) for several
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Fig. 1 Results for the Example 3. Comparison of k-additive belief function approximation
with HPR approximation method. (FS means Focal element Size)

levels of approximation. The results are shown in Fig. 1 and indicate clearly the
superiority of HPR over the k-additive approach.
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6 Conclusions

In this paper, a novel bba approximation called HPR has been proposed as an
interesting alternative approach to two classical ones. With this HPR, the non-
specif city degree can be easily controlled by the users. Our example show its be-
havior and advantage in comparisons with other well-known bba approximation
approaches. HPR has a low computational cost compared with k-additive approach,
which will be discussed in a more detailed paper in future. In further works, we will
also compare our proposed HPR with more bba approximation approaches avail-
able in the literature. In this paper, we have used only the distance of evidence
and the non-specif city criteria, which in fact are not enough, or comprehensive
to evaluate eff ciently bba approximations. So in future, we will try to propose
more eff cient evaluation criteria to evaluate and design better bba approximations
(if possible).
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On the Behavior of Dempster’s Rule of Combination 
and the Foundations of Dempster-Shafer Theory

Albena Tchamova
Jean Dezert

Abstract—On the base of simple emblematic example we
analyze and explain the inconsistent and inadequate behavior
of Dempster-Shafer’s rule of combination as a valid method to
combine sources of evidences. We identify the cause and the
effect of the dictatorial power behavior of this rule and of its
impossibility to manage the conflicts between the sources. For a
comparison purpose, we present the respective solution obtained
by the more efficient PCR5 fusion rule proposed originally in
Dezert-Smarandache Theory framework. Finally, we identify and
prove the inherent contradiction of Dempster-Shafer Theory
foundations.

Keywords—Belief functions; Dempster-Shafer Theory; DSmT;
PCR5; contradiction.

I. INTRODUCTION

Dempster-Shafer Theory (DST), also known as the Theory
of Evidence or the Theory of Belief Functions, was introduced
by Shafer in 1976 [1] based on Dempster’s previous works [2],
[3], [4]. This theory offers an elegant theoretical framework for
modeling uncertainty, and provides a method for combining
distinct bodies of evidence collected from different sources.
In the past more than three decades, DST has been used
in many applications, in fields including information fusion,
pattern recognition, decision making [5], etc.

In spite of it, starting from Zadeh’s criticism [6], [7],
[8], many questions have arisen about the validity and the
consistency of this theory when combining uncertain and
conflicting evidences expressed as basic belief assignments
(bba’s). Besides Zadeh’s example, there have been several
detailed analyses on this topic by Lemmer [9], Voorbraak
[10] and Wang [11]. Other authors like Pearl [12] and Walley
[13], and more recently Gelman [14], have also warned the
”belief function community” about this fundamental problem,
i.e., the validity of Dempster-Shafer’s rule1 (DS rule for short)
for combining distinct pieces of evidences. Since the mid-
1990’s, many researchers and engineers working with belief
functions in applications have observed and admitted that DS

1This rule is also called Dempster’s rule in the literature because it was
originally proposed by Dempster. We prefer to name it Dempster-Shafer’s rule
because it has widely been promoted by Shafer in his development of theory
of belief functions (a.k.a. DST).

rule is problematic for evidence combination, specially when
the sources of evidence are highly conflicting.

In response to this challenge, various attempts have been
made to circumvent the counter-intuitive behaviors of DS
rule. They either replace Dempster-Shafer’s rule by alternative
rules, listed for example in [15] (Vol. 1), or apply novel
semantic interpretations to the functions [15], [16], [17].
This work is based on preliminary ideas presented in the
Spring School on Belief Functions Theory and Applications
in April 2011 [18], and on many fruitful discussions with
colleagues using belief functions. We start from a very basic,
but emblematic example to show what is really questionable
in DS rule. We demonstrate that the main problem applying
DS rule comes not from the level of conflict between sources
to combine, but from the underlying interpretation of evidence
and degree of belief on which the combination rule is based.
We make a comparison with respective results, obtained by
using Proportional Conflict Redistribution rule no.5 (PCR5)
defined within Dezert-Smarandache Theory (DSmT) [15]. In
Section II we briefly recall basics of DST and DS rule. Basics
of PCR5 fusion rule are outlined in Section III. In Section
IV we describe our basic example and discuss the counter-
intuitive result obtained by DS rule and its strange behavior
corresponding to the dictatorial power of particular source of
evidence with respect to all another sources. A comparison
with respective results obtained by PCR5 fusion rule is also
made. After a discussion on dictatorial power of DS rule in
Section V, we establish and prove in Section VI a fundamental
theorem on the contradiction, grounded in DST foundations.
Concluding remarks are given in Section VII.

II. BASICS OF DST

Let Θ = {θ1, θ2, . . . , θn} be a frame of discernment of a
problem under consideration containing n distinct elements
θi, i = 1, . . . , n. A basic belief assignment (bba, also called
a belief mass function) m(.) : 2Θ → [0, 1] is a mapping from
the power set of Θ (i.e. the set of subsets of Θ), denoted 2Θ, to
[0, 1], that must satisfy the following conditions: 1) m(∅) =
0, i.e. the mass of empty set (impossible event) is zero; 2)

Originally published as Tchamova A., Dezert J., On the Behavior 
of Dempster’s Rule of Combination and the Foundations of 

Dempster-Shafer Theory, IEEE IS’2012, Sofia, Bulgaria, Sept. 6-8, 
2012 (Best paper awards), and reprinted with permission.
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∑
X∈2Θ m(X) = 1, i.e. the mass of belief is normalized to

one. The quantity m(X) represents the mass of belief exactly
committed to X . An element X ∈ 2Θ is called a focal element
if and only if m(X) > 0. The set F(m) , {X ∈ 2Θ|m(X) >
0} of all focal elements of a bba m(.) is called the core of the
bba. By definition, a Bayesian bba m(.) is a bba having only
focal elements of cardinality 1. The vacuous bba characterizing
full ignorance is defined by mv(.) : 2Θ → [0; 1] such that
mv(X) = 0 if X ̸= Θ, and mv(Θ) = 1.

From any bba m(.), the belief function Bel(.) and the
plausibility function Pl(.) are defined for ∀X ∈ 2Θ as:
Bel(X) =

∑
Y |Y⊆X m(Y ) and Pl(X) =

∑
Y |X∩Y ̸=∅ m(Y ).

Bel(X) represents the whole mass of belief that comes from
all subsets of Θ included in X . It is interpreted as the
lower bound of the probability of X , i.e. Pmin(X). Bel(.)
is a subadditive measure since

∑
θi∈Θ Bel(θi) ≤ 1. Pl(X)

represents the whole mass of belief that comes from all
subsets of Θ compatible with X (i.e., those intersecting X).
Pl(X) is interpreted as the upper bound of the probability
of X , i.e. Pmax(X). Pl(.) is a superadditive measure since∑

θi∈Θ Pl(θi) ≥ 1. Bel(X) and Pl(X) are classically seen
as lower and upper bounds of an unknown probability P (.) and
one has the following inequality satisfied Bel(X) ≤ P (X) ≤
Pl(X), ∀X ∈ 2Θ.

The DS rule of combination [1] is a mathematical operation,
denoted ⊕, which corresponds to the normalized conjunctive
fusion rule. Based on Shafer’s model of the frame, the com-
bination of two independent and distinct sources of evidences
characterized by their bba m1(.) and m2(.) and related to the
same frame of discernment Θ is defined by mDS(∅) = 0, and
∀X ∈ 2Θ \ {∅} by

mDS(X) = [m1 ⊕m2](X) =
m12(X)

1−K12
(1)

where

m12(X) ,
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) (2)

corresponds to the conjunctive consensus on X between the
two sources of evidence. K12 is the total degree of conflict
between the two sources of evidence defined by

K12 , m12(∅) =
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2) (3)

When K12 = m12(∅) = 1, the two sources are said to
be in total conflict and their combination cannot be applied
since DS rule (1) is mathematically not defined because of
0/0 indeterminacy [1]. DS rule is commutative and associative
which makes it very attractive from engineering implemen-
tation standpoint, since the combinations of sources can be
done sequentially instead globally and the order doesn’t matter.
Moreover, the vacuous bba is a neutral element for the DS
rule, i.e. [m⊕mv](.) = [mv⊕m](.) = m(.) for any bba m(.)

defined on 2Θ which seems to be an expected2 property, i.e.
a full ignorant source doesn’t impact the fusion result.

The conditioning of a given bba m(.) by a conditional
element Z ∈ 2Θ \ {∅} has been also proposed by Shafer
[1]. This function m(.|Z) is obtained by DS combination of
m(.) with the bba mZ(.) only focused on Z, i.e. such that
mZ(Z) = 1. For any element X of the power set 2Θ this is
mathematically expressed by

m(X|Z) = [m⊕mZ ](X) = [mZ ⊕m](X) (4)

It has been proved [1] that this rule of conditioning expressed
in terms of plausibility functions yields to the formula

Pl(X|Z) = Pl(X ∩ Z)/P l(Z) (5)

which is very similar to the well-known Bayes formula
P (X|Z) = P (X ∩Z)/P (Z). Because of this, DST has been
widely considered as a generalization of Bayesian inference
[3], or equivalently, that probability theory is a special case
of the Mathematical Theory of Evidence when manipulating
Bayesian bba’s.

Despite of the appealing properties of DS rule, its apparent
similarity with Bayes formula for conditioning, and many
attempts to justify its foundations, several challenges on the
theory’s validity have been put forth in the last decades, and
remain unanswered. For instance, an experimental protocol
to test DST was proposed by Lemmer in 1985 [9], and
his analysis shows an inherent paradox (contradiction) of
DST. Following a different approach, an inconsistency in
the fundamental postulates of DST was proved by Wang in
1994 [11]. Some other related works have been listed in the
introduction of this paper. In Section IV, we show through a
basic emblematic example where does the problem of DS rule
comes from, and why it is very risky to use it in very sensible
applications specially where security, defense and safety are
involved. Before this, we just recall in the next section the
principle of the Proportional Conflict Redistribution rule no.
5 (PCR5) defined within DSmT framework [15] to combine
bba’s.

III. BASICS OF PCR5 FUSION RULE

The idea behind the Proportional Conflict Redistribution
rule no. 5 defined within DSmT [15] (Vol. 2) is to transfer
conflicting masses (total or partial) proportionally to non-
empty sets involved in the model according to all integrity
constraints. The general principle of PCR rules is to: 1 )
calculate the conjunctive consensus between the sources of
evidences; 2 ) calculate the total or partial conflicting masses;
3 ) redistribute the conflicting mass (total or partial) propor-
tionally on non-empty sets involved in the model according
to all integrity constraints. Under Shafer’s model assumption3

of the frame Θ, the PCR5 combination rule for only two

2A discussion on this topic can be found in [19].
3We consider only Shafer’s model in this paper and in our examples to

make the comparison with Dempster-Shafer’s rule results.
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sources of information is defined as: mPCR5(∅) = 0 and
∀X ∈ 2Θ \ {∅}

mPCR5(X) = m12(X)+∑
Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (6)

All sets involved in the formula (6) are in canonical form.
m12(X) corresponds to the conjunctive consensus, i.e:

m12(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2).

All denominators are different from zero. If a denominator
is zero, that fraction is discarded. No matter how big or
small is the conflicting mass, PCR5 mathematically does a
better redistribution of the conflicting mass than Dempster-
Shafer’s rule since PCR5 goes backwards on the tracks of the
conjunctive rule and redistributes the partial conflicting masses
only to the sets involved in the conflict and proportionally to
their masses put in the conflict, considering the conjunctive
normal form of the partial conflict. PCR5 is quasi-associative
and also preserves the neutral impact of the vacuous belief
assignment, but contrariwise to DS rule the PCR5 fusion rule
doesn’t allow the dictatorial power of a source as it will be
shown in Section IV. With PCR5 rule, the fusion result can
always be revised as soon as informative evidences (i.e. not
vacuous bba’s) become available.

IV. AN EMBLEMATIC EXAMPLE SHOWING THE
DICTATORIAL POWER OF DEMPSTER-SHAFER’S RULE

Here we present an emblematic example showing the in-
adequate behavior of Dempster-Shafer’s rule. We call this
behavior the dictatorial power (DP) of DS rule realized by
a given source, which is fundamental in DS reasoning. This
parametric example is not related to the level of conflict
between sources. In this example the level of conflict can
be chosen at any low or high value. We show clearly that
Dempster-Shafer’s rule is not responding to the combination
of different bba’s since it provides always one and the same
results which is not a good expected behavior for a good fusion
rule for applications corresponding to the classical4 sense of
pooling of evidences [20].
Let’s consider the following frame5 Θ = {A,B,C} with
Shafer’s model. We consider two bba’s listed in the Table I,
associated with two distinct bodies of evidence6 with parame-
ters a, b1, and b2 that can take any values, as long as a ∈ [0, 1],
b1, b2 > 0, and b1 + b2 ∈ [0, 1].

We grant that all the a priori assumptions below, considered
in DST are fulfilled:
1) The sources of evidences are independent;

4when putting all evidences together.
5Θ could correspond by example to three distinct pathologies of a patient.
6In a medical context, the two sources of evidences could correspond to two

distinct Doctors providing their own medical diagnostics for a same patient.

TABLE I
INPUT BBA’S m1(.) AND m2(.).

Focal elem. \ bba’s m1(.) m2(.)
A a 0

A ∪B 1− a b1
C 0 1− b1 − b2

A ∪B ∪ C 0 b2

2) Both of sources are equally reliable, i.e both of them
are equally truthful. As an additional third assumption in this
parametric example we consider:
3) Both of sources are truly informative hence no one

represents a full ignorant source. It means both sources have
their own specific opinions about the particular problem under
consideration, which should be taken into account into the
fusion process in equal rights manner.
When applying DS rule of combination, one gets:

1) using the conjunctive operator:

m12(A) = a(b1 + b2) (7)
m12(A ∪B) = (1− a)(b1 + b2) (8)

K12 = m12(∅) = 1− b1 − b2 (conflicting mass) (9)

2) after normalizing by 1−K12 = b1 + b2, the result is :

mDS(A) =
m12(A)

1−K12
=

a(b1 + b2)

b1 + b2
= a = m1(A) (10)

mDS(A ∪B) =
m12(A ∪B)

1−K12
=

(1− a)(b1 + b2)

b1 + b2
= 1− a = m1(A ∪B) (11)

The final result obtained by using DS rule shows clearly that:
• Nevertheless the assumption no. 3 is fulfilled for source
m2(.) (it is obviously a truly informative source of evidence),
its opinion doesn’t count at all in the fusion process, performed
by DS rule since one finally gets mDS(.) = m1(.). It plays in
fact a role of full ignorant source, represented by the vacuous
belief assignment mv(A∪B∪C) = 1, since mDS(.) = m1(.)
in the DST fusion process. It is against the required a priori
assumption no. 2 of DST, for equally reliable/truthful sources
of evidence with opinions that have to be taken into account
in equal terms.
• The level of conflict K12 = 1−b1−b2 encountered between
the two sources doesn’t matter at all in DS fusion process here,
since it can be chosen at any level, depending on the choice
of b1+ b2. No matter how high or how low the conflict is, the
result remains one and same: mDS(.) = m1(.).
In clear, the source 1 dictates his opinion through Dempster-
Shafer’s rule which is what we consider a very inadequate
behavior for solving the problem of combination of evidences
in practice. Before analyzing this fundamental problem of
DST, let’s first take the position of devil’s advocate, and try
to defend the legitimacy of DST’s behavior. If we fully trust
source 1, the hypothesis C must be ruled out of the frame,
because Bel1(C) = Pl1(C) = 0. So, according to source 1,
the original frame of discernment Θ = {A,B,C} should be
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TABLE II
ADJUSTED INPUT BBA’S (STEP 1).

Focal elem. \ bba’s m1(.) m2(.)
A a 0

A ∪B 1− a b1
C ≡ ∅ 0 1− b1 − b2

A ∪B ∪ ∅ 0 b2

TABLE III
ADJUSTED INPUT BBA’S (STEP 2).

Focal elem. \ bba’s m1(.) m2(.)
A a 0

A ∪B 1− a b1 + b2
C ≡ ∅ 0 1− b1 − b2

reduced to Θ′ = {A,B}, because C ≡ ∅ (based on the report
of source 1). If we consider C impossible to occur, then the
report (bba) of source 2 must be adapted/revised according
to Tables II and III. Because m2(.) must be a normalized
bba, the masses of all focal elements of m2(.) are divided by
1−m2(∅) = b1+b2 so that after adjustment and normalization
of m2(.), the two bba’s to combine are presented in Table
IV. Based on this reasoning, we see that the adjusted and
normalized bba m′

2(.) plays indeed the role of the vacuous bba
mv(.) when working with the reduced frame Θ′ = {A,B},
which perfectly explains the result produced by DS rule.
Such kind of reasoning unfortunately doesn’t prove that the
result makes sense, nor it is correct. In fact such reasoning
shows clearly an asymmetry in the processing, since the source
1 is assumed to provide an absolute certainty on the event
”C cannot occur for sure”, whereas the source 2 is adjusted
(conditioned) by the declaration of source 1. Such devil’s
advocate reasoning is in fact fallacious, totally mistaken and
wrong because it erroneously interprets the impossibility of
occurrence of C as a definitive absolute truth (as if all knowl-
edge/evidences were available at the source 1) to withdraw the
hypothesis C of the original frame Θ. In fact, the impossibility
of C must be interpreted only as conditional truth because it
is based only on the partial knowledge related to source 1
(and not on the whole knowledge expressed when pooling the
evidences of the two sources).

Let’s, just for a comparison purpose, present the respective
solution of our example, obtained by DSmT based PCR5
fusion rule. The proportional redistribution of the mass of the
partial conflict m1(A)m2(C) = a(1− b1 − b2) is done by

xA

m1(A)
=

xC

m2(C)
=

m1(A)m2(C)

m1(A) +m2(C)
=

a(1− b1 − b2)

a+ 1− b1 − b2

hence xA = a2(1−b1−b2)
a+1−b1−b2

and xC = a(1−b1−b2)
2

a+1−b1−b2
.

TABLE IV
ADJUSTED BBA’S m1(.) AND m′

2(.).

Focal elem. \ bba’s m1(.) m′
2(.)

A a 0
A ∪B 1− a b 1+b 2

1−(1−b 1− b 2)
= 1

Similarly the redistribution of the partial conflict mass
m1(A ∪B)m2(C) = (1− a)(1− b1 − b2) is done by

yA∪B

m1(A ∪B)
=

yC
m2(C)

=
m1(A ∪B)m2(C)

m1(A ∪B) +m2(C)

hence yA∪B = (1−a)2(1−b1−b2)
1−a+1−b1−b2

and yC = (1−a)(1−b1−b2)
2

1−a+1−b1−b2
.

Therefore with PCR5, one gets a fusion result that does react
efficiently to the values of all the masses of focal elements of
each source since one has:

mPCR5(A) = m12(A) + xA

= a(b1 + b2) +
a2(1− b1 − b2)

a+ 1− b1 − b2
(12)

mPCR5(A ∪B) = m12(A ∪B) + yA∪B

= (1− a)(b1 + b2) +
(1− a)2(1− b1 − b2)

2− a− b1 − b2
(13)

mPCR5(C) = xC + yC

=
a(1− b1 − b2)

2

a+ 1− b1 − b2
+

(1− a)(1− b1 − b2)
2

2− a− b1 − b2
(14)

In comparison to DS rule performance, the result obtained by
using PCR5 rule, shows clearly that PCR5 fusion rule works
efficiently in any level of conflict, taking into account all the
a priori assumptions (1− 3).

V. DISCUSSION AND ANALYSIS

The result obtained by DS rule according to the example
in Section IV seriously calls in question DS rule’s validity, as
well as its applicability in real fusion problems. We claim that
such a result is not acceptable at all. This example is more
crucial than the examples discussed in the existing literature,
because it shows clearly a serious flaw in DST behavior, since
in this example the level of conflict between sources doesn’t
play a role, so that it cannot be argued that in such case DS
must not be applied because of high conflicting situation. We
can choose a low conflict level and the result is still the same.
The problem remains and the DST based result could become a
source of dramatical consequences, especially in cases, related
to human health or security. We claim that the problem behind
DS rule behavior comes not from the level of conflict between
the sources, but from something else.

A. The dictatorial power of source’s minority opinion

Let’s recall again the example, its strange results, and
discuss about the reasoning process behind DS rule. The a
priori defined finite frame of discernments Θ = {A,B,C}
satisfies Shafer’s requirement for a set of truly exhaustive
and exclusive hypotheses. Lets’s first pay attention on the bba
associated with source 1. What is obvious and special from
m1(.), it is the fact, that Pl1(C) = 0. One can reason from
here as follows:
1) Source 1 rules out with absolute certainty the hypothesis

C considering it as impossible, because of Pl1(C) = 0.
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TABLE V
INPUT BBA’S m1(.) AND m2(.) FOR THE CASE OF TOTAL CONFLICT.

Focal elem. \ bba’s m1(.) m2(.)
A a 0

A ∪B 1− a 0
C 0 1

2) The above opinion of source 1 (hypothesis C considered
as absolutely impossible) cannot be revised if new informative
evidence is available for fusion. According to Shafer’s defini-
tion [1], Pl1(C) = 0 means for every X ∈ 2Θ that X∩C ̸= ∅,
m1(X) = 0. When DS rule is applied to combine m1(.) and
an arbitrary m′(.) (in our example m′(.) = m2(.)), for every
Y ∈ 2Θ that Y ∩C ̸= ∅, mDS(Y ) = 0, because it is the sum
of some products, each of them take one of the above m1(X)
as a factor. Consequently, PlDS(C) = 0, no matter what the
other source of evidence is.
3) Since with DS rule, the source 1 imposes its own opinion

on source 2, and in fact on any other sources (as soon as they
have a core including the core of source 1), DST supports the
dictatorial power of a given source by accepting the minority
opinion as a valid solution of the ”fusion of evidences”,
and by banning in the same time all other sources’ different
opinions. This behavior is in full contradiction with the a
priori assumption no. 2 of DST for equally reliable sources
of information, which means their opinions should be taken
into account on equal terms in the fusion process (see [20] for
a complementary analysis).

B. On the total conflict case banned by DST

Let’s try to reveal now what is the logic behind the case, that
DS rule cannot solve because of the indefiniteness (0/0) - the
case of total conflicting sources of information. We consider
the same frame of discernments Θ = {A,B,C} and two bba’s
(listed in a Table V), associated with two distinct bodies of
evidence m1(.) and m2(.) with parameter a ∈ [0, 1]. It is
obvious from Table V that:
1) Source 1 rules out with an absolute certainty hypothesis

C considering it as impossible since Pl1(C) = 0.
2) Source 2 rules out with an absolute certainty the hy-

potheses A and B considering them as impossible since
Pl2(A ∪B) = 0.

The a priori DST assumptions (1 − 3) still hold. So, the
question is: Which source will possess the dictatorial power
in this special case? Following Shafer’s interpretation in this
example, the answer is: both of sources have access to the
Absolute truth. But what is paradoxical and contradictory is
that having simultaneously an access to the Absolute truth,
both of sources ban mutually each other opinions.

Therefore Shafer’s interpretation that allows both sources to
rule out all possible Absolute truths in absolute manner leads
to the strong contradiction by accepting the assertion that DS
rule cannot be used in such totally conflicting case.

This assertion is substantiated on the obtained mathematical
indefiniteness (0/0) as impossible ”fusion result”. But actually
behind the formal mathematical explanation, there resides

a real and strong logic that Shafer’s distinct Absolute truth
interpretation granted to each source doesn’t hold. The
Absolute truth is unique and it cannot yield to contradictions
in the fusion process.

For a comparison purpose, let’s again to present the respec-
tive solution in this special conflicting case, obtained by DSmT
based PCR5 fusion rule. The proportional redistribution of the
mass of the partial conflict m1(A)m2(C) = a is done by

xA

m1(A)
=

xC

m2(C)
=

m1(A)m2(C)

m1(A) +m2(C)
=

a

1 + a

with xA = a2

1+a and xC = a
1+a .

Similarly the proportional redistribution of the partial con-
flict mass m1(A ∪B)m2(C) = (1− a) is done by

yA∪B

m1(A ∪B)
=

yC
m2(C)

=
m1(A ∪B)m2(C)

m1(A ∪B) +m2(C)

with yA∪B = (1−a)2

2−a and yC = (1−a)
2−a .

Finally, one gets using PCR5 fusion rule

mPCR5(A) = xA =
a2

1 + a
(15)

mPCR5(A ∪B) = yA∪B =
(1− a)2

2− a
(16)

mPCR5(C) = xC + yC =
a

1 + a
+

(1− a)

2− a
(17)

It is obvious, DSmT based PCR5 fusion rule works effi-
ciently even in this special total conflicting case. This very
attractive rule is just a non-Bayesian reasoning approach,
which is not based on such inherent contradiction, as DST,
because PCR5 doesn’t support Shafer’s interpretation of source
committed Absolute truth and doesn’t allow dictatorial power
of single source opinion on all other sources, involved in the
fusion.

C. Remark on Dempster-Shafer conditioning

Some comments must be given also about DS conditioning
rule (4) and the expression (5) for the conditional plausibility.
Let consider Θ and two bba’s m1(.) and m2(.) defined on
2Θ and their DS combination mDS(.) = [m1 ⊕ m2](.) and
let assume a conditioning element Z ̸= ∅ in 2Θ and the bba
mZ(Z) = 1, then

mDS(.|Z) = [mDS ⊕mZ ](.) = [m1 ⊕m2 ⊕mZ ](.)

Because mDS(.) = [m1 ⊕ m2](.) is inconsistent with the
probability calculus [10], [11], [13], [14], [19], then mDS(.|Z)
is also inconsistent. Therefore for any X in 2Θ, the conditional
plausibility Pl(X|Z) expressed by Pl(X|Z) = Pl(X ∩
Z)/P l(Z) obtained from mDS(.|Z), having an apparent sim-
ilarity with Bayes formula, is in fact not compatible with the
conditional probability as soon as several sources of evidences
are involved.
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VI. FUNDAMENTAL THEOREM ON THE INHERENT
CONTRADICTION IN DST FOUNDATIONS

On the base of the previous examples and after a detailed
analysis of results drawn from Dempster-Shafer’s rule and
DST reasoning discussed in previous section, we establish the
fundamental theorem on the inherent contradiction of DST
foundations.

Theorem : Dempster-Shafer Theory is wrong because its
foundation is based on an inherent logical contradiction.

Proof : In the basis of DST [1], Shafer considers:
• An a priori defined finite frame of discernment Θ =
{θ1, θ2, . . . , θn} with n ≥ 2, satisfying Shafer’s requirement
for a set of truly exhaustive and exclusive hypotheses. Recalling
Shafer’s statement about DST [1] (p. 36): ”This formalism is
most easily introduced in the case where we are concerned with
the true value of some quantity. If we denote the quantity by θ
and the set of its possible values by Θ, then the propositions of
interest are precisely those of the form ”The true value of θ is
in T ,” where T is a subset of Θ”.
• Available independent sources of evidences associated with
corresponding bba’s mi(.), i = 1, 2.., where all the sources are
equally reliable/trustable and can be truly informative (not fully
ignorant).
• The level of conflict between the sources can take any low
or high value strictly less than one to make Dempster-Shafer’s
rule mathematically defined.

On the base of above considerations, one encounters the
fundamental contradiction:

1) A given source of evidence mp(.) can become unrevis-
able during the fusion when it is allowed to rule out with
absolute certainty some hypothesis θk, k ∈ [1, n] in the
frame Θ (if Plp(θk) = 0 as shown in our emblematic
example).

2) DS rule cannot solve the case of total conflict between
the sources (because of mathematical indefiniteness
0/0). This corresponds to the case when both sources:
1) have an access to the Absolute truth; 2) can become
unrevisable during the fusion if they allowed to rule out
with absolute certainty all hypotheses in the frame Θ,
banning mutually each other opinions. The inability of
DS rule to solve this case strongly supports the assertion
that the Absolute truth must be unique. Otherwise the
total conflict case could also be solved/processed by DS
rule. So, Shafer’s interpretation of distinct Absolute truth
granted to each source does not hold.

Therefore from the point 2), DST agrees with the assertion
that the Absolute truth is unique and cannot be a contradiction.
This assertion is fully contradicting with Shafer’s interpreta-
tion of distinct Absolute truth granted to each source stated
in point 1). This proves the fundamental contradiction in the
foundations of DST and completes the proof of our Theorem.

VII. CONCLUSION

In this paper, we have identified and put in light the
very serious inherent contradiction of Dempster-Shafer Theory
foundations. On the base of simple emblematic example, we
have analyzed and explained the inconsistent and inadequate
behavior of Dempster-Shafer’s rule of combination as a valid
method for the combination of sources of evidences. We have
identified the cause and the effect of the dictatorial power
behavior of this rule and of its impossibility to manage the
conflicts between the sources in a consistent logical way. For
a comparison purpose, the respective solutions obtained by
the more adequate PCR5 fusion rule, proposed originally in
Dezert-Smarandache Theory framework, were presented. This
very attractive rule is corresponds to a non-Bayesian reasoning
approach, which is not based on such inherent contradiction, as
DST, because PCR5 doesn’t support Shafer’s interpretation of
source committed Absolute truth and doesn’t allow dictatorial
power of single source opinion on all other sources, involved
in the fusion.
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Comparative Study of Contradiction Measures 
in the Theory of Belief Functions

Florentin Smarandache
Deqiang Han
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Abstract—Uncertainty measures in the theory of belief func-
tions are important for the uncertainty representation and
reasoning. Many measures of uncertainty in the theory of belief
functions have been introduced. The degree of discord (or
conf ict) inside a body of evidence is an important index for
measuring uncertainty degree. Recently, distance of evidence
is used to def ne a contradiction measure for quantifying the
degree of discord inside a body of evidence. The contradiction
measure is actually the weighted summation of the distance
values between a given basic belief assignment (bba) and the
categorical bba’s def ned on each focal element of the given bba
redef ned in this paper. It has normalized value and can well
characterize the self-discord incorporated in bodies of evidence.
We propose here, some numerical examples with comparisons
among different uncertainty measures are provided, together
with related analyses, to show the rationality of the proposed
contradiction measure.

Index Terms—Evidence theory, uncertainty measure, belief
function, discord, conf ict.

I. INTRODUCTION

Dempster-Shafer evidence theory [1], also known as theory
of belief functions, is one of the important uncertainty rea-
soning tools. It has been widely used in many applications.
Evidence theory can be seen as a generalization of probability
theory, where the additivity axiom is excluded. In probability
theory, Shannon entropy [2] is often used for quantifying
uncertainty while in the framework of evidence theory, there
also need the uncertainty measure for quantifying the degree
of uncertainty incorporated in a body of evidence (BOE).

In uncertainty theories, we can consider two types of
uncertainty including discord (or conf ict) and non-specif city,
hence ambiguity [3]. There have emerged several types of
uncertainty measures in the theory of belief functions. They are
either the generalization of Shannon entropy and other types of
uncertainty measures in probability theory or are established
based on the conf ict obtained by using some combination
rule. For example, non-specif city [4] proposed by Dubois and
Prade is a generalization of Hartley entropy [5]; aggregate
uncertainty (AU) measure [6] and ambiguity measure (AM) [3]
can be regarded as the generalized forms of Shannon entropy.
In Martin’s work [7], [8], the auto-conf ict measure was
proposed based on the conjunctive combination rule. There are
also lots of other types of uncertainty measures in the theory of

belief functions (See details in [3], [9], [11]). All the available
uncertainty measures characterize the uncertainty either from
one aspect (e.g. non-specif city and discord) or as a whole, i.e.
the total uncertainty (e.g., AM and AU).

Like in [7], [11], we attempt to break the traditional ways to
establish uncertainty measure in the theory of belief functions.
That is, we do not generalize the uncertainty measures in
probability theory or use combination rule to obtain the
uncertainty measures in theory of belief functions. In this
paper we modify the contradiction measure proposed in [11]
to characterize the internal conf ict (or discord) degree of
the uncertainty in bba’s. For a bba with L focal elements,
based on each focal element, a categorical bba (a bba with
a unique focal element) can be obtained. Thus there are
totally L categorical bba’s. We calculate Jousselme’s distance
of evidence [10] between the original given bba and each
categorical bba then we can obtained L values of distance.
By using the masses of the given bba to generate the weights
and executing weighted summation of the corresponding L
distance values, the contradiction can be obtained. To make
the contradiction measure be normalized, the normalization
factor is designed and added. Some simulation results are
provided to verify the correctness of the normalization factor.
This contradiction measure can well characterize the conf ict
incorporated in a BOE, i.e. the self-conf ict or internal conf ict.
Some numerical examples with comparisons among different
uncertainty measures in the theory of belief functions are also
provided to show the rationality of the proposed contradiction
measure. It should be noted that this work is based on our
previous paper [11]. The idea of constructing contradiction
measure based on distance of evidence is f rst preliminarily
proposed in that paper, where there exist some errors in the
def nition -corrected here- and related analyses are far from
enough.

II. BASICS IN THE THEORY OF BELIEF FUNCTIONS

A. Basic concepts in the theory of belief functions
In Dempster-Shafer evidence theory [1], The elements in

the frame of discernment (FOD) (denoted by Θ) are mutually
exclusive and exhaustive. Suppose that 2Θ denotes the pow-
erset of FOD and def ne the function m : 2Θ → [0, 1] as the

Originally published as: Smarandache F., Han D., Martin A. -  Comparative 
Study of Contradiction Measures in the Theory of Belief Functions, in 

Proceedings of the 15th International Conference on Information Fusion, 
Singapore, 9-12 July 2012, and reprinted with permission.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

183



basic belief assignment (bba) satisfying:
∑

A⊆Θ

m(A) = 1, m(∅) = 0 (1)

A bba is also called a mass function. Belief function (Bel)
and plausibility function (Pl) are def ned below, respectively:

Bel(A) =
∑

B⊆A

m(B) (2)

pl(A) =
∑

A∩B ∕=∅

m(B) (3)

Suppose there are two bba’s: m1, m2 over the FOD Θ with
focal elements A1, . . . , Ak and B1, . . . , Bl, respectively. If
k =

∑

Ai∩Bj=∅ m1(Ai)m2(Bj) < 1, m : 2Θ → [0, 1]
denoted by

m(A) =

⎧





⎨





⎩

0, A = ∅
∑

Ai∩Bj=A

m1(Ai)m2(Bj)

1−
∑

Ai∩Bj=∅

m1(Ai)m2(Bj)
, A ∕= ∅

(4)

is a bba. The rule def ned in Eq. (4) is called Dempster’s rule
of combination. In Dempster’s rule of combination,

K = 1−
∑

Ai∩Bj=∅

m1(Ai)m2(Bj) (5)

is used to represent the conf ict between two BOEs. In recent
research [12], both K and distance of evidence are used to
construct a two tuple to represent the conf ict between BOEs.

B. Uncertainty measures in the theory of belief functions
In the theory of belief functions, a BOE hides two types

of uncertainty: non-specif city [4] and discord, hence ambigu-
ity [3]. The available related def nitions on degree of uncer-
tainty in the theory of belief functions are brief y introduced
below.

1) Auto-conf ict
A n-order auto-conf ict measure was proposed in [7] based

on non-normalized conjunctive combination rule [13].

an =

(

n

⊕
i=1

m

)

(∅) (6)

The conjunctive combination rule ⊕ is def ned as

mConj(C) =
∑

A∩B=C

m1(A)m2(B) := (m1 ⊕m2)(C) (7)

When n = 2, the auto-conf ict equals to K in Dempster’s rule
of combination.

2) Non-specif city

N(m) =
∑

A⊆Θ

m(A) log2 ∣A∣ (8)

Non-specif city can be seen as weighted sum of the Hartley
measure for different focal elements.

3) Confusion
Höhle proposed the measure of confusion [14] by using bba

and belief function in spirit of entropy as follows.

Confusion(m) = −
∑

A∈Θ

m(A)log2(Bel(A)) (9)

4) Dissonance
Yager proposed the measure of Dissonance [14] by using

bba and plausibility function in spirit of entropy as follows.

Dissonance(m) = −
∑

A∈Θ

m(A)log2(Pl(A)) (10)

5) Aggregate Uncertainty measure (AU)
There have emerged several def nitions aiming to represent

the total uncertainty in the theory of belief functions. The
most representational one is a kind of generalized Shannon
entropy [2], i.e. the aggregated uncertainty (AU) [6].

Let Bel be a belief measure on the FOD Θ. The AU
associated with Bel is measured by:

AU(Bel) = max
PBel

[−
∑

�∈Θ

p� log2 p�] (11)

where the maximum is taken over all probability distributions
that are consistent with the given belief function. PBel consists
of all probability distributions ⟨p�∣� ∈ Θ⟩ satisfying:

⎧

⎨

⎩

p� ∈ [0, 1], ∀� ∈ Θ
∑

�∈Θ p� = 1
Bel(A) ≤

∑

�∈A p� ≤ 1−Bel(Ā), ∀A ⊆ Θ
(12)

As illustrated in Eq. (11) and Eq. (12), in the def nition of AU,
the calculation of AU is an optimization problem and bba’s
(or belief functions) are used to establish the constraints of the
optimization problem. It is also called the ”upper entropy”. AU
is an aggregated total uncertainty (ATU) measure, which can
capture both non-specif city and discord.

AU satisf es all the requirements for uncertainty mea-
sure [9], which include probability consistency, set consis-
tency, value range, sub-additivity and additivity for the joint
BPA in Cartesian space. However, AU has the following short-
comings [3]: high computing complexity, high insensitivity to
the changes of evidence, etc.

6) Ambiguity Measure (AM)
Jousselme et al [3] proposed AM (ambiguity measure)

aiming to describe the non-specif city and discord in the theory
of belief functions. Let Θ = {�1, �2, . . . , �n} be a FOD. Let
m be a bba def ned on Θ. Def ne

AM(m) = −
∑

�∈Θ

BetPm(�) log2(BetPm(�)) (13)

where BetPm(�) =
∑

�∈B,B⊆Θm(B)/ ∣B∣ is the pignistic
probability distribution proposed by Smets [16]. Jousselme
et al [3] declared that the ambiguity measure satisf es the
requirements of uncertainty measure and at the same time it
overcomes the defects of AU, but in fact AM does not satisfy
the sub-additivity which has been pointed out by Klir [17].
Moreover in the work of Abellan [9], AM has been proved to
be logically non-monotonic under some circumstances.

There are also other existing uncertainty measures in the
theory of belief functions, see details in related reference [3].
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III. CONTRADICTION MEASURE BASED ON DISTANCE OF
EVIDENCE

As we can see in the previous section, all the available
uncertainty measures in the theory of belief functions are direct
or indirect generalization of entropy def ned in probability
theory or are def ned by using some combination rule. Hence
in [11], we break such ways in spirit of entropy in probability
theory. Distance of evidence is used to construct the uncer-
tainty degree, which is called contradiction and shown below.

Contrm(m) =
∑

X∈X

m(X) ⋅ d(m,mX) (14)

where X represents the set of all the focal elements of m(⋅).
But it should be noted that the def nition in Eq. (14) is not
a normalized value. We should obtain a normalized def nition
for the convenience of use.

The maximum contradiction measure for m(⋅) def ned on
Θ = {�1, �2, ..., �n} occurs when m(⋅) has a uniform distri-
bution:

m({�1}) = m({�2}) = ⋅ ⋅ ⋅ = m({�n}) =
1

n

It depends on the cardinality of Θ and the distance used.
For ∣Θ∣ = n, we use Jousselme’s distance, we get max

Contrm =
√

n−1
2n .

Proof:

Contrm = n ⋅
1

n
⋅ d(m,m�i) = d(m,m�i)

i.e.: where
{

m�i({�i}) = 1,
m�i({�j}) = 0, j ∕= i, j = 1, ..., n

But the distance between m and m�i is the same,

d(m,m�i) =

√

(m−m�i)
T
Jac(m−m�i)

=

√

√

√

√

√

√

√

⎷

0.5
[

n−1
n

,− 1
n
, ⋅ ⋅ ⋅ ,− 1

n

]

⎡

⎢

⎢

⎢

⎣

1 0 ⋅ ⋅ ⋅ 0
0 1 . . . 0
... 0

. . .
...

0 0 ⋅ ⋅ ⋅ 1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

n−1
n

− 1
n

...
− 1

n

⎤

⎥

⎥

⎥

⎦

=

√

√

√

√

√

√

√

⎷

0.5
[

n−1
n

,− 1
n
, ⋅ ⋅ ⋅ ,− 1

n

]

⎡

⎢

⎢

⎢

⎣

n−1
n

− 1
n

...
− 1

n

⎤

⎥

⎥

⎥

⎦

=

√

0.5
[

(

n−1
n

)2
+ (n− 1) ⋅ 1

n2 ]
]

=

√

0.5 (n−1)2+n−1
n2 =

√

0.5n2−n
n2 =

√

n−1
2n

Therefore, in this paper, we use the normalized factor
√

n−1
2n

and then the correct normalized contradiction measure is

def ned below:

Contrm(m) =

√

2n

n− 1
⋅
∑

X∈X

m(X) ⋅ d(m,mX) (15)

To further verify the correctness of the normalization factor,
we design the experiments as follows.

Randomly generate 500 bba’s and calculate their corre-
sponding contradiction values based on Eq. (15). The method
to randomly generate bba’s is as follows [18].

Input: Θ : Frame of discernment;
Nmax: Maximum number of focal elements
Output: Bel: Belief function (under the form of a bba, m)
Generate the power set of Θ P(Θ);
Generate a random permutation of P(Θ) → ℛ(Θ);
Generate a integer between 1 and Nmax → k;
FOReach First k elements of ℛ(Θ) do
Generate a value within [0, 1] → mi, i = 1, ..., k;
END
Normalize the vector m = [m1, ...,mk] → m′;
m(Ak) = mk;
Algorithm 1: Random generation of bba

Based on the above algorithm, the bba’s generated have
random number of focal elements. We set the cardinality of
FOD to be 3 and 4, respectively in each experiment. Thus we
totally do two experiments and the experimental results are
illustrated in Fig.1.

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

bba’s

C
on

tr m

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

bba’s

C
on

tr m

Max Value

|Θ|=4

|Θ|=3

Max Value

Fig. 1. Values of contradiction Contrm

As shown in Fig.1, when ∣Θ∣ = 3, the max value (one) is
obtained at the 15th bba, which is:

m({�1}) = m({�2}) = m({�3}) = 1/3.

When ∣Θ∣ = 4, the max value (one) is obtained at the 489th
bba, which is:
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m({�1}) = m({�2}) = m({�3}) = m({�4}) = 1/4.

From the proof and the experiments above, it can be seen
that the selection of normalized factor is correct.

IV. EXAMPLES

A. Example 1
In this experiment, we use the bba’s with focal elements

of singletons and the total set. Suppose that the FOD is Θ =
{�1, �2, ..., �5}. The initial bba is
m({�1}) = m({�2}) = m({�3}) = m({�4}) = m({�5}) = 0;
m(Θ) = 1

Then at each step, the mass of m(Θ) decreases by Δ = 0.05,
and the mass of each m({�i}) increase by Δ/5 = 0.01, where
i = 1, ..., 5. After 20 steps, m(Θ) will become zero and
m({�1}) = m({�2}) = m({�3}) = m({�4}) = m({�5}) =
0.2. Then the experiment will f nish.
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Fig. 2. Comparisons among different uncertainty measures in Example 1

As we can see in Fig. 2, although AU is deemed as a total
uncertainty measure, we cannot detect the change of bba in
each step based on AU.

The values of non-specif city decrease with the increase of
masses of singletons.

For contradiction, K , dissonance and confusion, their values
all increase with the increase of masses of singletons. Con-
tradiction increases faster than K in the f rst half of all the
steps and then it increases slower than K in the second half.
Confusion increases faster than dissonance in the f rst half
of all the steps and it increases slower than dissonance in the
second half. The change trends of contradiction and confusion
are more rational. Because at the f rst half of all the steps, the
relative changes of the masses of singletons increase more
signif cantly than the relative changes in the second half.

The value of contradiction belongs to [0, 1] and it reaches
its maximum value at the f nal step, i.e.:

When m({�1}) = m({�2}) = m({�3}) = m({�4}) =
m({�5}) = 0.2, Contrm = 1

B. Example 2
In this experiment, we use the bba’s with focal elements

of singletons and the total set. Suppose that the FOD is
Θ = {�1, �2, ..., �5}. The initial bba is
m({�1}) = m({�2}) = m({�3}) = m({�4}) = m({�5}) = 0;
m(Θ) = 1

Then at each step, the mass of m(Θ) decreases by Δ = 0.05,
and the mass of one singleton m({�1}) increase by Δ = 0.05
at each step. After 20 steps, m(Θ) will become zero and the
experiment will f nish.
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Fig. 3. Comparisons among different uncertainty measures in Example 2

As we can see in Fig. 3, with the increase of m({�1}) and
the decrease of m(Θ) in each step, the AU and non-specif city
decrease.

Although for the original bba, the non-specif city is highest,
the conf ict inside should be the least. So AU can not charac-
terize the discord part of the uncertainty incorporated in the
BOE.
K and Dissonance cannot detect the change of bba.
The value of the proposed contradiction increases at f rst

and reaches the max value when the bba becomes

m({�1}) = 0.5,m(Θ) = 0.5

Then with the increase of m({�1}) and the decrease of m(Θ)
in following steps, the value of the proposed contradiction
decrease and it reach zero when m({�1}) = 1, which is the
clearest case.

If we consider the two focal elements {�1} and Θ are
different in the power-set of Θ, when their values are equal
the uncertainty reaches the max value. This should be more
rational.

Confusion has the similar change trend compared to that of
our proposed contradiction measure. But the maximum value
of confusion does not occur at the middle.

C. Example 3
In this experiment, we use the bba’s with focal ele-

ments of the same cardinality. Suppose that the FOD is
Θ = {�1, �2, ..., �5}.
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The initial bba is
m({�1, �2}) = m({�1, �3}) = m({�1, �4})
= m({�2, �3}) = m({�2, �4}) = 0;m({�3, �4}) = 1

Then at each step, the mass of m({�3, �4}) decreases by Δ =
0.05, and the masses of all the other focal elements increase
by Δ = 0.05/5 = 0.01 at each step. After 16 steps, masses
of all the focal elements become equal.
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Fig. 4. Comparisons among different uncertainty measures in Example 3

As we can see in Fig. 4, Non-specif city can not detect
the change of bba. This is because Non-specif city mainly
concerns the cardinality of focal elements.

AU can detect the change of bba, but after step 10, the
values of AU are the same with the change of bba in following
steps. Thus AU is not sensitive to the change of bba.

With the change of bba in each step, K and Dissonance
change very little. Thus here K and dissonance are not so
sensitive to the change of bba.

For contradiction proposed and confusion, they can detect
the change of bba well.

D. Example 4
Suppose that the FOD is Θ = {�1, �2}. The initial bba is

m({�1}) = a, m({�2}) = b,

m({�1, �1}) = 1− a− b.

Suppose that a, b ∈ [0, 0.5], we calculate the values of all the
uncertainty measures according to the change of a and b

As we can see in Fig. 5, with the change of a and b, AU
are always the same.

All the other measures can detect the change of a and b.
We can see that the value of the proposed contradiction

varies relatively uniformly when compared with other meau-
res. Thus the contradiction is not too sensitive and at the same
time not too insensitive to the change of bba.

The value range belongs to [0,1], which is good characteris-
tic for being a measure for quantifying the degree of discord.

0

0.5

0

0.5
0

0.5

1

a

Contrm

b

C
on

tr m

0
0.5

0
0.5

0

0.5

1

a

K

b

K

0

0.5

0

0.5
0

1

2

AU

AU

ab

0
0.5

0
0.5

0

0.5

1

a

Non−specificity

b

N
on

−s
pe

ci
fic

ity

0

0.5

0

0.5
0

0.5

1

1.5
a

Confusion

b

C
on

fu
si

on

0

0.5

0

0.5
0

0.5

1

a

Dissonance

b

D
is

so
na

nc
e

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 5. Comparisons among different uncertainty measures in Example 4

V. FURTHER ANALYSIS

In def nition of Contrm in Eq. (15), the distance used is
Jousselme’s distance. In our work, we have also tried other
types of distances in the theory of belief functions to construct
the contradiction, which include

1) Betting commitment distance (Pignistic probability dis-
tance)

dT (m1,m2) = max
A⊆Θ

{∣BetP1(A) − BetP2(A)∣} (16)

where BetP represents the pignistic probability of correspond-
ing bba.

2) Cuzzonlin distance

dCuzz(m1,m2) =

√

(m1,m2)
T
IncIncT (m1,m2) (17)

where Inc is
{

Inc(A,B) = 1, ifA ⊆ B
0, others

(18)

3) Conf ict distance

dK((m1,m2)) = mT
1 (I− Inc)m2 (19)

4) Bhattacharyya distance

dB(m1,m2) = (1−
√
m1

T
I
√
m2)

p (20)

We do following experiments to compare the different
contradiction measures def ned on the different distance def-
initions above. When we use dCuzz and dK to construct
normalized contradiction measures, the normalization factor
should be (n− 1)/n.

A. Example 5
Suppose that the FOD is Θ = {�1, �2, �3}.
The initial bba is

m({�1}) = m({�2}) = m({�3}) = 0;m(Θ) = 1

Then at each step, the mass of m(Θ) decreases by
Δ = 0.05, and the mass of each m({�i}) increase by
Δ/3 = 0.05/3,where i = 1, 2, 3.
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Fig. 6. Comparisons among different contradiction measures based on
different distance measures - Example 5

B. Example 6
Suppose that the FOD is Θ = {�1, �2, �3}.
The initial bba is

m({�1}) = m({�2}) = m({�3}) = 0;m(Θ) = 1

Then at each step, the mass of m(Θ) decreases by Δ = 0.05,
and the mass of m({�1}) increase by Δ = 0.05. In the f nal
step, the bba obtained is

m({�1}) = 1
m({�2}) = m({�3}) = m(Θ) = 0;
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Fig. 7. Comparisons among different contradiction measures based on
different distance measures - Example 5

As we can see in Example 5 and 6, all the contradiction
measures obtained based on different distance def nitions can
well characterize the degree of discord inside BOEs. Till now,
only Jousselme’s distance is a strict distance metric, so we
suggest to use Jousselme’s distance.

VI. CONCLUSION

In this paper, we propose a new normalization of a measure
called contradiction to characterize the degree of discord or
conf ict inside a body of evidence. This contradiction measure
is distance-based and it can well describe the discord part
of the uncertainty in the theory of belief functions. Some
numerical examples are provided to support the rationality of
the proposed contradiction measure.

In our work, we have also preliminarily tried other types
of distance in evidence theory to construct the contradiction
measure. In our future work, we will further analyze the
contradiction def ned on different distance measures. Con-
tradiction measure can represent the qualities of different
information sources to some extent. Thus we will also try
to use the contradiction measure in applications based on the
evaluation of bba’s, for example, the weights determination in
weighted evidence combination.
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Why Dempster’s Rule doesn’t behave as Bayes 
rule with Informative Priors
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Abstract—In this paper, we analyze Bayes fusion rule in details
from a fusion standpoint, as well as the emblematic Dempster’s
rule of combination introduced by Shafer in his Mathematical
Theory of evidence based on belief functions. We propose a new
interesting formulation of Bayes rule and point out some of its
properties. A deep analysis of the compatibility of Dempster’s
fusion rule with Bayes fusion rule is done. Our analysis proves
clearly that Dempster’s rule of combination does not behave
as Bayes fusion rule in general, because these methods deal
very differently with the prior information when it is really
informative (not uniform). Only in the very particular case where
the basic belief assignments to combine are Bayesian and when
the prior information is uniform (or vacuous), Dempster’s rule
remains consistent with Bayes fusion rule. In more general cases,
Dempster’s rule is incompatible with Bayes rule and it is not a
generalization of Bayes fusion rule.

Keywords—Information fusion, Probability theory, Bayes fusion
rule, Dempster’s fusion rule.

I. INTRODUCTION

In 1979, Lotf Zadeh questioned in [1] the validity of the
Dempster’s rule of combination [2], [3] proposed by Shafer in
Dempster-Shafer Theory (DST) of evidence [4]. Since more
than 30 years many strong debates [5], [6], [7], [8], [9], [10],
[11], [12], [13] on the validity of foundations of DST and
Dempster’s rule have bloomed. The purpose of this paper is not
to discuss the validity of Dempster’s rule, nor the foundations
of DST which have been already addressed in previous papers
[14], [15], [16]. In this paper, we just focus on the deep
analysis of the real incompatibility of Dempster’s rule with
Bayes fusion rule. Our analysis supports Mahler’s one briefl
presented in [17]. This paper is organized as follows. In section
II, we recall basics of conditional probabilities and Bayes
fusion rule with its main properties. In section III, we recall
the basics of belief functions and Dempster’s rule. In section
IV, we analyze in details the incompatibility of Dempster’s
rule with Bayes rule in general and its partial compatibility
for the very particular case when prior information is modeled
by a Bayesian uniform basic belief assignment (bba). Section
V concludes this paper.

II. CONDITIONAL PROBABILITIES AND BAYES FUSION

In this section, we recall the definitio of conditional
probability [18] and present the principle and the properties of
Bayes fusion rule. We present the structure of this rule derived

from the classical definitio of the conditional probability in a
new uncommon interesting form that will help us to analyze its
partial similarity with Dempster’s rule proposed by Shafer in
his mathematical theory of evidence [4]. We will show clearly
why Dempster’s rule fails to be compatible with Bayes rule in
general.

A. Conditional probabilities

Let us consider two random events 𝑋 and 𝑍. The condi-
tional probability mass functions (pmfs) 𝑃 (𝑋∣𝑍) and 𝑃 (𝑍∣𝑋)
are define (assuming 𝑃 (𝑋) > 0 and 𝑃 (𝑍) > 0) by [18]:

𝑃 (𝑋∣𝑍) ≜
𝑃 (𝑋 ∩ 𝑍)

𝑃 (𝑍)
and 𝑃 (𝑍∣𝑋) ≜

𝑃 (𝑋 ∩ 𝑍)

𝑃 (𝑋)
(1)

which yields to Bayes Theorem:

𝑃 (𝑋∣𝑍) =
𝑃 (𝑍∣𝑋)𝑃 (𝑋)

𝑃 (𝑍)
and 𝑃 (𝑍∣𝑋) =

𝑃 (𝑋∣𝑍)𝑃 (𝑍)

𝑃 (𝑋)
(2)

where 𝑃 (𝑋) is called the a priori probability of 𝑋 , and
𝑃 (𝑍∣𝑋) is called the likelihood of 𝑋 . The denominator 𝑃 (𝑍)
plays the role of a normalization constant.

B. Bayes parallel fusion rule

In fusion applications, we are often interested in computing
the probability of an event 𝑋 given two events 𝑍1 and 𝑍2

that have occurred. More precisely, one wants to compute
𝑃 (𝑋∣𝑍1 ∩ 𝑍2) knowing 𝑃 (𝑋∣𝑍1) and 𝑃 (𝑋∣𝑍2), where 𝑋
can take 𝑁 distinct exhaustive and exclusive states 𝑥𝑖, 𝑖 =
1, 2, . . . , 𝑁 . Such type of problem is traditionally called a
fusion problem. 𝑃 (𝑋∣𝑍1 ∩ 𝑍2) becomes easily computable
by assuming the following conditional statistical independence
condition expressed mathematically by:

(𝐴1) : 𝑃 (𝑍1 ∩ 𝑍2∣𝑋) = 𝑃 (𝑍1∣𝑋)𝑃 (𝑍2∣𝑋) (3)

With such conditional independence condition (A1), then from
Eq. (1) and Bayes Theorem one gets:

𝑃 (𝑋∣𝑍1 ∩ 𝑍2) =

𝑃 (𝑋∣𝑍1)𝑃 (𝑋∣𝑍2)
𝑃 (𝑋)

∑𝑁
𝑖=1

𝑃 (𝑋=𝑥𝑖∣𝑍1)𝑃 (𝑋=𝑥𝑖∣𝑍2)
𝑃 (𝑋=𝑥𝑖)

(4)

The rule of combination given by Eq. (4) is known as Bayes
parallel (or product) rule and dates back to Bernoulli [19]. The

Originally published as Dezert J., Tchamova A., Han D., Tacnet J.-M., Why Dempster’s rule 
doesn’t behave as Bayes rule with informative priors, Proc. of 2013 IEEE International 

Symposium on Innovations in Intelligent Systems and Application (INISTA 2013), Albena, 
Bulgaria, June 19-21, 2013, and reprinted with permission.
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Eq. (4) can be rewritten as:

𝑃 (𝑋∣𝑍1 ∩ 𝑍2) =
1

𝐾(𝑋,𝑍1, 𝑍2)
⋅ 𝑃 (𝑋∣𝑍1) ⋅ 𝑃 (𝑋∣𝑍2) (5)

where the coefficien 𝐾(𝑋,𝑍1, 𝑍2) is define by:

𝐾(𝑋,𝑍1, 𝑍2) ≜ 𝑃 (𝑋) ⋅
𝑁
∑

𝑖=1

𝑃 (𝑋 = 𝑥𝑖∣𝑍1)𝑃 (𝑋 = 𝑥𝑖∣𝑍2)

𝑃 (𝑋 = 𝑥𝑖)

(6)

C. Symmetrization of Bayes fusion rule

The expression of Bayes fusion rule given by Eq. (4)
can also be symmetrized in the following form that, quite
surprisingly, rarely appears in the literature:

𝑃 (𝑋∣𝑍1 ∩ 𝑍2) =
1

𝐾 ′(𝑍1, 𝑍2)
⋅ 𝑃 (𝑋∣𝑍1)
√

𝑃 (𝑋)
⋅ 𝑃 (𝑋∣𝑍2)
√

𝑃 (𝑋)
(7)

where the normalization constant 𝐾 ′(𝑍1, 𝑍2) is given by:

𝐾 ′(𝑍1, 𝑍2) ≜
𝑁
∑

𝑖=1

𝑃 (𝑋 = 𝑥𝑖∣𝑍1)
√

𝑃 (𝑋 = 𝑥𝑖)
⋅ 𝑃 (𝑋 = 𝑥𝑖∣𝑍2)
√

𝑃 (𝑋 = 𝑥𝑖)
(8)

We call the quantity 𝐴2(𝑋 = 𝑥𝑖) ≜
𝑃 (𝑋=𝑥𝑖∣𝑍1)√

𝑃 (𝑋=𝑥𝑖)
⋅

𝑃 (𝑋=𝑥𝑖∣𝑍2)√
𝑃 (𝑋=𝑥𝑖)

entering in Eq. (8) the Agreement Factor on
𝑋 = 𝑥𝑖 of order 2. The level of the Global Agreement (GA)
of the conjunctive consensus taking into account the prior pmf
of 𝑋 is represented as:

𝐺𝐴2 ≜

𝑁
∑

𝑖=1

𝑃 (𝑋 = 𝑥𝑖∣𝑍1)
√

𝑃 (𝑋 = 𝑥𝑖)
⋅ 𝑃 (𝑋 = 𝑥𝑖∣𝑍2)
√

𝑃 (𝑋 = 𝑥𝑖)
= 𝐾 ′(𝑍1, 𝑍2)

(9)

In fact, with assumption (A1), the probability 𝑃 (𝑋∣𝑍1 ∩ 𝑍2)
given in Eq. (7) is nothing but the simple ratio of the
agreement factor 𝐴2(𝑋) on 𝑋 over the global agreement
𝐺𝐴2 =

∑𝑁
𝑖=1 𝐴2(𝑋 = 𝑥𝑖), that is:

𝑃 (𝑋∣𝑍1 ∩ 𝑍2) =
𝐴2(𝑋)

𝐺𝐴2
(10)

The quantity 𝐺𝐶2 measures the global conflic (i.e. the total
conjunctive disagreement) taking into account the prior pmf of
𝑋 .

𝐺𝐶2 ≜

𝑁
∑

𝑖1,𝑖2=1∣𝑖1 ∕=𝑖2

𝑃 (𝑋 = 𝑥𝑖1 ∣𝑍1)
√

𝑃 (𝑋 = 𝑥𝑖1)
⋅ 𝑃 (𝑋 = 𝑥𝑖2 ∣𝑍2)
√

𝑃 (𝑋 = 𝑥𝑖2)
(11)

∙ Symbolic representation of Bayes fusion rule

The (symmetrized form of) Bayes fusion rule of two posterior
probability measures 𝑃 (𝑋∣𝑍1) and 𝑃 (𝑋∣𝑍2), given in Eq. (7),
requires an extra knowledge of the prior probability of 𝑋 . For
convenience, we denote symbolically this fusion rule as:

𝑃 (𝑋∣𝑍1 ∩ 𝑍2) = 𝐵𝑎𝑦𝑒𝑠(𝑃 (𝑋∣𝑍1), 𝑃 (𝑋∣𝑍2);𝑃 (𝑋)) (12)

∙ Particular case: Uniform a priori pmf

In such particular case, all the prior probabilities values
√

𝑃 (𝑋 = 𝑥𝑖) =
√

1/𝑁 and 𝑠
√

𝑃 (𝑋 = 𝑥𝑖) = 𝑠
√

1/𝑁 can

be simplifie in Bayes fusion formulas Eq. (7) and Eq. (8).
Therefore, Bayes fusion formula (7) reduces to:

𝑃 (𝑋∣𝑍1 ∩ 𝑍2) =
𝑃 (𝑋∣𝑍1)𝑃 (𝑋∣𝑍2)

∑𝑁
𝑖=1 𝑃 (𝑋 = 𝑥𝑖∣𝑍1)𝑃 (𝑋 = 𝑥𝑖∣𝑍2)

(13)

By convention, Eq. (13) is denoted symbolically as:

𝑃 (𝑋∣𝑍1 ∩ 𝑍2) = 𝐵𝑎𝑦𝑒𝑠(𝑃 (𝑋∣𝑍1), 𝑃 (𝑋∣𝑍2)) (14)

Similarly, 𝐵𝑎𝑦𝑒𝑠(𝑃 (𝑋∣𝑍1), . . . , 𝑃 (𝑋∣𝑍𝑠)) rule define with
an uniform a priori pmf of 𝑋 will be given by:

𝑃 (𝑋∣𝑍1 ∩ . . . ∩ 𝑍𝑠) =

∏𝑠
𝑘=1 𝑃 (𝑋∣𝑍𝑘)

∑𝑁
𝑖=1

∏𝑠
𝑘=1 𝑃 (𝑋 = 𝑥𝑖∣𝑍𝑘)

(15)

When 𝑃 (𝑋) is uniform one has 𝐺𝐴𝑢𝑛𝑖𝑓
2 +𝐺𝐶𝑢𝑛𝑖𝑓

2 = 1. Eq.
(13) can be expressed as:

𝑃 (𝑋∣𝑍1 ∩ 𝑍2) =
𝑃 (𝑋∣𝑍1)𝑃 (𝑋∣𝑍2)

𝐺𝐴𝑢𝑛𝑖𝑓
2

=
𝑃 (𝑋∣𝑍1)𝑃 (𝑋∣𝑍2)

1−𝐺𝐶𝑢𝑛𝑖𝑓
2

(16)
By a direct extension, one will have:

𝑃 (𝑋∣𝑍1 ∩ . . . ∩ 𝑍𝑠) =

∏𝑠
𝑘=1 𝑃 (𝑋∣𝑍𝑘)

𝐺𝐴𝑢𝑛𝑖𝑓
𝑠

=

∏𝑠
𝑘=1 𝑃 (𝑋∣𝑍𝑘)

1−𝐺𝐶𝑢𝑛𝑖𝑓
𝑠

(17)

𝐺𝐴𝑢𝑛𝑖𝑓
𝑠 =

𝑁
∑

𝑖1,...,𝑖𝑠=1∣𝑖1=...=𝑖𝑠

𝑃 (𝑋 = 𝑥𝑖1 ∣𝑍1) . . . 𝑃 (𝑋 = 𝑥𝑖𝑠 ∣𝑍𝑠)

𝐺𝐶𝑢𝑛𝑖𝑓
𝑠 = 1−𝐺𝐴𝑢𝑛𝑖𝑓

𝑠

D. Properties of Bayes fusion rule

∙ (P1) : The pmf 𝑃 (𝑋) is a neutral element of the Bayes
fusion rule when combining only two sources.

Proof: A source is called a neutral element of a fusion
rule if and only if it has no influenc on the fusion result.
𝑃 (𝑋) is a neutral element of Bayes rule if and only if
𝐵𝑎𝑦𝑒𝑠(𝑃 (𝑋∣𝑍1), 𝑃 (𝑋);𝑃 (𝑋)) = 𝑃 (𝑋∣𝑍1). It can be easily
verifie that this equality holds by replacing 𝑃 (𝑋∣𝑍2) by
𝑃 (𝑋) and 𝑃 (𝑋 = 𝑥𝑖∣𝑍2) by 𝑃 (𝑋 = 𝑥𝑖) (as if the
conditioning term 𝑍2 vanishes) in Eq. (4). One can also ver-
ify that 𝐵𝑎𝑦𝑒𝑠(𝑃 (𝑋), 𝑃 (𝑋∣𝑍2);𝑃 (𝑋)) = 𝑃 (𝑋∣𝑍2), which
completes the proof.

∙ (P2) : Bayes fusion rule is in general not idempotent.

Proof: A fusion rule is idempotent if the combination of all
same inputs is equal to the inputs. To prove that Bayes rule is
not idempotent it suffice to prove that: in general

𝐵𝑎𝑦𝑒𝑠(𝑃 (𝑋∣𝑍1), 𝑃 (𝑋∣𝑍1);𝑃 (𝑋)) ∕= 𝑃 (𝑋∣𝑍1)

From Bayes rule (4), when 𝑃 (𝑋∣𝑍2) = 𝑃 (𝑋∣𝑍1) we clearly
get in general

1

𝑃 (𝑋)

𝑃 (𝑋∣𝑍1)𝑃 (𝑋∣𝑍1)
∑𝑁

𝑖=1
𝑃 (𝑋=𝑥𝑖∣𝑍1)𝑃 (𝑋=𝑥𝑖∣𝑍1)

𝑃 (𝑋=𝑥𝑖)

∕= 𝑃 (𝑋∣𝑍1) (18)

but when 𝑍1 and 𝑍2 vanish, because in such case Eq. (18)
reduces to 𝑃 (𝑋) on its left and right sides.

∙ (P3) : Bayes fusion rule is in general not associative.

Proof: A fusion rule 𝑓 is called associative if and only if it
satisfie the associative law: 𝑓(𝑓(𝑥, 𝑦), 𝑧) = 𝑓(𝑥, 𝑓(𝑦, 𝑧)) =

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

190



𝑓(𝑦, 𝑓(𝑥, 𝑧)) = 𝑓(𝑥, 𝑦, 𝑧) for all possible inputs 𝑥, 𝑦 and 𝑧.
Let us prove Bayes rule is not associative from a very simple
example.

Example 1: Let us consider the simplest set of outcomes
{𝑥1, 𝑥2} for 𝑋 , with prior pmf:

𝑃 (𝑋 = 𝑥1) = 0.2 and 𝑃 (𝑋 = 𝑥2) = 0.8

and let us consider the three given sets of posterior pmfs:
⎧

⎨

⎩

𝑃 (𝑋 = 𝑥1∣𝑍1) = 0.1 and 𝑃 (𝑋 = 𝑥2∣𝑍1) = 0.9

𝑃 (𝑋 = 𝑥1∣𝑍2) = 0.5 and 𝑃 (𝑋 = 𝑥2∣𝑍2) = 0.5

𝑃 (𝑋 = 𝑥1∣𝑍3) = 0.6 and 𝑃 (𝑋 = 𝑥2∣𝑍3) = 0.4

One can see that even if in our example one has
𝑓(𝑥, 𝑓(𝑦, 𝑧)) = 𝑓(𝑓(𝑥, 𝑦), 𝑧) = 𝑓(𝑦, 𝑓(𝑥, 𝑧)) because
𝑃 (𝑋∣(𝑍1 ∩ 𝑍2) ∩ 𝑍3) = 𝑃 (𝑋∣𝑍1 ∩ (𝑍2 ∩ 𝑍3)) = 𝑃 (𝑋∣𝑍2 ∩
(𝑍1 ∩ 𝑍3)), the Bayes fusion rule is not associative since:

⎧

⎨

⎩

𝑃 (𝑋∣(𝑍1 ∩ 𝑍2) ∩ 𝑍3) ∕= 𝑃 (𝑋∣𝑍1 ∩ 𝑍2 ∩ 𝑍3)

𝑃 (𝑋∣𝑍1 ∩ (𝑍2 ∩ 𝑍3)) ∕= 𝑃 (𝑋∣𝑍1 ∩ 𝑍2 ∩ 𝑍3)

𝑃 (𝑋∣𝑍2 ∩ (𝑍1 ∩ 𝑍3)) ∕= 𝑃 (𝑋∣𝑍1 ∩ 𝑍2 ∩ 𝑍3)

∙ (P4) : Bayes fusion rule is associative if and only if 𝑃 (𝑋)
is uniform.
Proof: If 𝑃 (𝑋) is uniform, Bayes fusion rule is given by Eq.
(15) which can be rewritten as:

𝑃 (𝑋∣𝑍1 ∩ . . . ∩ 𝑍𝑠) =
𝑃 (𝑋∣𝑍1 ∩ . . . ∩ 𝑍𝑠−1)𝑃 (𝑋∣𝑍𝑠)

∑𝑁
𝑖=1 𝑃 (𝑋 = 𝑥𝑖∣𝑍1 ∩ . . . ∩ 𝑍𝑠−1)𝑃 (𝑋 = 𝑥𝑖∣𝑍𝑠)

Therefore when 𝑃 (𝑋) is uniform, one has:

𝐵𝑎𝑦𝑒𝑠(𝑃 (𝑋∣𝑍1), . . . , 𝑃 (𝑋∣𝑍𝑠)) =

𝐵𝑎𝑦𝑒𝑠(𝐵𝑎𝑦𝑒𝑠(𝑃 (𝑋∣𝑍1), . . . , 𝑃 (𝑋∣𝑍𝑠−1)), 𝑃 (𝑋∣𝑍𝑠)).

∙ (P5) : The levels of global agreement and global conflic
between the sources do not matter in Bayes fusion rule.

Proof: This property seems surprising at firs glance, but,
since the results of Bayes fusion is nothing but the ratio
of the agreement on 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑁 ) over the global
agreement factor, many distinct sources with different global
agreements (and this with different global conflicts can yield
same Bayes fusion result. Indeed, the ratio is kept unchanged
when multiplying its numerator and denominator by same non
null scalar value. Consequently, the absolute levels of global
agreement between the sources (and therefore of global conflic
also) do not matter in Bayes fusion result. What really matters
is only the proportions of relative agreement factors.

III. BELIEF FUNCTIONS AND DEMPSTER’S RULE

The Belief Functions (BF) have been introduced in 1976
by Glenn Shafer in his mathematical theory of evidence [4],
also known as Dempster-Shafer Theory (DST) in order to
reason under uncertainty and to model epistemic uncertainties.
The emblematic fusion rule proposed by Shafer to combine
sources of evidences characterized by their basic belief as-
signments (bba) is Dempster’s rule that will be analyzed in
details in the sequel. In the literature over the years, DST has
been widely defended by its proponents in arguing that: 1)
Probability measures are particular cases of Belief functions;

and 2) Dempster’s fusion rule is a generalization of Bayes
fusion rule. Although the statement 1) is correct because
Probability measures are indeed particular (additive) Belief
functions (called as Bayesian belief functions), we will explain
why the second statement about Dempster’s rule is incorrect
in general.

A. Belief functions

Let Θ be a frame of discernment of a problem under
consideration. More precisely, the set Θ = {𝜃1, 𝜃2, . . . , 𝜃𝑁}
consists of a list of 𝑁 exhaustive and exclusive elements 𝜃𝑖,
𝑖 = 1, 2, . . . , 𝑁 . Each 𝜃𝑖 represents a possible state related to
the problem we want to solve. The exhaustivity and exclusivity
of elements of Θ is referred as Shafer’s model of the frame
Θ. A basic belief assignment (bba), also called a belief mass
function, 𝑚(.) : 2Θ → [0, 1] is a mapping from the power set
of Θ (i.e. the set of subsets of Θ), denoted 2Θ, to [0, 1], that
verifie the following conditions [4]:

𝑚(∅) = 0 and
∑

𝑋∈2Θ

𝑚(𝑋) = 1 (19)

The quantity 𝑚(𝑋) represents the mass of belief exactly
committed to 𝑋 . An element 𝑋 ∈ 2Θ is called a focal element
if and only if 𝑚(𝑋) > 0. The set ℱ(𝑚) ≜ {𝑋 ∈ 2Θ∣𝑚(𝑋) >
0} of all focal elements of a bba 𝑚(.) is called the core of
the bba. A bba 𝑚(.) is said Bayesian if its focal elements
are singletons of 2Θ. The vacuous bba characterizing the total
ignorance denoted 𝐼𝑡 = 𝜃1∪𝜃2∪ . . .∪𝜃𝑁 is define by 𝑚𝑣(.) :
2Θ → [0; 1] such that 𝑚𝑣(𝑋) = 0 if 𝑋 ∕= Θ, and 𝑚𝑣(𝐼𝑡) = 1.

From any bba 𝑚(.), the belief function 𝐵𝑒𝑙(.) and the
plausibility function 𝑃𝑙(.) are define for ∀𝑋 ∈ 2Θ as:

{

𝐵𝑒𝑙(𝑋) =
∑

𝑌 ∈2Θ∣𝑌⊆𝑋 𝑚(𝑌 )

𝑃𝑙(𝑋) =
∑

𝑌 ∈2Θ∣𝑋∩𝑌 ∕=∅ 𝑚(𝑌 )
(20)

𝐵𝑒𝑙(𝑋) represents the whole mass of belief that comes from
all subsets of Θ included in 𝑋 . It is interpreted as the
lower bound of the probability of 𝑋 , i.e. 𝑃min(𝑋). 𝐵𝑒𝑙(.)
is a subadditive measure since

∑

𝜃𝑖∈Θ 𝐵𝑒𝑙(𝜃𝑖) ≤ 1. 𝑃𝑙(𝑋)
represents the whole mass of belief that comes from all
subsets of Θ compatible with 𝑋 (i.e., those intersecting 𝑋).
𝑃𝑙(𝑋) is interpreted as the upper bound of the probability
of 𝑋 , i.e. 𝑃max(𝑋). 𝑃𝑙(.) is a superadditive measure since
∑

𝜃𝑖∈Θ 𝑃𝑙(𝜃𝑖) ≥ 1. 𝐵𝑒𝑙(𝑋) and 𝑃𝑙(𝑋) are classically seen
[4] as lower and upper bounds of an unknown probability
𝑃 (.), and one has the following inequality satisfie ∀𝑋 ∈ 2Θ:
𝐵𝑒𝑙(𝑋) ≤ 𝑃 (𝑋) ≤ 𝑃𝑙(𝑋). The belief function 𝐵𝑒𝑙(.) (and
the plausibility function 𝑃𝑙(.)) built from any Bayesian bba
𝑚(.) can be interpreted as a (subjective) conditional probability
measure provided by a given source of evidence, because if
the bba 𝑚(.) is Bayesian the following equality always holds
[4]: 𝐵𝑒𝑙(𝑋) = 𝑃𝑙(𝑋) = 𝑃 (𝑋).

B. Dempster’s rule of combination

Dempster’s rule of combination, denoted DS rule is a
mathematical operation, represented symbolically by ⊕, which
corresponds to the normalized conjunctive fusion rule. Based
on Shafer’s model of Θ, the combination of 𝑠 > 1 independent
and distinct sources of evidences characterized by their bba
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𝑚1(.), . . . , 𝑚𝑠(.) related to the same frame of discernment
Θ is denoted 𝑚𝐷𝑆(.) = [𝑚1 ⊕ . . . ⊕ 𝑚𝑠](.). The quantity
𝑚𝐷𝑆(.) is define mathematically as follows: 𝑚𝐷𝑆(∅) ≜ 0
and ∀𝑋 ∕= ∅ ∈ 2Θ

𝑚𝐷𝑆(𝑋) ≜
𝑚12...𝑠(𝑋)

1−𝐾12...𝑠
(21)

where the conjunctive agreement on 𝑋 is given by:

𝑚12...𝑠(𝑋) ≜
∑

𝑋1,𝑋2,...,𝑋𝑠∈2Θ

𝑋1∩𝑋2∩...∩𝑋𝑠=𝑋

𝑚1(𝑋1)𝑚2(𝑋2) . . .𝑚𝑠(𝑋𝑠)

(22)
and where the global conflic is given by:

𝐾12...𝑠 ≜
∑

𝑋1,𝑋2,...,𝑋𝑠∈2Θ

𝑋1∩𝑋2∩...∩𝑋𝑠=∅

𝑚1(𝑋1)𝑚2(𝑋2) . . .𝑚𝑠(𝑋𝑠) (23)

When 𝐾12...𝑠 = 1, the 𝑠 sources are in total conflic and their
combination cannot be computed with DS rule because Eq.
(21) is mathematically not define due to 0/0 indeterminacy
[4]. DS rule is commutative and associative which makes it
very attractive from engineering implementation standpoint. It
has been proved in [4] that the vacuous bba 𝑚𝑣(.) is a neutral
element for DS rule because [𝑚 ⊕ 𝑚𝑣](.) = [𝑚𝑣 ⊕ 𝑚](.) =
𝑚(.) for any bba 𝑚(.) define on 2Θ.

IV. ANALYSIS OF COMPATIBILITY OF DEMPSTER’S RULE
WITH BAYES RULE

To analyze the compatibility of Dempster’s rule with
Bayes rule, we need to work in the probabilistic framework
because Bayes fusion rule has been developed only in this
theoretical framework. So in the sequel, we will manipulate
only probability mass functions (pmfs), related with Bayesian
bba’s in the Belief Function framework. If Dempster’s rule is
a true (consistent) generalization of Bayes fusion rule, it must
provide same results as Bayes rule when combining Bayesian
bba’s, otherwise Dempster’s rule cannot be fairly claimed to
be a generalization of Bayes fusion rule. In this section, we
analyze the real (partial or total) compatibility of Dempster’s
rule with Bayes fusion rule. Two important cases must be
analyzed depending on the nature of the prior information
𝑃 (𝑋) one has in hands for performing the fusion of the
sources. These sources to combine will be characterized by
the following Bayesian bba’s:
⎧



⎨



⎩

𝑚1(.) ≜ {𝑚1(𝜃𝑖) = 𝑃 (𝑋 = 𝑥𝑖∣𝑍1), 𝑖 = 1, 2, . . . , 𝑁}
...

...
...

𝑚𝑠(.) ≜ {𝑚𝑠(𝜃𝑖) = 𝑃 (𝑋 = 𝑥𝑖∣𝑍𝑠), 𝑖 = 1, 2, . . . , 𝑁}
(24)

The prior information is characterized by a given bba denoted
by 𝑚0(.) that can be define either on 2Θ, or only on Θ if
we want to deal for the needs of our analysis with a Bayesian
prior. In the latter case, if 𝑚0(.) ≜ {𝑚0(𝜃𝑖) = 𝑃 (𝑋 = 𝑥𝑖), 𝑖 =
1, 2, . . . , 𝑁} then 𝑚0(.) plays the same role as the prior pmf
𝑃 (𝑋) in the probabilistic framework.

When considering a non vacuous prior 𝑚0(.) ∕= 𝑚𝑣(.), we
denote Dempster’s combination of 𝑠 sources symbolically as:

𝑚𝐷𝑆(.) = 𝐷𝑆(𝑚1(.), . . . ,𝑚𝑠(.);𝑚0(.))

When the prior bba is vacuous 𝑚0(.) = 𝑚𝑣(.) then 𝑚0(.)
has no impact on Dempster’s fusion result, and so we denote
symbolically Dempster’s rule as:

𝑚𝐷𝑆(.) = 𝐷𝑆(𝑚1(.), . . . ,𝑚𝑠(.);𝑚𝑣(.)) = 𝐷𝑆(𝑚1(.), . . . ,𝑚𝑠(.))

A. Case 1: Uniform Bayesian prior

It is important to note that Dempster’s fusion formula
proposed by Shafer in [4] and recalled in Eq. (21) makes no
real distinction between the nature of sources to combine (if
they are posterior or prior information). In fact, the formula
(21) reduces exactly to Bayes rule given in Eq. (17) if the bba’s
to combine are Bayesian and if the prior information is either
uniform or vacuous. Stated otherwise the following functional
equality holds:

𝐷𝑆(𝑚1(.), . . . ,𝑚𝑠(.);𝑚0(.)) ≡
𝐵𝑎𝑦𝑒𝑠(𝑃 (𝑋∣𝑍1), . . . , 𝑃 (𝑋∣𝑍𝑠);𝑃 (𝑋)) (25)

as soon as all bba’s 𝑚𝑖(.), 𝑖 = 1, 2, . . . , 𝑠 are Bayesian and
coincide with 𝑃 (𝑋∣𝑍𝑖), 𝑃 (𝑋) is uniform, and either the prior
bba 𝑚0(.) is vacuous (𝑚0(.) = 𝑚𝑣(.)), or 𝑚0(.) is the uniform
Bayesian bba.

Example 2: Let us consider Θ(𝑋) = {𝑥1, 𝑥2, 𝑥3} with two
distinct sources providing the following Bayesian bba’s:
⎧

⎨

⎩

𝑚1(𝑥1) = 𝑃 (𝑋 = 𝑥1∣𝑍1) = 0.2

𝑚1(𝑥2) = 𝑃 (𝑋 = 𝑥2∣𝑍1) = 0.3

𝑚1(𝑥3) = 𝑃 (𝑋 = 𝑥3∣𝑍1) = 0.5

and

⎧

⎨

⎩

𝑚2(𝑥1) = 0.5

𝑚2(𝑥2) = 0.1

𝑚2(𝑥3) = 0.4

∙ If we choose as prior 𝑚0(.) the vacuous bba, that is 𝑚0(𝑥1∪
𝑥2 ∪ 𝑥3) = 1, then one will get (with 𝐾𝑣𝑎𝑐𝑢𝑜𝑢𝑠

12 = 0.67):
⎧

















⎨

















⎩

𝑚𝐷𝑆(𝑥1) = 1
1−𝐾𝑣𝑎𝑐𝑢𝑜𝑢𝑠

12
𝑚1(𝑥1)𝑚2(𝑥1)𝑚0(𝑥1 ∪ 𝑥2 ∪ 𝑥3)

= 1
1−0.670.2 ⋅ 0.5 ⋅ 1 = 0.10

0.33 ≈ 0.3030

𝑚𝐷𝑆(𝑥2) = 1
1−𝐾𝑣𝑎𝑐𝑢𝑜𝑢𝑠

12
𝑚1(𝑥2)𝑚2(𝑥2)𝑚0(𝑥1 ∪ 𝑥2 ∪ 𝑥3)

= 1
1−0.670.3 ⋅ 0.1 ⋅ 1 = 0.03

0.33 ≈ 0.0909

𝑚𝐷𝑆(𝑥3) = 1
1−𝐾𝑣𝑎𝑐𝑢𝑜𝑢𝑠

12
𝑚1(𝑥3)𝑚2(𝑥3)𝑚0(𝑥1 ∪ 𝑥2 ∪ 𝑥3)

= 1
1−0.670.5 ⋅ 0.4 ⋅ 1 = 0.20

0.33 ≈ 0.6061

∙ If we choose as prior 𝑚0(.) the uniform Bayesian bba given
by 𝑚0(𝑥1) = 𝑚0(𝑥2) = 𝑚0(𝑥3) = 1/3, then we get:

⎧



















⎨



















⎩

𝑚𝐷𝑆(𝑥1) = 1

1−𝐾𝑢𝑛𝑖𝑓𝑜𝑟𝑚
12

𝑚1(𝑥1)𝑚2(𝑥1)𝑚0(𝑥1)

= 1
1−0.890.2 ⋅ 0.5 ⋅ 1/3 = 0.10/3

0.11 ≈ 0.3030

𝑚𝐷𝑆(𝑥2) = 1

1−𝐾𝑢𝑛𝑖𝑓𝑜𝑟𝑚
12

𝑚1(𝑥2)𝑚2(𝑥2)𝑚0(𝑥2)

= 1
1−0.890.3 ⋅ 0.1 ⋅ 1/3 = 0.03/3

0.11 ≈ 0.0909

𝑚𝐷𝑆(𝑥3) = 1

1−𝐾𝑢𝑛𝑖𝑓𝑜𝑟𝑚
12

𝑚1(𝑥3)𝑚2(𝑥3)𝑚0(𝑥3)

= 1
1−0.890.5 ⋅ 0.4 ⋅ 1/3 = 0.20/3

0.11 ≈ 0.6061

where the degree of conflic when 𝑚0(.) is Bayesian and
uniform is now given by 𝐾𝑢𝑛𝑖𝑓𝑜𝑟𝑚

12 = 0.89.

Clearly 𝐾𝑢𝑛𝑖𝑓𝑜𝑟𝑚
12 ∕= 𝐾𝑣𝑎𝑐𝑢𝑜𝑢𝑠

12 , but the fusion results
obtained with two distinct priors 𝑚0(.) (vacuous or uniform)
are the same because of the algebraic simplificatio by 1/3 in
Dempster’s fusion formula when using uniform Bayesian bba.
When combining Bayesian bba’s 𝑚1(.) and 𝑚2(.), the vacuous
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prior and uniform prior 𝑚0(.) have therefore no impact on the
result. Indeed, they contain no information that may help to
prefer one particular state 𝑥𝑖 with respect to the other ones,
even if the level of conflic is different in both cases. So, the
level of conflic doesn’t matter at all in such Bayesian case. As
already stated, what really matters is only the distribution of
relative agreement factors. Only in such very particular cases
(i.e. Bayesian bba’s, and vacuous or Bayesian uniform priors),
Dempster’s rule is fully consistent with Bayes fusion rule.

B. Case 2: Non uniform Bayesian prior

Let us consider Dempster’s fusion of Bayesian bba’s with
a Bayesian non uniform prior 𝑚0(.). In such case it is easy
to check from the general structures of Bayes fusion rule and
Dempster’s fusion rule that these two rules are incompatible.
Indeed, in Bayes rule one divides each posterior source 𝑚𝑖(𝑥𝑗)
by 𝑠

√

𝑚0(𝑥𝑗), 𝑖 = 1, 2, . . . 𝑠, whereas the prior source 𝑚0(.)
is combined in a pure conjunctive manner by Dempster’s
rule with the bba’s 𝑚𝑖(.), 𝑖 = 1, 2, . . . 𝑠, as if 𝑚0(.) was a
simple additional source. This difference of processing prior
information between the two approaches explains clearly the
incompatibility of Dempster’s rule with Bayes rule when
Bayesian prior bba is not uniform. This incompatibility is
illustrated in the next simple example.

Example 3: Let us consider the same frame Θ(𝑋), and same
bba’s 𝑚1(.) and 𝑚2(.) as in the Example 3. Suppose that
the prior information is Bayesian and non uniform as follows:
𝑚0(𝑥1) = 𝑃 (𝑋 = 𝑥1) = 0.6, 𝑚0(𝑥2) = 𝑃 (𝑋 = 𝑥2) = 0.3
and 𝑚0(𝑥3) = 𝑃 (𝑋 = 𝑥3) = 0.1. Bayes rule (10) yields:
⎧



⎨



⎩

𝑃 (𝑥1∣𝑍1 ∩ 𝑍2) = 𝐴2(𝑥1)
𝐺𝐴2

= 0.2⋅0.5/0.6
2.2667 = 0.1667

2.2667 ≈ 0.0735

𝑃 (𝑥2∣𝑍1 ∩ 𝑍2) = 𝐴2(𝑥2)
𝐺𝐴2

= 0.3⋅0.1/0.3
2.2667 = 0.1000

2.2667 ≈ 0.0441

𝑃 (𝑥3∣𝑍1 ∩ 𝑍2) = 𝐴2(𝑥3)
𝐺𝐴2

= 0.5⋅0.4/0.1
2.2667 = 2.0000

2.2667 ≈ 0.8824

Dempster’s rule yields 𝑚𝐷𝑆(𝑥𝑖) ∕= 𝑃 (𝑥𝑖∣𝑍1 ∩ 𝑍2) because:
⎧



⎨



⎩

𝑚𝐷𝑆(𝑥1) = 1
1−0.9110 ⋅ 0.2 ⋅ 0.5 ⋅ 0.6 = 0.060

0.089 ≈ 0.6742

𝑚𝐷𝑆(𝑥2) = 1
1−0.9110 ⋅ 0.3 ⋅ 0.1 ⋅ 0.3 = 0.009

0.089 ≈ 0.1011

𝑚𝐷𝑆(𝑥3) = 1
1−0.9110 ⋅ 0.5 ⋅ 0.4 ⋅ 0.1 = 0.020

0.089 ≈ 0.2247

Therefore, one has in general:
𝐷𝑆(𝑚1(.), . . . ,𝑚𝑠(.);𝑚0(.)) ∕= 𝐵𝑎𝑦𝑒𝑠(𝑃 (𝑋∣𝑍1), . . . , 𝑃 (𝑋∣𝑍𝑠);𝑃 (𝑋))

V. CONCLUSIONS

In this paper1 we have analyzed in details the expression
and the properties of Bayes rule of combination based on
statistical conditional independence assumption, as well as the
emblematic Dempster’s rule of combination of belief functions
introduced by Shafer in his Mathematical Theory of evidence.
We have clearly explained from a theoretical standpoint, and
also on simple examples, why Dempster’s rule is not a gen-
eralization of Bayes rule in general. The incompatibility of
Dempster’s rule with Bayes rule is due to its impossibility to
deal with non uniform Bayesian priors in the same manner
as Bayes rule does. Dempster’s rule turns to be compatible
with Bayes rule only in two very particular cases: 1) if all the
Bayesian bba’s to combine (including the prior) focus on same

1An extended version of this paper will be presented at Fusion 2013
conference [20].

state (i.e. there is a perfect conjunctive consensus between the
sources), or 2) if all the bba’s to combine (excluding the prior)
are Bayesian, and if the prior bba cannot help to discriminate a
particular state of the frame of discernment (i.e. the prior bba is
either vacuous, or Bayesian and uniform). Except in these two
very particular cases, Dempster’s rule is totally incompatible
with Bayes rule. Therefore, Dempster’s rule cannot be claimed
to be a generalization of Bayes fusion rule, even when the bba’s
to combine are Bayesian.
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Why Dempster’s Fusion Rule is not a 
Generalization of Bayes Fusion Rule

Abstract—In this paper, we analyze Bayes fusion rule in
details from a fusion standpoint, as well as the emblematic
Dempster’s rule of combination introduced by Shafer in his
Mathematical Theory of evidence based on belief functions. We
propose a new interesting formulation of Bayes rule and point
out some of its properties. A deep analysis of the compatibility of
Dempster’s fusion rule with Bayes fusion rule is done. We show
that Dempster’s rule is compatible with Bayes fusion rule only in
the very particular case where the basic belief assignments (bba’s)
to combine are Bayesian, and when the prior information is
modeled either by a uniform probability measure, or by a vacuous
bba. We show clearly that Dempster’s rule becomes incompatible
with Bayes rule in the more general case where the prior is truly
informative (not uniform, nor vacuous). Consequently, this paper
proves that Dempster’s rule is not a generalization of Bayes fusion
rule.

Keywords—Information fusion, Probability theory, Bayes fusion
rule, Dempster’s fusion rule.

I. INTRODUCTION

In 1979, Lotf Zadeh questioned in [1] the validity of the
Dempster’s rule of combination [2], [3] proposed by Shafer in
Dempster-Shafer Theory (DST) of evidence [4]. Since more
than 30 years many strong debates [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15] on the validity of foundations of
DST and Dempster’s rule have bloomed. The purpose of this
paper is not to discuss the validity of Dempster’s rule, nor
the foundations of DST which have been already addressed in
previous papers [16], [17], [18]. In this paper, we just focus
on the deep analysis of the real incompatibility of Dempster’s
rule with Bayes fusion rule. Our analysis supports Mahler’s
one brief y presented in [19].

This paper is organized as follows. In section II, we recall
basics of conditional probabilities and Bayes fusion rule with
its main properties. In section III, we recall the basics of belief
functions and Dempster’s rule. In section IV, we analyze in
details the incompatibility of Dempster’s rule with Bayes rule
in general and its partial compatibility for the very particular
case when prior information is modeled by a Bayesian uniform
basic belief assignment (bba). Section V concludes this paper.

II. CONDITIONAL PROBABILITIES AND BAYES FUSION

In this section, we recall the def nition of conditional prob-
ability [20], [21] and present the principle and the properties of

Bayes fusion rule. We present the structure of this rule derived
from the classical def nition of the conditional probability in a
new uncommon interesting form that will help us to analyze its
partial similarity with Dempster’s rule proposed by Shafer in
his mathematical theory of evidence [4]. We will show clearly
why Dempster’s rule fails to be compatible with Bayes rule in
general.

A. Conditional probabilities

Let us consider two random events X and Z . The condi-
tional probability mass functions (pmfs) P (X ∣Z) and P (Z∣X)
are def ned1 (assuming P (X) > 0 and P (Z) > 0) by [20]:

P (X ∣Z) ≜
P (X ∩ Z)

P (Z)
and P (Z∣X) ≜

P (X ∩ Z)

P (X)
(1)

From Eq. (1), one gets P (X ∩ Z) = P (X ∣Z)P (Z) =
P (Z∣X)P (X), which yields to Bayes Theorem:

P (X ∣Z) =
P (Z∣X)P (X)

P (Z)
and P (Z∣X) =

P (X ∣Z)P (Z)

P (X)
(2)

where P (X) is called the a priori probability of X , and
P (Z∣X) is called the likelihood of X . The denominator P (Z)
plays the role of a normalization constant warranting that
∑N

i=1 P (X = xi∣Z) = 1. In fact P (Z) can be rewritten as

P (Z) =

N
∑

i=1

P (Z∣X = xi)P (X = xi) (3)

The set of the N possible exclusive and exhaustive outcomes
of X is denoted Θ(X) ≜ {xi, i = 1, 2, . . . , N}.

B. Bayes parallel fusion rule

In fusion applications, we are often interested in computing
the probability of an event X given two events Z1 and Z2

that have occurred. More precisely, one wants to compute
P (X ∣Z1 ∩ Z2) knowing P (X ∣Z1) and P (X ∣Z2), where X
can take N distinct exhaustive and exclusive states xi, i =
1, 2, . . . , N . Such type of problem is traditionally called a
fusion problem. The computation of P (X ∣Z1 ∩ Z2) from

1For convenience and simplicity, we use the notation P (X∣Z) instead of
P (X = x∣Z = z), and P (Z∣X) instead of P (Z = z∣X = x) where x and
z would represent precisely particular outcomes of the random variables X
and Z .
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P (X ∣Z1) and P (X ∣Z2) cannot be done in general without the
knowledge of the probabilities P (X) and P (X ∣Z1∪Z2) which
are rarely given. However, P (X ∣Z1 ∩ Z2) becomes easily
computable by assuming the following conditional statistical
independence condition expressed mathematically by:

(A1) : P (Z1 ∩ Z2∣X) = P (Z1∣X)P (Z2∣X) (4)

With such conditional independence condition (A1), then from
Eq. (1) and Bayes Theorem one gets:

P (X∣Z1 ∩ Z2) =
P (Z1 ∩ Z2 ∩X)

P (Z1 ∩ Z2)
=

P (Z1 ∩ Z2∣X)P (X)

P (Z1 ∩ Z2)

=
P (Z1∣X)P (Z2∣X)P (X)

∑N

i=1 P (Z1∣X = xi)P (Z2∣X = xi)P (X = xi)

Using again Eq. (2), we have:

P (Z1∣X) =
P (X ∣Z1)P (Z1)

P (X)
and P (Z2∣X) =

P (X ∣Z2)P (Z2)

P (X)

and the previous formula of conditional probability P (X ∣Z1∩
Z2) can be rewritten as:

P (X ∣Z1 ∩ Z2) =

P (X∣Z1)P (X∣Z2)
P (X)

∑N

i=1
P (X=xi∣Z1)P (X=xi∣Z2)

P (X=xi)

(5)

The rule of combination given by Eq. (5) is known as Bayes
parallel (or product) rule and dates back to Bernoulli [22]. In
the classif cation framework, this formula is also called the
Naive Bayesian Classif er because it uses the assumption (A1)
which is often considered as very unrealistic and too simplistic,
and that is why it is called a naive assumption. The Eq. (5)
can be rewritten as:

P (X ∣Z1 ∩ Z2) =
1

K(X,Z1, Z2)
⋅ P (X ∣Z1) ⋅ P (X ∣Z2) (6)

where the coeff cient K(X,Z1, Z2) is def ned by:

K(X,Z1, Z2) ≜ P (X) ⋅
N
∑

i=1

P (X = xi∣Z1)P (X = xi∣Z2)

P (X = xi)

(7)

C. Symmetrization of Bayes fusion rule

The expression of Bayes fusion rule given by Eq. (5)
can also be symmetrized in the following form that, quite
surprisingly, rarely appears in the literature:

P (X ∣Z1 ∩ Z2) =

P (X∣Z1)√
P (X)

⋅ P (X∣Z2)√
P (X)

∑N

i=1
P (X=xi∣Z1)√

P (X=xi)
⋅ P (X=xi∣Z2)√

P (X=xi)

(8)

or in an equivalent manner:

P (X ∣Z1 ∩ Z2) =
1

K ′(Z1, Z2)
⋅
P (X ∣Z1)
√

P (X)
⋅
P (X ∣Z2)
√

P (X)
(9)

where the normalization constant K ′(Z1, Z2) is given by:

K ′(Z1, Z2) ≜

N
∑

i=1

P (X = xi∣Z1)
√

P (X = xi)
⋅
P (X = xi∣Z2)
√

P (X = xi)
(10)

We call the quantity A2(X = xi) ≜
P (X=xi∣Z1)√

P (X=xi)
⋅

P (X=xi∣Z2)√
P (X=xi)

entering in Eq. (10) the Agreement Factor on
X = xi of order 2, because only two posterior pmfs are used
in the derivation. A2(X = xi) corresponds to the posterior
conjunctive consensus on the event X = xi taking into account
the prior pmf of X . The denominator of Eq. (8) measures
the level of the Global Agreement (GA) of the conjunctive
consensus taking into account the prior pmf of X . It is
denoted2 GA2.

GA2 ≜

N
∑

i1,i2=1∣i1=i2

P (X = xi1 ∣Z1)
√

P (X = xi1 )
⋅
P (X = xi2 ∣Z2)
√

P (X = xi2 )

=

N
∑

i=1

P (X = xi∣Z1)
√

P (X = xi)
⋅
P (X = xi∣Z2)
√

P (X = xi)
= K ′(Z1, Z2)

(11)

In fact, with assumption (A1), the probability P (X ∣Z1 ∩ Z2)
given in Eq. (9) is nothing but the simple ratio of the agreement
factor A2(X) (conjunctive consensus) on X over the global
agreement GA2 =

∑N

i=1 A2(X = xi), that is:

P (X ∣Z1 ∩ Z2) =
A2(X)

GA2
(12)

The quantity GC2 given in Eq. (13) measures the global
conf ict (i.e. the total conjunctive disagreement) taking into
account the prior pmf of X .

GC2 ≜

N
∑

i1,i2=1∣i1 ∕=i2

P (X = xi1 ∣Z1)
√

P (X = xi1 )
⋅
P (X = xi2 ∣Z2)
√

P (X = xi2)
(13)

∙ Generalization to P (X ∣Z1 ∩ Z2 ∩ . . . ∩ Zs)

It can be proved that, when assuming conditional independence
conditions, Bayes parallel combination rule can be generalized
for combining s > 2 posterior pmfs as:

P (X ∣Z1 ∩ . . . ∩ Zs) =
1

K(X,Z1, . . . , Zs)
⋅

s
∏

k=1

P (X ∣Zk)

(14)

where the coeff cient K(X,Z1, . . . , Zs) is def ned by:

K(X,Z1, . . . , Zs) ≜ P (X)

N
∑

i=1

(
∏s

k=1 P (X = xi∣Zk))

P (X = xi)

(15)

The symmetrized form of Eq. (14) is:

P (X ∣Z1 ∩ . . . ∩ Zs) =
1

K ′(Z1, . . . , Zs)
⋅

s
∏

k=1

P (X ∣Zk)
s
√

P (X)

(16)

with the normalization constant K ′(Z1, . . . , Zs) given by:

K ′(Z1, . . . , Zs) ≜

N
∑

i=1

s
∏

k=1

P (X = xi∣Zk)
s
√

P (X = xi)
(17)

2The index 2 is introduced explicitly in the notations because we consider
only the fusion of two posterior pmfs.
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The generalization of A2(X), GA2, and GC2 provides the
agreement As(X) of order s, the global agreement GAs and
the global conf ict GCs for s sources as follows:

As(X = xi) ≜

s
∏

k=1

P (X = xi∣Zk)
s
√

P (X = xi)

GAs ≜

N
∑

i1,...,is=1∣i1=...=is

P (X = xi1 ∣Z1)
s
√

P (X = xi1 )
. . .

P (X = xis ∣Zs)
s
√

P (X = xis)

GCs ≜

N
∑

i1,...,is=1

P (X = xi1 ∣Z1)
s
√

P (X = xi1)
. . .

P (X = xis ∣Zs)
s
√

P (X = xis)
−GAs

∙ Symbolic representation of Bayes fusion rule

The (symmetrized form of) Bayes fusion rule of two posterior
probability measures P (X ∣Z1) and P (X ∣Z2), given in Eq. (9),
requires an extra knowledge of the prior probability of X . For
convenience, we denote symbolically this fusion rule as:

P (X ∣Z1 ∩ Z2) = Bayes(P (X ∣Z1), P (X ∣Z2);P (X)) (18)

Similarly, the (symmetrized) Bayes fusion rule of s ≥ 2
probability measures P (X ∣Zk), k = 1, 2, . . . , s given by Eq.
(16), which requires also the knowledge of P (X), will be
denoted as:

P (X ∣Z1∩. . .∩Zs) = Bayes(P (X ∣Z1), . . . , P (X ∣Zs);P (X))

∙ Particular case: Uniform a priori pmf

If the random variable X is assumed as a priori uniformly
distributed over the space of its N possible outcomes, then
the probability of X is equal to P (X = xi) = 1/N for i =
1, 2, . . . , N . In such particular case, all the prior probabilities
values

√

P (X = xi) =
√

1/N and s
√

P (X = xi) =
s
√

1/N
can be simplif ed in Bayes fusion formulas Eq. (9) and Eq.
(10). Therefore, Bayes fusion formula (9) reduces to:

P (X ∣Z1 ∩ Z2) =
P (X ∣Z1)P (X ∣Z2)

∑N

i=1 P (X = xi∣Z1)P (X = xi∣Z2)
(19)

By convention, Eq. (19) is denoted symbolically as:

P (X ∣Z1 ∩ Z2) = Bayes(P (X ∣Z1), P (X ∣Z2)) (20)

Similarly, Bayes(P (X ∣Z1), . . . , P (X ∣Zs)) rule def ned with
an uniform a priori pmf of X will be given by:

P (X ∣Z1 ∩ . . . ∩ Zs) =

∏s

k=1 P (X ∣Zk)
∑N

i=1

∏s

k=1 P (X = xi∣Zk)
(21)

When P (X) is uniform and from Eq. (19), one can redef ne
the global agreement and the global conf ict as:

GAunif
2 ≜

N
∑

i,j=1∣i=j

P (X = xi∣Z1)P (X = xj ∣Z2) (22)

GCunif
2 ≜

N
∑

i,j=1∣i∕=j

P (X = xi∣Z1)P (X = xj ∣Z2) (23)

Because
∑N

i=1 P (X = xi∣Z1) = 1 and
∑N

j=1 P (X =
xj ∣Z2) = 1, then

1 = (

N
∑

i=1

P (X = xi∣Z1))(

N
∑

j=1

P (X = xj ∣Z2))

=

N
∑

i,j=1

P (X = xi∣Z1)P (X = xj ∣Z2)

=

N
∑

i,j=1∣i=j

P (X = xi∣Z1)P (X = xj ∣Z2)

+

N
∑

i,j=1∣i∕=j

P (X = xi∣Z1)P (X = xj ∣Z2)

Therefore, one has always GAunif
2 +GCunif

2 = 1 when P (X)
is uniform, and Eq. (19) can be expressed as:

P (X ∣Z1 ∩ Z2) =
P (X ∣Z1)P (X ∣Z2)

GAunif
2

=
P (X ∣Z1)P (X ∣Z2)

1−GCunif
2

(24)
By a direct extension, one will have:

P (X ∣Z1 ∩ . . . ∩ Zs) =

∏s

k=1 P (X ∣Zk)

GAunif
s

=

∏s

k=1 P (X ∣Zk)

1−GCunif
s

(25)

GAunif
s =

N
∑

i1,...,is=1∣i1=...=is

P (X = xi1 ∣Z1) . . . P (X = xis ∣Zs)

GCunif
s = 1−GAunif

s

Remark 1: The normalization coeff cient corresponding to the
global conjunctive agreement GAunif

s can also be expressed
using belief function notations [4] as:

GAunif
s =

∑

xi1
,...,xis∈Θ(X)

xi1
∩...∩xis ∕=∅

P (X = xi1 ∣Z1) . . . P (X = xis ∣Zs)

and the global disagreement, or total conf ict level, is given
by:

GCunif
s =

∑

xi1
,...,xis∈Θ(X)

xi1
∩...∩xis=∅

P (X = xi1 ∣Z1) . . . P (X = xis ∣Zs)

D. Properties of Bayes fusion rule

In this subsection, we analyze Bayes fusion rule (assuming
condition (A1) holds) from a pure algebraic standpoint. In
fusion jargon, the quantities to combine come from sources
of information which provide inputs that feed the fusion
rule. In the probabilistic framework, a source s to combine
corresponds to the posterior pmf P (X ∣Zs). In this subsection,
we establish f ve interesting properties of Bayes rule. Contrary
to Dempster’s rule, we prove that Bayes rule is not associative
in general.

∙ (P1) : The pmf P (X) is a neutral element of Bayes fusion
rule when combining only two sources.

Proof: A source is called a neutral element of a fusion
rule if and only if it has no inf uence on the fusion result.
P (X) is a neutral element of Bayes rule if and only if
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Bayes(P (X ∣Z1), P (X);P (X)) = P (X ∣Z1). It can be easily
verif ed that this equality holds by replacing P (X ∣Z2) by
P (X) and P (X = xi∣Z2) by P (X = xi) (as if the
conditioning term Z2 vanishes) in Eq. (5). One can also ver-
ify that Bayes(P (X), P (X ∣Z2);P (X)) = P (X ∣Z2), which
completes the proof.
Remark 2: When considering Bayes fusion of more than
two sources, P (X) doesn’t play the role of a neutral element
in general, except if P (X) is uniform. For example, let us
consider 3 pmfs P (X ∣Z1), P (X ∣Z2) and P (X ∣Z3) to combine
with formula (14) with P (X) not uniform. When Z3 vanishes
so that P (X ∣Z3) = P (X), we can easily check that:

Bayes(P (X ∣Z1), P (X ∣Z2), P (X);P (X))

∕= Bayes(P (X ∣Z1), P (X ∣Z2);P (X)) (26)

∙ (P2) : Bayes fusion rule is in general not idempotent.
Proof: A fusion rule is idempotent if the combination of all
same inputs is equal to the inputs. To prove that Bayes rule is
not idempotent it suff ces to prove that in general:

Bayes(P (X ∣Z1), P (X ∣Z1);P (X)) ∕= P (X ∣Z1)

From Bayes rule (5), when P (X ∣Z2) = P (X ∣Z1) we clearly
get in general

1

P (X)

P (X ∣Z1)P (X ∣Z1)
∑N

i=1
P (X=xi∣Z1)P (X=xi∣Z1)

P (X=xi)

∕= P (X ∣Z1) (27)

but when Z1 and Z2 vanish, because in such case Eq. (27)
reduces to P (X) on its left and right sides.
Remark 3: In the particular (two sources) degenerate
case where Z1 and Z2 vanish, one has always:
Bayes(P (X), P (X);P (X)) = P (X). However, in
the more general degenerate case (when considering
more than 2 sources), one will have in general:
Bayes(P (X), P (X), . . . , P (X);P (X)) ∕= P (X), but
when P (X) is uniform, or when P (X) is a “deterministic”
probability measure such that P (X = xi) = 1 for a given
xi ∈ Θ(X) and P (X = xj) = 0 for all xj ∕= xi.
∙ (P3) : Bayes fusion rule is in general not associative.
Proof: A fusion rule f is called associative if and only if it
satisf es the associative law: f(f(x, y), z) = f(x, f(y, z)) =
f(y, f(x, z)) = f(x, y, z) for all possible inputs x, y and z.
Let us prove that Bayes rule is not associative from a very
simple example.
Example 1: Let us consider the simplest set of outcomes
{x1, x2} for X , with prior pmf:

P (X = x1) = 0.2 and P (X = x2) = 0.8

and let us consider the three given sets of posterior pmfs:
⎧

⎨

⎩

P (X = x1∣Z1) = 0.1 and P (X = x2∣Z1) = 0.9

P (X = x1∣Z2) = 0.5 and P (X = x2∣Z2) = 0.5

P (X = x1∣Z3) = 0.6 and P (X = x2∣Z3) = 0.4

Bayes fusion Bayes(P (X ∣Z1), )P (X ∣Z2), P (X ∣Z3);P (X))
of the three sources altogether according to Eq. (16) provides:
{

P (X = x1∣Z1 ∩ Z2 ∩ Z3) =
1

K123

0.1
3
√
0.2

0.5
3
√
0.2

0.6
3
√
0.2

= 0.40

P (X = x2∣Z1 ∩ Z2 ∩ Z3) =
1

K123

0.9
3√0.8

0.5
3√0.8

0.4
3√0.8

= 0.60

where the normalization constant K123 is given by:

K123 =
0.1
3
√
0.2

0.5
3
√
0.2

0.6
3
√
0.2

+
0.9
3
√
0.8

0.5
3
√
0.8

0.4
3
√
0.8

= 0.3750

Let us compute the fusion of P (X ∣Z1) with P (X ∣Z2) using
Bayes(P (X ∣Z1), P (X ∣Z2);P (X)). One has:

{

P (X = x1∣Z1 ∩ Z2) =
1

K12

0.1√
0.2

0.5√
0.2

≈ 0.3077

P (X = x2∣Z1 ∩ Z2) =
1

K12

0.9√
0.8

0.5√
0.8

≈ 0.6923

where the normalization constant K12 is given by:

K12 =
0.1
√
0.2

0.5
√
0.2

+
0.9
√
0.8

0.5
√
0.8

= 0.8125

Let us compute the fusion of P (X ∣Z2) with P (X ∣Z3) using
Bayes(P (X ∣Z2), P (X ∣Z3);P (X)). One has

{

P (X = x1∣Z2 ∩ Z3) =
1

K23

0.5√
0.2

0.6√
0.2

≈ 0.8571

P (X = x2∣Z2 ∩ Z3) =
1

K23

0.5√
0.8

0.4√
0.8

≈ 0.1429

where the normalization constant K23 is given by:

K23 =
0.5
√
0.2

0.6
√
0.2

+
0.5
√
0.8

0.4
√
0.8

= 1.75

Let us compute the fusion of P (X ∣Z1) with P (X ∣Z3) using
Bayes(P (X ∣Z1), P (X ∣Z3);P (X)). One has:

{

P (X = x1∣Z1 ∩ Z3) =
1

K13

0.1√
0.2

0.6√
0.2

= 0.4

P (X = x2∣Z1 ∩ Z3) =
1

K13

0.9√
0.8

0.4√
0.8

= 0.6

where the normalization constant K13 is given by:

K13 =
0.1
√
0.2

0.6
√
0.2

+
0.9
√
0.8

0.4
√
0.8

= 0.75

Let us compute the fusion of P (X ∣Z1 ∩ Z2) with P (X ∣Z3)
using Bayes(P (X ∣Z1 ∩ Z2), P (X ∣Z3);P (X)). One has
{

P (X = x1∣(Z1 ∩ Z2) ∩ Z3) =
1

K(12)3

0.3077√
0.2

0.6√
0.2

≈ 0.7273

P (X = x2∣(Z1 ∩ Z2) ∩ Z3) =
1

K(12)3

0.6923√
0.8

0.4√
0.8

≈ 0.2727

where the normalization constant K(12)3 is given by

K(12)3 =
0.3077
√
0.2

0.6
√
0.2

+
0.6923
√
0.8

0.4
√
0.8

≈ 1.26925

Let us compute the fusion of P (X ∣Z1) with P (X ∣Z2 ∩ Z3)
using Bayes(P (X ∣Z1), P (X ∣Z2 ∩ Z3);P (X)). One has
{

P (X = x1∣Z1 ∩ (Z2 ∩ Z3)) =
1

K1(23)

0.1√
0.2

0.8571√
0.2

≈ 0.7273

P (X = x2∣Z1 ∩ (Z2 ∩ Z3)) =
1

K1(23)

0.9√
0.8

0.1429√
0.8

≈ 0.2727

where the normalization constant K1(23) is given by

K1(23) =
0.1
√
0.2

0.8571
√
0.2

+
0.9
√
0.8

0.1429
√
0.8

≈ 0.58931

Let us compute the fusion of P (X ∣Z1 ∩ Z3) with P (X ∣Z2)
using Bayes(P (X ∣Z1 ∩ Z3), P (X ∣Z2);P (X)). One has
{

P (X = x1∣(Z1 ∩ Z3) ∩ Z2) =
1

K(13)2

0.4√
0.2

0.5√
0.2

≈ 0.7273

P (X = x2∣(Z1 ∩ Z3) ∩ Z2) =
1

K(13)2

0.6√
0.8

0.5√
0.8

≈ 0.2727
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where the normalization constant K(13)2 is given by

K(13)2 =
0.4
√
0.2

0.5
√
0.2

+
0.6
√
0.8

0.5
√
0.8

= 1.375

Therefore, one sees that even if in our example one has
f(x, f(y, z)) = f(f(x, y), z) = f(y, f(x, z)) because
P (X ∣(Z1 ∩ Z2) ∩ Z3) = P (X ∣Z1 ∩ (Z2 ∩ Z3)) = P (X ∣Z2 ∩
(Z1 ∩ Z3)), Bayes fusion rule is not associative since:

⎧

⎨

⎩

P (X ∣(Z1 ∩ Z2) ∩ Z3) ∕= P (X ∣Z1 ∩ Z2 ∩ Z3)

P (X ∣Z1 ∩ (Z2 ∩ Z3)) ∕= P (X ∣Z1 ∩ Z2 ∩ Z3)

P (X ∣Z2 ∩ (Z1 ∩ Z3)) ∕= P (X ∣Z1 ∩ Z2 ∩ Z3)

∙ (P4) : Bayes fusion rule is associative if and only if P (X)
is uniform.
Proof: If P (X) is uniform, Bayes fusion rule is given by Eq.
(21) which can be rewritten as:

P (X∣Z1 ∩ . . .∩Zs) =
P (X∣Zs)

∏s−1
k=1 P (X∣Zk)

∑N

i=1 P (X = xi∣Zs)
∏s−1

k=1 P (X = xi∣Zk)

By introducing the term 1/
∑N

i=1

∏s−1
k=1 P (X = xi∣Zk) in

numerator and denominator of the previous formula, it comes:

P (X∣Z1∩ . . .∩Zs) =

∏s−1
k=1

P (X∣Zk)
∑N

i=1

∏s−1
k=1

P (X=xi∣Zk)
P (X∣Zs)

∑N

i=1

∏s−1
k=1

P (X=xi∣Zk)
∑N

i=1

∏s−1
k=1

P (X=xi∣Zk)
P (X = xi∣Zs)

which can be simply rewritten as:

P (X∣Z1 ∩ . . . ∩ Zs) =
P (X∣Z1 ∩ . . . ∩ Zs−1)P (X∣Zs)

∑N
i=1 P (X = xi∣Z1 ∩ . . . ∩ Zs−1)P (X = xi∣Zs)

Therefore when P (X) is uniform, one has:

Bayes(P (X ∣Z1), . . . , P (X ∣Zs)) =

Bayes(Bayes(P (X ∣Z1), . . . , P (X ∣Zs−1)), P (X ∣Zs))

The previous relation was based on the decomposition of
∏s

k=1 P (X ∣Zk) as P (X ∣Zs)
∏s−1

k=1 P (X ∣Zk). This choice of
decomposition was arbitrary and chosen only for convenience.
In fact

∏s

k=1 P (X ∣Zk) can be decomposed in s different
manners, as P (X ∣Zj)

∏s

k=1∣k ∕=j P (X ∣Zk), j = 1, 2, . . . s and
the similar analysis can be done. In particular, when s = 3,
we will have:

Bayes(P (X ∣Z1), P (X ∣Z2), P (X ∣Z3)) =

Bayes(Bayes(P (X ∣Z1), P (X ∣Z2)), P (X ∣Z3))

= Bayes(P (X ∣Z1), Bayes(P (X ∣Z2), P (X ∣Z3)))

which completes the proof.

∙ (P5) : The levels of global agreement and global conf ict
between the sources do not matter in Bayes fusion rule.

Proof: This property seems surprising at f rst glance, but,
since the results of Bayes fusion is nothing but the ratio
of the agreement on xi (i = 1, 2, . . . , N ) over the global
agreement factor, many distinct sources with different global
agreements (and thus with different global conf icts) can yield
same Bayes fusion result. Indeed, the ratio is kept unchanged
when multiplying its numerator and denominator by same non
null scalar value. Consequently, the absolute levels of global
agreement between the sources (and therefore of global conf ict

also) do not matter in Bayes fusion result. What really matters
is only the proportions of relative agreement factors.

Example 2: To illustrate this property, let us consider
Bayes fusion rule applied to two distinct sets3 of sources
represented by Bayes(P (X ∣Z1), P (X ∣Z2);P (X)) and by
Bayes(P ′(X ∣Z1), P

′(X ∣Z2);P (X)) with the following prior
and posterior pmfs:

P (X = x1) = 0.2 and P (X = x2) = 0.8
{

P (X = x1∣Z1) ≈ 0.0607 and P (X = x2∣Z1) ≈ 0.9393

P (X = x1∣Z2) ≈ 0.6593 and P (X = x2∣Z2) ≈ 0.3407
{

P ′(X = x1∣Z1) ≈ 0.8360 and P ′(X = x2∣Z1) ≈ 0.1640

P ′(X = x1∣Z2) ≈ 0.0240 and P ′(X = x2∣Z2) ≈ 0.9760

Applying Bayes fusion rule given by Eq. (5), one gets for
Bayes(P (X ∣Z1), P (X ∣Z2);P (X)):

{

P (X = x1∣Z1 ∩ Z2) =
0.2

0.2+0.4 = 1/3

P (X = x2∣Z1 ∩ Z2) =
0.4

0.2+0.4 = 2/3
(28)

Similarly, one gets for Bayes(P ′(X ∣Z1), P
′(X ∣Z2);P (X))

{

P ′(X = x1∣Z1 ∩ Z2) =
0.1

0.1+0.2 = 1/3

P ′(X = x2∣Z1 ∩ Z2) =
0.2

0.1+0.2 = 2/3
(29)

Therefore, one sees that Bayes(P (X ∣Z1), P (X ∣Z2);P (X)) =
Bayes(P ′(X ∣Z1), P

′(X ∣Z2);P (X)) even if the levels of
global agreements (and global conf icts) are different. In this
particular example, one has:

{

(GA2 = 0.60) ∕= (GA′
2 = 0.30)

(GC2 = 1.60) ∕= (GC′
2 = 2.05)

(30)

In summary, different sets of sources to combine (with differ-
ent levels of global agreement and global conf ict) can provide
exactly the same result once combined with Bayes fusion
rule. Hence the different levels of global agreement and global
conf ict do not really matter in Bayes fusion rule. What really
matters in Bayes fusion rule is only the distribution of all the
relative agreement factors def ned as As(X = xi)/GAs.

III. BELIEF FUNCTIONS AND DEMPSTER’S RULE

The Belief Functions (BF) have been introduced in 1976 by
Glenn Shafer in his mathematical theory of evidence [4], also
known as Dempster-Shafer Theory (DST) in order to reason
under uncertainty and to model epistemic uncertainties. We
will not present in details the foundations of DST, but only
the basic mathematical def nitions that are necessary for the
scope of this paper. The emblematic fusion rule proposed by
Shafer to combine sources of evidences characterized by their
basic belief assignments (bba) is Dempster’s rule that will be
analyzed in details in the sequel. In the literature over the years,
DST has been widely defended by its proponents in arguing
that: 1) Probability measures are particular cases of Belief

3The values chosen for P (X∣Z1), P (X∣Z2), P ′(X∣Z1), P ′(X∣Z2) here
have been approximated at the fourth digit. They can be precisely determined
such that the expressions for P (X∣Z1∩Z2) and P ′(X∣Z1∩Z2) as given in
Eqs. (28) and (29) hold. For example, the exact value of P (x1∣Z2) is obtained
by solving a polynomial equation of degree 2 having as a possible solution
P (x1∣Z2) = 1

2
(0.72 +

√
0.722 − 4× 0.04) = 0.659332590941915 ≈

0.6593, etc.
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functions; and 2) Dempster’s fusion rule is a generalization
of Bayes fusion rule. Although the statement 1) is correct
because Probability measures are indeed particular (additive)
Belief functions (called as Bayesian belief functions), we will
explain why the second statement about Dempster’s rule is
incorrect in general.

A. Belief functions

Let Θ be a frame of discernment of a problem under
consideration. More precisely, the set Θ = {�1, �2, . . . , �N}
consists of a list of N exhaustive and exclusive elements �i,
i = 1, 2, . . . , N . Each �i represents a possible state related to
the problem we want to solve. The exhaustivity and exclusivity
of elements of Θ is referred as Shafer’s model of the frame
Θ. A basic belief assignment (bba), also called a belief mass
function, m(.) : 2Θ → [0, 1] is a mapping from the power set
of Θ (i.e. the set of subsets of Θ), denoted 2Θ, to [0, 1], that
verif es the following conditions [4]:

m(∅) = 0 and
∑

X∈2Θ

m(X) = 1 (31)

The quantity m(X) represents the mass of belief exactly
committed to X . An element X ∈ 2Θ is called a focal element
if and only if m(X) > 0. The set ℱ(m) ≜ {X ∈ 2Θ∣m(X) >
0} of all focal elements of a bba m(.) is called the core of
the bba. A bba m(.) is said Bayesian if its focal elements
are singletons of 2Θ. The vacuous bba characterizing the total
ignorance denoted4 It = �1 ∪ �2 ∪ . . . ∪ �N is def ned by
mv(.) : 2Θ → [0; 1] such that mv(X) = 0 if X ∕= Θ, and
mv(It) = 1.

From any bba m(.), the belief function Bel(.) and the
plausibility function Pl(.) are def ned for ∀X ∈ 2Θ as:

{

Bel(X) =
∑

Y ∈2Θ∣Y⊆X m(Y )

Pl(X) =
∑

Y ∈2Θ∣X∩Y ∕=∅ m(Y )
(32)

Bel(X) represents the whole mass of belief that comes from
all subsets of Θ included in X . It is interpreted as the
lower bound of the probability of X , i.e. Pmin(X). Bel(.)
is a subadditive measure since

∑

�i∈Θ Bel(�i) ≤ 1. Pl(X)
represents the whole mass of belief that comes from all
subsets of Θ compatible with X (i.e., those intersecting X).
Pl(X) is interpreted as the upper bound of the probability
of X , i.e. Pmax(X). Pl(.) is a superadditive measure since
∑

�i∈Θ Pl(�i) ≥ 1. Bel(X) and Pl(X) are classically seen
[4] as lower and upper bounds of an unknown probability
P (.), and one has the following inequality satisf ed ∀X ∈ 2Θ:
Bel(X) ≤ P (X) ≤ Pl(X). The belief function Bel(.) (and
the plausibility function Pl(.)) built from any Bayesian bba
m(.) can be interpreted as a (subjective) conditional probability
measure provided by a given source of evidence, because if
the bba m(.) is Bayesian the following equality always holds
[4]: Bel(X) = Pl(X) = P (X).

4The set {�1, �2, . . . , �N} and the complete ignorance �1 ∪ �2 ∪ . . .∪ �N
are both denoted Θ in DST.

B. Dempster’s rule of combination

Dempster’s rule of combination, denoted DS rule5 is a
mathematical operation, represented symbolically by ⊕, which
corresponds to the normalized conjunctive fusion rule. Based
on Shafer’s model of Θ, the combination of s > 1 independent
and distinct sources of evidences characterized by their bba
m1(.), . . . , ms(.) related to the same frame of discernment
Θ is denoted mDS(.) = [m1 ⊕ . . . ⊕ ms](.). The quantity
mDS(.) is def ned mathematically as follows: mDS(∅) ≜ 0
and ∀X ∕= ∅ ∈ 2Θ

mDS(X) ≜
m12...s(X)

1−K12...s
(33)

where the conjunctive agreement on X is given by:

m12...s(X) ≜
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=X

m1(X1)m2(X2) . . .ms(Xs)

(34)
and where the global conf ict is given by:

K12...s ≜
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=∅

m1(X1)m2(X2) . . .ms(Xs) (35)

When K12...s = 1, the s sources are in total conf ict and their
combination cannot be computed with DS rule because Eq.
(33) is mathematically not def ned due to 0/0 indeterminacy
[4]. DS rule is commutative and associative which makes it
very attractive from engineering implementation standpoint.

It has been proved in [4] that the vacuous bba mv(.)
is a neutral element for DS rule because [m ⊕ mv](.) =
[mv ⊕ m](.) = m(.) for any bba m(.) def ned on 2Θ. This
property looks reasonable since a total ignorant source should
not impact the fusion result because it brings no information
that can be helpful for the discrimination between the elements
of the power set 2Θ.

IV. ANALYSIS OF COMPATIBILITY OF DEMPSTER’S RULE
WITH BAYES RULE

To analyze the compatibility of Dempster’s rule with
Bayes rule, we need to work in the probabilistic framework
because Bayes fusion rule has been developed only in this
theoretical framework. So in the sequel, we will manipulate
only probability mass functions (pmfs), related with Bayesian
bba’s in the Belief Function framework. This perfectly justif es
the restriction of singleton bba as a prior bba since we want
to manipulate prior probabilities to make a fair comparison
of results provided by both rules. If Dempster’s rule is a true
(consistent) generalization of Bayes fusion rule, it must provide
same results as Bayes rule when combining Bayesian bba’s,
otherwise Dempster’s rule cannot be fairly claimed to be a
generalization of Bayes fusion rule. In this section, we analyze
the real (partial or total) compatibility of Dempster’s rule with
Bayes fusion rule. Two important cases must be analyzed
depending on the nature of the prior information P (X) one
has in hands for performing the fusion of the sources. These

5We denote it DS rule because it has been proposed historically by Dempster
[2], [3], and widely promoted by Shafer in the development of DST [4].
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sources to combine will be characterized by the following
Bayesian bba’s:
⎧



⎨



⎩

m1(.) ≜ {m1(�i) = P (X = xi∣Z1), i = 1, 2, . . . , N}
...

...
...

ms(.) ≜ {ms(�i) = P (X = xi∣Zs), i = 1, 2, . . . , N}
(36)

The prior information is characterized by a given bba denoted
as m0(.) that can be def ned either on 2Θ, or only on Θ if
we want to deal for the needs of our analysis with a Bayesian
prior. In the latter case, if m0(.) ≜ {m0(�i) = P (X = xi), i =
1, 2, . . . , N} then m0(.) plays the same role as the prior pmf
P (X) in the probabilistic framework.

When considering a non vacuous prior m0(.) ∕= mv(.), we
denote Dempster’s combination of s sources symbolically as:

mDS(.) = DS(m1(.), . . . ,ms(.);m0(.))

When the prior bba is vacuous m0(.) = mv(.) then m0(.)
has no impact on Dempster’s fusion result, and so we denote
symbolically Dempster’s rule as:

mDS(.) = DS(m1(.), . . . ,ms(.);mv(.))

= DS(m1(.), . . . ,ms(.))

A. Case 1: Uniform Bayesian prior

It is important to note that Dempster’s fusion formula
proposed by Shafer in [4] and recalled in Eq. (33) makes no
real distinction between the nature of sources to combine (if
they are posterior or prior information). In fact, the formula
(33) reduces exactly to Bayes rule given in Eq. (25) if the bba’s
to combine are Bayesian and if the prior information is either
uniform or vacuous. Stated otherwise the following functional
equality holds

DS(m1(.), . . . ,ms(.);m0(.)) ≡

Bayes(P (X ∣Z1), . . . , P (X ∣Zs);P (X)) (37)

as soon as all bba’s mi(.), i = 1, 2, . . . , s are Bayesian and
coincide with P (X ∣Zi), P (X) is uniform, and either the prior
bba m0(.) is vacuous (m0(.) = mv(.)), or m0(.) is the uniform
Bayesian bba.

Example 3: Let us consider Θ(X) = {x1, x2, x3} with two
distinct sources providing the following Bayesian bba’s
⎧

⎨

⎩

m1(x1) = P (X = x1∣Z1) = 0.2

m1(x2) = P (X = x2∣Z1) = 0.3

m1(x3) = P (X = x3∣Z1) = 0.5

and

⎧

⎨

⎩

m2(x1) = 0.5

m2(x2) = 0.1

m2(x3) = 0.4

∙ If we choose as prior m0(.) the vacuous bba, that is m0(x1∪
x2 ∪ x3) = 1, then one will get
⎧

















⎨

















⎩

mDS(x1) = 1
1−Kvacuous

12
m1(x1)m2(x1)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.2 ⋅ 0.5 ⋅ 1 = 0.10

0.33 ≈ 0.3030

mDS(x2) = 1
1−Kvacuous

12
m1(x2)m2(x2)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.3 ⋅ 0.1 ⋅ 1 = 0.03

0.33 ≈ 0.0909

mDS(x3) = 1
1−Kvacuous

12
m1(x3)m2(x3)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.5 ⋅ 0.4 ⋅ 1 = 0.20

0.33 ≈ 0.6061

with

Kvacuous
12 = 1−m1(x1)m2(x1)m0(x1 ∪ x2 ∪ x3)

−m1(x2)m2(x2)m0(x1 ∪ x2 ∪ x3)

−m1(x3)m2(x3)m0(x1 ∪ x2 ∪ x3) = 0.67

∙ If we choose as prior m0(.) the uniform Bayesian bba given
by m0(x1) = m0(x2) = m0(x3) = 1/3, then we get

⎧



















⎨



















⎩

mDS(x1) = 1

1−K
uniform
12

m1(x1)m2(x1)m0(x1)

= 1
1−0.890.2 ⋅ 0.5 ⋅ 1/3 = 0.10/3

0.11 ≈ 0.3030

mDS(x2) = 1

1−K
uniform
12

m1(x2)m2(x2)m0(x2)

= 1
1−0.890.3 ⋅ 0.1 ⋅ 1/3 = 0.03/3

0.11 ≈ 0.0909

mDS(x3) = 1

1−K
uniform
12

m1(x3)m2(x3)m0(x3)

= 1
1−0.890.5 ⋅ 0.4 ⋅ 1/3 = 0.20/3

0.11 ≈ 0.6061

where the degree of conf ict when m0(.) is Bayesian and
uniform is now given by Kuniform

12 = 0.89.

Clearly Kuniform
12 ∕= Kvacuous

12 , but the fusion results
obtained with two distinct priors m0(.) (vacuous or uniform)
are the same because of the algebraic simplif cation by 1/3 in
Dempster’s fusion formula when using uniform Bayesian bba.
When combining Bayesian bba’s m1(.) and m2(.), the vacuous
prior and uniform prior m0(.) have therefore no impact on the
result. Indeed, they contain no information that may help to
prefer one particular state xi with respect to the other ones,
even if the level of conf ict is different in both cases. So, the
level of conf ict doesn’t matter at all in such Bayesian case.
As already stated, what really matters is only the distribution
of relative agreement factors. It can be easily verif ed that we
obtain same results when applying Bayes Eq. (14), or (16).

Only in such very particular cases (i.e. Bayesian bba’s,
and vacuous or Bayesian uniform priors), Dempster’s rule is
fully consistent with Bayes fusion rule. So the claim that
Dempster’s is a generalization of Bayes rule is true in this
very particular case only, and that is why such claim has been
widely used to defend Dempster’s rule and DST thanks to its
compatibility with Bayes fusion rule in that very particular
case. Unfortunately, such compatibility is only partial and not
general because it is not longer valid when considering the
more general cases involving non uniform Bayesian prior bba’s
as shown in the next subsection.

B. Case 2: Non uniform Bayesian prior

Let us consider Dempster’s fusion of Bayesian bba’s with
a Bayesian non uniform prior m0(.). In such case it is easy
to check from the general structures of Bayes fusion rule
(16) and Dempster’s fusion rule (33) that these two rules are
incompatible. Indeed, in Bayes rule one divides each posterior
source mi(xj) by s

√

m0(xj), i = 1, 2, . . . s, whereas the prior
source m0(.) is combined in a pure conjunctive manner by
Dempster’s rule with the bba’s mi(.), i = 1, 2, . . . s, as if m0(.)
was a simple additional source. This difference of processing
prior information between the two approaches explains clearly
the incompatibility of Dempster’s rule with Bayes rule when
Bayesian prior bba is not uniform. This incompatibility is
illustrated in the next simple example. Mahler and Fixsen
have already proposed in [23], [24], [25] a modif cation of
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Dempster’s rule to force it to be compatible with Bayes
rule when combining Bayesian bba’s. The analysis of such
modif ed Dempster’s rule is out of the scope of this paper.

Example 4: Let us consider the same frame Θ(X), and same
bba’s m1(.) and m2(.) as in the Example 3. Suppose that
the prior information is Bayesian and non uniform as follows:
m0(x1) = P (X = x1) = 0.6, m0(x2) = P (X = x2) = 0.3
and m0(x3) = P (X = x3) = 0.1. Applying Bayes rule (12)
yields:
⎧



⎨



⎩

P (x1∣Z1 ∩ Z2) = A2(x1)
GA2

= 0.2⋅0.5/0.6
2.2667 = 0.1667

2.2667 ≈ 0.0735

P (x2∣Z1 ∩ Z2) = A2(x2)
GA2

= 0.3⋅0.1/0.3
2.2667 = 0.1000

2.2667 ≈ 0.0441

P (x3∣Z1 ∩ Z2) = A2(x3)
GA2

= 0.5⋅0.4/0.1
2.2667 = 2.0000

2.2667 ≈ 0.8824

Applying Dempster’s rule yields mDS(xi) ∕= P (xi∣Z1 ∩ Z2)
because:
⎧



⎨



⎩

mDS(x1) = 1
1−0.9110 ⋅ 0.2 ⋅ 0.5 ⋅ 0.6 = 0.060

0.089 ≈ 0.6742

mDS(x2) = 1
1−0.9110 ⋅ 0.3 ⋅ 0.1 ⋅ 0.3 = 0.009

0.089 ≈ 0.1011

mDS(x3) = 1
1−0.9110 ⋅ 0.5 ⋅ 0.4 ⋅ 0.1 = 0.020

0.089 ≈ 0.2247

Therefore, one has in general6:

DS(m1(.), . . . ,ms(.);m0(.)) ∕=

Bayes(P (X ∣Z1), . . . , P (X ∣Zs);P (X)) (38)

V. CONCLUSIONS

In this paper, we have analyzed in details the expression
and the properties of Bayes rule of combination based on
statistical conditional independence assumption, as well as the
emblematic Dempster’s rule of combination of belief functions
introduced by Shafer in his Mathematical Theory of evidence.
We have clearly explained from a theoretical standpoint, and
also on simple examples, why Dempster’s rule is not a gen-
eralization of Bayes rule in general. The incompatibility of
Dempster’s rule with Bayes rule is due to its impossibility to
deal with non uniform Bayesian priors in the same manner
as Bayes rule does. Dempster’s rule turns to be compatible
with Bayes rule only in two very particular cases: 1) if all the
Bayesian bba’s to combine (including the prior) focus on same
state (i.e. there is a perfect conjunctive consensus between the
sources), or 2) if all the bba’s to combine (excluding the prior)
are Bayesian, and if the prior bba cannot help to discriminate a
particular state of the frame of discernment (i.e. the prior bba is
either vacuous, or Bayesian and uniform). Except in these two
very particular cases, Dempster’s rule is totally incompatible
with Bayes rule. Therefore, Dempster’s rule cannot be claimed
to be a generalization of Bayes fusion rule, even when the bba’s
to combine are Bayesian.
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On the Consistency of PCR6 with the Averaging Rule and 
its Application to Probability Estimation

Florentin Smarandache
Jean Dezert

Abstract—Since the development of belief function theory
introduced by Shafer in seventies, many combination rules have
been proposed in the literature to combine belief functions
specially (but not only) in high conf icting situations because
the emblematic Dempster’s rule generates counter-intuitive and
unacceptable results in practical applications. Many attempts
have been done during last thirty years to propose better rules
of combination based on different frameworks and justif cations.
Recently in the DSmT (Dezert-Smarandache Theory) frame-
work, two interesting and sophisticate rules (PCR5 and PCR6
rules) have been proposed based on the Proportional Conf ict
Redistribution (PCR) principle. These two rules coincide for the
combination of two basic belief assignments, but they differ in
general as soon as three or more sources have to be combined
altogether because the PCR used in PCR5 and in PCR6 are
different. In this paper we show why PCR6 is better than PCR5
to combine three or more sources of evidence and we prove
the coherence of PCR6 with the simple Averaging Rule used
classically to estimate the probability based on the frequentist
interpretation of the probability measure. We show that such
probability estimate cannot be obtained using Dempster-Shafer
(DS) rule, nor PCR5 rule.

Keywords: Information fusion, belief functions, PCR6,
PCR5, DSmT, frequentist probability.

I. INTRODUCTION

In this paper, we work with belief functions [1] def ned
from the f nite and discrete frame of discernment Θ =
{θ1, θ2, . . . , θn}. In Dempster-Shafer Theory (DST) frame-
work, basic belief assignments (bba’s) provided by the dis-
tinct sources of evidence are def ned on the fusion space
2Θ = (Θ,∪) consisting in the power-set of Θ, that is the set
of elements of Θ and those generated from Θ with the union
set operator. Such fusion space assumes that the elements of
Θ are non-empty, exhaustive and exclusive, which is called
Shafer’s model of Θ. More generally, in Dezert-Smarandache
Theory (DSmT) [2], the fusion space denoted GΘ can also
be either the hyper-power set DΘ = (Θ,∪,∩) (Dedekind’s
lattice), or super-power set1 SΘ = (Θ,∪,∩, c(.)) depending on
the underlying model of the frame of discernment we choose
to f t with the nature of the problem. Details on DSm models
are given in [2], Vol. 1.

We assume that s ≥ 2 basic belief assignments (bba’s)
mi(.), i = 1, 2, . . . , s provided by s distinct sources of
evidences def ned on the fusion space GΘ are available and
we need to combine them for a f nal decision-making purpose.

1
∩ and c(.) are respectively the set intersection and complement operators.

For doing this, many rules of combination have been proposed
in the literature, the most emblematic ones being the simple
Averaging Rule, Dempster-Shafer (DS) rule, and more recently
the PCR5 and PCR6 fusion rules.

The contribution of this paper is to analyze in deep the
behavior of PCR5 and PCR6 fusion rules and to explain why
we consider more preferable to use PCR6 rule rather than
PCR5 rule for combining several distinct sources of evidence
altogether. We will show in details the strong relationship be-
tween PCR6 and the averaging fusion rule which is commonly
used to estimate the probabilities in the classical frequentist
interpretation of probabilities.

This paper is organized as follows. In section II, we
brief y recall the background on belief functions and the main
fusion rules used in this paper. Section III demonstrates the
consistency of PCR6 fusion rule with the Averaging Rule
for binary masses in total conf ict as well as the ability of
PCR6 to discriminate asymmetric fusion cases for the fusion
of Bayesian bba’s. Section IV shows that PCR6 can also
be used to estimate empirical probability in a simple (coin
tossing) random experiment. Section V will conclude and
open challenging problem about the recursivity of fusion rules
formulas that are sought for eff cient implementations.

II. BACKGROUND ON BELIEF FUNCTIONS

A. Basic belief assignment

Lets’ consider a f nite discrete frame of discernment Θ =
{θ1, θ2, . . . , θn}, n > 1 of the fusion problem under considera-
tion and its fusion space GΘ which can be chosen either as 2Θ,
DΘ or SΘ depending on the model that f ts with the problem.
A basic belief assignment (bba) associated with a given source
of evidence is def ned as the mapping m(.) : GΘ → [0, 1]
satisfying m(∅) = 0 and

∑
A∈GΘ m(A) = 1. The quantity

m(A) is called mass of belief of A committed by the source
of evidence. If m(A) > 0 then A is called a focal element
of the bba m(.). When all focal elements are singletons and
GΘ = 2Θ then m(.) is called a Bayesian bba [1] and it is
homogeneous to a (possibly subjective) probability measure.
The vacuous bba representing a totally ignorant source is
def ned as mv(Θ) = 1. Belief and plausibility functions are
def ned by

Bel(A) =
∑

B⊆A
B∈GΘ

m(B) and Pl(A) =
∑

B∩A 6=∅
B∈GΘ

m(B) (1)

Originally published as Smarandache F., Dezert J., On the consistency of PCR6 with the averaging rule and 
its application to probability estimation, Proc. of Fusion 2013 Int. Conference on Information Fusion, 

Istanbul, Turkey, July 9-12, 2013, and reprinted with permission. (with typos corrections).
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B. Fusion rules

The main information fusion problem in the belief function
frameworks (DST or DSmT) is how to combine eff ciently
several distinct sources of evidence represented by m1(.),
m2(.), . . . , ms(.) (s ≥ 2) bba’s def ned on GΘ. Many rules
have been proposed for such task – see [2], Vol. 2, for a
detailed list of fusion rules – and we focus here on the
following ones: 1) the Averaging Rule because it is the simplest
one and it is used to empirically estimate probabilities in
random experiment, 2) DS rule because it was historically
proposed in DST, and 3) PCR5 and PCR6 rules because they
were proposed in DSmT and have shown to provide better
results than the DS rule in all applications where they have
been tested so far. So we just brief y recall how these rules are
mathematically def ned.

• Averaging fusion rule mAverage
1,2,...,s (.)

For any X in GΘ, mAverage
1,2,...,s (X) is def ned by

mAverage
1,2,...,s (X) = Average(m1,m2, . . . ,ms) ,

1

s

s∑

i=1

mi(X)

(2)
Note that the vacuous bba mv(Θ) = 1 is not a neutral element
for this rule. This Averaging Rule is commutative but it is not
associative because in general

mAverage
1,2,3 (X) =

1

3
[m1(X) +m2(X) +m3(X)]

is different from

mAverage
(1,2),3 (X) =

1

2
[
m1(X) +m2(X)

2
+m3(X)]

which is also different from

mAverage
1,(2,3) (X) =

1

2
[m1(A) +

m2(X) +m3(X)

2
]

and also from

mAverage
(1,3),2 (X) =

1

2
[
m1(X) +m3(X)

2
+m2(X)]

In fact, it is easy to prove that the following recursive formula
holds

mAverage
1,2,...,s (X) =

s− 1

s
mAverage

1,2,...,s−1(X) +
1

s
ms(X) (3)

This simple averaging fusion rule has been used since more
than two centuries for estimating empirically the probability
measure in random experiments [3], [4].

• Dempster-Shafer fusion rule mDS
1,2,...,s(.)

In DST framework, the fusion space GΘ equals the power-
set 2Θ because Shafer’s model of the frame Θ is assumed.
The combination of s ≥ 2 distinct sources of evidences
characterized by the bba’s mi(.), i = 1, 2, . . . , s, is done with
DS rule as follows [1]: mDS

1,2,...,s(∅) = 0 and for all X 6= ∅ in
2Θ

mDS
1,2,...,s(X) , 1

K1,2,...,s

∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=X

s∏

i=1

mi(Xi) (4)

where the numerator of (4) is the mass of belief on the conjunc-
tive consensus on X , and where K1,2,...,s is a normalization
constant def ned by

K1,2,...,s =
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs 6=∅

s∏

i=1

mi(Xi) = 1−m1,2,...,s(∅)

The total degree of conf ict between the s sources of evidences
is def ned by

m1,2,...,s(∅) =
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=∅

s∏

i=1

mi(Xi)

The sources are said in total conf ict when m1,2,...,s(∅) = 1.

The vacuous bba mv(Θ) = 1 is a neutral element for DS
rule and DS rule is commutative and associative. It remains
the milestone fusion rule of DST. The doubts on the validity
of such fusion rule has been discussed by Zadeh in 1979
[5]–[7] based on a very simple example with two highly
conf icting sources of evidence. Since 1980’s, many criticisms
have been done about the behavior and justif cation of such
DS rule. More recently, Dezert et al. in [8], [9] have put
in light other counter-intuitive behaviors of DS rule even in
low conf icting cases and showed serious f aws in logical
foundations of DST.

• PCR5 and PCR6 fusion rules

To work in general fusion spaces GΘ and to provide better
fusion results in all (low or high conf icting) situations, several
fusion rules have been developed in DSmT framework [2].
Among them, two fusion rules called PCR5 and PCR6 based
on the proportional conf ict redistribution (PCR) principle have
been proved to work eff ciently in all different applications
where they have been used so far. The PCR principle transfers
the conf icting mass only to the elements involved in the
conf ict and proportionally to their individual masses, so that
the specif city of the information is entirely preserved.

The general principle of PCR consists:

1) to apply the conjunctive rule;
2) calculate the total or partial conf icting masses;
3) then redistribute the (total or partial) conf icting mass

proportionally on non-empty sets according to the
integrity constraints one has for the frame Θ.

Because the proportional transfer can be done in two different
ways, this has yielded to two different fusion rules. The PCR5
fusion rule has been proposed by Smarandache and Dezert in
[2], Vol. 2, Chap. 1, and PCR6 fusion rule has been proposed
by Martin and Osswald in [2], Vol. 2, Chap. 2.

We will not present in deep these two fusion rules since
they have already been discussed in details with many exam-
ples in the aforementioned references but we only give their
expressions for convenience here.
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The general formula of PCR5 for the combination of s ≥ 2
sources is given by mPCR5

1,2,...,s(∅) = 0 and for X 6= ∅ in GΘ

mPCR5
1,2,...,s(X) = m1,2,...,s(X)+

∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2 ,...,Xjt
∈GΘ\{X}

{j2,...,jt}∈Pt−1({1,...,n})
X∩Xj2∩...∩Xjs=∅

{i1,...,is}∈Ps({1,...,s})

(
∏r1

k1=1 mik1
(X)2) · [

∏t
l=2(

∏rl
kl=rl−1+1 mikl

(Xjl)]

(
∏r1

k1=1 mik1
(X)) + [

∑t
l=2(

∏rl
kl=rl−1+1 mikl

(Xjl)]
(5)

where i, j, k, r, s and t in (5) are integers. m1,2,...,s(X)
corresponds to the conjunctive consensus on X between
s sources and where all denominators are different from
zero. If a denominator is zero, that fraction is discarded;
Pk({1, 2, . . . , n}) is the set of all subsets of k elements from
{1, 2, . . . , n} (permutations of n elements taken by k), the
order of elements doesn’t count.

The general formula of PCR6 proposed by Martin and
Osswald for the combination of s ≥ 2 sources is given by
mPCR6

1,2,...,s(∅) = 0 and for X 6= ∅ in GΘ

mPCR6
1,2,...,s(X) = m1,2,...,s(X)+

s∑

i=1

mi(X)2
∑

s−1
∩

k=1
Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(s−1))∈(GΘ)s−1










s−1∏

j=1

mσi(j)(Yσi(j))

mi(X)+

s−1∑

j=1

mσi(j)(Yσi(j))










(6)

where σi counts from 1 to s avoiding i:
{

σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i,

(7)

Since Yi is a focal element of expert/source i,

mi(X)+

s−1∑

j=1

mσi(j)(Yσi(j)) 6= 0.

The general PCR5 and PCR6 formulas (5)–(6) are
rather complicate and not very easy to understand. From
the implementation point of view, PCR6 is much simple
to implement than PCR5. For convenience, very basic (not
optimized) Matlab codes of PCR5 and PCR6 fusion rules can
be found in [2], [10] and from the toolboxes repository on the
web [11]. The PCR5 and PCR6 fusion rules are commutative
but not associative, like the averaging fusion rule, but the
vacuous belief assignment is a neutral element for these PCR
fusion rules.

The PCR5 and PCR6 fusion rules simplify greatly and
coincide for the combination of two sources (s = 2). In such
simplest case, one always gets the resulting bba mPCR5/6(.) =
mPCR6

1,2 (.) = mPCR5
1,2 (.) expressed as mPCR5/6(∅) = 0 and

for all X 6= ∅ in GΘ

mPCR5/6(X) =
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈GΘ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (8)

where all denominators in (8) are different from zero.
If a denominator is zero, that fraction is discarded. All
propositions/sets are in a canonical form.

Example 1: See [2], Vol.2, Chap. 1 for more examples.

Let’s consider the frame of discernment Θ = {A,B} of
exclusive elements. Here Shafer’s model holds so that GΘ =
2Θ = {∅, A,B,A∪B}. We consider two sources of evidences
providing the following bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conf icting mass

m12(A ∩B = ∅) = m1(A)m2(B) +m1(B)m2(A)

= 0.18 + 0.06 = 0.24

One sees that only A and B are involved in the derivation
of the conf icting mass, but not A ∪ B. With PCR5/6, one
redistributes the partial conf icting mass 0.18 to A and B
proportionally with the masses m1(A) and m2(B) assigned
to A and B respectively, and also the partial conf icting mass
0.06 to A and B proportionally with the masses m2(A) and
m1(B) assigned to A and B respectively, thus one gets two
weighting factors of the redistribution for each corresponding
set A and B respectively. Let x1 be the conf icting mass to be
redistributed to A, and y1 the conf icting mass redistributed to
B from the f rst partial conf icting mass 0.18. This f rst partial
proportional redistribution is then done according

x1

0.6
=

y1
0.3

=
x1 + y1
0.6 + 0.3

=
0.18

0.9
= 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06. Now
let x2 be the conf icting mass to be redistributed to A, and
y2 the conf icting mass redistributed to B from the second the
partial conf icting mass 0.06. This second partial proportional
redistribution is then done according

x2

0.2
=

y2
0.3

=
x2 + y2
0.2 + 0.3

=
0.06

0.5
= 0.12
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whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus one f nally gets:

mPCR5/6(A) = 0.44 + 0.12 + 0.024 = 0.584

mPCR5/6(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5/6(A ∪B) = 0.05 + 0 = 0.05

• The difference between PCR5 and PCR6 fusion rules

For the two sources case, PCR5 and PCR6 fusion rules
coincide. As soon as three (or more) sources are involved
in the fusion process, PCR5 and PCR6 differ in the way the
proportional conf ict redistribution is done. For example, let’s
consider three sources with bba’s m1(.), m2(.) and m3(.),
A ∩ B = ∅ for the model of the frame Θ, and m1(A) = 0.6,
m2(B) = 0.3, m3(B) = 0.1.

– With PCR5, the mass m1(A)m2(B)m3(B) = 0.6·0.3·0.1 =
0.018 corresponding to a conf ict is redistributed back to A and
B only with respect to the following proportions respectively:
xPCR5
A = 0.01714 and xPCR5

B = 0.00086 because the
proportionalization requires

xPCR5
A

m1(A)
=

xPCR5
B

m2(B)m3(B)
=

m1(A)m2(B)m3(B)

m1(A) +m2(B)m3(B)

that is

xPCR5
A

0.6
=

xPCR5
B

0.03
=

0.018

0.6 + 0.03
≈ 0.02857

Thus {
xPCR5
A = 0.60 · 0.02857 ≈ 0.01714

xPCR5
B = 0.03 · 0.02857 ≈ 0.00086

– With the PCR6 fusion rule, the partial conf icting mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redistributed
back to A and B only with respect to the following proportions
respectively: xPCR6

A = 0.0108 and xPCR6
B = 0.0072 because

the PCR6 proportionalization is done as follows:

xPCR6
A

m1(A)
=

xPCR6
B

m2(B) +m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + (m2(B) +m3(B))

that is
xPCR6
A

0.6
=

xPCR6
B

0.3 + 0.1
=

0.018

0.6 + (0.3 + 0.1)
= 0.018

and therefore with PCR6, one gets f nally the following
redistributions to A and B:

{
xPCR6
A = 0.6 · 0.018 = 0.0108

xPCR6
B = (0.3 + 0.1) · 0.018 = 0.0072

In [2], Vol. 2, Chap. 2, Martin and Osswald have proposed
PCR6 based on intuitive considerations and the authors have
shown through simulations that PCR6 is more stable than
PCR5 in term of decision for combining s > 2 sources of
evidence. Based on these results and the relative ”simplicity”
of implementation of PCR6 over PCR5, PCR6 has been
considered more interesting/eff cient than PCR5 for combining
3 (or more) sources of evidences.

III. CONSISTENCY OF PCR6 WITH THE AVERAGING RULE

In this section we show why we also consider PCR6
as better than PCR5 for combining bba’s. But here, our
argumentation is not based on particular simulation results
and decision-making as done by Martin and Osswald, but on
a theoretical analysis of the structure of PCR6 fusion rule
itself. In particular, we show the full consistency of PCR6 rule
with the averaging fusion rule used to empirically estimate
probabilities in random experiments. For doing this, it is
necessary to simplify the original PCR6 fusion formula (6).
Such simplif cation has already been proposed in [12] and the
PCR6 fusion rule can be in fact rewritten as

m
PCR6
1,2,...,s(X) = m1,2,...,s(X)+

s−1
∑

k=1

∑

Xi1
,Xi2

,...,Xik
∈GΘ\X

(
⋂k

j=1 Xij
)∩X=∅

∑

(i1,i2,...,ik)∈Ps({1,...,s})

[mi1(X) +mi2(X) + . . .+mik (X)]·

·
mi1(X) . . .mik (X)mik+1(Xik+1) . . .mis(Xis)

mi1(X) + . . .+mik (X) +mik+1(Xik+1) + . . .+mis(Xis)
(9)

where Ps({1, . . . , s}) is the set of all permutations of
the elements {1, 2, . . . , s}. It should be observed that Xi1 ,
Xi2 ,. . .,Xis may be different from each other, or some of them
equal and others different, etc.

We wrote this PCR6 general formula (9) in the style of
PCR5, different from Arnaud Martin & Christophe Oswald’s
notations, but actually doing the same thing. In order not
to complicate the formula of PCR6, we did not use more
summations or products after the third Sigma.

We now are able to establish the consistency of general
PCR6 formula with the Averaging fusion rule for the case of
binary bba’s through the following theorem 1.
Theorem 1: When s ≥ 2 sources of evidences provide binary
bba’s on GΘ whose total conf icting mass is 1, then the PCR6
fusion rule coincides with the averaging fusion rule. Otherwise,
PCR6 and the averaging fusion rule provide in general different
results.
Proof 1: All s ≥ 2 bba’s are assumed binary, i.e. m(X) = 0
or 1 (two numerical values 0 and 1 only are allowed) for any
bba m(.) and for any set X in the focal elements. A focal
element in this case is an element X such that at least one of
the s binary sources assigns a mass equals to 1 to X . Let’s
suppose the focal elements are F1, F2,. . . , Fn.. Then the set
of bba’s to combine can be expressed as in the Table I. where

Table I. LIST OF BBA’S TO COMBINE.

bba’s \ Focal elem. F1 F2 . . . Fn

m1(.) ⋆ ⋆ . . . ⋆
m2(.) ⋆ ⋆ . . . ⋆

...
...

...
...

...
ms(.) ⋆ ⋆ . . . ⋆

• all ⋆ are 0’s or 1’s;
• on each row there is only a 1 (since the sum of

all masses of a bba is equal to 1) and all the other
elements are 0’s;
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• also each column has at least an 1 (since all elements
are focals; and if there was a column corresponding
for example to the set Fp having only 0’s, then it
would result that the set Fp is not focal, i.e. that all
m(Fp) = 0).

Using PCR6, we f rst need to apply the conjunctive rule
to all s sources, and the result is a sum of products of the
form m1(X1)m2(X2) . . .ms(Xs) where X1, X2,. . . ,Xs, are
the focal elements F1, F2,. . . ,Fn in various permutations, with
s ≥ n. If s > n some focal elements Xi are repeated in
the product m1(X1)m2(X2) . . .ms(Xs). But there is only one
product of the form m1(X1)m2(X2) . . .ms(Xs) = 1 which
is not equal to zero, i.e. that product which has each factor
equals to ”1” (i.e. the product that collects from each row the
existing single 1). Since the total conf icting mass is equal to
1, it means that this product represents the total conf ict. In
this case the PCR6 formula (9) becomes

m
PCR6
1,2,...,s(X) = 0+

s−1
∑

k=1

∑

Xi1
,Xi2

,...,Xik
∈GΘ\X

(
⋂k

j=1 Xij
)∩X=∅

∑

(i1,i2,...,ik)∈Ps({1,...,s})

[1 + 1 + . . .+ 1] ·
1 · 1 · . . . · 1 · 1 · . . . · 1

1 + 1 + . . .+ 1 + 1 + . . .+ 1
(10)

The previous expression can be rewritten as

m
PCR6
1,2,...,s(X) =

s−1
∑

k=1

∑

Xi1
,Xi2

,...,Xik
∈GΘ\X

(
⋂k

j=1 Xij
)∩X=∅

∑

(i1,i2,...,ik)
∈Ps({1,...,s})

k ·
1

s

which is equal to k/s since there is only one possible non-
null product of the form m1(X1)m2(X2) . . .ms(Xs), and all
other products are equal to zero. Therefore, we f nally get:

mPCR6
1,2,...,s(X) =

k

s
(11)

where ”k” is the number of bba’s m(.) which give m(X) = 1.
Therefore PCR6 in this case reduces to the average of masses,
which completes the proof 1 of the theorem.

Proof 2: A second method of proving this theorem can also be
done as follows. Let m1(.), m2(.), . . . , ms(.), for s ≥ 3, be
bba’s of the sources of information to combine and denote F =
{F1, F2, . . . , Fn}, for n ≥ 2, the set of all focal elements. All
sources give only binary masses, i.e. mk(Fl) = 0 or mk(Fl) =
1 for any k ∈ {1, 2, . . . , s} and any l ∈ {1, 2, . . . , n}. Since
each Fi, 1 ≤ i ≤ n, is a focal element, there exists at least
a bba mio(.) such that mio(Fi) = 1, otherwise (i.e. if all
sources gave the mass of Fi be equal to zero) Fi would not be
focal. Without reducing the generality of the theorem, we can
regroup the masses (since we combine all of them at once, so
their order doesn’t matter), as in Table II. Of course i1 + i2 +
. . .+ in = s, since the s bba’s are the same but reordered, and
i1 ≥ 1, i2 ≥ 1, . . . , and in ≥ 1. The total conf icting mass
according to the theorem hypothesis m1,2,...,s(∅) is 1. With
the PCR6 fusion rule we transfer the conf ict mass back to
focal elements F1, F2, . . .Fn respectively according to PCR

Table II. LIST OF REORDERED BINARY BBA’S.

bba’s \ Focal elem. F1 F2 . . . Fn ∅
mr1(.) 1 0 . . . 0 0
mr2(.) 1 0 . . . 0 0

...
...

...
...

...
...

mri1
(.) 1 0 . . . 0 0

ms1(.) 0 1 . . . 0 0
ms2(.) 0 1 . . . 0 0

...
...

...
...

...
...

msi2
(.) 0 1 . . . 0 0

...
...

...
...

...
...

mu1 (.) 0 0 . . . 1 0
mu2 (.) 0 0 . . . 1 0

...
...

...
...

...
...

muin
(.) 0 0 . . . 1 0

m1,2,...,s(.) 0 0 . . . 0 1

principle such that:

xF1

1 + 1 + . . .+ 1
︸ ︷︷ ︸

i1 times

=
xF2

1 + 1 + . . .+ 1
︸ ︷︷ ︸

i2 times

= . . .

=
xFn

1 + 1 + . . .+ 1
︸ ︷︷ ︸

in times

=
m1,2,...,s(∅)

i1 + i2 + . . .+ in
=

1

s

whence xF1 = i1/s, xF2 = i2/s, . . . , xFn
= in/s.

Therefore mPCR6
1,2,...,s(F1) = i1/s, mPCR6

1,2,...,s(F2) = i2/s,
. . .mPCR6

1,2,...,s(Fn) = in/s. But averaging the masses m1(.),
m2(.), . . . , ms(.) is equivalent to averaging each column of
F1, F2, . . .Fn. Hence average of column F1 is i1/s, average
of column F2 is i2/s, . . . , average of column Fn is in/s.
Therefore, in case of binary bba’s which are globally totally
conf icting, PCR6 rule is equal to the Averaging Rule. This
completes the proof 2 of the theorem.

Note that using PCR5 fusion rule, we also transfer the
total conf icting mass that is equal to 1 to F1, F2, . . . ,
Fn respectively, but we replace the addition ”+” with the
multiplication ”·” in the above proportionalizations:

xF1

1 · 1 · . . . · 1
︸ ︷︷ ︸

i1 times

=
xF2

1 · 1 · . . . · 1
︸ ︷︷ ︸

i2 times

= . . . =
xFn

1 · 1 · . . . · 1
︸ ︷︷ ︸

in times

=
m1,2,...,s(∅)

1 + 1 + . . . + 1
︸ ︷︷ ︸

n times

=
1

n

so that xF1 = 1/n, xF2 = 1/n, . . . , xFn
= 1/n and therefore

mPCR5
1,2,...,s(F1) = mPCR5

1,2,...,s(F2) = . . . = mPCR5
1,2,...,s(Fn) = 1/n

Corollary 1: When s ≥ 2 sources of evidences provide binary
bba’s on GΘ with at least two focal elements, and all focal
elements are disjoint two by two, then PCR6 fusion rule
coincides with the Averaging Rule.

This Corollary is true because if all focal elements are
disjoint two by two then the total conf ict is equal to 1.

Examples 2: where PCR6 rule equals the Averaging Rule.

Let’s consider the frame Θ = {A,B} with Shafer’s model
and the bba’s to combine as given in Table III.
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Table III. LIST OF BBA’S TO COMBINE FOR EXAMPLE 2.

bba’s \ Focal elem. A B A ∪ B A ∩ B = ∅
m1(.) 1 0 0
m2(.) 0 1 0
m3(.) 0 0 1

m1,2,3(.) 0 0 0 1

Since we have binary masses, and their total conf ict is 1, we
expect getting the same result for PCR6 and the Averaging
Rule according to our Theorem 1. The PCR principle gives us

xA

1
=

yB
1

=
zA∪B

1
=

m1,2,3(∅)

1 + 1 + 1
=

1

3

Hence xA = yB = zA∪B = 1
3 , so that

m
PCR6
1,2,3 (A) = m1,2,3(A) + xA = 0 +

1

3
=

1

3

m
PCR6
1,2,3 (B) = m1,2,3(B) + yB = 0 +

1

3
=

1

3

m
PCR6
1,2,3 (A ∪ B) = m1,2,3(A ∪ B) + zA∪B = 0 +

1

3
=

1

3

Interestingly, PCR5 gives the same result as PCR6 in this case
since one makes the same proportionalizations as for PCR6.
Using the Averaging Rule (2), we get

m
Average
1,2,3 (A) =

1

3
· (1 + 0 + 0) =

1

3

m
Average
1,2,3 (B) =

1

3
· (0 + 1 + 0) =

1

3

m
Average
1,2,3 (A ∪B) =

1

3
· (0 + 0 + 1) =

1

3

So we see that PCR6 rule equals the Averaging Rule
as proved in the theorem because the bba’s are binary
and the intersection of all focal elements is empty since
A ∩ B ∩ (A ∪ B) = ∅ ∩ (A ∪ B) = ∅ because A ∩ B = ∅
since Shafer’s model has been assumed for the frame Θ.

Examples 3: where PCR6 differs from the Averaging Rule.

Let’s consider the frame Θ = {A,B,C} with Shafer’s
model and the bba’s to combine as given in Table IV.

Table IV. LIST OF BBA’S TO COMBINE FOR EXAMPLE 3.

bba’s \ Focal elem. A A ∪ B A ∪B ∪ C ∅
m1(.) 1 0 0
m2(.) 0 1 0
m3(.) 0 0 1

m1,2,3(.) 1 0 0

Clearly, in this case the focal elements are nested and the
condition on emptiness of intersection of all focal elements is
not satisf ed because one has A ∩ (A ∪ B) ∩ (A ∪ B ∪ C) =
A 6= ∅, so that the theorem cannot be applied in such case. The
total conf icting mass is not 1. One can verify in such example
that PCR6 rule differs from the Averaging Rule because one
gets

m
PCR6
1,2,3 (A) = m1,2,3(A) = 1

m
PCR6
1,2,3 (A ∪ B) = m1,2,3(A ∪B) = 0

m
PCR6
1,2,3 (A ∪ B ∪ C) = m1,2,3(A ∪B ∪ C) = 0

since there is no conf icting mass to redistribute to apply PCR
principle, whereas the averaging fusion rule gives

m
Average
1,2,3 (A) =

1

3
· (1 + 0 + 0) =

1

3

m
Average
1,2,3 (A ∪ B) =

1

3
· (0 + 1 + 0) =

1

3

m
Average
1,2,3 (A ∪ B ∪ C) =

1

3
· (0 + 0 + 1) =

1

3

Examples 4 (Bayesian non-binary bba’s): where PCR6
differs from the Averaging Rule.

Let’s consider the frame Θ = {A,B} with Shafer’s model
and the Bayesian bba’s to combine as given in Table V.

Table V. LIST OF BBA’S TO COMBINE FOR EXAMPLE 4.

bba’s \ Focal elem. A B A ∩ B = ∅
m1(.) 0.2 0.8 0
m2(.) 0.6 0.4 0
m3(.) 0.7 0.3 0

m1,2,3(.) 0.084 0.096 0.820

The total conf icting mass m1,2,3(A∩B = ∅) = 0.82 = 1−
m1(A)m2(A)m3(A) − m1(B)m2(B)m3(B) equals the sum
of partial conf icting masses that will be redistributed through
PCR principle in PCR6

m1,2,3(A ∩B = ∅) = m1(A)m2(B)m3(B)
︸ ︷︷ ︸

0.024

+m2(A)m1(B)m3(B)
︸ ︷︷ ︸

0.144

+m3(A)m1(B)m2(B)
︸ ︷︷ ︸

0.224

+m1(B)m2(A)m3(A)
︸ ︷︷ ︸

0.336

+m2(B)m1(A)m3(A)
︸ ︷︷ ︸

0.056

+m3(B)m1(A)m2(A)
︸ ︷︷ ︸

0.036

= 0.82

Applying PCR principle for each of these six partial conf icts,
one gets:

• for m1(A)m2(B)m3(B) = 0.2 · 0.4 · 0.3 = 0.024

x1(A)

0.2
=

y1(B)

0.4 + 0.3
=

0.024

0.2 + 0.3 + 0.4

whence x1(A) ≈ 0.005333 and y1(B) ≈ 0.018667.

• for m2(A)m1(B)m3(B) = 0.6 · 0.8 · 0.3 = 0.144

x2(A)

0.6
=

y2(B)

0.8 + 0.3
=

0.144

0.6 + 0.8 + 0.3

whence x2(A) ≈ 0.050824 and y2(B) ≈ 0.093176.

• for m3(A)m1(B)m2(B) = 0.7 · 0.8 · 0.4 = 0.224

x3(A)

0.7
=

y3(B)

0.8 + 0.4
=

0.224

0.7 + 0.8 + 0.4

whence x3(A) ≈ 0.082526 and y3(B) ≈ 0.141474.

• for m1(B)m2(A)m3(A) = 0.8 · 0.6 · 0.7 = 0.336

x4(A)

0.6 + 0.7
=

y4(B)

0.8
=

0.336

0.8 + 0.6 + 0.7

whence x4(A) ≈ 0.208000 and y4(B) ≈ 0.128000.
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• for m2(B)m1(A)m3(A) = 0.4 · 0.2 · 0.7 = 0.056

x5(A)

0.2 + 0.7
=

y5(B)

0.4
=

0.056

0.4 + 0.2 + 0.7

whence x5(A) ≈ 0.038769 and y5(B) ≈ 0.017231.

• for m3(B)m1(A)m2(A) = 0.3 · 0.2 · 0.6 = 0.036

x6(A)

0.2 + 0.6
=

y6(B)

0.3
=

0.036

0.3 + 0.2 + 0.6

whence x6(A) ≈ 0.026182 and y6(B) ≈ 0.009818.

Therefore, with PCR6 one f nally gets

mPCR6
1,2,3 (A) = 0.084 +

6∑

i=1

xi(A) = 0.495634

mPCR6
1,2,3 (B) = 0.096 +

6∑

i=1

yi(A) = 0.504366

whereas the Averaging Rule (2) will give us

mAverage
1,2,3 (A) =

1

3
· (0.2 + 0.6 + 0.7) =

1.5

3
= 0.5

mAverage
1,2,3 (B) =

1

3
· (0.8 + 0.4 + 0.3) =

1.5

3
= 0.5

In this example, the intersection of focal elements is empty
but the bba’s to combine are not binary. Therefore the total
conf ict between sources is not total and the theorem doesn’t
apply and so PCR6 results differ from the Averaging Rule.

It however can happen that in some very particular sym-
metric cases PCR6 coincides with the Averaging Rule. For
example, if we consider the bba’s as given in the Table VI.
In such case the opinion of source #1 totally balances opinion
of source #3, and the opinion of source #2 cannot support A
more than B (and reciprocally), so that the fusion problem
is totally symmetrical. In this example, it is expected that the
f nal fusion result should commit an equal mass of belief to A
and to B. And indeed, it can be easily verif ed that one gets
in such case

mPCR6
1,2,3 (A) = mAverage

1,2,3 (A) = 0.5

mPCR6
1,2,3 (B) = mAverage

1,2,3 (B) = 0.5

which makes perfectly sense. Note that the Averaging Rule
provides same result on example 4 which is somehow ques-
tionable because example 4 doesn’t present an inherent sym-
metrical structure. In our opinion PCR6 presents the advantage
to respond more adequately to the change of inherent internal
structure (asymmetry) of bba’s to combine, which is not well
captured by the simple averaging fusion rule.

Table VI. A BAYESIAN NON-BINARY SYMMETRIC EXAMPLE.

bba’s \ Focal elem. A B A ∩ B = ∅
m1(.) 0.2 0.8 0
m2(.) 0.5 0.5 0
m3(.) 0.8 0.2 0

m1,2,3(.) 0.08 0.08 0.84

IV. APPLICATION TO PROBABILITY ESTIMATION

Let’s review a simple coin tossing random experiment.
When we f ip a coin [13], there are two possible outcomes. The
coin could land showing a head (H) or a tail (T). The list of all
possible outcomes is called the sample space and correspond
to the frame Θ = {H,T }. There exist many interpretations
of probability [14] that are out of the scope of this paper. We
focus here on the estimation of the probability measure P (H)
of a given coin (biased or not) based on n outcomes of a coin
tossing experiment. The long-run frequentist interpretation of
probability [15] considers that the probability of an event
A is its relative frequency of occurrence over time after
repeating the experiment a large number of times under similar
circumstances, that is

P (A) = lim
n→∞

n(A)

n
(12)

where n(A) denotes the number of occurrences of an event
A in n > 0 trials. In practice however, we usually estimate
the probability of an event A based only on a limited number
of data (observations) that are available, and so we estimate
the idealistic P (A) def ned in (12), by classical Laplace’s
probability def nition

P̂ (A|n(A), n) =
n(A)

n
(13)

Naturally, P̂ (A) ≥ 0 because n(A) ≥ 0 and n > 0, and
P̂ (A) ≤ 1 because we cannot get n(A) > n in a series of
n trials. P (A) + P (Ā) = 1 because n(A)

n + n(Ā)
n = n(A)

n +
n−n(A)

n = 1 where Ā is the complement of A in the sample
space.

It is interesting to note that the classical estimation of the
probability measure given by (13) corresponds in fact to the
simple averaging fusion rule of distinct pieces of evidence
represented by binary masses. For example, let’s take a coin
and f ip it n = 8 times and assume for instance that we observe
the following series of outcomes {o1 = H, o2 = H, o3 =
T, o4 = H, o5 = T, o6 = H, o7 = H, o8 = T }, so that
n(H) = 5 and n(T ) = 3. Then these observations can be
associated with distinct sources of evidences providing to the
following basic (binary) belief assignments:

Table VII. OUTCOMES OF A COIN TOSSING EXPERIMENT.

bba’s \ Focal elem. H T
m1(.) 1 0
m2(.) 1 0
m3(.) 0 1
m4(.) 1 0
m5(.) 0 1
m6(.) 1 0
m7(.) 1 0
m8(.) 0 1

It is clear that the probability estimate in (13) equals the
averaging fusion rule (2) and in such example because

P̂ (H |{o1, o2, . . . , o8}) =
n(H)

n
=

5

8
by eq. (13)

=
1

8
(1 + 1 + 0 + 1 + 0 + 1 + 1 + 0)

= mAverage
1,2,...,8 (H) by eq. (2)
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P̂ (T |{o1, o2, . . . , o8}) =
n(T )

n
=

3

8
by eq. (13)

=
1

8
(0 + 0 + 1 + 0 + 1 + 0 + 0 + 1)

= mAverage
1,2,...,8 (T ) by eq. (2)

Because all the bba’s to combine here are binary and are in
total conf ict, our theorem 1 of Section III applies, and PCR6
fusion rule in this case coincides with the averaging fusion
rule. Therefore we can use PCR6 to estimate the probabilities
that the coin will land on H or T at the next toss given the
series of observations. More precisely,
{
mPCR6

1,2,...,8(H) = mAverage
1,2,...,8 (H) = P̂ (H |{o1, o2, . . . , o8})

mPCR6
1,2,...,8(T ) = mAverage

1,2,...,8 (T ) = P̂ (T |{o1, o2, . . . , o8})

We must insist on the fact that Dempster-Shafer (DS) rule
of combination (4) cannot be used at all in such very simple
case to estimate correctly the probability measure because
DS rule doesn’t work (because of division by zero) in total
conf icting situations. PCR5 rule can be applied to combine
these 8 bba’s but is unable to provide a consistent result with
the classical probability estimates because one will get

xH

1 · 1 · 1 · 1 · 1
=

yT

1 · 1 · 1
=

m1,2,...,8(∅)

(1 · 1 · 1 · 1 · 1) + (1 · 1 · 1)
=

1

1 + 1
= 0.5

and therefore the PCR5 fusion result is
{
mPCR5

1,2,...,8(H) = xH = 0.5 6= (mPCR6
1,2,...,8(H) = 5/8)

mPCR5
1,2,...,8(T ) = yT = 0.5 6= (mPCR6

1,2,...,8(T ) = 3/8)

Remark: The PCR6 fusion result is valid if and only if
PCR6 rule is applied globally, and not sequentially. If PCR6
is sequentially applied, it becomes equivalent with PCR5
sequentially applied and it will generate incorrect results for
combining s > 2 sources of evidence. Because of the ability
of PCR6 to estimate frequentist probabilities in a random
experiment, we strongly recommend PCR6 rather than PCR5
as soon as s ≥ 2 bba’s have to be combined altogether.

V. CONCLUSIONS AND CHALLENGE

In this paper, we have proved that PCR6 fusion rule
coincides with the Averaging Rule when the bba’s to combine
are binary and in total conf ict. Because of such nice property,
PCR6 is able to provide a frequentist probability measure
of any event occurring in a random experiment, contrariwise
to other fusion rules like DS rule, PCR5 rule, etc. Except
the Averaging Rule of course since it is the basis of the
frequentist probability interpretation. In a more general context
with non-binary bba’s, PCR6 is quite complicate to apply to
combine globally s > 2 sources of evidences, and a general
recursive formula of PCR6 would be very convenient. It can
be mathematically reformulated as follows: Let R be a fusion
rule and assume we have s sources that provide m1, m2, . . . ,
ms−1, ms respectively on a fusion space GΘ. Find a function
(or an operator) T such that: T (R(m1,m2, . . .ms−1),ms) =
R(m1,m2, . . . ,ms−1,ms), or by simplifying the notations
T (Rs−1,ms) = Rs, where Ri means the fusion rule R applied
to i masses all together. For example, if R equals the Averaging
Rule, the function T is def ned according to the relation (3)
by T (Rs−1,ms) =

s−1
s Rs−1 +

1
sms = Rs, and if R equals

DS rule one has T (Rs−1,ms) = DS(Rs−1,ms) because of
the associativity of DS rule. What is the T operator associated
with PCR6? Such very important open challenging question is
left for future research works.
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Examples where the Conjunctive and Dempster’s 
Rules are Insensitive 

Florentin Smarandache 
Jean Dezert 

Valeri Kroumov 

Abstract—In this paper we present several counter-examples 
to the Conjunctive rule and to Dempster rule of combinations in 
information fusion. 

Keywords— conjunctive rule, Dempster rule, DSmT, counter-
examples to Conjunctive rule, counter-examples to Dempster rule, 
information fusion 

I. INTRODUCTION

In Counter-Examples to Dempster’s Rule of Combination 
{Ch. 5 of Advances and Applications to DSmT on Information 
Fusion, Vol. I, pp. 105-121, 2004} [1], J. Dezert, F. 
Smarandache, and M. Khoshnevisan have presented several 
classes of fusion problems which could not be directly 
approached by the classical mathematical theory of evidence, 
also known as Dempster-Shafer Theory (DST), either because 
Shafer’s model for the frame of discernment was impossible to 
obtain, or just because Dempster’s rule of combination failed 
to provide coherent results (or no result at all). We have 
showed and discussed the potentiality of the DSmT combined 
with its classical (or hybrid) rule of combination to attack 
these infinite classes of fusion problems. 
We have given general and concrete counter-examples for 
Bayesian and non-Bayesian cases. 

In this article we construct new classes where both the 
conjunctive and Dempster’s rule are insensitive. 

II. DEZERT-TCHAMOVA COUNTER-EXAMPLE

 In [2], J. Dezert and A. Tchamova have introduced for the 
first time the following counter-example with some 
generalizations. This first type of example has then been 
discussed in details in [3,4] to question the validity of 
foundations of Dempster-Shafer Theory (DST). In the next 
sections of this short paper, we provide more counter-examples 
extending this idea. Let the frame of discernment  = {A, B, 
C}, under Shafer’s model (i.e. all intersections are empty), and 
m1(.) and m2(.) be two independent sources of information that 
give the below masses: 

Focal Elements A C A B A  B  C 

m1 a 0 1-a 0 

m2 0 1-b1-b2 b1 b2 

Table 1 

where the parameters a, b1, b2 [0,1], and b1+b2 ≤ 1. 

Applying the conjunctive rule, in order to combine 
m1m2 = m12, one gets:

m12(A) = a(b1+b2)  (1) 

m12(C) = 0       (2) 

m12(A B) = (1-a)(b1+b2)  (3) 

m12(A BC) = 0            (4) 

and the conflicting mass  

m12( ) = 1-b1-b2 = K12.             (5) 

After normalizing by diving by 1-K12 = b1+b2 one gets 
Demspter’s rule result mDS(.): 

12 1 2
1

12 1 2

12 1 2
1

12 1 2

( ) ( )( ) ( )
1

( ) (1 )( )( ) 1 ( )
1

DS

DS

m A a b bm A a m A
K b b
m A B a b bm A B a m A B

K b b


   



  
      



(6) 

Counter-intuitively after combining two sources of 
information, m1(.) and m2(.), with Dempster’s rule, the result 
does not depend at all on m2(.). Therefore Dempster’s rule is 
insensitive to m2(.) no matter what the parameters a, b1, b2 are 
equal to. 

Originally published as Smarandache F., Kroumov V., Dezert J., Examples 
where the conjunctive and Dempster's rules are insensitive, Proc. of 2013 

International Conference on Advanced Mechatronic Systems, Luoyang, China, 
Sept. 25-27, 2013, and reprinted with permission.
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III. FUSION SPACE

In order to generalize this counter-example, let’s start by 
defining the fusion space. 

Let  be a frame of discernment formed by n singletons Ai, 
defined as:  

     1 2{ , ,..., }, 2n n     ,             (7)     

and its Super-Power Set (or fusion space): 
    ( , , ,C)S                                        (8)                      

which means the set   closed under union  , intersection 
 , and respectively complementC.

IV. ANOTHER CLASS OF COUNTER-EXAMPLES TO 
DEMPSTER’S RULE 

Let A1, A2, …, Ap 
S \ {It,  }, for p ≥ 1, such that

Ai ∩ Aj =   for i≠j, where It is the total ignorance 
(A1 A2… An), and   is the empty set. 
Therefore each Ai, for i{1, 2, …, p}, can be either a singleton, 
or a partial ignorance (union of singletons), or an intersection 
of singletons, or any element from the Super-Power Set 

S (except the total ignorance or the empty set), i.e. a general 
element in the set theory that is formed by the operators 
, ,C.
Let’s consider two sources m1(.) and m2(.) defined on S : 

        A1  A2  … Ap It 
m1        a1       a2   … ap   0 
m2 b         b        … b    1- p∙b 
where of course all ai [0, 1] and a1 + a2 + … + ap = 1, 
also b and 1- p∙b [0, 1].      
m1(.) can be Bayesian or non-Bayesian depending on the way 
we choose the focal elements      A1, A2, …, Ap. 
We can make sure m2(.) is not the uniform basic believe 
assignment by setting b ≠ 1- p∙b. 
Let’s use the conjunctive rule for m1(.) and m2(.): 
m12(Ai) = m1(Ai)m2(Ai) + [m1(Ai)m2(It) + m1(It)m2(Ai)] = ai∙b + 
[ai∙(1-p∙b) + 0∙b] = ai∙(1-p∙b+b), 
for all i  {1, 2, …, p}.                                                      
(9) 
It is interesting to finding out, according to the Conjunctive 
Rule, that the conflict of the above two sources does not 
depend on m1(.) at all, but only on m2(.), which is abnormal: 
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Therefore even the feasibility of the Conjunctive Rule is 
questioned. 
When we normalize, as in Dempster’s Rule, by dividing all 
m12(.) masses by the common factor 1-K = 1-p∙b+b, we 

actually get:  m1m2 = m1 !  So, m2(.) makes no impact on
the fusion result according to Dempster’s Rule, which is not 
normal. 

V. MORE GENERAL CLASS OF COUNTER-EXAMPLES TO 
DEMPSTER’S RULE 

Let’s consider r+1 sources: the previous m1(.) and 
respectively various versions of the previous m2(.): 

        A1  A2   … Ap It 
m1        a1       a2   … ap   0 
m21        b1         b1     … b1   1- p∙b1 
m22        b2         b2     … b2  1- p∙b2 
. 
. 
. 
m2r        br         br   … br    1- p∙br 
where of course all ai [0, 1] and a1 + a2 + … + ap = 1, 

also all bj and 1- p∙bj [0, 1], for j{1, 2, …, r}.         
(11) 

Now, if we combine m1  m21  m22  …  m2r = m1.
Therefore all r sources m21(.), m22(.), …, m2r(.) have no impact 
on the fusion result! 
Interesting particular examples can be found in this case. 

VI. SHORT GENERALIZATION OF DEZERT-TCHAMOVA 
COUNTER-EXAMPLE 

Let’s consider four focal elements A, B1, B2, B3, such that 
A Bi =  for i {1,2,3}, and B1, B2, B3 are nested, i.e. B1 

B2 B3, and two masses, where of course  
b1+b2 = 1 and c1+c2+c3 = 1, and all b1, b2, c1, c2, c3   [0, 1]: 

        A             B1              B2                 B3 
m1       0         b1              b2      0 
m2      c1              0    c2               c3 

------------------------------------------------------ 
 m12     0        b1(1-c1)      b2(1-c1)     0    

 and the conflict K12 = c1(b1+b2)=c1 

mD      0         b1                  b2              0 

a) This generalization permits the usefulness of hybrid
models, for example one may have the frame of
discernment of exclusive elements {A, B, C}, where
B1 = BC, B2 =B, and B3 = BC.

b) Other interesting particular cases may be derived
from this short generalization.

VII. PARTICULAR COUNTER-EXAMPLE TO THE CONJUNCTIVE
RULE AND DEMPSTER’S RULE 
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For example let  = {A, B, C}, in Shafer's model. We
show that the conflicts between sources are not correctly 
reflected by the conjunctive rule, and that a certain non-
vacuous non-uniform source is ignored by Dempster’s rule. 

Let's consider the masses: 
 A        B   C    A BC 

m1    1  0    0  0   (the most specific mass) 
m2    1/3    1/3    1/3     0  (very unspecific mass) 
m3  0.6  0.4   0  0  (mass between the very 
unspecific and the most specific masses)   
m0  0.2  0.2  0.2   0.4    (not vacuous mass, not 
uniform mass) 

Then the conflict K10 = 0.4 between m1(.) and m0(.) is the same 
as the conflict K20 between m2(.) and m0(.), and similarly the 
same as the conflict K30 between m3(.) and m0(.), 
which is not normal, since m1(.) is the most specific mass 
while m2(.) is the most unspecific mass. 

Let's check other thing combining two sources using 
Dempster’s rule: 
m1mo=m1, m2mo=m2, m3m0=m3,
which is not normal. 

In order to get the "normal behavior" we combine m1(.) and 
m0(.) with PCR5, and similarly for others: m2(.) combined 
with m0(.), and m3(.) combined with mo(.). 

In order to know what should have been the "normal behavior" 
for the conflict (the initial conflict was K10 = 0.4), let's make a 
small change to m0(.) as below: 

 A       B   C    A BC 
m1    1  0    0  0   (the most specific mass) 
m2    1/3    1/3    1/3    0      (very unspecific mass) 
m3  0.6  0.4   0  0      (mass between the very 
unspecific and the most specific masses)   
m0  0.3  0.2  0.1   0.4    (not vacuous mass, not 
uniform mass) 

K10 = 0.30 
K20 = 0.40 
K30 = 0.34 

Now, the conflicts are different. 

VIII. CONCLUSION

We showed in this paper that: first the conflict was the 
same, no matter what was one of the sources (and it is 
abnormal that a non-vacuous non-uniform source has no 
impact on the conflict), and second that the result using 
Dempster’s rule is not all affected by a non-vacuous non-
uniform source of information. 
Normally, the most specific mass (bba) should dominate the 
fusion result.  
Therefore, the conflicts between sources are not correctly 
reflected by the conjunctive rule, and certain non-vacuous 
non-uniform sources are ignored by Dempster’s rule in the 
fusion process. 
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Abstract — The Uncertainty Representation and Reasoning 
Evaluation Framework (URREF) includes an ontology that 
represents concepts and criteria needed to evaluate the uncertainty 
management aspects of a fusion system. The URREF ontology defines 
self-confidence as a measure of the information credibility as 
evaluated by the sensor itself. The concept of confidence, which is not 
explicitly defined in the ontology at URREF, has been extensively 
explored in the literature about evaluation in information fusion 
systems (IFS). In this paper, we provide a discussion on confidence 
as it relates to the evaluation of IFS, and compare it with the existing 
concepts in the URREF ontology. Our goal is two-fold, since we 
address both the distinctions between confidence and self-confidence, 
as well as the implications of these differences when evaluating the 
impact of uncertainty to the decision-making processes supported byt 
the IFS. We illustrate the discussion with an example of decision 
making that involves signal detection theory, confusion matrix fusion, 
subjective logic, and proportional conflict redistribution. We argue 
that uncertainty can be minimized through confidence (information 
evidence) and self-confidence (source agent) processing, The results 
here seek to enrich the ongoing discussion at the ISIF’s Evaluation of 
Techniques for Uncertainty Representation Working Group 
(ETURWG) on self-confidence and trust in information fusion 
systems design. 

Keywords: Self-Confidence, Confidence, Trust, Level 5 Fusion, High-
Level Information Fusion , PCR5/6, Subjective Logic  

I. INTRODUCTION

Information fusion aims to achieve uncertainty reduction 
through combining information from multiple complementary 
sources. The International Society of Information Fusion 
(ISIF) Evaluation of Techniques of Uncertainty Reasoning 
Working Group (ETURWG) was chartered to address the 
problem of evaluating fusion systems’ approaches to 
representing and reasoning with uncertainty. The working 
group developed the Uncertainty Representation and 
Reasoning Evaluation Framework (URREF) [1]. Discussions 
during 2013 explored the notions of credibility and reliability 
[2]. One recent issue is the difference between confidence and 
self-confidence as related to the data, source, and processing. 
While agreement is not complete among the ETURWG, this 
paper seeks to provide one possible approach to relate the 
mathematical, semantic, and theoretical challenges of 
confidence analysis. 

The key position of the paper is to analyze the practical 
differences in evaluating the two concepts. More specifically, 
self-confidence is mostly relevant to HUMINT, which makes 
its evaluation a primarily subjective; whereas confidence can 

be easily traced to machine data analysis, allowing for the use 
of objective metrics in its evaluation. That is, a machine can 
process large amounts of data to represent the state of the 
world, and the evaluation of how well uncertainty is captured 
in these processes can be traced to various objective metrics. 
In contrast, for a human to assess its own confidence on the 
credibility of his “data collection process” (i.e. self-
confidence), he or she has to make a judgment on limited 
choices. Objective assessment is determined from the 
credibility of the reports, processing, and decisions. Typical 
approaches include artificial intelligence (AI) methods (e.g., 
Neural Networks), pattern recognition (e.g., Bayesian, 
wavelets), and automatic target exploitation (i.e., over sensor, 
target, and environment operating conditions [3]). Subjective 
analysis is a report quality opinion that factors in analysis 
(e.g., completeness; accuracy, and veracity), knowledge (e.g., 
representation, uncertainty, and reasoning), and judgment 
(e.g., intuition, experience, decision making) [4]. In terms of 
IFS support for decision-making, numerous methods have 
been explored, mainly from Bayesian reasoning, Dempster-
Shafer Theory [5], Subjective Logic [6], DSmT [7], fuzzy 
logic and possibility theory; although it also includes research 
on approximating belief functions to subjective probability 
measures (BetP [8], DSmP [9]). 

Figure 1 provides a framework for our discussion. The world 
contains some truth T, of which data is provided from different 
sources (A, B). Source A analysis goes to a machine agent for 
information fusion processing while source B goes to a human 
agent. Either the machine or the human can generate beliefs 
about the state of the world (either using qualitative or 
quantitative semantics). The combination of A and B is a 
subject of Level 5 Fusion (user refinement) [10, 11].   

Figure 1 – Information Fusion System assessment of confidence (machine) 
and self-confidence (sensor or human agent). 

Originally published as Blasch E., Josang A., Dezert J., Costa P., Jousselme A.-L., URREF Self-
Confidence in Information Fusion Trust, in Proc. of Fusion 2014 Int Conf onInformation 

Fusion, Salamanca, Spain, July 7-10, 2014, and reprinted with permission.
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On one hand, confidence is typically related to machine 
processing such as signal detection theory where self-
confidence is associated with sensors (and humans) assessing 
their own capability. On the other hand, the manipulation of 
the data requires understanding of the source, and self-
confidence is applicable for the cases in which the user can 
provide a self-assessment on how confident he is on its data. It 
is important to emphasize that are not dealing (at least not 
directly) with information veracity: even if the sensor (e.g., a 
human reporting on an event or providing assessment on a 
situation) considers the information as possible, and he trusts 
it, it could be false at the end (e.g., even in summer time we 
can have a cloudy day). That is, self-confidence assesses how 
much the author trust the information, but not necessarily that 
this information is false or true [1]. For this paper, we take the 
URREF ontology definition of self-confidence as implied in 
Figure 1. The rationale for this choice is that self-confidence 
and uncertainty are typically associated with humans whereas 
confidence has been typically used in signal detection. Fusion 
of beliefs ultimately relates to states of the world with a 
reported confidence that can be compared to a truth state. 
Debating on the overlaps in terminology would be welcomed 
to clarify these positions for the ETURWG and the 
information community as a whole.  

From Figure 1, we note the importance of confidence as 
related from a decision to the estimated states. Self-confidence 
is within the human agent assessing their understanding (e.g. 
experience) that can also be combined with the computer 
agent. The issue at hand for a user is whether or not the 
machine analysis (or their own) state decision represents 
reality. The notion of reality comes from the fact that 
currently, there are many technical products that perceive the 
world for the user (e.g., video) from which the user must map 
a mental model to a physical model of what is being 
represented. Some cases are easy such as video of cars moving 
on a road [12]; however, others are complex such as cyber 
networks [13]. The example used through the rest of the paper 
requires High-Level Information Fusion (HLIF) of target 
detection from a machine and human [14, 15]. 

In designing computer-aided detection machines, it is 
desirable to provide intelligence amplification (IA) [16] where 
Qualia motivates subjective analysis as a relation between the 
human consciousness/self-awareness to external stimuli. 
Qualia is the internal perception of the subjective aspect of the 
human’s perception of the stimuli. Knowing oneself can then 
be utilized to understand/evaluate the use of meaningful and 
relevant data in decision-making. The more that a sensor 
understands its Qualia [17], the better it will be in providing an 
assessment of its self-confidence in a report or on a decision. 
Qualia then encompasses an important component to 
uncertainty reasoning associated with subjective beliefs, trust, 
and self-confidence in decision making as a sense of intuition. 
Not surprisingly, these are natural discussion topics in Level 5 
fusion (‘user refinement’), which includes operator-machine 
collaboration [18], situation awareness/assessment displays 
[19], and trust [20]. In order to explore self-confidence on 
these issues, we need to look at the psychology literature on 
trust as it relates to self-confidence. 

From data available on the web (e.g., twitter, documents), 
intelligent users need the capability to rapidly monitor and 
analyze event information over massive amounts of 
unstructured textual data [21]. Text from human sources is 
subjected to opinions, beliefs, and misperceptions, generating 
various forms of self-assumed self-confidence. In contrast, 
computer sensed data can be stochastic or deterministic,  from 
which we have to coordinate the agent information. For 
example, with Gaussian observations generates stochastic 
probability analyses (e.g., Kalman Filter). However, structural 
information in the sensor models and sensitivities for a given 
state condition (which come from a deterministic ontology) 
could be used to improve the estimate [22]. This combination 
of both stochastic and deterministic decisions with uncertainty 
elements is usual in modeling and system deployment, and 
understanding its key aspects is a fertile area for producing 
better decision support from IFS. 

A related example from the analysis of uncertainty is evidence 
assessment from opinion makers. Dempster-Shafer theory has 
been used in connection with Bayesian analysis for 
decision making [5]. 
Likewise, Jøsang [23] demonstrated how subjective 
analysis within Dempster-Shafer theory could be used to 
determine the weight of opinions. Ontologies such as the 
one used in the URREF must be able to account for the 
uncertainty of data and to model it qualitatively, semantically, 
and quantitatively [24]. Metrics such as quality of service 
(QoS) and quality or information (IQ) are example of tools 
that can support and enhance  a modeling capability between 
ontologies and uncertainty analysis [25]. The rest of this 
paper includes Sect. II as an overview of self-confidence. 
Sect. III discusses the mathematical analysis.  Sect. IV 
highlights subjective logic for opinion making. Sect. V is an 
example and Sect. VI provides conclusions. 

II. URREF NOTIONS OF SELF-CONFIDENCE

The ETURWG has explored many topics as related to a 
systems analysis of information fusion, which includes 
characteristics of uncertainty with many unknowns [26, 27]. In 
this paper, we categorize the characteristics of uncertainty into 
four areas, shown in Table 1. Assuming that the flow of 
information first goes from an agent to evidence beliefs, and 
subsequently to fusion with knowledge representation, then 
these areas help understand the terminology. Note that the 
defined information fusion quality of service (QoS) 
parameters are in blue {timeliness, accuracy, throughput, and 
confidence}. These could also be measures of performance 
[28]. For measures of effectiveness [25], one needs to 
understand system robustness (e.g., consistency, completeness, 
correctness, integrity). Here we focus on the red terms as 
related to self-confidence and confidence.  

Knowledge representation in IFS [29, 30] includes applying 
decision-making semantics to support the structuring of 
extracted information. One example is the use of well defined 
concepts (e.g. confirmed, probable, possible, doubtful, and 
improbable) to support information extraction with natural 
language processing (NLP) algorithms. As related to 
confidence and self-confidence, there is the notion of integrity. 
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Integrity for human agents is associated with their subjective 
accountability and consistency in making judgments. Integrity 
for a machine could be objective in the faithful representation 
and validity on the data [31]. 

Algorithm performance focus on the information fusion 
method. URREF criteria for evaluating it relates to how the 
uncertainty model performs operations with information. An 
example of related metrics is to assess uncertainty reduction 
by weighting good data over bad given conflicting data.  

Evidence: From [2], we explored the weight of evidence 
(WOE) as a function of reliability, credibility, relevance, and 
completeness. In URREF, WOE assesses how well an 
uncertainty representation technique captures the impact of an 
input affecting the processing and output of the IFS.   

Source: Self-confidence, while yet to have a clear definition in 
the engineering literature, is typically associated with trust. 

A. Trust 
Closely associated with subjective analysis is trust [32]. Trust 
includes many attributes for man-machine systems such as 
dependability (machine), competence (user), and application 
[33]. Trust is then related to machine processing (confidence) 
and human assessment (self-confidence). Trust in automation 
is a key attribute associated with machine-driven solutions. 
Human trust in automation determines a user’s reliance on 
automation. In [32], they explored self-confidence defined as 
the user anticipatory (or post) performance with machines 
which impacts with trust in policy application.  

Measuring trust as related to uncertainty is an open topic [34]. 
As a focus of discussion, we have a machine agent and a 
human agent of which a measure of trust comes from the 
uncertainty associated between the man-machine interactions. 
Reliability trust could be between human agents of which 
subjective probability is useful [35]. Decision trust could be 
between human agents or between a human and a machine and 
takes into account the risk associated with situation-dependent 
attitudes, attention, and workload of a human agent. The 
distinction between reliability and decision trust is important 
as related to self-confidence and confidence. This can be seen 
in Table 2, which depicts the main aspects for each of the six 
potential interactions between sensors.. 

Table 2: Trust Aspects in Sensor Interactions
Human Others Machine

Human Self-confidence Reliability Trustworthy
Machine Trust Credibility Confidence

• Human: Individuals must provide introspection on their
own analysis and interaction with a machine. Here we 
distinguish between self-confidence and trust.  In this 
case, human agents must have self-confidence in 
themselves as well as trust in the machine.  

• Others: With the explosion of the Internet, recent work has
explored the uncertainty of human sensing, such as 
Twitter reports in social networks, showing humans as 
less calibrated and reliable in their sensing. Wang et al. 
[36, 37] developed an estimation approach for truth 
discovery in this domain. Another recent example 
explored the decision-making trust between humans 
interfacing through a machine. The user interface was 
shown to have a strong impact on trust, cooperation, and 
situation awareness [38]. As an interesting result, 
credibility resulted as the computer interaction afforded 
complete and incomplete information towards 
understanding both the machine and the user analysis. 

• Machine:  A large body of literature is devoted to network
trust. Examples include the hardware, cyber networks 
[39], protocols and policies. Given the large amount of 
cyber attacks written by hackers, it comes down to a 
trustworthy network of confidentiality, integrity, and 
availability. For machine-machine processing without 
user-created malware, network engineering analysis is 
mostly one of confidence. Machine trust is also 
important to enterprise systems [40]. 

Since we seek to understand self-confidence as a URREF 
criterion, explorations included human processing and the 
human as a data source as shown in Figure 3.  

Figure 2 – Methods of Trust. 

Table 1: Characteristics of Uncertainty 3
Agent Evidence Algorithm Representation
Source Information Fusion Knowledge Reasoning

Scalability Knowledge Handling 
Objectivity Relevance Computational Cost Simplicity 
Observational Sensitivity Conclusiveness Adaptability Expressiveness 
Veracity (truthfulness) Veracity (truth) Traceability (pedigree)  Polarity  
Secure Ambiguity Stability  Modality
Resilient   Genericity 
Trust Precision Throughput  Tense

Accuracy Timeliness
Reliability Credibility Correctness Completeness 
Self-Confidence Confidence Consistency Integrity 

3 This table is presented to the ETURWG in this paper to support ongoing discussions on the categorization of types of uncertainty
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In the figure, multiple forms of trust are shown and related to 
the processing steps. Starting from the real world, data is 
placed on the network from which a machine (or sensor) 
processes the data. With context, a detection assessment is 
made for such domains as image, text, or cyber processing. 
That detection is the fused with the context information. For 
example, a detection of an object in an image is fused with 
contextual road information. The detection confidence is 
assessed and made available to the user with the context. The 
green line is the human-machine trust boundary as the human 
can look at the machine results or process the data themselves 
for given a level of confidence and render a decision. The 
dotted line then is a human assessment of whether or not the 
information presented represents reality and could be trusted. 

Note, if the human is the only sensor source, then he/she is 
looking at data and making a decision. Their self-confidence 
could be based on the machine results from which they factor 
in many types of trust. For example, context, as related to the 
real world (see Figure 1), provides a validation of the machine 
(network to algorithm trust as a measure of confidence), while 
at the same time understanding the situation to determine if the 
information fusion analysis is providing meaningful and useful 
information towards the application of interest. Together a 
trusted decision is rendered based on the many factors. 

Included in Figure 3 are many forms of trust in the analysis all 
of which can lead to confidence in the decision: 

Trust Processing Example 
Network Data put on a 

network 
Assessment of data timeliness and 
lost packets 

Machine Sensor 
transformation 

Calibration of cameras for image 
content 

Software Information 
management 

Getting the correct data from a 
data base (e.g., a priori data)

Algorithm Fusion method Target tracking and classification 
results 

Modeling State models Kinematic and target recognition 
models (e.g., training data)

Application Situation of interest Analysis over the correct area 
(e.g. target moving on a road)

User Situation awareness Use of cultural and behavior (e.g. 
assume big cars move on roads).

The self-confidence of the user analysis includes working with 
data, networks, and machines. The URREF ontology must 
account for trust over human-machine decisions for 
confidence analysis. To further explore how URREF is 
aligned with trust, we must look at self-confidence. 

B. Self-Confidence 
Statistically speaking, the machine decision-making accuracy 
is based on the data available, the model chosen, and the 
estimation uncertainty associated with the measured data. 
Given the above analysis, we could start to derive self-
confidence for machine fusion operations based on the 
literature in human self-confidence.  

Self-confidence is the socio-psychological concept related to 
self-assuredness in one's personal judgment and ability. As an 
example, researchers are often called to review papers and 
after their review asked to give a quality rating of their own 
review based on their understanding of the subject, expertise, 

and experience. In another example, a person might be asked 
to identify an object in an image with a certain rating 
{unlikely, possible, probable, confirm} from which then they 
could determine self-confidence based on their answer. Thus, 
there is a need to assess “self-confidence” in relation to 
“confidence”, which is linked to uncertainty measures of trust. 

C. Accuracy and Precision 
Self confidence is strongly related to both precision and 
accuracy. A source can be self confident in both the precision 
of its generated data (consistency or variability in its reports - 
such as reported variance) as well as the accuracy of its reports 
(the reported bias or the reported distance of the mean value of 
the generated data form true value). In other words, to make 
sense of the term the self-confidence of a source, the data 
encapsulate a combination of precision and accuracy. A 
distinction is made between precision and accuracy reported 
by the machine (such as the estimated mean and variance at 
the output of the Kalman filter) and the actual precision and 
accuracy of the data emanating from the source. The URREF 
ontology categorizes accuracy, precision, and self-confidence 
as types of criteria to evaluate data [1]. 

Statistical methods of uncertainty analysis from measurement 
systems include accuracy and precision, shown in Figure 4. 
The use of distance metrics (accuracy) and precision metrics 
(standard deviations) help to analyze whether the 
measurement is calibrated and repeatable. We would desire 
the same analysis for human semantic analysis with precise 
meanings, consistent understanding, and accurate terminology. 

Figure 3 – Uncertainty as a function of accuracy and precision. 

Human Confidence-Accuracy: Traditionally known as the 
confidence-accuracy (CA) relationship, the assumption is that 
as one’s confidence increases so does their level of accuracy 
which is affected by memory, consistency, and ability [41]. 
Issues include absolute versus relative assessment, feedback, 
and performance.  

The confidence-accuracy relationship was shown to be a by-
product of the consistency-correctness relationship: It is 
positive because the answers that are consistently chosen are 
generally correct, but negative when the wrong answers tend 
to be favored. The overconfidence bias stems from the 
reliability-validity discrepancy: Confidence monitors 
reliability (or self-consistency), but its accuracy is evaluated in 
calibration studies against correctness. Also, the response 
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speed is a frugal cue for self-consistency and depends on the 
validity of self-consistency in predicting performance [42]. 

Koriat [42] explains that Sensing tasks are dominated by 
Thurstonian uncertainty (local rank ordering with stochastic 
noise) within an individual and exhibit an under-confidence 
bias. However, general knowledge tasks are dominated by 
Brunswikian Uncertainty (global probabilistic model from 
limited sample sets to infer general knowledge [43]) that 
supports inter-person ecological relations. 

Consistency is then the repeatability of the information, which 
should imply no conflicts in decision-making.  We can use the 
proportional conflict redistribution (PCR6) to get a measure of 
repeated consistency such that favored wrong answers are 
corrected in confidence analysis [44]. PCR6 is more general 
and efficient than PCR5 when combining more than two 
sources altogether. Moreover, PCR6 has been proved 
compatible with frequency probabilities when working with 
binary BBA's, whereas PCR5 and DS are not compatible with 
frequency probabilities [44]. 

Self-confidence could be measured with a Receiver Operating 
Characteristic (ROC) curve as once a decision can be made, 
we can then assess its impact on confidence. A low self-
confidence would lead to chance, and a high self-confidence 
would remain to the left on the ROC. 

III. SELF-CONFIDENCE

Signal detection theory provides a measure of confidence in 
decision making that by assuming a limited hypothesis set is 
actually a measure of self-confidence. One classic example is 
Wald’s Sequential Probability Ratio Test (SPRT) [45]. 
Assuming evidence is sampled at discrete time intervals, then 
the human or cognitive agent compares the conditional 
probabilities x(t + ∆t) for two hypothesis H j (j = 1, 2). Using 
then SPRT, then  

y(t) = h[x(t)]  =  LN ⎣
⎡

⎦
⎤ 

f 1 [x(t)]
 f 2 [x(t)] (1) 

If y(t) > 0, then evidence supports H 1, and if y(t) < 0, then H 2 
is more likely. As time accumulates for decision making, there 
is an aggregation of the log likelihood ratios: 

L(t + ∆t)  =  L(t)  +  LN ⎣
⎡

⎦
⎤ 

f 1 [x(t + ∆t)]
 f 2 [x(t + ∆t)] (2) 

where, for a stochastic system L(t) ~ N(µ(t), σ2(t)). Eq (2) can 
be written in Bayesian log odds:  

LN ⎣
⎡

⎦
⎤ 

p(H 1 | D)
p(H 2 | D)  = ∑

t
 LN ⎣

⎡
⎦
⎤ 

f 1 [x(t)]
f 2 [x(t)]  + LN ⎣

⎡
⎦
⎤ 

p(H 1)
p(H 2)    (3)

One then collects information to make a decision such that −θ2 
< L(t) < θ1. The chosen threshold is then a measure of a 
decision, which can be conservative or aggressive for the case 
of a human agent [46]. Figure 5 shows the case in which 
evidence is accumulated and a decision is made with 
associated standard boundaries for semantic decision making. 
Also in Figure 5 we related decision boundaries for semantic 
confidence classification [47]. 

It is noted that a choice in time is not just the product of the 
current analysis, but the accumulated evidence. For example, 
in Figure 5, we see that the signal is moving between semantic 
boundaries from doubtful to probable, with an associated 
measure label of possible. Given the history, then the decision 
maker could be self-confident in the current measurement 
given their perception of the entire processing of machine 
decision making measures for each time.  

A Piercian hypothesis [48] implies confidence is a 
multiplicative function of the quantity of the information 
needed to make a decision (θ; or the distance traveled by the 
diffusion process) and the quality of the information (δ; or the 
rate of evidence accumulation in the diffusion process) 
accumulated in Dynamic Signal Detection [48]. Without bias, 
the authors of [48] show that:  

−−−−−−−conf (self)  = β ⋅ ⎝
⎛
⎠
⎞1

2  LN ⎣
⎡

⎦
⎤ 

 P(R A |S A)
P(R B |S A)    =

 δθ
 σ 2 (4) 

where β is a scaling parameter. A decision, θ, is related to a 
response (R) of detection to a stimuli (S). Given the ability to 
model self-confidence as a measure of precision, we extend 
the methodology using subjective-logic and DSmT [44] for 
robust decision making. 

Figure 4 – Evidence Accumulation for Decision Confidence. 

IV. SUBJECTIVE OPINONS

Subjective opinions [49] are special cases of belief functions 
as they correspond to bba defined on 2D frames of type θ = 
{A, ¬A} assuming Shafer’s model or DSmT. Subject opinions 
lend themselves to simple mathematical expressions of fusion 
models. We therefore use the opinion representation for 
describing the various fusion models, but the expressions can 
easily be mapped to traditional belief functions. 

A subjective opinion expresses belief about statements in a 
frame. Let X be a frame of cardinality κ. An opinion 
distributes belief mass over the reduced powerset R(X) of 
cardinality κ. The reduced powerset R(X) is defined as: 

 R (X) = P(X) \ {X, ∅} ,  (5) 

where P(X) = 2X denotes the powerset of X. All proper subsets 
of X are elements of R(X), but the frame {X} and empty set {∅} are not elements of R (X). 

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

219



Let →b X be a belief vector over the elements of R(X), uX be the 

complementary uncertainty mass, and →a  be a base rate vector
over X. Whenever relevant, a superscript such as A denotes the 
opinion owner. Then a subjective opinion ωA

X is the composite 
function expressed as: 

ωA
X  = (→b X , u X, →a X) .  (6) 

The attribute A is thus the belief source, and X is the target 
frame. The belief, uncertainty and base rate parameters satisfy 
the following additivity constraints. 

• Belief additivity:

u X  + ∑
xi ∈ R(X) →b X  (x i)  = 1,      where x ∈ R(X)  (7)

• Base rate additivity:

∑
i = 1

 k  →a X  (x i)  = 1,    where x ∈ X (8) 

The belief vector →b X has κ = (2k − 2) parameters, whereas the 

base rate vector →a X only has k parameters. The uncertainty 
parameter uX is a simple scalar. A general opinion thus 
contains (2k +k−1) parameters. However, given that Eq.(7) and 
Eq.(8) remove one degree of freedom each, opinions over a 
frame of cardinality k only have (2k +k−3) degrees of freedom. 
The probability projection of hyper opinions is the vector 

denoted as →E X : 

→E X  = ∑
xj ∈ R(X) →a X (xi | xj)  

→b X (xj) + →a X (xi) u X , ∀ xi ∈ R(X) (9) 

where  →a X (xi | xj)  = 
→a X (xi I xj) 

 →a X (xj)
 ,      ∀ xi , xj  ⊂ X .  (10) 

denotes relative base rate, i.e. the base rate of subset xi relative 
to the base rate of (partially) overlapping subset xj. 

General opinions are also called hyper opinions. A 
multinomial opinion is when belief mass only applies to 
singleton statements in the frame. A binomial opinion is when 
the frame is binary. A dogmatic opinion is an opinion without 
uncertainty, i.e. where u = 0. A vacuous opinion is an opinion 
that only contains uncertainty, i.e. where u = 1. Likewise, we 
can make the case that confidence in the opinion is biased by a 
subjective opinion of the source self-confidence. Thus, self-
confidence is SCU = 1 owing to rank-order decision-making on 
a subset of the world, and the lack of self-confidence is SCU = 
0; where: 

 SCU  (ωA
X)  =  →a X [1 -  u X ]  (11) 

and ωA
X  ← SCU  (ωA

X)  • →b X (12) 

Equivalent probabilistic representations of opinions, e.g. as a 
Beta pdf (probability density function) in case of binomial 
opinions, as a Dirichlet pdf in case of multinomial opinions, or 
as a hyper Dirichlet pdf in case of hyper opinions offer an 

alternative interpretation of subjective opinions in terms of 
traditional statistics [6]. 

Cumulative Fusion:  
The cumulative fusion rule is equivalent to a posteriori 
updating of Dirichlet distributions. Its derivation is based on 
the bijective mapping between the belief and evidence 
notations described in [6]. 

The symbol “◊” denotes the cumulative fusion of two 
observers A and B into a single imaginary observer A◊B. 

Let ωA and ωB be opinions respectively held by agents A and B 
over the same frame X of cardinality k with reduced  powerset 
R (X) of cardinality κ. Let ωA ◊ B be the opinion where: 

CASE I:   For uA ≠ 0  ∨  uB ≠ 0  (with Confidence) 

⎩⎪
⎨
⎪⎧ bA ◊ B(xi)  =  

bA(xi) uB + bB(xi) uA

 uA +  uB − uA uB

 uA ◊ B    = 
uA uB

 uA +  uB − uA uB

(13) 

CASE II:   For uA = 0  ∨  uB ≠ 0  (without Confidence) 

⎩
⎨
⎧ bA ◊ B(xi)  = γ A bA(xi) + γ B bB(xi)

 uA ◊ B   = 0 
(14) 

where:  

⎩⎪
⎨
⎪⎧ γ A =  Lim

uA
→ 0; uB

→ 0
  

uB

 uA +  uB

 γ B  =  Lim
uA

→ 0; uB
→ 0

  
uA

 uA +  uB

Note: the case without confidence averages the results from 
self-confidence reports which weights effectively both the 
same. Confidence allows the user to weight the self-
confidence of the reports based on the Brunswikian 
uncertainty about the world knowledge. 

Then ωA ◊ B is the cumulatively fused opinion of ωA and ωB, 
representing the combination of independent opinions of A and 
B. By using the symbol ‘⊕’ to designate this belief operator, 
cumulative fusion is expressed as: 

Cumulative Belief Fusion:  ωX
A ◊ B =   ωX

A ⊕ ωX
B  (15) 

The cumulative fusion operator is commutative, associative 
and non-idempotent. In Eq.(15), the associativity depends on 
the preservation of relative weights of intermediate results 
through the weight variable γ, in which case the cumulative 
rule is equivalent to the weighted average of probabilities. 

V. RESULTS 
Assume we have two agent opinion makers ωA and ωB, who 
each make a decision for network security [50]. Let ωA be a 
machine Algorithm and let ωB come from a human Being. 
After reporting their opinion, ωB is asked for their self-

confidence. The result modifies their belief →b X, such that the 
cumulative belief fusion product is a weighted function of 
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their self-confidence (source) over their confidence (data). 
Figure 6 provides a perspective of the analysis. 

Figure 5 – Analysis With and Without Self Confidence. 

For many situations, a machine can process large amounts of 
data, while a human agent can only comprehend a subset of 
the data. Thus, a machine processes the data as outputs to a 
user.  The interaction with the user is continually updated and 
a decision from the user is required. For situations in which 
the user has more time (forensics), then his/her self-confidence 
in the data would be high. For quick decisions, an observe-
orient-decide-act (OODA) decision might be required [51] 
which reduces self-confidence. We seek methods of the latter 
as uncertainty is higher in rapid decision making which is a 
subset of problems in the Dynamic Data-Driven Application 
Systems (DDDAS) paradigm [52, 53]. 

For the analysis, we have two opinion makers (machine and 
man). Using signal detection theory, their individual measures 
of analysis provide a likelihood function. We then fuse the 
results with confusion matrix fusion [54] as a method of 
combination using Bayesian, Dempster-Shafer, or DSmT 
results [55]. We utilize two cases in which there is a high and 
low-confident observer (Case 1) and then the situation in 
which both have comparable analysis (Case 2).  With two 
highly self-confident observers (Case 2), the results are similar 
to one of the observers which could be used for opinion 
validity. However, the user could be looking at the results and 
further analyzing context to provide a more appropriate 
analysis of their decision (e.g., based on culture, data 
completeness, etc). Using subjective logic the human being 
could modify their opinion, ωB

SC, which results in a larger 
value (e.g., know something) or lower value (e.g., recognize 
limitation of analysis). 

We assume that if the user provides no assessment of self-
confidence, we provide equal weight to the results (average 
fusion).  On the other hand, if a machine provides a measure 
of confidence, it could be derived from the dynamic-data, 
which we don’t simulate here. 

Example (High self-confidence with low self-confidence) 
Assume that we have a highly self-confident opinion maker, 
ωA, that includes many sources and reliable analysis. On the 
other hand, we have a low-confident opinion maker, ωB, who 
is making a decision. When making their decision, ωB is 
guessing or almost chance, assuming that context provides 
pragmatic understanding of the world events.  

In Figure 7, there are two opinion makers, the red curve of a 
human agent suggesting that the result is “improbable,” while 
the more self-confident is in blue reporting “probable”. The 
fused result, shown in green, using self-confidence better 
reflects the true state; versus the average fusion of the opinion 
makers shown in magenta. The key issue is that self-
confidence can help weight evidence. 
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Figure 6 – DS With (Fused) and With-out (Ave) Self-Confidence. 

Exploring DSmT [44], using the proportional conflict 
redistribution rule (PCR6 1 ), we also see in Figure 8 an 
improvement in the belief confidence when self-confidence is 
accounted for. 
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Figure 7 – PCR6 With (Fused) and With-out (Ave) Self-Confidence. 

VI. CONCLUSIONS

In this paper, we assessed self-confidence as a criterion in the 
URREF. Self-confidence is typically associated with a source 
and relates a subjective quality on the rendering of their beliefs 
over data. For stochastic observations, we use the SPRT in a 
self-confidence analysis. However, to get the case of partial 
information, we use subjective logic for decision-makers. We 
demonstrated that the PCR6 is superior to DS for decision for 
a scenario in which a high self-confident observer opinion is 
fused with a low self-confident observer. Ultimately it is the 
user trust in the data they have available and opinions towards 
self-confidence; whereas a machine only reports confidence. 

Further directions include using the analysis with real 
operators doing intelligence analysis over data and associating 
semantic boundaries to their subjective decision-making. 

1 In the scenario, we used sequential fusion of two sources and because of this, 
PCR5=PCR6, i.e. when combining 2 sources only PCR5 coincides with 
PCR6. 
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Evaluations of Evidence Combination Rules in Terms 
of Statistical Sensitivity and Divergence

Deqiang Han
Jean Dezert

Yi Yang

Abstract—The theory of belief functions is one of the most
important tools in information fusion and uncertainty reasoning.
Dempster’s rule of combination and its related modif ed versions
are used to combine independent pieces of evidence. However,
until now there is still no solid evaluation criteria and methods
for these combination rules. In this paper, we look on the evidence
combination as a procedure of estimation and then we propose
a set of criteria to evaluate the sensitivity and divergence of
different combination rules by using for reference the mean
square error (MSE), the bias and the variance. Numerical
examples and simulations are used to illustrate our proposed
evaluation criteria. Related analyses are also provided.

Keywords—belief functions; evidence combination; evaluation;
sensitivity; divergence.

I. INTRODUCTION

The theory of belief functions, also called Dempster-Shafer
evidence Theory(DST) [1], is one of the most important
theories and methods in information fusion and uncertainty
reasoning. It can distinguish ‘unknown’ and ‘imprecision’ and
propose a way to fuse or combine different pieces of evidence
by using the commutative and associative Dempster’s rule of
combination.

Dempster’s rule of combination can bring counter-intuitive
combination results in some cases [2], [3], so there have
emerged several improved and modif ed alternative evidence
combination rules, where counter-intuitive behaviors are im-
puted to the combination rule itself, especially the way to
deal with the conf icting mass assignments. The representative
works include Yager’s rule [4], Florea’s robust combination
rule (RCR) [5], disjunctive rule [6], Dubois and Prade’s rule
[7], proportional conf ict redistribution rule (PCR) [8], and
mean rule [9], etc.

As aforementioned, several combination rules are available
including Dempster’s rule and its alternatives. Then, how
to evaluate them? This is crucial for the practical use of
the combination rules. The qualitative criterion is that the
combination results should be intuitive and rational [10]. Up to
now, there is still no solid performance evaluation approaches
for combination rules, especially for establishing quantitative
criteria. In this paper, we propose to interprept the evidence
combination as a procedure of estimation [11]; therefore, a
combination rule is regarded as an estimator. So, we def ne
some statistical criteria on sensitivity and divergence for the

different combination rules by using for reference the idea of
Mean Square Error (MSE) and its decomposition in estimation.
By adding small errors to the original pieces of evidence
(i.e., the “input” of the “estimator”), we check the mean
square error, the variance, and the bias of the combination
result (“output” of the estimator) caused by adding some
noise to describe the sensitivity and divergence of the given
combination rule. Distance of evidence [12] is used in our
work to def ne the variance, the bias and other related criteria.
Simulation results are provided to illustrate our proposed
evaluation approaches. Dempster’s rule and major available
alternative rules are evaluated and analyzed using the new
evaluation approaches.

II. BASICS OF DST

Dempster-Shafer evidence theory (DST) [1] has been
developed by Shafer in 1976 based on previous works of
Dempster. In evidence theory, the elements in frame of discern-
ment (FOD) Θ are mutually exclusive and exhaustive. Def ne
m : 2Θ → [0, 1] as a basic belief assignment (BBA, also called
mass function) satisfying:

∑

A∈2Θ

m(A) = 1, m(∅) = 0 (1)

If m(A) > 0, A is called a focal element. In DST, two reliable
independent bodies of evidence (BOEs) m1(⋅) and m2(⋅) are
combined using Dempster’s rule of combination as follows.
∀A ∈ 2Θ :

m(A) =

{

0, A = ∅∑
Ai∩Bj=A m1(Ai)m2(Bj)

1−K
, A ∕= ∅

(2)

where
K =

∑

Ai∩Bj=∅
m1(Ai)m2(Bj) (3)

represents the total conf icting or contradictory mass assign-
ments. Obviously, from Eq. (2), it can be verif ed that Demp-
ster’s rule is both commutative and associative. For Dempster’s
rule of combination, the conf icting mass assignments are
discarded through a classical normalization step.

Originally published as Han D., Dezert J., Yang Y., Evaluations on Evidence 
Combination Rules in Terms of Statistical Sensitivity and Divergence, in Proc. of 
Fusion 2014 Int Conf onInformation Fusion, Salamanca, Spain, July 7-10, 2014, 

and reprinted with permission.
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As f rstly pointed out by Zadeh [2], Dempster’s rule
has been criticized for its counter-intuitive behaviors1. DST’s
validity has also been argued [3]. There have emerged several
alternatives of evidence combination rules aiming to suppress
the counter-intuitive behaviors of classical Dempster’s rule.
See [8] for details.

To measure the dissimilarity between different BBAs, the
distance of evidence can be used. Jousselme’s distance [13] is
one of the most commonly used distance of evidence, which
is def ned as

dJ(m1,m2) =

√

1

2
⋅ (m1 −m2)

T
Jac (m1 −m2) (4)

where the element Jij ≜ Jac(Ai, Bj) of Jaccard’s weighting
matrix Jac is def ned as

Jac(Ai, Bj) =
∣Ai ∩Bj ∣

∣Ai ∪Bj ∣
(5)

There are also other types of distance of evidence [12], [14].
We choose to use Jousselme’s distance of evidence in this
paper, because it has been proved to be a strict distance metric
[15].

III. SOME MAJOR ALTERNATIVE COMBINATION RULES

In this section, some major combination rules in evidence
theory other than Dempster’s rule are brief y introduced. For
all A ∈ 2Θ

1) Yager’s rule [4]:
⎧





⎨





⎩

m(∅) = 0
mY ager(A) =

∑

Bi∩Cj=A ∕=∅

m1(Bi)m2(Cj)

m(Θ) = m1(Θ)m2(Θ) +
∑

B∩C=∅

m1(Bi)m2(Cj)
(6)

In Yager’s rule, the conf ict mass assignments are assigned to
the total set of the FOD Θ.

2) Disjunctive rule [6]:
{

m(∅) = 0
mDis(A) =

∑

Bi∪Cj=A

m1(Bi)m2(Cj) (7)

This rule ref ects the disjunctive consensus.

3) Dubois & Prade’s rule (D&P rule) [7]:
⎧





⎨





⎩

m(∅) = 0
mDP (A) =

∑

Bi∩Cj=A ∕=∅

m1(Bi)m2(Cj)

+
∑

Bi∩Cj=∅,Bi∪Cj=A

m1(Bi)m2(Cj)
(8)

This rule admits that the two sources are reliable when they
are not in conf ict, but only one of them is right when a conf ict
occurs.

1According to the viewpoint of proponents of Dempster’s rule, the counter-
intuitive behavior is imputed to the sensors, the data or the BOEs obtained
from different sources, but not to Dempster’s rule itself.

4) Robust Combination Rule (RCR, or Florea’s rule) [5]:

mRCR(A) = �(K)mDis(A) + �(K)mConj(A) (9)

where mDis is the BBA obtained using the disjunctive rule,
mConj is the BBA obtained using the conjunctive rule, and
�(K), �(K) are the weights, which should satisfy

�(K) + (1 −K)�(K) = 1 (10)

where K is the conf ict coeff cient def ned in Eq. (3). Robust
combination rule can be considered as a weighted summation
of the BBAs obtained using the disjunctive rule and the
conjunctive rule, respectively.

5) PCR5 [8]: Proportional Conf ict Redistribution rule
5 (PCR5) redistributes the partial conf icting mass to the
elements involved. in the partial conf ict, considering the
canonical form of the partial conf ict. PCR5 is the most
mathematically exact redistribution of conf icting mass to non-
empty sets following the logic of the conjunctive rule.

mPCR5(∅) = 0

and ∀X ∈ 2Θ ∖ {∅}

mPCR5(A) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (11)

In fact there exists another rule PCR6 that coincides with
PCR5 when combining two sources, but differs from PCR5
when combining more than two sources altogether and PCR6 is
considered more eff cient than PCR5 because it is compatible
with classical frequentist probability estimate [16].

6) Mean rule [9]:

mmean(A) =
1

n

∑n

i=1
mi(A) (12)

By using this rule, we can f nd the average of the BBAs to be
combined.

For the purpose of the practical use of different com-
bination rules, the evaluation criteria are required. In the
next section, the available evaluation criteria or properties of
evidence combination rules are berief y introduced.

IV. PROPERTIES OF COMBINATION RULES AS
QUALITATIVE CRITERIA

1) Commutativity [17]: The combination of two BBAs m1

and m2 using some rule R does not depend on the order of
the two BBA, i.e.,

R(m1,m2) = R(m2,m1) (13)

All the combination rules aforementioned in Section III are
commutative.
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2) Associativity [17]: The combination result of multiple
BBAs does not depend on the order of the BBAs to be
combined. For example, when there are 3 BBAs,

R(R(m1,m2),m3) = R(m1, R(m2,m3)) (14)

Dempster’s rule and disjunctive rule are associative. The other
rules introduced in Section III are not associative. The property
of associativity is important to facilitate the implementation of
the distributed information fusion system. But it should be
noted that it is not necessarily eff cient in term of quality of
fusion result. Non-associative rules are able to provide better
performances in general than associative rules [16].

3) Neutral impact of the vacuous belief [17]: The combi-
nation rule preserves the neutral impact of the vacuous BBA,
i.e., when m2 is m(Θ) = 1,

R(m1,m2) = m1 (15)

All the rules aforementioned in Section III but the mean rule,
satisfy this property.

These criteria are qualitative and they correspond to good
(interesting) properties that a rule could satisfy. It should be
noted that these “expected good” properties do not warrant
that a real eff cient fusion rule must absolutely satisfy them.
Therefore, these properties are not enough to the evaluations of
combination rules. In this paper, we propose some quantitative
evaluation criteria for combination rules.

V. STATISTICAL SENSITIVITY AND DIVERGENCE OF
COMBINATION RULES

Here, we develop a group of criteria for combination rules
in terms of sensitivity and divergence. The idea of Mean
Square Error (MSE) and its decomposition are used as a basic
framework for such a development.

A. Mean Square Error and its decomposition

For an estimate x̂ of the scalar estimand x, the MSE is
def ned as

MSE(x̂) = E[(x̂− x)2] (16)

MSE can be decomposed as

MSE(x̂) = E[(x̂ − E(x̂))2] + E[(E(x̂)− x)2]

= Var(x̂) + (Bias(x̂, x))
2 (17)

The MSE is equal to the sum of the variance and the squared
bias of the estimator or of the estimations. The variance can
represent the divergence of the estimation results. The bias can
represent the sensitivity of the estimator.

B. Criteria for statistical sensitivity and divergence

If we consider the procedure of evidence combination with
a given rule as an estimator (as illustrated in Fig. 1), then we
can consider the combination results as the estimations.

So, we can use for reference the MSE and its decompo-
sitions to measure the error, the variance, and the bias of the
combination results based on the given combination rule. Here
we attempt to design some criteria related to the sensitivity and
divergence of combination rules. We use the change of the

combination results after adding small noise to the original
BBA to ref ect the sensitivity and divergence of a combination
rule. If under a given small noise, a combination rule bring
out smaller variance and smaller bias, then such a rule is less
divergent and less sensitive, based on which, the sensitivity
and divergence of combination rules can be evaluated. The
def nitions of MSE, variance and bias for combination rules,
and the evaluation procedure are as follows.

Fig. 1. Evidence combination and Estimation.

Step 1: Randomly generate a BBA m. Add random noise to
m for N times, respectively. In each time, the noise is �i (small
values), where i = 1, ..., N . The noise sequence is denoted
by � = [�1, �2, ..., �N ]. Here each �i is a small real number
(negative or positive) close to zero. Then, we can obtain a
sequence of noised BBAs as

m
′ = [m1,m2, ...,mN ] (18)

It should be noted that all the noised BBAs are normalized.

Step 2: Generate original combination results sequence
with a combination rule R

mc = [m1
c ,m

2
c , ...,m

N
c ]

= [R(m,m), R(m,m), ..., R(m,m)]
(19)

The length of mc is N .

Step 3: Generate combination results sequence by combin-
ing BBAs with noise and the original BBAs using the rule of
R

mcn = [m1
cn,m

2
cn, ...,m

N
cn]

= [R(m1,m), R(m2,m), ..., R(mN ,m)]
(20)

Step 4: Calculate the MSE of mcn as

MSEBBA(mcn) =
1
N

N
∑

i=1

[

dJ(m
i
c,m

i
cn)

]2

= 1
N

∑N

i=1 [dJ (R(m,m), R(m,mi))]
2

(21)

where dJ is Jousselme’s distance def ned in Eq. (3). MSEBBA

represents the error between the original combination results
and the results obtained using BBAs with noise.

We can also calculate the relative MSE by removing the
effect of the noise amplitude as follows

MSE′
BBA(mcn) =

MSEBBA(mcn)

∥�∥2
(22)
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Step 5: Calculate the variance of mcn as

VarBBA(mcn) =
1
N

N
∑

i=1

[

dJ(m
i
cn, m̄cn)

]2

= 1
N

N
∑

i=1

[

dJ (R(m,mi),
1
N

N
∑

j=1

R(m,mj))

]2 (23)

where m̄cn = 1
N

∑N

j=1 m
j
cn = 1

N

∑N

j=1 R(m,mj). VarBBA

represents the f uctuations of the combination results obtained
using BBAs with noise.

Then, calculate the relative variance by removing the effect
of the noise amplitude as follows

Var′BBA(mcn) =
VarBBA(mcn)

V ar(�)
(24)

Relative variance in fact represents the degree of am-
plif cation or reduction of the variances between and after
combination.

Step 6: Calculate the bias of mcn as

BiasBBA(mcn) =

√

1
N

N
∑

i=1

[dJ(mi
c, m̄cn)]

2

=

√

√

√

⎷ 1
N

N
∑

i=1

[

dJ(R(m,m), 1
N

N
∑

j=1

R(m,mj))

]2

= dJ(R(m,m), 1
N

N
∑

j=1

R(m,mj))

(25)

BiasBBA represents the difference between the expectation of
the combination results obtained using BBAs with noise and
the original combination results.

Then, calculate the relative bias by removing the effect of
the noise amplitude as follows

Bias′BBA(mcn) =
BiasBBA(mcn)

∥�∥
(26)

Regenerate randomly a new original BBA m for M times.
In each time, re-do Step 1 to Step 6. Based on the M groups
of results, calculate the averaged MSE′

BBA, the averaged
Var′BBA, and the averaged Bias′BBA. These three indices are
called the statistical MSE, the statistical variance, and the
statistical bias of the combination rule R. We jointly use
these indices (quantitative criteria) to describe the statistical
sensitivity and divergence of a given combination rule R.

Relative MSE is a comprehensive index. Larger relative
MSE intuitively means larger sensitivity. However, relative
MSE is insuff cient to evaluate a combination rule. So we
should further use its decomposition (including the relative
variance and the relative bias) for a deeper analysis.

High relative bias values represent high sensitivity. it rep-
resents high degree of departure from the origin. It can ref ect
a given combination rule’s capability of sensitive response to
the changes in input evidences. It represents the “agility” of a
combination rule. Moderate relative bias values are preferred,
which means the balance or trade-off between the robustness
and the sensitivity.

Relative variance in fact represents the degree of amplif ca-
tion or reduction of the variances between and after combina-
tion. In the evaluation procedure, for all the combination rule,
the variance of the noise are the same (using the same noise
sequence for different rules). So, high relative variance values
also represent high divergence among all the combination
results using a given combination rule when adding noise.
Small relative variance values are preferred, which represent
the high cohesion of a given combination rule.

In this work, we propose a statistical evaluation approach
for evidence combination rules based on Monte-Carlo simula-
tion. To implement the statistical evaluation of a combination
rule according to the method introduced here, two problems
should be resolved at f rst. One is the way of adding noise and
the other is the way of random generation of BBA.

C. Method I for adding noise

Method I for adding noise is designed to evaluate the effect
of the slight value change of the mass of the existing focal
element. Suppose that m is a BBA def ned on FOD Θ. First,
we f nd the primary focal element (the focal element having the
highest mass assignment) 2, i.e., the focal element Ai satisfying

i = argmax
j,Aj⊆Θ

m(Aj) (27)

Second, add the noise � to the mass assignment of the
primary focal element.

m′(Ai) = m(Ai) ⋅ (1 + �) (28)

Then, for the mass assignments of other focal elements in
original BBA,

m′(Aj) = m(Aj)−
m(Aj)

1−m(Ai)
⋅ � ⋅m(Ai), ∀j ∕= i (29)

m′ is the generated BBA with noise. It is easy to verify that
∑

B⊆Θ
m′(B) = 1 (30)

It can be seen that the change of mass assignment for the
primary focal element is the most signif cant when compared
with those of other focal elements. The change of the mass
assignment for primary focal element is redistributed to all the
other focal elements according to the ratio among their corre-
sponding mass assignments. BBAs are generated according to
Algorithm 1 below [12].

For method I for adding noise, some restrictions should be
adopted for the values of original BBA and the noise added
to make sure that the noised BBA m′ satisf es the def ntion of
BBA. The restriction are as shown in Eq. (31).

0 ≤ (1 + �) ⋅max
A

(m(A)) ≤ 1, ∀A ∈ 2Θ (31)

2For example, when Θ = {�1, �2} and m({�1}) = 0.8, m({�2}) =
0.1, m(Θ) = 0.1, the primary focal element is {�1}. When Θ = {�1, �2}
and m({�1}) = 0.45, m({�2}) = 0.45,m(Θ) = 0.1, the primary focal
elements are {�1} and {�2}.
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Algorithm 1. Random generation of BBA

Input: Θ: Frame of discernment;
Nmax: Maximum number of focal elements
Output: Output: m: BBA
Generate P(Θ), which is the power set of Θ;
Generate a random permutation of P(Θ) → ℛ(Θ);
Generate an integer between 1 and Nmax → l;
FOReach First k elements of ℛ(Θ) do
Generate a value within [0, 1] → mi, i = 1, ..., l;
END
Normalize the vector m = [m1, ...,ml] → m

′;
m(Ai) = m′

i;

where m is the original BBA.

D. Method II for adding noise

Method II for adding noise is designed to evaluate the effect
of creating new focal elements. Suppose that m is a BBA with
a special structure def ned on FOD Θ. The focal elements are
some singletons {�i} and the total set Θ. First, f nd out a pair
of singletons {�i} and {�j}.

Second, create a new focal element {�i, �j} with the mass
value of �, i.e., m′({�i, �j}) = �.

Then, the mass values for focal elements {�i} and {�j}
are regenerated as

{

m′({�i}) = m({�i})− � ⋅ m({�i})
m({�i})+m({�j})

m′({�j}) = m({�j})− � ⋅ m({�j})
m({�i})+m({�j})

(32)

Obviously, one has
∑

B⊆Θ m′(B) = 1.

The BBAs with special structure (with only some
singletons and the total set focal elements) are generated
according to Algorithm 2 below:

Algorithm 2. Random generation of BBA

Input: Θ: Frame of discernment;
n: Cardinality of Θ;
Nmax: Maximum number of focal elements
Output: m: BBA
Generate P(Θ), which is the power set of Θ;
Generate a random permutation of P(Θ) → ℛ(Θ);
FOR i = 1 : Nmax − 1
Generate an integers j between 1 and n;
Generate a focal element Fi : {�j};
END
Generate a focal element FNmax : Θ.
FOR i = 1 : Nmax

Generate a value within [0, 1] → mi;
END
Normalize the vector m = [m1, ...,mNmax ] → m′;
m(Fi) = m′

i;

For method II for adding noise, some restrictions should
be adopted for the values of original BBA and the noise added
to make sure that the noised BBA m′ satisf es the def ntion of
BBA. According to Eq. (32), the restriction can be obtained as

shown in Eq. (33). For all the available singleton focal element
{�i} in original BBA,

0 ≤ m({�i}) ⋅ (1−
�

∑

j,m({�j})>0 m({�j})
) ≤ 1, ∀A ∈ 2Θ

(33)
where m is the original BBA.

E. A simple illustrative example

Here an illustrative example of single cycle calculation of
the evaluation indices is provided by using Method I for adding
noise. By referring to this illustrative example, evaluations by
using Method II are easy to implement.

A BBA m def ned on the FOD Θ = {�1, �2, �3} is
m({�1}) = 0.6,m({�2}) = 0.3,m({�1, �2, �3}) = 0.1.

Suppose that the noise sequence is
� = [−0.1,−0.05,−0.02, 0.02, 0.05, 0.1].

It can be seen that the restrictions in Eq. (31) are not
violated.

According to the Step 1, we generate the sequence six
noised BBA m

′ = [m1,m2,m3,m4,m5,m6] as follows:
m1({�1}) = 0.5,m1({�2}) = 0.375, m1({�1, �2, �3}) = 0.125;
m2({�1}) = 0.55, m2({�2}) = 0.3375, m2({�1, �2, �3}) = 0.1125;
m3({�1}) = 0.58, m3({�2}) = 0.315, m3({�1, �2, �3}) = 0.105;
m4({�1}) = 0.62, m4({�2}) = 0.285, m4({�1, �2, �3}) = 0.095;
m5({�1}) = 0.65, m5({�2}) = 0.2625, m5({�1, �2, �3}) = 0.0875;
m6({�1}) = 0.7,m6({�2}) = 0.225, m6({�1, �2, �3}) = 0.075.

Here we use Dempster’s rule of combination. Then, ac-
cording to the Step 2, the original combination sequence
mc = [m1

c ,m
2
c , ...,m

6
c ] is as

∀i = 1, ..., 6.
mi

c({�1}) = 0.75, mi
c({�2}) = 0.2344, mi

c({�1, �2 �3}) = 0.0156.

Then according to the Step 3, the sequence of combination
results by combining BBAs with noise and the original BBAs
mcn = [m1

cn,m
2
cn, ...,m

6
cn] is as

m1
cn({�1}) = 0.6627, m1

cn({�2}) = 0.3162,
m1

cn({�1, �2, �3}) = 0.0211;
m2

cn({�1}) = 0.7076, m2
cn({�2}) = 0.2741,

m2
cn({�1, �2, �3}) = 0.0183;

m3
cn({�1}) = 0.7334, m3

cn({�2}) = 0.2500,
m3

cn({�1, �2, �3}) = 0.0167;
m4

cn({�1}) = 0.7662, m4
cn({�2}) = 0.2192,

m4
cn({�1, �2, �3}) = 0.0146;

m5
cn({�1}) = 0.7895, m5

cn({�2}) = 0.1973,
m5

cn({�1, �2, �3}) = 0.0132;
m6

cn({�1}) = 0.8257, m6
cn({�2}) = 0.1634,

m6
cn({�1, �2, �3}) = 0.0109.

For the noise sequence,

∥�∥2 = 0.0258

V ar(�) = 0.0043

According to the Step 4, the value of MSE is

MSEBBA(mcn) = 0.00270

MSE′
BBA(mcn) = 0.00270/0.0258 = 0.104752
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According to the Step 5, the value of variance is

VarBBA(mcn) = 0.002697

Var′BBA(mcn) = 0.002697/0.0043 = 0.6272

In the f nal, according to the Step 5, the value of bias is

BiasBBA(mcn) = 0.002406

Bias′BBA(mcn) = 0.002406/
√
0.0258 = 0.014978

The above is the illustration of one-cycle procedure. One
can use other combination rules to do these steps. Randomly
generate BBAs and repeat all the steps, then we can obtain the
f nal statistical evaluation results.

VI. SIMULATIONS

A. Simulation I: using Method I for adding noise

In our simulations, the cardinality of the FOD is 3. In
random generation of BBAs, the number of focal elements
has been set to 5. The length of the noise sequence is 50 (the
noise value starts from -0.1, with an increasing step of 0.004,
up to 0.1. Of course, the zero value for noise is not considered
because it corresponds to noiseless case.). In each simulation
cycle, seven combination rules including Dempster’s rules
and other alternatives aforementioned in Section III are used,
respectively. We have repeated the Monte Carlo simulation
with 100 runs. In random generation of original BBAs, the
restrictions in Eq. (31) are not violated. The statistical results
are listed in Tables I-III. The ranks of the relative MSE, relative
variance and relative bias are obtained based on the descending
order.

It should be noted that when using RCR in our simulation,
the weights are generate as follows.

{

�(K) = K
1−K+K2

�(K) = 1−K
1−K+K2

(34)

TABLE I. COMPARISONS IN TERMS OF MSE

Combination Rules MSE′
BBA Rank

Dempster’s rule 0.0010758 1
Yager’s rule 0.0005743 5
Disjunctive rule 0.0004298 7
D&P rule 0.0006247 4
RCR 0.0007152 3
PCR5 0.0010505 2
Mean rule 0.0005711 6

TABLE II. COMPARISONS IN TERMS OF VARIANCE

Combination Rules Var′BBA Rank
Dempster’s rule 1.7260 1
Yager’s rule 0.9568 6
Disjunctive rule 0.7469 7
D&P rule 1.0226 4
RCR 1.2788 3
PCR5 1.6801 2
Mean rule 1 5

As we can see in Tables I - III, Dempster’s rule are the
most sensitive to the mass change according to the criterion of
the relative bias, and it also has highest degree of divergence
according to the criterion of relative variance. Mean rule is the
most insensitive to the mass change according to the criteria

TABLE III. COMPARISONS IN TERMS OF BIAS

Combination Rules Bias′BBA Rank
Dempster’s rule 0.81132*10−7 1
Yager’s rule 0.59228*10−7 2
Disjunctive rule 0.41949*10−7 4
D&P rule 0.49075*10−7 3
RCR 0.39592*10−7 5
PCR5 0.38066*10−7 6
Mean rule 0 7

of relative bias, and it is always a rule with smaller divergence
according to the criterion of the relative variance. Yager’s rule
is always more sensitive to the mass change and is always not
so divergent.PCR5 rule is not so sensitive to the mass change
according to the criterion of Bias (rank 6), and it is not so
divergent according to the criterion of the relative variance.
The Robust combination rule (RCR), Dubois & Prade’s rule
(D&P rule) are always moderate to the mass change in terms
of sensitivity and in terms of divergence. So, PCR5 and RCR
are more moderate rules; thus, they are relatively good choices
for practical use.

B. Simulation II: using Method II for adding noise

In our simulations, the cardinality of the FOD is 3. In
generation of BBAs, the total set Θ is used as a focal element
and the number of singleton focal elements has been set to
2. The length of the noise sequence is 50 (the noise value
starts at 0.002 with an increasing step of 0.002, up to 0.1.)
In each simulation cycle, seven combination rules including
Dempster’s rules and other alternatives aforementioned in
Section III are used, respectively. We have repeated the Monte
Carlo simulation with 100 runs. In random generation of
original BBAs, the restrictions in Eq. (33) are not violated. The
statistical results are listed in Tables IV-VI. The ranks of the
relative MSE, relative variance and relative bias are obtained
based on the descending order.

The derivation of weights of RCR has been done in the
same manner as for the Simulation I.

TABLE IV. COMPARISONS IN TERMS OF MSE

Combination Rules MSE′
BBA Rank

Dempster’s rule 0.0050 3
Yager’s rule 0.0038 5
Disjunctive rule 0.0033 6
D&P rule 0.0014 7
RCR 0.0078 1
PCR5 0.0043 4
Mean rule 0.0056 2

TABLE V. COMPARISONS IN TERMS OF VARIANCE

Combination Rules Var′BBA Rank
Dempster’s rule 0.9218 3
Yager’s rule 0.7019 5
Disjunctive rule 0.5434 6
D&P rule 0.2714 7
RCR 1.3528 1
PCR5 0.8014 4
Mean rule 1 2

As we can see in Tables IV - VI, RCR is the most
sensitive to the change of focal elements according to the
criterion of the relative bias, and it also has highest degree

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

228



TABLE VI. COMPARISONS IN TERMS OF BIAS

Combination Rules Bias′BBA Rank
Dempster’s rule 0.0016 3
Yager’s rule 0.0012 5
Disjunctive rule 0.0011 6
D&P rule 0.0004 7
RCR 0.0025 1
PCR5 0.0013 4
Mean rule 0.0018 2

of divergence according to the criterion of relative variance.
Dubois & Prade’s rule (D&P rule) is the most insensitive
rule according to the criteria of relative bias, and it is always
a rule with smaller divergence according to the criterion of
the relative variance. Yager’s rule is always insensitive and is
always not so divergent. Mean rule is sensitive to the change of
focal element according to the criterion of Bias (rank 2), and it
is divergent according to the criterion of the relative variance.
Dempster’s rule is not so sensitive to the change of focal
element. The PCR5 and Yager’s rules are always moderate
to the change of focal elements in terms of sensitivity and in
terms of divergence.

According to simulations results, we see that the different
methods of adding noises impact differently the results of the
comparative evaluations. However, we have shown that no
matter the method adopted (by keeping the original core of the
BBA, or modifying it slightly), PCR5 provides quite robust
results for combining two BBA’s and thus offers practical
interests from this standpoint.

VII. CONCLUSION

In this paper we have proposed a group of statistical criteria
for evaluating the sensitivity of different combination rules
with respect to the noise perturbations. The design is based
on the classical measures of performance like MSE, variance,
and bias encountered in the estimation theory. We don’t rank
the rules according to their a priori “good expected” properties.
Moderate relative bias values are preferred, which means the
balance or trade-off between the robustness and the sensitivity.
Small relative variance values are preferred, which represent
the high cohesion of a given combination rule. Seven widely
used evidence combination rules were evaluated using the new
proposed evaluation criteria. PCR5 is a moderate rule which
is good for the practical use for combining two BBAs. For
combining more than two BBAs, we expect that PCR6 will
be a good choice, but we need to make more investigations in
future to evaluate precisely its performances.

In this work, we have added some noises to BBAs mainly
by modifying the mass assignments of the primary focal
element and by creating new focal elements. In our future
work, we will try to use other methods to add noise to BBAs,
e.g., eliminating some of original focal elements. In our Monte-
Carlo simulations, there is no pre-settings of mass assignments
for the BBAs. In this paper, in each cycle we only generate one
BBA, based on which, we generate a sequence of BBAs by
adding small noise. The BBAs to be combined are the original
BBAs and the BBAs with small noise. In our future work,
we will try to generate two BBA sequences and add noise
to them, respectively, where we can use some special BBAs
in the evaluation procedure, e.g., BBAs to be combined are
high conf icting. Then we can do more specif c performance

evaluations on the combination rules. In this paper, we did
only focus on the property of sensitivity and divergence. The
evaluation criteria of other aspects of evidence combination are
also required for evaluating and designing new combination
rules, which will be investigated in future research works and
forthcoming publications.
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Abstract—A new self-adaptive fusion algorithm based on DST 
and DSmT is proposed. In the new algorithm, part of the 
conflicting information is normalized according to DST, while the 
other part is processed by DSmT. A controlling factor is used to 
control the quantity of information dealt by the two different 
methods adaptively, which is a new method avoiding setting for 
the threshold of conflict. The simulation results indicate that the 
new self-adaptive fusion algorithm based on DST and DSmT can 
deal with any conflicting situation with a good performance of 
convergence. 

Keywords—DST; DSmT; controlling factor; information 
fusion 

I. INTRODUCTION 
Due to the complexity of modern battlefield, target 

identification is becoming more and more complex. It is 
difficult to give an accurate and credible identifying result 
only by one sensor. Therefore, target identification based on 
multi-source information is becoming a hot topic. Dempster-
Shafer theory (DST) is an efficient method for uncertainty 
consequence ([1]). It is widely used in the domain of 
synthesize identification. However, DST can’t give efficient 
fusion results when information from different sources 
becomes highly conflict. Many improvement are proposed, 
such as Yager’s rule of combination ([2]), Murphy’s rule of 
combination ([3]), Dengyong’s rule of combination ([4]) etc. 
Dezert presented the Dezert-Smarandache theory (DSmT) 
([5]), which can be considered as an extension of the classical 
DST. DSmT performs well in dealing with the fusion of 
uncertain, highly conflicting and imprecise sources. It can 
solve not only the static problems but also the complex 
dynamic fusion problems. 

DST and DSmT have their own advantages and 
disadvantages for fusing the multi-source information. The 
advantages of DST mainly occur in the case of low degree of 
conflict, whereas it may give a bad fusion result which is 
absolutely contrary to the fact while the sources are in high 
degree of conflict. DSmT is more efficient in combining highly 
conflicting sources, but it offers convergence toward certainty 
slowly especially in low degree of conflict. So a new self-
adaptive  fusion algorithm is put forward in this paper. 

II. REVIEW OF THE THEORY OF EVIDENCE

A. DST 
DST was firstly proposed by Dempster in 1967 and 

extended by Shafer. The main idea will be reviewed as follows. 
Let 1{ , , }nθ θΘ = be the frame of discernment of the fusion 
problem and all elements of Θ  are exclusive. A basic belief 
assignment (BBA) : 2 [0,1]m Θ →  is defined as 

2

( ) 1

( ) 0
A

m A

m φ
Θ∈

⎧ =⎪
⎨
⎪ =⎩

∑
    (1) 

where 2Θ  is the power set of Θ  and it includes all its subsets . 
For two independent bodies of evidence whose BBAs are 

denoted by 1m  and 2m  respectively, the BBA of the 
combination of the two bodies is given by the following rule 

1 2
, 2 ,

12

( ) ( )
, ,( ) 1

0,

A B A B X

m A m B
X Xm X k

X

φ

φ

Θ∈ =

⎧
⎪⎪ ∀ ∈ Θ ≠= ⎨ −⎪

=⎪⎩

∑
∩

    (2) 

where 1 2( ) ( )
A B

k m A m B
φ=

= ∑
∩

 reflects the conflict degree of the 

two sources. 

B. DSmT 
DSmT, an extension of DST, was developed by Dezert 

and Smarandanche ([5]). DSmT differs from DST at that the 
elements of Θ  could be overlapped. For simplicity, use DΘ  
(Hyper-power set) to denote the set of all compositions built 
from elements of Θ  with ∪  and ∩  operators. The 
generalized basic belief assignment (GBBA) : [0,1]m DΘ →  is 
defined as  

( ) 1

( ) 0
A D

m A

m φ
Θ∈

⎧ =⎪
⎨
⎪ =⎩

∑
 (3) 

Similarly, the classical combination rule for two 
independent bodies of evidence, whose GBBAs are 1m  and 

2m  respectively, is given by 
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It is remarked that DSmT keeps the conflicting information 
and doesn’t need normalization. 

 The biggest difference between DST and DSmT can be 
intuitively described as follows. Let 1 2{ , }θ θΘ =  be the frame 
of discernment (without any extra conditions). The DST deals 
with BBA ( ) [0,1]m ⋅ ∈  such that 1 2 1 2( ) ( ) ( ) 1m m mθ θ θ θ+ + =∪ , 
while the DSmT deals with GBBA ( ) [0,1]m ⋅ ∈  such 
that 1 2 1 2 1 2( ) ( ) ( ) ( ) 1m m m mθ θ θ θ θ θ+ + + =∪ ∩ . 

C. Self-adaptive fusion algorithm based on DST and DSmT 
Although DST behaves well while fusing sources are in 

low degree of conflict, it may give a fusion result that 
absolutely contrary to the fact while two sources are in high 
degree of conflict. Luckily, DSmT is capable of fusing the 
highly conflicting sources. A natural idea comes out that a 
self-adaptive fusion algorithm based on DST and DSmT could 
be used to obtain better performance in a way of simple 
combination, that is, if the degree of conflict is less than a 
given threshold, Dempster-Shafer combination rule can be 
used, otherwise DSm combination rule will be selected. 

The limitation of applying the above idea in practice is 
that a threshold of conflict should be set in advance.  It is very 
difficult to determine a suitable value for the conflicting 
threshold since different systems have different degrees of 
conflict, and an experiential value is usually used instead the 
true one by experimenting time after time. The risk lies that 
once the threshold is not suitable, fusion results will be bad.  

To solve the above problem, this paper proposed a new 
self-adaptive algorithm based on DST and DSmT, which 
avoids setting for the conflicting threshold in advance.  

III. A NEW SELF-ADAPTIVE FUSION ALGORITHM

Note that the key difficulty lies in how to process the 
conflicting information. Before introducing the new self-
adaptive fusion algorithm, we will review the existing 
methods and explain why we adopt such an algorithm.  

According to DST, conflicting pieces of information 
between two bodies of evidence are eliminated by making 
normalization. Yager ([2]) distributed the conflicting 
information to the union of all elements, and viewed the 
conflict as unreliable and ignored it. Smets ([8]) distributed the 
conflicting information to empty set. He pointed out that all 
the sources of evidence are reliable but the frame of 
discernment is not complete and the actual result may lie out 
of the frame. The limitation of DST method is that it cannot 
deal with the cases of high degree conflicts. 

On the contrary, DSmT keeps the conflicting information 
useful and redistributes the conflicting information according 
to some principles while fusing. It is capable of coping with 
the cases of high degree conflicts, but it offers slow 
convergence for the result. 

To absorb the advantages of DST and DSmT, the new 
algorithm will treat the conflicting information in a 

combination way, that is, part of the conflicting information 
will be distributed to the nonempty set averagely and the other 
will be redistributed by other principles. A controlling factor 
will be proposed to decide the mass of conflicting information 
to be normalized or not. 

A. Evaluation of conflict between bodies of evidence 
Definition 1 (Conflict)[6]. A conflict between two beliefs in 
DS theory can be interpreted qualitatively as one source 
strongly supports one hypothesis and the other strongly 
supports another hypothesis, and the two hypotheses are not 
compatible. 

It is well known that, the key problem of designing self-
adaptive fusion algorithm based on DST and DSmT is how to 
compute the conflict between two bodies of evidence. Next we 
will show that the existing measures, including the conflict 
coefficient used in DST and DSmT and the degree of 
similarity, are not suitable to act as a eligible measure for 
conflicting information, although the former has long been 
taken as a fact in the Dempster–Shafer theory community. We 
also propose a new measure to fill in this gap. 
Example 1. Let Θ  be a frame of discernment with n
hypotheses 1{ , , }nθ θ . Assume 1m  and 2m  are two BBAs 
offered by two distinct sources which are defined as 

1( ) 1/im nθ = ， 2 ( ) 1/im nθ = ， 1, 2, ,i n=
Obviously, the two BBAs are totally consistent with each 

other. So there shouldn’t exist conflict. Firstly, compute the 
conflict coefficient and get 1 1/k n= − , where n  is the 
number of hypotheses in frame of discernment. Secondly, It 
can be found out that along with the increase of n , k will 
increase and approach to 1, as shown in the relationship 
between k  and n  is shown as Fig.1. If k  is taken as a 
measurement of the degree of conflict, the two bodies of 
evidence are in high degree of conflict when n  is larger than 
5. It is surely contrary to the fact.

Fig.1. Relationship between k   and n in example 1 
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Example 2. Let Θ  be a frame of discernment with two 
hypotheses 1 2{ , }θ θ . The BBAs offered by two sources are 
defined as 

1 1( )m pθ = , 1 2( ) 1m pθ = −

2 1( ) 1m pθ = − , 2 2( )m pθ =
where [0,1]p ∈ .  It is obvious that the two bodies of 
evidence are highly contradicted with each other. According to 
DST, the conflict coefficient can be calculated 
as 2 2(1 )k p p= + − . Fig 2 shows the relationship between 
k  and p . As p changes from 0 to 1,  k  will decrease from 1 
to 0.5 and then increase to 1 again, as shown in Fig 2. Note 
that k  is low than 1 at most time especially while p  is 
around 0.5. It can’t reflect the conflict between two sources of 
evidence rightly. 

Fig.2. Relationship between k   and n in example 2
From Example 1 and 2, we can see that the conflict 

coefficient k  can’t be used as a suitable measure of conflict. 
To overcome the above shortage, some other evaluating 

methods of conflict are put forward, such as the degree of 
similarity. Since the similarity of two bodies of evidence can 
also reflect their conflict, it can be used as a candidate to 
reveal the conflict between two sources of evidence. Generally 
speaking, the larger the degree of similarity is, the smaller the 
conflict is. 

Usually, the degree of similarity can be calculated by the 
distance between bodies of evidence. There are some kinds of 
distance being used in information fusion, such as the famous 
the Euclidean distance ([7]) proposed by Cuzzolin, the 
Bhattacharyya distance ([8]) given by Ristic and Smets. Both 
of them are defined in the frame of Dempster-Shafer theory. 
Nevertheless, neither of them can reflect the similarity of the 
subset of frame Θ . Besides, Tessem turned the belief function 
into the probability function by pignistic transformation and 
evaluated the distance between bodies of evidence in the level 
of pignistic ([9]). However, the distance defined in this way 
doesn’t accord with the distance theory. No valuable distance 

can be used in practice until the coming out of Jousselme 
distance  ([10]), which is the most widely used distance of 
evidence at present. The definition of Jousselme distance is 
given as follows. 
Definition 2 (Jousselme distance). Let Θ  be a frame of 
discernment with n  hypotheses. The BBAs offered by two 
sensors are denoted as 1m  and 2m . Distance between them 
can be defined as 

1 2 1 2 1 2
1( , ) ( ) ( )
2

TDis m m m m D m m= − −       (5) 

where ( ) | |
| |

i j
ij

i j

A B
D D

A B
⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠

∩
∪

 is a 2 2n n× -dimensional 

matrix, and | |A  denotes the number of elements of A . It 
reflects the degree of similarity of the evidence. Formula (5) 
can be rewritten as  

2 2
1 2 1 2 1 2

1( , ) (|| || || || 2 , )
2

Dis m m m m m m= + − < >

where 2|| || ,i i im m m=< > , 1, 2i = , and  
2 2

1 2 1 2
1 1

| |
, ( ) ( )

| |

n n

i j
i j

i j i j

A B
m m m A m B

A B= =

< >= ∑∑
∩
∪

is the product of two vectors. 
Note that in the frame of discernment in DSmT, 

hypotheses could be overlapped potentially. Then a 
generalized Jousselme distance is defined as follows. 
Definition 3 (generalized Jousselme distance). Let Θ  be a 
fame of discernment in DSmT with n  hypothesis. The two 
GBBAs offered by sensors are denoted as 1m  and 2m . 
Distance between them is defined as  

1 2 1 2 1 2
1( , ) ( ) ( )
2

TDis m m m m D m m= − −         (6) 

where ( ) | |
| |

i j
ij

i j

A B
D D

A B
⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠

∩
∪

 is a N N× -dimensional 

matrix, N  is the number of elements in the power set of Θ , 
and | |A  denotes the DSm cardinality of A . Similarly, 
distance can be transformed as  

2 2
1 2 1 2 1 2

1( , ) (|| || || || 2 , )
2

Dis m m m m m m= + − < > ,  

where 2|| || ,i i im m m=< > , 1, 2i = , and 
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,

A DΘ∀ ∈ . 
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It is easy to see that 1 2( , ) [0,1]Dis m m ∈ , and the
degree of similarity can be defined as  

1 2 1 2( , ) 1 ( , )Sim m m Dis m m= −       (7) 

Obviously, it has 1 2( , ) [0,1]Sim m m ∈ . 
In example 1, the Jousselme distance is always 0 no 

matter what the value of n  be. In other words, the similarity 
between two bodies of evidence is always 1, it accords with 
the fact. In example 2, the Jousselme distance is computed 
as 1 2( , ) |1 2 |Dis m m p= − . As p changes from 0 to 1, the 
Jousselme distance decreases from 1 to 0 and then increases to 
1 again. It is also reasonable in intuition. However, one cannot 
determine the value of conflict between two bodies of 
evidence correctly just by the similarity. We will show this by 
the following Example 3. 
Example 3. Let Θ  be a frame of discernment with two 
hypotheses 1 2{ , }θ θ . The two BBAs offered by sensors are 
defined as 

1 1( ) 0.8m θ = , 1 1 2( ) 0.2m θ θ =∪

2 1 2( ) 1m θ θ =∪
Simple calculation will yield 1 2( , ) 0.5657Dis m m = , 

and 1 2( , ) 0.4343Sim m m = . If the conflict is estimated by 
the degree of similarity, the two sources of evidence are in 
conflict. However, it is obvious that the second body of 
evidence is totally unknown. Thus one can’t assert that they 
are in conflict. In other words, it is not credible to determine 
the degree of conflict only by on the degree of similarity. 

In summary, neither conflict coefficient nor degree of 
similarity can be used as the quantitative measure of conflict 
alone. A natural idea comes out that one may make a judgment 
objectively by considering the two factors synthetically. 
Actually, many researchers followed this way. For example, 
Jiang ([12]) took the average of Joussleme distance and 
conflict coefficient as the new measure for conflict. Liu ([6]) 
made the dualistic array by conflict coefficient and the 
distance between betting commitments to analysis the conflict 
under different situations. Liu ([13]) used the geometric mean 
of conflict coefficient and distance between betting 
commitments as the measure of the conflict.   

This paper also adopts the above idea. One will see in the 
following text that, in our new combination model there are 
two places where the degrees of conflict need to be estimated. 
On one side, the classical conflict coefficient is taken to 
measure the value of conflict. On the other side, the similarity 
between bodies of evidence is used as a controlling factor to 
distribute the conflicting information. See next for details. 

B. New combination rule 
Let 1{ , , }nθ θΘ =  be a discernment frame with n

hypotheses. The hypotheses of the frame could be non-
exclusive. DΘ  is the hyper-power set. The generalized basic 
belief assignment is defined as : [0,1]m DΘ →  where 

( ) 1

( ) 0
A D

m A

m φ
Θ∈

⎧ =⎪
⎨
⎪ =⎩

∑
   (8) 

Let 1m  and 2m  be the GBBAs of two sensors which are 
independent with each other. The new combination rule can be 
defined as 

1 2
,

12 '

( ) ( ) ( )
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A B X
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m X X D X
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where 1 2
, ,

( ) ( )
A B D A B

k m A m B
φΘ∈ =

= ∑
∩

 reflects the mass of 

conflict, 'k kσ=  is the conflict that will be distributed to the 
all hypotheses averagely by normalizing. The rest (1 )kσ−  
will be redistributed by other rules. Here σ  is a controlling 
factor. Denote the conflicting information that be distributed 
to hypothesis X  by ( )P X , and thus ( ) (1 )

X D

P X kσ
Θ∈

= −∑ . 

It can be seen from formula (9) that, as σ changes, the 
fusion results will be different. When 0σ = , all conflict 
information will be kept and distributed to the hypotheses 
which bring on the conflict, and then the new algorithm will 
degenerate to DSm combination rule. When 1σ = , all conflict 
information will be distributed to all hypotheses averagely, 
and then the new algorithm will degenerate to DS combination 
rule. When (0,1)σ ∈ , part of the conflict will be kept as useful 
and the rest will be distributed averagely, then the new 
algorithm is the synthesis of DSm and DS combination rules. 

The new algorithm uses the degree of similarity as the 
controlling factor to adjust the fusion result adaptively. Let s  
be the number of sources. If 2s = , then 1 2( , )Sim m mσ = ; 
if 2s > , then min{ ( , ) | , 1, , }i jSim m m i j sσ = = . 

While there are more than two sources to be fused, the 
new combination rule can be defined as 

1
'

( ) ( )
( ) , ,

1
i

j i
A X j s

m A P X
m X X D X

k
φ= ≤ ≤ Θ

+
= ∀ ∈ ≠

−

∑ ∏
∩     (10) 

where 'k kσ= , 
1

( )
i

j i
A j s

k m A
φ= ≤ ≤
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∩

. 

C. Conflict distribution rule 
To copy with the complex constraints in real systems, 

Dezert proposed the hybrid DSm combination rule, which 
works properly even if in high degree of conflict. However, 
due to the big number of element in DΘ , it cannot offer quick 
convergence and cost too much time for calculation. To 
achieve a better performance, some new distribution rules 
based on the DSm rule are put forward and are classified as 
PCR1~PCR6 according to distribution rules ([11]). It is 
remarked that PCR5 is thought to be the most precise in 
distribution and its combination rule is defined as 
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where ,X D X φΘ∈ ≠ . 
According to PCR5, the conflicting information caused 

by X  and Y will be distributed to themselves without 
considering of their union. In fact, the conflicting information 
is decompounded to two parts as  1 2( ) ( )m X m Y  
and 2 1( ) ( )m X m Y , which will be distributed separately. 
Hypotheses X  and Y will get the conflicting information in 
proportion to their basic belief assignments. Due to the high 
performance, PCR5 is widely used in real systems. As an 
upgraded version of PCR5, PCR6 is the latest rule which is 
used to fuse more bodies of evidence and has also been 
applied in real systems.  

Our algorithm also adopts the PCR5 for conflict 
distribution, and then the item ( )P X  in formula (9) could be 
rewritten as: 

2 2
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If there are more than two sources, they can be combined 
one by one according to PCR5. In addition, they can also be 
combined according to PCR6, and the item ( )P X  in formula 
(9) could be rewritten as 
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where 
,

( )
1,i

j j i
j

j j i
σ

<⎧
= ⎨ + ≥⎩

. 

D. Realization of the new algorithm 
Let 1{ , , }nθ θΘ =  be a frame of discernment with n 

hypotheses. 1( )im A  and 2 ( )jm B  are the basic belief 
functions of two sources which are independent with each 
other, where 1( ) 1

i

i
A D

m A
Θ∈

=∑ , 2 ( ) 1
j

j
B D

m B
Θ∈

=∑ . The new self-

adaptive fusion algorithm based on DST and DSmT can be 
described as following four steps. Here we use ( )m X  to 
denote the fusion result. 
Step1. ,X D X φΘ∀ ∈ ≠ , set ( ) 0m X =  and 0k = . Compute 

1 2( , )Dis m m  , 1 2( , )Sim m m , and 1 2( , )Sim m mσ = .  
Step2. , 1, 2,i j∀ = , compute 1 2( ) ( )i jm A m B . 
If i jA B φ≠∩ , then renew ( )i jm A B∩  with 

1 2( ) ( ) ( )i j i jm A B m A m B+∩  , else renew k with 

1 2( ) ( )i jk m A m B+  , renew ( )im A  with 
2
1 2 1 2( ) (1 ) ( ) ( ) / ( ( ) ( ))i i j i jm A m A m B m A m Bσ+ − +  ,  and 

renew ( )jm B  with 
2

1 2 1 2( ) (1 ) ( ) ( ) / ( ( ) ( ))j i j i jm B m A m B m A m Bσ+ − + ;  
Step3. If all of 1 2( ) ( )i jm A m B  have been computed, go to 
step4; otherwise, go to step 2; 
Step4. X DΘ∀ ∈ , if X φ= , ( ) 0m X = ; otherwise, 

( ) ( ) / (1 )m X m X kσ= − . 

IV. NUMERICAL EXAMPLE

Suppose five sensors are used to detect targets which are 
independent with each other. Let { , , }A B CΘ =  be the frame 
of discernment. Elements in Θ  are exclusive. 
Example 1 (no conflicting evidence): The basic belief 
assignments offered by five sensors are given as follows. 
Evidence 1: 1 1 1( ) 0.5, ( ) 0.2, ( ) 0.3m A m B m C= = = ; 
Evidence 2: 2 2 2( ) 0.6, ( ) 0.2, ( ) 0.2m A m B m C= = = ; 
Evidence 3: 3 3 3( ) 0.55, ( ) 0.1, ( ) 0.35m A m B m C= = = ; 
Evidence 4: 4 4 4( ) 0.55, ( ) 0.1, ( ) 0.35m A m B m C= = = ; 
Evidence 5: 5 5 5( ) 0.55, ( ) 0.1, ( ) 0.35m A m B m C= = = ; 

It is easy to see that all bodies of evidence support the 
identity A and they are in low degree of conflict. Fusion 
results offered by different combination rules are given in 
table 1. 
Example 2 (one conflicting body of evidence): The basic 
belief assignments offered by five sensors are given as 
follows. 
Evidence 1: 1 1 1( ) 0.5, ( ) 0.2, ( ) 0.3m A m B m C= = = ; 
Evidence 2: 2 2 2( ) 0, ( ) 0.9, ( ) 0.1m A m B m C= = = ; 
Evidence 3: 3 3 3( ) 0.55, ( ) 0.1, ( ) 0.35m A m B m C= = = ; 
Evidence 4: 4 4 4( ) 0.55, ( ) 0.1, ( ) 0.35m A m B m C= = = ; 
Evidence 5: 5 5 5( ) 0.55, ( ) 0.1, ( ) 0.35m A m B m C= = = ; 

It is obviously that most bodies of evidence support the 
identity A but the second body of evidence supports the 
identity B. In other words, they are in high degree of conflict. 
Fusion results offered by different combination rules are given 
in table 2. 
Example 3 (two conflicting bodies of evidence): The basic 
belief assignments offered by five sensors are given as 
follows. 
Evidence 1: 1 1 1( ) 0.5, ( ) 0.2, ( ) 0.3m A m B m C= = = ; 
Evidence 2: 2 2 2( ) 0, ( ) 0.9, ( ) 0.1m A m B m C= = = ; 
Evidence 3: 3 3 3( ) 0.3, ( ) 0.6, ( ) 0.1m A m B m C= = = ; 
Evidence 4: 4 4 4( ) 0.55, ( ) 0.1, ( ) 0.35m A m B m C= = = ; 
Evidence 5: 5 5 5( ) 0.55, ( ) 0.1, ( ) 0.35m A m B m C= = = ; 

As in example 2, most bodies of evidence support the 
identity A, but there are two bodies of evidence support the 
identity B. They are also in high degree of conflict. Fusion 
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results offered by different combination rules are given in table 3. 

TABLE 1.   FUSION RESULTS OF EXAMPLE 1 

Fusion algorithm Element of DΘ
1 2m m 1 2 3m m m 1 2 3 4m m m m 1 2 3 4 5m m m m m

DST 

A 0.75 0.8684 0.9213 0.9503
B 0.1 0.0211 0.0041 0.0007
C 0.15 0.1105 0.0746 0.049

PCR5  

A 0.6529 0.7087 0.7373 0.7506
B 0.1426 0.0602 0.0281 0.0201
C 0.2045 0.2311 0.2346 0.2293

New self-adaptive 
combination rule 

A 0.7289 0.8235 0.8598 0.8755
B 0.1092 0.0303 0.0113 0.008
C 0.1619 0.1462 0.1289 0.1165

TABLE 2.   FUSION RESULTS OF EXAMPLE 2 

Fusion algorithm Element of DΘ
1 2m m 1 2 3m m m 1 2 3 4m m m m 1 2 3 4 5m m m m m

DST 

A 0 0 0 0
B 0.8571 0.6316 0.3288 0.1228
C 0.1429 0.3684 0.6712 0.8772

PCR5 

A 0.2024 0.37 0.5101 0.6154
B 0.6851 0.4482 0.258 0.1247
C 0.1125 0.1818 0.2319 0.2599

New self-adaptive 
combination rule 

A 0.1797 0.3727 0.5724 0.7366
B 0.7044 0.4441 0.2068 0.0610
C 0.1159 0.1832 0.2208 0.2024

TABLE 3.   FUSION RESULTS OF EXAMPLE 3 

Fusion algorithm Element of DΘ
1 2m m 1 2 3m m m 1 2 3 4m m m m 1 2 3 4 5m m m m m

DST 

A 0 0 0 0
B 0.8571 0.9730 0.9114 0.7461
C 0.1429 0.0270 0.0886 0.2539

PCR5 

A 0.2024 0.1920 0.3413 0.4827
B 0.6851 0.7615 0.5116 0.3068
C 0.1125 0.0465 0.1471 0.2105

New self-adaptive 
combination rule 

A 0.1797 0.1246 0.2962 0.4904
B 0.7044 0.8467 0.5791 0.3222
C 0.1159 0.0287 0.1247 0.1874

Table 1 shows us that, DST is very suitable for fusing 
bodies of evidence in low degree of conflict. However, 
because PCR5 keeps the conflicting focal elements, the 
support degree of A is just 0.7506 when fusing the fifth body 
of evidence. It has been shown in Fig.3 that the degree of A 
offered by PCR5 is much less than the value offered by DST 
(0.9503). When applying the new self-adaptive algorithm, the 
support degree of A is 0.8755, which achieves a great 
improvement for that of PCR5. In other words, the new 
algorithm can fuse the sources of evidence in low degree of 
conflict well. 

It can be seen from table 2 that, due to the high degree of 
conflict, the mass of A in fusion results by applying the  DST 
rule is always 0. Obviously, it is illogical in real world. By 
using the PCR5 rule, one can make the right decision. 

However, we can see from Fig.4 that PCR5 rule could only 
offer slow convergence, while the new self-adaptive fusion 
algorithm not only overcomes the shortage of DST whose 
fusion result is illogical but also makes the right decision with 
quick convergence. 

Table 3 gives the fusion results of example 3. Although 
there are two bodies of evidence which are in conflict with 
other evidence, our algorithm and PCR5 will give the right 
results. Besides, it can be seen from Fig.5 that, as the number 
of bodies of evidence increases, the new algorithm will get a 
better performance on convergence than PCR5.  In conclusion, 
the new self-adaptive fusion algorithm is the best one among 
the three algorithms while dealing with high degree of conflict. 
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Fig.3. Support degree of A in Example 1 

Fig.4. Support degree of A in Example 2 

Fig.5. Support degree of A in Example 3 

To sum up, the new self-adaptive algorithm can deal with 
high degree of conflict with a good performance on 
convergence. 

V. CONCLUSION 
Based on DST and DSmT, this paper proposes a new 

self-adaptive fusion algorithm. A controlling factor is 
introduced to avoid setting of the conflict threshold. 
Simulation results show that the new model can reach a 
preferable fusion result no matter the sources of evidence are 
in high degree of conflict or not. Furthermore, the new 
algorithm offers a quick convergence and it is more 
appropriate to be used in the real fusion system. 
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On the Quality of Optimal Assignment 
for Data Association

Jean Dezert
Kaouthar Benameur

Abstract. In this paper, we present a method based on belief functions
to evaluate the quality of the optimal assignment solution of a classical
association problem encountered in multiple target tracking applications.
The purpose of this work is not to provide a new algorithm for solving
the assignment problem, but a solution to estimate the quality of the
individual associations (pairings) given in the optimal assignment solu-
tion. To the knowledge of authors, this problem has not been addressed
so far in the literature and its solution may have practical aspects for
improving the performances of multisensor-multitarget tracking systems.

Keywords: Data association; PCR6 rule; Belief function.

1 Introduction

Efficient algorithms for modern multisensor-multitarget tracking (MS-MTT) sys-
tems [1, 2] require to estimate and predict the states (position, velocity, etc) of the
targets evolving in the surveillance area covered by the sensors. The estimations
and the predictions are based on sensors measurements and dynamical models
assumptions. In the monosensor context, MTT requires to solve the data asso-
ciation (DA) problem to associate the available measurements at a given time
with the predicted states of the targets to update their tracks using filtering
techniques (Kalman filter, Particle filter, etc). In the multisensor MTT context,
we need to solve more difficult multi-dimensional assignment problems under
constraints. Fortunately, efficient algorithms have been developed in operational
research and tracking communities for formalizing and solving these optimal as-
signments problems. Several approaches based on different models can be used
to establish rewards matrix, either based on the probabilistic framework [1, 3],
or on the belief function (BF) framework [4–7]. In this paper, we do not focus on
the construction of the rewards matrix1, and our purpose is to provide a method
to evaluate the quality (interpreted as a confidence score) of each association
(pairing) provided in the optimal solution based on its consistency (stability)
with respect to all the second best solutions.

1 We assume that the rewards matrix is known and has been obtained by a method
chosen by the user, either in the probabilistic or in the BF framework.

Originally published as Dezert J., Benameur K., On the quality of 
optimal assignment for data association, in Proc. of Belief 2014 Conf. 
Oxford, UK, Sept. 26-29, 2014, and reprinted with permission.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

239



The simple DA problem under concern can be formulated as follows. We have
m > 1 targets Ti (i = 1, . . . ,m), and n > 1 measurements2 zj (j = 1, . . . , n)
at a given time k, and a m × n rewards (gain/payoff) matrix Ω = [ω(i, j)]
whose elements ω(i, j) ≥ 0 represent the payoff (usually homogeneous to the
likelihood) of the association of target Ti with measurement zj, denoted (Ti, zj).
The data association problem consists in finding the global optimal assignment
of the targets to some measurements by maximizing3 the overall gain in such a
way that no more than one target is assigned to a measurement, and reciprocally.

Without loss of generality, we can assume ω(i, j) ≥ 0 because if some elements
ω(i, j) of Ω were negative, we can always add the same maximal negative value
to all elements of Ω to work with a new payoff matrix Ω

′ = [ω′(i, j)] having all
elements ω′(i, j) ≥ 0, and we get the same optimal assignment solution with Ω

and with Ω
′. Moreover, we can also assume, without loss of generality m ≤ n,

because otherwise we can always swap the roles of targets and measurements in
the mathematical problem definition by working directly with Ω

t instead, where
the superscript t denotes the transposition of the matrix. The optimal assignment
problem consists of finding the m × n binary association matrix A = [a(i, j)]
which maximize the global rewards R(Ω,A) given by

R(Ω,A) ,
m
∑

i=1

n
∑

j=1

ω(i, j)a(i, j) (1)

Subject to











∑n

j=1 a(i, j) = 1 (i = 1, . . . ,m)
∑m

i=1 a(i, j) ≤ 1 (j = 1, . . . , n)

a(i, j) ∈ {0, 1} (i = 1, . . . ,m and j = 1, . . . , n)

(2)

The association indicator value a(i, j) = 1 means that the corresponding
target Ti and measurement zj are associated, and a(i, j) = 0 means that they
are not associated (i = 1, . . . ,m and j = 1, . . . , n).

The solution of the optimal assignment problem stated in (1)–(2) is well
reported in the literature and several efficient methods have been developed in
the operational research and tracking communities to solve it. The most well-
known algorithms are Kuhn-Munkres (a.k.as Hungarian) algorithm [8, 9] and its
extension to rectangular matrices proposed by Bourgeois and Lassalle in [10],
Jonker-Volgenant method [11], and Auction [12]. More sophisticated methods
using Murty’s method [13], and some variants [3, 14–19], are also able to provide
not only the best assignment, but also the m-best assignments. We will not
present in details all these classical methods because they have been already
well reported in the literature [20, 21], and they are quite easily accessible on the

2 In a multi-sensor context targets can be replaced by tracks provided by a given
tracker associated with a type of sensor, and measurements can be replaced by
another tracks set. In different contexts, possible equivalents are assigning personnel
to jobs or assigning delivery trucks to locations.

3 In some problems, Ω = [ω(i, j)] represents a cost matrix whose elements are the
negative log-likelihood of association hypotheses. In this case, the data association
problems consists in finding the best assignment that minimizes the overall cost.
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web. In this paper, we want to provide a confidence level (i.e. a quality indicator)
in the optimal data association solution. More precisely, we are searching an
answer to the question: how to measure the quality of the pairings a(i, j) = 1
provided in the optimal assignment solution A? The necessity to establish a
quality indicator is motivated by the following three main reasons:

1. In some practical tracking environment with the presence of clutter, some
association decisions (a(i, j) = 1) are doubtful. For these unreliable associ-
ations, it is better to wait for new information (measurements) instead of
applying the hard data association decision, and making potentially serious
association mistakes.

2. In some multisensor systems, it can be also important to save energy con-
sumption for preserving a high autonomy capacities of the system. For this
goal, only the most trustful specific associations provided in the optimal
assignment have to be selected and used instead of all of them.

3. The best optimal assignment solution is not necessarily unique. In such sit-
uation, the establishment of quality indicators may help in selecting one
particular optimal assignment solution among multiple possible choices.

Before presenting our solution in Section 2, one must recall that the best, as well
as the 2nd-best, optimal assignment solutions are unfortunately not necessarily
unique. Therefore, we must also take into account the possible multiplicity of
assignments in the analysis of the problem. The multiplicity index of the best
optimal assignment solution is denoted β1 ≥ 1, and the multiplicity index of the
2nd-best optimal assignment solution is denoted β2 ≥ 1, and we will denote the

sets of corresponding assignment matrices by A1 = {A
(k1)
1 , k1 = 1 . . . , β1} and

by A2 = {A
(k2)
2 , k2 = 1 . . . , β2}. The next simple example illustrates a case with

multiplicity of 2nd-best assignment solutions for the reward matrix Ω1.

Example: β1 = 1 and β2 = 4 (i.e. no multiplicity of A1 and multiplicity of A2)

Ω1 =

[
1 11 45 30
17 8 38 27
10 14 35 20

]

This reward matrix provides a unique best assignmentA1 providingR1(Ω1,A1) =
86, and β2 = 4 second-best assignment solutions providing R2(Ω1,A

k2

2 ) = 82
(k2 = 1, 2, 3, 4) given by

A1 =

[
0 0 1 0
0 0 0 1
0 1 0 0

]

Ak2=1
2 =

[
0 0 0 1
0 0 1 0
0 1 0 0

]

, Ak2=2
2 =

[
0 0 1 0
1 0 0 0
0 0 0 1

]

, Ak2=3
2 =

[
0 0 1 0
0 0 0 1
1 0 0 0

]

, Ak2=4
2 =

[
0 0 0 1
1 0 0 0
0 0 1 0

]

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

241



2 Quality of the Associations of the Optimal Assignment

To establish the quality of the specific associations (pairings) (i, j) satisfying
a1(i, j) = 1 belonging to the optimal assignment matrix A1, we propose to use
both A1 and 2nd-best assignment solution A2. The basic idea is to compare the
values a1(i, j) with a2(i, j) obtained in the best and in the 2nd-best assignments
to identify the change (if any) of the optimal pairing (i, j). Our quality indicator
will depend on both the stability of the pairing and its relative impact in the
global reward. The proposed method works also when the 2nd-best assignment
solution A2 is not unique (as in our example). The proposed method will also
help to select the best (most trustful) optimal assignment in case of multiplicity
of A1 matrices.

2.1 A Simplistic Method (Method I)

Before presenting our sophisticate method based on belief functions, let’s first
present a simplistic intuitive method (called Method I). For this, let’s assume at
first that A1 and A2 are unique (no multiplicity occurs). The simplistic method
uses only the ratio of global rewards ρ , R2(Ω,A2)/R1(Ω,A1) to measure the
level of uncertainty in the change (if any) of pairing (i, j) provided in A1 and A2.
More precisely, the quality (trustfulness) of pairings in an optimal assignment
solution A1, denoted

4 qI(i, j), is simply defined as follows for i = 1, . . . ,m and
j = 2, . . . , n:

qI(i, j) ,











1, if a1(i, j) + a2(i, j) = 0

1− ρ if a1(i, j) + a2(i, j) = 1

1, if a1(i, j) + a2(i, j) = 2

(3)

By adopting such definition, one commits the full confidence to the compo-
nents (i, j) of A1 and A2 that perfectly match, and a lower confidence value (a
lower quality) of 1 − ρ to those that do not match. To take into account the
eventual multiplicities (when β2 > 1) of the 2nd-best assignment solutions Ak2

2 ,
k2 = 1, 2, . . . , β2, we need to combine the QI(A1,A

k2

2 ) values. Several methods
can be used for this, in particular we can use either:

– A weighted averaging approach: The quality indicator component qI(i, j)
is then obtained by averaging the qualities obtained from each comparison
of A1 with Ak2

2 . More precisely, one will take:

qI(i, j) ,
β2
∑

k2=1

w(Ak2

2 )qk2

I (i, j) (4)

where qk2

I (i, j) is defined as in (3) (with a2(i, j) replaced by ak2

2 (i, j) in

the formula), and where w(Ak2

2 ) is a weighting factor in [0, 1], such that
∑β2

k2=1 w(A
k2

2 ) = 1. Since all assignments Ak2

2 have the same global reward

value R2, then we suggest to take w(Ak2

2 ) = 1/β2. A more elaborate method

4 The subscript I in qI(i, j) notation refers to Method I.
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would consist to use the quality indicator of Ak2

2 based on the 3rd-best
solution, which can be itself computed from the quality of the 3rd assignment
solution based on the 4th-best solution, and so on by a similar mechanism.
We however don’t give more details on this due to space constraints.

– A belief-based approach (see [22] for basics on belief functions): A second
method would express the quality by a belief interval [qmin

I (i, j), qmax
I (i, j)]

in [0, 1] instead of single real number qI(i, j) in [0, 1]. More precisely, one
can compute the belief and plausibility bounds of the quality by taking
qmin
I (i, j) ≡ Bel(a1(i, j)) = mink2

qk2

I (i, j) and qmax
I (i, j) ≡ Pl(a1(i, j)) =

maxk2
qk2

I (i, j), with qk2

I (i, j) given by (3) and a2(i, j) replaced by ak2

2 (i, j)
in the formula. Hence for each association a1(i, j), one can define a basic
belief assignment (BBA) mij(.) on the frame of discernment Θ , {T =
trustful,¬T = not trustful}, which will characterize the quality of the pairing
(i, j) in the optimal assignment solution A1, as follows:











mij(T ) = qmin
I (i, j)

mij(¬T ) = 1− qmax
I (i, j)

mij(T ∪ ¬T ) = qmax
I (i, j) − qmin

I (i, j)

(5)

Remark: In practice, only the pairings5 (i, j) such that a1(i, j) = 1 are use-
ful in tracking algorithms to update the tracks. Therefore, we don’t need to
pay attention (compute and store) the qualities of components (i, j) such that
a1(i, j) = 0.

2.2 A More Sophisticate and Efficient Method (Method II)

The previous method can be easily applied in practice but it does not work very
well because the quality indicator depends only on the ρ factor, which means that
all mismatches between the best assignment A1 and the 2nd-best assignment
solution A2 have their quality impacted in the same manner (they are all taken
as 1 − ρ). As a simple example, if we consider the rewards matrix Ω1 given in
our example, we will have ρ = R2(Ω1,A

k2

2 )/R1(Ω1,A1) = 82/86 ≈ 0.95, and
we will get using method I with the weighting averaging approach (using same
w(Ak2

2 ) = 1/β2 = 0.25 for k2 = 1, 2, 3, 4) the following quality indicator matrix:

QI(A1,A2) =
1

β2

β2
∑

k2=1

QI(A1,A
k2

2 ) =





1.0000 1.0000 0.5233 0.5233
0.5233 1.0000 0.7616 0.2849

0.7616 0.2849 0.7616 0.7616



 (6)

We observe that optimal pairings (2,4) and (3,2) get the same quality value
0.2849 with the method I (based on averaging), even if these pairings have dif-
ferent impacts in the global reward value, which is abnormal. If we use the
method I with the belief interval measure based on (5), the situation is worst
because the three optimal pairings (1,3), (2,4) and (3,2) will get exactly same
belief interval values [0.0465,1]. To take into account, and in a better way, the

5 given in the optimal solution found for example with Murty’s algorithm.
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reward values of each specific association given in the best assignment A1 and
in the 2nd-best assignment Ak2

2 , we propose to use the following construction of
quality indicators depending on the type of matching (called Method II):

– When a1(i, j) = ak2

2 (i, j) = 0, one has full agreement on “non-association”
(Ti, zj) in A1 and in Ak2

2 and this non-association (Ti, zj) has no impact on

the global rewards values R1(Ω,A1) and R2(Ω,Ak2

2 ), and it will be useless.
Therefore, we can set its quality arbitrarily to qk2

II (i, j) = 1.

– When a1(i, j) = ak2

2 (i, j) = 1, one has a full agreement on the association
(Ti, zj) in A1 and in Ak2

2 and this association (Ti, zj) has different impacts in

the global rewards values R1(Ω,A1) and R2(Ω,Ak2

2 ). To qualify the quality
of this matching association (Ti, zj), we define the two BBA’s onX , (Ti, zj)
and X ∪ ¬X (the ignorance), for s = 1, 2:

{

ms(X) = as(i, j) · ω(i, j)/Rs(Ω,As)

ms(X ∪ ¬X) = 1−ms(X)
(7)

Applying the conjunctive rule of fusion, we get

{

m(X) = m1(X)m2(X) +m1(X)m2(X ∪ ¬X) +m1(X ∪ ¬X)m2(X)

m(X ∪ ¬X) = m1(X ∪ ¬X)m2(X ∪ ¬X)
(8)

Applying the pignistic transformation6 [24], we get finallyBetP (X) = m(X)+
1
2 ·m(X ∪ ¬X) and BetP (¬X) = 1

2 ·m(X ∪ ¬X). Therefore, we choose the

quality indicator as qk2

II (i, j) = BetP (X).

– When a1(i, j) = 1 and ak2

2 (i, j) = 0, one has a disagreement (conflict) on
the association (Ti, zj) in A1 and in (Ti, zj2) in Ak2

2 , where j2 is the mea-
surement index such that a2(i, j2) = 1. To qualify the quality of this non-
matching association (Ti, zj), we define the two following basic belief assign-

ments (BBA’s) of the propositions X , (Ti, zj) and Y , (Ti, zj2)

{

m1(X) = a1(i, j) ·
ω(i,j)

R1(Ω,A1)

m1(X ∪ Y ) = 1−m1(X)
and







m2(Y ) = a2(i, j2) ·
ω(i,j2)

R2(Ω,A
k2
2

)

m2(X ∪ Y ) = 1−m2(Y )
(9)

Applying the conjunctive rule, we get m(X ∩ Y = ∅) = m1(X)m2(Y ) and











m(X) = m1(X)m2(X ∪ Y )

m(Y ) = m1(X ∪ Y )m2(Y )

m(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y )

(10)

Because we need to work with a normalized combined BBA, we can choose
different rules of combination (Dempster-Shafer’s, Dubois-Prade’s,Yager’s

6 We have chosen here BetP for its simplicity and because it is widely known, but
DSmP could be used instead for expecting better performances [23].
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rule [23], etc). In this work, we recommend the Proportional Conflict Redis-
tribution rule no. 6 (PCR6), proposed originally in DSmT framework [23],
because it has been proved very efficient in practice. So, we get with PCR6:











m(X) = m1(X)m2(X ∪ Y ) +m1(X) · m1(X)m2(Y )
m1(X)+m2(Y )

m(Y ) = m1(X ∪ Y )m2(Y ) +m2(X) · m1(X)m2(Y )
m1(X)+m2(Y )

m(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y )

(11)

Applying the pignistic transformation, we get finally BetP (X) = m(X)+ 1
2 ·

m(X ∪ Y ) and BetP (Y ) = m(Y ) + 1
2 ·m(X ∪ Y ). Therefore, we choose the

quality indicators as follows: qk2

II (i, j) = BetP (X), and qk2

II (i, j2) = BetP (Y ).

The absolute quality factor Qabs(A1,A
k2

2 ) of the optimal assignment given in
A1 conditioned by Ak2

2 , for any k2 ∈ {1, 2, . . . , β2} is defined as

Qabs(A1,A
k2

2 ) ,
m
∑

i=1

n
∑

j=1

a1(i, j)q
k2

II (i, j) (12)

Example (continued): If we apply the Method II (using PCR6 fusion rule) to
the rewards matrix Ω1, then we will get the following quality matrix (using
weighted averaging approach)

QII(A1,A2) =
1

β2

β2∑

k2=1

QII(A1,A
k2

2 ) =

[
1.0000 1.0000 0.7440 0.7022
0.7200 1.0000 0.8972 0.5753

0.8695 0.4957 0.9119 0.8861

]

with the absolute quality factors Qabs(A1,A
k2=1
2 ) ≈ 1.66, Qabs(A1,A

k2=2
2 ) ≈

1.91, Qabs(A1,A
k2=3
2 ) ≈ 2.19, Qabs(A1,A

k2=4
2 ) ≈ 1.51. Naturally, we get

Qabs(A1,A
k2=3
2 ) > Qabs(A1,A

k2=2
2 ) > Qabs(A1,A

k2=1
2 ) > Qabs(A1,A

k2=4
2 )

because A1 has more matching pairings with Ak2=3
2 than with other 2nd-best

assignment Ak2

2 (k2 6= 3), and those pairings have also the strongest impacts in
the global reward value. One sees that the quality matrix QII differentiates the
qualities of each pairing in the optimal assignment A1 as expected (contrari-
wise to Method I). Clearly, with Method I we obtain the same quality indicator
value 0.2849 for the specific associations (2,4) and (3,2) which seems intuitively
not very reasonable because the specific rewards of these associations impact
differently the global rewards result. If the method II based on the belief in-
terval measure computed from (5) is preferred7, we will get respectively for the
three optimal pairings (1,3), (2,4) and (3,2) the three distinct belief interval
[0.5956,0.8924], [0.4113,0.7699] and [0.3524,0.6529]. These belief intervals show
that the ordering of quality of optimal pairings (based either on the lower bound,
or on the upper bound of belief interval) is consistent with the ordering of qual-
ity of optimal pairings in QII(A1,A2) computed with the averaging approach.
Method II provides a better effective and comprehensive solution to estimate the
quality of each specific association provided in the optimal assignment solution
A1.

7 just in case of multiplicity of second best assignments.
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3 Conclusion

In this paper we have proposed a method based on belief functions for estab-
lishing the quality of pairings belonging to the optimal data association (or as-
signment) solution provided by a chosen algorithm. Our method is independent
of the choice of the algorithm used in finding the optimal assignment solution,
and, in case of multiple optimal solutions, it provides also a way to select the
best optimal assignment solution (the one having the highest absolute quality
factor). The method developed in this paper is general in the sense that it can be
applied to different types of association problems corresponding to different sets
of constraints. This method can be extended to SD-assignment problems. The
application of this approach in a realistic multi-target tracking context is under
investigations and will be reported in a forthcoming publication if possible.
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Comparison of Identity Fusion Algorithms Using 
Estimations of Confusion Matrices

G. Golino
A. Graziano

A. Farina
W. Mellano

F. Ciaramaglia 

Abstract— Scope of this paper is to investigate the 
performances of different identity declaration fusion algorithms in 
terms of probability of correct classification, supposing that the 
information for combination of the inferences from the different 
classifier is affected by measurement errors. In particular, these 
information have been assumed to be provided in the form of 
confusion matrices. Six identity fusion algorithms from literature 
with different complexity have been included in the comparison: 
heuristic methods such as voting and Borda Count, Bayes’ and 
Dempster-Shafer’s methods and the Proportional Redistribution 
Rule n° 1 in the Dempster-Shafer’s framework. 

Keywords—target classification, identity fusion, confusion 
matrix. 

I. INTRODUCTION 

In a multi-sensor system the target classification performance 
can be improved by suitably combining the inferences 
generated by the autonomous classifiers of the single sensors 
(identity declaration fusion [1]). For this purpose it is desirable 
to use the available information about the classification 
performances of the single sensors. The confusion matrix, 
whose elements correspond to the likelihood of the different 
involved classes, is a compact and detailed way of 
representing the classification performance, from which the 
Probability of correct classification (Pcc) and the probability 
relative to the various misclassification errors can be derived. 
In particular the elements of the confusion matrix can be used 
to maximize the a-posterior Pcc according to Bayes’ theory. In 
this case, if the numerical values of the confusion matrix were 
errorless, the performance of the identity fusion would be 
optimal. However, in practice, these values are estimated and 
affected by errors. In these conditions, the Bayes’ rule does 
not always produce best results. In particular, in presence of 
strong-conflicting inferences and estimation errors, the 
application of Bayes’ rule can be not effective. It can be better 
to apply simpler combination rules as some heuristic methods 
that are more robust to errors.  
Dempster-Shafer’s theory has been presented as a 
generalization of Bayes’ theory in [2]. A recent work has 
disputed this claim, limiting its correctness to the case of 
uniform a-prior probabilities [3]. The problem of the 
Dempster-Shafer rule (and of Bayes’ rule) in presence of 
conflicting inferences has been pointed out by the well-known 
Zadeh’s paradox [4]. In this paper the performances of 

different algorithms that use estimated confusion matrices 
affected by errors to combine the inferences from the single 
classifiers are investigated. In particular the heuristic methods 
based on voting and on ranking (Borda count) are compared 
with the methods using Bayes’ and Dempster-Shafer’s rules. 
Moreover the effectiveness of the redistribution of the 
conflicting masses preserving the Dempster-Shafer 
framework, like Proportional Redistribution Rules (PCR) is 
evaluated. 

The paper is organized as follows: 
• in section II the identity fusion algorithms considered

in this paper are briefly described;
• in section III, four simple but representative identity

fusion problems are introduced as study cases and the
corresponding results using different mean values of
the estimation errors of the confusion matrices are
reported and commented;

• section IV gives the conclusions.

II. IDENTITY FUSION ALGORITHMS

The algorithms for the identity fusion considered in this paper 
are: 

• Majority Voting (MV),

• Weighted Voting (WV),

• Borda count,

• Bayes’ rule,

• Dempster-Shafer’s (D-S) rule with the following basic
belief mass assignment: “q-least commitment”, 

• Proportional Redistribution Rule n°1 (PCR1) with the
following basic belief mass assignment: “q-least 
commitment”. 

A brief description of the fusion algorithms follows. 

Majority voting [5] is the simplest method for the 
combination of inferences: each inferred class corresponds to a 
single vote and the selected class after fusion is the most voted 
class: all the inferences matter the same. In the modified 
weighted version, the different votes are weighted by the 
estimated Pcc of the voter/classifier. 

Voting methods use only the top choice of each classifier, 
but secondary choices often contain near misses that should not 
be overlooked. The Borda count [5] is a method in which 

Originally presented at the 17th International 
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Mellano, and F. Ciaramaglia - Comparison of identity 
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matrices. Printed with authors' permission.
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classes are ranked in order of preference; it gives each class a 
certain number of points corresponding to the position in which 
it is ranked by each classifier. The class with the highest 
scoring is then selected after fusion. 

Bayes’ theorem [1,4] links the degree of belief in a 
proposition before and after accounting for evidence (a-priori 
and a-posteriori probabilities). The a-posteriori probability of a 
combination of two or more evidences is obtained by the 
multiplication of the likelihoods of the single evidences (the 
independence of the evidences is assumed). 

Dempster–Shafer theory [1,4 and 5] allows to specify a 
degree of ignorance instead of being forced to supply 
probabilities that add to unity. In this formalism a degree of 
belief (also referred to as a Basic Belief Mass - BBM) is used 
rather than a Bayesian probability distribution. BBM values are 
assigned to sets of possibilities (union of one or more classes) 
rather than to a single class, probability is instead represented 
by intervals that are lower-bounded by the value “belief” (or 
“support”) and upper-bounded by the value “plausibility”. 
BBM values from different sources can be combined with 
Dempster-Shafer's rule of combination, assuming independent 
belief sources. There are more than one possible assignment for 
transforming probabilities into BBMs [7,8 and 9]. The “q-least 
commitment” basic belief mass assignment (that corresponds 
to the maximum compatible degree of ignorance) has been 
considered in this paper to transform the CM (Confusion 
Matrix) likelihoods and the a-priori probabilities into BBM 
values. 

Proportional Redistribution Rules (PCR) is a family of 
fusion rules for the combination of uncertain information 
allowing to deal with highly conflicting sources. The PCR rules 
can be used as alternatives to the Dempster-Shafer's 
combination rule. Six PCR rules (PCR1-PCR6) have been 
defined [10,11 and 12]: from PCR1 up to PCR6 one increases 
in one hand the complexity of the rules, but in other hand one 
improves the accuracy of the redistribution of conflicting 
masses. The basic common principle of PCR rules is to 
redistribute the conflicting mass proportionally with some 
functions depending on the sum of the masses assigned by the 
single inferences. PCR1 is the least accurate combination rule 
of the PCR family, but it is the simplest to implement and it has 
been considered in this paper. PCR2-6 implementations are 
significantly more complex because the conflicting mass is 
redistributed only to the non-empty set that are involved in the 
conflict (extra computer memory is needed to keep track of the 
conflicting hypotheses and extra computation load is needed 
for combining them). A particular interesting action point for 
further investigation would be testing the most efficient PCR 
rule (PCR6) [12]. 

A. Combination rules 

In this section, the rules of Bayes, Dempster-Shafer and 
PCR1 for the combination of two classifiers are briefly 
recalled. For further details and the generalization of the rules 
with more than two classifiers, see references [1], [4], [10] and 

[11]. Voting and Borda count combinations are not considered 
here because they consists simply in the sums of respectively 
the votes and the ranks.  

Let consider a set Ω  of possible exhaustive and mutually 
exclusive classes kC , with N being the cardinality of this set: 

{ }NCCC ,,, 21=Ω (1) 

Let suppose that the independent classifiers 1 and 2 infer 
respectively the classes iC and jC ; the a-posterior probability 

( )BACP k ∩12 of inferring the class kC  resulting from Bayes’
rule of combination is: 

( ) ( ) ( ) ( )

( ) ( ) ( )∑
=

⋅⋅

⋅⋅
=∩ N

h
hhjhi

kkjki
jik

CPCCPCCP

CPCCPCCP
CCCP

1
021

021
12

 (2) 

where: 

• ( )⋅0P  is the a-prior probabilities (without any
information obtained by previous classifications) of
the considered class;

• ( )xy CCP1 , ( )xy CCP2  are the probabilities that 

classifiers 1 and 2 infer the class yC  assuming that

the true class is xC  (likelihoods).

Let consider the power set Ω2  of Ω  as the set whose 
elements are all the possible subsets of Ω : 

{ } { }Ω∩∩=Ω⊆= −
Ω ,,,,,,,,Ø,:2 12121 NNNkk CCCCCCCFF  

(3) 

where Ø  is the empty set. The cardinality of Ω2  is N2 . 

Let suppose that the independent classifiers 1 and 2 assign 
respectively BBMs ( )⋅1m  and ( )⋅2m  to the elements  included
in the power set Ω2 ; the combination BBM ( )kFm12  of kF
resulting from Dempster-Shafer’s rule of combination is: 

( ) ( ) ( )
∑

∩= −

⋅
=

jik FFFji c

ji
k m

FmFm
Fm

/,

21
12 1

(4) 

where cm  is the global conflicting mass, defined as follow 

( ) ( )∑
=∩

⋅=
Ø/,

21
qp FFqp

qpc FmFmm   (5)

In the case of the PCR1 rule the combination BBM 
( )kFm12  of kF  is instead:

( ) ( ) ( ) ( ) ( )

( ) ( )( )
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FFFji

h
hh
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jik m
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III. STUDY CASES

Four simple but representative study cases (three different 
classifiers for a three classes problem) have been investigated, 
as follows: 

• complementary confusion matrices,

• supplementary confusion matrices,

• complementary conflicting confusion matrices,

• supplementary conflicting confusion matrices.

By complementary CMs it has been meant that the single 
classifiers show a complementary expertise in the recognition 
of the different classes. By supplementary CMs the different 
classifiers show similar behaviors. By conflicting CMs a 
possible overestimation of the performance of the single 
classifiers can make harder an effective combination of the 
contradictory inferences from different classifiers when they 
occur. A quantitative definition of complementary and 
supplementary CM can be found in [13]. 

In the following sub-sections, the estimated confusion 
matrices that have been selected for the four study cases are 
reported. The columns of the matrices represent the true 
classes, while the rows correspond to the inferred classes, so 
the element (k,h) of a matrix is an estimation of the probability 
of declaring kth class when the true class is the hth one: 

( ) ( )hTkDPhkM ii ≡≡= /ˆ,ˆ  (7) 

The a-prior probabilities of the different classes are 
assumed equal. A block diagram of the fusion system is shown 
in fig. 1. 

The performances of the six algorithms in correspondence 
of the identity fusion of six inferences (two independent 
inferences for each classifier) have been considered. The 
performances of the different algorithms have been computed 
with 1000 Monte Carlo trials, each generating independent 
samples of the true confusion matrices and a-prior 
probabilities. 

The results of the Monte Carlo trials are represented by the 
curves corresponding to Empirical Cumulative Distribution 
Function (ECDF) versus the Pcc. The x-axis values of Pcc have 
been computed exactly, that is the contribution of all the 
possible permutations of the single sensor inferences has been 
considered. 

A. Complementary confusion matrices 

The following confusion matrices corresponding to three 
different classifiers have been considered: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

40.030.00
30.040.010.0
30.030.090.0

ˆ
1M

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

90.030.030.0
040.030.0
10.030.040.0

ˆ
2M  (8) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

40.010.030.0
30.090.030.0
30.0040.0

ˆ
3M

The performance is dependent on the true target class (class 
1, 2 or 3):  

• the first classifier identifies correctly targets
belonging to class 1 (on average it makes only one
mistake in ten of its inferences), while it almost
randomly infers in correspondence of targets
belonging to class 2 or class 3,

• the second classifier identifies correctly targets
belonging to class 3 (on average it makes only one
mistake in ten of its inferences), while it almost
randomly infers in correspondence of targets
belonging to class 1 or class 2,

• the third classifier identifies correctly targets
belonging to class 2 (on average it makes only one
mistake in ten of its inferences), while it almost
randomly infers in correspondence of targets
belonging to class 1 or class 2.

The performances of the six different algorithms are 
reported in the fig. 2 and 3 in correspondence of an estimation 
of the confusion matrix by using respectively 30 and 10 
independent samples for each class. The performances of the 
single classifiers correspond to the dotted curves (indicated as 
C1, C2 and C3 in the legends of the figures). Bayes’ rule, 
Dempster-Shafer’s rule, Borda count and PCR1 give similar 
results, the performance of PCR1 is barely the best. The voting 
algorithms present significantly worse performance. 
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B. Supplementary confusion matrices 

The following confusion matrices corresponding to three 
different classifiers have been considered: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

70.020.010.0
10.070.020.0
20.010.070.0

ˆ
1M

⎥
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⎥

⎦

⎤

⎢
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⎢

⎣

⎡
=
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ˆ
2M  (9) 
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=
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ˆ
3M

In the second example, three classifiers with supplementary 
confusion matrices have been selected. A single classifier can 
recognize all the three classes with the same accuracy, but the 
accuracy differs from classifier to classifier:  

• the first classifier has an estimated probability of
correct classification equal to 70%,

• the second classifier has an estimated probability
of correct classification equal to 80%,

• the third classifier has an estimated probability of
correct classification equal to 60%.

The performances of the six different algorithms are 
reported in the fig. 4 and 5 in correspondence of  an estimation 
of the confusion matrix by using respectively 30 and 10 
independent samples for each class. The performances of the 
single classifiers correspond to the dotted curves (indicated as 
C1, C2 and C3 in the legends of the figures). All the algorithms 
give comparable performance. PCR1 and Bayes’ rule 
performance are exactly the same and they are slightly better 
than the others, weighted voting performs better than Borda 
count and majority voting. 

C. Complementary conflicting confusion matrices 

The following confusion matrices corresponding to three 
different classifiers have been considered: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

60.040.000.0
40.060.000.0
00.000.000.1

ˆ
1M

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

60.000.040.0
00.000.100.0
40.000.060.0

ˆ
2M (10) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00.100.000.0
00.060.040.0
00.040.060.0

ˆ
3M

In this third example, the three classifiers can be affected by 
conflicting inferences. As consequence, the application of 
Bayes’ rule to fusion leads to severe performance degradation 
with respect to heuristic methods. The problem arises from an 
overestimation of the performance of the single classifiers.  

The performances of the six different algorithms are 
reported in the fig. 6 and 7 in correspondence of an estimation 
of the confusion matrix by using respectively 30 and 10 
independent samples for each class. The performances of the 
single classifiers correspond to the dotted curves (indicated as 
C1, C2 and C3 in the legends of the figures). PCR1 gives the 
best result that is slight better than Borda count. Majority and 
weighted voting have coincident performance that are 
significantly worse than the one of PCR1. The performance of 
Bayes’ rule and Dempster-Shafer rule are perfectly coincident 
and worse than all the others because of the presence of 
conflicting inferences. 

D. Supplementary conflicting confusion matrices 

The following confusion matrices corresponding to three 
different classifiers have been considered: 

⎥
⎥
⎥⎦

⎤
⎢
⎢
⎢⎣

⎡
=

1.000.000.00
0.001.000.00
0.000.001.00

M̂M̂1 = 2 = M̂ 3  (11) 

In the forth example, three classifiers with identity 
confusion matrices as estimations have been selected: 
according to these estimations the single classifier is never 
wrong. If the classifiers disagree on the inferred class, the 
Bayes’ rule of fusion leads to severe performance degradation 
with respect to heuristic methods. 

The performances of the six different algorithms are 
reported in the fig. 8 and 9 in correspondence of an estimation 
of the confusion matrix by using respectively 30 and 10 
independent samples for each class. The performance of the 
single classifiers correspond to the dotted curves (indicated as 
C1, C2 and C3 in the legends of the figures). The performances 
of the voting algorithms, Borda count and PCR1 are perfectly 
coincident and near to 100%. The performances of Bayes’ rule 
and Dempster-Shafer rule are perfectly coincident and much 
worse than all the others because of the presence of conflicting 
inferences, even much worse than the performance of the 
single classifiers. 

E. Summary results 

In table I the average (over the 1000 Monte Carlo trials) 
Pcc is reported for all the investigated study cases. It has been 
reported also an intermediate case where 60 samples (20 
samples per class) for the estimation of each confusion matrix 
have been considered. It can be noted than PCR1 always brings 
the highest Pcc of all the six considered combination rules. 
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IV. CONCLUSIONS

Simulation results show that in the considered study cases, 
the algorithm using the PCR1 rule of combination brings the 
best performance of all the six considered alternatives and 
definitely overcomes Bayes’ and D-S’s rules in the cases where 
the probability of conflicts between the inferences is high. This 
performance difference increases with the decrease of the 
number of samples used for the estimation of the confusion 
matrices. This behavior is a consequence of the poor 
performance of the latter two combination methods in presence 
of conflicting inferences from the different classifier, as 
claimed by the Zadeh’s paradox. In two investigated study 
cases with conflicting confusion matrices Bayes’ and 

Dempster-Shafer rules perform even worse than heuristic 
approaches. 

In the cases where the conflict is less likely probable  the 
performance of the PCR1 is comparable with the ones of 
Bayes’ and D-S’s rules (the same or slightly better). 

The implementation of PCR1 slightly increases the 
computational complexity of D-S’s rule. Future work may be 
addressed to the comparison of the performance resulting by 
the application of more complex PCR rules to the inferences of 
classifiers whose accuracies are represented by conflicting 
confusion matrices. 
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Fig. 1.  Block diagram of the fusion system. 

Fig. 2.  ECDF versus Pcc with complementary confusion matrices 
(estimation from 30 samples per class). 

Fig. 3.  ECDF versus Pcc with complementary confusion matrices 
(estimation from 10 samples per class). 

Fig. 4.  ECDF versus Pcc with supplementary confusion matrices 
(estimation from 30 samples per class). 

Fig. 5.  ECDF versus Pcc with supplementary confusion matrices 
(estimation from 10 samples per class). 

Fig. 6.  ECDF versus Pcc with complementary conflicting confusion 
matrices (estimation from 30 samples per class). 
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Fig. 7.  ECDF versus Pcc with complementary conflicting confusion 
matrices (estimation from 10 samples per class). 

Fig. 8.  ECDF of Pcc with supplementary conflicting confusion matrixes 
(estimation from 30 samples per class). 

Fig. 9.  ECDF of Pcc with supplementary conflicting confusion matrixes 
(estimation from 10 samples per class). 

TABLE I. SUMMARY RESULTS (N IS THE TOTAL NUMBER OF SAMPLES). 

Study 
cases 

PROBABILITY OF CORRECT CLASSIFICATION (mean value, %)  
MAJORITY 

VOTING  
WEIGHTED 

VOTING  
BORDA
COUNT 

BAYES DEMPSTER 
SHAFER 

PCR1

N=30 N=60 N=90 N=30 N=60 N=90 N=30 N=60 N=90 N=30 N=60 N=90 N=30 N=60 N=90 N=30 N=60 N=90 
Compl. 

CMs 
67.8 72.4 73.9 67.8 72.4 73.9 73.9 78.9 80.7 73.1 79.3 81.6 73.0 79.4 81.6 74.8 80.5 82.4 

Supp. 
CMs 

82.3 86.9 88.4 83.9 88.4 89.9 82.7 87.4 88.8 84.3 88.9 90.4 84.0 88.7 90.2 84.3 88.9 90.4 

Compl. 
confl. 
CMs 

87.7 92.9 94.8 87.7 92.9 94.8 94.5 98.1 99.0 70.7 81.5 86.5 70.7 81.5 86.5 94.8 98.3 99.2 

Supp. 
confl. 
CMs 

98.8 99.8 99.9 98.8 99.8 99.9 98.8 99.8 99.9 62.5 75.5 81.8 62.5 75.5 81.8 98.8 99.8 99.9 
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Reliability and Importance  

Discounting of Neutrosophic Masses 

Florentin Smarandache 

Abstract. In this paper, we introduce for the first time the discounting of a

neutrosophic mass in terms of reliability and respectively the importance of 

the source. 

We show that reliability and importance discounts commute when 

dealing with classical masses. 

1. Introduction. Let Φ = {Φ1, Φ2, … , Φn} be the frame of discernment,

where 𝑛 ≥ 2, and the set of focal elements:

𝐹 = {𝐴1, 𝐴2, … , 𝐴𝑚}, for 𝑚 ≥ 1, 𝐹 ⊂ 𝐺𝛷. (1)

Let 𝐺𝛷 = (𝛷,∪,∩, 𝒞) be the fusion space.

A neutrosophic mass is defined as follows:

𝑚𝑛: 𝐺 → [0, 1]3

for any 𝑥 ∈ 𝐺, 𝑚𝑛(𝑥) = (𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥)), (2) 

where 𝑡(𝑥) = believe that 𝑥 will occur (truth); 

𝑖(𝑥) = indeterminacy about occurence; 

and 𝑓(𝑥) = believe that 𝑥 will not occur (falsity). 

Originally published in Smarandache, F. - Neutrosophic Theory and its 
Applications, Collected Papers, Vol. I. 2014. <hal-01092887v2>,  and 

reprinted with permission.
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Simply, we say in neutrosophic logic: 

𝑡(𝑥) = believe in 𝑥; 

𝑖(𝑥) = believe in neut(𝑥) 

[the neutral of 𝑥, i.e. neither 𝑥 nor anti(𝑥)]; 

and 𝑓(𝑥) = believe in anti(𝑥) [the opposite of 𝑥]. 

Of course, 𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥) ∈ [0, 1], and 

∑ [𝑡(𝑥) + 𝑖(𝑥) + 𝑓(𝑥)] = 1,𝑥∈𝐺  (3) 

while 

𝑚𝑛(ф) = (0, 0, 0).  (4) 

It is possible that according to some parameters (or data) a source is 

able to predict the believe in a hypothesis 𝑥 to occur, while according to other 

parameters (or other data) the same source may be able to find the believe 

in 𝑥 not occuring, and upon a third category of parameters (or data) the 

source may find some indeterminacy (ambiguity) about hypothesis 

occurence. 

An element 𝑥 ∈ 𝐺 is called focal if

𝑛𝑚(𝑥) ≠ (0, 0, 0), (5) 

i.e. 𝑡(𝑥) > 0 or 𝑖(𝑥) > 0 or 𝑓(𝑥) > 0.  

Any classical mass:

𝑚 ∶ 𝐺ф → [0, 1] (6) 

can be simply written as a neutrosophic mass as: 

𝑚(𝐴) = (𝑚(𝐴), 0, 0). (7) 
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2. Discounting a Neutrosophic Mass due to Reliability of the

Source.

Let 𝛼 = (𝛼1, 𝛼2, 𝛼3) be the reliability coefficient of the source, 𝛼 ∈

[0,1]3. 

Then, for any 𝑥 ∈ 𝐺𝜃 ∖ {𝜃, 𝐼𝑡},

where 𝜃 = the empty set 

and 𝐼𝑡 = total ignorance, 

𝑚𝑛(𝑥)𝑎 = (𝛼1𝑡(𝑥), 𝛼2𝑖(𝑥), 𝛼3𝑓(𝑥)),  (8) 

and 

𝑚𝑛(𝐼𝑡)𝛼 = (𝑡(𝐼𝑡) + (1 − 𝛼1) ∑ 𝑡(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

,

𝑖(𝐼𝑡) + (1 − 𝛼2) ∑ 𝑖(𝑥), 𝑓(𝐼𝑡) + (1 − 𝛼3) ∑ 𝑓(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

) 

(9), 
and, of course, 

𝑚𝑛(𝜙)𝛼 = (0, 0, 0). 

The missing mass of each element 𝑥, for 𝑥 ≠ 𝜙, 𝑥 ≠ 𝐼𝑡 , is transferred to 

the mass of the total ignorance in the following way: 

𝑡(𝑥) − 𝛼1𝑡(𝑥) = (1 − 𝛼1) ∙ 𝑡(𝑥) is transferred to 𝑡(𝐼𝑡),  (10) 

𝑖(𝑥) − 𝛼2𝑖(𝑥) = (1 − 𝛼2) ∙ 𝑖(𝑥) is transferred to 𝑖(𝐼𝑡), (11) 

and 𝑓(𝑥) − 𝛼3𝑓(𝑥) = (1 − 𝛼3) ∙ 𝑓(𝑥) is transferred to 𝑓(𝐼𝑡).  (12) 
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3. Discounting a Neutrosophic Mass due to the Importance of the

Source.

Let 𝛽 ∈ [0, 1] be the importance coefficient of the source. This discounting 

can be done in several ways. 

a. For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙},

𝑚𝑛(𝑥)𝛽1
= (𝛽 ∙ 𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥) + (1 − 𝛽) ∙ 𝑡(𝑥)), (13)

which means that 𝑡(𝑥), the believe in 𝑥, is diminished to 𝛽 ∙ 𝑡(𝑥), and the 

missing mass, 𝑡(𝑥) − 𝛽 ∙ 𝑡(𝑥) = (1 − 𝛽) ∙ 𝑡(𝑥), is transferred to the believe in 

𝑎𝑛𝑡𝑖(𝑥). 

b. Another way:

For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙}, 

𝑚𝑛(𝑥)𝛽2
= (𝛽 ∙ 𝑡(𝑥), 𝑖(𝑥) + (1 − 𝛽) ∙ 𝑡(𝑥), 𝑓(𝑥)), (14)

which means that 𝑡(𝑥), the believe in 𝑥, is similarly diminished to 𝛽 ∙ 𝑡(𝑥), 

and the missing mass (1 − 𝛽) ∙ 𝑡(𝑥) is now transferred to the believe in 

𝑛𝑒𝑢𝑡(𝑥). 

c. The third way is the most general, putting together the first and second

ways.

For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙}, 

𝑚𝑛(𝑥)𝛽3
= (𝛽 ∙ 𝑡(𝑥), 𝑖(𝑥) + (1 − 𝛽) ∙ 𝑡(𝑥) ∙ 𝛾, 𝑓(𝑥) + (1 − 𝛽) ∙ 𝑡(𝑥) ∙

(1 − 𝛾)), (15) 

where 𝛾 ∈ [0, 1] is a parameter that splits the missing mass (1 − 𝛽) ∙ 𝑡(𝑥) a 

part to  𝑖(𝑥) and the other part to 𝑓(𝑥). 

For 𝛾 = 0, one gets the first way of distribution, and when 𝛾 = 1, one 

gets the second way of distribution. 
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4. Discounting of Reliability and Importance of Sources in General

Do Not Commute.

a. Reliability first, Importance second.

For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡}, one has after reliability α discounting, where

𝛼 = (𝛼1, 𝛼2, 𝛼3): 

𝑚𝑛(𝑥)𝛼 = (𝛼1 ∙ 𝑡(𝑥), 𝛼2 ∙ 𝑡(𝑥), 𝛼3 ∙ 𝑓(𝑥)), (16) 

and 𝑚𝑛(𝐼𝑡)𝛼 = (𝑡(𝐼𝑡) + (1 − 𝛼1) ∙ ∑ 𝑡(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

, 𝑖(𝐼𝑡) + (1 − 𝛼2)

∙ ∑ 𝑖(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

, 𝑓(𝐼𝑡) + (1 − 𝛼3) ∙ ∑ 𝑓(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

)

≝ (𝑇𝐼𝑡
, 𝐼𝐼𝑡

, 𝐹𝐼𝑡
 ). (17) 

Now we do the importance β discounting method, the third importance 

discounting way which is the most general: 

𝑚𝑛(𝑥)𝛼𝛽3
= (𝛽𝛼1𝑡(𝑥), 𝛼2𝑖(𝑥) + (1 − 𝛽)𝛼1𝑡(𝑥)𝛾, 𝛼3𝑓(𝑥)

+ (1 − 𝛽)𝛼1𝑡(𝑥)(1 − 𝛾)) (18) 

and 

𝑚𝑛(𝐼𝑡)𝛼𝛽3 = (𝛽 ∙ 𝑇𝐼𝑡 , 𝐼𝐼𝑡 + (1 − 𝛽)𝑇𝐼𝑡 ∙ 𝛾, 𝐹𝐼𝑡 + (1 − 𝛽)𝑇𝐼𝑡 
(1 − 𝛾)). (19)

b. Importance first, Reliability second.

For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡}, one has after importance β discounting (third way):

𝑚𝑛(𝑥)𝛽3 = (𝛽 ∙ 𝑡(𝑥), 𝑖(𝑥) + (1 − 𝛽)𝑡(𝑥)𝛾, 𝑓(𝑥) + (1 − 𝛽)𝑡(𝑥)(1 − 𝛾))  (20)

and 

𝑚𝑛(𝐼𝑡)𝛽3
= (𝛽 ∙ 𝑡(𝐼𝐼𝑡

), 𝑖(𝐼𝐼𝑡
) + (1 − 𝛽)𝑡(𝐼𝑡)𝛾, 𝑓(𝐼𝑡) + (1 − 𝛽)𝑡(𝐼𝑡)(1 − 𝛾)).

(21) 
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Now we do the reliability 𝛼 = (𝛼1, 𝛼2, 𝛼3) discounting, and one gets: 

𝑚𝑛(𝑥)𝛽3𝛼 = (𝛼1 ∙ 𝛽 ∙ 𝑡(𝑥), 𝛼2 ∙ 𝑖(𝑥) + 𝛼2(1 − 𝛽)𝑡(𝑥)𝛾, 𝛼3 ∙ 𝑓(𝑥) + 𝛼3 ∙

(1 − 𝛽)𝑡(𝑥)(1 − 𝛾)) (22) 

and 

𝑚𝑛(𝐼𝑡)𝛽3𝛼 = (𝛼1 ∙ 𝛽 ∙ 𝑡(𝐼𝑡), 𝛼2 ∙ 𝑖(𝐼𝑡) + 𝛼2(1 − 𝛽)𝑡(𝐼𝑡)𝛾, 𝛼3 ∙ 𝑓(𝐼𝑡) +

𝛼3(1 − 𝛽)𝑡(𝐼𝑡)(1 − 𝛾)). (23) 

Remark.
We see that (a) and (b) are in general different, so reliability of sources 

does not commute with the importance of sources. 

5. Particular Case when Reliability and Importance Discounting of

Masses Commute.
Let’s consider a classical mass 𝑚: 𝐺𝜃 → [0, 1] (24) 

and the focal set 𝐹 ⊂ 𝐺𝜃 , 𝐹 = {𝐴1, 𝐴2, … , 𝐴𝑚}, 𝑚 ≥ 1, (25)

and of course 𝑚(𝐴𝑖) > 0, for 1 ≤ 𝑖 ≤ 𝑚. 

Suppose 𝑚(𝐴𝑖) = 𝑎𝑖 ∈ (0,1]. (26) 

a. Reliability first, Importance second.

Let 𝛼 ∈ [0, 1] be the reliability coefficient of 𝑚 (∙). 

For 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡}, one has 𝑚(𝑥)𝛼 = 𝛼 ∙ 𝑚(𝑥), (27)

and 𝑚(𝐼𝑡) = 𝛼 ∙ 𝑚(𝐼𝑡) + 1 − 𝛼. (28) 

Let 𝛽 ∈ [0, 1] be the importance coefficient of 𝑚 (∙). 

Then, for 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡},

𝑚(𝑥)𝛼𝛽 = (𝛽𝛼𝑚(𝑥), 𝛼𝑚(𝑥) − 𝛽𝛼𝑚(𝑥)) = 𝛼 ∙ 𝑚(𝑥) ∙ (𝛽, 1 − 𝛽), (29) 

considering only two components: believe that 𝑥 occurs and, respectively, 

believe that 𝑥 does not occur. 

Further on, 

𝑚(𝐼𝑡)𝛼𝛽 = (𝛽𝛼𝑚(𝐼𝑡) + 𝛽 − 𝛽𝛼, 𝛼𝑚(𝐼𝑡) + 1 − 𝛼 − 𝛽𝛼𝑚(𝐼𝑡) − 𝛽 + 𝛽𝛼) =

[𝛼𝑚(𝐼𝑡) + 1 − 𝛼] ∙ (𝛽, 1 − 𝛽). (30) 
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b. Importance first, Reliability second.

For 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡}, one has

𝑚(𝑥)𝛽 = (𝛽 ∙ 𝑚(𝑥), 𝑚(𝑥) − 𝛽 ∙ 𝑚(𝑥)) = 𝑚(𝑥) ∙ (𝛽, 1 − 𝛽), (31) 

and 𝑚(𝐼𝑡)𝛽 = (𝛽𝑚(𝐼𝑡), 𝑚(𝐼𝑡) − 𝛽𝑚(𝐼𝑡)) = 𝑚(𝐼𝑡) ∙ (𝛽, 1 − 𝛽). (32) 

Then, for the reliability discounting scaler α one has: 

𝑚(𝑥)𝛽𝛼 = 𝛼𝑚(𝑥)(𝛽, 1 − 𝛽) = (𝛼𝑚(𝑥)𝛽, 𝛼𝑚(𝑥) − 𝛼𝛽𝑚(𝑚)) (33) 

and 𝑚(𝐼𝑡)𝛽𝛼 = 𝛼 ∙ 𝑚(𝐼𝑡)(𝛽, 1 − 𝛽) + (1 − 𝛼)(𝛽, 1 − 𝛽) = [𝛼𝑚(𝐼𝑡) + 1 − 𝛼] ∙

(𝛽, 1 − 𝛽) = (𝛼𝑚(𝐼𝑡)𝛽, 𝛼𝑚(𝐼𝑡) − 𝛼𝑚(𝐼𝑡)𝛽) + (𝛽 − 𝛼𝛽, 1 − 𝛼 − 𝛽 + 𝛼𝛽) =

(𝛼𝛽𝑚(𝐼𝑡) + 𝛽 − 𝛼𝛽, 𝛼𝑚(𝐼𝑡) − 𝛼𝛽𝑚(𝐼𝑡) + 1 − 𝛼 − 𝛽 − 𝛼𝛽). (34) 

Hence (a) and (b) are equal in this case. 

6. Examples.

1. Classical mass.

The following classical is given on 𝜃 = {𝐴, 𝐵} ∶ 

A B AUB 

m 0.4 0.5 0.1 
(35) 

Let 𝛼 = 0.8 be the reliability coefficient and 𝛽 = 0.7 be the importance 

coefficient. 

a. Reliability first, Importance second.

A B AUB 

𝑚𝛼 

𝑚𝛼𝛽  

0.32 

(0.224, 0.096) 

0.40 

(0.280, 0.120) 

0.28 

(0.196, 0.084) 

(36) 
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We have computed in the following way: 

𝑚𝛼(𝐴) = 0.8𝑚(𝐴) = 0.8(0.4) = 0.32, (37) 

𝑚𝛼(𝐵) = 0.8𝑚(𝐵) = 0.8(0.5) = 0.40, (38) 

𝑚𝛼(𝐴𝑈𝐵) = 0.8(AUB) + 1 − 0.8 = 0.8(0.1) + 0.2 = 0.28, (39) 

and 𝑚𝛼𝛽(𝐵) = (0.7𝑚𝛼(𝐴), 𝑚𝛼(𝐴) − 0.7𝑚𝛼(𝐴)) = (0.7(0.32), 0.32 −

0.7(0.32)) = (0.224, 0.096), (40) 

𝑚𝛼𝛽(𝐵) = (0.7𝑚𝛼(𝐵), 𝑚𝛼(𝐵) − 0.7𝑚𝛼(𝐵)) = (0.7(0.40), 0.40 −

0.7(0.40)) = (0.280, 0.120), (41) 

𝑚𝛼𝛽(𝐴𝑈𝐵) = (0.7𝑚𝛼(𝐴𝑈𝐵), 𝑚𝛼(𝐴𝑈𝐵) − 0.7𝑚𝛼(𝐴𝑈𝐵)) =

(0.7(0.28), 0.28 − 0.7(0.28)) = (0.196, 0.084). (42) 

b. Importance first, Reliability second.

A B AUB 

m 0.1 

𝑚𝛽  

𝑚𝛽𝛼  

0.4 

(0.28, 0.12) 

(0.224, 0.096 

0.5 

(0.35, 0.15) 

(0.280, 0.120) 

(0.07, 0.03) 

(0.196, 0.084) 

(43) 

We computed in the following way: 

𝑚𝛽(𝐴) = (𝛽𝑚(𝐴), (1 − 𝛽)𝑚(𝐴)) = (0.7(0.4), (1 − 0.7)(0.4)) =

(0.280, 0.120), (44) 

𝑚𝛽(𝐵) = (𝛽𝑚(𝐵), (1 − 𝛽)𝑚(𝐵)) = (0.7(0.5), (1 − 0.7)(0.5)) =

(0.35, 0.15), (45) 

𝑚𝛽(𝐴𝑈𝐵) = (𝛽𝑚(𝐴𝑈𝐵), (1 − 𝛽)𝑚(𝐴𝑈𝐵)) = (0.7(0.1), (1 − 0.1)(0.1)) =

(0.07, 0.03), (46) 

and 𝑚𝛽𝛼(𝐴) = 𝛼𝑚𝛽(𝐴) = 0.8(0.28, 0.12) = (0.8(0.28), 0.8(0.12)) =

(0.224, 0.096), (47) 

𝑚𝛽𝛼(𝐵) = 𝛼𝑚𝛽(𝐵) = 0.8(0.35, 0.15) = (0.8(0.35), 0.8(0.15)) =

(0.280, 0.120), (48) 
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𝑚𝛽𝛼(𝐴𝑈𝐵) = 𝛼𝑚(𝐴𝑈𝐵)(𝛽, 1 − 𝛽) + (1 − 𝛼)(𝛽, 1 − 𝛽) = 0.8(0.1)(0.7, 1 −

0.7) + (1 − 0.8)(0.7, 1 − 0.7) = 0.08(0.7, 0.3) + 0.2(0.7, 0.3) =

(0.056, 0.024) + (0.140, 0.060) = (0.056 + 0.140, 0.024 + 0.060) =

(0.196, 0.084). (49) 

Therefore reliability discount commutes with importance discount of 

sources when one has classical masses. 

The result is interpreted this way: believe in 𝐴 is 0.224 and believe in 

𝑛𝑜𝑛𝐴 is 0.096, believe in 𝐵 is 0.280 and believe in 𝑛𝑜𝑛𝐵 is 0.120, and believe 

in total ignorance 𝐴𝑈𝐵 is 0.196, and believe in non-ignorance is 0.084. 

7. Same Example with Different Redistribution of Masses Related to

Importance of Sources.

Let’s consider the third way of redistribution of masses related to 

importance coefficient of sources. 𝛽 = 0.7, but 𝛾 = 0.4, which means that 

40% of 𝛽 is redistributed to 𝑖(𝑥) and 60% of 𝛽 is redistributed to 𝑓(𝑥) for 

each 𝑥 ∈ 𝐺𝜃 ∖ {𝜙}; and 𝛼 = 0.8. 

a. Reliability first, Importance second.

A B AUB 

m 0.4 0.5 0.1 

𝑚𝛼 0.32 0.40 0.28 

𝑚𝛼𝛽  (0.2240, 0.0384, 

0.0576) 

(0.2800, 0.0480, 

0.0720) 

(0.1960, 0.0336, 

0.0504). 

(50) 
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We computed 𝑚𝛼 in the same way. 

But: 

𝑚𝛼𝛽(𝐴) = (𝛽 ∙ 𝑚𝛼(𝐴), 𝑖𝛼(𝐴) + (1 − 𝛽)𝑚𝛼(𝐴) ∙ 𝛾, 𝑓𝛼(𝐴) +

(1 − 𝛽)𝑚𝛼(𝐴)(1 − 𝛾)) = (0.7(0.32), 0 + (1 − 0.7)(0.32)(0.4), 0 +

(1 − 0.7)(0.32)(1 − 0.4)) = (0.2240, 0.0384, 0.0576). (51) 

Similarly for 𝑚𝛼𝛽(𝐵) and 𝑚𝛼𝛽(𝐴𝑈𝐵). 

b. Importance first, Reliability second.

A B AUB 

m 0.4 0.5 0.1 

𝑚𝛽  (0.280, 0.048, 

0.072) 

(0.350, 0.060, 

0.090) 

(0.070, 0.012, 

0.018) 

𝑚𝛽𝛼 (0.2240, 0.0384, 

0.0576) 

(0.2800, 0.0480, 

0.0720) 

(0.1960, 0.0336, 

0.0504). 

(52) 

We computed 𝑚𝛽(∙) in the following way: 

𝑚𝛽(𝐴) = (𝛽 ∙ 𝑡(𝐴), 𝑖(𝐴) + (1 − 𝛽)𝑡(𝐴) ∙ 𝛾, 𝑓(𝐴) + (1 − 𝛽)𝑡(𝐴)(1 −

𝛾)) = (0.7(0.4), 0 + (1 − 0.7)(0.4)(0.4), 0 + (1 − 0.7)0.4(1 − 0.4)) =

(0.280, 0.048, 0.072). (53) 

Similarly for 𝑚𝛽(𝐵) and 𝑚𝛽(𝐴𝑈𝐵). 

To compute 𝑚𝛽𝛼(∙), we take 𝛼1 = 𝛼2 = 𝛼3 = 0.8, (54) 

in formulas (8) and (9). 
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𝑚𝛽𝛼(𝐴) = 𝛼 ∙ 𝑚𝛽(𝐴) = 0.8(0.280, 0.048, 0.072)

= (0.8(0.280), 0.8(0.048), 0.8(0.072))

= (0.2240, 0.0384, 0.0576). (55) 

Similarly 𝑚𝛽𝛼(𝐵) = 0.8(0.350, 0.060, 0.090) =

(0.2800, 0.0480, 0.0720). (56) 

For 𝑚𝛽𝛼(𝐴𝑈𝐵) we use formula (9): 

𝑚𝛽𝛼(𝐴𝑈𝐵) = (𝑡𝛽(𝐴𝑈𝐵) + (1 − 𝛼)[𝑡𝛽(𝐴) + 𝑡𝛽(𝐵)],  𝑖𝛽(𝐴𝑈𝐵)

+ (1 − 𝛼)[𝑖𝛽(𝐴) + 𝑖𝛽(𝐵)],

 𝑓𝛽(𝐴𝑈𝐵) + (1 − 𝛼)[𝑓𝛽(𝐴) + 𝑓𝛽(𝐵)])

= (0.070 + (1 − 0.8)[0.280 + 0.350], 0.012

+ (1 − 0.8)[0.048 + 0.060], 0.018 + (1 − 0.8)[0.072 + 0.090])

= (0.1960, 0.0336, 0.0504). 

Again, the reliability discount and importance discount commute. 

8. Conclusion.

In this paper we have defined a new way of discounting a classical and 

neutrosophic mass with respect to its importance. We have also defined the 

discounting of a neutrosophic source with respect to its reliability. 

In general, the reliability discount and importance discount do not 

commute. But if one uses classical masses, they commute (as in Examples 1 

and 2). 
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DSm Theory for Fusing Highly Conflicting ESM Reports  
Pierre Valin 

Pascal Djiknavorian
Dominic Grenier

Abstract - Electronic Support Measures consist of passive 
receivers which can identify emitters coming from a small 
bearing angle, which, in turn, can be related to platforms 
that belong to 3 classes: either Friend, Neutral, or Hostile. 
Decision makers prefer results presented in STANAG 1241 
allegiance form, which adds 2 new classes: Assumed 
Friend, and Suspect.  Dezert-Smarandache (DSm) theory is 
particularly suited to this problem, since it allows for 
intersections between the original 3 classes. Results are 
presented showing that the theory can be successfully 
applied to the problem of associating ESM reports to 
established tracks, and its results identify when miss-
associations have occurred and to what extent.  Results are 
also compared to Dempster-Shafer theory which can only 
reason on the original 3 classes. Thus decision makers are 
offered STANAG 1241 allegiance results in a timely 
manner, with quick allegiance change when appropriate 
and stability in allegiance declaration otherwise.   

Keywords: Electronic Support Measures, Dezert-
Smarandache, Dempster-Shafer, allegiance, fusion. 

1 Introduction 
Electronic Support Measures (ESM) consist of passive 
receivers which can identify emitters coming from a small 
bearing angle, but cannot determine range (although some 
are in development to provide a rough measure of range). 
The detected emitters can be related to platforms that 
belong to 3 classes: either Friend (F=1), Neutral (N=2) or 
Hostile (H=3), heretofore called ESM-allegiance, within 
that bearing angle.  
 In the case of dense targets, ESM-allegiance can 
fluctuate wildly due to miss-associations of an ESM report 
to established track. Hence, decision makers would like the 
target platforms to be identified on a more refined basis, 
belonging to 5 classes: Hostile (or Foe), Suspect (S), 
Neutral, Assumed Friend (AF), and Friend, since they 
realize that no fusion algorithm can be perfect and would 
prefer some stability in an allegiance declaration, rather 
than oscillations between extremes. This will heretofore be 
referred to as STANAG 1241 allegiance, or just STANAG 
allegiance for short [1]. 
 With this more refined STANAG-allegiance, a 
decision maker would probably take no aggressive action 

against either a friend or an assumed friend (although 
he/she would monitor an assumed friend more closely). 
Similarly a decision maker would probably take aggressive 
action against a foe and send a reconnaissance force (or a 
warning salvo) towards a suspect. Neutral platforms would 
correspond to countries not involved in the current conflict. 
 All incoming sensor declarations correspond to a 
frame of discernment of 3 classes, and several theories exist 
to treat a series of such declarations to obtain a fused result 
in the same frame of discernment, like Bayesian reasoning 
and Dempster-Shafer (DS) reasoning [2, 3] (often called 
evidence theory). However, when the output frame of 
discernment is larger that the input frame of discernment, 
an interpretation has to be made as to what this could mean, 
or how that could be generated. This is the subject of the 
next section. 

1.1 Some solutions 
It should be noted that Bayes theory is implemented in a 
very complex form in STANAG 4162 [4], and that DS 
theory is found on board many platforms, such as the 
German F124 frigates [5], the Finnish Fast Attack Craft 
Squadron 2000 [6], and the Light Airborne Multi-Purpose 
System (LAMPS) helicopters of the US Navy [7]. The 
translation from DS to Bayes can be performed via the 
pignistic transformation [8], and the result broadcast via 
tactical data links.  
 In all these implementations, the emitter detected is 
first correlated to a platform, and then to an allegiance. 
According to [9], recognition of a platform can range from 
a very rough scale (e.g. combatant/merchant) to a very fine 
one (e.g. name of contact/track), whereas identification 
refers to the assignment of one of the 6 standard STANAG 
1241 identities (for which we adopt the word “allegiance” 
in this report) to a track. The extra identity is “unknown”, 
which we disregard in this report, assuming that all detected 
emitters are identifiable.  
 Therefore, this report investigates an alternative 
method of achieving STANAG-allegiances, which does not 
aim to compete with the above implementations, but rather 
can be seen as an expert advisor to the decision maker. 
Since Dezert-Smarandache theory was only developed 
extensively after the publications of the STANAGs, this 
could not have been foreseen by NATO, and is thus worthy 
of experimentation. 

Originally published as Valin P., Djiknavorian P., Grenier D., DSm theory 
for fusing highly conflicting ESM reports, in Proc. of Fusion 2009, Seattle, 

WA, USA, 6-9 July 2009, and reprinted with permission.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

271



1.2 An interpretation of STANAG 1241 
Dezert-Smarandache (DSm) theory can coherently, with 
well-defined fusion rules, lead to an output amongst 5 
classes, even though the input classes number only 3, 
because the theory allows for intersections. For example,  

• “Suspect” might be the result obtained after fusing
“Hostile” with “Neutral”, and  

• “Assumed Friend” might be the result obtained after
fusing “Friend’ with “Neutral”. 

This illustrated in the Venn diagram of Figure 1 below. 

Figure 1. Venn diagram for the STANAG allegiances. 

Note that the set intersection 1∩3 = Ø, the null set, which is 
a constraint in DSm, leading to the use of its hybrid rule. It 
also corresponds to the most likely mission for Canadian 
Forces (CF), namely peace-keeping, or general 
surveillance, when hostile and friendly forces are not likely 
to be located close to each other. 

1.3 Another interpretation of STANAG 1241 
The interpretation in the preceding sub-section is a 
conservative one, namely that there is only one easy way to 
become suspect. This could correspond to a decision maker 
being in a non-threatening situation due to the choice of 
mission, e.g. peace-keeping. There could be situations 
where there is a need for a more aggressive response. In the 
case of a combat mission for example, the appropriate Venn 
diagram might be the one of Figure 2, where there are many 
more ways to become suspect, namely all the intersections 
bordering Hostile. 

Figure 2. Another possible Venn diagram. 

Figure 2 corresponds to a combat situation more 
appropriate for the USA, or to the CF as long as they play 
an active role in the Kandahar region of Afghanistan. The 
situation of Figure 1 will be the one implemented in this 
paper, as it is more in line with CF roles, and also because 
all of the features of DSm theory can be exercised, without 
the additional complexity of keeping all the intersections of 
Figure 1. 

2 Dezert-Smarandache Theory 
2.1 Formulae for DS and DSm theories 
Since DS theory has been in use for over 40 years, the 
reader is assumed to be familiar with it [2, 3].  DSm theory 
encompasses DS theory as a special case, namely when all 
intersections are null.  Both use the language of masses 
assigned to each declaration from a sensor (in our case, the 
ESM sensor).  A declaration is a set made up of singletons 
of the frame of discernment Θ, and all sets that can be made 
from them through unions are allowed (this is referred to as 
the power set 2Θ of DS theory).  In DSm theory, all unions 
and intersections are allowed for a declaration, this forming 
the much larger hyper power set DΘ.  For our special case 
of cardinality 3, Θ = {θ1, θ2, θ3}, with |Θ| = 3, DΘ is still of 
manageable size, namely has a cardinality of 19.  
 In DST, a combined “fused” mass is obtained by 
combining the previous (presumably the results of previous 
fusion steps) m1(A) with a new m2(B) to obtain a new fused 
result by applying the conjunctive rule 

m1⊕ m2(C) = Σ m1(A) m2(B) (1) 

where C = A∩B, and by re-normalizing by (1-K)-1 where K 
is the conflict corresponding to the sum of all masses for 
which the set intersection yields the null set. This common 
renormalization is a critical feature of DS theory, and 
allows for it to be associative, whereas a multitude of 
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alternate ways of redistributing the conflict (proposed by 
numerous authors) loses this property. The associativity of 
DST is key when the time tags of the sensor reports are 
unreliable, since associative rules are impervious to a 
different order of reports coming in, but all others rules can 
be extremely sensitive to the order of reports. This is the 
main reason we concentrate only on DS vs. DSm, but 
another reason is the proliferation of alternatives to DS, 
which redistribute the conflict in various fashions (for a 
review, see [10]). 
 In DSm theory, a constraint like the one that was 
imposed by Figure 1, namely that 1∩3 = Ø is treated by the 
hybrid DSm rule below: 

              m(A) = φ(A) [ S1(A) + S2(A) + S3(A) ]          (2) 

The reader is referred to a series of books [10, 11] on DSm 
theory for lengthy descriptions of the meaning of this 
formula (note that the function φ is not to be confused with 
the empty set). A three-step approach is proposed in chapter 
5 of [11], which is used here. 

If the incoming sensor reports are in DS-space: Friend 
(F=1), Neutral (N=2) or Hostile (H=3), then Figure 1 has 
the interpretation in DSm space (allowing intersections 
during the fusion step) of:  

Friend = {θ 1 – θ1∩θ2} 

Hostile = {θ 3 – θ3∩θ2} 

Assumed Friend = {θ1∩θ2} 

Suspect = {θ2∩θ3} 

Neutral = {θ 2 – θ1∩θ2 – θ3∩θ2} 

As expected, all STANAG-allegiances (masses assigned to 
the sets mentioned above) sum up to 1, as shown below. 
The left hand side, which is the sum of the masses for all 5 
classes, yields the right hand side, which is unity in DSm 
theory. 

θ1 – θ1∩θ2 + θ3 – θ3∩θ2 + θ1∩θ2 + θ2∩θ3 + θ2 – θ1∩θ2 –       
θ3∩θ2  = θ 1 + θ 2 + θ 3 – θ1∩θ2 – θ3∩θ2 = 1         (3) 

(since m(θ1∩θ3) = 0, i.e. θ1∩θ3 = 1∩3 = Ø  by Figure 1). 

2.2 A typical simulation scenario 
In order to compare DS with DSm, one must list the pre-
requisites that the scenario must address. It must: 
• be able to adequately represent the known ground

truth
• contain sufficient miss-associations to be realistic and

to test the robustness of the theories
• only provide partial knowledge about the ESM sensor

declaration, which therefore contains uncertainty

• be able to show stability under countermeasures, yet
• be able to switch allegiance when the ground truth

does so

 The following scenario parameters have therefore 
been chosen accordingly: 
• Ground truth is FRIEND for the first 50 iterations of

the scenario and HOSTILE for the last 50.
• the number of correct associations is 80%,

corresponding to countermeasures appearing 20% of
the time, in a randomly selected sequence.

• the ESM declaration has a mass (confidence value in
Bayesian terms) of 0.7, with the rest (0.3) being
assigned to the ignorance (the full set of elements,
namely Θ).

The last 2 bullets of the first list would translate into 
stability for the first 50 iterations and eventual stability for 
the last 50 iterations, after the allegiance switch at iteration 
50. 
 This scenario will be the one addressed in the next 
section, while a Monte-Carlo study is described in the 
subsequent section.  Each Monte-Carlo run corresponds to 
a different realization using the above scenario parameters, 
but with a different random seed. The scenario chosen is 
depicted in Figure 3 below. 

Figure 3. Chosen scenario. 

The vertical axis represents the allegiance Friend, Neutral, 
or Hostile. Roughly 80% of the time the ESM declares the 
correct allegiance according to ground truth, and the 
remaining 20% is roughly equally split between the other 
two allegiances. There is an allegiance switch at the 50th 
iteration, and the selected randomly selected seed in the 
above generated scenario generates a rather unusual 
sequence of 4 false Friend declarations starting at iteration 
76 (when actually Hostile is the ground truth), which will 
be very challenging for the theories. 

3 Results for the simulated scenario 
Before presenting the results for DS, it should be noted that 
the original form of DS tends to be overly optimistic. 
Given enough evidence concerning an allegiance, it will be 
very hard for it to change allegiances at iteration 50. This is 
a well-known problem, and a well-known ad hoc solution 
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exists [12], and consists in renormalizing after each fusion 
step by giving a value to the complete ignorance which can 
never be below a certain factor (chosen here to be 0.02). 
Comparison will be made with DSm and the Proportional 
Conflict Redistribution (PCR) #5 (PCR5) preferred by 
Dezert and Smarandache [10]. 

3.1 DS results 
The result for DST is shown in Figure 4 below with Friend 
(1), Neutral (2) and Hostile (3). 

Figure 4. DS result for the chosen scenario. 

DS never becomes confused, reaches the ESM-allegiance 
quickly and maintains it until iteration 50. It then reacts 
reasonably rapidly and takes about 6 reports before 
switching allegiance as it should. Furthermore after being 
confused for an iteration around the sequence of 4 Friend 
reports starting at iteration 76, it quickly reverts to the 
correct Hostile status.  
 Note that a decision maker could look at this curve 
and see an oscillation pointing to miss-associations without 
being able to clearly distinguish between a miss-association 
with the other two possible allegiances. This fairly quick 
reaction is due to the 0.02 assigned to the ignorance, which 
translates to DS never being more than 98% sure of an 
ESM-allegiance, as can be seen by the curve topping out at 
0.98. Figure 4 shows the mass, which is also the pignistic 
probability for this case, with the latter being normally used 
to make a decision. 

3.2 DSm results 
For the hybrid DSm rule [10], it was suggested to use the 
Generalized Pignistic Probability in order to make a 
decision on a singleton belonging to the input ESM-
allegiance. This seems to cause problems [13]. Since the 
whole idea behind using DSm was to present the results to 
the decision maker in the STANAG allegiance format, the 
result of Figure 5 would be shown to the decision maker. 

Figure 5. DSm result for the chosen scenario. 

The decision maker would clearly be informed that miss-
associations have occurred, since Assumed Friend 
dominates for the first 50 iterations and Suspect for the 
latter 50.  DSm is more susceptible to miss-associations 
than DS (the dips are more pronounced), but it has the 
advantage of giving extra information to the decision 
maker, namely that the fusion algorithm is having difficulty 
with associating ESM reports to established tracks.  
 Just as for DS, the Friend declarations starting at 
iteration 76 cause confusion, as it should. The change in 
allegiance at iteration 50 is detected nearly as fast as DST. 
What is even more important is that F and AF are clearly 
preferred for the first 50 iterations and S and H for the last 
50, as they should. 

3.3 PCR5 results 
PCR5 shows a similar behaviour, but is much less sure of 
what’s going on (the peaks are not as pronounced), as seen 
in Figure 6. Again, F and AF are clearly preferred for the 
first 50 iterations and S and H for the last 50, as they 
should. 

Figure 6. PCR5 result for the chosen scenario. 

3.4 Decision-making threshold 
Because of the occasionally oscillatory nature of some 
combination rules, one has to ask oneself when to make a 
decision or recommend one to the commander.  This is 
illustrated in Figure 7 for DS although the same is 
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applicable for all the others. A threshold at a very secure 
90% would result in a longer time for allegiance change, 
and result in a longer period of indecision around iteration 
76, compared to one at 70%. 

Figure 7. Decision thresholds. 

4 Monte-Carlo results  
Although a special case such as the one described in the 
previous section offers valuable insight, one might question 
if the conclusions from that one scenario pass the test of 
multiple Monte-Carlo scenarios. This question is answered 
in this section.  

In order to sample the parameter space in a different 
way, the simulations below correspond to 90% correct 
associations (higher than the previous 80%), an ESM 
confidence at 60% (lower than the previous 70%) and an 
ignorance threshold at 0.02 as before. The number of 
Monte-Carlo runs was set to 100.   

4.1 DS results 
The result for DS is shown in Figure 8. As expected, since 
DS reasons over the 3 input classes, Suspect and Assumed 
Friend are not involved. 

Figure 8. DS result after 100 Monte-Carlo runs. 

Naturally, since Assumed Friend and Suspect do not exist 
in DST, these are calculated as zero. Friend, Neutral, and 
Hostile have the expected behaviour. One sees the same 

response times, after an average over 100 runs, as was seen 
in the selected scenario of the previous section. 

4.2 DSm results 
The similar result for DSm is shown in Figure 9 below. In 
this case, AF dominates for the first 50 iterations, on 
average (over 100 runs) and S for the last 50, confirming 
that the chosen scenario was representative of the behaviour 
of DSm. The response times are similar on average also. 
DSm is slightly less sure (plateau at 70%) than DS (plateau 
at 80%), but this can be adjusted by lowering the decision 
threshold accordingly. 

Figure 9. DSm result after 100 Monte-Carlo runs. 

4.3 PCR5 results 
Finally, the PCR5 result is shown in Figure 10 below. In 
this case also, AF dominates for the first 50 iterations, on 
average (over 100 runs), and S for the last 50, confirming 
that the chosen scenario was representative of the behaviour 
of PCR5. The response times are similar on average also. 
PCR5 is slightly less sure (plateau at 60%) than DST 
(plateau at 80%) or DSmT (plateau at 70%). 

Figure 10. PCR5 result after 100 Monte-Carlo runs. 

4.4 Effect of varying the ESM parameters 
In order to study the effects of varying the ESM parameters, 
the simulations below correspond to an ESM confidence at 
80% (higher than the previous 60%) and an ignorance 
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threshold at 0.05 (higher than the 0.02 used previously). 
The number of Monte-Carlo runs was again set to 100.   
 A filter was also applied to the input ESM 
declarations over a window of 4 iterations. The filter 
assigns lesser confidence to ESM reports which are not well 
represented in the window. More on this sliding window 
filtering is available in [13]. The idea of such a sliding 
window has also been studied before with good results for a 
variety of reasoning schemes [14]. The results are shown in 
Figure 11 for DS, Figure 12 for DSm and Figure 13 for 
PCR5.  From these figures, one can see the smoothing 
effect of the filter, but more importantly the all of the 
conclusions of the previous Monte-Carlo runs, as well as 
the selected scenario of the previous section hold in their 
totality. 

Figure 11: DS result after 100 runs and input filter. 

Figure 12: DSm result after 100 runs and input filter. 

Figure 13: PCR5 result after 100 runs and input filter. 

5 Conclusions 
Because of the nature of ESM which consists of passive 
receivers that can identify emitters coming from a small 
bearing angle, and which, in turn, can be related to 
platforms that belong to 3 classes: either Friend, Neutral, or 
Hostile, and to the fact that decision makers would prefer 
results presented in STANAG 1241 allegiance form, which 
adds 2 new classes: Assumed Friend, and Suspect, Dezert-
Smarandache theory was used instead, but also compared to 
Dempster-Shafer theory. In Dezert-Smarandache theory an 
intersection of Friend and Neutral can lead to an Assumed 
Friend, and an intersection of Hostile and Neutral can lead 
to a Suspect.  

Results were presented showing that the theory can be 
successfully applied to the problem of associating ESM 
reports to established tracks, confirming the work published 
in [15].  Results are also compared to Dempster-Shafer 
theory which can only reason on the original 3 classes. 
Thus decision makers are offered STANAG 1241 
allegiance results in a timely manner, with quick allegiance 
change when appropriate, and stability in allegiance 
declaration otherwise. 
 In more details, results were presented for a typical 
scenario and for Monte-Carlo runs with the same 
conclusions, namely that Dempster-Shafer works well over 
the original 3 classes, if a minimum to the ignorance is 
applied.  The same can be said for Dezert-Smarandache 
theory, and to a lesser extent for a popular Proportional 
Conflict Redistribution rule, but with the added benefit that 
Dezert-Smarandache theory identifies when miss-
associations occur, and to what extent. 

Finally, the effects of varying the input parameters for 
the performance of the ESM were studied, and all of the 
conclusions remain the same. 
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An Application of DSmT in Ontology-Based Fusion Systems 
Ksawery  Krenc 
Adam Kawalec  

Abstract – The aim of this paper is to propose an 
ontology framework for preselected sensors due to the 
sensor networks’ needs, regarding a specific task, such as 
the target’s threat recognition. The problem will be 
solved methodologically, taking into account particularly 
non-deterministic nature of functions assigning the 
concept and the relation sets into the concept and relation 
lexicon sets respectively and vice-versa. This may 
effectively enhance the efficiency of the information 
fusion performed in sensor networks.   

Keywords: Attribute information fusion, DSmT, belief 
function, ontologies, sensor networks. 

1 Introduction 
Ontologies of the most applied sensors do not take into 
account needs of sensor networks [1]. Sensors, in 
particular the more complex ones, like radars or sonars are 
intended to be utilized autonomously. 
 The foundation of the sensor networks (SN), 
comprehended as the networks of cooperative monitoring, 
is understanding information obtained from some 
elements by another ones. Thus the question of the 
common language is very important. The ontology of 
sensor network should be unified and structured.   
 The key problem in this paper is neither a direct 
application of existing solutions in the field of ontologies 
for the sensor networks nor a design of a new ontology, 
ready to implement. The aim is to propose the ontology 
framework for networks, consisting of preselected 
sensors, due to the sensory needs, to perform a specific 
task, such as recognizing the target threat.   

  The selection of the sensors will be taken 
in four particular steps, namely: 

1. Describing, what particular pieces of information are
required to define the target threat; 

2. Describing, what particular sensors enable to gain
the mentioned pieces of information; 

3. Identification of all information possible to acquire
by preselected sensors; 

4. The specific sensor selection;

2 Sensor type selection 
This section focuses on creating the ontology of a sensor 
network, processing information related to the target 
threat attribute. Mentioned information may be classified, 
according to its origin, as: 

• Observable – originated directly from sensors or
visual sightings;

• Deductable (abductable) – designated by the way
of deductive reasoning, based on the other
observable attributes, gathered previously;

• Observable and deductable – designated both: on
the basis of observation and by the way of
deductive reasoning;

• Confirmed – verified by other information center
or external sensor network;

 The observable attributes may be defined based on 
information originated from diverse sensors. For the 
purpose of this paper the scope of sensors (possible to 
utilize) will be constrained to the set, which in the 
authors’ opinion fully reflects the required information 
about the target in the real world.     

It is a very important assumption that the selection of 
sensor types is conditioned ontologically. That means 
neither any particular sensor model nor communication 
protocol nor any other element of the SN organizations 
will be discussed. 

From the observer’s point of view (whose main duty 
is to assess the target threat) it is important to define the 
following features of the target:   

• Key attribute of the target: the threat (based on
observations);

• Additional target attributes (as the basis for
deduction reasoning about the threat) i.e. the
platform, (frigate, corvette, destroyer) and the
activity (attack, reconnaissance, search &
rescue);

• Auxiliary characteristics: target position;

Originally published as Krenc K., Kawalec A., An application of DSmT 
in ontology-based fusion systems, in Proc. of Fusion 2009, Seattle, WA, 

USA, 6-9 July 2009, and reprinted with permission.
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2.1 Types of sensors 
Preselected target features may be registered by various 
means of observation, namely: 

• Position: Radar (all spatial dimensions), sonar,
IR sensor (mostly to define target azimuth and
elevation);

• Threat: IFF, visual sightings (human), video
camera (daylight or noctovision);

• Platform:  visual sightings, video camera,
thermo-vision camera;

• Activity: visual sightings.

 The above statement may be regarded as a pre-
selection of sensor set, used in the following 
considerations of this paper. It is important to notice, that 
some of the mentioned sensors may acquire information 
related to more than one attribute. Therefore, a reversed 
assignment (sensors to attributes) seems to be more 
adequate.  

2.2 Sensor-originated information 
Figure 1 presents the preselected target features and their 
inclusion relations. Additionally, it was pointed out the 
example sensors, which enable to acquire the mentioned 
information. 

Position

Radar

IFF
Video

camera

Threat Platform

Activity

Visual
sightings

Figure 1 Information scope originated from diverse types 
of sensors. 

 It should be noted that although some of these 
sources allow for obtaining information on more than one 
attribute, it is possible to identify a hierarchy of relevance 
of this information. That means that some of the 
attributes, however, possible to reveal from multiple 
sources, for some sources perform the primary 
information while for others the secondary information: 

• Radar: position1;

• IFF: position, threat;

• Video camera: position, platform, threat;

• Visual sightings: position, threat, platform,
activity;

For visual sightings, where the human plays the role 
of the sensor, it is difficult to identify the primary 
information. Among the above sources the visual 
recognition is the most reliable way of defining the target 
activity. Therefore, taking into account the fact that it 
allows to identify the target threat and platform, the visual 
recognition may be considered as a specific source of 
information.  
 These observations are highly important for future 
considerations, which will be effectively used in creation 
of the hierarchy of the concept lexicons as well as in 
defining the relations among concepts of SN ontology.  
 Some of these sensors perform very complex 
devices and require the introduction of certain interfaces, 
allowing the automatic acquisition of useful information 
(in terms of sensor networks). An example of such a 
sensor is a video camera. In order to make effective use of 
an image from the video camera a specific module is 
necessary to interpret the taken picture, identifying the 
significant features of the object of interest. In that case, 
the ontology, the video camera is defined in that very 
module and it is modifiable as long as there is access to 
the configuration of that module. This leads to another 
possible classification of sensors: 

• Constant (invariant) ontology sensors, e.g. IFF;

• Variant ontology sensors, e.g. video camera
equipped with interpretation module or visual
sightings;

 Guided by the principle of maximum information 
growth, in next stages of creating the SN ontology the 
following sources of attribute information will be taken 
into account: IFF, video camera (VC) and visual sightings 
(VS). 

3 Defining sets of SN ontologies 
Referring to a taxonomy of the term of ontology [1] the 
authors would like to notice that the problem of SN 
ontology concerns, in particular, the so-called method and 
task ontologies. 
 There have been effectively utilized concept 
lexicons of Joint C3 Information Exchange Data Model 

1 Underline means the prime information. 
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[2], constraining the considerations to three of the JC3 
model attributes: 

• threat: object-item-hostility-status-code;

• platform: surface-vessel-type-category-code;

• activity: action-task-activity-code;

While defining the attribute relation functions, the Dezert-
Smarandache Theory (DSmT) of plausible and 
paradoxical reasoning  has been utilized [3]. 

3.1 Rules for sensor network ontologies 
selection 

In section 2.2 there was proposed a sensor distinction for 
variant and invariant ontology sensors. Considering this 
division is fundamental while creating SN ontology, 
which takes place in four stages: 

1. Creating the fundamental concept lexicon for a
sensor network, based on invariant concept
lexicons of particular sensors;

2. Creating the auxiliary concept lexicon for sensor
network, based on variant concept lexicons of
particular sensors;

3. Extending the fundamental concept lexicon with
the auxiliary lexicon;

4. Defining relations among the concepts in sensor
network;

According to the definition of ontology, given in [4], [5], 
SN ontology may be formulated as follows:  

RCGFGFLO ,,,,,,= (1) 

where: 
 L – is either concept or relation lexicon; 

F – lexicon elements to concepts assigning 
function;  G – lexicon elements to relations 
assigning function; F – a function reversed to F, 
assigning concepts to elements of the concept 
lexicon;           G – a function 
reversed to G, assigning relations to elements of the 
relation lexicon; C – a set of 
the whole concepts used in SN; R – a set 
of the whole relations used in SN. 

According to the lexicons of JC3 model, the above 
mentioned concepts and functions will be defined in the 
following subsections. 

3.1.1 Concepts 
Concepts are representations of a certain group of objects 
of the same characteristics, which may be directly 
identified by selected subset of elements of the concept 
lexicon [5]. That means, that assigning for example an 
attribute ‘hostile target’ to a target uses the concept of the 
‘hostile target’, which is the element of the set (C) of all 
possible concepts for a given sensor network.   
 Another question is a representation of the concept 
‘hostile target’ in the language of the particular source. 
For instance: for IFF device it will be the value of ‘FOE’, 
and for a video camera the value, defined in the 
interpreting module as ‘HOSTILE’. 
 Mathematically, the F assignment is not a bijection 
in general, moreover: it is not a function. In case multiple 
sources are utilized, the F is not an injection, whereas if 
the concept set is ‘rich’, comparably to the ‘poor’ lexicon 
the F is not injective. This may occur if the SN, prepared 
for defining fully target threat, is used for deciding 
whether the target is either friend or hostile. Then, the F  
will interpret concepts of ‘training hostile’, ‘training 
suspect’ and ‘assumed friend’ as ‘friend’ assigning the 
lexical value of  ‘FRIEND’ [6].   
 In order to illustrate F and F  assignment it is 
suggested to consider the following example.        

Example 1:  Let the set of concepts be defined as 
follows:  

C = {‘friend’, ‘assumed friend’ ,‘assumed hostile’, 
‘hostile’}        (2) 

and the concept lexicon is defined as follows: 

Lc = {FRIEND, HOSTILE, ASSUMED} (3) 

Thus, it is possible to define subsets of the concept 
lexicon elements in such a way that the F assignment 
would be a bijection (Figure 2).  

FRIEND

ASSUMED FRIEND

ASSUMED HOSTILE

HOSTILE

friendly target

assumed friendly
target

assumed enemy
target

enemy target

F

F

F

F

F

F

F

F

Figure 2 F-assignment as a bijection. 
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 Defining subsets of lexical elements as singletons 
leads to non-function F assignment (Figure 3). 

ASSUMED

friendly target

assumed friendly
target

assumed enemy
target

enemy target

FRIENDHOSTILE

F

Figure 3 F as a non-function assignment. 

In case of ‘rich’ concept lexicon sets it is important 
to express subsequent target types as conjunctions of their 
distinctive features. 

Example 2: 

Table 1 Example definitions of surface platforms 

Transporte
r AUX ∧ AIR ∧ D ∧ TRAN 

Command AUX ∧ S&MCAL ∧ AIR ∧ 
C2 

where: 
 AUX – auxiliary vessel; 
 S&MCAL – equipped with artillery of small and 
medium caliber; 
 AIR – against the air targets; 
 D – performs landing operations; 
 C2 – command & control; 
 TRAN – transport of landing forces; 

3.1.2 Relations 
Relations define the relationships among concepts. 
Relation may be hierarchical or structural. Moreover, for 
the purpose of sensor networks, they may be classified as: 

• Relations I, among the observable attributes of  a
diverse type;

• Relations II, among attributes of miscellaneous
origin;

• Relations III, among the identical attributes,
originated from diverse sources;

 Relations among the observable attributes of a 
diverse type enable a deduction of some attributes values 
based on observable values of another ones. For instance: 
the relations between the threat and the platform of the 
target enable the deduction of target activity. Linking the 
subsequent observable attributes is performed according 
to mentioned in previous section distinctive features of the 
target. This means that for example: defining (based on 
observations) the target platform is equal to assigning to 
the target some of distinctive features, which the target, 
performing the particular activity, has to possess. 
 Relations among attributes of miscellaneous origin: 
observable and deductable result in so-called observable-
deductable attribute. The effective information fusion 
from multiple sources is performed according to the rules 
of combination and conditioning, obtained from DSmT 
[7], [8]. This process is going to be described in details in 
section 3.2. 
 Relations among the identical attributes, originated 
from diverse sources are the type of relations, where the 
key question is a lexical variety of concepts used by 
particular sources. For instance: the threat attribute value 
acquired from IFF may be either FRIEND or FOE, 
whereas the same attribute obtained from visual sightings 
may be of {FRIEND, HOSTILE, UNKNOWN, JOKER, 
FAKER,…}. In such a case a value of FRIEND, gained 
from IFF, corresponds to the exact value of the visual 
sightings. The value of FOE is equal to HOSTILE, 
whereas the relations among values of FRIEND, gained 
from IFF and FAKER (or JOKER), gained from the 
visual sightings are not so obvious and they must be 
defined, according to the definitions of these training 
types (JOKER, FAKER).    

3.2 Proposition of sensor network ontology 
This section presents a proposition of an ontology 
framework for a sensor network, dedicated to monitor the 
target threat. In the solution there were utilized concepts 
and concept lexicons of JC3 model. The authors’ 
intention was to show the way relations of three attributes 
(threat, platform and activity) should be defined, rather 
than to present the complete SN ontology. 

Table 2 presents a bijective assignment of concepts 
to elements of a concept lexicon. As it was mentioned 
before, this assignment need not be a bijection, however it 
is desirable especially if sets of values for attributes of 
platform and activity are numerous. 

Table 2 SN ontology: concepts and concept lexicon. 

Concepts Concept lexicon
An OBJECT-ITEM that 
is assumed to be a friend 
because of its 
characteristics, behavior 
or origin. 

ASSUMED 
FRIEND 

T
hr

ea
t 

An OBJECT-ITEM that 

ob
je

ct
-it

em
-

ho
st

ili
ty

-s
ta

tu
s-

co
de

HOSTILE 
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is positively identified as 
enemy. 
…according to JC3 … according to

JC3 
General designator for 
aircraft/multi-role 
aircraft carrier; 

AIRCRAFT 
CARRIER, 
GENERAL 

Craft 40 meters or less 
employed to transport 
sick/wounded and/or 
medical personnel. 

AMBULANCE 
BOAT 

Pl
at

fo
rm

 

… according to JC3 su
rf

ac
e-

ve
ss

el
-ty

pe
-

ca
te

go
ry

-c
od

e 

… according to
JC3 

To fly over an area, 
monitor and, where 
necessary, destroy hostile 
aircraft, as well as 
protect friendly shipping 
in the vicinity of the 
objective area. 

PATROL, 
MARITIME 

Emplacement or 
deployment of one or 
more mines. 

MINE-
LAYING 

A
ct

iv
ity

 

… according to JC3

ac
tio

n-
ta

sk
-a

ct
iv

ity
-c

od
e 

… according to
JC3 

 The assignment of relations among attributes to 
relation lexicons (Table 3) is a surjection. In order to 
define the relations among attributes DSmT combining 
and conditioning rules have been applied. The preferred 
rule for conditioning is the rule no. 12. When combining 
evidence, there is a possibility to use many combination 
rules, depending the particular relation. However, for 
simplicity, it is suggested to apply the classic rule of 
combination (DSmC), which has properties of 
commutativity and associativity. 

Table 3 SN ontology: relations and relation lexicon. 

Relations Remarks Relation
lexicon 

cond(.) Based on DSmT Conditioning Rel. I: 
 According to 

distinctive features 
Implication 

cond(.) Based on DSmT Conditioning Rel. II: 
⊕ Based on DSmT Combination 

cond(.) Based on DSmT Conditioning Rel. III: 
⊕ Based on DSmT 

(combination rule 
need not be identical 
with one in Relations 
II) 

Combination 

 Below, there have been presented examples of 
particular types of relations. In case of the relation of type 
I it is possible to reason about a value of a certain 
attribute, based on the knowledge about the other ones. 
However, if the unambiguous deduction of the third 
attribute is not possible, due to the majority of possible 

solutions, an application of abductive reasoning (selection 
of the optimal variant) seems to be justified.  

Relations I: 
 (Threat, Platform)  Activity: (FAKER, FRIGATE 
TRAINING)  TRAIN OPERATIONS; 
 (Threat, Activity)  Platform: (FAKER, TRAIN 
OPERATIONS)  TRAINING CRAFT; 
 (Platform, Activity)  Threat: (HOUSEBOAT, 
PROVIDE CAMPS)  NEUTRAL; 

Relations II: 
 FAKER = cond(obs(FAKER) ⊕  ded(FAKER) ⊕
obs(FRIEND)); 

Relations III: 
 FAKER = cond(obs(FAKER) ⊕  VS(FAKER) ⊕
IFF(FRIEND)); 

The abductive reasoning process may be systemized by 
application of DSmT, where the selection of the optimal 
value takes place after calculating the basic belief 
assignment. 

Example 3: 
 (Threat, Activity)  Platform: (FRIEND, MINE 
HUNTING MARITIME)  
MINEHUNTER COASTAL (MHC) ∨

 MINEHUNTER COASTAL WITH DRONE (MHCD) 
∨  MINEHUNTER GENERAL (MH) ∨
MINEHUNTER INSHORE (MHI) ∨

 MINEHUNTER OCEAN (MHO) ∨
MINEHUNTER/SWEEPER COASTAL (MHSC) ∨
MINEHUNTER/SWEEPER GENERAL (MHS) ∨

 MINEHUNTER/SWEEPER OCEAN (MHSO) ∨
 MINEHUNTER/SWEEPER W/DRONE (MHSD) 

Applying DSmT, for each of possible hypothesis a certain 
mass of belief is assigned, e.g.: 

m(MHC) = 0.2, m(MHCD) = 0.3, m(MH) = 0.1,
m(MHI) = 0.1 ,m(MHO) = 0.1, m(MHSC) = 0.05,
m(MHS) = 0.05, m(MHSO) = 0.05, m(MHSD) = 

0.05 

Based on the obtained basic belief assignment (bba) belief 
functions, referring to particular hypotheses, may be 
calculated. In the simplest case, assuming all of the 
hypotheses are exclusive, the subsequent belief functions 
will be equal to respective masses, e.g. Bel(MHC) = 
m(MHC), Bel(MHCD) = m(MHCD), etc. 
 More complex case, where relationships among 
hypotheses are taken into account will be considered in 
the next section. 
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4 Verification of the usefulness of 
elaborated ontology sets 

The presented framework of the SN ontology, for the 
purpose of the target threat assessment, requires a 
verification. Particularly, it is important to verify the 
correctness of reasoning processes and a combination of 
the reasoning results with observation information.   

The proposed solution substantially differs from the 
existing deterministic ontology-based methods because it 
introduces explicitly the uncertainty of the relations 
among target attributes. Therefore this section was meant 
to focus on the verification of these relation reasoning 
mechanisms rather than the completeness of the target 
representation by the sensor network.      

4.1 Assumptions 
In order to verify the usefulness of the proposed ontology 
framework, a specially designed demonstrator application 
for evaluation of the target threat information has been 
used. This application enables a simulation of acquiring of 
information from diverse sources, like: radar, video 
camera and visual sightings.  

It is assumed that the visual sighting is also a source 
of information about a target platform and a target 
activity. The bba values for platform and activity 
attributes have been assigned arbitrary. During 
experimentation the observable attributes as well as 
deductable attributes have been taken into account. 
Frames of discernment for observation and deduction may 
differ in general.  For the purpose of verification of 
proposed ontology sets, an example from the section 3.2 
is to be considered. Additionally it is assumed: 

• Application of the hybrid DSmT model:

o The hypotheses are not exclusive;

o The hypotheses correspond to the JC3
model terminology;

• In relations of type II and III the hybrid rule of
combination (DSmH) has been applied;

• The conditioning rule no. 12 has been used for
updating evidences;

4.2 Numerical experiments 
Figure 4 shows a randomly generated trajectory of the 
target of which the threat value is at stake. Observations 
are taken from three sources (visual sightings, radar 
system - IFF and video camera) synchronously.    
 The green color means successively acquired 
observations for each of the sources. The red color means 
the observations impossible to acquire because the target 

was outside of the detection zone for a particular source 
[3].   
 Taking for example the last sample, the respective 
bba are as Table 4 shows. 

Figure 4 Randomly generated target trajectory and its 
threat evaluation based on radar, VS and VC observations. 

 Table 4 Bba gathered from diverse sources: visual 
sightings, video camera and radar. 

Threat Visual 
Sightings 

Video
Camera Radar/IFF

HOS 0.0024 0.0004 0.0008 
UNK 0.0060 0.0012 - 
NEU 0.0068 0.0015 - 
JOK 0.0109 - - 
FRD 0.2400 0.4368 0.8773 
FAK 0.0292 0.0049 0.0119 
SUS 0.0032 0.0005 0.0011 
AFR 0.0215 0.0046 0.0088 
PEN 0.6800 0.5500 0.1000 

A relation of type III of combining information from IFF 
and the visual sightings results in acceptance the target is 
friendly: 

FRIENDThreatThreat IFFVS ≡⊕     (4) 

From the visual sightings it is also acquired that the target 
activity is mine-hunting (MINE HUNTING MARITIME). 
Thus, the relation of type I, between the threat and the 
activity attribute results in selection of the target platform, 
related to searching for mines. 

 (FRIEND, MINE HUNTING MARITIME)  platform  (5) 
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In the considered case it is assumed the frame of 
discernment of the platform attribute originated from the 
video camera is defined as follows: 

VCΘ = {MHC, MHI, MHO, MSC, MSO, D}  (6) 

where: 
MHC – MINEHUNTER COASTAL;  
MHI – MINEHUNTER INSHORE; 
MHO – MINEHUNTER OCEAN; 
MSC – SWEEPER COASTAL;  
MSO – SWEEPER OCEAN;  
D – DRONE; 

Additionally, with ∪  and ∩  operators the secondary
hypotheses may be created, which refer to another values 
of the platform attribute (surface-vessel-type-category 
code) of JC3 model: 

MHC∪D = MHCD (MINEHUNTER COASTAL
WITH DRONE); 

MHI∪MHO∪MHC∪ D = MH (MINEHUNTER
GENERAL); 

MHO∩MSO = MHSO (MINEHUNTER/SWEEPER
OCEAN); 

(MHC∩MSC)∪D = MHSD 
(MINEHUNTER/SWEEPER W/DRONE);

(MHO∩MSO)∪ (MHC∩MSC)∪D = MHS
(MINEHUNTER/SWEEPER GENERAL); 

The basic belief assignment for the video camera 
observation may be defined as follows:   

mVC(MHC) = 0.1,  mVC (MHCD) = 0.1, 
 mVC (MSC) = 0.2,  mVC (MHI) = 0.3,  
 mVC (MHO) = 0.2, mVC (MSO) = 0.1,   

Due to the implication (5) the above bba may be modified 
according to BCR12 with a following condition: 

MHIMHOMHCTruthCond ∪∪=:   (7) 

Figure 5 Venn's diagram for the platform attribute. The 
truth is grey colored. 

Thus, the resulting bba for the platform attribute is 
updated, as follows: 

mR(MHC|Cond)=mVC(MHC)+mVC(MHCD)=0.2,
 mR(MHSC|Cond)=mVC(MSC)=0.2, 
 mR(MHI|Cond)=mVC(MHI)=0.3,
 mR(MHO|Cond)=mVC(MHO)=0.2, 
 mR(MHSO|Cond)=mVC(MSO)=0.1, 

which, after calculating the respective belief and 
plausibility functions, leads to acceptation of the 
hypothesis of MHC (MINEHUNTER COASTAL) for the 
platform attribute of the whole sensor network.    

It is worth of notice that the belief function for MHC 
before updating is of the least value since:    

BelVC (MHC) = mVC(MHC) = 0.1     (8) 

After updating, due to the fact that mVC(MHSC) supports 
the belief in MHC hypothesis, this hypothesis becomes 
the most credible since: 

BelR (MHC) = mR(MHC)+ mR(MHSC) = 0.4  (9) 

5 Conclusions 
The results of the numerical experiments, presented in the 
previous section, have proven that the application of 
DSmT for the purpose of defining relations among target 
attributes, gives the possibility of unification of 
information acquired from sensors as well as obtained 
based on the deductive reasoning. That influences 
effectively the whole SN ontology, due to the fact the SN 
concept lexicon becomes substantially modified. It does 
not provide a union of lexicons for each sensor, which 
would be expectable in the deterministic case. The SN 
concept lexicon becomes extended with intersections and 
unions of the hypotheses created upon the lexicons of 
particular sensors. 
 During the experiments it has been utilized the JC3 
model’s lexicon of surface-vessel-type-category-code 
attribute. It is important to notice, that despite its large 
volume, the lexicon is not structured. Thus, an emerging 
conclusion occurs, that setting JC3 lexicons in a hierarchy 
would bring tangible benefits due to the fact that the 
hierarchy enables creating the hypotheses using ∪ and
∩ operators more effectively, and this in turn increases
the precision of the reasoning processes based on 
information acquired from sensors. 
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GMTI and IMINT Data Fusion for Multiple 
Target Tracking and Classification

Benjamin Pannetier
Jean Dezert 

Abstract – In this paper, we propose a new approach
to track multiple ground target with GMTI (Ground
Moving Target Indicator) and IMINT (IMagery INtel-
ligence) reports. This tracking algorithm takes into ac-
count road network information and is adapted to the
out of sequence measurement problem. The scope of
the paper is to fuse the attribute type information given
by heterogeneous sensors with DSmT (Dezert Smaran-
dache Theory) and to introduce the type results in the
tracking process. We show the ground target tracking
improvement obtained due to better targets discrimina-
tion and an efficient conflicting information manage-
ment on a realistic scenario.

Keywords: Multiple target tracking, heterogeneous
data fusion, DSmT.

1 Introduction
Data fusion for ground battlefield surveillance is more

and more strategic in order to create the situational as-
sessment or improve the precision of fire control system.
The challenge of data fusion for the theatre surveillance
operation is to know where the targets are, how they
evolve (manoeuvres, group formations,. . . ) and what
are their identities.

For the first two questions, we develop new ground
target tracking algorithms adapted to GMTI (Ground
Moving Target Indicator) sensors. In fact, GMTI sen-
sors are able to cover a large surveillance area during
few hours or more if several sensors exists. However,
ground target tracking algorithms are used in a com-
plex environment due to the high traffic density and
the false alarms that generate a significant data quan-
tity, the terrain topography which can provocate occlu-
sion areas for the sensor and the high maneuvrability of
the ground targets which yields to the data association
problem. Several references exist for the MGT (Multi-
ple Ground Tracking) with GMTI sensors [1, 2] whose
fuse contextual informations with MTI reports. The
main results are the improvement of the track precision

and track continuity. Our algorithm [6] is built with
several reflexions inspired of this literature. Based on
road segment positions, dynamic motion models under
road constraint are built and an optimized projection
of the estimated target states is proposed to keep the
track on the road. A VS-IMM (Variable Structure In-
teracting Multiple Models) filter is created with a set of
constrained models to deal with the target maneuvers
on the road. The set of models used in the variable
structure is adjusted sequentially according to target
positions and to the road network topology.

Now, we extended the MGT with several sensors. In
this paper, we first consider the centralized fusion be-
tween GMTI and IMINT (IMagery INTelligence) sen-
sors reports. The first problem of the data fusion
with several sensors is the data registration in order
to work in the same geographic and time referentials.
This point is not presented in this paper. However,
in a multisensor system, measurements can arrive out
of sequence. Following Bar-Shalom and Chen’s works
[3], the VS-IMMC (VS-IMM Constrained) algorithm
is adapted to the OOSM (Out Of Sequence Measure-
ment) problem, in order to avoid the reprocessing of
entire sequence of measurements. The VS-IMMC is
also extended in a multiple target context and inte-
grated in a SB-MHT (Structured Branching - Multiple
Hypotheses Tracking). Despite of the resulting track
continuity improvement for the VS-IMMC SB-MHT al-
gorithm, unavoidable association ambiguities arise in a
multi-target context when several targets move in close
formation (crossing and passing). The associations be-
tween all constrained predicted states are compromised
if we use only the observed locations as measurements.
The weakness of this algorithm is due to the lack of
good target state discrimination.

One way to enhance data associations is to use the
reports classification attribute. In our previous work
[5], the classification information of the MTI segments
has been introduced in the target tracking process. The
idea was to maintain aside each target track a set of ID

Originally published as Pannetier B., Dezert J., GMTI 
and IMINT data fusion for multiple target tracking and 

classification, in Proc. of Fusion 2009, Seattle, WA, USA, 
6-9 July 2009, and reprinted with permission.
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hypotheses. Their committed belief are revised in real
time with the classifier decision through a very recent
and efficient fusion rule called proportional conflict re-
distribution (PCR). In this paper, in addition to the
measurement location fusion, a study is carried out to
fuse MTI classification type with image classification
type associated to each report. The attribute type of
the image sensors belongs to a different and better clas-
sification than the MTI sensors. The counterpart is the
short coverage of image sensors that brings about a low
data quantity. In section 2, the motion and measure-
ment models are presented with a new ontologic model
in order to place the different classification frames in
the same frame of discernment. After the VS-IMMC
description given in section 3, the PCR fusion rule orig-
inally developed in DSmT (Dezert-Smarandache The-
ory) framework is presented in section 4 to fuse the
target type information available and to include the re-
sulting fused target ID into the tracking process. The
last part of this paper is devoted to simulation results
for a multiple target tracking scenario within a real en-
vironment.

2 Motion & observation models

2.1 GIS description

The GIS (Geographical Information System) used in
this work contains both the segmented road network
and the DTED (Digital Terrain Elevation Data). Each
road segment expressed in WGS84 is converted in a
Topographic Coordinate Frame (denoted TCF ). The
TCF is defined according to the origin O in such a
way that the axes X, Y and Z are respectively oriented
towards the local East, North and Up directions. The
target tracking process is carried out in the TCF.

2.2 Constrained motion model

The target state at the current time tk is defined in
the local horizontal plane of the TCF :

x(k) = [x(k) ẋ(k) y(k) ẏ(k)]
′

(1)

where (x(k), y(k)) and (ẋ(k), ẏ(k)) define respectively
the target location and velocity in the local horizon-
tal plane. The dynamics of the target evolving on the
road are modelized by a first-order differential system.
The target state on the road segment s is defined by
xs(k) where the target position (xs(k), ys(k)) belongs
to the road segment s and the corresponding heading
(ẋs(k), ẏs(k)) is in its direction.

The event that the target is on road segment s is
noted es(k) = {x(k) ∈ s}. Given the event es(k) and
according to a motion model Mi, the estimation of the
target state can be improved by considering the road
segment s. It follows:

xs(k) = Fs,i(∆(k)) · xs(k − 1) + Γ(∆(k)) · vs,i(k) (2)

where ∆(k) is the sampling time, Fs,i is the state tran-
sition matrix associated to the road segment s and
adapted to a motion model Mi, vs,i(k) is a white Gaus-
sian random vector with covariance matrix Qs,i(k) cho-
sen in such a way that the standard deviation along the
road segment is higher than the standard deviation in
the orthogonal direction. It is defined by:

Qs,i(k) = Rθs
·

(
σ2

d 0
0 σ2

n

)
·R

′

θs
(3)

where Rθs
is the rotation matrix associated with the

direction θs defined in the plane (O, X, Y ) of the road
segment s. The matrix Γ(∆k) is defined in [8].

To improve the modeling for targets moving on a
road network, we proposed in [5] to adapt the level of
the dynamic model’s noise based on the length of the
road segment s. The idea is to increase the standard
deviation σn defined in (3) to take into account the
error on the road segment location. After the state
estimation obtained by a Kalman filter, the estimated
state is then projected according to the road constraint
es(k). This process is detailed in [6].

2.3 GMTI measurement model

According to the NATO GMTI format [7], the MTI
reports received at the fusion station are expressed in
the WGS84 coordinates system. The MTI reports must
be converted in the TCF. A MTI measurement z at the
current time tk is given in the TCF by:

z(k) = [x(k) y(k) ρ̇(k)]′ (4)

where (x(k), y(k)) is the location of the MTI report
in the local frame (O, X, Y ) and ρ̇(k) is the associated
range measurement expressed by:

ρ̇(k) =
(x(k) − xc(k)) · ẋ(k) + (y(k) − yc(k)) · ẏ(k)√

(x(k) − xc(k))2 + (y(k) − yc(k))2

(5)
where (xc(k), yc(k)) is the sensor location at the cur-

rent time in the TCF . Because the range radial velocity
is correlated to the MTI location components, the use
of an extended Kalman filter (EKF) is not adapted.
In the literature, several techniques exist to uncorre-
late the range radial velocity from the location com-
ponents. We prefer to use the AEKF (Alternative Ex-
tended Kalman Filter) proposed by Bizup and Brown
in [9], because the implementation is easier by using
the alternative lienarization than another algorithms to
decorrelate the components. Moreover, AEKF work-
ing in the sensor referential/frame remains invariant by
translation. The AEKF measurement equation is given
by:

zMTI(k) = HMTI(k) · x(k) + wMTI(k) (6)

where wMTI(k) is a zero-mean white Gaussian noise
vector with a covariance RMTI(k) (given in [5]) and
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HMTI(k) is defined by:

HMTI(k) =




1 0 0 0
0 0 1 0

0 ∂ρ̇(k)
∂ẋ 0 ∂ρ̇(k)

∂ẏ


 (7)

Each MTI report is characterized both with the lo-
cation and velocity information and also with the at-
tribute information and its probability that it is correct.
We denote CMTI the frame of discernment on target ID
based on MTI data. CMTI is assumed to be constant
over the time and consists in a finite set of exhaustive
and exclusive elements representing the possible states
of the target classification. In this paper, we consider
only 3 elements in CMTI defined as:

CMTI =





c1 , Tracked vehicle

c2 , Wheeled vehicle

c3 , Rotary wing aircraft



 (8)

We consider also the probabilities P{c(k)} (∀c(k) ∈
CMTI) as input parameters of our tracking systems
characterizing the global performances of the classifier.
The vector of probabilities [P (c1) P (c2) P (c3)] repre-
sents the diagonal of the confusion matrix of the clas-
sification algorithm assumed to be used. Let z⋆

MTI(k)
the extended MTI measurements including both kine-
matic part and attribute part expressed by te herein
formula:

z⋆
MTI (k) , {zMTI(k), c(k), P{c(k)}} (9)

2.4 IMINT motion model

For the imagery intelligence (IMINT), we consider
two sensor types : a video EO/IR sensor carried by
a Unanimed Aerial Vehicule (UAV) and a EO sensor
fixed on a Unattended Ground Sensor (UGS).

We assume that the video information given by both
sensor types are processed by their own ground sta-
tions and that the system provides the video reports
of target detections with their classification attributes.
Moreover, a human operator selects targets on a movie
frame and is able to choose its attribute with a HMI
(Human Machine Interface). In addition, the opera-
tor is able with the UAV to select several targets on a
frame. On the contrary, the operator selects only one
target with the frames given by the UGS. There is no
false alarm and a target cannot be detected by the op-
erator (due to terrain mask for example). The video
report on the movie frame is converted in the TCF.
The measurement equation is given by:

zvideo(k) = Hvideo(k) · x(k) + wvideo(k) (10)

where Hvideo is the observation matrix of the video sen-
sor

Hvideo =

(
1 0 0 0
0 0 1 0

)
(11)

The white noise Gaussian process wvideo(k) is centered
and has a known covariance Rvideo(k) given by the
ground station.

Each video report is associated to the attribute in-
formation c(k) with its probability P{c(k)} that it is
correct. We denote Cvideo the frame of discernment
for an EO/IR source. As CMTI , Cvideo is assumed to
be constant over the time and consists in a finite set of
exhaustive and exclusive elements representing the pos-
sible states of the target classification. In this paper,
we consider only eight elements in Cvideo as follows:

Cvideo =





civilian car
military armoured car

wheeled armoured vehicule
civilian bus
military bus
civilian truck

military armoured truck
copter





(12)

Let z⋆
video(k) be the extended video measurements

including both kinematic part and attribute part ex-
pressed by the following formula (∀c(k) ∈ Cvideo):

z⋆
video(k) , {zvideo(k), c(k), P{c(k)}} (13)

For notation convenience, the measurements se-
quence Zk,l represents a possible set of measurements
generated by the target up to time k (i.e., there ex-
ists a subsequence n and a measurement i such that
Zk,l =

{
Zk−1,n, ..., z⋆

j (k)
}
) associated with the track

T k,l. At the current time k, the track T k,l is represented
by a sequence of the state estimates. z⋆

j (k) is the jth

measurement available at time k among m(k) validated
measurements around the target measurement predic-
tion.

3 Tracking with road constraints

3.1 VS IMM with a road network

The IMM is an algorithm for combining state esti-
mates arising from multiple filter models to get a better
global state estimate when the target is under maneu-
vers. In section 2.2, a constrained motion model i to
a road segment s, noted M i

s(k), was defined. Here we
extend the segment constraint to the different dynamic
models (among a set of r + 1 motion models) that a
target can follow. The model indexed by r = 0 is the
stop model. It is evident that when the target moves
from one segment to the next, the set of dynamic mod-
els changes. In a conventionnal IMM estimator [1], the
likelihood function of a model i = 0, 1, . . . , r is given,
for a track T k,l, associated with the j-th measurement,
j ∈ {0, 1, . . . , m(k)} by:

Λl
i(k) = p{zj(k)|M i

s(k),Zk−1,n} (14)
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where Zk−1,n is the subsequence of measurements as-
sociated with the track T k,l.

Using the IMM estimator with a stop motion model,
the likelihood function of the moving target mode for
i = 1, . . . , r and for j ∈ {0, 1, . . . , m(k)} is given by:

Λl
i(k) = PD · p{zj(k)|M i

s(k),Zk−1,n} · (1 − δmj,0)

+(1 − PD) · δmj ,0 (15)

while the likelihood of the stopped target mode (i.e.
r = 0) is:

Λl
0(k) = p{zj(k)|M i

0(k),Zk−1,n} = δmj,0 (16)

where PD is the sensor detection probability, δmj ,0 is
the Kronecker function defined by δmj,0 = 1 if mj = 0
and δmj ,0 = 0 whenever mj 6= 0.

The combined/global likelihood function Λl(k) of a
track including a stop model is then given by:

Λl(k) =

r∑

i=0

Λi(k) · µi(k|k − 1) (17)

where µi(k|k − 1) is the predicted model probabilities
[8].

The steps of the IMM under road segment s con-
straint are the same as for the classical IMM as de-
scribed in [8].

In real application, the predicted state could also
appear onto another road segment, because of a road
turn for example, and we need to introduce new con-
strained motion models. In such case, we activate the
most probable road segments sets depending on the lo-
cal predicted state x̂l

i,s(k|k − 1) location of the track

T k,l[5, 1]. We consider r + 1 oriented graphs which de-
pend on the road network topology. For each graph i,
i = 0, 1, . . . , r, each node is a constrained motion model
M i

s. The nodes are connected to each other according
to the road network configuration and one has a finite
set of r + 1 motion models constrained to a road sec-
tion. The selection of the most probable motion model
set, to estimate the road section on which the target
is moving on, is based on a sequential probability ratio
test (SPRT).

3.2 OOSM algorithm

The data fusion that operates in a centralized ar-
chitecture suffers of delayed measurement due to com-
munication data links, time algorithms execution, data
quantity,. . . In order to avoid reordering and reprocess-
ing an entire sequence of measurements for real-time
application, the delayed measurements are processed as
out-of-sequence measurements (OOSM). The algorithm
used in this work is described in [3]. In addition, ac-
cording to the road network constraint, the state retro-
diction step is done on the road.

3.3 Multiple target tracking

For the MGT problem, we use the SB-MHT (Struc-
tured Branching Multiple Hypotheses Tracking) pre-
sented in [10]. When the new measurements set Z(k)
is received, a standard gating procedure is applied in
order to validate MTI reports to track pairings. The
existing tracks are updated with VS-IMMC and the
extrapolated and confirmed tracks are formed. More
details can be found in chapter 16 of [10]. In order to
palliate the association problem, we need a probabilis-
tic expression for the evaluation of the track formation
hypotheses that includes all aspects of the data associ-
ation problem. It is convenient to use the log-likelihood
ratio (LLR) or a track score of a track T k,l which can
be expressed at current time k in the following recursive
form:

Ll(k) = Ls(k − 1) + ∆Ll(k) (18)

with

∆Ll(k) = log

(
Λl(k)

λfa

)
(19)

and

L(0) = log

(
λfa

λfa + λnt

)
(20)

where λfa and λnt are respectively the false alarm rate
and the new target rate per unit of surveillance volume
and Λl(k) is the likelihood given in (17).

4 Target type tracking
In [4], Blasch and Kahler fused identification at-

tribute given by EO/IR sensors with position measure-
ment. The fusion was used in the validation gate pro-
cess to select only the measurement according to the
usual kinematic criterion and the belief on the identi-
fication attribute. Our approach is different since one
uses the belief on the identification attribute to revise
the LLR with the posterior pignistic probability on the
target type. We recall briefly the Target Type Tracking
(TTT) principle and explain how to improve VS-IMMC
SB-MHT with target ID information. TTT is based
on the sequential combination (fusion) of the predicted
belief of the type of the track with the current ”belief
measurement” obtained from the target classifier deci-
sion. Results depends on the quality of the classifier
characterized by its confusion matrix (assumed to be
known at least partially as specified by STANAG). The
adopted combination rule is the so-called Proportional
Conflict Redistribution rule no 5 (PCR5) developed in
the DSmT (Dezert Smarandache Theory) framework
since it deals efficiently with (potentially high) conflict-
ing information. A detailed presentation with examples
can be found in [12, 11]. This choice is motivated in this
typical application because in dense traffic scenarios,
the VS-IMMC SB-MHT only based on kinematic infor-
mation can be deficient during maneuvers and cross-
roads. Let’s recall first what the PCR5 fusion rule
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is and then briefly the principle of the (single-sensor
based) Target Type Tracker.

4.1 PCR5 combination rule

Let CTot = {θ1, . . . , θn} be a discrete finite set of
n exhaustive elements and two distinct bodies of evi-
dence providing basic belief assignments (bba’s) m1(.)
and m2(.) defined on the power-set1 of CTot. The
idea behind the Proportional Conflict Redistribution
(PCR) rules [11] is to transfer (total or partial) con-
flicting masses of belief to non-empty sets involved in
the conflicts proportionally with respect to the masses
assigned to them by sources. The way the conflicting
mass is redistributed yields actually several versions of
PCR rules, but PCR5 (i.e. PCR rule # 5) does the
most exact redistribution of conflicting mass to non-
empty sets following the logic of the conjunctive rule
and is well adapted for a sequential fusion. It does a
better redistribution of the conflicting mass than other
rules since it goes backwards on the tracks of the con-
junctive rule and redistributes the conflicting mass only
to the sets involved in the conflict and proportionally
to their masses put in the conflict. The PCR5 formula
for s ≥ 2 sources is given in [11]. For the combination
of only two sources (useful for sequential fusion in our
application) when working with Shafer’s model, it is
given by mPCR5(∅) = 0 and ∀X ∈ 2CTot \ {∅}

mPCR5(X) = m12(X)+

∑

Y ∈2CT ot\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
]

(21)

where m12(X) corresponds to the conjunctive consen-
sus on X between the two sources (i.e. our a prior bba
on target ID available at time k − 1 and our current
observed bba on target ID at time k) and where all de-
nominators are different from zero. If a denominator is
zero, that fraction is discarded.

4.2 Principle of the target type tracker

To estimate the true target type type(k) at time k

from the sequence of declarations c(1), c(2), . . . c(k)
done by the unreliable classifier2 up to time k. To build
an estimator ˆtype(k) of type(k), we use the general prin-
ciple of the Target Type Tracker (TTT) developed in
[12] which consists in the following steps:

• a) Initialization step (i.e. k = 0). Select the tar-
get type frame CTot = {θ1, . . . , θn} and set the

1In our GMTI-MTT applications, we will assume Shafer’s
model for the frame CTot of target ID which means that ele-
ments of CTot are assumed truly exclusive.

2Here we consider only one source of information/classifier,
say based either on the EO/IR sensor, or on a video sensor by
example. The multi-source case is discussed in section 4.3.

prior bba m−(.) as vacuous belief assignment, i.e
m−(θ1 ∪ . . .∪ θn) = 1 since one has no information
about the first observed target type.

• b) Generation of the current bba mobs(.) from
the current classifier declaration c(k) based on
attribute measurement. At this step, one takes
mobs(c(k)) = P{c(k)} = Cc(k)c(k) and all the unas-
signed mass 1 − mobs(c(k)) is then committed to
total ignorance θ1∪. . .∪θn. Cc(k)c(k) is the element
of the known confusion matrix C of the classifier
indexed by c(k)c(k).

• c) Combination of current bba mobs(.) with prior
bba m−(.) to get the estimation of the current bba
m(.). Symbolically we write the generic fusion op-
erator as ⊕, so that m(.) = [mobs ⊕ m−](.) =
[m− ⊕ mobs](.). The combination ⊕ is done ac-
cording to the PCR5 rule (i.e. m(.) = mPCR5(.)).

• d) Estimation of True Target Type is obtained
from m(.) by taking the singleton of Θ, i.e. a
Target Type, having the maximum of belief (or
eventually the maximum Pignistic Probability).

t̂ype(k) = argmax
A∈CTot

(BetP{A}) (22)

The Pignistic Probability is used to estimate the
probability to obtain the type θi ∈ CTot given the
previous target type estimate t̂ype(k − 1).

BetP{θi} = P{t̂ype(k) = θi|t̂ype(k − 1)} (23)

• e) set m−(.) = m(.); do k = k + 1 and go back to
step b).

Naturally, in order to revise the LLR in our GMTI-
MTT systems for taking into account the estimation
of belief of target ID coming from the Target Type
Trackers, we transform the resulting bba m(.) = [m−⊕
mobs](.) available at each time k into a probability mea-
sure. In this work, we use the classical pignistic trans-
formation defined by [13]:

BetP{A} =
∑

X∈2CTot

|X ∩ A|

|X |
m(X) (24)

4.3 Working with multiple sensors

Since in our application, we work with different sen-
sors (i.e. MTI and Video EO/IR sensors), one has to
deal with the discernment frames CMTI and Cvideo de-
fined in section 2. Therefore we need to adapt the
(single-sensor based) TTT to the multi-sensor case. We
first adapt the frame CMTI to Cvideo and then, we ex-
tend the principle of TTT to combine multiple bba’s
(typically here mMTI

obs (.) and mV ideo
obs (.)) with prior tar-

get ID bba m−(.) to get finally the updated global
bba m(.) at each time k. The proposed approach can
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be theroretically extended to any number of sensors.
When no information is available from a given sensor,
we take as related bba the vacuous mass of belief which
represents the total ignorant source because this doesn’t
change the result of the fusion rule [11] (which is a good
property to satisfy). For mapping CMTI to Cvideo, we
use a (human refinement) process such that each ele-
ment of CMTI can be associated at least to one element
of Cvideo. In this work, the delay on the the type in-
formation provided by the video sensor is not taking
into account to update the global bba m(.). All type
information (delayed or not provided by MTI and video
sensors) are considered as bba mobs(.) available for the
current update. The explicit introduction of delay of
the out of sequence video information is under investi-
gations.

4.4 Data attributes in the VS IMMC

To improve the target tracking process, the introduc-
tion of the target type probability is done in the like-
lihood calculation. For this, we consider the measure-
ment z∗j (k)(∀j ∈ {1, . . . , mk}) described in (9) and (13).
With the assumption that the kinematic and classifica-
tion observations are independant, it is easy to prove
that the new combined likelihood Λl

N associated with
a track T k,l is the product of the kinematic likelihood
(17) with the classification probability in the manner
that:

Λl
N (k) = Λl(k) · P{t̂ype(k)|t̂ype(k − 1)} (25)

where the the probability P
{
t̂ype(k)|t̂ype(k − 1)

}
is

chosen as the pignistic probability value on the declared
target type t̂ype(k) given t̂ype(k − 1) derived from the
updated mass of belief m(.) according to our target type
tracker.

5 Simulations and results

5.1 Scenario description

To evaluate the performances of the VS-IMMC SB-
MHT with the attribute type information, we consider
10 maneuvering (acceleration, deceleration, stop) tar-
gets on a real road network. The 10 target types are
given by (12). The target 1 is passing the military ve-
hicules 2, 3, 4 and 7. Targets 2, 3, 4 and 7 start from
the same starting point.The target 2 is passing the ve-
hicules 3 and 7 in the manner that it places in front of
the convoy. The targets 5, 6, 9 and 10 are civilian vehi-
cles and are crossing the targets 1, 2, 3 and 7 at several
junctions. The goal of this simulation is to reduce the
association complexity by taking into account the road
network topology and the attribute types given by het-
erogeneous sensors. In this scenario, we consider one
GMTI sensor located at (−50km,−60km) at 4000m

in elevation and one UAV located at (−100m,−100m)
at 1200m in elevation and 5 UGS distributed on the

ground. The GMTI sensor tracks the 10 targets at ev-
ery 10 seconds with 20m, 0.0008rad and 1m ·s−1 range,
cross-range and range-rate measurements standard de-
viation respectively. The detection probability PD is
equal to 0.9 and the MDV (Minimal Detectable Veloc-
ity) fixed at 1m · s−1. The false alarms density is fixed
(λfa = 10−8). The confusion matrix described in part
4.2 is given by:

CMTI = diag(
[

0.8 0.7 0.9
]
) (26)

This confusion matrix is only used to simulate the tar-
get type probability of the GMTI sensor. The data
obtained by UAV are given at 10 seconds with 10m

standard deviation in X an Y direction from the TCF.
The time delay of the video data is constant and equal
to 11 seconds. The detection probability PD is equal to
0.9. The human operator only selects for each video re-
port a type defined by (12). In our simulations, the tar-
get type probability depends on the sensor resolution.
For this, we consider the volume Vvideo of the sensor
area surveillance on the ground. The diagonal terms of
the confusion matrix Cvideo are equal to P{c(k)} where
P{c(k)} is defined by:

P{c(k)} =





0.90 if Vvideo ≤ 106m2

0.75 if 106m2 < Vvideo ≤ 108m2

0.50 if Vvideo > 108m2

(27)

For the UGS, the target detection is done if only
the target is located under the minimal range detection
(MRD). The MRD is fixed for the 5 UGS at 1000 m and
each sensor gives delayed measurement every seconds.
The time delay is also equal to 11 seconds. The UGS
specificity is to give only one target detection during
4 seconds in order to detect another target. We recall
that there is no false alarms for this sensor. Based on
[4], the target type probability depends on α (i.e. the
target orientation towards the UGS). The more the tar-
get orientation is orthogonal to the sensor line of sight,
the more the target type probability increases. The di-
agonal terms of the confusion matrix CUGS are equal
to P{c(k)} where P{c(k)} is defined by:

P{c(k)} =

{
0.90 if 5π

6 ≤ α ≤ π
6

0.50 otherwise
(28)

For each detected target, a uniform random number
u ∼ U([0, 1]) is drawn. If u is greater than the true
target type probability of the confusion matrix, a wrong
target type is declared for the ID report and used with
its associated target type probability. The targets are
scanned at different times by the sensors (figure 1).

5.2 Filter parameters

We consider three motion models (i.e. i ∈ {0, 1, 2})
which are respectively a stop model M0 when the target
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Figure 1: Target’s sensor illumination.

is assumed to have a zero velocity, a constant velocity
model M1 with a low uncertainty, and a constant ve-
locity model M2 with a high uncertainty (modeled by
a strong noise). The parameters of the IMM are the
following: for the motion model M1, the standard de-
viation along and orthogonal to the road segment are
equals to 0.05 m·s−2), the constrained constant velocity
model M2 has a high standard deviation to adapt the
dynamics to the target manoeuvre (the standard de-
viation along and orthogonal to the road segment are
respectively equal to 0.8 m · s−2 and 0.4 m · s−2) and
the stop motion model M0 has a standard deviation
equals to zero. These constrained motion models are
however adapted to follow the road network topology.
The transition matrix and the SB-MHT parameters are
those taken in [5].

5.3 Results

For each confirmed track given by the VS-IMMC SB-
MHT, a test is used to associate a track to the most
probable target. The target tracking goal is to track as
long as possible the target with one track. To evaluate
the track maintenance, we use the track length ratio
criterion, the averaged root mean square error (noted
ARMSE) for each target and the track purity and the
type purity (only for the tracks obtained with PCR5)
[5]. These measures of performances are averaged on
50 Monte-Carlo runs.

On figure 2, one sees that the track length ratio be-
comes better with the PCR5 than without as expected
for the target 6. When the targets 1 and 2 are passing
the targets 3, 4 and 7, an association ambiguity arises
to associate the tracks with the correct measurements.
This is due to the close formation between targets with
the GMTI sensor resolution and the road network con-
figureation with junctions. Sometimes tracks are lost
with the VS IMMC SB-MHT without the PCR5. Then
new tracks for each targets are built. That is why, the
track purity of the VS IMMC SB-MHT without PCR5
(Table 1) is smaller than the the track purity with
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Figure 2: Track length ratio.

Target ARMSE Track purity Type purity
1 14.82 0.70 none
2 16.62 0.62 none
3 15.61 0.61 none
4 22.54 0.77 none
5 16.25 0.85 none
6 18.68 0.64 none
7 14.45 0.72 none
8 17.51 0.84 none
9 19.23 0.85 none
10 17.40 0.75 none

Table 1: Tracking results (VSIMMC without PCR5).

Target ARMSE Track purity Type purity
1 14.37 0.78 0.64
2 15.77 0.66 0.62
3 15.60 0.61 0.59
4 21.10 0.81 0.81
5 15.88 0.94 0.55
6 18.68 0.64 0.02
7 14.22 0.76 0.76
8 17.38 0.87 0.87
9 19.20 0.85 0.05
10 17.17 0.83 0.46

Table 2: Tracking results (VSIMMC and PCR5).

PCR5 (Table 2). So, the track precision, given by the
ARMSE criterion, is better with the PCR5. For the tar-
get 6 results, this target is only scanned by the GMTI
sensor and its associated performances are equivalent
for both algorithms. Then, if there is no IMINT infor-
mation and no interaction between targets, the perfor-
mances of the algorithm with PCR5 are the same than
without PCR5.

Despite of the PCR5 improvement on the target
tracking, the difference of performances between the al-
gorithms is not significant. If there is an interaction be-
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tween IMINT and GMTI information, we can see a gain
on the track length ratio or track purity of 10% with
PCR5. This small difference is due to the good con-
strained state estimation. The estimated target states
have a good precision because the target tracking is
done by taking into account the road segments location
and the good performances of the OOSM approach. So,
it implies a substantial improvement of the target-to-
track association. In addition, on Table 2, the type
purity based on PCR5 is derived from the maximum of
BetP criterion. But BetP is computed according the
set Cvideo (12) and if the track receives only MTI re-
ports the choice on the target type is arbitrary for the
tracked vehicles of CMTI (8). In fact, a tracked vehicle
can be 6 elements of (12). So the probability BetP on
the 6 tracked vehicles of (12) is equivalent. The selec-
tion of the maximum of BetP has no meaning because
in such case and the maximum becomes arbitrary. This
explains the bad track purity of targets 6 and 9.

6 Conclusion

In this paper, we have presented a new approach to
improve VS IMMC SB-MHT by introducing the data
fusion with several heterogeneous sensors. Starting
from a centralized architecture, the MTI and IMINT
reports are fused by taking into account the road net-
work information and the OOSM algorithm for delayed
measurements. The VS IMMC SB-MHT is enlarged by
introducing in the data association process the type in-
formation defined in the STANAG 4607 and an IMINT
attribute set. The estimation of the Target ID proba-
bility is done from the updated/current attribute mass
of belief using the Proportional Conflict Redistribution
rule no. 5 developed in DSmT framework and accord-
ing to the Target Type Tracker (TTT) recently devel-
oped by the authors. The Target ID probability once
obtained is then introduced in the track score compu-
tation in order to improve the likelihoods of each data
association hypothesis of the SB-MHT. Our prelimi-
nary results show an improvement of the performances
of the VS-IMMC SB-MHT when the type information
is processed by our PCR5-based Target Type Tracker.
In this work, we did not distinguish undelayed from
delayed sensor reports in the TTT update. This prob-
lem is under investigations and offers new perspectives
to find a solution for dealing efficiently with the time
delay of the information type data and to improve per-
formances. One simple solution would be to use a for-
getting factor of the delayed type information but other
solutions seem also possible to explore and need to be
evaluated. Some works need also to be done to use the
operational ontologic APP-6A for the heterogeneous
type information. Actually, the frame of the IMINT
type information is bigger than the one used in this pa-
per and the IMINT type information can be given at
different granularity levels. As a third perspective, we

envisage to use both the type and contextual informa-
tion in order to recognize the tracks losts in the terrain
masks which represent the possible target occultations
due to the terrain topography in real environments.
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Threat assessment of a possible Vehicle-Born 
Improvised Explosive Device using DSmT

Jean Dezert
Florentin Smarandache 

Abstract – This paper presents the solution about the
threat of a VBIED (Vehicle-Born Improvised Explosive
Device) obtained with the DSmT (Dezert-Smarandache
Theory). This problem has been proposed recently to the
authors by Simon Maskell and John Lavery as a typi-
cal illustrative example to try to compare the different
approaches for dealing with uncertainty for decision-
making support. The purpose of this paper is to show
in details how a solid justified solution can be obtained
from DSmT approach and its fusion rules thanks to a
proper modeling of the belief functions involved in this
problem.

Keywords: Security, Decison-making support, Infor-
mation fusion, DSmT, Threat assessment.

1 The VBIED problem

• Concern: VBIED (Vehicle-Born Improvised Ex-
plosive Device) attack on an administrative build-
ing B

• Prior information: We consider an Individual
A under surveillance due to previous unstable be-
havior who drives customized white Toyota (WT)
vehicle.

• Observation done at time t − 10 min: From a
video sensor on road that leads to building B 10
min ago, one has observed a White Toyota 200m
from the building B traveling in normal traffic flow
toward building B. We consider the following two
sources of information based on this video obser-
vation available at time t− 10 min:

– Source 1: An Analyst 1 with 10 years expe-
rience analyses the video and concludes that
individual A is now probably near building B.

– Source 2: An Automatic Number Plate
Recognition (ANPR) system analyzing same
video outputs 30% probability that the vehi-
cle is individual A’s white Toyota.

• Observation done at time t − 5 min: From a
video sensor on road 15km from building B 5 min
ago one gets a video that indicates a white Toy-
ota with some resemblance to individual A’s white
Toyota. We consider the following thrid source of
information based on this video observation avail-
able at time t− 5 min:

– Source 3: An Analyst 2 (new in post) analy-
ses this video and concludes that it is improb-
able that individual A is near building B.

• Question 1: Should building B be evacuated?

• Question 2: Is experience (Analyst 1) more valu-
able than physics (the ANPR system) combined
with inexperience (Analyst 2)? How do we model
that?

NOTE: Deception (e.g., individual A using different
car, false number plates, etc.) and biasing (on the part
of the analysts) are often a part of reality, but they are
not part of this example.

2 Modeling the VBIED problem
Before applying DSmT fusion techniques to solve this

VBIED problem it is important to model the problem
in the framework of belief functions.

2.1 Marginal frames with their models

The marginal frames involved in this problem are:

• Frame related with individuals:

Θ1 = {A = Suspicious person, Ā = not A}

• Frame related with the vehicle:

Θ2 = {V = White Toyota Vehicle, V̄ = not V }

Originally published as Dezert J., Smarandache F., Threat assessment of 
a possible Vehicle-Born Improvised Explosive Device using DSmT, 

(presented during the forum on uncertainty at Fusion 2010 
conference), Edinburgh, Scotland, UK, 26-29 July 2010, and printed 

with permission.
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• Frame related with the position of a driver of a car
w.r.t the given building B:

Θ3 = {B = near building, B̄ = not B}

The underlying models of marginal frames are based on
the following very reasonable assumptions:

• Assumption 1: We assume naturally A ∩ Ā =
∅ (avoiding Shrdinger’s cat paradox). If working
only with the frame of people Θ3, the marginal
bba’s must be defined on the power-set

2Θ1 = {∅1, A, Ā, A ∪ Ā}

• Assumption 2: We assume also that V ∩V̄ = ∅ so
that the marginal bba (if needed) must be defined
on the power-set

2Θ2 = {∅2, V, V̄ , V ∪ V̄ }

• Assumption 3: We assume also that B∩B̄ = ∅ so
that the marginal bba (if needed) must be defined
on the power-set

2Θ3 = {∅3, B, B̄, B ∪ B̄}

This modeling is disputable since the notion of
closeness/”near” is not clearly defined and we
could prefer to work on

DΘ3 = {∅3, B ∩ B̄, B, B̄, B ∪ B̄}

The emptyset elements have been indexed by the
index of the frame they are referring to for notation
convenience and avoiding confusion.

2.2 Joint frame and its model

Since we need to work with all aspects of available
information, we need to define a common joint frame
to express all what we have from different sources of
information. The easiest way for defining the joint
frame, denoted Θ, is to consider the classical Carte-
sian (cross) product space and to work with propo-
sitions (a Lindenbaum-Tarski algebra of propositions)
since one has a correspondence between sets and propo-
sitions [5, 6], i.e.

Θ = Θ1 ×Θ2 ×Θ3

which consists of the following 8 triplets elements

Θ = {θ1 = (Ā, V̄ , B̄), θ2 = (A, V̄ , B̄),

θ3 = (Ā, V, B̄), θ4 = (A, V, B̄),

θ5 = (Ā, V̄ , B), θ6 = (A, V̄ , B),

θ7 = (Ā, V, B), θ8 = (A, V,B)}

We define the union ∪ , intersection ∩ as componen-
twise operators in the following way:

(x1, x2, x3) ∪ (y1, y2, y3) , (x1 ∪ y1, x2 ∪ y2, x3 ∪ y3)

(x1, x2, x3) ∩ (y1, y2, y3) , (x1 ∩ y1, x2 ∩ y2, x3 ∩ y3)

The complement X̄ of X is defined in the usual way by

X̄ = (x1, x2, x3) , It \ {X}

where It is the total ignorance (i.e. the whole space of
solutions) which corresponds to the maximal element
defined by It = (It1, It2, It3), where Iti is the maximal
(ignorance) of Θi, i = 1, 2, 3. The minimum element
(absolute empty proposition) is ∅ = (∅1, ∅2, ∅3), where
∅i is the minimum element (empty proposition) of
Θi. We also define a relative minimum element in
SΘ1×Θ2×Θ3 as follows: ∅r = (x, y, z), where at least
one of the components x, y, or z is a minimal element
in its respective frame Θi. A general relative minimum
element ∅gr is defined as the union/join of all relative
minima (including the absolute minimum element).
Similarly to the relative and general relative minimum
we can define a relative maximum and a general
relative maximum, where the empty set in the above
definitions is replaced by the total ignorance. Whence
the super-power set (SΘ,∩,∪, ¯ , ∅, It) is equivalent to
Lindenbaum-Tarski algebra of propositions.

For example, if we consider Θ1 = {x1, x2} and Θ2 =
{y1, y2} satisfying both Shafer’s model, then Θ = Θ1 ×
Θ2 = {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}, and one has:

∅ = (∅1, ∅2)

∅r1 = (∅1, y1)

∅r2 = (∅1, y2)

∅r3 = (∅1, y1 ∪ y2)

∅r4 = (x1, ∅2)

∅r5 = (x2, ∅2)

∅r6 = (x1 ∪ x2, ∅2)

and thus

∅gr = ∅ ∪ ∅r1 ∪ ∅r2 ∪ . . . ∪ ∅r6

Based on definition of joint frame Θ with operations
on its elements, we need to choose its underlying model
(Shafer’s, free or hybrid model) to define its fusion space
where the bba’s will be defined on. According to the
definition of absolute and relative minimal elements,
we then assume for the given VBIED problem that Θ
satisfies Shafer’s model, i.e. all (triplets) elements θi ∈
Θ are exclusive, so that the bba’s of sources will be
defined on the classical power-set 2Θ.
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2.3 Supporting hypotheses for decision

In the VBIED problem the main question (Q1) is re-
lated with the security of people in the building B. The
potential danger related with this building is of course
θ8 = (A, V,B) i.e. the presence of A in his/her car V
near the building B. This is however and unfortunately
not the only origin of the danger since the threat can
also come from the possible presence of V (possible A’s
improvised explosive vehicle) parked near the building
B even if A has left his/her car and is not himself/her-
self near the building. This second origin of danger
is represented by θ7 = (Ā, V, B). There exists also a
third origin of the danger represented by θ6 = (A, V̄ , B)
which reflects the possibility to have A near the build-
ing without V car. θ6 is also dangerous for the building
B since A can try to commit a suicidal terrorism attack
as human bomb against the building. Therefore based
on these three sources of potential danger, the most
reasonable/prudent supporting hypothesis for decision-
making is consider

θ6 ∪ θ7 ∪ θ8 = (A, V̄ , B) ∪ (Ā, V, B) ∪ (A, V,B)

If we assume that the danger is mostly due to pres-
ence of A’s vehicle containing possibly a high charge of
explosive near the building B rather than the human
bomb attack, then one can prefer to consider only the
following hypothesis for decision-making support eval-
uation

θ7 ∪ θ8 = (Ā, V, B) ∪ (A, V,B)

Finally if we are more optimistic, we can consider
that the real danger occurs if and only if A drives V
near the building B and therefore one could consider
only the supporting hypothesis θ8 = (A, V,B) for the
danger in the decision-making support evaluation.

In the sequel, we adopt the worst scenario (we
take the most prudent choice) and we consider all
three origins of potential danger. Thus we will take
θ6 ∪ θ7 ∪ θ8 as cautious/prudent supporting hypothesis
for decision-making.

Thepropositions θ6 ∪ θ8 = (A, V̄ , B) ∪ (A, V,B) and
θ6∪θ7 = (A, V̄ , B)∪(Ā, V, B) represent also a potential
danger and could serve as decision-support hypotheses
also, and their imprecise probabilities can be evaluate
easily following analysis presented in the sequel. They
have not been reported in this paper to keep it at a
reasonable size.

2.4 Choice of bba’s of sources

Let’s define first the bba of each source without re-
gard to what could be their reliability and importance
in the fusion process. Reliability and importance will
be examined in details in next section.

• Bba related with source 0 (prior information):
The prior information states that the suspect A
drives a white Toyota, and nothing is state about
the prior information with respect to his location,
so that we must consider the bba’s representing the
prior information as

m0(θ4 ∪ θ8) = m0((A, V, B̄) ∪ (A, V,B))

= m0((A, V,B ∪ B̄))

= 1

• Bba related with source 1 (Analyst 1 with 10
years experience): The source 1 reports that the
suspect A is probably now near the building B.
This source however doesn’t report explicitly that
the suspect A is still with its white Toyota car or
not. So the fair way to model this report when
working on Θ is to commit a high mass of belief to
the element θ6 ∪ θ8, that is

m1(θ6 ∪ θ8) = m1((A, V̄ , B) ∪ (A, V,B))

= m1((A, V ∪ V̄ , B))

= 0.75

and to commit the uncommitted mass to It based
on the principle of minimum of specificity, so that

m1(θ6 ∪ θ8) = 0.75 and m1(It) = 0.25

• Bba related with source 2 (ANPR system):
The source 3 reports 30% probability that the ve-
hicle is individual A’s wite Toyota. Nothing is re-
ported on the position information. The informa-
tion provided by this source corresponds actually
to incomplete probabilistic information. Indeed,
when working on Θ1 × Θ2, what we only know
is that P{(A, V )} = 0.3 and P{(Ā, V ) ∪ (A, V̄ ) ∪
(Ā, V̄ )} = 0.7 (from additivity axiom of probabil-
ity theory) and thus the bba m2(.) we must choose
on Θ1 × Θ2 × Θ3 has to be compatible with this
incomplete probabilistic information, i.e. the pro-
jection m′

2(.) , m↓Θ1×Θ2

2 (.) of m2(.) on Θ1 × Θ2

must satisfy the following constraints on belief and
plausibility functions

Bel′((A, V )) = 0.3

Bel′((Ā, V ) ∪ (A, V̄ ) ∪ (Ā, V̄ )) = 0.7

and also
Pl′((A, V )) = 0.3

Pl′((Ā, V ) ∪ (A, V̄ ) ∪ (Ā, V̄ )) = 0.7

because belief and plausibility correspond to lower
and upper bounds of probability measure [5]. So
it is easy to verify that the following bba m′

2(.)
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satisfy these constraints because the elements of
the frame Θ1 ×Θ2 are exclusive:

m′
2((A, V )) = 0.3

m′
2((Ā, V ) ∪ (A, V̄ ) ∪ (Ā, V̄ )) = 0.7

We can then extend m′
2(.) into Θ1×Θ2×Θ3 using

the minimum specificity principle (i.e. take the
vacuous extension of m′

2(.)) to get the bba m2(.)
that we need to solve the VBIED problem. That
is m2(.) = m′↑Θ1×Θ2×Θ3

2 (.) with

m2((A, V,B ∪ B̄)) = 0.3

m2((Ā, V, B∪B̄)∪(A, V̄ , B∪B̄)∪(Ā, V̄ , B∪B̄)) = 0.7

or equivalently

m2(θ4 ∪ θ8) = 0.3

m2(θ4 ∪ θ8) = m2(θ1 ∪ θ2 ∪ θ3 ∪ θ5 ∪ θ6 ∪ θ7) = 0.7

• Bba related with source 3 (Analyst 3 with no
experience): The source 3 reports that it is im-
probable that the suspect A is near the building
B. This source however doesn’t report explicitly
that the suspect A is still with its white Toyota
car or not. So the fair way to model this report
when working on Θ is to commit a low mass of
belief to the element θ6 ∪ θ8, that is

m3(θ6 ∪ θ8) = m3((A, V̄ , B) ∪ (A, V,B))

= m3((A, V ∪ V̄ , B))

= 0.25

and to commit the uncommitted mass to It based
on the principle of minimum of specificity, so that

m3(θ6 ∪ θ8) = 0.25 and m3(It) = 0.75

2.5 Reliability of sources

Let’s identify what is known about the reliability of
sources and information:

• Reliability of prior information: it is (implic-
itly) supposed that the prior information is 100%
reliable that is ”Suspect A drives a white Toy-
ota” which corresponds to the element (A, V,B) ∪
(A, V, B̄). So we can take the reliability factor of
prior information as α0 = 1. If one considers the
priori information highly reliable (but not totally
reliable) then one could take α0 = 0.9 so thatm0(.)
would be

m0(θ4 ∪ θ8) = 0.9 and m0(It) = 0.1

• Reliability of source 1: One knows that Analyst
# 1 has 10 years experience, so we must consider
him/her having a good reliability (say greater than
75%) or to be less precise we can just assign to him
a qualitative reliability factor with minimal num-
ber of labels in {L1 = not good, L2 = good}. Here
we should choose α1 = L2. As first approximation,
we can consider α1 = 1.

• Reliability of source 2: No information about
the reliability of ANPR system is explicitly given.
We may consider that if such device is used it is
because it is also considered as a valuable tool and
thus we assume it has a good reliability too, that
is α2 = 1. If we want to be more prudent we
should consider the reliability factor of this source
as totally unknown and thus we should take it as
very imprecise with α2 = [0, 1] (or qualitatively as
α2 = [L0, L3]). If we are more optimistic and con-
sider ANPR system as reliable enough, we could
take α2 a bit more precise with α2 = [0.75, 1] (i.e.
α2 ≥ 0.75) or just qualitatively as α2 = L2.

• Reliability of source 3: It is said explicitly that
Analyst 2 is new in post, which means that Ana-
lyst 2 has no great experience and it can be inferred
logically that it is less reliable than Analyst 1 so
that we must choose α3 < α1. But we can also
have a very young brillant analyst who perform
very well too with respect to the older Analyst 1.
So to be more cautious/prudent, we should also
consider the case of unknown reliability factor α3

by taking qualitatively α3 = [L0, L3] or quantita-
tively by taking α3 as a very imprecise value that
is α3 = [0, 1].

2.6 Importance of sources

Not that much is explicitly said about the importance
of the sources of information in the VBIED problem
statement, but the fact that Analyst 1 has ten years
experience and Analyst 2 is new in post, so that it seems
logical to choose as importance factor β1 > β3. The
importances discounting factors have been introduced
and presented by the authors in [2, 7]. As a prudent
attitude we could choose also β0 = [0, 1] = [L0, L3]
and β2 = [0, 1] = [L0, L3] (vey imprecise values). If
we consider that the prior information and the source 2
(ANPR) have the same importance, we could just take
β0 = β1 = 1 to make derivations easier and adopt a
more optimistic point of view1.

3 Solution of VBIED problem
We apply PCR5 and PCR6 fusion rules developed

originally in the DSmT framework to get the solution

1Of course the importance discounting factors can also be
chosen approximatively from exogenous information upon the
desiderata of the fusion system designer. This question is out
of the scope of this paper.
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of the VBIED problem. PCR5 has been developed
by the authors in [6], Vol.2, and PCR6 is a variant
of PCR5 proposed by Arnaud Martin and Christophe
Osswald in [3]. Several codes for using PCR5 and
PCR6 have been proposed in the literature for example
in [3, 1, 7] and are available to the authors upon request.

Two cases are explored depending on the taking into
account or not of the reliability and the importance of
sources in the fusion process. To simplify the presenta-
tion of the results we denote the focal elements involved
in this VBIED problem as:

f1 , θ4 ∪ θ8

f2 , θ6 ∪ θ8

f3 , θ1 ∪ θ2 ∪ θ3 ∪ θ5 ∪ θ6 ∪ θ7 = θ4 ∪ θ8

f4 , It = θ1 ∪ θ2 ∪ θ3 ∪ θ4 ∪ θ5 ∪ θ6 ∪ θ7 ∪ θ8

Only these focal elements are involved in inputs of
the problem and we recall the two questions that we
must answer:

Question 1 (Q1): Should building B be evacuated?
The question 1 must be answered by analyzing

the level of belief and plausibility committed in the
propositions supporting B through the fusion process.

Question 2 (Q2): Is experience (Analyst 1) more
valuable than physics (the ANPR system) combined
with inexperience (Analyst 2)? How do we model that?
The question 2 must be answered by analyzing and

comparing the results of the fusion m1 ⊕m3 (or even-
tually m0 ⊕ m1 ⊕ m3) with respect to m2 only (resp.
m0 ⊕m2).

3.1 Without reliability and importance

We provide here the solutions of the VBIED problem
with direct PCR5 and PCR6 fusion of the sources
for different qualitative inputs summarized in the
tables below. We also present the result of DSmP
probabilistic transformation [6] (Vol.3, Chap. 3) of
resulting bba’s to get and approximate probability
measure of elements of Θ. No importance and reliabil-
ity discounting has been applied since in this section,
we consider that all sources have same importances
and same reliabilities.

Example 1: We take the bba’s described in section
2.3, that is

focal element m0(.) m1(.) m2(.) m3(.)

θ4 ∪ θ8 1 0 0.3 0
θ6 ∪ θ8 0 0.75 0 0.25

θ4 ∪ θ8 0 0 0.7 0
It 0 0.25 0 0.75

Table 1: Quantitative inputs of VBIED problem.

focal element mPCR5(.) mPCR6(.)

θ1 ∪ θ2 ∪ θ3 ∪ θ5 ∪ θ6 ∪ θ7 0.19741 0.16811
θ8 0.24375 0.24375
θ4 ∪ θ8 0.33826 0.29641
θ6 ∪ θ8 0.11029 0.14587
It 0.11029 0.14587

Table 2: Results of m0 ⊕m1 ⊕m2 ⊕m3 for Table 1.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.0333 0.0286
θ2 0.0333 0.0286
θ3 0.0333 0.0286
θ4 0.0018 0.0018
θ5 0.0333 0.0286
θ6 0.0338 0.0292
θ7 0.0333 0.0286
θ8 0.7977 0.8260

Table 3: DSmPǫ of m0 ⊕m1 ⊕m2 ⊕m3 for Table 1.

Singletons BetPPCR5(.) BetPPCR6(.)

θ1 0.0467 0.0463
θ2 0.0467 0.0463
θ3 0.0467 0.0463
θ4 0.1829 0.1664
θ5 0.0467 0.0463
θ6 0.1018 0.1192
θ7 0.0467 0.0463
θ8 0.4818 0.4831

Table 4: BetP of m0 ⊕m1 ⊕m2 ⊕m3 for Table 1.

From fusion result of Table 2, one gets for the danger
supporting hypothesis θ6 ∪ θ7 ∪ θ8 (the worst scenario
case)

• with PCR5: ∆(θ6 ∪ θ7 ∪ θ8) = 0.64596

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.35404, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.64596]

• with PCR6: ∆(θ6 ∪ θ7 ∪ θ8) = 0.61038

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.38962, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.61038]

where ∆(X) = Pl(X) − Bel(X) is the impre-
cision related to P (X). It is worth to note
that ∆(X̄) = Pl(X̄) − Bel(X̄) = ∆(X) because
Pl(X̄) = 1− Bel(X) and Bel(X̄) = 1− Pl(X).

If we consider only θ7 ∪ θ8 = (Ā, V, B) ∪ (A, V,B)
as danger supporting hypothesis then from the fusion
result of Table 2, one gets

• with PCR5: ∆(θ7 ∪ θ8) = 0.75625

P (θ7 ∪ θ8) ∈ [0.24375, 1]

P (θ7 ∪ θ8) ∈ [0, 0.75625]
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• with PCR6: ∆(θ7 ∪ θ8) = 0.75625

P (θ7 ∪ θ8) ∈ [0.24375, 1]

P (θ7 ∪ θ8) ∈ [0, 0.75625]

If we are more optimistic and we consider only the
danger supporting hypothesis θ8, then one gets

• with PCR5: ∆(θ8) = 0.55884

P (θ8) ∈ [0.24375, 0.80259]

P (θ̄8) ∈ [0.19741, 0.75625]

• with PCR6: ∆(θ8) = ∆(θ̄8) = 0.58814

P (θ8) ∈ [0.24375, 0.83189]

P (θ̄8) ∈ [0.16811, 0.75625]

If one approximates the bba’s into probabilistic mea-
sures with DSmP transformation2, one gets results with
ǫ = 0.001 presented in Table 3. One gets the higher
probability on θ8 with respect to other alternatives and
also DSmP (θ6∪θ7∪θ8) = 0.8648. If one prefers to use
the pignistic3 probability transformation [8], one gets
the results given in Table 4. One sees clearly that PIC4

of DSmP is higher that PIC of BetP which makes deci-
sion easier to take with DSmP than with BetP in favor
of θ6 ∪ θ7 ∪ θ8, or θ7 ∪ θ8, or θ8.

- Answer to Q1: One sees that the result pro-
vided by PCR6 and PCR5 are very close and
do not change fundamentally the final decision to
take. Based on these very imprecise results, it
is very difficult to take the right decision with-
out decision-making error because the sources of
information are highly uncertain and conflicting,
but the analysis of lower and upper bounds shows
that the most reasonable answer to the ques-
tion based either on max of credibility or max
of plausibility is to evacuate the building B since
Bel(θ6 ∪ θ7 ∪ θ8) > Bel(θ6 ∪ θ7 ∪ θ8) and also
Pl(θ6 ∪ θ7 ∪ θ8) > Pl(θ6 ∪ θ7 ∪ θ8). The same
conclusion is drawn when considering the element
θ7 ∪ θ8 or θ8 alone. The same conclusion also is
drawn (more easier) based on DSmP or on BetP
values. In summary, the answer to Q1 is: Evacu-
ation of the building B.

2DSmP transformation has been introduced and justified in
details by the authors in the book [6] (Vol.3, Chap. 3) freely
downloadable from the web with many examples, and therefore
it will not be presented here.

3BetP is the most used transformation to approximate a mass
of belief into a subjective probability measure. It has been pro-
posed by Philippe Smets in nineties.

4The PIC (probabilistic information content) criteria has been
introduced by John Sudano in [9] and is noting but the dual of
normalized Shannon entropy. PIC is in [0, 1] and PIC = 1 if the
probability measure assigns a probability one only on a particular
singleton of the frame, and PIC = 0 if all elements of the frame
are equi-probable.

In order to answer to the second question (Q2), let’s
compute the fusion results of the fusion m0 ⊕ m2 and
m0⊕m1⊕m3 using inputs given in Table 1. The fusion
results with corresponding DSmP and BetP are given
in the Tables 5-6.

focal element mPCR5(.) mPCR6(.)

θ1 ∪ θ2 ∪ θ3 ∪ θ5 ∪ θ6 ∪ θ7 0.28824 0.28824
θ4 ∪ θ8 0.71176 0.71176

Table 5: Result of m0 ⊕m2.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.0480 0.0480
θ2 0.0480 0.0480
θ3 0.0480 0.0480
θ4 0.3560 0.3560
θ5 0.0480 0.0480
θ6 0.0480 0.0480
θ7 0.0480 0.0480
θ8 0.3560 0.3560

Table 6: DSmPǫ of m0 ⊕m2.

Singletons BetPPCR5(.) BetPPCR6(.)

θ1 0.0480 0.0480
θ2 0.0480 0.0480
θ3 0.0480 0.0480
θ4 0.3560 0.3560
θ5 0.0480 0.0480
θ6 0.0480 0.0480
θ7 0.0480 0.0480
θ8 0.3560 0.3560

Table 7: BetP of m0 ⊕m2.

Based on m0 ⊕ m2 fusion result, one gets a total
imprecision ∆02(θ6 ∪ θ7 ∪ θ8) = 1 when considering
θ6 ∪ θ7 ∪ θ8 or θ7 ∪ θ8 since

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 1]

and
P (θ7 ∪ θ8) ∈ [0, 1]

P (θ7 ∪ θ8) ∈ [0, 1]

Even when considering only the danger supporting hy-
pothesis θ8, one still gets a quite large imprecision on
P (θ8) since ∆02(θ8) = 0.71176 with

P (θ8) ∈ [0, 0.71176]

P (θ̄8) ∈ [0.28824, 1]

Based on max of Bel or max of Pl criteria, one sees
that it is not possible to take any rational decision from
θ6 ∪ θ7 ∪ θ8 nor θ7 ∪ θ8 because of the full imprecision
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range of P (θ6 ∪ θ7 ∪ θ8) or P (θ7 ∪ θ8). The decision
using m0 ⊕ m2 (i.e. with prior information m0 and
ANPR systemm2) based only on supporting hypothesis
θ8 should be to NOT evacuate the building B. Same
decision would be taken based on DSmP or BetP values.

focal element mPCR5(.) mPCR6(.)

θ8 0.8125 0.8125
θ4 ∪ θ8 0.1875 0.1875

Table 8: Result of m0 ⊕m1 ⊕m3.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0 0
θ2 0 0
θ3 0 0
θ4 0.0002 0.0002
θ5 0 0
θ6 0 0
θ7 0 0
θ8 0.9998 0.9998

Table 9: DSmPǫ of m0 ⊕m1 ⊕m3.

Singletons BetPPCR5(.) BetPPCR6(.)

θ1 0 0
θ2 0 0
θ3 0 0
θ4 0.09375 0.09375
θ5 0 0
θ6 0 0
θ7 0 0
θ8 0.90625 0.90625

Table 10: BetP of m0 ⊕m1 ⊕m3.

Based on m0 ⊕ m1 ⊕ m3 fusion result, one gets
∆013(θ6 ∪ θ7 ∪ θ8) = 0.1875

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.8125, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.1875]

but also

P (θ7 ∪ θ8) ∈ [0.8125, 1], P (θ7 ∪ θ8) ∈ [0, 0.1875]

and

P (θ8) ∈ [0.8125, 1], P (θ̄8) ∈ [0, 0.1875]

Based on max of Bel or max of Pl criteria, the deci-
sion usingm0⊕m1⊕m3 (i.e. with prior informationm0

and both analysts) is to evacuate the building B. The
same decision is taken based on DSmP or BetP values.
It is worth to note that the precision on the result ob-
tained with m0 ⊕ m1 ⊕ m3 is much better than with
m0 ⊕m2 since ∆013(θ6 ∪ θ7 ∪ θ8) < ∆02(θ6 ∪ θ7 ∪ θ8),
or ∆013(θ7 ∪ θ8) < ∆02(θ7 ∪ θ8). Moreover it is easy to

verify that m0 ⊕m1 ⊕m3 fusion system is more infor-
mative than m0 ⊕ m2 fusion system because Shannon
entropy of DSmP of m0⊕m2 is much bigger than Shan-
non entropy of DSmP of m0 ⊕m1 ⊕m3.

- Answer to Q2: Since the information obtained
by the fusion m0 ⊕m2 is less informative and less
precise than the information obtained with the
fusion m0 ⊕ m1 ⊕ m3, it is better to choose and
to trust the fusion system m0 ⊕ m1 ⊕ m3 rather
than m0 ⊕ m2. Based on this choice, the final
decision will be to evacuate the building B which
is consistent with answer to question Q1.

Example 2: Let’s modify a bit the previous Table 1
and take higher belief for sources 1 and 3 as

focal element m0(.) m1(.) m2(.) m3(.)

θ4 ∪ θ8 1 0 0.3 0
θ6 ∪ θ8 0 0.9 0 0.1

θ4 ∪ θ8 0 0 0.7 0
It 0 0.1 0 0.9

Table 11: Quantitative inputs of VBIED problem.

The results of the fusion m0 ⊕ m1 ⊕ m2 ⊕ m3 using
PCR5 and PCR6 and the corresponding DSmP values
are given in tables 12-13.

focal element mPCR5(.) mPCR6(.)

θ1 ∪ θ2 ∪ θ3 ∪ θ5 ∪ θ6 ∪ θ7 0.16525 0.14865
θ8 0.27300 0.27300
θ4 ∪ θ8 0.26307 0.23935
θ6 ∪ θ8 0.14934 0.16950
It 0.14934 0.16950

Table 12: Results of m0 ⊕m1 ⊕m2 ⊕m3 for Table 11.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.0281 0.0254
θ2 0.0281 0.0254
θ3 0.0281 0.0254
θ4 0.0015 0.0015
θ5 0.0281 0.0254
θ6 0.0286 0.0260
θ7 0.0281 0.0254
θ8 0.8294 0.8455

Table 13: DSmPǫ of m0 ⊕m1 ⊕m2 ⊕m3 for Table 11.

From fusion result of Table 12, one gets when consid-
ering θ6 ∪ θ7 ∪ θ8

• with PCR5: ∆(θ6 ∪ θ7 ∪ θ8) = 0.57766

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.42234, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 57766]

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

301



Singletons BetPPCR5(.) BetPPCR6(.)

θ1 0.0462 0.0460
θ2 0.0462 0.0460
θ3 0.0462 0.0460
θ4 0.1502 0.1409
θ5 0.0462 0.0460
θ6 0.1209 0.1307
θ7 0.0462 0.0460
θ8 0.4979 0.4986

Table 14: BetP of m0 ⊕m1 ⊕m2 ⊕m3 for Table 11.

• with PCR6: ∆(θ7 ∪ θ8) = 0.5575

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.4425, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.5575]

and when considering θ7 ∪ θ8

• with PCR5: ∆(θ7 ∪ θ8) = 0.7270

P (θ7 ∪ θ8) ∈ [0.27300, 1], P (θ7 ∪ θ8) ∈ [0, 0.7270]

• with PCR6: ∆(θ7 ∪ θ8) = 0.7270

P (θ7 ∪ θ8) ∈ [0.27300, 1], P (θ7 ∪ θ8) ∈ [0, 0.7270]

and when considering θ8 only

• with PCR5 or PCR6: ∆(θ8) = 0.56175

P (θ8) ∈ [0.27300, 0.83475]

P (θ̄8) ∈ [0.16525, 0.7270]

• with PCR6: ∆(θ8) = 0.57835

P (θ8) ∈ [0.27300, 0.85135]

P (θ̄8) ∈ [0.14865, 0.7270]

One gets also the following DSmPǫ=0.001 values

DSmPǫ,PCR5(θ6 ∪ θ7 ∪ θ8) = 0.8861

DSmPǫ,PCR6(θ6 ∪ θ7 ∪ θ8) = 0.8869

DSmPǫ,PCR5(θ7 ∪ θ8) = 0.8575

DSmPǫ,PCR6(θ7 ∪ θ8) = 0.8709

DSmPǫ,PCR5(θ8) = 0.8294

DSmPǫ,PCR6(θ8) = 0.8455

- Answer to Q1: Using an analysis similar to the
one done for Example 1, based on max of credibil-
ity or max of plausibility criteria, or by considering
the DSmP or BetP values of θ6∪θ7∪θ8, or θ7∪θ8,
or θ8 the decision to take is: Evacuate the build-
ing B.

In order to answer to the second question (Q2) for
this Example 2, let’s compute the fusion results of the
fusion m0 ⊕m2 and m0 ⊕m1 ⊕m3 using inputs given
in Table 11. Since the inputs m0 and m2 are the same
as those in Example 1, the m0 ⊕m2 fusion results with
corresponding DSmP are those already given in Tables
5-7. Only the fusion m0 ⊕ m1 ⊕ m3 must be derived
with the new bba’s m1 and m3 chosen for this Example
2. The m0 ⊕ m1 ⊕ m3 fusion results obtained with
PCR5 and PCR6, and the corresponding DSmP and
BetP values are shown in Tables 15-17. According to
these results, one gets with the PCR5 or PCR6 fusion
m0 ⊕ m1 ⊕ m3: ∆013(θ6 ∪ θ7 ∪ θ8) = ∆013(θ7 ∪ θ8) =
∆013(θ8) = 0.09 and

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.91, 1], P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.09]

P (θ7 ∪ θ8) ∈ [0.91, 1], P (θ7 ∪ θ8) ∈ [0, 0.09]

P (θ8) ∈ [0.91, 1], P (θ̄8) ∈ [0, 0.09]

focal element mPCR5(.) mPCR6(.)

θ8 0.91 0.91
θ4 ∪ θ8 0.09 0.09

Table 15: Result of m0 ⊕m1 ⊕m3.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0 0
θ2 0 0
θ3 0 0
θ4 0.0001 0.0001
θ5 0 0
θ6 0 0
θ7 0 0
θ8 0.9999 0.9999

Table 16: DSmPǫ of m0 ⊕m1 ⊕m3.

Singletons BetPPCR5(.) BetPPCR6(.)

θ1 0 0
θ2 0 0
θ3 0 0
θ4 0.045 0.045
θ5 0 0
θ6 0 0
θ7 0 0
θ8 0.955 0.955

Table 17: BetP of m0 ⊕m1 ⊕m3.

Based on max of Bel or max of Pl criteria, the deci-
sion using m0 ⊕ m1 ⊕ m3 (i.e. with prior information
m0 and both analysts) is to evacuate the building B.
Same decision is taken based on DSmP or BetP values.
It is worth to note that the precision on the result ob-
tained with m0 ⊕ m1 ⊕ m3 is much better than with
m0 ⊕m2 since ∆013(θ8) < ∆02(θ8), or ∆013(θ7 ∪ θ8) <
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∆02(θ7 ∪ θ8), or ∆013(θ6 ∪ θ7 ∪ θ8) < ∆02(θ6 ∪ θ7 ∪ θ8).
Moreover it is easy to verify that m0 ⊕m1 ⊕m3 fusion
system is more informative than m0⊕m2 fusion system
because Shannon entropy of DSmP of m0⊕m2 is much
bigger than Shannon entropy of DSmP ofm0⊕m1⊕m3.
Same remark holds with BetP transformation.

- Answer to Q2: Since the information obtained
by the fusion m0 ⊕m2 is less informative and less
precise than the information obtained with the fu-
sion m0 ⊕ m1 ⊕ m3, it is better to choose and to
trust the fusion system m0 ⊕m1 ⊕m3 rather than
m0 ⊕m2. Based on this choice, the final decision
will be to evacuate the building B which is consis-
tent with the answer of the question Q1.

3.2 Impact of prior information

To see the impact of the quality/reliability of prior
information on the result, let’s modify the input m0(.)
in previous Tables 1 and 11 and consider now a very
uncertain prior source.

Example 3: We consider the very uncertain
prior source of information m0(θ4 ∪ θ8) = 0.1
and m0(It) = 0.9. The results for the modified inputs
Table 18 ate given in Tables 19 and 20.

focal element m0(.) m1(.) m2(.) m3(.)

θ4 ∪ θ8 0.1 0 0.3 0
θ6 ∪ θ8 0 0.75 0 0.25

θ4 ∪ θ8 0 0 0.7 0
It 0.9 0.25 0 0.75

Table 18: Quantitative inputs of VBIED problem.

focal element mPCR5(.) mPCR6(.)

θ6 0.511870 0.511870
θ1 ∪ θ2 ∪ θ3 ∪ θ5 ∪ θ6 ∪ θ7 0.151070 0.142670
θ8 0.243750 0.243750
θ4 ∪ θ8 0.060957 0.059757
θ6 ∪ θ8 0.016173 0.020973
It 0.016173 0.020973

Table 19: Result of m0 ⊕m1 ⊕m2 ⊕m3 for Table 18.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.0003 0.0003
θ2 0.0003 0.0003
θ3 0.0003 0.0003
θ4 0.0003 0.0003
θ5 0.0003 0.0003
θ6 0.6833 0.6815
θ7 0.0003 0.0003
θ8 0.3149 0.3168

Table 20: DSmPǫ of m0 ⊕m1 ⊕m2 ⊕m3 for Table 18.

Singletons BetPPCR5(.) BetPPCR6(.)

θ1 0.0272 0.0264
θ2 0.0272 0.0264
θ3 0.0272 0.0264
θ4 0.0325 0.0325
θ5 0.0272 0.0264
θ6 0.5472 0.5488
θ7 0.0272 0.0264
θ8 0.2843 0.2867

Table 21: BetP of m0 ⊕m1 ⊕m2 ⊕m3 for Table 18.

From the fusion result of Table 19, one gets when con-
sidering θ6 ∪ θ7 ∪ θ8

• with PCR5: ∆(θ6 ∪ θ7 ∪ θ8) = 0.221377

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.778623, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.221377]

• with PCR6: ∆(θ6 ∪ θ7 ∪ θ8) = 0.21465

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.78535, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.21465]

and when considering θ7 ∪ θ8

• with PCR5: ∆(θ7 ∪ θ8) = 0.24438

P (θ7 ∪ θ8) ∈ [0.24375, 0.48813]

P (θ7 ∪ θ8) ∈ [0.51187, 0.75625]

• with PCR6: ∆(θ7 ∪ θ8) = 0.24438

P (θ7 ∪ θ8) ∈ [0.24375, 0.48813]

P (θ7 ∪ θ8) ∈ [0.51187, 0.75625]

and when considering θ8 only, one has

• with PCR5: ∆(θ8) = 0.09331

P (θ8) ∈ [0.24375, 0.33706]

P (θ̄8) ∈ [0.66294, 0.75625]

• with PCR6: ∆(θ8) = 0.10171

P (θ8) ∈ [0.24375, 0.34546]

P (θ̄8) ∈ [0.65454, 0.75625]

Using DSmP transformation, one gets a low probability
in θ8 or in θ7 ∪ θ8 because

DSmPǫ,PCR5(θ6 ∪ θ7 ∪ θ8) = 0.9985

DSmPǫ,PCR6(θ6 ∪ θ7 ∪ θ8) = 0.9986

DSmPǫ,PCR5(θ7 ∪ θ8) = 0.3152

DSmPǫ,PCR6(θ7 ∪ θ8) = 0.3171

DSmPǫ,PCR5(θ8) = 0.3149

DSmPǫ,PCR6(θ8) = 0.3168
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- Answer to Q1: The analysis of these results are
very interesting since one sees that the element of
the frame Θ having the highest DSmP (or BetP)
is θ6 = (A, V̄ , B) and it has a very strong impact
on the final decision. Because if one considers only
θ8 or θ7 ∪ θ8 has decision-support hypotheses, one
sees that the decision to take is to NOT evacuate
the building B since one gets a low probability in
θ8 or in θ7∪θ8. Whereas if we include also θ6 in the
decision-support hypothesis, then the final decision
will be the opposite sinceDSmP (θ6∪θ7∪θ8) is very
close to one with PCR5 or with PCR6. The same
behavior occurs with BetP. So there is a strong im-
pact of prior information on the final decision since
without strong prior information supporting θ4∪θ8
we have to conclude either to the non evacuation
of building B based on the max of credibility, the
max of plausibility or the max of DSmP using θ8
or θ7∪θ8 for decision-making, or to the evacuation
of the building if a more prudent strategy is used
based on θ6 ∪ θ7 ∪ θ8 decision-support hypothesis.

Let’s examine the results of fusion systems m0 ⊕m2

and m0 ⊕m1 ⊕m3 given in Tables 22-27.

focal element mPCR5(.) mPCR6(.)

θ1 ∪ θ2 ∪ θ3 ∪ θ5 ∪ θ6 ∪ θ7 0.69125 0.69125
θ4 ∪ θ8 0.30875 0.30875

Table 22: Result of m0 ⊕m2.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.1152 0.1152
θ2 0.1152 0.1152
θ3 0.1152 0.1152
θ4 0.1544 0.1544
θ5 0.1152 0.1152
θ6 0.1152 0.1152
θ7 0.1152 0.1152
θ8 0.1544 0.1544

Table 23: DSmPǫ of m0 ⊕m2.

Singletons BetPǫ,PCR5(.) BetPǫ,PCR6(.)

θ1 0.1152 0.1152
θ2 0.1152 0.1152
θ3 0.1152 0.1152
θ4 0.1544 0.1544
θ5 0.1152 0.1152
θ6 0.1152 0.1152
θ7 0.1152 0.1152
θ8 0.1544 0.1544

Table 24: BetP of m0 ⊕m2.

Based on m0 ⊕ m2 fusion result, one gets a large
imprecision on evaluation of probabilities of decision-
support hypotheses since for θ6 ∪ θ7 ∪ θ8, one has

focal element mPCR5(.) mPCR6(.)

θ8 0.08125 0.08125
θ4 ∪ θ8 0.01875 0.01875
θ6 ∪ θ8 0.73125 0.73125
It 0.16875 0.16875

Table 25: Result of m0 ⊕m1 ⊕m3.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.0019 0.0019
θ2 0.0019 0.0019
θ3 0.0019 0.0019
θ4 0.0021 0.0021
θ5 0.0019 0.0019
θ6 0.0107 0.0107
θ7 0.0019 0.0019
θ8 0.9778 0.9778

Table 26: DSmPǫ of m0 ⊕m1 ⊕m3.

Singletons BetPǫ,PCR5(.) BetPǫ,PCR6(.)

θ1 0.0211 0.0211
θ2 0.0211 0.0211
θ3 0.0211 0.0211
θ4 0.0305 0.0305
θ5 0.0211 0.0211
θ6 0.3867 0.3867
θ7 0.0211 0.0211
θ8 0.4773 0.4773

Table 27: BetP of m0 ⊕m1 ⊕m3.

∆02(θ6 ∪ θ7 ∪ θ8) = 1 and

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 1]

for θ7 ∪ θ8, one has also ∆02(θ7 ∪ θ8) = 1 with

P (θ7 ∪ θ8) ∈ [0, 1]

P (θ7 ∪ θ8) ∈ [0, 1]

and for θ8, one gets ∆02(θ8) = 0.30875 with

P (θ8) ∈ [0, 0.30875]

P (θ̄8) ∈ [0.69125, 1]

One sees that it is impossible to take a decision
when considering only θ6 ∪ θ7 ∪ θ8 or θ7 ∪ θ8 because
of full imprecision of the corresponding probabilities.
However, based on max of Bel or max of Pl criteria
on θ8 the decision using m0 ⊕m2 (i.e. with uncertain
prior information m0 and ANPR system m2) is to
NOT evacuate the building B. According to Tables
23-24, one sees also an ambiguity in decision-making
between θ8 and θ4 since they have the same DSmP (or
BetP) values.
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Based on m0⊕m1⊕m3 fusion results given in Tables
25-27, one gets for θ6∪θ7∪θ8 the imprecision ∆013(θ6∪
θ7 ∪ θ8) = 0.1875 with

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.8125, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.1875]

for θ7 ∪ θ8, one gets ∆013(θ7 ∪ θ8) = 0.91875 with

P (θ7 ∪ θ8) ∈ [0.08125, 1]

P (θ7 ∪ θ8) ∈ [0, 0.91875]

and for θ8, one gets ∆013(θ8) = 0.91875 with

P (θ8) ∈ [0.08125, 1]

P (θ̄8) ∈ [0, 0.91875]

Based on max of Bel or max of Pl criteria, the deci-
sion usingm0⊕m1⊕m3 is the evacuation of the building
B. Same decision is drawn when using DSmP or BetP
results according to Tables 26 and 27. With this un-
certain prior information, it is worth to note that the
precision on the result obtained with m0 ⊕m1 ⊕m3 is
better than with m0⊕m2 when considering (in cautious
strategy) the decision-support hypotheses θ6 ∪ θ7 ∪ θ8
or θ7∪θ8 since ∆013(θ6∪θ7∪θ8) < ∆02(θ6∪θ7∪θ8), or
∆013(θ7 ∪ θ8) < ∆02(θ7 ∪ θ8). However, if a more opti-
mistic/risky strategy is used when considering only θ8
as decision-support hypothesis, it is preferable to choose
the subsystem m0 ⊕ m2 because ∆02(θ8) < ∆013(θ8).
However, one sees that globally m0 ⊕ m1 ⊕ m3 fusion
system is more informative than m0⊕m2 fusion system
because Shannon entropy of DSmP of m0⊕m2 is much
bigger than Shannon entropy of DSmP ofm0⊕m1⊕m3.

- Answer to Q2: The answer of question Q2 is
not easy because it depends both on the crite-
rion (precision or PIC) and on the decision-support
hypothesis we choose. Based on precision crite-
rion and taking the optimistic point of view using
only θ8, it is better to trust m0 ⊕ m2 fusion sys-
tem since ∆02(θ8) = ∆02(θ̄8) = 0.30875 whereas
∆013(θ8) = ∆013(θ̄8) = 0.9187. In such case, one
should NOT evacuate the building B. If we con-
sider that is better to trust result of m0⊕m1⊕m3

fusion system because it is more informative than
m0 ⊕ m2 then the decision should be to evacuate
the building B. If we take a more prudent point of
view in considering as decision-support hypotheses
either θ6 ∪ θ7 ∪ θ8 or θ7∪ θ8, then the final decision
taken according to the (most precise and informa-
tive) subsystem m0 ⊕m1 ⊕m3 is to evacuate the
building B.

So the main open question is what solution to
choose for selecting eitherm0⊕m2 orm0⊕m1⊕m3

fusion system ? In authors opinion, in such case
it seems better to base our choice on the precision

level of information one has really in hands (rather
than the PIC value which is always related to some
ad-hoc probabilistic transformation) and in adopt-
ing the most prudent strategy. Therefore for this
example, the final decision must be done according
to m0 ⊕m1 ⊕m3, i.e. evacuate the building B.

Example 4: Let’s modify a bit the previous input Ta-
ble 18 and take higher belief for sources 1 and 3 as

focal element m0(.) m1(.) m2(.) m3(.)

θ4 ∪ θ8 0.1 0 0.3 0
θ6 ∪ θ8 0 0.9 0 0.1

θ4 ∪ θ8 0 0 0.7 0
It 0.9 0.1 0 0.9

Table 28: Quantitative inputs of VBIED problem.

focal element mPCR5(.) mPCR6(.)

θ6 0.573300 0.573300
θ1 ∪ θ2 ∪ θ3 ∪ θ5 ∪ θ6 ∪ θ7 0.082365 0.077355
θ8 0.273000 0.273000
θ4 ∪ θ8 0.030666 0.029951
θ6 ∪ θ8 0.020334 0.023197
It 0.020334 0.023197

Table 29: Result of m0 ⊕m1 ⊕m2 ⊕m3 for Table 28.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.0002 0.0002
θ2 0.0002 0.0002
θ3 0.0002 0.0002
θ4 0.0001 0.0001
θ5 0.0002 0.0002
θ6 0.6824 0.6813
θ7 0.0002 0.0002
θ8 0.3166 0.3178

Table 30: DSmPǫ of m0 ⊕m1 ⊕m2 ⊕m3 for Table 28.

Singletons BetPPCR5(.) BetPPCR6(.)

θ1 0.0163 0.0158
θ2 0.0163 0.0158
θ3 0.0163 0.0158
θ4 0.0179 0.0179
θ5 0.0163 0.0158
θ6 0.5997 0.6007
θ7 0.0163 0.0158
θ8 0.3010 0.3025

Table 31: BetP of m0 ⊕m1 ⊕m2 ⊕m3 for Table 28.

Therefore, one gets when considering θ6 ∪ θ7 ∪ θ8

• with PCR5: ∆(θ6 ∪ θ7 ∪ θ8) = 0.133366

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.866634, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.133366]
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• with PCR6: ∆(θ6 ∪ θ7 ∪ θ8) = 0.130503

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.869497, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.130503]

and when considering θ7 ∪ θ8

• with PCR5: ∆(θ7 ∪ θ8) = 0.1537

P (θ7 ∪ θ8) ∈ [0.2730, 0.4267]

P (θ7 ∪ θ8) ∈ [0.5733, 0.7270]

• with PCR6: ∆(θ7 ∪ θ8) = 0.1537

P (θ7 ∪ θ8) ∈ [0.2730, 0.4267]

P (θ7 ∪ θ8) ∈ [0.5733, 0.7270]

and when considering θ8 only

• with PCR5: ∆(θ8) = 0.071335

P (θ8) ∈ [0.2730, 0.344335]

P (θ̄8) ∈ [0.655665, 0.7270]

• with PCR6: ∆(θ8) = 0.076345

P (θ8) ∈ [0.2730, 0.349345]

P (θ̄8) ∈ [0.650655, 0.7270]

Based on DSmP transformation, one gets a pretty
low probability on θ8 and on θ7 ∪ θ8, but a very high
probability on the most prudent decision-support fy-
pothesis θ6 ∪ θ7 ∪ θ8 because

DSmPǫ,PCR5(θ6 ∪ θ7 ∪ θ8) = 0.9992

DSmPǫ,PCR6(θ6 ∪ θ7 ∪ θ8) = 0.9993

DSmPǫ,PCR5(θ7 ∪ θ8) = 0.3168

DSmPǫ,PCR6(θ7 ∪ θ8) = 0.3180

DSmPǫ,PCR5(θ8) = 0.3166

DSmPǫ,PCR6(θ8) = 0.3178

- Answer to Q1: Based on these results, one sees
that the decision based either on the max of credi-
bility, the max of plausibility or the max of DSmP
considering both cases θ8 or θ7 ∪ θ8 is to: NOT
Evacuate the building B, whereas the most pru-
dent/cautious strategy suggests the opposite, i.e.
the evacuation of the building B.

Let’s examine the results of fusion systems m0 ⊕m2

and m0⊕m1⊕m3 corresponding to the input Table 28.
Naturally, one gets same results for the fusion m0⊕m2

as in Example 3 and for the fusion m0 ⊕m1 ⊕m3 one
gets:

focal element mPCR5(.) mPCR6(.)

θ8 0.091 0.091
θ4 ∪ θ8 0.009 0.009
θ6 ∪ θ8 0.819 0.819
It 0.081 0.081

Table 32: Result of m0 ⊕m1 ⊕m3.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.0008 0.0008
θ2 0.0008 0.0008
θ3 0.0008 0.0008
θ4 0.0009 0.0009
θ5 0.0008 0.0008
θ6 0.0096 0.0096
θ7 0.0008 0.0008
θ8 0.9854 0.9854

Table 33: DSmPǫ of m0 ⊕m1 ⊕m3.

Singletons BetPPCR5(.) BetPPCR6(.)

θ1 0.0101 0.0101
θ2 0.0101 0.0101
θ3 0.0101 0.0101
θ4 0.0146 0.0146
θ5 0.0101 0.0101
θ6 0.4196 0.4196
θ7 0.0101 0.0101
θ8 0.5151 0.5151

Table 34: BetP of m0 ⊕m1 ⊕m3.

As in Example 3, based on m0⊕m2 fusion result, one
gets a large imprecision on evaluation of probabilities
of decision-support hypotheses since for θ6∪θ7∪θ8, one
has ∆02(θ6 ∪ θ7 ∪ θ8) = 1 and

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 1]

for θ7 ∪ θ8, one has also ∆02(θ7 ∪ θ8) = 1 with

P (θ7 ∪ θ8) ∈ [0, 1]

P (θ7 ∪ θ8) ∈ [0, 1]

and for θ8, one gets ∆02(θ8) = 0.30875 with

P (θ8) ∈ [0, 0.30875]

P (θ̄8) ∈ [0.69125, 1]

One sees that it is impossible to take a decision when
considering only θ6 ∪ θ7 ∪ θ8 or θ7 ∪ θ8 because of full
imprecision of the corresponding probabilities. Based
on max of Bel or max of Pl criteria on θ8 the decision
using m0 ⊕ m2 is to NOT evacuate the building B.
According to Tables 23-24, an ambiguity appears in
decision-making between θ8 and θ4 since they have the
same DSmP (or BetP) values.
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Based on m0 ⊕ m1 ⊕ m3 fusion result, one gets
∆013(θ6 ∪ θ7 ∪ θ8) = 0.09 for θ6 ∪ θ7 ∪ θ8 with

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.91, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.09]

and ∆013(θ7 ∪ θ8) = 0.9090 for θ7 ∪ θ8 with

P (θ7 ∪ θ8) ∈ [0.091, 1]

P (θ7 ∪ θ8) ∈ [0, 0.9090]

and ∆013(θ8) = 0.9090 for only θ8 with

P (θ8) ∈ [0.091, 1]

P (θ̄8) ∈ [0, 0.9090]

Based on max of Bel or max of Pl criteria on either θ8,
θ7∪θ8 or θ6∪θ7∪θ8 the decision usingm0⊕m1⊕m3 must
be the evacuation of the building B. Same decision is
drawn using DSmP or BetP results according to Tables
33 and 34.

- Answer to Q2: Similar remarks and conclusions
to those given in Example 3 held also for Exam-
ple 4, i.e. it is better to adopt the most prudent
strategy (i.e. to consider θ6 ∪ θ7 ∪ θ8 as decision-
support hypothesis) and to trust the most precise
fusion system with respect this hypothesis, which
is in this example the subsystem m0 ⊕ m1 ⊕ m3.
Based only on m0 ⊕ m1 ⊕ m3 the final decision
will be to evacuate the building B when one has in
hands such highly uncertain prior information m0.

3.3 Impact of no prior information

Example 5: Let’s examine the result of the fusion
process if one doesn’t include5 the prior information
m0(.) and if we combine directly only the three sources
m1 ⊕m2 ⊕m3 altogether with PCR5 or PCR6.

focal element m1(.) m2(.) m3(.)

θ4 ∪ θ8 0 0.3 0
θ6 ∪ θ8 0.75 0 0.25

θ4 ∪ θ8 0 0.7 0
It 0.25 0 0.75

Table 35: Quantitative inputs of VBIED problem.

focal element mPCR5(.) mPCR6(.)

θ6 0.56875 0.56875
θ1 ∪ θ2 ∪ θ3 ∪ θ5 ∪ θ6 ∪ θ7 0.13125 0.13125
θ8 0.24375 0.24375
θ4 ∪ θ8 0.05625 0.05625

Table 36: Result of m1 ⊕m2 ⊕m3 for Table 35.

5Or equivalently we can take m0 as the vacuous bba corre-
sponding to m0(It) = 1 and to the fully ignorant prior source.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.0002 0.0002
θ2 0.0002 0.0002
θ3 0.0002 0.0002
θ4 0.0002 0.0002
θ5 0.0002 0.0002
θ6 0.6989 0.6989
θ7 0.0002 0.0002
θ8 0.2998 0.2998

Table 37: DSmPǫ of m1 ⊕m2 ⊕m3 for Table 35.

Singletons BetPPCR5(.) BetPPCR6(.)

θ1 0.0219 0.0219
θ2 0.0219 0.0219
θ3 0.0219 0.0219
θ4 0.0281 0.0281
θ5 0.0219 0.0219
θ6 0.5906 0.5906
θ7 0.0219 0.0219
θ8 0.2719 0.2719

Table 38: BetP of m1 ⊕m2 ⊕m3 for Table 35.

One gets ∆(θ6 ∪ θ7 ∪ θ8) = 0.1875 for θ6 ∪ θ7 ∪ θ8 with

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.8125, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.1875]

for θ7 ∪ θ8, one has also ∆(θ7 ∪ θ8) = 0.1875 with

P (θ7 ∪ θ8) ∈ [0.24375, 0.43125]

P (θ7 ∪ θ8) ∈ [0.56875, 0.75625]

and for θ8, one gets ∆(θ8) = 0.05625 with

P (θ8) ∈ [0.24375, 0.3], P (θ̄8) ∈ [0.7, 0.75625]

The result presented in Table 36 is obviously the same
as the one we obtain by combining the sources m0 ⊕
m1 ⊕ m2 ⊕ m3 altogether when taking m0(.) as the
vacuous belief assignment, i.e. when m0(It) = 1.

- Answer to Q1: Based on results of Tables 36-38
the decision based on max of belief, max of plau-
sibility on either θ8 or θ7 ∪ θ8 is to NOT evacuate
building B. Same conclusions is obtained when an-
alyzing values of DSmP or BetP of θ8 or θ7 ∪ θ8.
However, if we adopt the most prudent strategy
based on decision-support hypothesis θ6 ∪ θ7 ∪ θ8
the decision will be to evacuate the building B
since DSmP (θ6 ∪ θ7 ∪ θ8) = 0.9989. So we see the
strong impact of the miss of prior information in
the decision-making support process (by compar-
ison between Example 1 and this example) when
adopting more risky strategies for decision-making
based either on θ7 ∪ θ8 or on θ8 only.
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Let’s compare now the source m2 with respect to the
m1⊕m3 fusion system when no prior information m0 is
used. Naturally, there is no need to fusion m2 since we
consider it alone. One has ∆2(θ6 ∪ θ7 ∪ θ8) = ∆2(θ7 ∪
θ8) = 1 (i.e. the full imprecision on P (θ6 ∪ θ7 ∪ θ8) and
on P (θ7 ∪ θ8)) whereas ∆2(θ8) = 0.3 with

P (θ8) ∈ [0, 0.3], P (θ̄8) ∈ [0.7, 1]

DSmP and BetP of m2(.) are the same since there is no
singleton as focal element for m2(.) - see Table 39.

Singletons DSmPǫ,PCR5(.) BetP (.)

θ1 0.1167 0.1167
θ2 0.1167 0.1167
θ3 0.1167 0.1167
θ4 0.1500 0.1500
θ5 0.1167 0.1167
θ6 0.1167 0.1167
θ7 0.1167 0.1167
θ8 0.1500 0.1500

Table 39: DSmPǫ and BetP of m2.

Based on max of Bel or max of Pl criteria on θ8 (op-
timistic/risky strategy) the decision using m2 (ANPR
system alone) should be to NOT evacuate the building
B. No decision can be taken using decision-support
hypotheses θ6 ∪ θ7 ∪ θ8 or θ7 ∪ θ8, nor on DSmP or
BetP values since there is an ambiguity between θ8
and θ4.

Now if we combine m1 with m3 using PCR5 or
PCR6 we get6 results given in Tables 40 and 41.

focal element mPCR5(.) mPCR6(.)

θ6 ∪ θ8 0.8125 0.8125
It 0.1875 0.1875

Table 40: Result of m1 ⊕m3.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.0234 0.0234
θ2 0.0234 0.0234
θ3 0.0234 0.0234
θ4 0.0234 0.0234
θ5 0.0234 0.0234
θ6 0.4297 0.4297
θ7 0.0234 0.0234
θ8 0.4297 0.4297

Table 41: DSmPǫ of m1 ⊕m3.

The values of BetP (.) are same as those of DSmP (.)
because there is no singleton as focal element of
m1 ⊕m3.

6Note that for two sources, PCR6 equals PCR5 [6], Vol.2.

Whence ∆13(θ6 ∪ θ7 ∪ θ8) = 0.1875 with

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.8125, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.1875]

and ∆13(θ7 ∪ θ8) = 1 with

P (θ7 ∪ θ8) ∈ [0, 1], P (θ7 ∪ θ8) ∈ [0, 1]

and also ∆13(θ8) = 1 with

P (θ8) ∈ [0, 1], P (θ̄8) ∈ [0, 1]

Based on max of Bel or max of Pl criteria on θ6∪θ7∪
θ8, the decision using m1 ⊕m3 must be the evacuation
of the building B. Same decision must be drawn when
using DSmP results according to Table 41. No decision
can be drawn based only on θ8 or on θ7 ∪ θ8 because of
full imprecision on their corresponding probabilities.

- Answer to Q2: Similar remarks and conclusions
to those given in Example 3 held also for Example
5, i.e. it is better to trust the most precise source
for the most prudent decision-support hypothesis,
and to decide to evacuate the building B if one
has no prior information rather than using only
information based on APNR system.

Example 6: It can be easily verified that the same
analysis, remarks and conclusions for Q1 and Q2 as for
Example 5 also hold when considering the sources m1

and m3 corresponding to the following input Table

focal element m1(.) m2(.) m3(.)

θ4 ∪ θ8 0 0.3 0
θ6 ∪ θ8 0.90 0 0.10

θ4 ∪ θ8 0 0.7 0
It 0.10 0 0.90

Table 42: Quantitative inputs of VBIED problem.

3.4 Impact of reliability of sources

The reliability of sources (when known) can be easily
taken into using Shafer’s classical discounting technique
[5], p. 252, which consists in multiplying the masses of
focal elements by the reliability factor α, and trans-
ferring all the remaining discounted mass to the full
ignorance Θ. When α < 1, such very simple reliability
discounting technique discounts all focal elements with
the same factor α and it increases the non specificity of
the discounted sources since the mass committed to the
full ignorance always increases. When α = 1, no relia-
bility discounting occurs (the bba is kept unchanged).
Mathematically, Shafer’s discounting technique for tak-
ing into account the reliability factor α ∈ [0, 1] of a
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given source with a bba m(.) and a frame Θ is defined
by:

{

mα(X) = α ·m(X), for X 6= Θ

mα(Θ) = α ·m(Θ) + (1− α)
(1)

Example 7: Let’s consider back the inputs of Table
28. The impact of strong unreliability of prior informa-
tion m0 has already been analyzed in Examples 3 and
4 by considering actually α0 = 0.1. Here we analyze
the impact of reliabilities of sources m0, m1, m2 and
m3 according presentation done in section 2.4 and we
choose the following set of reliability factors α0 = 0.9,
α1 = 0.75, α2 = 0.75 and α3 = 0.25. These values
have been chosen approximatively but they reflect the
fact that one has a very good confidence in our prior
information, a good confidence in sources 1 and 2, and
a low confidence in source 3. Let’s examine the change
in the fusion result of sources. Applying reliability
discounting technique [5], the new inputs correspond-
ing to the discounted bba’s by (1) are given in Table 43.

focal element mα0(.) mα1(.) mα2(.) mα3(.)

θ4 ∪ θ8 0.90 0 0.2250 0
θ6 ∪ θ8 0 0.5625 0 0.0625

θ4 ∪ θ8 0 0 0.5250 0
It 0.10 0.4375 0.2500 0.9375

Table 43: Discounted inputs with α0 = 0.9, α1 = 0.75,
α2 = 0.75 and α3 = 0.25.

focal element mPCR5(.) mPCR6(.)

θ6 0.030967 0.030967

θ4 ∪ θ8 0.13119 0.11037
θ8 0.26543 0.26543
θ4 ∪ θ8 0.37256 0.33686
θ6 ∪ θ8 0.063483 0.068147
It 0.13637 0.18822

Table 44: Result of m0 ⊕m1 ⊕m2 ⊕m3 for Table 43.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.0040 0.0036
θ2 0.0040 0.0036
θ3 0.0040 0.0036
θ4 0.0018 0.0019
θ5 0.0040 0.0036
θ6 0.1655 0.1535
θ7 0.0040 0.0036
θ8 0.8126 0.8266

Table 45: DSmPǫ of m0 ⊕m1 ⊕m2 ⊕m3 for Table 43.

From the fusion result of Table 44, one gets when
considering θ6 ∪ θ7 ∪ θ8:

• with PCR5: ∆(θ6 ∪ θ7 ∪ θ8) = 0.64012

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.35988, 1]

Singletons BetPPCR5(.) BetPPCR6(.)

θ1 0.0389 0.0419
θ2 0.0389 0.0419
θ3 0.0389 0.0419
θ4 0.2033 0.1920
θ5 0.0389 0.0419
θ6 0.1016 0.1070
θ7 0.0389 0.0419
θ8 0.5005 0.4915

Table 46: BetP of m0 ⊕m1 ⊕m2 ⊕m3 for Table 43.

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.64012]

• with PCR6: ∆(θ6 ∪ θ7 ∪ θ8) = 0.635456

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.364544, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.635456]

and when considering θ7 ∪ θ8

• with PCR5: ∆(θ7 ∪ θ8) = 0.703603

P (θ7 ∪ θ8) ∈ [0.26543, 0.969033]

P (θ7 ∪ θ8) ∈ [0.030967, 0.73457]

• with PCR6: ∆(θ7 ∪ θ8) = 0.703603

P (θ7 ∪ θ8) ∈ [0.26543, 0.969033]

P (θ7 ∪ θ8) ∈ [0.030967, 0.73457]

and when considering θ8 only

• with PCR5: ∆(θ8) = 0.572413

P (θ8) ∈ [0.26543, 0.837843]

P (θ̄8) ∈ [0.162157, 0.73457]

• with PCR6: ∆(θ8) = 0.593233

P (θ8) ∈ [0.26543, 0.858663]

P (θ̄8) ∈ [0.141337, 0.73457]

Using DSmP transformation, one gets high probabil-
ities in θ6 ∪ θ7 ∪ θ8, θ7 ∪ θ8 and in θ8 because

DSmPǫ,PCR5(θ6 ∪ θ7 ∪ θ8) = 0.9821

DSmPǫ,PCR6(θ6 ∪ θ7 ∪ θ8) = 0.9837

DSmPǫ,PCR5(θ7 ∪ θ8) = 0.8166

DSmPǫ,PCR6(θ7 ∪ θ8) = 0.8302

DSmPǫ,PCR5(θ8) = 0.8126

DSmPǫ,PCR6(θ8) = 0.8266
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- Answer to Q1: Based on these results, one sees
that the decision to take is to evacuate the build-
ing B since one gets a high probability in decision-
support hypotheses. Same conclusion is drawn
when using max of Bel of max of Pl criteria. So
there is a little impact of reliability discounting on
the final decision with respect to Example 1. It is
however worth to note that introducing reliability
discounting increases the non specificity of infor-
mation since now It is a new focal element of mα0

and of mα2 and in the final result we get the new
focal element θ6 appearing with PCR5 or PCR6
fusion rules. This θ6 focal element doesn’t exist in
Example 1 when no reliability discounting is used.
The decision to take in this case is to: Evacuate
the building B.

To answer to the question Q2 for this Example 7,
let’s compute the fusion results of the fusion m0 ⊕m2

and m0 ⊕m1⊕m3 using inputs given in Table 43. The
fusion results with corresponding DSmP are given in
the Tables 47-50.

focal element mPCR5(.) mPCR6(.)

θ4 ∪ θ8 0.74842 0.74842

θ4 ∪ θ8 0.22658 0.22658
It 0.025 0.025

Table 47: Result of m0 ⊕m2.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.0409 0.0409
θ2 0.0409 0.0409
θ3 0.0409 0.0409
θ4 0.3773 0.3773
θ5 0.0409 0.0409
θ6 0.0409 0.0409
θ7 0.0409 0.0409
θ8 0.3773 0.3773

Table 48: DSmPǫ of m0 ⊕m2.

The result of BetP transformation is the same as
with DSmP transformation since there is no singleton
element as focal element of the resulting bba’s when
using PCR5 or PCR6 fusion rule.

Based on m0 ⊕ m2 fusion result, one gets a large
imprecision7 on P (θ8) since ∆02(θ8) = 0.77342 with

P (θ8) ∈ [0, 0.77342]

P (θ̄8) ∈ [0.22658, 1]

7This imprecision is larger than in Example 1 which is normal
because one has degraded the information of both prior and the
source m2.

and one gets a total imprecision when considering either
θ7 ∪ θ8 or θ6 ∪ θ7 ∪ θ8 since

P (θ7 ∪ θ8) ∈ [0, 1], P (θ7 ∪ θ8) ∈ [0, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 1], P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 1]

Based on max of bel or max of Pl criteria the
decision using m0 ⊕ m2 (i.e. with discounted sources
m0 and ANPR system m2) should be to NOT evacuate
the building B when working with decision-support
hypothesis θ8. No clear decision can be taken when
working with θ6 ∪ θ7 ∪ θ8 or θ7 ∪ θ8. Ambiguity in
decision-making occurs between θ8 = (A, V,B) and
θ4 = (A, V, B̄) when using DSmP or BetP transforma-
tions.

Let’s examine now the result of the m0 ⊕ m1 ⊕ m3

fusion given in Tables 49 and 50.

focal element mPCR5(.) mPCR6(.)

θ8 0.53086 0.53086
θ4 ∪ θ8 0.36914 0.36914
θ6 ∪ θ8 0.058984 0.058984
It 0.041016 0.041016

Table 49: Result of m0 ⊕m1 ⊕m3.

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.0001 0.0001
θ2 0.0001 0.0001
θ3 0.0001 0.0001
θ4 0.0008 0.0008
θ5 0.0001 0.0001
θ6 0.0002 0.0002
θ7 0.0001 0.0001
θ8 0.9987 0.9987

Table 50: DSmPǫ of m0 ⊕m1 ⊕m3.

Singletons BetPPCR5(.) BetPPCR6(.)

θ1 0.0051 0.0051
θ2 0.0051 0.0051
θ3 0.0051 0.0051
θ4 0.1897 0.1897
θ5 0.0051 0.0051
θ6 0.0346 0.0346
θ7 0.0051 0.0051
θ8 0.7500 0.7500

Table 51: BetP of m0 ⊕m1 ⊕m3.

One sees clearly the impact of reliability discount-
ing on the specificity of information provided by the
fusion of sources. Indeed when using the discounting
of sources (mainly because we introduce It as focal el-
ement for m0) one gets now 4 focal elements whereas
we did get only two focal elements when no discounting
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was used (see Table 9). Based on m0 ⊕m1 ⊕m3 fusion
result, one gets ∆013(θ6 ∪ θ7 ∪ θ8) = 0.410156 with

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.589844, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.410156]

and also ∆013(θ7 ∪ θ8) = 0.46914 with

P (θ7 ∪ θ8) ∈ [0.53086, 1]

P (θ7 ∪ θ8) ∈ [0, 0.46914]

and ∆013(θ8) = 0.46914 with

P (θ8) ∈ [0.53086, 1]

P (θ̄8) ∈ [0, 0.46914]

Based on max of Bel or max of Pl, the decision using
m0 ⊕ m1 ⊕ m3 should be to evacuate the building B.
Same decision would be taken based on DSmP values.
It is worth to note that the precision on the result ob-
tained with m0 ⊕ m1 ⊕ m3 is much better than with
m0 ⊕m2 since ∆013(θ8) < ∆02(θ8), or ∆013(θ7 ∪ θ8) <
∆02(θ7 ∪ θ8), or ∆013(θ6 ∪ θ7 ∪ θ8) < ∆02(θ6 ∪ θ7 ∪ θ8).
Moreover it is easy to verify that m0 ⊕m1 ⊕m3 fusion
system is more informative than m0⊕m2 fusion system
because Shannon entropy of DSmP of m0⊕m2 is much
bigger than Shannon entropy of DSmP ofm0⊕m1⊕m3.

- Answer to Q2: Since the information obtained
by the fusion m0 ⊕m2 is less informative and less
precise than the information obtained with the
fusion m0 ⊕m1 ⊕m3, it is better to choose and to
trust the fusion system m0 ⊕m1 ⊕m3 rather than
m0 ⊕m2. Based on this choice, the final decision
will be to evacuate the building B.

3.5 Impact of importance of sources

The importance discounting technique has been pro-
posed recently by the authors in [7] and consists in
discounting the masses of focal elements by a factor
β ∈ [0, 1] and in transferring the remaining mass to
empty set, i.e.

{

mβ(X) = β ·m(X), for X 6= ∅

mβ(∅) = β ·m(∅) + (1− β)
(2)

It has been proved in [7] that such importance dis-
counting technique preserves the specificity of the
information and that Dempster’s rule of combination
doesn’t respond to such new interesting discounting
technique specially useful and crucial in multicriteria
decision-making support.

In the extreme case, the method proposed in [7] re-
inforces the highest mass of the focal element of the
source having the biggest importance factor as soon as

the other sources have their importance factors tending
towards zero. This reinforcement may be a disputable
behavior. To avoid such behavior, we propose here to
use the same importance discounting technique, but the
fusion of discounted sources is done a bit differently in
three steps as follows:

• Step 1: Discount each source with its importance
discounting factor according to (2).

• Step 2: Apply PCR5 or PCR6 fusion rule with
unnormalized discounted bba’s, i.e. as if the dis-
counted mass committed to empty set for each
source was zero.

• Step 3: Normalize the result to get the sum of
masses of focal elements to be one.

Let’s examine the impact of the importance of the
sources in the fusion process for final decision-making
through the next very simple illustrating example.

Example 8: To evaluate this we consider the same
inputs as in Table 1 and we consider that source 1
(Analyst 1 with 10 years experience) is much more im-
portant than source 3 (Analyst 2 with no experience).
To reflect the difference between importance of this
sources we consider the following relative importance
factors β1 = 0.9 and β3 = 0.5. We also assume that
source 0 (prior information) and source 2 (ANPR
system) have the same maximal importance, i.e.
β0 = β2 = 1, i.e β = (β0, β1, β2, β3) = (1, 0.9, 1, 0.5).
These values have been chosen approximatively but
they do reflect the fact that sources m0 and m2

have same importance in the fusion process, and
that sources m1 and m3 may have less importance
in the fusion process taking into the fact that m3

is considered as less important than m1. Let’s ex-
amine the change in the fusion result of sources in
this example with respect to what we get in Example 1.

In applying importance discounting technique [7]
with the aforementioned fusion approach, the new in-
puts corresponding to the discounted (unnormalized)
bba’s by (2) are given in Table 52.

focal element mβ0(.) mβ1(.) mβ2(.) mβ3(.)

∅ 0 0.1 0 0.5
θ4 ∪ θ8 1 0 0.70 0
θ6 ∪ θ8 0 0.675 0 0.125

θ4 ∪ θ8 0 0 0.30 0
It 0 0.225 0 0.375

Table 52: Discounted inputs with β0 = 1, β1 = 0.9,
β2 = 1 and β3 = 0.5.

and the fusion result is given in Table 53.
As we can see, the importance discounting doesn’t

degrade the specificity of sources since no mass is
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focal element mPCR5(.) mPCR6(.)

θ8 0.24375 0.24375
θ4 ∪ θ8 0.36788 0.33034
θ6 ∪ θ8 0.10552 0.14132

θ4 ∪ θ8 0.21814 0.19186
It 0.064701 0.092734

Table 53: Result of mβ0 ⊕mβ1 ⊕mβ2 ⊕mβ3 .

committed to partial ignorances, and it doesn’t also in-
crease the number of focal elements of the resulting bba
contrariwise to the reliability discounting approach.
Indeed in Table 53 one gets only 5 focal elements
whereas one gets 6 focal elements with reliability
discounting as shown in Table 44 of Example 7. The
corresponding DSmP and BetP values of bba’s given
in Table 53 are summarized in Tables 54 and 55 .

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0.0366 0.0323
θ2 0.0366 0.0323
θ3 0.0366 0.0323
θ4 0.0018 0.0017
θ5 0.0366 0.0323
θ6 0.0370 0.0329
θ7 0.0366 0.0323
θ8 0.7781 0.8036

Table 54: DSmPǫ of mβ0 ⊕mβ1 ⊕mβ2 ⊕mβ3 .

Singletons BetPPCR5(.) BetPPCR6(.)

θ1 0.0444 0.0436
θ2 0.0444 0.0436
θ3 0.0444 0.0436
θ4 0.1920 0.1768
θ5 0.0444 0.0436
θ6 0.0972 0.1142
θ7 0.0444 0.0436
θ8 0.4885 0.4912

Table 55: BetP of mβ0 ⊕mβ1 ⊕mβ2 ⊕mβ3 .

From the fusion result of Table 53, one gets when con-
sidering θ6 ∪ θ7 ∪ θ8

• with PCR5: ∆(θ6 ∪ θ7 ∪ θ8) = 0.65073

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.34927, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.65073]

• with PCR6: ∆(θ6 ∪ θ7 ∪ θ8) = 0.61493

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.38507, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.61493]

and when considering θ7 ∪ θ8

• with PCR5: ∆(θ7 ∪ θ8) = 0.75625

P (θ7 ∪ θ8) ∈ [0.24375, 1]

P (θ7 ∪ θ8) ∈ [0, 0.75625]

• with PCR6: ∆(θ7 ∪ θ8) = 0.75625

P (θ7 ∪ θ8) ∈ [0.24375, 1]

P (θ7 ∪ θ8) ∈ [0, 0.75625]

and when considering θ8 only

• with PCR5: ∆(θ8) = 0.53811

P (θ8) ∈ [0.24375, 0.78186]

P (θ̄8) ∈ [0.21814, 0.75625]

• with PCR6: ∆(θ8) = 0.564393

P (θ8) ∈ [0.24375, 0.80814]

P (θ̄8) ∈ [0.19186, 0.75625]

Using DSmP transformation, one gets a high proba-
bility in decision-support hypotheses because

DSmPǫ,PCR5(θ6 ∪ θ7 ∪ θ8) = 0.8517

DSmPǫ,PCR6(θ6 ∪ θ7 ∪ θ8) = 0.8688

DSmPǫ,PCR5(θ7 ∪ θ8) = 0.8147

DSmPǫ,PCR6(θ7 ∪ θ8) = 0.8359

DSmPǫ,PCR5(θ8) = 0.7781

DSmPǫ,PCR6(θ8) = 0.8036

- Answer to Q1: Based on these results, one sees
that the decision to take based either on max of
Bel or max of Pl on θ6 ∪ θ7 ∪ θ8, on θ7 ∪ θ8 or on
θ8 only, or also based on DSmP, is to evacuate the
building B.

To answer to the question Q2 for this Example 8,
let’s compute the fusion results of the fusion mβ0 ⊕mβ2

and mβ0 ⊕mβ1 ⊕mβ3 using inputs given in Table 52.
Because one has considered β0 = β2 = 1, one does not
actually discount sources m0 and m2 and therefore the
m0 ⊕ m2 fusion results are already given in Tables 5
and 6 of Example 1. Therefore based on max of Bel or
max of Pl criteria on θ8 the decision using m0⊕m2 is to
NOT evacuate the building B since P (θ8) ∈ [0, 0.71176]
and P (θ̄8) ∈ [0.28824, 1] and ∆02(θ8) = 0.71176. Same
decision would be taken based on DSmP values with
the m0 ⊕m2 fusion sub-system.
Let’s now compute the fusion mβ0 ⊕mβ1 ⊕mβ3 with

the importance discounted sources mβ0=1 = m0, mβ1

and mβ3 . The fusion results are given in Tables 56, 57
and 58.
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focal element mPCR5(.) mPCR6(.)

θ8 0.8125 0.8125
θ4 ∪ θ8 0.1875 0.1875

Table 56: Result of mβ0 ⊕mβ1 ⊕mβ3 .

Singletons DSmPǫ,PCR5(.) DSmPǫ,PCR6(.)

θ1 0 0
θ2 0 0
θ3 0 0
θ4 0.0002 0.0002
θ5 0 0
θ6 0 0
θ7 0 0
θ8 0.9998 0.9998

Table 57: DSmPǫ of mβ0 ⊕mβ1 ⊕mβ3 .

Singletons BetPPCR5(.) BetPPCR6(.)

θ1 0 0
θ2 0 0
θ3 0 0
θ4 0.0002 0.0002
θ5 0 0
θ6 0 0
θ7 0 0
θ8 0.9998 0.9998

Table 58: BetP of mβ0 ⊕mβ1 ⊕mβ3 .

Based on mβ0 ⊕ mβ1 ⊕ mβ3 fusion result, one gets
same result with PCR5 and PCR6 in this case, and one
gets ∆013(θ6 ∪ θ7 ∪ θ8) = 0.1875 with

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.8125, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.1875]

and ∆013(θ7 ∪ θ8) = 0.1875 with

P (θ7 ∪ θ8) ∈ [0.8125, 1]

P (θ7 ∪ θ8) ∈ [0, 0.1875]

and also ∆013(θ8) = 0.1875 with

P (θ8) ∈ [0.8125, 1]

P (θ̄8) ∈ [0, 0.1875]

Based on max of Bel or max of Pl, the decision taken
using θ6∪ θ7∪ θ8, θ7∪ θ8 or θ8 for the mβ0 ⊕mβ1 ⊕mβ3

fusion sub-system should be to evacuate the building
B. Same decision must be taken based on DSmP or
BetP values. It is worth to note that the precision8 on
the result obtained with subsystem mβ0 ⊕mβ1 ⊕mβ3 is
much better than with subsystem mβ0=1⊕mβ2=1 since
(∆013(θ8) = 0.1875) < (∆02(θ8) = 0.71176), and also
(∆013(θ7 ∪ θ8) = 0.1875) < (∆02(θ7 ∪ θ8) = 1), and
(∆013(θ6 ∪ θ7 ∪ θ8) = 0.1875) < (∆02(θ6 ∪ θ7 ∪ θ8) = 1).

8see Example 1 for the numerical results of mβ0=1 ⊕mβ2=1.

- Answer to Q2: The analysis of both fusion sub-
systemsmβ0=1⊕mβ2=1 andmβ0⊕mβ1⊕mβ3 shows
that the mβ0 ⊕mβ1 ⊕mβ3 subsystem must be cho-
sen because it provides the most precise results and
therefor the decision will be to evacuate the build-
ing B whatever the decision-support hypothesis is
chosen θ6 ∪ θ7 ∪ θ8, θ7 ∪ θ8 or θ8.

3.6 Using imprecise bba’s

Let’s examine the fusion result when dealing di-
rectly with imprecise bba’s. We just consider here a
simple imprecise example which considers both inputs
of Examples 1 and 2 to generate imprecise bba’s inputs.

Example 9: We consider the imprecise bba’s accord-
ing to input Table 59.

focal element m0(.) m1(.) m2(.) m3(.)

f1 = θ4 ∪ θ8 1 0 0.3 0
f2 = θ6 ∪ θ8 0 [0.75,0.9] 0 [0.10,0.25]

f3 = θ4 ∪ θ8 0 0 0.7 0
It 0 [0.1,0.25] 0 [0.75,0.9]

Table 59: Imprecise quantitative inputs for VBIED
problem.

Applying the conjunctive rule, we have 1×2×2×2 = 8
products to compute which are listed below:

• Product π1 = 1 � [0.75, 0.90] � 0.3 � [0.10, 0.25].
Using operators on sets defined in [6], Vol.1, Chap.
6, one gets π1 = [0.75, 0.90] � [0.03, 0.075] =
[0.0225, 0.0675] which is committed to f1∩f2 = θ8.

• Product π2 = 1 � [0.75, 0.90] � 0.3 � [0.75, 0.90]
is equal to [0.75, 0.90] � [0.225, 0.27] =
[0.16875, 0.243] which is also committed to
f1 ∩ f2 = θ8.

• Product π3 = 1 � [0.75, 0.90]� 0.7 � [0.10, 0.25] =
[0.0525, 0.1575] corresponds to the imprecise mass
of f1 ∩f2 ∩f3 = ∅ which will be redistributed back
to f1, f2 and f3 according to PCR6.

• Product π4 = 1 � [0.75, 0.90]� 0.7 � [0.75, 0.90] =
[0.39375, 0.567] corresponds to the imprecise mass
of f1 ∩ f2 ∩ f3 ∩ It = ∅ which will be redistributed
back to f1, f2, f3 and It according to PCR6.

• Product π5 = 1 � [0.10, 0.25]� 0.3 � [0.10, 0.25] =
[0.003, 0.01875] is committed to f1 ∩ f2 = θ8.

• Product π6 = 1 � [0.10, 0.25]� 0.3 � [0.75, 0.90] =
[0.0225, 0.0675] is committed to f1.

• Product π7 = 1 � [0.10, 0.25]� 0.7 � [0.10, 0.25] =
[0.007, 0.04375] corresponds to the imprecise mass
of f1 ∩ It ∩ f3 ∩ f2 = ∅ which will be redistributed
back to f1, f2, f3 and It according to PCR6.
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• Product π8 = 1 � [0.10, 0.25]� 0.7 � [0.75, 0.90] =
[0.0525, 0.1575] corresponds to the imprecise mass
of f1 ∩ It ∩ f3 ∩ It = ∅ which will be redistributed
back to f1, f3 and It according to PCR6.

We now redistribute the imprecise masses π3, π4, π7

and π8 associated with the empty set using PCR6 prin-
ciple. Lets’ compute the proportions of π3, π4, π7 and
π8 committed to each focal element involved in the con-
flict they are associated with.

• The product π3 = [0.0525, 0.1575] is distributed to
f1, f2 and f3 according to PCR6 as follows

xf1,π3

1
=

yf2,π3

[0.75, 0.90]⊞ [0.10, 0.25]
=

zf3,π3

0.7

=
π3

1⊞ [0.75, 0.90]⊞ [0.10, 0.25]⊞ 0.7

=
[0.0525, 0.1575]

1.7⊞ [0.85, 1.15]
=

[0.0525, 0.1575]

[2.55, 2.85]

= [
0.0525

2.85
,
0.1575

2.55
]

= [0.018421, 0.061765]

whence

xf1,π3 = 1 � [0.018421, 0.061765]

= [0.018421, 0.061765]

yf2,π3 = [0.85, 1.15]� [0.018421, 0.061765]

= [0.015658, 0.071029]

zf3,π3 = 0.7 � [0.018421, 0.061765]

= [0.012895, 0.043236]

• The product π4 = [0.39375, 0.567] is distributed to
f1, f2, f3 and It according to PCR6 as follows

xf1,π4

1
=

yf2,π4

[0.75, 0.90]
=

zf3,π4

0.7
=

wIt,π4

[0.75, 0.90]

=
π4

1⊞ [0.75, 0.90]⊞ 0.7⊞ [0.75, 0.90]

=
[0.39375, 0.567]

[3.2, 3.5]

= [0.1125, 0.177188]

whence

xf1,π4 = 1 � [0.1125, 0.177188]

= [0.1125, 0.177188]

yf2,π4 = [0.75, 0.90]� [0.1125, 0.177188]

= [0.084375, 0.159469]

zf3,π4 = 0.7 � [0.1125, 0.177188]

= [0.07875, 0.124031]

wIt,π4 = [0.75, 0.90]� [0.1125, 0.177188]

= [0.084375, 0.159469]

• The product π7 = [0.007, 0.04375] is distributed to
f1, f2, f3 and It according to PCR6 as follows

xf1,π7

1
=

yf2,π7

[0.10, 0.25]
=

zf3,π7

0.7
=

wIt,π7

[0.10, 0.25]

=
π7

1⊞ [0.10, 0.25]⊞ 0.7⊞ [0.10, 0.25]

=
[0.007, 0.04375]

[1.9, 2.2]

= [0.003182, 0.023026]

whence

xf1,π7 = 1 � [0.003182, 0.023026]

= [0.003182, 0.023026]

yf2,π7
= [0.10, 0.25]� [0.003182, 0.023026]

= [0.000318, 0.005757]

zf3,π7 = 0.7 � [0.003182, 0.023026]

= [0.002227, 0.016118]

wIt,π7 = [0.10, 0.25]� [0.003182, 0.023026]

= [0.000318, 0.005757]

• The product π8 = [0.0525, 0.1575] is distributed to
f1, f3 and It according to PCR6 as follows

xf1,π8

1
=

zf3,π8

0.7
=

wIt,π8

[0.10, 0.25]⊞ [0.75, 0.90]

=
π8

1⊞ 0.7⊞ [0.10, 0.25]⊞ [0.75, 0.90]

=
[0.0525, 0.1575]

[2.55, 2.85]

= [0.018421, 0.061765]

whence

xf1,π8 = 1 � [0.018421, 0.061765]

= [0.018421, 0.061765]

zf3,π8 = 0.7 � [0.018421, 0.061765]

= [0.012895, 0.043235]

wIt,π8 = [0.85, 1.15]� [0.018421, 0.061765]

= [0.015658, 0.071029]

Summing the results, we get for m0 ⊕m1 ⊕m2 ⊕m3

with PCR6 the following imprecise mPCR6 bba:

mPCR6(θ8) = π1 ⊞ π2 ⊞ π5

= [0.19425, 0.32925]

mPCR6(f1) = xf1,π3 ⊞ xf1,π4 ⊞ xf1,π7 ⊞ xf1,π8

= [0.152524, 0.323743]

mPCR6(f2) = yf2,π3 ⊞ yf2,π4 ⊞ yf2,π7

= [0.100351, 0.236255]

mPCR6(f3) = zf3,π3 ⊞ zf3,π4 ⊞ zf3,π7 ⊞ zf3,π8

= [0.106767, 0.226620]

mPCR6(It) = wIt,π4 ⊞ wIt,π7 ⊞ wIt,π8

= [0.100351, 0.236255]
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where ⊞, � and � operators (i.e. the addition, mul-
tiplication and division of imprecise values), and other
operators on sets, were defined in [6], Vol. 1, p127–130
by

S1 ⊞ S2 = {x|x = s1 + s2, s1 ∈ S1, s2 ∈ S2}

S1 � S2 = {x|x = s1 · s2, s1 ∈ S1, s2 ∈ S2}

S1 � S2 = {x|x = s1/s2, s1 ∈ S1, s2 ∈ S2}

with

inf(S1 ⊞ S2) = inf(S1) + inf(S2)

sup(S1 ⊞ S2) = sup(S1) + sup(S2)

and

inf(S1 � S2) = inf(S1) · inf(S2)

sup(S1 � S2) = sup(S1) · sup(S2)

and

inf(S1 � S2) = inf(S1)/ sup(S2)

sup(S1 � S2) = sup(S1)/ inf sup(S2)

We have summarized the results in Table 60. The left
column of this table corresponds to the imprecise val-
ues of mPCR6 based on exact calculus with operators
on sets (i.e. the exact calculus with imprecision). The
right column of this table (mapprox

PCR6
) corresponds to

the result obtained with non exact calculus based on
results given in Examples 1 and 2 in right columns of
Tables 2 and 12. This is what we call approximate
results since they are not based on exact calculus
with operators on sets. One shows an important
differences between results in left and right columns
which can make an impact on final decision process
when working with imprecise bba’s and we suggest to
always use exact calculus (more complicated) instead
of approximate calculus (more easier) in order to get
the real imprecision on bba’s values. Same approach
can be done for combining imprecise bba’s with PCR5
(not reported in this paper).

focal element mPCR6(.) mapprox
PCR6 (.)

θ8 [0.194250,0.329250] [0.24375,0.27300]
f1 = θ4 ∪ θ8 [0.152524,0.323743] [0.23935,0.29641]
f2 = θ6 ∪ θ8 [0.100351,0.236255] [0.14587, 0.16950]

f3 = θ4 ∪ θ8 [0.106767,0.226620] [0.14865,0.16811]
It [0.100351,0.236255] [0.14587, 0.16950]

Table 60: Results of m0 ⊕m1 ⊕m2 ⊕m3 for Table 59.

Based on results on left column of Table 60, one can
easily compute the imprecise Bel and Pl values also of

decision-support hypotheses which are

Bel(θ6 ∪ θ7 ∪ θ8) = [0.294601, 0.565505]

Pl(θ6 ∪ θ7 ∪ θ8) = [0.654243, 1.352123]≡ [0.654243, 1]

Bel(θ7 ∪ θ8) = [0.194250, 0.329250]

Pl(θ7 ∪ θ8) = [0.654243, 1.352123]≡ [0.654243, 1]

Bel(θ8) = [0.194250, 0.329250]

Pl(θ8) = [0.547476, 1.125502]≡ [0.547476, 1]

Therefore, one gets the following imprecision ranges
for probabilities

P (θ6 ∪ θ7 ∪ θ8) ∈ [0.294601, 1]

P (θ6 ∪ θ7 ∪ θ8) ∈ [0, 0.705399]

P (θ7 ∪ θ8) ∈ [0.194250, 1]

P (θ7 ∪ θ8) ∈ [0, 0.805750]

P (θ8) ∈ [0.194250, 1]

P (θ̄8) ∈ [0, 0.805750]

Based on max of Bel or max of Pl criteria, one sees
that the decision will be to evacuate the building B
whatever the decision-support hypothesis we prefer
θ6 ∪ θ7 ∪ θ8, θ7 ∪ θ8 or θ8.

Let’s compute now the imprecise DSmP values for
ǫ = 0.001. The focal element f1 = θ4 ∪ θ8 is redis-
tributed back to θ4 and θ8 directly proportionally to
their corresponding masses and cardinalities

xθ4

0⊞ 0.001
=

y′θ8
[0.194250, 0.329250]⊞ 0.001

=
mPCR6(θ4 ∪ θ8)

0.002⊞ [0.194250, 0.329250]

=
[0.152524, 0.323743]

[0.196250, 0.331250]

= [
0.152524

0.331250
,
0.323743

0.196250
]

= [0.46045, 1.64965]

whence

xθ4 = 0.001 � [0.46045, 1.64965]

= [0.000460, 0.001650]

y′θ8 = [0.195250, 0.330250]� [0.46045, 1.64965]

= [0.089903, 0.544797]

The focal element f2 = θ6∪θ8 is redistributed back to
θ6 and θ8 directly proportionally to their corresponding
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masses and cardinalities

zθ6
0⊞ 0.001

=
y′′θ8

[0.194250, 0.329250]⊞ 0.001

=
mPCR6(θ6 ∪ θ8)

0.002⊞ [0.194250, 0.329250]

=
[0.100351, 0.236255]

[0.196250, 0.331250]

= [0.302943, 1.20385]

whence

zθ6 = 0.001� [0.302943, 1.20385]

= [0.000303, 0.001204]

y′′θ8 = [0.195250, 0.330250]� [0.302943, 1.20385]

= [0.0591496, 0.3975714]

The focal element f3 = θ4 ∪ θ8 which is also equal to
θ1 ∪ θ2 ∪ θ3 ∪ θ5 ∪ θ6 ∪ θ7 is redistributed back to θ1,
θ2, θ3, θ5, θ6 and θ7 directly proportionally to their
corresponding masses and cardinalities

wθ1

0⊞ 0.001
=

wθ2

0⊞ 0.001
=

wθ3

0⊞ 0.001
=

wθ5

0⊞ 0.001

=
wθ6

0⊞ 0.001
=

wθ7

0⊞ 0.001

=
mPCR6(θ4 ∪ θ8)

0.006

=
[0.106767, 0.226620]

0.006
= [17.7945, 37.770]

Since all are equal, we get

wθ1 = wθ2 = wθ3 = wθ5 = wθ6 = wθ7

= 0.001� [17.7945, 37.770]

= [0.0177945, 0.03777]

The total ignorance It = θ1∪θ2∪θ3∪θ4∪θ5∪θ6∪θ7∪θ8
is redistributed back to all eight elements of the frame
Θ directly proportionally to their corresponding masses
and cardinalities

vθ1
0⊞ 0.001

=
vθ2

0⊞ 0.001
=

vθ3
0⊞ 0.001

=
vθ4

0⊞ 0.001

=
vθ5

0⊞ 0.001
=

vθ6
0⊞ 0.001

=
vθ7

0⊞ 0.001

=
vθ8

[0.194250, 0.329250]⊞ 0.001

=
mPCR6(It)

[0.194250, 0.329250]⊞ 0.008

=
[0.100351, 0.236255]

[0.202550, 0.337250

= [0.297557, 1.16813]

whence

vθ1 = vθ2 = vθ3 = vθ4 = vθ5 = vθ6 = vθ7

= 0.001 � [0.297557, 1.16813]

= [0.000298, 0.001168]

vθ8 = [0.195250, 0.330250]� [0.297557, 1.16813]

= [0.058098, 0.385775]

The imprecise DSmP probabilities are computed by

DSmPǫ,PCR6(θ1) = wθ1 ⊞ vθ1

DSmPǫ,PCR6(θ2) = wθ2 ⊞ vθ2

DSmPǫ,PCR6(θ3) = wθ3 ⊞ vθ3

DSmPǫ,PCR6(θ4) = xθ4 ⊞ vθ4

DSmPǫ,PCR6(θ5) = wθ5 ⊞ vθ5

DSmPǫ,PCR6(θ6) = zθ6 ⊞ wθ6 ⊞ vθ6

DSmPǫ,PCR6(θ7) = wθ7 ⊞ vθ7

DSmPǫ,PCR6(θ8) = y′θ8 ⊞ y′′θ8 ⊞ vθ8

which are summarized9 in Table 61 below.

Singletons DSmPǫ,PCR6(.)

θ1 [0.0181,0.0389]
θ2 [0.0181,0.0389]
θ3 [0.0181,0.0389]
θ4 [0.0008,0.0028]
θ5 [0.0181,0.0389]
θ6 [0.0184 0.0402]
θ7 [0.0181,0.0389]
θ8 [0.2072,1]

Table 61: Imprecise DSmPǫ of m0 ⊕m1 ⊕m2 ⊕m3 for
Table 59.

- Answer to Q1: As we have shown, it is possi-
ble to fuse imprecise bba’s with PCR6, and PCR5
too (see [6], Vol. 2) to get an imprecise result
for decision-making support under uncertainty and
imprecision. It is also possible to compute the ex-
act imprecise values of DSmP if necessary. Accord-
ing to our analysis and our results, and using either
the max of Bel, the max of Pl of the max of DSmP
criterion, the decision will be to evacuate the build-
ing B. Of course, a similar analysis can be done
to answer to the question Q2 when working with
imprecise bba’s, and for for computing imprecise
BetP values as well.

4 Qualitative approach
In this section we just show how the fusion and decision-
making can be done using qualitative information ex-
pressed with labels. In our previous examples the quan-
titative baa’s have been defined ad-hoc in satisfying

9Actually for θ8, one gets with exact calculus of imprecision
DSmPǫ,PCR6(θ8) = [0.2072, 1.3281], but since a probability can-
not be greater than 1, the upper bound of imprecision interval
has been set to 1.
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some reasonable modeling and using minimal assump-
tion compatible with what is given in the statement
of the VBIED problem. The numerical values can be
slightly changed (as we have shown in Examples 1 and
2, or in Examples 3 or 4) or they can even be taken
as imprecise as in Example 9, but they still need to be
kept coherent with sources reports in order to obtain
what we consider as pertinent and motivated and fully
justified answers to questions Q1 and Q2.
In this section we show how to solve the problem

using qualitative information using labels. We investi-
gate the possibility to work either with a minimal set
of labels {L1 = Low,L2 = High} (i.e. with m = 2
labels) or a more refined set consisting in 3 labels
{L1 = Low,L2 = Medium,L3 = High} (i.e. with
m = 3 labels). Each set is extended with minimal
L0 and maximal Lm+1 labels as follows (see [6], Vol.3,
Chap. 2 for examples and details)

L2 = {L0 ≡ 0, L1 = Low,L2 = High, L3 ≡ 1}

and

L3 = {L0 ≡ 0, L1 = Low,L2 = Medium,

L3 = High, L4 ≡ 1}

To simplify the presentation, we only present the re-
sults when combining directly the sources altogether
and considering that they have all the same maximal re-
liability and importance in the fusion process. In other
words, we just consider the qualitative counterpart of
Example 1 only.

4.1 Fusion of sources using L2

Example 10: When using L2, the qualitative inputs
10

of the VBIED problem are chosen according to Table
62.

focal element qm0(.) qm1(.) qm2(.) qm3(.)

θ4 ∪ θ8 L3 L0 L1 L0

θ6 ∪ θ8 L0 L2 L0 L1

θ4 ∪ θ8 L0 L0 L2 L0

It L0 L1 L0 L2

Table 62: Qualitative inputs using L2.

Using DSm field and linear algebra of refined labels
based on equidistant labels assumption, one gets the
following mapping between labels and numbers L0 ≡ 0,
L1 ≡ 1/3, L2 ≡ 2/3 and L3 ≡ 1 and therefore, the
Table 62 is equivalent to the quantitative inputs table
63 (which are close to the numerical values taken in
Example 1).
Applying PCR5 and PCR6 fusion rules, one gets the
results given in Table 64 for quantitative and approxi-
mate qualitative bba’s.

10When dealing with qualitative information, we prefix the no-
tations with ’q’ letter, for example quantitative bba m(.) becomes
qualitative bba qm(.), etc.

focal element m0(.) m1(.) m2(.) m3(.)

θ4 ∪ θ8 1 0 1/3 0
θ6 ∪ θ8 0 2/3 0 1/3

θ4 ∪ θ8 0 0 2/3 0
It 0 1/3 0 2/3

Table 63: Corresponding quantitative inputs.

focal element mPCR5 ≈ qmPCR5 qmPCR6 ≈ qmPCR6

θ8 0.25926 ≈ L1 0.25926 ≈ L1

θ4 ∪ θ8 0.36145 ≈ L1 0.3157 ≈ L1

θ6 ∪ θ8 0.093855 ≈ L0 0.13198 ≈ L0

θ4 ∪ θ8 0.19158 ≈ L1 0.16108 ≈ L0

It 0.093855 ≈ L0 0.13198 ≈ L0

Table 64: Results of m0 ⊕m1 ⊕m2 ⊕m3 for Table 62.

One sees that the crude approximation of numerical
values to their closest corresponding labels in L2 can
yield to unnormalized qualitative bba. For example,
qmPCR6(.) is not normalized since the sum of labels
of focal elements in the right column of Table 64 is
L1 + L1 + L0 + L0 + L0 = L2 6= L3. To preserve the
normalization of qbba result it is better to work with
refined labels as suggested in [6], Vol.3, Chap. 2. Using
refined labels, one will get now a better approximation
as shown in the Table 65.

focal element mPCR5 ≈ qmPCR5 mPCR6 ≈ qmPCR6

θ8 0.25926 ≈ L0.79 0.25926 ≈ L0.79

θ4 ∪ θ8 0.36145 ≈ L1.08 0.31570 ≈ L0.95

θ6 ∪ θ8 0.09385 ≈ L0.28 0.13198 ≈ L0.39

θ4 ∪ θ8 0.19158 ≈ L0.57 0.16108 ≈ L0.48

It 0.09385 ≈ L0.28 0.13198 ≈ L0.39

Table 65: Results of m0 ⊕m1 ⊕m2 ⊕m3 with refined
labels.

It can be easily verified that the qbba’s based on
refined label approximations are now (qualitatively)
normalized (because the sum of refined labels of each
column is equal to L3).

The results of qDSmP based on refined and crude
approximations are given in Table 66.

Singletons qDSmPǫ,PCR5(.) qDSmPǫ,PCR6(.)

θ1 0.0323 ≈ L0.10 ≈ L0 0.0273 ≈ L0.08 ≈ L0

θ2 0.0323 ≈ L0.10 ≈ L0 0.0273 ≈ L0.08 ≈ L0

θ3 0.0323 ≈ L0.10 ≈ L0 0.0273 ≈ L0.08 ≈ L0

θ4 0.0017 ≈ L0.00 ≈ L0 0.0017 ≈ L0.01 ≈ L0

θ5 0.0323 ≈ L0.10 ≈ L0 0.0274 ≈ L0.08 ≈ L0

θ6 0.0326 ≈ L0.10 ≈ L0 0.0279 ≈ L0.08 ≈ L0

θ7 0.0323 ≈ L0.10 ≈ L0 0.0273 ≈ L0.08 ≈ L0

θ8 0.8042 ≈ L2.40 ≈ L2 0.8338 ≈ L2.51 ≈ L3

Table 66: Results of qDSmPǫ for Table 62.

Answer to Q1 using crude approximation: Based
on these qualitative results, one sees that using crude

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

317



approximation (i.e. using only labels in L2) one gets11

• with qPCR5

qP (θ6 ∪ θ7 ∪ θ8) ∈ [L1, L3]

qP (θ6 ∪ θ7 ∪ θ8) ∈ [L0, L2]

qP (θ7 ∪ θ8) ∈ [L1, L3]

qP (θ7 ∪ θ8) ∈ [L0, L2]

qP (θ8) ∈ [L1, L2]

qP (θ̄8) ∈ [L1, L2]

• with qPCR6

qP (θ6 ∪ θ7 ∪ θ8) ∈ [L1, L2]

qP (θ6 ∪ θ7 ∪ θ8) ∈ [L1, L2]

qP (θ7 ∪ θ8) ∈ [L1, L2]

qP (θ7 ∪ θ8) ∈ [L1, L2]

qP (θ8) ∈ [L1, L2]

qP (θ̄8) ∈ [L1, L2]

These results show that is is almost impossible to
answer clearly and fairly to the question Q1 using
the max of Bel or the max of Pl criteria based on
such very inaccurate qualitative bba’s using such
crude approximation. However it is possible and
easy to answer to Q1 using qualitative DSmP value.
However and according to Table 66, the final decision
must be to evacuate the building B when consider-
ing the level of DSmP values of θ6∪θ7∪θ8, θ7∪θ8, or θ8.

Answer to Q1 using refined approximation: Us-
ing the refined approximation using refined labels which
is more accurate, one gets

• with qPCR5

qP (θ6 ∪ θ7 ∪ θ8) ∈ [L1.07, L3]

qP (θ6 ∪ θ7 ∪ θ8) ∈ [L0, L1.93]

qP (θ7 ∪ θ8) ∈ [L0.79, L3]

qP (θ7 ∪ θ8) ∈ [L0, L2.21]

qP (θ8) ∈ [L0.79, L2.43]

qP (θ̄8) ∈ [L0.57, L2.21]

11The derivations of qBel(X̄) and qP l(X̄) were obtained us-
ing qualitative extension of Dempster’s formulas [5], i.e. with
qBel(X̄) = Lm − qP l(X) and qP l(X̄) = Lm − qBel(X). These
results are valid only if the qbba is normalized, but are used here
even when using non normalized qbba as crude approximation.

• with qPCR6

qP (θ6 ∪ θ7 ∪ θ8) ∈ [L1.18, L3]

qP (θ6 ∪ θ7 ∪ θ8) ∈ [L0, L1.82]

qP (θ7 ∪ θ8) ∈ [L0.79, L3]

qP (θ7 ∪ θ8) ∈ [L0, L2.21]

qP (θ8) ∈ [L0.79, L2.52]

qP (θ̄8) ∈ [L0.48, L2.21]

One sees that accuracy of the result obtained using re-
fined labels allows us to take the decision more easily.
Indeed, using the refined approximation, it is possible
here to take the decision based on the max of Bel, or
on the max of Pl and whatever the decision-support hy-
pothesis used (θ6∪θ7∪θ8, or θ7∪θ8, or θ8), the answer
to question Q1 is: Evacuation of the building B.
The same decision can also be taken from the analy-
sis of qDSmP values as well when considering refined
labels in Table 66.

4.2 Fusion of sources using L3

Here we propose to go further in our analysis and
to use a bit more refined set of labels defined by L3.
We need to adapt the qualitative inputs of the VBIED
problem in order to work with L3.

Example 11: We propose to solve the VBIED problem
for the following qualitative inputs which reflects what
is reported by the sources when using labels belonging
to L3.

focal element qm0(.) qm1(.) qm2(.) qm3(.)

θ4 ∪ θ8 L4 L0 L1 L0

θ6 ∪ θ8 L0 L3 L0 L1

θ4 ∪ θ8 L0 L0 L3 L0

It L0 L1 L0 L3

Table 67: Qualitative inputs based on L3.

Based on the equidistant labels assumption, one gets
the following mapping between labels and numbers
L0 ≡ 0, L1 ≡ 1/4, L2 ≡ 2/4, L3 ≡ 3/4 and L4 = 1
and therefore, the Table 67 is equivalent to the quan-
titative inputs table 68 (which are more close to the
numerical values taken in Example 1 than the inputs
chosen in Table 63 for Example 10).

focal element m0(.) m1(.) m2(.) m3(.)

θ4 ∪ θ8 1 0 0.25 0
θ6 ∪ θ8 0 0.75 0 0.25

θ4 ∪ θ8 0 0 0.75 0
It 0 0.25 0 0.75

Table 68: Corresponding quantitative inputs.

Applying PCR5 and PCR6 fusion rules, one gets the
results given in Table 69 for quantitative and approxi-
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mate qualitative bba’s using refined and crude approx-
imations of labels.

foc. elem. mPCR5 ≈ qmPCR5 mPCR6 ≈ qmPCR6
θ8 0.20312 ≈ L0.81 ≈ L1 0.20312 ≈ L0.81 ≈ L1
θ4 ∪ θ8 0.34269 ≈ L1.37 ≈ L1 0.29979 ≈ L1.21 ≈ L1
θ6 ∪ θ8 0.11617 ≈ L0.47 ≈ L0 0.15370 ≈ L0.61 ≈ L1
θ4 ∪ θ8 0.22185 ≈ L0.88 ≈ L1 0.18969 ≈ L0.76 ≈ L1
It 0.11617 ≈ L0.47 ≈ L0 0.15370 ≈ L0.61 ≈ L1

Table 69: Results of m0 ⊕m1 ⊕m2 ⊕m3 for Table 67.

It can be easily verified that the qbba’s based on re-
fined label approximations are (qualitatively) normal-
ized because the sum of refined labels of each column is
equal to L4. Using crude approximation when working
only with labels in L3 we get non normalized qbba’s.
The results of qDSmP based on refined and crude ap-
proximations are given in Table 70.

Singletons qDSmPǫ,PCR5(.) qDSmPǫ,PCR6(.)

θ1 0.0375 ≈ L0.15 ≈ L0 0.0323 ≈ L0.13 ≈ L0
θ2 0.0375 ≈ L0.15 ≈ L0 0.0323 ≈ L0.13 ≈ L0
θ3 0.0375 ≈ L0.15 ≈ L0 0.0323 ≈ L0.13 ≈ L0
θ4 0.0022 ≈ L0.01 ≈ L0 0.0022 ≈ L0.01 ≈ L0
θ5 0.0375 ≈ L0.15 ≈ L0 0.0323 ≈ L0.13 ≈ L0
θ6 0.0381 ≈ L0.15 ≈ L0 0.0331 ≈ L0.13 ≈ L0
θ7 0.0375 ≈ L0.15 ≈ L0 0.0323 ≈ L0.13 ≈ L0
θ8 0.7722 ≈ L3.09 ≈ L3 0.8032 ≈ L3.21 ≈ L3

Table 70: Results obtained with qDSmPǫ for Table 67.

Ones sees that the use of refined labels allows to
obtain normalized qualitative probabilities. This is
not possible to get normalized qualitative probabilities
when using only crude approximations with labels in
L3 for this example.

Answer to Q1: Using refined labels (which is more
accurate), one gets finally

• with qPCR5

qP (θ6 ∪ θ7 ∪ θ8) ∈ [L1.28, L4]

qP (θ6 ∪ θ7 ∪ θ8) ∈ [L0, L2.72]

qP (θ7 ∪ θ8) ∈ [L0.81, L4]

qP (θ7 ∪ θ8) ∈ [L0, L3.19]

qP (θ8) ∈ [L0.81, L3.12]

qP (θ̄8) ∈ [L0.88, L3.19]

• with qPCR6

qP (θ6 ∪ θ7 ∪ θ8) ∈ [L1.42, L4]

qP (θ6 ∪ θ7 ∪ θ8) ∈ [L0, L2.58]

qP (θ7 ∪ θ8) ∈ [L0.81, L4]

qP (θ7 ∪ θ8) ∈ [L0, L3.19]

qP (θ8) ∈ [L0.81, L3.24]

qP (θ̄8) ∈ [L0.76, L3.19]

One sees that based with PCR5 or PCR6 whatever
the decision-support hypothesis we consider (θ6∪θ7∪θ8,
θ7 ∪ θ8, or θ8), one will decide to evacuate the building

B based on max of Bel, max of Pl or DSmP values,
except for the case of PCR5 with θ8 based on the max
of Bel, max of Pl. In this case, PCR5 result suggests
to NOT evacuate B contrariwise to PCR6 result. As
far as θ8 is the preferred (optimistic) decision-support
hypothesis, one sees here the main effect of difference
between PCR5 and PCR6 for decision-making support.
But as already stated, for such problem the most pru-
dent strategy for decision-making is to consider the
decisio-support hypothesis θ6 ∪ θ7 ∪ θ8 which captures
all aspects of potential danger. Using such reasonable
strategy, both rules PCR5 and PCR6 yields same deci-
sion: Evacuation of the building B.

5 Conclusions
In this paper we have presented a modeling for

solving the Vehicle-Born Improvised Explosive Device
(VBIED) problem with Dezert-Smarandache Theory
(DSmT) framework. We have shown how it is possi-
ble to compute imprecise probabilities of all decision-
support hypotheses and how to take into account the
reliabilities and the importances of the sources of infor-
mation in decision-making support. The strong impact
of prior information has also been analyzed, as well as
the possibility to deal directly with imprecise sources
of information and even with qualitative reports. We
have answered with the full justification to the two main
questions asked in the VBIED problem by John Lav-
ery and Simon Maskell: 1) what is the final decision to
take, and 2) what is the best fusion subsystem to choose
(APNR or the pool of experts)? The analysis done in
this paper is based on a very limited number of reason-
able assumptions and could be adapted for solving more
complicated security problems involving imprecise, in-
complete and conflicting sources of information.
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Abstract – In this paper we show how to correct
and improve the Belief Interacting Multiple Model fil-
ter (BIMM) proposed in 2009 by Nassreddine et al.
for tracking maneuvering targets. Our improved al-
gorithm, called PCR-BIMM is based on results devel-
oped in DSmT (Dezert-Smarandache Theory) frame-
work and concerns two main steps of BIMM: 1) the
update of the basic belief assignment of modes which is
done by the Proportional Conflict Redistribution Rule
no. 5 rather than Smets’ rule (conjunctive rule); 2)
the global target state estimation which is obtained from
the DSmP probabilistic transformation rather than the
commonly used Pignistic transformation. Monte-Carlo
simulation results are presented to show the perfor-
mances of this PCR-BIMM filter with respect to clas-
sical IMM and BIMM filters obtained on a very simple
maneuvering target tracking scenario.

Keywords: Tracking, Maneuvering target, IMM,
BIMM, DSmT.

1 Introduction

In Fusion 2009 international conference, Nassreddine,
Abdallah, and Denœux [13] have proposed an inter-
esting idea to extend the classical Interacting Multiple
Models (IMM) filter with belief function theory in order
to deal with an unknown and variant motion models.
Their algorithm is based on the classical/historical be-
lief function theory developed by Shafer in 1976 [14],
known as Dempster-Shafer Theory (DST) and requires
both Smets’ rule, i.e. the conjunctive fusion rule equiv-
alent to the non normalized Dempster’s rule, and the
probabilistic pignistic transformation. This algorithm
is called Belief Interacting Multiple Model algorithm
(BIMM). According to authors results, BIMM algo-
rithm outperforms classical IMM algorithm at least in
the vehicle localization problem studied in their works.
These appealing results and the possible extension of
IMM in belief function theory framework motivates our
interest to analyze and evaluate this new BIMM filter.

A deep analysis of the paper yields to the following
comments:

1. The derivation of the predicted prior basic belief
assignment of modes in Step 1 of BIMM algorithm
was clearly wrong in [13] as proved in the sequel.
This mistake implies a serious doubt on the validity
of the results presented in [13].

2. The simulations results presented in [13] cannot
be verified precisely, nor reproduced, because some
settings parameters (like αi discounting factors) re-
quired for the BIMM filter have not be provided
by the authors and the essential step 9 of the algo-
rithm was not detailed enough.

3. It is known (see Chapter 1 of [15] Vol. 3) that
the conjunctive rule does not perform efficiently in
a sequential fusion process because the empty set
is an absorbing element for the conjunctive fusion
rule. Therefore, in order to implement successfully
the BIMM filter, some ad-hoc numerical techniques
are necessary (or some extra normalization steps)
in the BIMM algorithm in order to prevent the
mass of belief committed to empty set to become
close to one and make Smets’ rule responding to
new information. This serious problem has unfor-
tunately not been discussed in [13].

From the theoretical point of view, it is quite surpris-
ing that one gets better performances with the BIMM
(which proceeds with less specific information since it
deals with non Bayesian basic belief assignments) than
with the classical Bayesian IMM filter (which deals with
more specific information, i.e. with Bayesian basic be-
lief assignments). The first purpose of this work is
to verify if the conclusions given in [13] are valid on
a very simple reproducing maneuvering target track-
ing scenario. We want also to see if a more justified
Belief-based IMM algorithm can be developed to im-
prove the BIMM algorithm and to evaluate it to get
a fair comparison of its performance with respect to

Originally published as Dezert J., Pannetier B., A PCR-BIMM filter for 
maneuvering target tracking, in Proc. of Fusion 2010, Edinburgh, Scotland, 

UK, 26-29 July 2010, and reprinted with permission.
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classical IMM filter. The improvement of the BIMM
algorithm we propose in this paper is based on ad-
vanced theoretical results obtained in the development
of Dezert-Smarandache Theory (DSmT) of information
fusion [15]. This paper is organized as follows: After a
brief recall of classical (fixed structure) IMM algorithm
given in section 2, one presents in section 3 the Belief
IMM algorithm and its flaws. Motivations for the im-
provement of the BIMM filter is presented in section
4 with the presentation of the main steps of our new
algorithm called PCR-BIMM filter (Proportional Con-
flict Redistribution-based BIMM). In section 5, we ex-
amine the performances of the IMM, and PCR-BIMM
on a very simple tracking scenario through Monte-Carlo
results. Conclusions and perspectives for further inves-
tigations are given in section 6.

2 Classical IMM algorithm
The IMM filter is one of the most used algorithm for

tracking maneuvering targets and was developed origi-
nally by Henk Blom in eighties [5, 6, 2]. The IMM filter
is a recursive filter with a low complexity and has been
proved very efficient in many real-data tracking appli-
cations [4] and many extensions of IMM have been de-
veloped since its original publication for dealing with
multitarget-multisensor case, cluttered environments,
etc, see [12] for a good survey of Multiple Models tech-
niques. The classical IMM algorithm considers a hybrid
Multiple Models (MM) system which obeys one of a fi-
nite number r of dynamic models Mi, i = 1, . . . , r and
estimates the posterior mode probabilities from their
prior probabilities and target measurements (Bayesian
framework). Its specificity is that IMM mixes hypothe-
ses with depth 1 only at the start of each cycle and thus
has a low complexity of order O(r), while providing
same performances as the more effective Generalized
Pseudo-Bayesian estimator of order 2. We briefly recall
the principle of classical IMM filter, see [3, 4] for more
details with examples. A hybrid MM system is charac-
terized by two state variables: 1) the base-state variable
x(k) of dimension nx including the position, velocity,
etc. of the target, and 2) a modal-state Mj(k) belong-
ing to a known finite set Mr(k) = {Mi(k), i = 1, . . . , r}
of r possible dynamic models for the target during its
motion. For simplicity of presentation, we consider only
a fixed-structure IMM, i.e. Mr(k) = Mr is invariant
with time. Variable-structure IMM is possible and has
been introduced by Xiao-Rong Li in [10, 11]. The hy-
brid system is described by the equations1

x(k) = F[M(k)]x(k − 1) + v[k − 1, M(k)]

z(k) = H[M(k)]x(k) + w[k, M(k)]

where M(k) is the mode in effect during the sampling
period ending at time k belonging in Mr. x(k) and

1For simplicity, we assume here linear systems.

z(k) are the target state and observation vectors. The
set of all available measurements up to k is denoted
Zk. F[M(k)] and H[M(k)] are known matrices de-
pending on the dynamic model M(k). The statistics
of the process and observation noises v[k − 1, M(k)]
and w[k, M(k)] can differ from mode to mode. Usually
one considers v[k − 1, M(k) = Mj] ∼ N (v̄j ,Qj) and
w[k, M(k) = Mj ] ∼ N (w̄j ,Rj) with known covariance
matrices Qj and Rj respectively. The Mode jump pro-
cess is modeled as a Makov chain with known a priori
probabilities P{M(0) = Mj} = µj(k = 0) and known
transition probabilities P{M(k) = Mj |M(k − 1) =
Mi} = πij . A cycle of the classical IMM algorithm
(k − 1) 7→ k consists in the following steps:
• Step 0 (Initialization at k = 0): Definition of dy-

namic and observation matrices, choice of process and
observation noise levels, sampling period, initialization
of the filters adapted to each mode, choice of the prior
mode probabilities Pj and the transition probability

matrix Pt , [πij = P{Mj(k)|Mi(k − 1)}]′ assumed
known and time-invariant.
• Step 1 (Interaction-mixing (j = 1, . . . , r)): Mixing

of the previous cycle mode-conditioned state estimates
x̂i(k − 1|k − 1) and covariance, using the mixing prob-
abilities µi|j(k − 1|k − 1), to initialize the current cycle
of each mode-conditioned filter x̂0

j (k − 1|k− 1). This is
done by

x̂0
j (k−1|k−1) =

r
∑

i=1

µi|j(k−1|k−1)x̂i(k−1|k−1) (1)

P0
j(k−1|k−1) =

r
∑

i=1

µi|j(k−1|k−1){Pi(k−1|k−1)

− [x̂i(k − 1|k − 1) − x̂0
j (k − 1|k − 1)]·

[x̂i(k − 1|k − 1) − x̂0
j (k − 1|k − 1)]′} (2)

where the elements µi|j(k−1|k−1) of the mixing prob-
ability (vertical) vector µk−1|k−1(.|Mj(k)) = [µi|j(k −
1|k − 1), i = 1, . . . r]′ are calculated by

µi|j(k − 1|k − 1) , P{Mi(k − 1)|Mj(k),Zk−1}

=
πijµi(k − 1)

µ−
j (k)

(3)

with

µ−
j (k) , P{Mj(k)|Zk−1} =

r
∑

i=1

πijµi(k − 1) (4)

The equation (4) can be written more concisely as:

µ
−
k (.) = Pt · µk−1(.) (5)

where P′
t = [πij ] and µk−1(.) represents the (vertical)

vector of prior probability of modes, i.e.

µk−1(.) = [P (Mi(k−1)|Zk−1]′ = [µ1(k−1) . . . µr(k−1)]′
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and µ
−
k (.) represents the (vertical) vector of predicted

prior probability of modes

µ
−
k (.) = [P (Mj(k)|Zk−1]′ = [µ−

1 (k) . . . µ−
r (k)]′

• Step 2 (Mode conditioned filter): From prior
mixed statistics x̂0

j (k−1|k−1) and P0
j(k−1|k−1) and

the target measurement z(k), one calculates x̂j(k|k)

and P̂j(k|k) for each possible mode in effect (r filters
running in parallel) by a specific filter matched to mode
Mj , typically a Kalman filter if the dynamic and obser-
vation system are linear, or Extended Kalman Filter
(EKF) to deal with linear or non linear equations, or
any other sophisticated filters if necessary for dealing
for example with miss-detections and false alarms [3].
The likelihood Λj(k) of the filter j is assumed to be
Gaussian with

Λj(k) =
1

(2π)nz/2√|Sj(k)|
exp− 1

2 z̃
′
j(k)S−1

j (k)z̃j(k) (6)

where z̃j(k) , z(k) − ẑj(k|k − 1) is the innovation and
Sj(k) is the covariance of the innovation provided by
the filter j.
• Step 3 (Mode probability update): The probability

µj(k) of each mode j for j = 1, . . . , r is calculated by

µj(k) = P{Mj(k)|Zk} = Λj(k)µ−
j (k)/

r
∑

i=1

Λi(k)µ−
i (k)

(7)
• Step 4 (Global estimation for output purpose):

The global estimate x̂(k|k) and the covariance of esti-
mation error P(k|k) are given by:

x̂(k|k) =

r
∑

j=1

µj(k)x̂j(k|k) (8)

P(k|k) =

r
∑

j=1

µj(k){Pj(k|k)

− [x̂j(k|k) − x̂(k|k)] · [x̂j(k|k) − x̂(k|k)]′} (9)

3 Belief-based IMM algorithm
In 2009, Nassreddine et al. have proposed in [13]

an extension of classical IMM filter in the framework
of Dempster-Shafer Theory (DST) [14] for dealing with
an unknown and variant motion models. The idea was
to select a set of candidate models2, and then esti-
mate a current basic belief assignment (bba) defined
on the power-set of this set of models based on the fu-
sion of bba’s built from measurement likelihoods with
the predicted bba of the models using Smets’ rule3 de-
noted ∩©. From the result of Smets’ fusion, the mixed

2Corresponding to the so-called frame of discernment and usu-
ally denoted Θ in DST.

3Smet’s rule is nothing but the non normalized Dempster’s
rule of combination, i.e. the conjunctive rule.

state of classical IMM filter is replaced with the pignis-
tic averaging of the mode-conditioned state estimates.
This new extension of IMM filter was called BIMM
(Belief-based IMM) since it uses belief function theory
to represent the uncertainty in the switches between
the modes. This section presents succinctly the prin-
ciple of the BIMM filter. We justify also our motiva-
tion for developing a new Belief-based IMM algorithm.
The steps of BIMM are actually very close to the steps
of classical IMM, except that predicted and updated
mode probabilities are estimated from pignistic proba-
bilities derived from a basic belief assignment updated
with the conjunctive rule of combination. The main
changes of BIMM concern the Step 1 and the Step 3
of IMM algorithm. The frame of discernment chosen
in BIMM coincides with the set of possible models, i.e.
Θ(k) ≡ Mr(k) = {Mi(k), i = 1, . . . , r}. Instead of
computing recursively the mixed µi|j(.) and updated
µj(.) probabilities with eqs. (3) and (4) as done with
the classical IMM, one deals with bba’s defined on the
power-set 2Θ of the frame of discernment. Mathemati-
cally, a normal bba m(.) is defined4 as a mapping from
2Θ 7→ [0, 1] such that m(∅) = 0 and

∑

A∈2Θ m(A) = 1.
A is a focal element of m(.) if m(A) > 0. Any discrete
probability measure can be interpreted as a special be-
lief function, called Bayesian belief [14] whose focal el-
ements are singletons of 2Θ. Any belief function with
a bba m(.) can be approximated into subjective prob-
ability measure thanks to the pignistic transformation
[17] defined for all Mi ∈ Θ(k) by

BetP{Mi} =
∑

A∈2Θ|A∩Mi=Mi

1

|A|
·

m(A)

1 − m(∅)
(10)

where |A| is the cardinality of A.

The steps of BIMM proposed in [13] are5:
• Step 0 (Initialization at k = 0): Definition of dy-
namic and observation matrices, choice of process and
observation noise levels, sampling period, initialization
of the filters adapted to each mode. The prior proba-
bilities of modes {Pj = P{M(0) = Mj}, j = 1, . . . , r}
used in IMM, are replaced6 by the vacuous belief as-
signment m(Θ(k = 0) = M1 ∪M2 ∪ . . .∪Mr) = 1. The
probability transition matrix P′

t = [πij ] is replaced by

a bba transition matrix7 Mt , [mij ] having a very sim-
ple structure defined by the r implication rules: ”Ri: if
M(k) = Mi(k) then M(k+1) = Mi(k+1)” with known
belief coefficients βi ∈ [0, 1] for i = 1, 2, . . . , r with
βi = m(Mi(k + 1)|Mi(k)) and 1 − βi = m(Θ(k + 1) =
M1 ∪ . . . ∪ Mr(k + 1)|Mi(k)).

4We use boldface letters to denote vectors or matrices.
5We use a more classical notation generally adopted in the

tracking community.
6Note that this initialization can also be done by taking

m(Mj(k = 0) = Pj as well if one considers that prior proba-
bilities of modes is accurate enough.

7Called switching mass function in [13].
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• Step 1 (Interaction-mixing): The mixing probability
µi|j(k − 1|k − 1) are calculated as follows:

1. The derivation of probabilities vector µ
−
k (.) =

[µ−
1 (k) . . . µ−

r (k)]′ in classical IMM is replaced by
the derivation of the predicted bba m−

k (.) given by

m−
k (.) , Mt ·mk−1(.) (11)

2. The derivation of probabilities µi|j(k − 1|k − 1) ,
P{Mi(k − 1)|Mj(k),Zk−1} is replaced by the
derivation of bba mk−1|k−1(.) thanks to the Gen-
eralized Bayesian Theorem (GBT) [18]. More pre-
cisely,

mk−1|k−1(.|Mj(k)) =

[ ∩©m
⇑Θ(k−1)×Θ(k)
k (.|Mi(k − 1))](.|Mj(k)]↓Θ(k−1)

(12)

where ⇑ Θ(k − 1) × Θ(k) is the ballooning exten-
sion [18] of the bba on the Cartesian product frame
Θ(k − 1) × Θ(k), and where ↓ Θ(k − 1) represents
the marginalization operation of the bba on the
frame Θ(k− 1). See [18], for details and examples.

3. The derivation of the mixing probability µi|j(k −

1|k − 1) = P{Mi(k − 1)|Mj(k),Zk−1} of classical
IMM is replaced by the pignistic probability drawn
from mk−1|k−1(.|Mj(k)), that is:

µi|j(k − 1|k − 1) = BetP{Mi(k − 1)|Mj(k),Zk−1}

where BetP{.} is calculated with the transforma-
tion (10) using mk−1|k−1(.|Mj(k)) given by (12).

x̂0
j (k− 1|k− 1) and P0

j (k− 1|k− 1) are calculated as in
IMM Step 1.
• Step 2: Same as IMM Step 2.
• Step 3 (Mode bba update): The updated bba mk(.)
of modes is computed from the conjunctive combination
of the predicted bba m−

k−1(.) given in (11) with observed
bba’s8 mk,j(.), j = 1, 2, . . . r by

mk(.) = [mk,1 ∩© . . . ∩©mk,r ∩©m−
k−1](.) (13)

where the observed bba’s mk,j(.) for j = 1, . . . , r are
given9 by [13]:











mk,j(Mj(k)) = 0

mk,j(M̄j(k)) = αj(1 − RΛj(k))

mk,j(Θ(k)) = 1 − αj(1 − RΛj(k))

(14)

αj is a discounting coefficient associated with the like-
lihood of the mode Mj(k) and R is a normalization
constant.

8We mean that the bba mk,j(.) is built from the likelihood
Λj(k) which depends on the mode Mj(k) and on the observation
available z(k).

9This is Appriou’s model no. 1 in [1].

• Step 4 (Global estimation for output purpose):
The global estimate x̂(k|k) and the covariance of
estimation error P(k|k) are given as in step 4 of clas-
sical IMM by taking µj(k) = BetP{Mj(k)|Zk} where
BetP{Mj(k)|Zk} is the pignistic probability that the
mode Mj is effective at time k. BetP{Mj(k)|Zk}
is computed from the updated bba mk(.) given by (13).

A mistake in Step 1 of BIMM filter: The afore-
mentioned Step 1 of BIMM algorithm described with an
example in [13] is clearly incorrect because the deriva-
tion of the predicted bba m−

k (.) by (5) is wrong be-
cause the sum of masses of focal elements is not equal
to one. It is easy to verify from example in [13]
when considering only two models, when taking β1 =
m(M1(k)|M1(k − 1)) = 0.9, 1 − β1 = 0.1 = m(M1(k) ∪
M̄1(k)|M1(k − 1)) and β2 = m(M2(k)|M2(k − 1)) =
0.89, 1−β2 = 0.11 = m(M2(k)∪M̄2(k)|M2(k−1)) and
taking the prior bba mk−1(.) = [m(∅) = 0 m(M1(k −
1)) = 0.45 m(M2(k−1)) = 0.20 m(M1(k−1)∪M2(k−
1)) = 0.35]′. Applying the wrong formula (11), one gets
precisely:









1 0 0 0
0 0.9 0 0.1
0 0 0.89 0.11
0 0 0 1









︸ ︷︷ ︸

Mt









0
0.45
0.20
0.35









︸ ︷︷ ︸

mk−1(.)

=









0
0.4400
0.2165
0.3500









︸ ︷︷ ︸

m
−
k

(.)

6=









0
0.44
0.21
0.35









︸ ︷︷ ︸

Result in [13]

One can see that the sum of components of m−
k (.)

equals 1.0065 !!! This mistake is not due to round-
ing approximation of the result, but to a more serious
mistake in the choice of the transition matrix Mt. This
mistake actually comes from the confusion in indices of
the classical IMM transition matrix. It is easy to ver-
ify that the correct transition matrix must be actually
taken as the transpose of Mt. Therefore, the correct
derivation of m−

k (.) must be done by

m−
k (.) , M′

t ·mk−1(.) (15)

For the example 1 of [13], one will get correctly









1 0 0 0
0 0.9 0 0
0 0 0.89 0
0 0.1 0.11 1









︸ ︷︷ ︸

M′
t









0
0.45
0.20
0.35









︸ ︷︷ ︸

mk−1(.)

=









0
0.4050
0.1780
0.4170









︸ ︷︷ ︸

m
−
k

(.)

Remarks on BIMM filter: The BIMM is based
on two10 pillars: 1) the conjunctive rule of combina-
tion, and 2) the pignistic transformation to approxi-
mate a bba into a subjective probability measure be-
cause. These two pillars are disputable because:

10Actually, Smets’ Generalized Bayesian Theorem (GBT)
could be also considered as the third pillar of BIMM.
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1. The efficiency of Smets’ rule for combining bba’s
is very questionable in this belief-based extension
of IMM because it has been already proved in [15],
Vol. 3, and specially in sequential Target Type
Tracking problem [7] that such rule doesn’t per-
form well in general for mode change detection.
Smets’ rule doesn’t respond to new information
since very quickly all the mass of belief concen-
trates on the empty set. See example in [15], Vol.
3, Chap. 1, freely downloadable from the web and
not reported here due to space limitation.

2. The real interest and efficiency of the pignistic
transformation is also disputable because there ex-
ists other probabilistic transformations which per-
form better than BetP in term of probabilistic in-
formational content, in particular the DSmP trans-
formation developed in [15], Vol. 3, Chap 1 & 3
and also in [8].

3. The justification for the use of Appriou’s model no.
1 in step 3 of BIMM is missing and probably other
(and maybe better) models could be developed to
derive the updated bba mk(.). This question has
not been investigated in this paper and will be a
source for future research.

Interest of BIMM w.r.t. IMM: The potential ad-
vantage of the belief-based IMM approach is to offer
some robustness of the filter when replacing the strong
constraint on the knowledge of probability of transitions
πij (usually based on ad-hoc assumptions on the mean
sojourn time of the target in each mode) by a more flex-
ible constraint on the transitions based on (very sim-
ple and less specific) uncertain implication rules. With
BIMM, one can also relax the knowledge of the prior
probabilities of the modes by starting the tracking di-
rectly with a vacuous belief prior of the modes. Of
course, if one has good reasons to use a given prior
of modes, this can be done easily in belief-based IMM
approach which is also a nice features of such filter.

4 PCR-BIMM algorithm
To preserve the potential advantages of BIMM and

to overcome its aforementionned problems, we propose
to keep its general structure as a belief-based extension
of classical IMM but we replace Smets’ rule by the more
effective Proportional Conflict Redistribution rule no.
5 (PCR5), or eventually the more simple PCR rule no.
6 (PCR6), and to replace the pignistic transformation
by the more effective DSmP transformation to estimate
modes probabilities required in the IMM filter. We call
this new algorithm, the PCR-BIMM filter. Before giv-
ing the sketch of our PCR-BIMM filter, we just recall
what are the PCR5 fusion rule and the DSmP trans-
formation. All details, justifications with examples on
PCR5 and DSmP can be found freely from the web in
[15], Vols. 2 & 3 and will not be reported here.

4.1 PCR5 and PCR6 fusion rules

In DSmT (Dezert-Smarandache Theory) framework,
the Proportional Conflict Redistribution Rule no. 5
(PCR5) is used generally to combine bba’s. PCR5
transfers the conflicting mass only to the elements in-
volved in the conflict and proportionally to their indi-
vidual masses, so that the specificity of the informa-
tion is entirely preserved in this fusion process. Let
m1(.) and m2(.) be two independent11 bba’s, then the
PCR5 rule is defined as follows (see [15], Vol. 2 for
full justification and examples): mPCR5(∅) = 0 and
∀X ∈ 2Θ \ {∅}

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
] (16)

where all denominators in (16) are different from zero.
If a denominator is zero, that fraction is discarded. Ad-
ditional properties of PCR5 can be found in [9]. Exten-
sion of PCR5 for combining qualitative bba’s can be
found in [15], Vol. 2 & 3. All propositions/sets are
in a canonical form. A variant of PCR5, called PCR6
has been proposed by Martin and Osswald in [15], Vol.
2, for combining s > 2 sources. The general formu-
las for PCR5 and PCR6 rules are given in [15], Vol. 2
also. PCR6 coincides with PCR5 when one combines
two sources. The difference between PCR5 and PCR6
lies in the way the proportional conflict redistribution
is done as soon as three or more sources are involved
in the fusion. For example, let’s consider three sources
with bba’s m1(.), m2(.) and m3(.), A ∩ B = ∅ for the
model of the frame Θ, and m1(A) = 0.6, m2(B) = 0.3,
m3(B) = 0.1. With PCR5 the partial conflicting mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redis-
tributed back to A and B only with respect to the
following proportions respectively: xPCR5

A = 0.01714
and xPCR5

B = 0.00086 because the proportionalization
requires

xPCR5
A

m1(A)
=

xPCR5
B

m2(B)m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + m2(B)m3(B)

that is
xPCR5

A

0.6
=

xPCR5
B

0.03
=

0.018

0.6 + 0.03
≈ 0.02857

thus

{

xPCR5
A = 0.60 · 0.02857 ≈ 0.01714

xPCR5
B = 0.03 · 0.02857 ≈ 0.00086

With the PCR6 fusion rule, the partial conflicting mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redis-
tributed back to A and B only with respect to the fol-
lowing proportions respectively: xPCR6

A = 0.0108 and

11I.e. each source provides its bba independently of the other
sources.
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xPCR6
B = 0.0072 because the PCR6 proportionalization

is done as follows:

xPCR6
A

m1(A)
=

xPCR6
B,2

m2(B)
=

xPCR6
B,3

m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + m2(B) + m3(B)

that is

xPCR6
A

0.6
=

xPCR6
B,2

0.3
=

xPCR6
B,3

0.1
=

0.018

0.6 + 0.3 + 0.1
= 0.018

thus










xPCR6
A = 0.6 · 0.018 = 0.0108

xPCR6
B,2 = 0.3 · 0.018 = 0.0054

xPCR6
B,3 = 0.1 · 0.018 = 0.0018

and therefore with PCR6, one gets finally the following
redistributions to A and B:
{

xPCR6
A = 0.0108

xPCR6
B = xPCR6

B,2 + xPCR6
B,3 = 0.0054 + 0.0018 = 0.0072

From the implementation point of view, PCR6 is much
more simple to implement than PCR5. For conve-
nience, Matlab codes of PCR5 and PCR6 fusion rules
can be found in [15, 16].

4.2 The DSmP transformation

The DSmP probabilistic transformation is a seri-
ous alternative to the classical pignistic transformation
which allows to increase the probabilistic information
content (PIC), i.e. to minimize the Shannon entropy,
of the approximated subjective probability measure
drawn from any bba. Justification and comparisons of
DSmP (.) w.r.t. BetP (.) and to other transformations
can be found in details in [8, 15], Vol. 3, Chap. 3.
DSmP transformation is defined12 by DSmPǫ(∅) = 0
and ∀X ∈ 2Θ \ {∅} by

DSmPǫ(X) =
∑

Y ∈2Θ

∑

Z⊆X∩Y
C(Z)=1

m(Z) + ǫ · C(X ∩ Y )

∑

Z⊆Y
C(Z)=1

m(Z) + ǫ · C(Y )
m(Y )

(17)
where C(X ∩ Y ) and C(Y ) denote the cardinals of the
sets X ∩Y and Y respectively; ǫ ≥ 0 is a small number
which allows to reach a highest PIC value of the ap-
proximation of m(.) into a subjective probability mea-
sure. Usually ǫ = 0, but in some particular degen-
erate cases, when the DSmPǫ=0(.) values cannot be
derived, the DSmPǫ>0 values can however always be
derived by choosing ǫ as a very small positive number,
say ǫ = 1/1000 for example in order to be as close as
we want to the highest value of the PIC. The smaller ǫ,
the better/bigger PIC value one gets. When ǫ = 1 and
when the masses of all elements Z having C(Z) = 1 are
zero, DSmPǫ=1(.) = BetP (.).

12Here we work on classical power-set, but DSmP can be de-
fined also for working with other fusion spaces, hyper-power sets
or super-power sets if necessary.

4.3 Sketch of PCR-BIMM

We briefly summarize the five steps of our PCR-
BIMM filter.
• Step 0 (Initialization at k = 0): Same as Step 0 of
BIMM.
• Step 1 (Interaction-mixing): Same as Step 1 of
BIMM except that the predicted bba m−

k (.) is com-
puted by (15) instead of (11), that is

m−
k (.) , M′

t ·mk−1(.) (18)

and the derivation of the mixing probability µi|j(k −

1|k − 1) = P{Mi(k − 1)|Mj(k),Zk−1} of classical
IMM is replaced by the DSmP probability drawn from
mk−1|k−1(.|Mj(k)), that is:

µi|j(k − 1|k − 1) = DSmPǫ(Mi(k − 1)|Mj(k),Zk−1)

where DSmPǫ(.) is calculated with the transformation
(17) using mk−1|k−1(.|Mj(k)) given by (12).
• Step 2: Same as IMM Step 2.
• Step 3 (Mode bba update): The updated bba mk(.)
of modes is computed from the PCR5 (or eventually
PCR6) rule, denoted ⊕, of the predicted bba m−

k−1(.)
given in (15) with bba’s mk,j(.), j = 1, 2, . . . r by

mk(.) = [mk,1 ⊕ . . . ⊕ mk,r ⊕ m−
k−1](.) (19)

where the observed bba’s mk,j(.) for j = 1, . . . , r are
given as in BIMM by (14).
• Step 4 (Global estimation for output purpose): The
global estimate x̂(k|k) and the covariance of estimation
error P(k|k) are given as in step 4 of classical IMM
by taking µj(k) = DSmPǫ{Mj(k)|Zk} computed from
the updated bba mk(.) by (17).

Remark: This preliminary version of PCR-BIMM is
perfectible because it still shares several points with
BIMM13. In particular, the Step 3 of PCR-BIMM cal-
culates, as in BIMM, mk,j(.) with a model based on
likelihoods Λj(k) whose strong justification is missing.
Further investigations will be done to improve this step
3, as well as the Step 1 to get better performances of
PCR-BIMM (if possible) in a future research.

5 Simulation results
In this section, we present the application of the

PCR-BIMM to a ground target tracking problem. We
consider a vehicule localized in (1000m, 5000m) in the
cartesian referential (X, Y ). We simulate a ground sen-
sor located in (0,0) which is able to detect the moving
target in range ρ and azimut θ. The gaussian mea-
surement noise is supposed to be white and centered
with the covariances σρ = 20 m and σθ = 0.008 rad.
The sampling time is fixed to 2 seconds. For tracking
the ground target we only consider two motion models.

13In particular, the GBT is still used in Step 2 of PCR-BIMM.
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Figure 1: True target trajectory and estimated trajec-
tories.

A constant velocity motion model called CV 1, with a
small noise σCV1 = 1 m.s−2 and another constant ve-
locity motion model called CV 2, with a bigger noise
σCV2 = 4 m.s−2 to palliate the target maneuver. The
initial state for each IMM, BIMM14 and PCR-BIMM is
the true initial target state x(0). The transition Matrix
Pt is equal to :

Pt =

[

0.95 0.05
0.05 0.95

]

(20)

and the mass transition matrix Mt for the BIMM and
PCR-BIMM is same as in the paper [13]. The initial
motion model mass is represented by the vacuous mass
function.

To compare the performances between the algorithms
we used the root mean square error (RMSE) in loca-
tion and velocity (figure 2) and the mean of the motion
models probability obtained with 100 Monte-Carlo runs
(figures 3, 4, 5). The first remark is, there is no signif-
icant improvement by using the belief function in the
IMM. In fact, the RMSE of the IMM, BIMM and PCR-
BIMM are globally the same. However, we can observe
a short difference of the PCR-BIMM error after the tar-
get maneuvers between the time intervals [20, 30] and
[40, 50]. This observation carries along the second re-
mark: the motion model transition duration is longer
with the IMM (figure 3) and BIMM (figure 4) than the
PCR-BIMM (figure 5). Then with the taken parame-
ters for this simulation, the PCR-BIMM appears to be
a good and fast detector of the motion models transi-
tion. However, its computed motion models probability
is inferior to the probability obtained with the IMM and
BIMM. More investigations need to be done to see if it
is possible (and how) to improve PCR-BIMM in order
to preserve both the good performance of the maneuver

14Our BIMM implementations uses algorithm described in sec-
tion 3 with (15) and additional normalization step mk(.) in (7)
since otherwise the BIMM algorithm doesn’t work at all due to
the problem mentioned in section 2.

detection and in the same time and get higher proba-
bility when the target is moving in the same mode.
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Figure 2: Root Mean Square Error.
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Figure 3: Motion Model Probability of the IMM.
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Figure 4: Motion Model Probability of the BIMM.
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Figure 5: Motion Model Probability of the PCR-BIMM
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6 Conclusions
In this paper, we have examined in details the re-

cent BIMM algorithm and have corrected a mistake
in it, and also identified some of its limitations. To
palliate the problems of BIMM algorithm, we have de-
veloped a more efficient belief-based algorithm, called
PCR-BIMM, based on the Proportional Conflict Re-
distribution fusion rule and on the DSmP probabilistic
transformation to replace the conjunctive rule and the
pignistic transformation used in BIMM. The derivation
of the predicted bba of modes done incorrectly in BIMM
is also fixed in our PCR-BIMM filter. The perfomances
of PCR-BIMM with respect to the (corrected) BIMM
and to the classical IMM have been evaluated from a
simple maneuvering target tracking scenario through
Monte-Carlo simulations. The results obtained in this
paper show the ability of the PCR-BIMM to track ma-
neuvering targets and also to improve the maneuver
detection. It is important to note that such PCR-
BIMM filter can be considered as more robust than
IMM since PCR-BIMM requires less specific prior in-
formation than IMM. Nevertheless, PCR-BIMM pro-
vides globally the same RMS estimation errors perfor-
mances as those obtained with the classical IMM which
requires more specific prior information. Application of
PCR-BIMM for tracking multiple maneuvering ground
targets in a battlefield surveillance context is under in-
vestigation and results will be published in forthcoming
papers.
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for Fusion of ESM Reports within the DSm Framework 
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Abstract - Electronic Support Measures consist of passive 
receivers which can identify emitters which, in turn, can 
be related to platforms that belong to 3 classes: Friend, 
Neutral, or Hostile. Decision makers prefer results 
presented in STANAG 1241 allegiance form, which adds 
2 new classes: Assumed Friend, and Suspect. Dezert-
Smarandache (DSm) theory is particularly suited to this 
problem, since it allows for intersections between the 
original 3 classes. However, as we know, the DSm hybrid 
combination rule is highly complex to execute and 
requires high amounts of resources. We have applied and 
studied a Matlab implementation of Tessem's k-l-x, 
Lowrance’s Summarization and Simard’s approximation 
techniques in the DSm theory for the fusion of ESM 
reports. Results are presented showing that we can 
improve on the time of execution while maintaining or 
getting better rates of good decisions in some cases.   

Keywords: Dezert-Smarandache Theory, ESM, 
approximations, Belief functions. 

1 Introduction 
In terms of classification, the Dezert-Smarandache theory 
(DSmT) can become quite useful, especially for the direct 
resolution of classification for cases of hierarchical classes 
structures. For instance, we have the case of the allegiance 
classification structure suggested by STANAG 1241 where 
a structure of five classes (3 main classes and 2 derived 
classes) is required. The DSmT is able to output to any of 
those classes without modifications to its fusion process. 

However, this example is still a simple one and both DSmT 
theories, with or without approximation, can solve it quite 
easily, which wouldn’t be the case for classification 
problems of higher dimension. By dimension we mean the 
cardinal of the frame of discernment. In fact, the DSmT can 
become highly complex and computationally prohibitive as 
soon as we reach a dimension of 6. That is a classification 
of a problem having six main classes and up to, in the worst 
case scenario, a total of 7,828,353 possible derived classes. 
Various avenues of research have been tried to avoid or 
address this complexity problem [10, 13, 18]. However, 
even just counting the number of possible classes is still an 

active problem in mathematics known as the Dedekind 
problem, or the problem of counting antichains [9, 18].   

In this paper, we study the use of an approximation 
technique to restrain the staggering amount of data that the 
DSmT can generate in its fusion process. More specifically 
we have chosen Tessem’s klx approximation technique [4], 
Lowrance’s Summarization [19], Simard’s and al technique 
[3, 7, 8] and used them into the DSmT with the DSm hybrid 
combination rule (DSmH). We have also experimented with 
the fusion process while using the approximation technique 
and compared it to the case without an approximation 
technique to analyze how it affects the quality of the 
decision process. More specifically, we will compare the 
good decision rate in the two cases, with and without the 
use of approximation.  

1.1 Realistic Case Study 
Electronic Support Measures (ESM) consist of passive 
receivers which can identify emitters coming from a small 
bearing angle, which, in turn, can be related to platforms 
that belong to 3 classes: either Friend (F), Neutral (N), or 
Hostile (H). Decision makers prefer results presented in 
STANAG 1241 allegiance form, which adds 2 classes: 
Assumed Friend (AF), and Suspect (S).  

The DSm theory is particularly suited to this problem, since 
it allows for intersections between the original 3 classes of 
allegiance. In this way an intersection of Friend and Neutral 
can lead to an Assumed Friend, and an intersection of 
Hostile and Neutral can lead to a Suspect. This structure of 
allegiances will be referred to as STANAG allegiance [11].  
Figure 1 displays a visual representation of a possible 
interpretation of STANAG allegiance in DSmT. We can see 
that even though the input consists only of three classes, we 
are able to give an output into five classes. For example, 
here we have the class ‘Suspect’, which could be the result 
obtained after fusing ‘Hostile’ with ‘Neutral’. We also have 
the class ‘Assumed Friend’, which could be the result 
obtained after fusing ‘Friend’ with ‘Neutral’. Note that this 
case example has the intersection F∩H = Ø, the null set, 
which is a constraint in DSm, leading to the use of its 
hybrid rule. This case example would be relevant for peace-
keeping missions where Hostile and Friendly forces aren’t 
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likely to be close one to another. We will be working on 
that case, with F∩H = Ø. 

Figure 1. Venn diagram for the STANAG allegiances. 

2 Dezert-Smarandache Theory 
The DSm theory uses the language of masses assigned to 
each declaration from a sensor (in our case, the ESM 
sensor).  In DSm theory, all unions and intersections are 
allowed for a declaration.  For our case of cardinality 3, Θ = 
{θ1, θ 2, θ 3}, with | Θ |  = 3, DΘ is still of manageable size,
namely has a cardinality of 19 [10]. In DSm theory, a 
constraint like the one that was imposed by Figure 1, 
namely that F∩H ≡ θ 1∩ θ 3 = Ø is treated by the DSm 
hybrid combination rule (DSmH) below: 

 m(A) = φ(A) [ S1(A) + S2(A) + S3(A) ]  (1) 

The reader is referred to a series of books [10, 13, 17] on 
DSm theory for lengthy descriptions of the meaning of this 
formula (note that the function φ is not to be confused with 
the empty set). A three-step approach was proposed in [12], 
which is used here. The incoming sensor reports are either: 
Friend (F= θ 1), Neutral (N= θ 3) or Hostile (H= θ 3), Figure 
1 has the interpretation of the five classes:  

Friend = {θ 1 – θ1∩θ2}  (2) 
Hostile = {θ 3 – θ3∩θ2}  (3) 
Assumed Friend = {θ1∩θ2}  (4) 
Suspect = {θ2∩θ3}  (5) 
Neutral = {θ 2 – θ1∩θ2 – θ3∩θ2}  (6) 

As in [15], we call STANAG-probability the pignistic 
probability assigned to the five classes shown by equations 
(2) to (6). We use the general pignistic transform, as shown 
by [10] or equation (7), to obtain the probability values of 
the sets used in those equations.    

(7) 

Where CM(A), is the DSm cardinal of a set A. It accounts 
for the total number of partitions. Each of these partitions 
possesses a numeric weight equal to one. That weight, 
identical for each part makes them all equal. The DSm 
cardinal is used in the generalized pignistic transformation 
equation to redistribute the masse of a set A among all its 
partitions B such that B is included or equal to A. 

3 Approximation technique 

3.1 K-l-x approximation 
The k-l-x approximation technique developed by Tessem 
[4] is designed to approximate Basic Probability 
Assignment (BPA) or mass function in Dempster-Shafer 
Theory (DST). Since DSm theory works directly with 
BPAs, applying the k-l-x approximation technique to the 
DSmH is quite straightforward and can be done without any 
changes.  

This algorithm for approximation of BPAs involves three 
parameters: k the minimum number of focal elements to be 
kept, l the maximum number of focal elements to be kept 
and x the maximum threshold on the sum of the lost 
masses. It can be summarized as follows: 

1. Select the k focal elements with highest masses;

2. While the sum of their masses is less than 1-x,
and while their number is less than l, add the next 
focal element with highest mass. 

3.2 Simard’s and al. approximation 
This truncation scheme [3, 7, 8] has had many minor 
variations over time. Similarly to k-l-x approximation, it 
was conceived to approximate BPA or mass function in 
DST. And as in k-l-x, we were able to transfered it to the 
DSm framework. Variants exist but all focus on 
preferentially keeping fused propositions with the smallest 
lengths (lowest cardinality) after passing 2 thresholding 
steps.  The rule therefore involves 3 parameters: BPAmax, 
BPAmin and Nmax. It retains fused propositions according 
to the following rules: 

1. All fused propositions with BPA > BPAmax are kept
(thresholding step 1)

2. All fused propositions with BPA < BPAmin are
discarded (thresholding step 2)
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3. If the number of retained propositions in step 1 is
smaller than Nmax, retain by decreasing BPA,
propositions of length 1, then if the number of
retained propositions is smaller than Nmax,, retain
by decreasing BPA, propositions of length 2, and
so on for 3…

4. If the number of retained propositions is still
smaller than Nmax, retain propositions by
decreasing BPA regardless of length.

3.3 Lowrance’s approximation 
Similar to the k-l-x procedure, the summarization method 
[19] (inspired by the summarization operation described in 
Bauer’s research [5]) leaves the best-valued focal elements 
of the mass function under consideration unchanged. The 
numerical values of the remaining focal elements are 
accumulated and assigned to the set-theoretic union of the 
corresponding subsets of Θ. Here again, the technique was 
conceived to approximate BPA or mass function in DST, 
and we were able to transfer it to the DSm framework. 

3.4 Implementation of approximations 
The information coming from the sensor is a simple belief 
function giving a mass to an allegiance and the remaining 
mass to ignorance. The combination itself combines two 
belief functions, one is the information from the sensor at 
time t, the other contains past information within 
combination result from time t-1. The fusion process is 
realized dynamically. Since the information to combine 
from the sensor is a simple belief function the 
approximation is applied on the result of the combination. 

4 A typical simulation scenario 
The pre-requisites that a typical scenario must address are: 
(1) to be able to adequately represent the known ground 
truth, (2) to contain sufficient countermeasures (or miss-
associations) to be realistic and to test the robustness of the 
theories, (3) to only provide partial knowledge about the 
ESM sensor declaration, which therefore contains 
uncertainty, (4) to be able to show stability under 
countermeasures, yet (5) to be able to switch allegiance 
when the ground truth does so. 

The following scenario parameters have therefore been 
chosen accordingly: (1) ground truth is FRIEND for the 
first 50 iterations of the scenario and HOSTILE for the last 
50, (2) the number of correct associations is 80%, 
corresponding to countermeasures appearing 20% of the 
time, in a randomly selected sequence, (3) the ESM 
declaration has a mass (confidence value in Bayesian terms) 
of 0.8, with the rest of the mass being assigned to the 
ignorance (the full set of elements, namely Θ). 

This scenario will be the one addressed in the next section, 
while a Monte-Carlo study is described in the subsequent 

sections. Each Monte-Carlo run corresponds to a different 
realization using the above scenario parameters, but with a 
different random seed. The chosen scenario is depicted in 
Figure 2. 

Figure 2. Chosen scenario. 

Roughly 80% of the time the ESM declares the correct 
allegiance according to ground truth, and the remaining 
20% is roughly equally split between the other two 
allegiances. Note that these percentages of occurrences are 
from a statistical point of view only, so that in the long run 
a large amount of randomly generated scenarios would 
amount to these ratios. There is an allegiance switch at the 
50th time index, and the selected randomly selected seed in 
the above generated scenario generates a rather unusual 
sequence of 4 false Friend declarations starting at time 
index 82 (when actually Hostile is the ground truth). 

4.1 Results for the simulated scenario 
Before presenting the results, it should be noted that the 
original form of the DSmH tends to accumulates masses to 
intersections as is the case for any rule based on 
conjunction [14]. An ad hoc solution exists [3, 7, 8], and 
consists in renormalizing after each fusion step by giving a 
value to the complete ignorance which can never be below 
a certain factor (chosen here to be 0.04 as research in [14] 
shows that this value is appropriate for this case while being 
high enough to avoid the accumulation but still low enough 
not to interfere with the combination’s performances). That 
solution was originally developed to the well-known 
problem of DST combination, which tends to be overly 
optimistic, which in turn prevents it to react quickly to 
changes of allegiances. For more on the behavior of the 
DSmH on similar cases the reader is referred to [14, 15, 
16], as we are focused on exploring the effect of 
approximations on DSm here.  

Since the whole idea behind using DSm was to present the 
results to the decision maker in the STANAG allegiance 
format, the result of Figure 3 would be used. For the DSmH 
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[10], it was suggested to use the Generalized Pignistic 
Probability, which is based on the pignistic transformation 
[6, 10], in order to make a decision on a singleton belonging 
to the input ESM-allegiance.  

Figure 3. DSmH result for the chosen scenario. 

The decision maker would clearly be informed that miss-
associations have occurred, since Assumed Friend 
dominates for the first 50 time indices and Suspect for the 
latter 50. The Friend declarations starting at time index 82 
cause confusion, as it should. The change in allegiance at 
time index 50 is detected quickly.  What is even more 
important is that F and AF are clearly preferred for the first 
50 time indexes and S and H for the last 50, as they should. 

Figure 4. Approximated DSmH result for the same scenario 
with k-l-x = (5, 6, 0.2) 

We can gather from Figure 4 and Figure 5 that the DSmH 
and the approximated DSmH have very similar behaviors. 
In fact, one has to look at the figures very closely to 
perceive the differences. We can see that in the first half of 
the approximated version, the assumed friend allegiance is 
slightly favored to the friend allegiance. Near the end of the 

scenario the hostile allegiance is favored to the suspect 
allegiance. However, in both cases, even if the smallness of 
the change could possibly affect our decision, the 
STANAG-probability still seems to stay within the same 
type of allegiance in the sense that a friend and a target of 
assumed friend allegiance would both inspire a friendly 
response on our part. The same can be said for a target of 
suspect or hostile allegiance that would both inspire a 
hostile or defensive response on our part. In short, we can 
easily proceed with the approximation and still be able to 
make the same decision the same way.  

Figure 5. Approximated DSmH result for the same scenario 
with k-l-x = (3, 6, 0.2) 

4.2 Effects of varying the k-l-x parameters 
We’ve realized the scenario for various values of k-l-x for k 

 [3, 10], l  [6, 12] and x  [0.2, 0.4]. For the cases where 
we had k=8, no changes in l and x had impact, and 
compared to the DSmH, we’ve only noticed a very small 
variation at the start and end of the simulated scenario. For 
the cases where we had k=6, no changes in l and x had 
impact and compared to DSmH, there was only very little 
variation in value throughout the scenario. The same is true 
for the cases with k=5, with the Figure 4 showing the 
results for that case. The amplitude of the variation between 
DSmH and the approximated version continues to increase 
as the k value diminishes.  

We finally begin to notice small changes with x=0.2 as 
opposed to 0.3 or 0.4 when we reach k=4. However, the 
impact of having x at 0.2 is small and contained at the start 
of the scenario, where it gives more weight to the suspect 
class at the expense of the hostile class. For the cases with 
k=3, the impact of the change on x going to 0.2 was more 
significant and lasted throughout most of the scenario’s 
duration. Also, while for cases of k  [4, 8] the behavior of 
the curves were all very similar one to another, when we 
reach k=3, we observe a partial loss of smoothness, hence a 
more reactive behavior toward countermeasures and 
allegiance change. Figure 5 shows the case of the simulated 
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scenario for an approximated DSmH with klx = (3, 6, 0.2). 
Note that in all our experimentations for our chosen 
scenario the l parameter never had any visible impact. 

5 Monte-Carlo Simulations with k-l-x 
approximation 

Although a special case such as the one described in the 
previous section offers valuable insight, one might question 
if the conclusions from that one scenario pass the test of 
multiple Monte-Carlo scenarios. This question is answered 
in this section.  

In order to expend the parameter space, we have realized 
the simulations of the current section to 80 and 90% for the 
ESM certainty, and with an ESM confidence at 80% and an 
ignorance threshold at 0.04 as before. The number of 
Monte-Carlo runs was set to 100. The randomly generated 
ESM stream of reports used for both the DSmH and the 
approximated DSmH are all the same so that we can freely 
compare the effects of the use of the approximation, and the 
impact of the variation of its parameters. 

As for the choice of a the graphical display to highlight  the 
results of our simulations, we went with the rate of good 
decisions, where a good decision is as we have mentioned 
earlier, when we conclude to be friendly toward a friendly 
behaving target, when the ground truth is of class friend. A 
friendly-behaving target is a target that is concluded to be a 
friend or an assumed friend. We also have a good decision 
when we conclude to be hostile toward a hostile behaving 
target, when the ground truth is of class hostile. A hostile-
behaving target is a target that is concluded to be a hostile 
or a suspect. A decision is made by taking the set of 
maximum STANAG-probability.  

5.1 Effects of varying the k-l-x parameters 
Simulations were done on a computer with a Phenom II 955 
processor with 8 GB of memory. We should keep in mind 
that it is the relative time of execution which is important 
here. For figures 7 to 11, the simulations had a value of 
80% for the ESM certainty and the value of the x parameter 
was maintained at 0.2 since changing it had no impact on 
good decision rate. 

Figure 7 and Figure 8 show us the effect of the 
approximation from the good decision rate point of view 
when compared with the DSmH case from Figure 6. Like 
for the typical simulated scenario from previous section, l 
had no visible impact, and x had a limited impact only as 
the k parameter went below 4. As for the k parameter, it 
started having an impact when we reached 6, where the 
impact was on only three iterations. As the k parameter 
reaches 5, a very slight positive impact throughout the 
whole simulation can be seen. As for k=4 and k=3, we have 
a slight deterioration of the good decision rate but it is still 
very small and rather insignificant considering the gain in 

time execution as Figure 10 shows us. For the cases with an 
ESM confidence at 90%, all the approximated results, have 
no significant impact on the good decision rate, except with 
klx = (3, 8, 0.2) where we had minimal impact.  

Figure 6. DSmH result after 100 Monte-Carlo runs. 

Figure 7. Approximated DSmH result with k-l-x = (5, 8, 
0.2) for the same Monte-Carlo simulation. 

Figure 8. Approximated DSmH result with k-l-x=(3,8,0.2) 
for the same Monte-Carlo simulation. 
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We have the time of execution versus k and l parameters 
from the klx approximation technique on Figure 9 and 
Figure 10. Specifically, Figure 9 has the curve of the time 
of execution of the combination and approximation process 
only. The x-y plane, valued at 325.97 seconds on Figure 9 
indicates the time from which the approximation process 
provides a higher gain in time than the time it consumes. It 
is the time of execution of the DSmH without 
approximation.  

We can see that the k parameter has to reach 5 before we 
start seeing an improvement. Before that value, the 
approximation takes more time to execute than it helps us 
gain. We can achieve a 30% improvement on time of 
execution when we reach k = 3. The parameter l has no 
impact on time. The absence of impact of the l parameter is 
suspected to be caused by the fact that this simulated 
scenario case uses simple support functions as inputs. 

Figure 9. Execution time for the combination and 
approximation processes. 

Figure 10. Execution time for the whole simulation. 

In Figure 10, we have the curve of the time of execution for 
the whole simulation which, on top of the combination and 
approximation processes, includes the generalized pignistic 
transformation (GPT) which is used in the decision process. 
Above 95% of the extra time of execution, when compared 
to figure 10, is composed of the GPT.  

In Figure 10, the x-y plane, representing the time of 
execution of the simulation without approximation, is 
valued at 1767.6 seconds. We can see that we can have a 
50% reduction in time of execution when we reach k=3 and 
that l has no impact. As we compare Figure 9 and Figure 
10, we see that the GPT is the step that benefits the most 
from the approximation process.  

6 Monte-Carlo simulations using various 
approximation rules 

In order to expend the analysis furthermore, we have 
realized the simulations of the current section with Monte-
Carlo runs set to 1000. Also, we’ve expended the analysis 
to Simard’s summarization, and Simard’s truncation 
techniques with the same stream of reports to fuse. Hence, 
both the DSmH and the approximated DSmH will have the 
same dataset so that we can freely compare the effects of 
the use of the approximation, and the impact of the 
variation of its parameters. 

Figure 11, which shows results using Lowrance’s 
approximation technique lets us see the inability of the 
technique to get better good decision rates than the non 
approximated combination. The following figures shows 
that k-l-x, and Simard's Truncation are both able to get, 
depending on the chosen parameters, better results of good 
decision rates, than the scenario without approximation. 

Figure 11. DSmH using Lowrance’s apx. (3/5/8/10). 
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Figure 12. DSmH using k-l-x apx. (3/5/8/10–8–0.2). 

Figure 13. DSmH using Simard’s apx. (0.5-0.04-3/5/8/10). 

Figure 14. DSmH using Simard’s apx. (0.7–0.04–3/5/8/10). 

Figure 15. DSmH using Simard’s apx. (0.7–0.1–3/5/8/10). 

About the mean time of execution of the combination and 
approximation step for realistic scenario, we have found 
that for a parameter 'K' below, or equal, to 5, we were able 
to execute faster than without approximation. And when 
looking at previous figures, we see that, too low (K~3), the 
approximation isn't as good as without approximation, and 
that at a value of 5, we were always at higher good decision 
rates than the case without approximation.  

So not only we have found a case executing faster than 
without approximation, but we've also found ourselves a 
case where it performs better in terms of good decision rate. 
That is for approximation techniques different from 
Lowrance's, and limited, until proven differently, to this 
case, and for DSmH. 

Figure 16. Combination and approximation execution times 
in seconds per Monte-Carlo run. 
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7 Conclusions 
The previous sections display the behavior for different 
cases of klx approximation on the same simulated ESM 
data (see Figure 6, Figure 7, and Figure 8). It also shows the 
time of execution of each of those simulations. From those 
results we can conclude that we can successfully attain the 
same good decision rate with DSmH as with an 
approximated DSmH for the chosen scenario, while 
achieving lower times of execution including the time to 
approximate when we reach a certain level of 
approximation. Those results are confirmed by the 
experimentation done on another simulated dataset lasting 
for 1000 Monte-Carlo runs. (see Figure 12) 

We’ve also explored the behavior of Lowrance’s 
summarization approximation and Simard’s truncation 
methods while using the same dataset also on a thousand 
Monte-Carlo runs. From what we can see on Figure 11, the 
summarization is able, with the careful choice of its 
parameter, to reach good decision rate of the combination 
rule without approximation, however, it seems to be rarely 
able to do better and can do much worst. Simard’s 
truncation method (see Figure 13, Figure 14 and Figure 15) 
on the other hand is able to get around 5% better good 
decision rates, depending on the choice of the 
approximation parameters. It can also get the same rates or 
a little less than the combination rule without 
approximation.  

When considering results of time of execution as shown on 
Figure 16 we gather that, while being able to execute faster 
than the combination rule without approximation, we can 
get better decision rates. The ‘K’ parameter value of 
approximation of each rule, when at 3 or 5, gave us highest 
decision rates for Simard’s truncation method or k-l-x 
approximation technique. Note that some times, parameter 
K had to be set at 3, other times at 5, depending on chosen 
technique and the other parameters, to reach highest 
decision rate.  

Future work considered includes the exploration of the use 
of Bauer’s D1 approximation [5] in DSmT. Even if it adds 
to the number of operations and in the complexity of the 
system, it would be interesting to see if the gain acquired by 
approximating is sufficient to counter the increase in 
complexity. We are also interested to see if it is able to give 
even better good decision rates than the other methods of 
approximation. 
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Multiple Ground Target Tracking and 
Classification with DSmT

Benjamin Pannetier
Jean Dezert

Abstract: Based on our previous work we propose to track multiple ground targets
with GMTI (Ground Moving Target Indicator) sensors as well as with imagery sensors.
The scope of this paper is to fuse the attribute type information given by heterogeneous
sensors with DSmT (Dezert Smarandache Theory) and to introduce the type results in
the tracking process to improve its performances.

1 Introduction

Data fusion for ground battlefield surveillance is more and more strategic in order to cre-
ate the situational assessment or improve the precision of fire control system. For this, we
develop new ground target tracking algorithms adapted to GMTI (Ground Moving Target
Indicator) sensors. In fact, GMTI sensors are able to cover a large surveillance area during
few hours or more if several sensors evolve on the same operational theatre. Several ref-
erences exist for the MGT (Multiple Ground Tracking) with GMTI sensors [?, 8] whose
fuse contextual informations with MTI reports. The main results are the improvement of
the track precision and track continuity. Our algorithm [6] is built with several reflexions
inspired of this literature. The proposed VS-IMMC (Variable Structure Interacting Mul-
tiple Models) filter is extended in a multiple target context and integrated in a SB-MHT
(Structured Branching - Multiple Hypotheses Tracking).

One way to enhance data associations is to fused data obtained by several sensors. The
most easily approach is to consider the centralized fusion between two or more GMTI
sensors. Another way is to introduce heterogeneous sensors in the centralized architecture
in order to improve the data associations (by using the reports in location and its classifi-
cation attribute) and palliate the poor GMTI sensor classification. In our previous works
[6], the classification information of the MTI segments and IMINT segments (IMagery
INTelligence) has been introduced in the target tracking process. The idea was to main-
tain aside each target track a set of ID hypotheses. Their committed belief are revised in
real time with the classifier decision through a very recent and efficient fusion rule called
proportional conflict redistribution (PCR).

In this paper, in addition to the measurement location fusion, we illustrate on a complex
scenario our approach to fuse MTI classification type with image classification type asso-
ciated to each report.

Originally published as Pannetier B., Dezert J., Multiple 
ground target tracking and classification with DSmT, 
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2 Motion & observation models

2.1 Constrained motion model

The target state x(k) at the current time tk is defined in a local horizontal plane (O,X, Y )
of a Topographic Coordinate Frame denoted TCF. The target state on the road segment s
is defined by xs(k) where the target position (xs(k), ys(k)) belongs to the road segment s
and the corresponding heading (ẋs(k), ẏs(k)) is in its direction. The event that the target
is on road segment s is noted es(k) = {x(k) ∈ s}. Given the event es(k) and according
to a motion model Mi, the estimation of the target state can be improved by considering
the road segment s. The constrained motion model Ms

i is build in such a way that the
predicted state is on the road segment s and the gaussian noise is defined under the road
segment constaint [6]. After the state estimation obtained by a Kalman filter, the estimated
state is then projected according to the road constraint es(k). This process is detailed in
[6].

2.2 GMTI measurement model

According to the NATO GMTI format [5], the MTI reports received at the fusion station
are expressed in the WGS84 coordinates system. The MTI reports must be converted in the
TCF. A MTI measurement z at the current time tk is given in the TCF. Each MTI report is
characterized both with the location and velocity information (range radial velocity) and
also with the attribute information and its probability that it is correct. We denote CMTI

the frame of discernment on target ID based on MTI data. CMTI is assumed to be constant
over the time and consists in a finite set of exhaustive and exclusive elements representing
the possible states of the target classification. In this paper, we consider only 3 elements
in CMTI defined as CMTI = {Tracked vehicle, Wheeled vehicle, Rotary wing aircraft}.

We consider also the probabilities P {c(k)} (∀c(k) ∈ CMTI ) as input parameters of our
tracking systems characterizing the global performances of the classifier. The vector of
probabilities [P (c1) P (c2) P (c3)] represents the diagonal of the confusion matrix of the
classification algorithm assumed to be used. Let z

G
MTI(k) the extended MTI measure-

ments including both kinematic part and attribute part expressed by the herein formula:

z
G
MTI(k) ! {zMTI(k), c(k), P {c(k)}} (1)

2.3 IMINT motion model

For the imagery intelligence (IMINT), we consider two sensor types : a video EO/IR sen-
sor carried by a Unmanned Aerial Vehicle (UAV) and a EO sensor fixed on a Unattended
Ground Sensor (UGS). We assume that the IMINT reports zvideo(k) at the current time tk
are expressed in the reference frame (O,X, Y ) and give a location information and type
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target. We assume that the video information given by both sensor types are processed by
their own ground stations and that the system provides the video reports of target detections
with their classification attributes. For the last point, a human operator selects targets on
a movie frame and is able to choose its attribute with a HMI (Human Machine Interface).
Based on the military symbology called 2525C [3], we build the frame of discernment for
an EO/IR source denoted Cvideo. Each video report is associated to the attribute infor-
mation c(k)(∀c(k) ∈ Cvideo) with its probability P {c(k)} that it is correct. As CMTI ,
Cvideo is assumed to be constant over the time and consists in a finite set of exhaustive and
exclusive elements representing the possible states of the target classification.

Let z
G
video(k) be the extended video measurements including both kinematic part and at-

tribute part expressed by the following formula (∀c(k) ∈ Cvideo):

z
G
video(k) ! {zvideo(k), c(k), P {c(k)}} (2)

The attribute type of the image sensors belongs to a different and better classification than
the MTI sensors.

2.4 Taxonomy

In our work, the symbology 2525C [3] is used to describe the links between the different
classification sets CMTI and Cvideo. Figure 1 represents a short part of the 2525C used
in this paper. The red elements underlined in italic style are the atomic elements of our
taxonomy. Each element of both sets can be placed in 1. For example, the “wheeled ve-
hicle” of the set CMTI is placed at the level “Armoured → Wheeled” or the “Volkswagen
Touareg” given by the video is placed at the levels “Armoured → Wheeled→ Medium”
and “Civilan Vehicle → Jeep → Medium”.

3 Tracking with road constraints

3.1 VS IMM with a road network

The IMM is an algorithm for combining state estimates arising from multiple filter models
to get a better global state estimate when the target is under maneuvers. In section 2.1, a
constrained motion model i to a road segment s, noted M i

s(k), was defined. We extend the
segment constraint to the different dynamic models (among a set of r + 1 motion models)
that a target can follow. The model indexed by r = 0 is the stop model. It is evident that
when the target moves from one segment to the next, the set of dynamic models changes
according to the road network configuration. The steps of the IMM under road segment s
constraint are the same as for the classical IMM as described in [1].

In real applications, the predicted state could also appear onto another road segment, be-
cause of a road turn for example, and we need to introduce new constrained motion models.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

339



Figure 1: 2525C (light version).

In such case, we activate the most probable road segments sets depending on the local pre-
dicted statelocation of the track T k,l[6]. We consider r + 1 oriented graphs which depend
on the road network topology. For each graph i, i = 0, 1, . . . , r, each node is a constrained
motion model M i

s. The nodes are connected to each other according to the road network
configuration and one has a finite set of r+1 motion models constrained to a road section.
The selection of the most probable motion model set, to estimate the road section on which
the target is moving on, is based on Wald’s sequential probability ratio test (SPRT) [9].

3.2 Multiple target tracking

For the MGT problem, we use the SB-MHT (Structured Branching Multiple Hypotheses
Tracking) presented in [2]. When the new measurements set Z(k) is received, a standard
gating procedure is applied in order to validate MTI reports to track pairings. The existing
tracks are updated with VS-IMMC and the extrapolated and confirmed tracks are formed.
More details can be found in chapter 16 of [2]. In order to palliate the association problem,
we need a probabilistic expression for the evaluation of the track formation hypotheses
that includes all aspects of the data association problem. It is convenient to use the log-
likelihood ratio (LLR) Ll(k) or a track score of a track T k,l expressed at current time
tk.

4 Target type tracking

Our approach consists to use the belief on the identification attribute to revise the LLR
with the posterior pignistic probability on the target type. We recall briefly the Target Type

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

340



Tracking (TTT) principle and explain how to improve VS-IMMC SB-MHT with target ID
information. TTT is based on the sequential combination (fusion) of the predicted belief
of the type of the track with the current “belief measurement” obtained from the target
classifier decision. The adopted combination rule is the so-called Proportional Conflict
Redistribution rule no 5 (PCR5) developed in the DSmT (Dezert-Smarandache Theory)
framework since it deals efficiently with (potentially high) conflicting information. A
detailed presentation with examples can be found in [4, 7].

4.1 Principle of the target type tracker

To estimate the true target type type(k) at time k from the sequence of declarations c(1),
c(2), . . . c(k) done by the unreliable classifier up to time k. To build an estimator ̂type(k)
of type(k), we use the general principle of the Target Type Tracker (TTT) developed in
[4] which consists in the following steps:

1. Initialization step (i.e. k = 0). Select the target type frame CTot = {θ1, . . . , θn}
and set the prior bba m−(.) as vacuous belief assignment, i.e m−(θ1 ∪ . . . ∪ θn) = 1
since one has no information about the first observed target type.

2. Generation of the current bba mobs(.) from the current classifier declaration c(k)
based on attribute measurement. At this step, one takes mobs(c(k)) = P {c(k)} =
Cc(k)c(k) and all the unassigned mass 1 − mobs(c(k)) is then committed to total
ignorance θ1 ∪ . . . ∪ θn. Cc(k)c(k) is the element of the known confusion matrix C

of the classifier indexed by c(k)c(k).

3. Combination of current bba mobs(.) with prior bba m−(.) to get the estimation of
the current bba m(.).

4. Estimation of True Target Type is obtained from m(.) by taking the singleton of
Θ, i.e. a Target Type, having the maximum of belief (or eventually the maximum
Pignistic Probability).

5. Set m−(.) = m(.); do k = k + 1 and go back to step 2).

Naturally, in order to revise the LLR in our GMTI-MTT system for taking into account the
estimation of belief of target ID coming from the Target Type Trackers, we transform the
resulting bba m(.) = [m− ⊕ mobs](.) available at each time k into a probability measure.

4.2 Data attributes in the VS IMMC

To improve the target tracking process, the introduction of the target type probability is
done in the likelihood calculation. For this, we consider the measurement z∗j (k)(∀j ∈
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{1, . . . ,mk }) described in (1) and (2). With the assumption that the kinematic and classi-
fication observations are independant, it is easy to prove that the new combined likelihood
Λl

N associated with a track T k,l is the product of the kinematic likelihood.

5 Illustration

In the extended version of this paper, we will illustrate our algorithm by using a complex
scenario generated with a powerful simulator developed at ONERA. The area of interest
is located in a fictive country called North Atlantis. In this scenario, the goal is to detect
and track several targets with 2 GMTI sensors (JSTARS, SIDM), 18 UGS and 4 UAV
(SDTI), in oder to build the situation assessment and evaluate the threat in order to protect
the coalition forces. On the operation theater, 250 targets evolve, they can maneuver on
and out the road network. The set of target type is significant, we can have for instance
civilian vehicles (as 4x4, cars, bus, truck,...) and military vehicles as well (T−62, AMX
30, Kamakov,...). llustrations and conclusion of our algorithm will be presented in the
extended version of this paper.

References

[1] Y. Bar-Shalom and D. Blair, Multitarget multisensor tracking : Applications and Advances,
Vol. III, Artech House, pp. 523, 2000.

[2] S.S. Blackman and R. Popoli, Design and analysis of modern tracking systems, Artech House,
1999.

[3] Defense Information Systems Agency, Common Warfighting Symbology, MIL-STD 2525C,
Technical document, IPSC, Nov. 2008.

[4] J. Dezert, A. Tchamova, F. Smarandache and P.Konstantinova, Target Type Tracking with PCR5
and Dempster’s rules: A Comparative Analysis, in Proc. of Fusion 2006, Firenze, Italy, July
2006.

[5] NATO, STANAG 4607 JAS (Edition 2) - NATO ground moving target indicator GMTI) format,
NSA0749(2007)-JAS/4607, Aug. 2007.

[6] B. Pannetier, V. Nimier and M. Rombaut, Multiple ground target tracking with a GMTI sensor,
in Proc. of MFI 2006, Sept. 2006.

[7] F. Smarandache, J. Dezert, Advances and applications of DSmT for informa-
tion fusion (Collected works), Vols. 1-3, American Research Press, 2004–2009.
http://www.gallup.unm.edu/˜smarandache/DSmT.htm

[8] M. Ulmke, W. Koch, Road-map assisted ground moving target tracking, IEEE Trans. on AES,
Vol. 42, No. 4, pp. 1264–1274, Oct. 2006.

[9] A. Wald, Sequential Tests of Statistical Hypotheses, Annals of Mathematical Statistics, Vol. 16,
No. 2, pp. 117–186, June 1945.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

342



Edge Detection in Color Images Based on DSmT
Jean Dezert
Zhun-ga Liu

Grégoire Mercier

Abstract—In this paper, we present a non-supervised method-

ology for edge detection in color images based on belief functions

and their combination. Our algorithm is based on the fusion of

local edge detectors results expressed into basic belief assignments

thanks to a flexible modeling, and the proportional conflict redis-

tribution rule developed in DSmT framework. The application

of this new belief-based edge detector is tested both on original

(noise-free) Lena’s picture and on a modified image including

artificial pixel noises to show the ability of our algorithm to

work on noisy images too.

Keywords: Edge detection, image processing, DSmT, DST,

fusion, belief functions.

I. INTRODUCTION

Edge detection is one of most important tasks in image
processing and its application to color images is still subject
to a very strong interest [8], [10]–[12], [14] for example in
teledetection, in remote sensing, target recognition, medical
diagnosis, computer vision and robotics, etc. Most of basic
image processing algorithms developed in the past for gray-
scale images have been extended to multichannel images. Edge
detection algorithms for color images have been classified into
three main families [15]: 1) fusion methods, 2) multidimen-
sional gradient methods and 3) vector methods depending on
the position of where the recombination step applies [7]. In
this paper, the method we propose uses a fusion method with
a multidimensional gradient method. Our new unsupervised
edge detector combines the results obtained by gray-scale
edge detectors for individual color channels [3] to define
bba’s from the gradient values which are combined using
Dezert-Smarandache Theory [17] (DSmT) of plausible and
paradoxical reasoning for information fusion. DSmT has been
proved to be a serious alternative to well-known Dempster-
Shafer Theory of mathematical evidence [16] specially for
dealing with highly conflicting sources of evidences. Some
supervised edge detectors based on belief functions computed
from gaussian pdf assumptions and Dempster-Shafer Theory
can be found in [1], [21]. In this work, we show through very
simple examples how edge detection can be performed based
on DSmT fusion techniques with belief functions without
learning (supervision). The interest for using belief functions
for edge detection comes from their ability to model more ade-
quately uncertainties with respect to the classical probabilistic
modeling approach, and to deal with conflicting information
due to spatial changes in the image or noises. This paper is
organized as follows: In section 2 we briefly recall the basics
of DSmT and the fusion rule we use. In section 3, we present

in details our new edge detector based on belief functions and
their fusion. Results of our new algorithm tested on the original
Lena’s picture and its noisy version are presented in section
4 with a comparison to the classical Canny’s edge detector.
Conclusions and perspectives are given in section 5.

II. BASICS OF DSMT
The purpose of DSmT [17] is to overcome the limitations

of DST [16] mainly by proposing new underlying models
for the frames of discernment in order to fit better with
the nature of real problems, and proposing new efficient
combination and conditioning rules. In DSmT framework, the
elements θi, i = 1, 2, . . . , n of a given frame Θ are not
necessarily exclusive, and there is no restriction on θi but their
exhaustivity. The hyper-power set DΘ in DSmT, the hyper-
power set is defined as the set of all composite propositions
built from elements of Θ with operators ∪ and ∩. For instance,
if Θ = {θ1, θ2}, then DΘ = {∅, θ1, θ2, θ1 ∩ θ2, θ1 ∪ θ2}. A
(generalized) basic belief assignment (bba for short) is defined
as the mapping m : DΘ → [0, 1]. The generalized belief and
plausibility functions are defined in almost the same manner
as in DST. More precisely, from a general frame Θ, we define
a map m(.) : DΘ → [0, 1] associated to a given body of
evidence B as

m(∅) = 0 and
�

A∈DΘ

m(A) = 1 (1)

The quantity m(A) is called the generalized basic belief
assignment/mass (or just ”bba” for short) of A.

The generalized credibility and plausibility functions are de-
fined in almost the same manner as within DST, i.e.

Bel(A) =
�

B⊆A
B∈DΘ

m(B) and Pl(A) =
�

B∩A�=∅
B∈DΘ

m(B) (2)

Two models1 (the free model and hybrid model) in DSmT
can be used to define the bba’s to combine. In the free
DSm model, the sources of evidence are combined without
taking into account integrity constraints. When the free DSm
model does not hold because the true nature of the fusion
problem under consideration, we can take into account some
known integrity constraints and define bba’s to combine using
the proper hybrid DSm model. All details of DSmT with

1Actually, Shafer’s model, considering all elements of the frame as truly
exclusive, can be viewed as a special case of hybrid model.

Originally published as Dezert J., Liu Z., Mercier G., Edge Detection in 
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many examples can be easily found in [17] available freely
on the web. In this paper, we will work only with Shafer’s
model of the frame where all elements θi of Θ are assumed
truly exhaustive and exclusive (disjoint) and therefore DΘ

reduces the the classical power set 2Θ and generalized belief
functions reduces to classical ones as within DST framework.
Aside offering the possibility to work with different underlying
models (not only Shafer’s model as within DST), DSmT offers
also new efficient combination rules based on proportional
conflict redistribution (PCR rules no 5 and no 6) for combining
highly conflicting sources of evidence. In DSmT framework,
the classical pignistic transformation BetP (.) is replaced by
the by the more effective DSmP (.) transformation to estimate
the subjective probabilities of hypotheses for decision-making
support once the combination of bba’s has been obtained.
Before presenting our new edge detector, we just recall briefly
what are the PCR5 fusion rule and the DSmP transformation.
All details, justifications with examples on PCR5 and DSmP
can be found freely from the web in [17], Vols. 2 & 3 and
will not be reported here.

A. PCR5 fusion rule

The Proportional Conflict Redistribution Rule no. 5 (PCR5)
is used generally to combine bba’s in DSmT framework. PCR5
transfers the conflicting mass only to the elements involved in
the conflict and proportionally to their individual masses, so
that the specificity of the information is entirely preserved in
this fusion process. Let m1(.) and m2(.) be two independent2
bba’s, then the PCR5 rule is defined as follows (see [17], Vol.
2 for full justification and examples): mPCR5(∅) = 0 and
∀X ∈ 2Θ \ {∅}

mPCR5(X) =
�

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

�

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (3)

where all denominators in (3) are different from zero. If a
denominator is zero, that fraction is discarded. Additional
properties of PCR5 can be found in [5]. Extension of PCR5
for combining qualitative bba’s can be found in [17], Vol. 2 &
3. All propositions/sets are in a canonical form. A variant of
PCR5, called PCR6 has been proposed by Martin and Osswald
in [17], Vol. 2, for combining s > 2 sources. The general
formulas for PCR5 and PCR6 rules are given in [17], Vol.
2 also. PCR6 coincides with PCR5 when one combines two
sources. The difference between PCR5 and PCR6 lies in the
way the proportional conflict redistribution is done as soon as
three or more sources are involved in the fusion. For example,
let’s consider three sources with bba’s m1(.), m2(.) and m3(.),
A ∩B = ∅ for the model of the frame Θ, and m1(A) = 0.6,
m2(B) = 0.3, m3(B) = 0.1. With PCR5 the partial con-
flicting mass m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018

2I.e. each source provides its bba independently of the other sources.

is redistributed back to A and B only with respect to the
following proportions respectively: xPCR5

A = 0.01714 and
xPCR5
B = 0.00086 because the proportionalization requires

xPCR5
A

m1(A)
=

xPCR5
B

m2(B)m3(B)
=

m1(A)m2(B)m3(B)

m1(A) +m2(B)m3(B)

that is
xPCR5
A

0.6
=

xPCR5
B

0.03
=

0.018

0.6 + 0.03
≈ 0.02857

thus

�
xPCR5
A = 0.60 · 0.02857 ≈ 0.01714

xPCR5
B = 0.03 · 0.02857 ≈ 0.00086

With the PCR6 fusion rule, the partial conflicting mass
m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redistributed
back to A and B only with respect to the following proportions
respectively: xPCR6

A = 0.0108 and xPCR6
B = 0.0072 because

the PCR6 proportionalization is done as follows:

xPCR6
A

m1(A)
=

xPCR6
B,2

m2(B)
=

xPCR6
B,3

m3(B)
=

m1(A)m2(B)m3(B)

m1(A) +m2(B) +m3(B)

that is

xPCR6
A

0.6
=

xPCR6
B,2

0.3
=

xPCR6
B,3

0.1
=

0.018

0.6 + 0.3 + 0.1
= 0.018

thus 




xPCR6
A = 0.6 · 0.018 = 0.0108

xPCR6
B,2 = 0.3 · 0.018 = 0.0054

xPCR6
B,3 = 0.1 · 0.018 = 0.0018

and therefore with PCR6, one gets finally the following
redistributions to A and B:
�
xPCR6
A = 0.0108

xPCR6
B = xPCR6

B,2 + xPCR6
B,3 = 0.0054 + 0.0018 = 0.0072

From the implementation point of view, PCR6 is simpler to
implement than PCR5. Very basic Matlab codes for PCR5 and
PCR6 fusion rules can be found in [17], [18].

B. DSmP transformation

DSmP probabilistic transformation is a serious alternative to
the classical pignistic transformation which allows to increase
the probabilistic information content (PIC), i.e. to reduce
Shannon entropy, of the approximated subjective probability
measure drawn from any bba. Justification and comparisons
of DSmP (.) w.r.t. BetP (.) and to other transformations can
be found in details in [6], [17], Vol. 3, Chap. 3. DSmP trans-
formation is defined3 by DSmP�(∅) = 0 and ∀X ∈ 2Θ \ {∅}

DSmP�(X) =
�

Y ∈2Θ

�

Z⊆X∩Y
|Z|=1

m(Z) + � · |X ∩ Y |

�

Z⊆Y
|Z|=1

m(Z) + � · |Y |
m(Y ) (4)

3Here we work on classical power-set, but DSmP can be defined also for
working with other fusion spaces, hyper-power sets or super-power sets if
necessary.
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where |X ∩Y | and |Y | denote the cardinals of the sets X ∩Y
and Y respectively; � ≥ 0 is a small number which allows to
increase the PIC value of the approximation of m(.) into a
subjective probability measure. Usually � = 0, but in some
particular degenerate cases, when the DSmP�=0(.) values
cannot be derived, the DSmP�>0 values can however always
be derived by choosing � as a very small positive number,
say � = 1/1000 for example in order to be as close as we
want to the highest value of the PIC. The smaller �, the
better/bigger PIC value one gets. When � = 1 and when
the masses of all elements Z having |Z| = 1 are zero,
DSmP�=1(.) = BetP (.), where the pignistic transformation
BetP (.) is defined by [19]:

BetP{X} =
�

Y ∈2Θ

|Y ∩X|
|Y | m(Y ) (5)

with convention |∅|/|∅| = 1.

C. DS combination rule

Dempster-Shafer (DS) rule of combination is the main
historical (and still widely used) rule proposed by Glenn
Shafer in his milestone book [16]. Very passionate debates
have emerged in the literature about the justification and the
behavior of this rule from the famous Zadeh’s criticism in
[22]. We don’t plan to reopen this endless debate and just
want to recall briefly here how it is mathematically defined.
Let’s consider a given discrete and finite frame of discernment
Θ = {θ1, θ2, . . . , θn} of exclusive and exhaustive hypotheses
(a.k.a satisfying Shafer’s model) and two independent bba’s
m1(.) and m2(.) defined on 2Θ, then DS rule of combination
is defined by mDS(∅) = 0 and ∀X �= ∅ and X ∈ 2Θ:

mDS(X) =
1

1−K12

�

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) (6)

where K12 � �
X1,X2∈2Θ

X1∩X2=∅
m1(X1)m2(X2) represents the

total conflict between sources. If K12 = 1, the sources of
evidence are in full conflict and DS rule cannot be applied.
DS rule is commutative and associative and can be extented for
the fusion of s > 2 sources as well. The main criticism about
such such concerns its unexpected/counter-intuitive behavior
as soon as the degree of conflict between sources becomes
high (see [17], Vol.1, Chapter 5 and references therein for
details and examples).

D. Decision-making support

Decisions are achieved by computing the expected utilities
of the acts using either the subjective/pignistic BetP{.} (usu-
ally adopted in DST framework) or DSmP (.) (as suggested
in DSmT framework) as the probability function needed to
compute expectations. Usually, one uses the maximum of the
pignistic probability as decision criterion. The maximum of
BetP{.} is often considered as a prudent betting decision
criterion between the two other decision strategies (max of

plausibility or max. of credibility which appears to be respec-
tively too optimistic or too pessimistic). It is easy to show that
BetP{.} is indeed a probability function (see [19], [20]) as
well as DSmP (.) (see [17], Vol.2). The max of DSmP (.)
is considered as more efficient for practical applications since
DSmP (.) is more informative (it has a higher PIC value) than
BetP (.) transformation.

III. EDGE DETECTION BASED ON DSMT AND FUSION

In this work, we use the most common RGB (Red-Green-
Blue) representation of the digital color image where each
layer (channel) R, G and B consists in a matrix of ni × nj

pixels. The discrete value of each pixel in a given color channel
is assumed in a given absolute interval of color intensity
[cmin, cmax]. The principle of our new Edge detector based
on DSmT is very simple and consists in the following steps:

A. Step 1: Construction of bba’s

Let’s consider a given channel (color layer) and denote it
as L which can represent either the Red (R) color layer, the
Green (G) color layer or the Blue (B) color layer, or any other
channel in a more general case for multispectral images. For
simplicity, we focus our work and presentation here on color
images only.

Apply an edge detector algorithm for each color channel L
to get for each pixel xL

ij , i = 1, 2, . . . , ni, j = 1, 2, . . . , nj

an associated bba mL
ij(.) expressing the local belief that this

pixel belongs or not to an edge. The frame of discernment Θ
used to define the bba’s is very simple and is defined as

Θ = {θ1 � Pixel ∈ Edge, θ2 � Pixel /∈ Edge} (7)

Θ is assumed to satisfy Shafer’s model (i.e. θ1 ∩ θ2 = ∅).
It is clear that many (binary) edge detection algorithms are
available in the image processing literature but here we want
a ”smooth” algorithm able to provide both the belief of each
pixel to belong or not to an edge and also the uncertainty one
has on the classification of this pixel. In the this subsection, we
present a very simple algorithm for accomplishing this task at
the color channel level. Obviously the quality of the algorithm
used in this first step will have a strong impact of the final
result and therefore it is important to focus research efforts on
the development of efficient algorithms for realizing this step
as best as possible.

As in Sobel method [9], two 3 × 3 kernels are convolved
with the original image AL for each layer L to calculate
approximations of the derivatives - one for horizontal changes,
and one for vertical. We then obtain two gradient images
GL

x and GL
y for each layer L represent the horizontal and

vertical derivative approximations for each pixel xL
ij . The x-

coordinate is defined as increasing in the right-direction, and
the y-coordinate is as increasing in the down-direction. At
each pixel xL

ij of the color layer L, the gradient magnitude
gLij can be estimated by the combination of the two gradient
approximations as:

gLij =
1√
2
(GL

x (i, j)
2 +GL

y (i, j)
2)1/2 (8)
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where

GL
x =

1

8




−1 0 1
−2 0 2
−1 0 1



 ∗AL;

GL
y =

1

8




−1 −2 −1
0 0 0
1 2 1



 ∗AL;

and where ∗ denotes the 2-dimensional convolution operation.

In Sobel’s detection method, the edge detection for a pixel
xij of a gray image is declared based on a hard thresholding
of gij value. Such Sobel detector is sensitive to noise and it
can generate false alarms. In this work, gLij values are used
only to define the mass function (bba) of each pixel in each
layer over the power-set of Θ defined in (7). If the value gLij
value of a pixel is big, it implies that this pixel is more likely
to belong to an edge. If gLij value of the pixel xL

ij is low then
our belief that it belongs to an edge must be low too. Such
very simple and intuitive modeling can be obtained directly
from the sigmoid functions commonly used as activation
function in neural networks, or as fuzzy membership in the
fuzzy subsets theory as explained below.

Let’s consider the sigmoid function defined as

fλ,t(g) �
1

1 + e−λ(g−t)
(9)

g is the gradient magnitude of the pixel under consideration.
t is the abscissa of the inflection point of the sigmoid which
can be selected by t = p · max(g) where p is a proportion
parameter and · is the scalar product operator. When working
with noisy images, p always increases with the level of noise.
λ is the slope of the tangent at the inflection point.

It can be easily verified that the bba mL
ij(.|gLij) satisfying

the expected behavior can be obtained by the fusion4 of the
two following simple bba’s defined by:

focal element m1(.) m2(.)
θ1 fλ,te(g) 0
θ2 0 f−λ,tn(g)

θ1 ∪ θ2 1− fλ,te(g) 1− f−λ,tn(g)

with 0 < tn < te < 255,λ > 0.

te is the lower threshold for the edge detection, and tn is
the upper threshold for the non edge detection. Thus, [tn, te]
corresponds to our uncertainty decision zone and the gLij values
lying in this interval correspond to the unknown decision state.
The bounds (thresholds) tn and te can be tuned based on the
average gradients values of the image, and the length te − tn
depends on the level of the noise. If the the image is very
noisy, it means the information is very uncertain, and the
length of the interval [tn, te] can become large. Otherwise,
it is small. Because of structure of these two simple bba’s,

4with DS, PCR5 or even with DSmH rule [17].

the fusion obtained with PCR5, DS of even with DSm hybrid
(DSmH) rules of combination provide globally similar results
and therefore the choice of the fusion rule here does not really
matter to build mL

ij(.|gLij) as shown on the figures 1-3. PCR5,
which is the most specific fusion rule (it reduces the level of
belief committed to the uncertainty), is used in this work to
generate mL

ij(.|gLij).

Figure 1. Computation of mL
ij(.|gLij) from m1(.) and m2(.) with [tn, te] =

[60, 100] and λ = 0.09.

Figure 2. Computation of mL
ij(.|gLij) from m1(.) and m2(.) with [tn, te] =

[50, 80] and and λ = 0.06.

Figure 3. Computation of mL
ij(.|gLij) from m1(.) and m2(.) with [tn, te] =

[30, 40] and λ = 0.04.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

346



In summary, mL
ij(.|gLij) can be easily constructed from the

choice of thresholding parameters te, tn defining the uncer-
tainty zone of the gradient values, the slope parameter λ of
sigmoids, and of course from the gradient magnitude gLij . This
approach is very easy to implement and very flexible since it
depends on the parameters which are totally under the control
of the user.

B. Step 2: Fusion of bba’s mL
ij(.)

Many combination rules like DS rule, Dubois & Prade rule
Yager’s rule, and so on can be used with our approach. In
this work, we just make investigations based on the two most
well-known rules (DS and PCR5 rule proposed in DST and
DSmT respectively). So we use either DS or PCR5 rule to
combine the three bba’s mR

ij(.), mG
ij(.) and mB

ij(.) for each
pixel xij in order to get the global bba mij(.) to estimate
the degree of belief of the belonging of xij to an edge in the
given image. Since PCR5 is not associative, we must apply the
general PCR5 formula for combining the 3 sources (channels)
altogether5 as explained in details in [17], Vol.2, Chap. 1 &
2. A suboptimal approach requiring less computations would
consist in applying a PCR5 sequential fusion of these bba’s in
such a way that the two least conflicting bba’s are combined at
first by PCR5 and then combine again with PCR5 the resulting
bba’s with the third one according to (3). The more simple
PCR6 rule could also be used instead of PCR5 as well - see
[17], Vol. 2.

C. Step 3: Decision-making

The output of step 2 is the set of Ni × Nj bba’s mij(.)
associated to each pixel xij of the image in the whole color
space (R,G,B). mij(.) commits some degree of belief to
θ1 � Pixel ∈ Edge, to θ2 � Pixel /∈ Edge and also to the
uncertainty θ1 ∪ θ2. The binary decision-making process
consists in declaring if the pixel xij under consideration
belongs or not to an edge from the bba mij(.), or in a
more complicated manner from mij(.) and the bba’s of its
neighbours. In this paper, we just recall the principal methods
based on the use of mij(.).

Based on mij(.) only, how to decide θ1 or θ2? Many
approaches have been proposed in the literature for answering
this question when working with a n-D frame Θ. The pes-
simistic approach consists in declaring the hypothesis θi ∈ Θ
which has the maximum of credibility, whereas the optimistic
approach consists in declaring the hypothesis which has the
maximum of plausibility. When the cardinality of the frame
Θ is greater than two, these two approaches can yield to a
different final decision. In our particular application and since
our frame Θ has only two elements, the final decision will
be the same if we use the max of credibility or the max of
plausibility criterion. Other decision-making methods suggest,
as a good balance between aforementioned pessimistic and
optimistic approaches, to approximate the bba at first into a

5i.e. a generalization of the PCR5 formula described in section II-A.

subjective probability measure from a suitable probabilistic
transformation, and then to choose the element of Θ which
has the highest probability. In practice, one suggests to take
as final decision the argument of the max of BetP (.) or of
the max of DSmP (.). In our binary frame case however these
two approaches also provide the same final decision as with
the max of credibility approach. This can be easily proved
from BetP (.) or DSmP (.) formulas. Indeed, let’s consider
m(θ1) > m(θ2) > 0 with m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1
(which means that θ1 is taken as final decision because it has
a higher credibility than θ2), then one gets as approximate
subjective probabilities:

BetP (θ1) = m(θ1) +m(θ1 ∪ θ2)/2 ≡ m(θ1) +K

BetP (θ2) = m(θ2) +m(θ1 ∪ θ2)/2 ≡ m(θ2) +K

DSmP (θ1) = m(θ1)[1 +
m(θ1 ∪ θ2)

m(θ1) +m(θ2)
] ≡ m(θ1)[1 +K �]

DSmP (θ2) = m(θ2)[1 +
m(θ1 ∪ θ2)

m(θ1) +m(θ2)
] ≡ m(θ2)[1 +K �]

where K and K � are two positive constants. From these
expressions, one sees that if m(θ1) > m(θ2) > 0, then also
BetP (θ1) > BetP (θ2) and DSmP (θ1) > DSmP (θ2) and
thus the final decision based on max of BetP (.) or max of
DSmP (.) is finally the same. Note that when m(θ1) = m(θ2),
no rational decision can be drawn from m(.) and only a
random decision procedure or ad-hoc method can be used in
such particular case.

In summary, one sees that when working with a binary
frame Θ, all common decision-making strategies provide the
same final decision and therefore there is no interest to use
a complex decision-making procedure in that case and that’s
why we can adopt here the max of belief as final decision-
making criterion in our simulations. Note that aside the final
decision and because we have m(θ1 ∪ θ2), we are able (if we
want) also to plot the level of uncertainty related with such
decision (not presented in this paper).

IV. SIMULATIONS RESULTS

In this section we present the results of our new edge
detection algorithm tested on two color images for different
parameter settings.

A. Test on original Lena’s picture

Lena Soderberg picture is one of the most used image for
testing image processing algorithms in the literature [4] and
therefore we propose to test our algorithm on this reference
image. This image can be found as part of the USC SIPI
Image Database in their ”miscellaneous” collection available
at http://sipi.usc.edu/database/index.php. The original Lena’s
picture scan is shown on Fig. 4-(a). The figure 5-(a)–(c) shows
the edge detection on each channel (layer) based on the bba’s
mL

ij(.|gLij) in section III-A. One sees that the edges in different
channels are different, and the task of our proposed algorithm
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Figure 4. Lena’s picture before and after noise

Figure 5. Edge detections in each channel.

Figure 6. Canny’s edge detector on Lena’s gray image.

Figure 7. Sobel’s edge detector on Lena’s gray image.

Figure 8. DS-based edge detector on Lena’s color image.

Figure 9. PCR5 edge detector on Lena’s color image.

is to combine efficiently the underlying bba’s mL
ij(.|gLij) gen-

erating the subfigures 5-(a)–(c).

Sobel [9] and Canny [2] edge detectors are commonly used
in image processing community and that’s why we make
comparison of our new edge detector w.r.t. Canny’s and So-
bel’s approaches. Canny and Sobel edge detectors are applied
directly to the gray image converted from the original Lena
color image Fig. 4-(a). The figures 6–9 show the results of the
different edge detectors on Lena’s picture. In our simulations,
we took λ = 0.06, and tg defined as t = p ·max(g) in each
layer, was taken with pn = 0.17 and pe = 0.19, corresponding
to gradient thresholds [tRn , t

R
e ] = [15, 17], [tGn , tGe ] = [13, 14]

and [tBn , t
B
e ] = [11, 13]. The max of credibility, plausibility,

DSmP or BetP for decision-making to generate final result
provide the same decision as explained in the section III-C
which is normal in this binary frame case.

One sees that finally on the clean (noise-free) Lena’s picture,
our edge detector provides close performances to Sobel’s
detector applied on Lena’s grey image. Canny’s detector seems
to provide a better ability to detect some edges in Lena’s
picture than our method, but it also generates much more false
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alarms too. It is worth noting that the results provided by DS-
based or PCR5-based edge detectors show a coarse location
of the edges. So it is quite difficult to drawn a clear and
fair conclusion between these edge detectors since it highly
depends on what we want, i.e. the reduction of false alarms
or the reduction of miss-detections.

B. Test on Lena’s picture with noise

In this simulation, we show how our edge detector works
on a noisy image. Sampling of independent Gaussian noise
N (0,σ2) is added to each pixels of each layer of the original
Lena’s picture as seen on Fig. 4-(b). In the presented sim-
ulation, σ2 = 1100 which correspond approximatively to the
value of the variance of the blue channel and half the variance
of the others. Local edge detection for each layer based on
mL

ij(.|gLij) is shown on Fig. 10-(a)–(c), where the red points
represent the ignorant pixel which commits the most belief to
the ignorance θ1∪θ2. As shown in Fig 10, the edge detection in
each channel is very noisy. Our method allows to commit auto-
matically highest belief value to uncertainty for most of pixels
associated to an edge which actually correspond to noises.6
The edge detection based on fusion result are interesting as
shown by Fig.11 and Fig. 12 because it shows the ability of our
edge detector to suppress the noise effects. For comparison,
we give on Fig. 13 and Fig.14, the performance of Canny and
Sobel edge detectors applied classically on the noisy gray-
level Lena’s picture. In this simulation, we took λ = 0.06,
and t using pn = 0.22 · max(g) and pe = 0.39 · max(g) in
each layer with [tRn , t

R
e ] = [36, 20], [tGn , t

G
e ] = [35, 19] and

[tBn , t
B
e ] = [31, 18]. The decision-making is still based on max

of credibility.
The visual comparison and analysis of results shown of

figures 11–12 clearly indicates that our edge detector based
on the fusion of belief constructed on each layer works much
better than the edge detection applied separately on each
layer. There is no ignorant pixel corresponding to red color
according to the fusion results, since the fusion process of DS
or PCR5 rule effectively decrease the uncertainty. Our results
show also clearly that Canny and Sobel edge detectors applied
to noisy gray-level Lena’s picture are very sensitive to the
noise perturbations. Our proposed method (based on DS rule
or on PCR5 rule) is more robust to the noise perturbations
and provides better results than Sobel or Canny edge detector
for such noisy image. For this tested image, it appears that
the results using DS and PCR5 rules are very close, because
there is not too much conflict actually between bba’s of layers
and one know that in such case PCR5 rule behavior is close
to DS rule behavior. DS rule is usually good enough in the
low conflict case, whereas PCR5 rule is preferred for the
combination of high conflicting sources of evidence. So the
preference of PCR5 with respect to DS rule for edge detection
must be guided by the level of conflict which appears in the
layers of the color image that we need to process.

6So we are also able at layer level to filter these pixels (false alarms) before
applying the fusion. This has not yet be done in this work.

Figure 10. Edge detections in each channel on noisy image.

Figure 11. DS edge detector on noisy Lena’s color image.

V. CONCLUSIONS AND PERSPECTIVES

A new unsupervised edge detector for color image based
on belief functions has been proposed in this work. The basic
belief assignment (bba) associated with the edge of a pixel
in each channel of the image is defined according to its
gradient magnitude, and one can easily model the uncertainty
about our belief it belong or not to an edge. PCR5 and
DS rules have been applied in this work to combine these
bba’s to get the global bba for final decision-making. Other
rules of combination of bba’s could also have been used
instead but they are known to be less efficient than PCR5
or DS rules in high and low conflict cases respectively. The

Figure 12. PCR5 edge detector on noisy Lena’s color image.
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Figure 13. Sobel’s edge detector on noisy Lena’s gray image.

Figure 14. Canny’s edge detector on noisy Lena’s gray image.

fusion process is able to reduce noise perturbations because
the noises are assumed to be independent between channels.
The final decision making on the edge can be made either
on the maximum of credibility, plausibility, DSmP or BetP
values as well. The first simulation done on original Lena’s
picture shows that our edge detector works as well as the
classical Sobel’s edge detector and it provides less false alarms
than with Canny’s detector, but seems to generate more miss-
detections. In our second simulation based on noisy Lena
image, the results show that our new edge detector is more
robust to the noise perturbations than Sobel or Canny classical
edge detectors. As possible improvement of this algorithm and
for further research, we would like to include some morpho-
logical or connexity constraints at a higher level of processing
and develop automatic technique for threshold selection. The
application of this new approach of edge detection to satellite
multispectral images is under investigations.
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Abstract – In this paper, we explore the use of DSMT for 
seismic and acoustic sensor fusion.  The seismic/acoustic 
data is noisy which leads to classification errors and 
conflicts in declarations.  DSmT affords the redistribution 
of masses when there is a conflict. The goal of this paper 
is to present an application and comparison on DSMT 
with other classifier methods to include the support vector 
machine(SVM) and Dempster-Shafer methods.  The work 
is based on two key references (1) Marco Duarte with the 
initial SVM classifier application of the seismic and 
acoustic sensor data and (2) Arnaud Martin in Vol. 3 with 
the Proportional Conflict Redistribution Rule 5/6 
(PCR5/PCR6) developments.   By using the developments 
of Duarte and Martin, we were able to explore the various 
aspects of DSMT in an unattended ground sensor 
scenario.  Using the receiver operator curve (ROC), we 
compare the methods for individual classification as well 
as a measure of overall classification using the area under 
the curve(AUC). Conclusions of the work show that the 
DSMT affords a lower false alarm rate because the 
conflict information is redistributed over the set masses 
and is comparable to other classifier results when using a 
maximum decision forced choice. 

Keywords: Information Fusion, DSMT, PCR5, PCR6, 
Area Under the Curve(AUC), SVM. 

1 Introduction 
The goal of this paper is to present an application 
and comparison on DSMT with other classifier methods.  
The work is based on two key references (1) Marco 
Duarte with the initial classifier application of the 
seismic and acoustic sensor data [1] and (2) Arnaud 
Martin in Vol. 3 for the implementation of the DSMT 
methods. [2] By using the developments of Duarte 
and Martin, we were able to explore the various 
aspects of DSMT in an unattended ground sensor 
scenario.  In the exploration of information fusion 
metrics for classification, there is a need to develop 
metrics of effectiveness that support the user’s utility 
needs [3] and can vary over the sensor types, 
environmental conditions, targets of interest, situational 
context, and users [4].  
 DSmT is an extension to the Dempster-Shafer method 
of evidential reasoning which has been detailed 
in numerous papers and texts: Advances and 
applications of DSmT for information fusion (Collected 
works), Vols. 1-3 [ 5]. 

In 2002, Dezert [6] introduced the methods for 
the reasoning and in 2003, presented the hyper 
power-set notation for DSmT [7]. Recent applications 
include the DSmT Proportional Conflict Redistribution 
rule 5 (PCR5) applied to target tracking [8]. 
 The key contributions of DSmT are the redistributions of 
masses such that no refinement of the frame Θ is possible 
unless a series of constraints are known.  For example, 
Shafer’s model [9] is the DSm hybrid model in DSmT.   
Since Shafer’s model, authors have continued to refine the 
method to more precisely address the combination of 
conflicting beliefs [10, 11, 12] and generalization of the 
combination rules [13, 14]. An adaptive combination rule 
[15] and rules for quantitative and qualitative 
combinations [16] have been proposed. Recent examples 
for sensor applications include electronic support 
measures, [17, 18] and physiological monitoring sensors 
[19]. One application of DSmT that has not been fully 
explored is in seismic, magnetic, and acoustic 
classification fusion of moving targets. Kadambe 
conducted an information theory approach [20] and used 
DSmT as integrity constraints [21], but did not take 
advantage of the conflict redistribution. 

Detecting moving vehicles in an urban area [22] is 
an example where DSmT conflicting mass 
redistribution could be helpful [8]. Detecting traffic can 
be completed by fixed ground cameras or on dynamic 
unattended ground vehicles (UGVs). If the sensors 
are on UGVS, path planning is needed to route the 
UGVs to observe the traffic [23, 24] and 
cooperation among UGVs is necessary[25]. The 
DARPA Grand Challenge featured sensors on mobile 
UGVs observing the environment [26]. Mobile sensing 
can be used to orient [27] or conduct simultaneous 
location and mapping (SLAM) [28].  

Deployed ground sensors can observe the 
vehicles; however they are subject to the quality of 
the sensor measurements as a well as obscurations.  
One interesting question is how to deploy the fixed 
sensors that optimize the performance of a system. 
Efforts in distributed wireless networks (WSNs) have 
resulted in many issues in distributed processing, 
communications, and data fusion [29]. In a dynamic 
scenario, resource coordination [30] is needed for both 
context assessment, but also the ability to be aware of 
impending situational threats [31, 32]. For distributed 
sensing systems, to combine sensors, data, and user 
analysis requires pragmatic approaches to metrics [33, 
34, 35, 36].  For example, Zahedi [37] develops a 

Originally published as Blasch E., Dezert J., Valin P., DSmT Applied to 
Seismic and Acoustic Sensor Fusion, Proc. IEEE Nat. Aerospace Electronics 

Conf (NAECON), 2011, and reprinted with permission.
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QOI architecture for comparison of centralized versus 
distributed sensor network deployment planning. 
Information fusion has been interested in the problems 

of databases for target trafficability[38], sensor 
management [39], and processing algorithms [40] 
from which to assess objects in the environment. Various 
techniques have incorporated grouping object 
movements [41], road information [42, 43], and updating 
the object states based on environmental constraints [44]. 
Detecting, classifying, identifying and tracking objects 
[45] has been important for a variety of sensors, including 
2D visual, radar [46], and hyperspectral [47] data; 
however newer methods are of interest for ground 
sensors with 1D signals.  

Seismic data provides passive sensing of ground 
vibrations which can be used for motion tracking. Passive 
magnetic sensing can detect hidden objects that might 
indicate intent.  Finally, acoustic data can be used 
for signature detection from vehicle engines. [48] 
The DARPA SENSIT program investigated 
deploying a distributed set of wireless sensors along a 
road to classify vehicles as shown in Figure 1.  

Figure 1.  SENSIT Data from [M. F. Duarte and Y. H. Hu, 
“Vehicle Classification in Distributed Sensor Networks,” 2004 [49] 

The sensors include acoustic and seismic signals. Given 
the deployed set of sensors, feature vectors were used to 
classify signals based on the data from the seismic and 
acoustic signals. [49] Various approaches include 
combining the data with decision fusion [50], value fusion 
[51], and simultaneous track and identification methods 
[52, 53]. Information theoretical approaches including the 
KL method were applied to the data for sensor 
management [54] as shown in Figure 2. Processing sensor 
data for target classification using acoustic [55, 56] and 
seismic [57] results have been explored in support of 
information theoretical sensor placement [58].   

Much work has been completed using imaging sensors 
and radar sensors for observing and tracking targets. 
Video sensors are limited in power and subject to 
day/night conditions. Likewise, radar line-of site precludes 
them from observing in the same plane.  Together, both 
imaging and radar sensors do not have the advantage of 
UGSs which can power on and off, can work for a long 
time on battery power, and can be deployed to remote 
areas. 

Figure 2. Deployed Sensors. From S. Kadambe and C.     
    Daniell, “Theoretic Based Performance of Distributed Sensor

Networks”, AFRL-IF-RS-TR-2003, 231, October 2003. [54] 

Track management situational awareness tools receive 
input from sensor feeds (examples include electro-optical, 
radar, electronic support measures (ESMs), and sonar) and 
display this information to a user. User inputs include: 
creation of new objects, such as tracks, contacts and 
targets. Methods to reduce data-to-decisions include: 
fusing multiple tracks into a single track, incorporating 
alerting mechanisms, or visualizing track data common 
operational picture (COP). Sensor and track data can grow 
rapidly as the user desires to keep historical data.  
 Our goal is to utilize the DSmT method for the fusion of 
information from seismic and acoustic data in which each 
sensor/classifier is in direct conflict with the other sensor. 
We address (1) intelligent use of the data based on value 
for classification, (2) DSMT sensor data fusion for 
detection, classification, and positional location, and (3) 
metrics to support the sensor and data management as 
supporting a user control.  

2 Location / Detection 
We desire to track and identify the targets based on the 
sensor reports.  In this study, we concentrate on the 
classification of targets which can be used with the 
kinematic/position information for target identification. 

2.1 Sensor Information Management 
The goal is to utilize the UGSs sensors which may be 
acoustic, magnetic, seismic, and PIRoelectric (passive 
infrared for motion detection.  With a variety of sensors, 
information fusion can (a) utilize the most appropriate 
sensor at the correct time, (b) combine information from 
both sensors on a single platform, (c) combine results 
from multiple platforms, and (d) cue other sensors in a 
hand-off fashion to effectively monitor the area. Sensor 
exploitation requires an analysis of feature generation, 
extraction, and selection or (construction, transformation, 
selection, and evaluation). To provide track and ID results, 
we develop method or target classification. 
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2.2 Sensor Classification  
Sensor exploitation includes detection, recognition, 
classification, identification and characterization of some 
object.  Individual classifiers can be deployed at each level 
to robustly determine the object information. Popular 
methods include voting, neural networks, fuzzy logic, 
neuro-dynamic programming, support vector machines, 
Bayesian and Dempster-Shafer methods. One way to 
ensure the accurate assessment is to look at a combination 
of classifiers. Combination of classifiers [59] could include 
different sensors with classifiers, different methods over a 
single or multiple sensors, and various hierarchies of 
coordinating the classifiers such as Bayes nets and 
distributed processing. 

Issues in classifier combination methods need to be 
compared as related to decisions, feature sets, and user 
involvement.  Selecting the optimal feature set is based on 
the situation and environmental context of which the 
sensors are deployed.  An important question for sensor 
and data management is measures of effectiveness. For 
instance, what is the quantification of fusion/decision gain 
using a set of classification methods and placement 
methods?  There is a need for a robust combination rule 
that includes the location and detection of the sensors 
subject to the target and environmental constraints. 
Typically, a mobile sensor needs to optimize its route and 
can be subject to interactive effects of pursuers and 
evaders with other targets [60] as well as active 
jamming of the signal [61].   
Detecting targets from seismic and acoustic data in a 

distributed net centric fashion requires pragmatic 
approaches to sensor and data management. [62] To 
robustly track and ID a target requires both the structured 
data from the kinematic movements as well as the 
unstructured data for the feature analysis. [63] 

3 DSMT 
Here we use PCR6 and PCR5 and the DSMP selections 
which are discussed below. We replace Smets’ rule [10] 
by the more effective Proportional Conflict Redistribution 
rule no. 5 (PCR5) or eventually the more simple PCR rule 
no. 6 (PCR6) and replace the pignistic transformation by 
the more effective DSmP transformation to estimate target 
classification probabilities. All details, justifications with 
examples on PCR5 and PCR6 fusion rules and DSmP 
transformation can be found freely from the web in the 
DSmT compiled texts [5], Vols. 2 & 3.. 

3.1 PCR5 and PCR6 fusion rules 
In DSmT (Dezert-Smarandache Theory) framework, the 
Proportional Conflict Redistribution Rule no. 5 (PCR5) is 
used generally to combine the basic belief assignment 
(bba)’s. PCR5 transfers the conflicting mass only to the 
elements involved in the conflict and proportionally to 
their individual masses, so that the specificity of the 

information is entirely preserved in this fusion process. 
Let m1(.) and m2(.) be two independent bba’s, then the 
PCR5 rule is defined as follows (see [5], Vol. 2 for full 
justification and examples): mPCR5(∅) = 0 and ∀X ∈ 2Θ \ 
{∅} 

where all denominators in the equation above are different 
from zero. If a denominator is zero, that fraction is 
discarded. Additional properties of PCR5 can be found in 
[64]. Extension of PCR5 for combining qualitative bba’s 
can be found in [5], Vol. 2 & 3. All propositions/sets are 
in a canonical form. A variant of PCR5, called PCR6 has 
been proposed by Martin and Osswald in [5], Vol. 2, for 
combining s > 2 sources. PCR6 coincides with PCR5 
when one combines two sources. The difference between 
PCR5 and PCR6 lies in the way the proportional conflict 
redistribution is done as soon as three or more sources are 
involved in the fusion. For example, let’s consider three 
sources with bba’s m1(.), m2(.), and m3(.), A ∩ B = ∅ for 
the model of the frame Θ, and m1(A) = 0.6, m2(B) = 0.3, 
and m3(B) = 0.1. With PCR5 the partial conflicting mass 
m1(A) m2(B) m3(B) = (0.6)(0.3)(0.1) = 0.018 is 
redistributed back to A and B only with respect to the 
following proportions respectively: xA

PCR5 = 0.01714 and 
xB

PCR5 = 0.00086 because the proportionalization is [8]: 

           
xA

PCR5

m1(A)  =
xB

PCR5

m2(B) m3(B) =
m1(A) m2(B) m3(B)

 m1(A) + m2(B) m3(B) 

that is       
xA

PCR5

0.6   =
xB

PCR5

(0.3)(0.1) =
0.018

0.6 + 0.03 ≈ 0.02857

thus        xA
PCR5 = 0.60 (0.02857) ≈ 0.01714 

           xB
PCR5 = 0.03 (0.02857) ≈ 0.00086 

With the PCR6 fusion rule, the partial conflicting mass 
m1(A) m2(B) m3(B) = (0.6)(0.3)(0.1) = 0.018 is 
redistributed back to A and B only with respect to the 
following proportions respectively: xA

PCR6 = 0.0108 and 
xB

PCR6 = 0.0072 because the PCR6 proportionalization is 
done as follows: 

xA
PCR6

m1(A)  = 
xB;2

PCR6

m2(B)   = 
xB;3

PCR6

m3(B)  =
m1(A) m2(B) m3(B)

 m1(A) + m2(B) + m3(B) 

that is        

xA
PCR6

0.6   = 
xB;2

PCR6

0.3  =  
xB;3

PCR6

0.1   =
0.018

0.6 + 0.3 + 0.1 ≈ 0.018
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thus 

xA
PCR6    = (0.6) (0.018) = 0.0108 

xB,2
PCR6 = (0.3) (0.018) = 0.0054 

xB,3
PCR6 = (0.1) (0.018) = 0.0018 

and therefore with PCR6, one gets finally the following 
redistributions to A and B: 

xA
PCR6    = (0.6) (0.018) = 0.0108 

xB
PCR6    = xB,2

PCR6  +  xB,3
PCR6 = 0.0054 + 0.0018 = 0.0072 

From the implementation point of view, PCR6 is simpler 
to implement than PCR5. For convenience, Matlab 
codes of PCR5 and PCR6 fusion rules can be found in [5]. 

3.2 The DSmP Transformation 
The DSmP probabilistic transformation is an alternative to 
the classical pignistic transformation which allows us to 
increase the probabilistic information content (PIC), i.e. to 
minimize the Shannon entropy, of the approximated 
subjective probability measure drawn from any bba. 
Justification and comparisons of DSmP(.) with respect to 
BetP(.) and to other transformations can be found 
in details in [65, 5 Vol. 3, Chap. 3].  

BetP: The pignistic transformation probability, denoted 
BetP, offers a compromise between maximum of 
credibility Bel and maximum of plausibility Pl for 
decision support. The BetP transformation is defined by 
BetP(∅) = 0 and ∀X ∈ GΘ \ {∅}by 

where GΘ corresponds to the hyper-power set including all 
the integrity constraints of the model (if any). GΘ = 2Θ  if 
one adopts Shafer’s model for Θ and GΘ = DΘ 
(Dedekind’s lattice) if one adopts the free DSm model for 

Θ [ 5].  CM(Y) denotes the DSm cardinal of the set Y, 
which is the number of parts of Y in the Venn diagram of 
the model M of the frame Θ under consideration [5, Book 
1, Chap. 7]. The BetP reduces to the Transferable Belief 
Model (TBM) when GΘ reduces to classical power set 2Θ 

when one adopts Shafer’s model. 

DSmP transformation is defined by DSmP∈(∅) = 0 and 
∀X ∈ GΘ \ {∅} by 

where C(X ∩ Y) and C(Y) denote the cardinals of the sets 
X ∩ Y and Y respectively; ε ≥ 0 is a small number which 
allows to reach a highest PIC value of the approximation 
of m(.) into a subjective probability measure. Usually ε = 
0, but in some particular degenerate cases, when the 
DSmPε=0(.) values cannot be derived, the DSmPε>0 values 
can however always be derived by choosing ε as a very 
small positive number, say ε = 1/1000 for example in 
order to be as close as we want to the highest value of the 
PIC. The smaller ε, the better/bigger PIC value one gets. 
When ε = 1 and when the masses of all elements Z having 
C(Z) = 1 are zero, DSmPε=1(.) = BetP(.).  

4 Example/Simulation 
We use the SENSIT data which was described above and 
was provides an unstructured data analysis.  To perform 
the data management we use data mining [66] techniques 
such as a support vector machine (SVM) [67, 68] to 
process the unstructured data. Through analysis, we can 
determine the optimum use of the data given 
environmental conditions (i.e. obscurations) and sensor’s 
capabilities to detect a moving target.   

Figure 3 shows the methodology of comparison.  A 
key comparison is made between combining all the 
acoustic and seismic data together for testing and 
training via the SVM versus using the outputs from 
the acoustic and seismic data separately from 
which conflicts in classification are detected and 
sent to DS and DSmT processing. 

Figure 3. Experimentation Flow. 

4.1 Data Processing 
We compare two cases of (1) processing the data 
separately and (2) jointly processing the acoustic 
and seismic results Figure 4 shows the case of the 
acoustic results. 
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Figure 4. Acoustic Results. 

Figure 5 demonstrates the results for the seismic results. 
Note that for the data set, the seismic results have a lower 
probability of false alarms for target 3 and target 2; 
however, target 2 exhibits more confusion.  
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Figure 5. Seismic Results. 

Next we explore the case of the joint seismic and acoustic 
data management and utilize SVM for classification, 
shown in Figure 6.  Note the false alarm reduction which 
is desired by users.  
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Figure 6. Combined Results 

In general, the joint analysis supports better decision 
making as confidence was PD was improved for a 
constant false alarm rate, accuracy was improved as to the 
target location from joint spatial measurements, and 
timeliness in decision making as fewer measurements 
were needed to confirm the target ID (i.e. decision made 
with two modalities required fewer measurements than 
that of a single modality).  
4.2 Application of DS  

1

7

Below, we show the results of the application of DS 
methods.  Given a training and prediction results in a 
combined probability, we have for target1, target2, and 
target3 a vector of P = [P1P2 P3].  Based on the prediction 
results from the SVM, there are many conflicts of the 
sensor decision based on the maximum probability.  When 
a conflict occurs, it would be better suited to acknowledge 
the conflict and then redistribute the probabilities based on 
a set notation. In this case, the focal elements are Φ = [θ , 
…, θ  ] = [‘1’, ‘1I2’, ‘2’, ‘2I3’, ‘3’, ‘1I3’, ‘1I2I3’]. 
Using the analysis by Martin, we conduct an analysis 
over the set criterion. Figure 7 shows that a 
significant reduction false alarms; however, the overall 
classification as measured by the area under the curve 
(AUC) is less than that of the SVM by itself. Thus, 
there is a trade off when using DS for reducing the PD 
for low FA versus the overall classification analysis.   
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Figure 7. DS allowing for set declarations. 

To explore a comparison of approaches, we utilized the 
bba and forced the evidential reasoned to choose a single 
target. From this analysis, the AUC improves in 
comparison to the SVM approaches which are a 
forced choice analysis. Figure 8 plots the DS (for 
one target designation). 
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Figure 8. DMST Single Target Detection.  

4.3 Application of DSMT  
DMST, as described above, improves on the methods of 
conflict redistribution. In this case, there were slight 
alterations in the bba comparisons; however with the 
heuristic logic, changes resulted in the classification that 
was comparable to the complete SVM fusion analysis. 
 Figure 9 presents the DSMT results for set declaration 
and Figure 10 shows the case of a forced target choice 
from the DSMT. From these plots, we can see that the set-
based approach improves the detection for low false alarm 
rates; however for high false alarm rates, the detection 
probability is increased over all false alarm rates. Using 
the maximum of the target bba provides an analysis 
threshold that renders the DSmT comparable to a SVM 
(which is allowed to train over all the data available). 
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Figure 9. DSMT allowing for set declarations. 
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Figure 10. DMST Single Target Detection.  

In the table below, we look at the entire analysis using the 
area under the ROC (AUC) as a key metric in the analysis. 
Additionally, there are cases in which the maximum AUC 
and minimum AUC are improved but the overall analysis 
(Total AUC) varies. We see from the comparison that the 
DS and DSMT methods can improve single target 
detection; however the SVM alone (run over all the data) 
does perform slightly higher in the information fusion 
case. 

Table 1:  AUC Comparisons of SVM, DS, and DSMT 
Method Min AUC Max AUC Total AUC 
A-SVM 0.786 0.821 2.401
S-SVM 0.696 0.844 2.335
C-SVM 0.791 0.851 2.472
DS 0.671 0.742 2.141
DS1 0.738 0.833 2.371
DSMT 0.728 0.751 2.224
DSMT1 0.760 0.855 2.440
A – Acoustic, S-Seismic, C-Combination 

5 Conclusions 
We have explored DS and DSMT methods for seismic and 
acoustic information fusion.  The goal of the paper was a 
new application of the existing techniques presented by 
Martin and Durate for further demonstration of the various 
modifications to the DS methods.  Using the initial results, 
the use of DSMT can be tailored to the seismic and 
acoustic sensors which demonstrate high conflicts in 
decision outputs as they measure different target 
phenomenologies. We utilized a Bayesian basic belief 
assignment (bba) with only singleton as focal elements 
which from the P vectors of the target probabilities. Future 
work will use non-Bayesian approaches to get the bbas. 
   Information theoretic measures [69] and tracking 
analysis [70] can support the sensor and data 
management as well as determine the Quality of 
Information and Quality of Service needs. Use of 
the Area Under the 
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Curve (AUC) provides decision support for situational 
awareness for command and control from which we 
can extend to higher dimensions [71]. Various other 
sources of soft data (human reports) can be combined 
with the hard (physics-based sensing) [72] to 
update the sensor management, placement, and 
reporting of the situation based on the context and 
the needs of users such as measures of effectiveness 
for mission support.   
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The Effective Use of the DSmT for Multi-Class Classification 

Abstract 

The extension of the Dezert-Smarandache theory (DSmT) for the multi-class framework has a feasible computational 

complexity for various applications when the number of classes is limited or reduced typically two classes. In contrast, when 

the number of classes is large, the DSmT generates a high computational complexity. This paper proposes to investigate the 

effective use of the DSmT for multi-class classification in conjunction with the Support Vector Machines using the One-

Against-All (OAA) implementation, which allows offering two advantages: firstly, it allows modeling the partial ignorance 

by including the complementary classes in the set of focal elements during the combination process and, secondly, it allows 

reducing drastically the number of focal elements using a supervised model by introducing exclusive constraints when classes 

are naturally and mutually exclusive. To illustrate the effective use of the DSmT for multi-class classification, two SVM-

OAA implementations are combined according three steps: transformation of the SVM classifier outputs into posterior 

probabilities using a sigmoid technique of Platt, estimation of masses directly through the proposed model and combination 

of masses through the Proportional Conflict Redistribution (PCR6). To prove the effective use of the proposed framework, a 

case study is conducted on the handwritten digit recognition. Experimental results show that it is possible to reduce 

efficiently both the number of focal elements and the classification error rate. 

Keywords: Handwriting digit recognition; Support Vector Machines; Dezert-Smarandache theory; Belief assignments; 

Conflict management 

1. Introduction

Nowadays a large number of classifiers and methods of generating features is developed in various application areas of 

pattern recognition [1,2]. Nevertheless, it failed to underline the incontestable superiority of a method over another in both 

steps of generating features and classification. Rather than trying to optimize a single classifier by choosing the best features 

for a given problem, researchers found more interesting to combine the recognition methods [2,3]. Indeed, the combination of 

classifiers allows exploiting the redundant and complementary nature of the responses issued from different classifiers. 

Researchers have proposed various approaches for combining classifiers increasingly numerous and varied, which led the 

development of several schemes in order to treat data in different ways [2,3]. Generally, three approaches for combining 

classifiers can be considered: parallel approach, sequential approach and hybrid approach [2]. Furthermore, these ones can be 

performed at a class level, at a rank level, or at a measure level [4-7]. 

In many applications, various constraints do not allow an efficient joint use of classifiers and feature generation methods 

leading to an inaccurate performance. Thus, an appropriate operating method using mathematical approaches is needed, 
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Recognition (ICFHR), Bari, Italy, pp. 241-246, September 18-20, 2012, and reprinted with permission.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

359



which takes into account two notions: uncertainty and imprecision of the responses of classifiers. In general, the most 

theoretical advances which have been devoted to the theory of probabilities are able to represent the uncertain knowledge but 

are unable to model easily the information which is imprecise, incomplete, or not totally reliable. Moreover, they often lead 

to confuse both concepts of uncertainty and imprecision with the probability measure. Therefore, new original theories 

dealing with uncertainty and imprecise information have been introduced, such as the fuzzy set theory [8], evidence theory 

[9,10], possibility theory [11] and, more recently, the theory of plausible and paradoxical reasoning [12-14]. 

The evidence theory initiated by Dempster and Shafer termed as Dempster-Shafer theory (DST) [9,10] is generally 

recognized as a convenient and flexible alternative to the bayesian theory of subjective probability [15]. The DST is a 

powerful theoretical tool which has been applied in many kinds of applications [16] for the representation of incomplete 

knowledge, belief updating and for the combination of evidence [17,18] through the Dempster-Shafer’s combination rule. 

Indeed, it offers a simple and direct representation of ignorance and has a low computational complexity [19] for most 

practical applications. 

Nevertheless, this theory presents some weaknesses and limitations mainly when the combined evidence sources become 

very conflicting. Furthermore, the Shafer’s model itself does not allow necessary holding in some fusion problems involving 

the existence of the paradoxical information. To overcome these limitations, a recent theory of plausible and paradoxical 

reasoning, known as Dezert-Smarandache theory (DSmT) in the literature, was elaborate by Jean Dezert and Florentin 

Smarandache for dealing with imprecise, uncertain and paradoxical sources of information. Thus, the main objective of the 

DSmT was to introduce combination rules that would allow to correctly combining evidences issued from different 

information sources, even in presence of conflicts between sources or in presence of constraints corresponding to an 

appropriate model (free or hybrid DSm models [12]). The DSmT has proved its efficiency in many current pattern 

recognition application areas such as remote sensing [20-23], identification and tracking [24-29], biometrics [30-33], 

computer vision [34-36], robotics [37-42] and more recently handwritten recognition applications [7,43,44] as well as many 

others [12-14]. 

The use of the DSmT for multi-class classification has a feasible computational complexity for various applications when the 

number of classes is limited or reduced typically two classes [43]. In contrast, when the number of classes is large, the DSmT 

generates a high computational complexity closely related to the number of elements to be processed. Indeed, an analytical 

expression defined by Tombak et al. [45] shows that the number of elements to be processed follows the sequence of 

Dedekind’s numbers [46,47]: 1,2,5,19,167,7580,7828353,... For instance, if the number of classes belonging to discernment 

space is 8, then the number of elements to be deal in DSmT framework is 22106.5  . Hence, it is not easy to consider the

set of all subsets of the original classes (but under the union and the intersection operators) since it becomes untractable for 

more than 6 elements in the discernment space [48]. Thus, Dezert and Smarandache [49] proposed a first work for ordering 

all elements generated using the free DSm model for matrix calculus such as made in DST framework [50,51]. However, this 

proposition has limitations since in practical applications it is more appropriate to only manipulate the focal elements [7, 52-

54]. 

Hence, few works have already been focused on the computational complexity of the combination algorithms formulated in 

DSmT framework. Djiknavorian and Grenier [53] showed that there’s a way to avoid the high level of complexity of DSm 

hybrid (DSmH) combination algorithm by designing a such code that can perform a complete DSmH combination in very 
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short period of time. However, even if they have obtained an optimal process of evaluating DSmH algorithm, first some parts 

of their code are really not optimized and second it has been developed only for a dynamic fusion. Martin [55] further 

proposed a practical codification of the focal elements which gives only one integer number to each part of the Venn diagram 

representing the discernment space. Contrary to the Smarandache’s codification [48] used in [56] and the proposed codes in 

[53], author thinks that the constraints given by the application must be integrated directly in the codification of the focal 

elements for getting a reduced discernment space. Therefore, this codification can drastically reduce the number of possible 

focal elements and so the complexity of the DST as well as the DSmT frameworks. A disadvantage of this codification is that 

the complexity increases drastically with the number of combined sources especially when dealing with a problem in the 

multi-class framework. To address this issue, Li et al. [57] proposed a criterion called evidence supporting measure of 

similarity (ESMS), which consists in selecting, among all sources available, only a subset of sources of evidence in order to 

reduce the complexity of the combination process. However, this criterion has been justified for only a two-class problem. 

Nowadays, the complexity of reducing both the number of combined sources and the size of the discernment space are 

research challenges that still need to be addressed. 

In many pattern recognition applications, the classes belonging to the discernment space are naturally and then mutually 

exclusive such as in biometrics [30-33] and handwritten recognition applications [7,43,44]. Hence, several classification 

methods have been proposed as template matching techniques [58-60], minimum distance classifiers [61,62], support vector 

machine (SVM) [63], hidden Markov Models (HMMs) [63-65], neural networks [66,67]. In various pattern recognition 

applications, the SVMs have proved their performance from the mid-1990s comparatively to other classifiers [2]. The SVM 

is based on an optimization approach in order to separate two classes by an hyperplane. In the context of multi-class 

classification, this optimization approach is possible [68] but requiring a very costly duration. Hence, two preferable methods 

of multi-class implementation of SVMs have been proposed for combining several binary SVMs, , which are One Against All 

(OAA) and One Against One (OAO), respectively [69-71]. The former is the most commonly used implementation in the 

context of multi-class classification using binary SVMs, which constructs n  SVMs to solve a n -class problem [72]. Each 

SVM is designed to separate a simple class i from all the others, i.e., from the corresponding complementary class


ij

nj
ji






10

 . In contrast, the OAO implementation is designed to separate two simple classes i and j ( ji  ), which

requires   2/1 nn  SVMs. Hence, various decision functions can be used such as the Decision Directed Acyclic Graph

(DDAG) [73] since it has the advantage to eliminate all possible unclassifiable data. 

Generally, the combination of binary classifiers is performed through very simple approaches such as voting rule or a 

maximization of decision function coming from the classifiers. In this context, many combination operators can be used, 

especially in the DST framework [74]. Still in the same vein, some works have been tried out the combination of binary 

classifier originally from SVM in the DST framework [75,76]. For instance, the pairwise approach has been revisited by 

Quest et al. [76-79] in the framework of the DST of belief functions for solving a multi-class problem. In [80], the 

combination method based on DST has been used by Hu et al. for combining multiple multi-class probability SVM classifiers 

in order to deal with distributed multi-source multi-class problem [80]. Martin and Quidu proposed an original approach 

based on DST [81] for combining binary SVM classifiers using OAO or OAA strategies, which provides a decision support 
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helping experts for seabed characterization from sonar images. Burger et al. [82] proposed to apply a belief-based method for 

SVM fusion to hand shape recognition. Optimizing the fusion of the sub-classifications and dealing with undetermined cases 

due to uncertainty and doubt have been investigated by other works [83], through a simple method, which combines the 

fusion methods of belief theories with SVMs. Recently, one regression based approach [84] has been proposed to predict 

membership or belief functions, which are able to model correctly uncertainty and imprecision of data.  

In this work, we propose to investigate the effective use of the DSmT for multi-class classification in conjunction with the 

SVM-OAA implementation, which allows offering two advantages: firstly, it allows modeling the partial ignorance by 

including the complementary classes in the set of focal elements, and then in the combination process, contrary to the OAO 

implementation which takes into account only the singletons, and secondly, it allows reducing drastically the number of focal 

elements from  nDedekind  to n2 . The reduction is performed through a supervised model using exclusive constraints.

Combining the outputs of SVMs within DSmT framework requires that the outputs of SVMs must be transformed into 

membership degree. Hence, several methods of estimating of mass functions are proposed in both DST and DSmT 

frameworks, these ones can be directly explicit through special functions or indirectly explicit through transfer models [9,85-

88]. In our case, we propose a direct estimation method based on a sigmoid transformation of Platt [89]. This allows us to 

satisfy the OAA implementation constraint. 

The paper is organized as follows. Section 2 reviews the Proportional Conflict Redistribution (PCR6) rule based on DSmT. 

Section 3 describes the combination methodology for multi-class classification using the SVM-OAA implementation. 

Experiments conducted on the dataset of the isolated handwritten digits are presented in section 4. The last section gives a 

summary of the proposed combination framework and looks to the future research direction. 

2. Review of PCR6 combination rule

In pattern recognition, the multi-class classification problem is generally formulated as a n -class problem where classes are 

associated to patterns classes, namely ,,, 10  and n . Hence, the parallel combination of two classifiers, namely

information sources 1S  and 2S , respectively, is performed through the PCR6 combination rule based on the DSmT. For n -

class problem, a reference domain also called the discernment space should be defined for performing the combination, 

which is composed of a finite set of exhaustive and mutually exclusive hypotheses. 

In the context of the probabilistic theory, the discernment space, namely  , is composed of n  elements as: 

 n ,,, 10  , and a mapping function  1,0m  is associated for each class, which defines the corresponding mass

verifying   0Ø m  and   1
0

 

n

i im  . In Bayesian framework, combining two sources of information by means of the 

weighted mean and consensus based rules seems effective for non-conflicting responses [90-93]. In the opposite case, an 

alternative approach has been developed in DSmT framework to deal with (highly) conflicting imprecise and uncertain 

sources of information [14]. Example of such approaches is PCR6 rule. 
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The main concept of the DSmT is to distribute unitary mass of certainty over all the composite propositions built from 

elements of   with   (Union) and   (Intersection) operators instead of making this distribution over the elementary 

hypothesis only. Therefore, the hyper-powerset D  is defined as: 

1. Dn ,,,Ø, 10  . 

2. If DBA, , then  DBA  and  DBA . 

3. No other elements belong to D , except those obtained by using rules 1 or 2. 

The DSmT uses generalized basic belief mass, also known as the generalized basic belief assignment (gbba) computed on 

hyper-powerset of  and defined by a map    1,0:. Dm  associated to a given source of evidence which can support 

paradoxical information, as follows:   0Ø m  and   1 DA
Am . The combined masses 6PCRm obtained from  .1m  and 

 .2m  by means of the PCR6 rule [13,14] are defined as: 
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 Ø,M  is the set of all relatively and absolutely empty elements, M  is the set of all elements of D  which have

been forced to be empty in the hybrid model M  defined by the exhaustive and exclusive constraints, Ø  is the empty set, the 

denominator      11 kk
YmAm ik   is different to zero, and where  1k counts from 1  to 2  avoiding k , i.e.:
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Thus, the term  iAm  represents a conjunctive consensus, also called DSm Classic (DSmC) combination rule [13,14], 

which is defined as: 
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3. Methodology

The proposed combination methodology shown in Fig. 1 is composed of two individual systems using SVMs classifiers. 

Each one is trained using its own source of information providing two kinds of complementary features, which are combined 

through the PCR6 rule. In the following, we give a description of each module composed our system. 

Fig 1. Structure of the combination scheme using SVM and DSmT 

3.1. Classification based on SVM 

The classification based on SVMs has been used widely in many pattern recognition applications as the handwritten digit 

recognition [2]. The SVM is a learning method introduced by Vapnik et al. [94], which tries to find an optimal hyperplane for 

separating two classes. Its concept is based on the maximization of the distance of two points belonging each one to a class. 

Therefore, the misclassification error of data both in the training set and test set is minimized. 

Basically, SVMs have been defined for separating linearly two classes. When data are non linearly separable, a kernel 

function K  is used. Thus, all mathematical functions, which satisfy Mercer’s conditions, are eligible to be a SVM-kernel 

[94]. Examples of such kernels are sigmoid kernel, polynomial kernel, and Radial Basis Function (RBF) kernel. Then, the 

decision function  1,1R: pf , is expressed in terms of kernel expansion as: 

    bxxKyxf
Sv

k
kkk 

1

, (5) 

where k  are Lagrange multipliers, Sv  is the number of support vectors kx  which are training data, such that Ck 0 , 

C  is a user-defined parameter that controls the tradeoff between the machine complexity and the number of nonseparable 

points [73], the bias b  is a scalar computed by using any support vector. 

Finally, for a two-class problem, test data are classified according to: 

Source 2

Acquisition 
(Input Data) 

SVMs Classifier 
(Second descriptor) 

lassifier

SVMs Classifier 
(First descriptor) 

lassifier
DSmT based Parallel 

Combination 

Decision 

Source 1
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The extension of the SVM for multi-class classification is performed according the One Against-All (OAA) [95]. Let a set of 

N  training samples which are separable in n  classes  110 ,,, n  , such that     niNkyx pi
k

i
k ,..1 ;,..,1 ;1R,  .

The principle consists to separate a class from other classes. Consequently, n  SVMs are required for solving n  class 

problem. 

3.2. Classification Based On DSmT 

The proposed classification based on DSmT is presented in Fig. 2, which is conducted into three steps: i) estimation of 

masses, ii) combination of masses through the PCR6 combination rule and iii) decision rule. 

Fig 2. DSmT-based parallel combination for multi-class classification 

3.2.1. Estimation of Masses 

The difficulty of estimating masses is increased if one assigns weights to the composed classes [96]. Therefore, transfer 

models of the mass function have been proposed whose the aim is to distribute the initial masses on the simple and compound 

classes associated to each source. Thus, the estimation of masses is performed into two steps: i) assignment of membership 

degrees for each simple class through a sigmoid transformation proposed by Platt [89], ii) estimation of masses of simple 

classes and their complementary classes using a supervised model, respectively. 

 Calibration of the SVM outputs: Although, standard SVM is very discriminative classifier, its output values are not

calibrated for appropriately combining two sources of information. Hence, an interesting alternative is proposed in [89] to

transform the SVM outputs into posterior probabilities. Thus, given a training set of instance-label pairs

  Nkyx kk ,,1,,  , where p
kx R  and  1,1ky , the unthresholded output of an SVM is a distance measure

between a test pattern and the decision boundary as given in (5). Furthermore, there is no clear relationship with the

posterior class probability  xyP 1  that the pattern x  belongs to the class 1y . A possible estimation for this
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probability can be obtained [89] by modeling the distributions  1yfP  and  1yfP  of the SVM output  xf

using Gaussian distribution of equal variance and then compute the probability of the class given the output by using 

Bayes’ rule. This yields a sigmoid allowing to estimate probabilities: 

 
  BxfA

xyP





exp1
11  (7) 

Parameters A  and B  are tuned by minimizing the negative log-likelihood of the training data: 
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where  xyPQ kk 1


 and 
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1
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k
yt  denotes the probability target. 

 Supervised Model: Denoting  .1m  and  .2m  the gbba provided by two distinct information sources 1S  (First descriptor) 

and 2S  (Second descriptor), F  is the set of focal elements for each source, such that  110110 ,,,,,,,  nnF   , 

the classes i are separable (One relatively to its complementary class i ) using the SVM-OAA multi-class

implementation corresponding to different singletons of the patterns assumed to be known. Therefore, each compound 

element FAi   has a mass 1m  equal to zero, on the other hand, the mass of the complementary element 
ij

nj
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  is 

different from zero, which represents the mass of the partial ignorance. The same reasoning is applied to the classes issued 

from the second source 2S  and  .2m . Hence, both gbba  .1m  and  .2m  are given as follows:
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where  







1

0

n

j jbb xPZ   represent the normalization factors introduced in the axiomatic approach in order to respect 

the mass definition, 


bP  are the posterior probabilities issued from the first source  1b  and the second source  2b ,

respectively. They are given for a test pattern x  as follows: 

 
  

.
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1

ibibib
ib BxfA

xP





 (12) 

ibA  and ibB  are the parameters of the sigmoid function tuned by minimizing the negative log-likelihood during training for 

each class of patterns i , and  xf ib  is the i -th output of binary SVM classifier b
iSVM  issued from the source bS , such that 

1,,1,0  ni   and  2,1b .

In summary, the masses of all elements DA j allocated by each information source  2,1bSb  are obtained according 

the following steps: 

1. Define a frame of discernment  n ,,, 21  .

2. Classify a pattern x through the SVM-OAA implementation.

3. Transform each SVM output to the posteriori probability using Eq. (12).

4. Compute the masses associated to each class and its complementary using Eq. (9) and Eq. (10), respectively.

3.2.2. Combination of masses 

In order to manage the conflict generated from the two information sources 1S  and 2S  (i.e. both SVM classifications), the 

combined masses are computed as follows: 

21 mmmc  (13) 

where   defines the PCR6 combination rule as given in (1). Hence, in the context of some application of pattern recognition 

area, such as handwritten digit recognition, we take as constraints the propositions ( Ø ji  ,  ji  , ), such that 

ji  , which allow separating between each two classes belonging to  . 

Therefore, the hyper power set D  is reduced to the set F  as  110110 ,,,,,,,  nnF   , which defines a particular 

case of the Shafer’s model. Thus, the conflict   1,0cK  measured between two sources is defined as: 
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where FD \  is the set of all relatively and absolutely empty elements,  .1m  and  .2m  represent the corresponding 

generalized basic belief assignments provided by two information sources 1S  and 2S , respectively. 

3.2.3. Decision rule 

A membership decision of a pattern to one of the simple classes of   is performed using the statistical classification 

technique. First, the combined beliefs are converted into probability measure using a new probabilistic transformation, called 

Dezert-Smarandache probability (DSmP), that maps a belief measure to a subjective probability measure [14] defined as: 
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where  9,,1,0 i , 0  is a tuning parameter, M  is the Shafer’s model for  , and )( kM AC  denotes the DSm cardinal

of kA  [12]. Therefore, the maximum likelihood (ML) test is used for decision making as follows: 









 90),(max)(if jDSmPDSmPx jii   (16) 

where x  is the pattern test characterized by both descriptors, which are used during the feature generation step, and   is 

fixed to 0.001 in the decision measure given by (15). 

4. Experimental results

4.1. Database description and performance evaluation 

For evaluating the effective use of the DSmT for multi-class classification, we consider a case study conducted on the 

handwriting digit recognition application. For this, we select a well-known US Postal Service (USPS) database that contains 

normalized grey-level handwritten digit images of 10  numeral classes, extracted from US postal envelopes. All images are 

segmented and normalized to a size of 1616  pixels. There are 7291  training data and 2007  test data where some of them 

are corrupted and difficult to classify correctly (Fig. 3). The partition of the databse for each class according tranining and 

testing is reported in table 1. 

Fig 3. Some samples with their alleged classes from USPS database. 

9 8 6 3 5 

9 8 2 6 4 
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Table 1. Partitioning of the USPS dataset 

Classes 0 1 2 3 4 5 6 7 8 9 

Training 1194 1005 731 658 652 556 664 645 542 644 

Testing 359 264 198 166 200 160 170 147 166 177 

For evaluating performances of the handwritten digit classification, a popular error is considered, which is the Error Rate per 

Class (ERC) and Mean Error Rate (MER) for all classes. Both errors are expressed in %. 

3.2. Pre-processing 

The acquired image of isolated digit should be processed to facilitate the feature generation. In our case, the pre-processing 

module includes a binarization step using the method of Otsu [97], which eliminates the homogeneous background of the 

isolated digit and keeps the foreground information. Thus, we use the processed digit without unifying size image for 

recognition process. 

3.3. Feature Generation 

The objective of the feature generation step is to underline the relevant information that initially exists in the raw data. Thus, 

an appropriate choice of the descriptor improves significantly the accuracy of the recognition system. In this study, we use a 

collection of popular feature generation methods, which can be categorized into background features [98,99], foreground 

features [98,99], geometric features [2], and uniform grid features [100,101]. 

3.4. Validation of SVM Models 

The SVM model is produced for each class according the used descriptor. Hence, the training dataset is partitioned into two 

equal subsets of samples, which are used for training and validating each binary SVM, respectively. Thus, the validation 

phase allows finding the optimal hyperparameters for the ten SVM models. In our case, the RBF kernel is selected for the 

experiments. Furthermore, both the regularization and RBF kernel parameters  ,C  of each SVM are tuned experimentally

during the training phase in such way that the misclassification error of data in the training subset is zero and the validation 

test gives a minimal error during validation phase for each SVM separating between a simple class and its complementary 

class. 

Table 2 shows an example of the optimal parameters, which are obtained during both training and validation phases by using 

the UG-SVMs classifier. The parameters n  and m  define the number of the lines (vertical regions) and columns (horizontal 

regions) of the grid, respectively, which have been optimized during the validation phase for each SVM model. Therefore, 

these all parameters are used afterwards during the testing phase. ERCs and ERCc are the Error Rates per Class for simple 

and complementary classes, respectively. As we can see, the choice of the optimal size of the uniform grid and 

hyperparameters of each SVM should be tuned carefully in order to produce a reduced error. 
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Table 2. Optimal parameters of the UG-SVMs classifier 

Parameters SVM Classifier 
0 1 2 3 4 5 6 7 8 9 

n 7 2 8 5 4 7 7 8 8 7 
m 5 3 3 6 12 5 8 6 6 10 
 3.5 1 3.5 4 3 3.5 4 3.5 5 4.5 
C 5 3 4 5 4 4 2 4 3 5 
ERCs (%) 2.0 1.0 4.6 5.7 15.6 10.0 2.7 5.5 11.8 4.0 
ERCc (%) 0.6 1.1 0.4 0.3 0.1 0.3 0.1 0.1 0.3 0.4 

3.5. Quantitative results and discussion 

The testing phase is performed using all samples from the test dataset. Hence, the performance of the handwritten digit 

recognition classification is evaluated on an appropriate choice of descriptors using the SVM classifiers and then we evaluate 

the combination of the SVMs classifiers within DSmT framework. 

3.5.1. Comparative analysis of features 

The choice of the complementary features is an important step to ensure efficiently the combination. Indeed, the DSmT-based 

combination allows offering an accurate performance when the selected features are complementary. Hence, we propose in 

this section the performance of features in order to select the best ones for combining through the DSmT. For this, we 

evaluate each SVM-OAA implementation using Foreground Features (FF), Background Features (BF), Geometric Features 

(GF), Uniform Grid Features (UGF), and the descriptors deduced from a concatenation between at least two simple 

descriptors such as (BF,FF), (BF,FF,GF) and (UGF,BF,FF,GF). Indeed, the experiments have shown that the appropriate 

choice of both descriptors and concatenation order to represent each digit class in the feature generation step provides an 

interesting error reduction. In table 3, FF and UGF-based descriptors using SVM classifiers are evaluated. When 

concatenating background and foreground (BF,FF)-features, we observe a significant reduction of the MER. Indeed, an error 

rate reduction of 6.71% is obtained when concatenating BF and FF, respectively. Furthermore, an error rate reduction of 

1.5% is obtained when concatenating BF, FF and GF, respectively. This proves that BF, FF and GF are complementary and 

are more suitable for concatenation. In contrast, when concatenating UGF with BF, FF and GF, the MER is increased to 

2.73% comparatively to UGF. This proves that the concatenation does not always allow improving the performance of the 

classification. Thus, we expect that the UGF and (BF,FF,GF) descriptors are more suitable for combining through the DSmT.  

Table 3. Mean error rates of the SVM classifiers using different methods of feature generation 

Descriptor MER (%) 

(a) FF 18.87 

(b) (BF,FF) 12.16 

(c) (BF,FF,GF) 10.66 

(d) UGF 6.98 

(e) (UGF,BF,FF,GF) 9.71 
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3.5.2. Performance evaluation of the proposed combination framework 

In these experiments, we evaluate a handwritten digit recognition classification based on a combination of SVM classifiers 

through DSmT. The proposed combination framework allows exploiting the redundant and complementary nature of the 

(BF,FF,GF) and UGF-based descriptors and manage the conflict provided from the outputs of SVM classifiers. 

Decision making will be only done on the simple classes belonging to the frame of discernment. Hence, we consider in both 

combination process and calculation of the decision measures the masses associated to all classes representing the partial 

ignorance 
ij

nj
ji






10
  and ji    such that ji  . Thus, in order to appreciate the advantage of combining two sources of

information through the DSmT-based algorithm, Figure 4 shows values of the distribution of the conflict measured for each 

test sample between both SVM-OAA implementations using (BF,FF,GF) and UGF-based descriptors for the 10 digit classes 

 9,,1,0, ii , respectively. Table 4 reports the minimal and maximal values of the conflict  9,,1,0, iKci  generated 

through the supervised model, which represent the mass assigned to the empty set, after combination process. As we can see, 

the conflict is maximal for the digit 4 while it is minimal for the digit 9. 

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

371



(a) Measured conflict for the digits belonging to 0 (b) Measured conflict for the digits belonging to 1

(c) Measured conflict for the digits belonging to 2 (d) Measured conflict for the digits belonging to 3

(e) Measured conflict for the digits belonging to 4
(f) Measured conflict for the digits belonging to 5

(g) Measured conflict for the digits belonging to 6 (h) Measured conflict for the digits belonging to 7

(i) Measured conflict for the digits belonging to 8 (j) Measured conflict for the digits belonging to 9
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Fig 4. Conflict between both SVMs classifiers using (BF,FF,GF) and UGF-based descriptors for the ten digit classes 

 9,,1,0, ii , respectively.

Table 4. Ranges of conflict variations measured between both SVM-OAA implementations using (BF,FF,GF) and UGF-

based descriptors 

Class Minimal conflict (10-5) Maximal conflict (10-2)

0 2.149309 2.9933 

1 6.999035 2.9964 

2 2.747717 2.9992 

3 2.936855 2.9994 

4 0.494599 3.0000 

5 1.868961 2.9970 

6 2.537015 2.9887 

7 2.826402 2.9983 

8 1.485899 2.9910 

9 0.276778 2.9999 

For an objective evaluation, Table 5 shows ERC and MER produced from three SVM-OAA implementations using UGF, 

(BF,FF,GF), the descriptor resulting from a concatenation of both UGF and (BF,FF,GF) (i.e. combination at features level) 

and finally the PCR6 combination rule (i.e. combination at measure level) performed on (BF,FF,GF) and UGF based 

descriptors, respectively.  

Table 5. Error rates of the proposed framework with PCR6 combination 

rule using (BF,FF,GF) and UGF descriptors 

Descriptor Concatenation Combination rule 
ERC (%) (BF,FF,GF) UGF (UGF,BF,FF,GF) PCR6 

0 6.69 1.95 9.75 1.95 
1 4.55 3.79 3.79 3.03 
2 12.63 8.08 3.54 6.06 
3 17.47 10.84 18.67 10.84 
4 20.00 11.50 19.50 9.00 
5 16.87 10.00 10.62 7.50 
6 2.94 5.29 4.71 3.53 
7 8.84 8.16 8.84 4.76 
8 12.05 10.84 10.24 6.63 
9 10.73 6.21 10.17 5.65 

MER (%) 10.66 6.98 9.71 5.43 

Overall, the proposed framework using PCR6 combination rule is more suitable than individual SVM-OAA implementations 

since it provides a MER of 5.43% comparatively to the concatenation which provides a MER of 9.71%. However, when 
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inspecting carefully each class, we can note that the PCR6 combination rule allows keeping or reducing in the most cases the 

ERC except for the samples belonging to classes 2 and 6 .This bad performance is due to the wrong characterization of

both UG and (BF,FF,GF)-based descriptors. In other words, the PCR6 combination is not reliable when the complementary 

information provided from both descriptors is wrongly preserved. 

Thus, PCR6 combination rule allows managing correctly the conflict generated from SVM-OAA implementations, even 

when they provide very small values of the conflict (see Table 4) specifically in the case of samples belonging to 8 . Thus,

the DSmT is more appropriate to solve the problem for handwritten digit recognition. Indeed, the PCR6 combination rule 

allows an efficient redistribution of the partial conflicting mass only to the elements involved in the partial conflict. After 

redistribution, the combined mass is transformed into the DSm probability and the maximum likelihood (ML) test is used for 

decision making. Finally, the proposed algorithm in DSmT framework is the most stable across all experiments whereas 

recognition accuracies pertaining to both individual SVM classifiers vary significantly. 

4. Conclusion and future work

In this paper, we proposed an effective use of the DSmT for multi-class classification using conjointly the SVM-OAA 

implementation and a supervised model. Exclusive constraints are introduced through a direct estimation technique to 

compute the belief assignments and reduce the number of focal elements. Therefore, the proposed framework allows reducing 

drastically the computational complexity of the combination process for the multi-class classification. A case study conducted 

on the handwritten digit recognition shows that the proposed supervised model with PCR6 rule yields the best performance 

comparatively to SVM multi-classifications even when they provide uncalibrated outputs. In continuation to the present 

work, the next objectives consist to adapt the use of one-class classifiers instead of the OAA implementation of SVM in order 

to obtain a fixed number of focal elements within DSmT combination process. This will allow us to have a feasible 

computational complexity independently of the number of combined sources and the size of the discernment space. 
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Intelligent Alarm Classification Based on DSmT
Albena Tchamova

Jean Dezert

Abstract—In this paper the critical issue of alarms’ classi-
fication and prioritization (in terms of degree of danger) is
considered and realized on the base of Proportional Conflict
Redistribution rule no.5, defined in Dezert-Smarandache Theory
of plausible and paradoxical reasoning. The results obtained show
the strong ability of this rule to take care in a coherent and
stable way for the evolution of all possible degrees of danger,
relating to a set of a priori defined, out of the ordinary dangerous
directions. A comparison with Dempster’s rule performance is
also provided. Dempster’s rule shows weakness in resolving the
cases examined. In Emergency case Dempster’s rule does not
respond to the level of conflicts between sound sources, leading
that way to ungrounded decisions. In case of lowest danger’s
priority (perturbed Warning mode), Dempster’s rule could cause
a false alarm and can deflect the attention from the existing real
dangerous source by assigning a wrong steering direction to the
surveillance camera.

Keywords—Alarm classification; DSmT; DST; data fusion.

I. INTRODUCTION

The alarms classification and prioritization is a very
challenging and difficult task. The encountered overflowing
amount of alarms could become a serious source of confusion
especially in dangerous cases, when one needs to take a proper
immediate response. The problem is really critical, because
the information available for performing alarms processing is
uncertain, imprecise, even conflicting. There are cases, when
some of the alarms generated could be incorrectly interpreted
as false, increasing the chance to be ignored, in case when
they are really significant and dangerous. That way the critical
delay of the proper response could cause significant damages.

A lot of work was done during the years, because the
importance of this problem was recognized since the 1960s, in
wide world cases of surveillance: in industry (powerplants, oil
refineries), the clinical alarms in medicine, civilian and mili-
tary monitoring. Nowadays surveillance (military and civilian)
and environmental monitoring systems are characterized with
a smart operational control, based on the intelligent analysis
and interpretation of alarms coming from a variety of sensors
installed in the observation area. Many approaches have been
adopted and applied, addressing the problem in common. In
[1] a generic neuro-expert system architecture for training
neural networks in alarm processing is developed, which
is satisfactory when the training set covers enough range
of scenarios. An expert system with temporal reasoning for
alarm processing is proposed in [2]. Fault detection and alarm

processing in a loop system using a fault detection system is
presented in [3]. In [4] the authors consider a methodology,
based on both artificial neural networks and fuzzy logic for
alarm identification. The tasks of alarm processing, fault diag-
nosis and comprehensive validation of protection performance
are discussed and resolved in [5] using knowledge-based
systems and model-based reasoning approach. In [6] alarm
prioritization, using fuzzy logic is developed to prioritize the
alarms during alarm floods which would ease the burden of
operators with meaningless or false alarms. In case of multiple
suspicious signals, generated from a number of sensors in the
observed area, the problem of alarm classification requires
the most dangerous among them to be correctly recognized,
in order to decide properly where the video camera should
be oriented. Because of uncertainty and conflicts encountered
in signals’ data, one needs to process, analyze and inter-
pret correctly in timely manner all suspicious sound signals
separately at particular sensor’s levels in the observed area.
Such kind of conflicts could weaken or even mistake the
decision about the degree of danger in a critical situation.
That is why a strategy for an intelligent, scan by scan,
combination/updating of sounds data generated by each sensor
is needed in order to provide the surveillance system with
a meaningful output. There are various well known methods
for combining information, which could be applied. The most
used until now Dempster-Shafer Theory (DST) [9] proposes
a suitable mathematical model for uncertainty representation,
but its weak point in applications relates to the normalization
factor, which yields to non-adequate results when sources to
combine are highly conflicting. To overcome such drawback,
we apply the Proportional Conflict Redistribution Rule no.5
(PCR5), defined in Dezert-Smarandache Theory (DSmT) of
plausible and paradoxical reasoning [7]. It proposes a pow-
erful and efficient way for combining and utilizing all the
available information, allowing the possibility for conflicts and
paradoxes between the elements of the frame of discernment.
A comparison with DST performance based on Dempster’s
rule of combination1 is also provided in order to evaluate
the ability of DSmT to assure awareness about the alarms’
classification and prioritization in case of sound source data
discrepancies and to improve decision-making process about
the degree of danger. In section II we recall basics of DST and

1This rule is also called Dempster-Shafer rule, and denoted DS for short.

Originally published as Tchamova A., Dezert J., Intelligent Alarm 
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Dempster’s rule. Basics of PCR5 fusion rule are outlined in
section III. Section IV relates to the decision making support
used in order to decide which sound source is most dangerous.
In section V, we present the problem of alarms classification
and examine two solutions to solve it by using PCR5 and
Dempster’s rule. In section VI, the evaluation and comparative
analysis of both solutions are provided on a given simulation
scenario, that includes three sensors, generating three types of
signals (warning, alarm and emergency). Concluding remarks
are given in section VII.

II. BASICS OF DST
DST [9] proposes a suitable mathematical model for un-

certainty representationLet Θ = {θ1, θ2, . . . , θn} be a frame
of discernment of a problem under consideration containing n
distinct elements θi, i = 1, . . . , n. A basic belief assignment
(bba, also called a belief mass function) m(.) : 2Θ → [0, 1]
is a mapping from the power set of Θ (i.e. the set of subsets
of Θ), denoted 2Θ, to [0, 1], that must satisfy the following
conditions: 1) m(∅) = 0, i.e. the mass of empty set (impossible
event) is zero; 2)

∑
X∈2Θ m(X) = 1, i.e. the mass of belief

is normalized to one. m(X) represents the mass of belief
exactly committed to X . The vacuous bba characterizing full
ignorance is defined by mv(.) : 2Θ → [0; 1] such that
mv(X) = 0 if X 6= Θ, and mv(Θ) = 1. From any bba
m(.), the belief function Bel(.) and the plausibility function
Pl(.) are defined as ∀X ∈ 2Θ : Bel(X) =

∑
Y |Y⊆X m(Y )

and Pl(X) =
∑

Y |X∩Y 6=∅m(Y ). Bel(X) and Pl(X) are
classically seen as lower and upper bounds of an unknown
probability P (X) of X . Dempster-Shafer (DS) rule of com-
bination [9] is a mathematical operation, denoted ⊕, which
corresponds to the normalized conjunctive fusion rule. Based
on Shafer’s model of the frame, the combination of two
independent and distinct sources of evidences characterized by
their bba m1(.) and m2(.) and related to the same frame of
discernment Θ is defined by mDS(∅) = 0, and ∀X ∈ 2Θ\{∅}
by

mDS(X) = [m1 ⊕m2](X) =
m12(X)

1−K12
(1)

where
m12(X) ,

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) (2)

corresponds to the conjunctive consensus on X between the
two sources of evidence. K12 is the total degree of conflict
between the two sources of evidence defined by

K12 , m12(∅) =
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2) (3)

DS rule is commutative and associative. The weak point
of this rule is its behavior when K12 → 1 because it can
generate unexpected (at least very disputable) results [11].
When K12 = m12(∅) = 1, the two sources are said to
be in total conflict and their combination cannot be applied
since DS rule is mathematically not defined because of 0/0
indeterminacy [9].

III. BASICS OF PCR5 FUSION RULE

The idea behind the Proportional Conflict Redistribution
rule no. 5 (see [7], Vol. 3) is to transfer conflicting masses
(total or partial) proportionally to non-empty sets involved in
the model according to all integrity constraints. The general
principle of PCR rules is then to: 1 ) calculate the conjunctive
consensus between the sources of evidences; 2 ) calculate
the total or partial conflicting masses; 3 ) redistribute the
conflicting mass (total or partial) proportionally on non-empty
sets involved in the model according to all integrity constraints.
Under Shafer’s model assumption of the frame Θ, the PCR5
combination rule for only two sources of information is
defined as: mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mPCR5(X) = m12(X)+∑
Y ∈2Θ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (4)

where m12(X) corresponds to the conjunctive consensus on
X between the two sources and where all denominators are
different from zero. All sets involved in the formula are in
canonical form. All denominators are different from zero. If a
denominator is zero, that fraction is discarded. No matter how
big or small the conflicting mass is, PCR5 mathematically
does a better redistribution of the conflicting mass than DS
since PCR5 goes backwards on the tracks of the conjunctive
rule and redistributes the partial conflicting masses only to the
sets involved in the conflict and proportionally to their masses
put in the conflict, considering the conjunctive normal form
of the partial conflict. PCR5 is quasi-associative and preserves
the neutral impact of the vacuous belief assignment.

IV. DECISION-MAKING SUPPORT

In this work, we assume Shafer’s model and we use the
classical Pignistic Transformation [7], [10] to take a deci-
sion about the mode of danger. The pignistic probability
(Pign.Proba), also called the betting probability (BetP) is
defined for ∀A ∈ 2Θ by

BetP (A) =
∑

X∈DΘ

|X ∩A|
|X|

·m(X) (5)

where |X| denotes the cardinality of X .

V. ALARMS CLASSIFICATION APPROACH

Our approach for alarms classification assumes all the local-
ized sound sources to be subjects of attention and investigation
for being indication of dangerous situations. The specific
attributes of input sounds, emitted by each source, are sensor’s
level processed and evaluated in timely manner for their
contribution towards correct alarms’ classification (in term of
degree of danger). The input sounds attributes generated by
each sensor, at each time moment (scan) concern the frequency
of intermittence, fint and sound signal duration, Tsig . A
particular relationship between the specific values of fint and
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associated corresponding degree of danger is established, i.e
to map input specific sensor level data into the frame of
discernments, concerning the level of abstraction Degree of
Danger= {Emergency, Alarm, Warning}. Then the process
consists in temporal sensors’ level sound signals’ attribute
updating on the base of PCR5 fusion rule. Our motivation for
attribute fusion is inspired from the necessity to ascertain the
degree of danger, associated with all localized sound sources
separately, in order to quickly focus on the most dangerous
alarm information and to take immediate and correct feedback
actions to decide properly where the video camera should be
oriented. The applied algorithm considers the following steps:
• We define the frame of expected hypotheses according to
the respective degree of danger associated with the attributes’s
specific values as follows: Θ = {θ1 = (E )mergency , θ2 =
(A)larm, θ3 = (W )arning}. The hypothesis with a highest
priority is Emergency, following by Alarm and then Warn-
ing. These hypotheses are exclusive and exhaustive, hence
Shafer’s model holds and we work on power-set: 2Θ =
{∅,E ,A,W ,E ∪A,E ∪W ,A ∪W ,E ∪A ∪W }.
• A rule-base is defined in order to establish the relationships
between the sounds’ attributes associated with all localized
sources and corresponding degrees of danger, in the form:

Rule 1: if attributes-type 1 then Emergency
Rule 2: if attributes-type 2 then Alarm
Rule 3: if attributes-type 3 then Warning

where attributes types 1, 2 and 3 could be specific sounds’ at-
tributes values, which are informative enough to be processed
and evaluated for their contribution towards correct alarms’
classification. In this rule base attributes-type 1 is a sound’s
attribute, which is typical for degree of danger Emergency,
attributes-type 2 is typical for Alarm, attributes-type 3 for
Warning. In our case the frequency of intermittencies (if the
signal is intermittent) fint, associated with the localized sound
sources is utilized. Then the following specific rule-base is
used as an input interface to map the sounds’ attributes (so
called observations) obtained from all localized sources into
non-Bayesian basic belief assignments mobs(.):
Rule 1: if fint → 1Hz then mobs(E) = 0.9 and mobs(E ∪
A) = 0.1.
Rule 2: if fint → 5Hz then mobs(A) = 0.7, mobs(A ∪E) =
0.2 and mobs(A ∪W ) = 0.1.
Rule 3: if fint → 0Hz then mobs(W ) = 0.6 and mobs(W ∪
A ∪ E) = 0.4.
If the value of the sound attribute received is close to the
particular sound signal parameter for Emergency, our bba
is constructed in way that it will consider the hypothesis
Emergency and also the reasonable in this case composite
proposition (E∪A), representing a possible partial uncertainty.
If the value obtained is close to the particular sound signal
parameter for Alarm, our bba is constructed in way that it will
consider the hypothesis Alarm itself and also the reasonable in
that case composite propositions A∪E and A∪W . Assigning
a higher mass of belief to A ∪ E than to A ∪W is to take
care about the possibility for Emergency case. If the value
obtained is close to the particular sound signal parameter for

Fig. 1. Scenario.

Warning, our bba is constructed in way that it will consider
the hypothesis Warning and also the composite proposition
E ∪ A ∪W , representing the case of full ignorance, in order
to take care about possibility for Alarm and especially for
Emergency case. All the belief masses not already assigned to
singletons (E, A or W) are assigned to the reasonable partial
uncertainties reflecting the possible noise perturbations in the
observed information.
• At the very first time moment k = 0 we start with a
priori basic belief assignment (history) set to be a vacuous
belief assignment mhist(E ∪ A ∪W ) = 1 , since there is no
information about the first detected degree of danger according
to sound sources.
• Combination of currently received measurement’s bba
mobs(.) (for each of located sound sources), based on the
input interface mapping, with a history’s bba, in order to
obtain estimated bba relating to the current degree of danger
m(.) = [mhist ⊕ mobs](.). PCR5 and DS are tested in the
process of temporal data fusion to update bba’s associated
with each sound emitter.
• Flag for an especially high degree of danger has to be
taken, when during the a priori defined scanning period,
the maximum Pignistic Probability [7] is associated with the
hypothesis Emergency.
For security purpose, it is very important to keep updating
sequentially the estimation one has on the state of the true
modes of sound emitters, even if they are in the lowest
priority mode (i.e. in warning mode only) in order to prevent
unexpected alarm’s changes.

VI. SIMULATION SCENARIO AND RESULTS

In our simulation scenario (Fig. 1) a set of three sensors
located at different distances from the microphone array are
installed in an observed area for protection purposes, together
with a video camera [8]. It is assumed, that sensors are
assembled with alarm devices, as follows: Sensor 1 with
Sonitron, Sensor 2 with E2S, and Sensor 3 with System Sensor
companies alarm devices. In case of alarm events (smoke,
flame, intrusion, etc.) the alarm devices emit powerful sound
signals with various duration and frequency of intermittence
depending on the nature of the event. dangerous signal source.
These sensors are used for the purpose of estimation the
level of danger/threat for each place where they are located.
Data, obtained from each source are processed and analyzed
at particular sensor’s level independently, in consecutive time
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Fig. 2. Sonitron, E2S, System Sensor Sound Characteristics.

moments, with regard to all possible degrees of danger:
θ1 = (E )mergency , θ2 = (A)larm , and θ3 = (W )arning .
Doing this one could find the first suspicious moment, when

Table 1 Sound signal parameters.
Continuous Intermittent-I Intermittent-II
(Warning) (Alarm) (Emergency)
fint = 0Hz fint = 5Hz fint = 1Hz
Tsig = 10s Tsig = 30s Tsig = 60s

the situation could become eventually dangerous.
The sound signals representing Warning, Alarm and Emer-

gency, emitted from alarm devices, produced by Sonitron, E2S
and System Sensor companies used in our simulation (Table
1) are shown on Fig. 2. The first (left) column of Fig. 2 relates
to Sonitron, the second column to E2S, and the third (right)
column relates to System Sensor devices. The first row of
this figure represents the signal 1 for Warning, second row
represents signal 2, for Alarm, and the last third row represents
signal 3, for Emergency case. The Alarm signal is intermittent
with a frequency of intermittence fint = 5Hz and a duration
Tsig = 30s, so called type I. The Emergency sound signal is
intermittent with a frequency of intermittence fint = 1Hz and
duration Tsig = 60s, so called type II. The Warning signal is
continuous with fint = 0Hz and Tsig = 10s.

Our simulation scenario considers a true degree of danger
associated with the sound sources as follows: Emergency mode
for the first sound emitter, Alarm mode for the second, and
Warning mode - for the third one. The three sources are pro-
cessed in parallel and because of possible sound perturbations
we assume that possible random changes can be observed
over the scans for a given mode. We therefore introduce
some switches between the three modes Emergency, Alarm
and Warning to simulate what can happen in practice (what
we call ground truth and displayed with black plots on our
next figures 3 and 4. According to this, three main cases are
estimated:
• The most interesting for us it is the estimation of danger

level by sensor 1, associated with Emergency mode. In
our simulation, the The Ground Truth associated with
Sensor 1 considers that during scans 1–3 the observations
generated support the Emergency mode (the highest level
of danger). From scan 4 to scan 6 the observations
generated support the Warning mode (the lowest level
of danger). From scan 7 to scan 30 the observations

generated support again Emergency mode. Such kind of
scenario is important in the real world cases because
sources data can be deteriorated by noise perturbations
and therefore some possible conflicts arise between ob-
servations from scan to scan. We assume that a conflict
occurs in sounds data between Emergency and Warning
modes, because it could weaken strongly the decision
taken. It could become a reason to ignore the significance
of out of ordinary, dangerous situation.

• The second interesting case concerns the estimation of
probabilities of modes, associated with the sound emitter
2 working in Alarm mode. The Ground Truth has been
a little bit changed with respect to the ground truth
simulated for sensor 1. We assume that during scans
1–3 the observations generated support correctly the
Alarm mode. From scan 4 to scan 8 the observations
generated support the Emergency mode because of noise
perturbations. From scan 9 to scan 30 the observations
generated support again correctly the Alarm mode.

• The third interesting case concerns the estimation of the
probability of modes, associated with the third emitter
working in Warning mode. In our simulation of this
case, we considers that during scans 1–2 the observations
generated support correctly the Warning mode. From
scan 3 to scan 5 the observations generated support
the Emergency mode because of some possible noise
perturbations. From scan 6 to scan 30 the observations
generated support again correctly the Warning mode.

As a result of processing and analyzing sounds’ data,
obtained from the three sources, processed in parallel, one
establishes at each scan, for each source the Pignistic probabil-
ities, associated with all the considered modes of danger. The
decisions should be governed at the video camera level, taken
periodically, depending on: 1) specificities of the video camera
(time needed to steer the video camera toward a localized
direction); 2) time duration needed to analyze correctly and
reliably the sequentially gathered information. We choose as
a reasonable sampling period for camera decisions Tdec =
20sec, i.e. at every 10th scan, we should establish the decision
about the most probable mode of danger, associated with each
sound source, that way to declare directions for steering the
video camera. For our scenario, the decisive scans will be
10th, 20th, and 30th. In the next two subsections we analyze
the performances of PCR5 and DS to conclude on their ability
(or inability) to correctly identify the alarm modes for the
prioritization purpose.

A. PCR5 rule performance for danger level estimation.

Figure 3 shows the values of Pignistic Probabilities of
each mode (Emergency, Alarm, Warning) associated with three
sound emitters (1st source in Emergency mode, (subplot on the
top), 2nd source in Alarm mode (subplot in the middle), and
3rd source in Warning mode, (subplot in the bottom)) during
the all 30 scans. Each source has been perturbed with noises in
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Fig. 3. PCR5 rule Performance for danger level estimation.

accordance with the simulated Ground Truth, associated with
particular sound source. These probabilities are obtained for
each source independently as a result of sequential data fusion
of mobs(.) sequence using PCR5 combinational rule. For each
source, we analyze the probabilities of its modes obtained
with BetP computed from PCR5 rule and the corresponding
decisions for steering the camera at scans no. 10, 20, and 30.
Decision taken by PCR5 rule at scan 10:
For source 1, associated with Emergency mode (Fig. 3, top-
subplot), Pign.Proba established by PCR5 at scan 10 are as
follows: BetP (E) = 1.0, BetP (A) = 0, and BetP (W ) = 0.
During the first scans one has BetP (E ) < 1 because of the
impact of the full uncertainty at the beginning. During the tran-
sition period between scans 4 and 6 the Pignistic Probability
BetP (E ) decreases near to 0.4, and in a meantime BetP (W )
increases near to 0.6, reflecting that way the new observations
supporting the Warning mode. After reestablishing the proper
sound signal at scan 7, the PCR5 combination rule leads to
quick re-estimation of belief masses, assigned to the right
Emergency mode. One sees clearly the efficiency of PCR5 to
detect a mode switch from the sequential fusion of mobs(.). At
this processing stage, after decisive 10th scan, PCR5 rule takes
a correct, reliable decision that BetP (E) = 1.0, assuring that
camera will steer at this direction with highest priority.
For source 2, associated with Alarm mode, (Fig. 3, middle-
subplot), Pign.Proba established by PCR5 are as follows:
BetP (E) = 0.5, BetP (A) = 0.5, and BetP (W ) = 0. At
first scans, BetP (A) < 1, because of the full uncertainty at
the very first time moment, and then BetP (A) → 1. During
the transition time between scans 4 and 8, BetP (A) gradually
decreases, while BetP (E ) gradually increases. During this
period PCR5 rule takes attention according to the mode
with the highest priority, i.e. the Emergency mode. Starting
from scan 9 PCR5 rule reestablishes gradually (and enough

quickly after a short delay) the probability mass assigned
to Alarm mode. At the end of scan 10 PCR5 rule keeps
BetP (A) ≈ BetP (E), staying cautious about Emergency, but
this rule is on the way of fully reestablishing the beliefs in the
proper Alarm mode for this case and to forget the mistaken
Emergency mode.
For source 3, associated with Warning mode, (Fig. 3, subplot
in the bottom), Pign.Proba established by PCR5 are as follows:
BetP (E) = 0.2, BetP (A) = 0, and BetP (W ) = 0.8. Until
scan 10, because of the sound attributes measurement conflicts,
the PCR5 rule gives some support (non null probability) to
Emergency mode and also to Warning mode. Until scan 10,
its behavior is cautious about Emergency mode, and during this
time period it doesn’t establish a hard decision. PCR5 results
makes sense, because the decision about Warning mode is not
decisive/firm.
Decision taken by PCR5 rule at scan 20 and scan 30:
From scan 15 on, and for all sound sources 1,2 and 3, PCR5
rule estimation is fully adequate and reasonable.
For source 1, associated with Emergency mode, one has:
BetP (E) = 1, BetP (A) = 0, and BetP (W ) = 0.
For source 2, associated with Alarm mode: BetP (E) = 0,
BetP (A) = 1, and BetP (W ) = 0.
For source 3, associated with Warning mode: BetP (E) = 0,
BetP (A) = 0, and BetP (W ) = 1.

These Pign.Proba remain firmly one and the same at scans
20 and 30, associating in stable way the highest priority danger
to sound source 1 as expected in such scenario.

B. Dempster’s rule performance for danger level estimation.

The corresponding figure 4 shows the values of Pignistic
Probabilities of each mode (Emergency, Alarm, Warning)
associated with three sound emitters (1st source in Emergency
mode, (top subplot), 2nd in Alarm mode (middle subplot), and
3rd in Warning mode (bottom subplot)) during all 30 scans,
which are obtained as a result of sequential data fusion of
mobs(.) sequence using DS of combination.
Decision taken by Dempster’s rule at scan 10:
For source 1, associated with Emergency mode (Fig. 4,
subplot on the top), Pign.Proba established by DS are as
follows: BetP (E) = 1, BetP (A) = 0, and BetP (W ) = 0.
It is obvious, that during the scans 1 and 10 DS is unable
to respond to the new observations, arriving in scan 4 and
supporting the Warning mode. DS does not reflect at all the
new available data, which are informative and should be
taken into account. This pathological behavior could lead to
wrong decisions. In our particular case however, DS leads
to a right final decision at scan 10 by coincidence, but this
decision could not be accepted as coherent and reliable,
because it is not built on a consistent logical ground. Taking
important decisions by chance could be critically wrong and
could cause valuable damages.
For source 2, associated with Alarm mode (Fig. 4, middle
subplot), Pign.Proba established by DS are as follows:
BetP (E) = 1, BetP (A) = 0, BetP (W ) = 0. During
the scans 1 and 10, because of the conflicts in obtained
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measurements, DS generates a totally wrong Pign.Proba
BetP (E) = 1.0 assigned to Emergency, producing a hard
decision for Emergency case. DS leads here to false alarm.
That way video camera will be steered in wrong direction,
which in reality is not the direction with highest priority. It
means, that the true most dangerous direction for reaction
will be ignored.
For source 3, associated with Warning mode (Fig. 4, subplot
in the bottom), Pign.Proba established by DS are as follows:
BetP (E) = 1, BetP (A) = 0 and BetP (W ) = 0. Here
the same false alarm situation is established as in source 2.
Actually at scan 10 DS establishes totally wrong decisions
for source 2 and source 3. The only right decision taken
for source 1 is obtained by coincidence (because of not
responding behaviour of the rule) and has no logical ground.

Decision taken by Dempster’s rule at scan 20:

At scan 20, according to source 1, DS keeps its nonresponding
behaviour, leading to right, but taken by coincidence decision.
According to sensor 3 DS keeps the false alarm, as at scan 10.
It succeeds to take a right decision for source 2, associated
with Alarm mode, after a longer delay in reestablishing the
belief masses for Alarm, in comparison with PCR5 rule.

Decision taken by Dempster’s rule at scan 30:

At this scan DS succeeds to keep the right decision for source
2. However, it keeps performing as at scan 20, producing right,
but logically ungrounded decision for source 1, and false alarm
for source 3. Taking important decisions, concerning security,
by chance, could be critically wrong and dangerous. Steering
camera toward wrong direction, on the base of false alarm,
could become critical too, because that way the proper camera
response will be mistaken.

Fig. 4. Dempster’s rule Performance for danger level estimation.

VII. CONCLUSIONS

In this paper the alarms’ identification and prioritization (in
terms of degree of danger) has been considered and realized
using PCR5 rule of combination in order to estimate the proper
degree of danger, especially in crowded scene, where events
could happen at a set of a priori defined dangerous directions.
The method utilized is based on the sequential fusion of
the sound sources information obtained by two-dimensional
microphone array defining the positions of the sources in
surveillance area converted into basic belief assignments. A
comparison of performance of PCR5 rule with respect to
the performance of Dempster’s rule has been done. The
results obtained show the strong ability of PCR5 rule to take
care in a coherent and stable way for the evolution of all
possible degrees of danger, related to all the localized sources.
It is especially significant in case of sound sources’ data
discrepancies and conflicts, when the highest priority mode
Emergency occurs. PCR5 rule prevents to produce a mistaken
decision, that way prevents to avoid the most dangerous case
without immediate attention. A similar adequate behavior of
performance is established in cases of lower danger priority.
Dempster’s rule shows weakness in resolving the cases exam-
ined. In Emergency case, Dempster’s rule does not respond
to the level of conflicts between sound sources, leading that
way to ungrounded decisions. In cases of lower danger’s
priority (perturbed Warning and Alarm mode), Dempster’s
rule could cause a false alarm and can deflect the attention
from the existing real dangerous source by assigning a wrong
steering direction to the surveillance camera. In real world
cases involving a broad surveillance area and multiple located
sound sources, it becomes very important to realize distributed
parallel processing with respect to the number of sources, in
order to have correct decision in the proper time.
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Abstract—The present research is aimed to: (i) characterize
the ability of human visual system to define the objects’ slant
on the base of combination of visual stimulus characteristics,
that in general are uncertain and even conflicting. (ii) eval-
uate the influence of human age on visual cues assessment
and processing; (iii) estimate the process of human visual cue
integration based on the well known Normalized Conjunctive
Consensus and Averaging fusion rules, as well on the base of more
efficient probabilistic Proportional Conflict Redistribution rule
no.5 defined within Dezert-Smarandache Theory for plausible
and paradoxical reasoning. The impact of research is focused
on the ability of these fusion rules to predict in adequate way
the behavior of individuals, as well as age-contingent groups of
individuals in visual cue integration process.

Keywords—Integration of visual stimulus characteristics;
DSmT; probabilistic Proportional Redistribution rule no.5; Nor-
malized Conjunctive rule; Averaging rule.

I. INTRODUCTION

The visual information about the 3D world utilized by
humans is provided by a set of 2D images on the eye retina.
It leads to uncertainty and/or discrepancy in image interpreta-
tions because the same projections could belong to different
3D objects. As an additional complexity, the visual system
has to recover the information about objects’ depth (i.e. the
mutual disposition of objects) with respect to the observer. To
overcome these difficulties one needs to utilize and combine
in an effective way a variety of visual characteristics (or so
called cues) in order to achieve inferences, more informative
and potentially more accurate than if they were obtained by
means of a single cue. The process of combining, manipulating
and interpreting information in stimulus integration problem
is beneficial because it allows the human visual system to
estimate and perceive more accurately the objects’ properties
and to take appropriate actions, leading to improved reasoning
(judgment) under uncertainty or/and possible conflicts between
different visual stimulus. The uncertainty, associated with
the utilized visual cues and the possible conflicts between

This paper is partially supported by contract D002 − 240 /18.12.2008 with
Bulgarian National Science Fund.

them influences the decision making and action control in the
process of human aging due to the increased level of internal
noise in the visual system [1]. If the visual system neglects
some of the available information [2], the visual signal/noise
ratio will additionally deteriorate. Throughout the life cycle
many aspects of vision and visual information processing
decline and affect everyday task performance. 3D shape of
objects and their spatial layout are specified on the base of
both: static and dynamic visual cues. Age-related impairments
in visual processing and perception are observed for both of
them [3]. Therefore the task of vision inherently requires the
integration of all available visual cue information to determine
3D object’s shape. This paper focuses on human way of
integration of motion and texture information in the process
of object’s slant estimation. Our goal is to reveal not only
the age-related changes in the process of visual information
assessment, but also the plasticity of the visual system to
best adapt to these changes and to efficiently exploit all the
available information in the visual scene in order to provide
the visual system with a meaningful output, concerning more
accurate and robust spatial information about the 3D objects.
We will present and compare the performance of three fusion
rules to model human way of visual cue integration: Normal-
ized Conjunctive Consensus (NCC), Averaging (AVE), and
the probabilistic Proportional Conflict Redistribution rule no.5
(pPCR5) defined recently within Dezert-Smarandache Theory
(DSmT) for plausible and paradoxical reasoning. In section II
we present briefly the visual cue integration problem and recall
the principles of NCC, AVE and pPCR5 fusion rules. In sec-
tion III, we present the experimental strategy and procedure,
methods, subjects, involved in the experiments, stimulus and
used apparatus. In section IV, the research reasoning logic is
presented as well the results, obtained on the base of applied
fusion rules. Concluding remarks are given in section V.

II. VISUAL CUE INTEGRATION FOR SLANT ESTIMATION

Vision provides a number of static and dynamic cues to
the 3D layout of observed objects and scenes. Human show
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individual differences in their abilities to utilize these cues for
judgments. The first source of visual information considered
in this paper relates to 2D texture variations in the projection
of a slanted plane. The texture elements alter their form and
the degree of shortening depends on their relative position
in the plane and relative orientation to the observer - the
shortening of element form and the texture density are highest
in the direction of plane’s tilt. The degree of texture variation
depends on surface slant and it is biggest in the most distant
plane areas with respect to the observer. Another source of
visual information considers the object’s motion relative to the
observer. The gradient of velocity in two orthogonal directions
contains information about the object’s slant and tilt. When
both static and motion information is available, the efficient
way of combining data, provided by them, leads to more
accurate and robust estimation of object’s geometry and to
better understanding and recognition of the surrounding scenes
and objects. The common ideas for visual cue combination
in order to specify the viewer-dependent object’s character-
istics rely on the assumption of cue independence. There
are various methods for modeling the visual cue integration
process. Bayesian inference [4], [5] is a classical approach for
modeling and processing probabilistic information. An ideal
Bayesian observer was used to define the optimal weighting
and combination of redundant visual cues [8], [9]. The main
difficulties applying it concern the need of measurements’
statistics and knowledge about the a priori information. The
Bayesian framework was applied for modeling the spatial
integration of auditory and visual information [6], for visual
and haptic integration [7] where the main idea is that the
human brain combines visual cues to obtain the most reliable
estimate of the state of the world, i.e. the estimate in which the
variance of the resulting combined cue is minimized. As it will
be shown in our research, this kind of integration, being very
sensitive to the sources with the bigger means, neglects part of
available information, which is very unsatisfactory behavior in
cases of combining conflicting visual cues. Generally visual
data are not only inaccurate, incomplete and uncertain, but
even conflicting, because the observer moves, or the surfaces
could change their orientation in the particular scene, or one
object occludes the other. All these data particularities must
be incorporated in the process of human visual perception in
order to provide a complete and accurate model of the real
world and to improve the decision accuracy. In our study we
will apply and compare the performance of three fusion rules:
NCC rule, pPCR5, and AVE fusion rules to model the human
process of visual cues integration.

A. Normalized Conjunctive Consensus rule

The Normalized Conjunctive Consensus (NCC) rule is used
to combine simultaneously assumed independent visual cues.
In case considered, the information obtained by the available
visual cues is characterized by Gaussian likelihood functions
with given means µi, i = 1, 2, .. and standard deviations
σi, i = 1, 2, .., defining the uncertainty encountered in data.
In case of two independent visual cues with one-dimensional

Gaussian distributions p1(x) = 1
σ1

√
2π

exp− 1
2 (

x−µ1

σ1
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p2(x) = 1
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It is characterized with a mean, biased toward the function
with the bigger of the two means, similar to Bayesian estima-
tor. It is optimal (minimizes the variance of the error estima-
tion), when the original distributions have close mean values.
When two visual cues are in conflict, however, (characterized
with distant distributions), NCC rule leads to neglecting (not
utilizing) part of the available information, because the source
with the bigger mean is weighted more heavily. In this case
it is reasonable to keep the original distributions in the fused
probability density function until it is possible to make reliable
decision. This has been done by pPCR5 fusion rule defined in
DSmT .

B. Probabilistic Proportional Conflict Redistribution rule no.5

The general principle of all Proportional Conflict Redis-
tribution rules [10], Vol.3 is to: 1 ) calculate the conjunc-
tive consensus between sources of evidence (different visual
cues) 2 ) calculate the total or partial conflicting masses; 3 )
redistribute the conflicting mass (total or partial) proportion-
ally on non-empty sets involved in the model according to
all integrity constraints. The recently proposed non-Bayesian
probabilistic Proportional Conflict Redistribution rule no.5
[11] is based on the discrete Proportional Conflict Redistri-
bution rule no.5 (PCR5) [10], Vol.3, for combining discrete
basic belief assignments. For completeness, we will discuss
in brief the main idea behind the discrete PCR5. It comes
from the necessity to deal with both uncertain and conflicting
information, transferring partial or total conflicting masses pro-
portionally only to non-empty sets involved in the particular
conflict and proportionally to their individual masses. Basic
belief assignment (bba) represents the knowledge, provided
by particular source of information about its belief in the true
state of the problem under consideration. Given a frame of
hypotheses Θ = {θ1, ..., θn}, and the so called power set
2Θ = {∅, θ1, ..., θn, θ1∪θ2, ..., θ1∪θ2∪ ...∪θn}, on which the
combination is defined, the general basic belief assignment is
defined as a mapping ms(.) : 2Θ → [0, 1], associated with
the given source of information s, such that: ms(∅) = 0
and

∑
X∈2Θ ms(X) = 1. The quantity ms(X) represents the

mass of belief exactly committed to X . Under Shafer’s model
assumption of the frame Θ (requiring all the hypotheses to
be exclusive and exhaustive), the PCR5 combination rule for
only two sources of information is defined as: mPCR5(∅) = 0
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and ∀X ∈ 2Θ \ {∅}

mPCR5(X) = m12(X)+∑
Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (2)

All sets involved in the formula are in canonical form. The
quantity m12(X) corresponds to the conjunctive consensus,
i.e: m12(X) =

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2). All denom-

inators are different from zero. If a denominator is zero,
that fraction is discarded. No matter how big or small the
conflicting mass is, PCR5 mathematically does a proper redis-
tribution of the conflicting mass since PCR5 goes backwards
on the tracks of the conjunctive rule and redistributes the
partial conflicting masses only to the sets involved in the
conflict and proportionally to their masses put in the conflict,
considering the conjunctive normal form of the partial conflict.
PCR5 is quasi-associative and preserves the neutral impact
of the vacuous belief assignment. The probabilistic PCR5
is an extension of discrete PCR5 version to its continuous
probabilistic counterpart. Basic belief assignment, involved in
discrete PCR5 rule is extended to densities of probabilities of
random variables. For two independent sources of informa-
tion with given Gaussian distributions p1(x) and p2(x), the
obtained combined result becomes [11]:

ppPCR5(x) = p1(x)

∫
p1(x)p2(y)

p1(x) + p2(y)
dy+

p2(x)

∫
p2(x)p1(y)

p2(x) + p1(y)
dy (3)

The behavior of pPCR5 fusion rule in comparison to NCC
rule (1) could be characterized by two cases below:
Case 1: both densities p1(x) and p2(x) are close (Fig.1-
case 1). The combined density acts as an amplifier of the
information by reducing the variance. Here pPCR5 acts as
NCC fusion rule.
Case 2: the densities p1(x) and p2(x) are distant (Fig.1-case
2). Then the combined density keeps both original densities
(not merging both densities into only one unimodal Gaussian
density as NCC rule does), avoiding to neglect a part of the
available information.

This new (from a theoretical point of view) property is very
interesting and it presents advantages for practical applications
as it will be shown in our particular research. Application of

Fig. 1. Performance of pPCR5 fusion rule vs. NCC rule.

Fig. 2. Texture types: (left) dots, (right) lines.

pPCR5 fusion rule assures robustness to the potential errors
and allows taking more reliable and adequate decisions in the
process of integration of different cues in visual perception.

C. Averaging rule

The discrete simple Averaging rule consists in a simple
arithmetic average of belief functions associated with sources
of information (in our case particular visual cues). For given
two sources of information defined with their discrete bba’s:
m1(.) and m2(.), for ∀X ∈ 2Θ \ {∅}, the combined distri-
bution based on this rule becomes mAV E(X) = 1

2 (m1(X) +
m2(X)). This trade-off rule is commutative, but not associa-
tive. In case of two independent and equally reliable/trustful
visual characteristics, associated with Gaussian distributions:
p1(x) and p2(x), the combined distribution based on Averag-
ing rule becomes:

pAV E(x) =
1

2
(p1(x) + p2(x)) (4)

III. EXPERIMENTAL GOAL, METHODS, AND PROCEDURE

The experimental goal is directed to: (i) characterize the
ability of human visual system to define the objects’ slant on
the base of only single cue available: Texture Information Only
(referred as TIO case) or Motion Information Only (referred
as MIO case), as well as in the case of both Texture and
Motion information (referred as TM case), since human show
significant individual differences in their abilities to combine
and utilize both texture and motion information for judgments;
(ii) evaluate the influence of human age on the assessment of
objects’ characteristics using available visual information.

A. Observers

Twelve elderly (mean age 74 years, range 67-85 years)
and twelve younger (mean age 21 years, range 18-25 years)
subjects took part in the experiments. All of them have passed
eye examination. None of them reported having any major
health problems.

B. Stimuli

The stimuli represent two slanted textured planes that form
a symmetric horizontal dihedral angle. Two types of textures
were rendered over the planes: dots (Fig.2-left) or a texture of
non-intersecting lines (Fig.2-right).

Nine different sizes of the dihedral angles were used: 20
deg, 35 deg, 50 deg, 65 deg, 80 deg, 95 deg, 110 deg, 125
deg, and 140 deg. To change the size of the dihedral angle, the
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slant of the two planes that hinged together was changed by
an equal amount. One static and two dynamic conditions were
generated. In all conditions the dihedral angle was presented in
the middle of a computer screen under perspective projection
and its vertical dimensions were fixed to 7 degrees of visual
angle. In the static condition (TIO case) the information
about the surface slant and consequently about the size of the
dihedral angle is provided only by the changes in the texture
over the planes. In the dynamic conditions (MIO case) the
dihedral angle translated horizontally leftwards or rightwards
with a speed of 6.4 deg of arc/s. It changed direction on every
1.1 s. In one of these conditions the texture specifies a flat
object and thus, the information about the surface slant and
the size of the dihedral angle is provided only by the motion.
To achieve this, the texture coordinates were calculated relative
to the eye coordinate system and they did not vary with the
relative depth of the planes forming the dihedral angle. In the
other dynamic condition (TM case) both the texture variation
and the velocity of the object parts depend on the relative
depth and therefore both specify the surface slant and the size
of the dihedral angle.

C. Apparatus

The stimuli were presented on 21” Dell Trinitron monitor
with Nvidia Quadro 900XGL graphic card. The monitor
resolution was 1600 x 1200 pixels and the refresh rate was 85
Hz. The stimuli were rendered on the screen using OpenGL.
Grayscale images with 8 bit precision (256 colors) were used.
The monitor was gamma-corrected using a lookup table.

D. Experimental Procedure

The observer sat in semi-illuminated room at a distance
of 114 cm from the computer screen. The method of single
stimuli was used. On every trial the observers had to compare
the stimulus with an internal standard - a right dihedral
angle. The task of the observers was to evaluate whether
the presented dihedral angle was larger/smaller than a right
angle. Each subject participated in 6 sessions. The sessions
differed by the experimental condition and the texture type.
The order of the experimental sessions was contra-balanced
across observers. In every experimental session the 9 different
values of the dihedral angle were presented in random order
30 times. Each experimental session started with a demo to
familiarize the subjects with the texture types (Fig. 2) used in
the study and the way the texture changes in the different
experimental conditions. The proportion of responses ”the
dihedral angle is larger than the right angle” is estimated for
all different experimental conditions and for each subject the
resulting psychometric functions are obtained. For example
the observed psychometric function, associated with the first
tested young subject for the case TM is given in Table I.

All subjects passed a priori training session of 60 trials
in which a particular checkerboard pattern (Fig.3-left) was
used to texture the dihedral angle under perspective projection
(Fig.3-right). It helps the subjects to get familiar with the task
to perform. The results of training were not taken into account.

Fig. 3. Checkerboard pattern (left), Angle under perspective projection
(right).

The dihedral angle remained visible on the screen until an
answer was received. To give response the younger subjects
used the buttons of a computer mouse while the elderly gave
an oral response that was recorded by the experimenter.

IV. EXPERIMENTAL AND RESEARCH LOGIC

Once having all psychometric functions, obtained for all
different experimental conditions and for each subject in age-
contingent groups, we should answer several questions:
Question 1. What is the effect of texture (dots, lines ) in MIO
case? Does the manipulation of the texture we applied succeed
to eliminate it’s effect in MIO case?
Question 2. How human observers combine the visual cues in
order to estimate surface’s slant? Do they base their responses
on a single cue (MIO or TIO) or on their combination TM?
If a single cue is used, which one - TIO or MIO is more
informative?
Question 3. What combination rule (NCC, pPCR5, or AVE)
used to combine available visual cues predicts more adequately
human’s way of cue integration?
Question 4. What is the common trend, concerning the
visual cue combination performance of both age-contingent
groups, i.e the performance of the so-called averaged-people,
associated with each group. We denote these trends as: trend
of averaged-young-people and respectively trend of averaged-
old-people. They are based on combined individual behav-
iors in particular group, reveling its intrinsic behavior as a
whole, reducing uncertainties associated with individual per-
formances. All the tested subjects in age groups are considered
as independent and equally reliable sources of information,
because each subject provides his/her own psychometric func-
tion, associated with the TM combination process and should
be taken into account in equal rights to derive these trends.
Our goals are: (i) to find out which combinational rule (NCC,
pPCR5 or AVE) is able to model correctly and adequately such
human age-contingent group trends in reasoning process; (ii)
to analyze the special features, characterizing these trends.

TABLE I
EXAMPLE OF PSYCHOMETRIC FUNCTION.

Angle’s Value 20 35 50 65 80 95 110 125 140

Answers
angle> 90deg 0 0.12 0.17 0.73 0.9 0.95 0.98 1 1

over 30 times
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V. RESULTS

The experimental psychometric functions for both age
groups and for all experimental conditions were compared
using the pfcmp extension of MATLAB toolbox psignfit [14].
It implements a maximum-likelihood method [12] for fitting
the psychometric functions and compares the parameters of
the fits when estimated from the separate data sets and when
the two sets are combined. As a result the significance value
p is produces as a measure of fit between the examined
psychometric functions.
• Results concerning Question 1 stated in Section IV.

The results show that in MIO case the effect of the texture’s
type (line or dots) is effectively eliminated - for 10 out of
12 observers in each age group the null hypothesis of equal
psychometric functions for both texture types could not be
rejected at the assumed reliability level of p = 0.05. For
static TIO case the comparison of the psychometric functions
obtained for line texture and for dots texture for both age
groups, shows that the null hypothesis could not be rejected
at p = 0.05 for only 3 subject in each age group. These
results suggest that the differences in the texture’s type affect
the subjects’ performance significantly more in the static
case. The smaller effect of the texture’s types in MIO case
provides indirect evidence that in these conditions the subjects’
performance is based on the motion information.
• Results concerning Question 2 stated in Section IV.

In order to answer this question, we have analyzed and
compared the experimental psychometric functions obtained
for each subject in both age-contingent groups given the
following cases:
• {dots-based TIO vs. dots-based MIO vs. dots-based TM}
• {line-based TIO vs. line-based MIO vs. line-based TM}

Older people rely more on the static information, especially
in case of dots texture type. Five out of 12 subjects do not
show significant difference (p = 0.05) in their performance
for the TIO and TM case for dots texture, and 4 out of 12
subjects - for line texture. Young people rely more on the
dynamic information: the psychometric functions for MIO and
TM case do not differ significantly at p = 0.05 for 5 out of
12 subjects for dots texture and 4 out of 12 - for line texture.
• Results concerning Question 3 stated in Section IV.

In order to answer correctly this question we should evaluate
the performances of applied combinational rules in the process
of visual cue integration to predict the model of human fusion
performance on the base of theoretically predicted psychome-
tric functions. A comparison between experimentally obtained
and predicted psychometric functions for all tested cases is
provided on the base of goodness-of-fit test [13], one important
application of chi-squared criteria: χ2 =

∑J
j=1

(Oj−Ej)
2

Ej

where χ2 is an index of the agreement between an ob-
served(O)/experimental and expected(E)/predicted via partic-
ular fusion rule sample values of psychometric function. For
our case J = 9 represents the number of test angle values.
The critical value of the test for ν = J − 1 = 8 degrees of
freedom at assumed p = 0.01 is χ2 = 13.36 [13]. This test is

TABLE II
CHI-SQUARED VALUES FOR OLDER SUBJECTS.

Subject dotsTM pPCR5 / AVE dotsTM NCC lineTM pPCR5 / AVE lineTM NCC

1 0.0653 / 0.0586 0.1359 0.1775 / 0.2032 0.5159
2 0.8415 / 0.9015 3.7232 0.0694 / 0.0663 0.0796
3 0.2359 / 0.2547 0.4360 0.0827 / 0.0934 0.1373
4 0.6995 / 0.6876 3.9117 0.1380 / 0.1461 0.1522
5 0.3618 / 0.3031 0.3751 0.2982 / 0.3098 0.3927
6 0.1066 / 0.1304 0.1387 0.1735 / 0.1943 0.2261
7 0.1859 / 0.1901 0.1935 0.1881 / 0.2101 0.4306
8 1.6944 / 1.7958 5.2330 0.3813 / 0.3114 0.4585
9 0.1697 / 0.2078 0.8814 1.0045 / 1.0062 1.5113

10 0.0368 / 0.0561 0.0566 0.1391 / 0.1411 0.1519
11 0.0909 / 0.0709 0.1021 0.0577 / 0.0499 0.0851
12 0.2664 / 0.2564 1.1320 0.1798 / 0.1682 1.5873

applied for both texture’s types (dots and line) to the following
pairs of psychometric functions:

• {MT case(experimental) - MT case (NCC rule)}
• {MT case(experimental) - MT case (pPCR5 rule)}
• {MT case(experimental) - MT case (AVE rule)}

In general, the results show that the pPCR5 and AVE
fusion rule predict more adequately than NCC rule human
performance in all experimental cases. The differences be-
tween the experimental and estimated via pPCR5 and AVE
rules psychometric functions for all observers in both age
groups are smaller than those, obtained by NCC rule. For
older subjects (Table II) all fusion rules predict psychometric
functions that do not differ significantly from the experimental
ones, but the differences in the fits are smaller in case of
pPCR5 and AVE rules than in case of NCC rule application.
For younger subjects (Table III), however, the NCC rule does
not predict adequately the performance of the subjects in some
conditions. For Subjects no. 5 and no. 6 (dots-based TM case)
and for Subjects no. 4 and no. 9 (lines-based TM case) the
obtained values (put in bold in Table III) significantly exceed
the critical value of 13.36. The graphical results reflecting
younger subjects’ no. 4 and no. 9 fusion behaviors in line TM
case are shown in Fig. 4. These results reflects the situations,
when the experimentally obtained psychometric functions,
associated with single cues (TIO and MIO) are characterized
with distant underlying Gaussian distributions. In this case
pPCR5 and AVE fusion rules make predictions, which model
more correctly and adequately human fusion behavior. They
are almost similar, but pPCR5 rule performs better than AVE
rule in these conflicting cases. In the integration process,
based on NCC rule however, part of available information was
neglected, because the visual cues with bigger means were
weighted more heavily (as it was described in Section II A.).
• Results concerning Question 4 stated in Section IV.

In order to evaluate the common trend in the performance
of both age groups, we started with the assumption that the
tested subjects within each group are independent individual
sources of information/answers and all of them are equally
reliable. The results obtained for experimental and estimated
(via different fusion rules) trends, concerning the visual cue
combination groups’ performance are presented in Fig. 5:
subplots 1, 3 for older group, and subplots 2, 4 for younger
one. Subplots 1 and 2 show results for line texture’s type and
subplots 3 and 4 - for dots texture’s type.

In order to compare the performance of different fu-
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TABLE III
CHI-SQUARED VALUES FOR YOUNGER SUBJECTS.

Subject dotsTM pPCR5 / AVE dotsTM NCC lineTM pPCR5 / AVE lineTM NCC

1 0.2976 / 0.3011 0.8526 0.0218 / 0.0191 0.0258
2 0.0801 / 0.0932 0.1456 0.1264 / 0.1525 0.6591
3 0.2182 / 0.2076 0.2690 0.1157 / 0.1201 0.1347
4 1.4509 / 1.4432 1.4716 0.6354 / 0.6523 57.4916
5 8.1655 / 8.1762 45.1458 1.4695 / 1.4512 2.4105
6 3.2425 / 3.3195 34.1458 0.1953 / 0.2003 12.2206
7 0.0014 / 0.0021 0.0079 0.2810 / 0.2957 0.9054
8 0.9201 / 0.8925 6.6588 0.3542 / 0.3513 0.9365
9 0.4950 / 0.4861 0.5160 0.8665 / 0.9341 87.1105
10 0.7633 / 0.7527 0.8304 0.1554 / 0.1599 0.1927
11 0.4202 / 0.4259 0.4380 0.3949 / 0.3901 0.3977
12 0.6371 / 0.6458 4.4540 0.0532 / 0.0525 0.2447

TABLE IV
CITY BLOCK ERRORS BETWEEN EXPERIMENTAL AND PREDICTED TRENDS.

PCR5 NCC AVErage
lineTM Older group 0. 03 0. 10 0.04
dotsTM Older group 0. 06 0. 11 0.04

lineTM Younger group 0. 02 0. 12 0.04
dotsTM Younger group 0. 02 0. 11 0.03

sion rules in estimating common trends’ prediction the
city-block errors between the corresponding pairs averaged-
young/old-people MT(experimental) - averaged-young/old-
people (NCC/pPCR5/AVE rules) for both texture’s types are
given in Table IV. Results show ultimatively that experimen-
tally obtained trends and those, based on pPCR5 and AVE
fusion rules are very closed and for both age-contingent groups
are two times less then those, obtained via NCC fusion rule.
pPCR5 and AVE rules predict more correctly the human model
of reasoning, than NCC rule. pPCR5 performs a little bit better
than AVE rule, utilizing all the available information (TIO
and MIO), even in case of conflict. NCC based trends are
very sensitive to the sources (different subjects’ psychometric
functions) with the bigger means, neglecting that way part of
the available information and acting as an amplifier of the
information by reducing the variances.

Fig. 4. Experimental and predicted performance for subject no.4 and no.9.

Fig. 5. Experimental and Predicted Trends in Performance of Age-related
Groups.

VI. CONCLUSIONS

The results obtained in this study show age-related differ-
ence in the performance of the subjects in estimating the three-
dimensional shape of the objects based on the texture and
motion information. The task of the observers used in the
study required the estimation of surface slant - a viewpoint
dependent characteristic of the visual stimulation that is im-
portant for visual navigation and for object manipulation. Our
data suggest that the younger people are more sensitive to
differences in surface slant, but in the same time they are less
accurate in their estimates. This cannot assure the robustness
according to the potential errors during the experiments and
leads to decisions which are less reliable than those taken
by older people. Younger people as a group rely mainly on
motion information neglecting the texture one. Elder people
are characterized with less sensitivity to difference in the
spatial characteristics of the three-dimensional objects in the
real world, but they used to compensate this drawback by
higher accuracy in their answers. Naturally this leads to ability
to utilize correctly most of available stimulus information and
then to improve the decision accuracy. The performance of
both age groups in combining static and dynamic information
is better described by the pPCR5 and AVE rule. In comparison
to NCC rule, especially in conflicting cases pPCR5 fusion
rules utilizes not only all available stimulus information, but
this is achieved irrespective of the texture type (line or dots).
That way pPCR5 fusion rule assures preserving the richness
of stimulus data in the process of visual stimulus combination.

REFERENCES

[1] Pardhan, S. Contrast sensitivity loss with aging: sampling efficiency and
equivalent noise at different spatial frequencies, JOSA A, Vol.21 (2),
2004, pp. 169–175.

[2] Falkenberg HK., Bex PJ. Sources of motion-sensitivity loss in glaucoma,
Invest Ophthalmol Vis Sci., 48(6), 2007, pp. 2913–21.

[3] Owsley, C. Aging and vision, Vision Research, 2010.
[4] Bayes, T. An Essay towards solving a Problem in the Doctrine of

Chances, Philosophical Transactions of the Royal Society of London,
1763, pp. 330–418.

[5] Sivia, D. Data Analysis, a Bayesian Tutorial, Clarendon (Oxford), 1996.
[6] Alais D., Burr D. The ventriloquist effect results from near optimal cross

modal integration, Current Biology, 14, 2004, pp. 257–262.
[7] Ernst M., Banks M. Humans integrate visual and haptic information in

a statistically optimal fashion, Nature, 415, 2002, pp. 429-433.
[8] Knill, D. Robust cue integration: A Bayesian model and evidence from

cue-conflict studies with stereoscopic and figure cues to slant, Journal
of Vision 7(7):5, 2007, pp. 1-24.

[9] Stocker A., Simoncelli E. Constraining a Bayesian Model of Human
Visual Speed Perception, Advances in Neural Information Processing
Systems, vol.17, 2005, pp. 1361–1368.

[10] Smarandache F., Dezert J. Advances and applications of DSmT for
information fusion, Volumes 1, 2, 3, ARP, 2004–2009.

[11] Kirchner A., Dambreville F., Celeste F., Dezert J., Smarandache F.
Application of probabilistic PCR5 Fusion Rule for Multisensor Target, In
Proc.of International Conference of Information Fusion, Qubec, Canada,
July 9-12, 2007.

[12] Wichmann FA., Hill NJ. The psychometric function: I. Fitting, sampling
and goodness-of-fit. Perception and Psychophysics 63(8), 2001, pp.
1293–1313. Perception and Psychophysics 63(8), 2001, 1314-1329.

[13] Matre, J., Gilbreath G. Statistics for Business and Economics, 3rd
Edition, ISBN 0-256-03719-1, 1987.

[14] Psignifit software, http://bootstrap-software.org/psignifit/.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

392



Erik Blasch
Jean Dezert
B Pannetier

ABSTRACT 
Over the years, there have been many proposed methods in set-based tracking. One example of set-based methods is the use 
of Dempster-Shafer (DS) techniques to support belief-function (BF) tracking. In this paper, we overview the issues and 
concepts that motivated DS methods for simultaneous tracking and classification/identification. DS methods have some 
attributes, if applied correctly; but there are some pitfalls that need to be carefully avoided such as the redistribution of the 
mass associated with conflicting measurements. Such comparisons and applications are found in Dezert-Smarandache 
Theory (DSmT) methods from which the Proportional Conflict Redistribution (PCR5) rule supports a more comprehensive 
approach towards applying evidential and BF techniques to target tracking. In the paper, we overview two decades of 
research in the area of BF tracking and conclude with a comparative analysis of Bayesian, Dempster-Shafer, and the PCR5 
methods.  

Keywords: Dempster-Shafer, Belief Functions, DSmT, Target Recognition, Classification, & Identification, Tracking  

1. INTRODUCTION

Humans and machines are typically trained for specific missions and/or scenarios [1].  One such case is classification of a 
moving target [2]. To integrate the benefits of human reasoning with machine methods, popular techniques of information 
fusion [3], target tracking [4], and pattern classification [5] are used.   

When the human approaches the target, either the target is moving, the human is moving, or both are moving [6]. 
Cognition, the act of directing attention to sensory information, can be used by the human to fuse track and identify (ID) 
information as a perception of a set of moving targets. Dynamic cognitive multitarget-multisensor fusion under uncertainty 
requires target selection which can be formulated as a belief filtering problem in which sensed target states and identities 
are represented as current situational beliefs. The objective of the human is to 1) abstract number of tracks from the 
tracking environment, 2) assess confidence levels from the target classification algorithm, and 3) integrate the information 
for real-time beliefs of the number and types of targets from a plausible set of targets through an interactive display [7]. 

Multitarget tracking and ID is a subset of sensor fusion, which includes selecting sensors [8], sensor recognition policies, 
and tracking algorithms for a given set of mission requirements [9] for situational awareness [10, 11].  For example, in a 
typical tactical aircraft, the onboard sensors are active radar, electro-optical/infrared (EO/IR), and navigation sensors, with 
each sensor having a variety of modes in which it can operate and features it can detect.  Figure 1 shows the case of EO/IR 
targets. The EO/IR sensor makes kinematic measurements to detect, track, and classify objects of interest while reducing 
user workload. In a dynamic and uncertain environment, a sensor manager, such as a human, must fuse the track and 
classification information to ID the correct target at a given time and can aid tracking algorithms by determining a set of 
tracks to follow and aid classification algorithms by constraining the set of plausible targets.  

Figure 1. (a) Electro/Optical (EO) image and (B) Infrared (IR) image of targets [12].  

Originally published as Blasch E., Dezert J., Pannetier B., Overview 
of Dempster-Shafer and Belief Function Tracking Methods, in Proc. 
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with permission.
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Multitarget tracking in the presence of clutter has been investigated through the use of data association algorithms [1]. 
Likewise, other multisensor fusion algorithms have focused on tracking targets from multiple look sequences [13]. One 
inherent limitation of current algorithms is that the number of targets needs to be known a priori. While tracking 
algorithms can speculate on the number of targets, the cognition of the number of targets can be afforded to the user. The 
human is presented both the tracking information and the accrued evidence for each target type as a confidence measure. 
Once the human has an ID belief in the number of targets, the tracking algorithm can be updated. The human must then 
cognitively determine from the set of targets how many, what type, and which target goes with which track [14]. 
Additionally, the human has the ability to eliminate those targets that are not plausible which reduces the number of tracks 
and the set of pose templates from which the classification algorithm must search. 

This paper presents a summary of DS methods in the last two decades. By introducing the operator or image analyst for 
cognitive fusion, it may offer a means to control some aspects of the computational burdens experienced by analytical data 
association techniques while improving track quality for multitarget tracking and ID in the presence of clutter. Section 2 
overviews many applications of DS tracking. Section 3 describes DST methods while Section 4 compares the DST 
methods to Bayesian formulations. Section 5 presents a contemporary approach using the proportional conflict 
redistribution rule (PCR5) which is compared to the other methods in Section 6.  Section 7 draws some conclusions.    

2. TRACKING METHODS USING DEMPSTER-SHAFER THEORY
One of the earliest known works in applying Dempster-Shafer (DS) methods to target tracking was by Jean Dezert for 
navigation [15], where the sensor is moving and the targets are stationary. The emergence of the benefits of DS methods 
were applied by Robin Murphy for robotic scene analysis [16].  Building on Murphy’s work, the DS methods were then 
applied to other robotic applications [17, 18, 19], albeit real-time control was still superior with Bayesian methods. At the 
same time, Johan Schubert applied DS methods for determining the number of tracks through the support and plausibility 
functions for the linking of submarine targets between tracks [20]. 

A few tracking and identification algorithms have been proposed for air-target tracking [21] and ground target tracking 
[22, 23] that extend Bayes’ rule for identification where the most probable target is selected when there is incomplete 
knowledge. For instance, there are times when unknown targets might be of interest that are not known at algorithm 
initiation. At other times, there are unknown number of targets to track or targets not trained for classification. One way to 
study the problem is the interaction of the human and the machine working synergistically - since the sensors are 
extensions of the human’s processing. The set theory approach to HRR target classification was proposed by Mitchell and 
Westerkamp and termed a Statistical feature based classifier (STaF) for air-target tracking [24]. In addition, Blasch [25, 
26, 27] presented a feature-based set-theory approach for ground target tracking.  In both cases, classification and tracking, 
a set of features and a set of targets was investigated by extending the STaF algorithm as a belief filter for radar profiles 
analysis from which a plausible set of tracks and targets are made available to the user at each time instant [28].  

Given the ability to track individual targets using advances in DS theory for target identify and classification, methods 
were then developed for tracking a group of targets. In this case, the like targets could be grouped together based on 
common characteristics [29, 30, 31]. Additionally, Li [32] investigated methods for convex optimization for enhanced ID 
processing. Using a combination of belief filtering and data association improved analysis of maneuvering targets [33, 34]. 
Other group tracking methods were postulated for cluster-to-track fusion [35]. Finally, the benefits of DS methods 
provided complementary information to tracking through Kalman weighting [36], mutual aiding [37] and pose estimation 
[38]. 

Beginning in 2005, efforts were made to extend traditional DS tracking methods [39] to that of advanced techniques using 
the proportional conflict redistribution rule (PCR5) [40]. Other tracking methods included multisensor [41], activity 
analysis [42], and out-of-sequence methods [43]. Also, at that time, methods of combining DS with nonlinear tracking 
methods such as the particle filter [44] and the unscented Kalman filter [45] were developed. Finally, a fusion rule based 
on DS methods was used to solve the association problem in target tracking [46]. 

With the demonstrated performance of many applications of DS techniques, research continued in the exploration of DS 
rules for classification to improve track accuracy [47] and maneuvering targets [48]. Multisensor techniques were applied 
for heterogeneous sensor measurements [49], such as DS tracking with unattended ground sensor measurements [50]. 
Currently, efforts are sought for tracking performance evaluation with DS techniques for tracking and identification 
improvement [51, 52, 53]. Further assessment includes combinations with non-linear tracking methods [54] and 
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association of track segments [55].  More recent results have applied the developments from DS tracking from radar 
towards that of image processing [56, 57].  Throughout the many demonstrations of the successes of DS tracking, we now 
discuss DS methods, compare DST with Bayesian methods, and conclude with belief functions (BF) such as the 
contemporary PCR5 method for target tracking. 

3. BASICS OF DEMPSTER-SHAFER (DST) THEORY
The Dempster-Shafer (DS) theory of evidence was devised as a means of dealing with imprecise evidence [58, 59] and has 
been applied to target classification [60].  Evidence concerning an unknown target is represented as a nonnegative set 
function m : P(U) → [0,1], where P(U) denotes the set of subsets of the finite universe U such that m(∅) = 0 and ΣS⊆U m(S) 
= 1.  The set function m is called a mass assignment and models a range of possible beliefs about propositional hypothesis of 
the general form PS =∆  “object is in S1” where m(S) is the weight of belief in the hypothesis PS. The quantity m(S) usually 
interprets as the degree of belief that accrues in S, but to no proper subset of S.  The weight of belief m(U) attached to the 
entire universe is called the weight of uncertainty and models our belief in the possibility that the evidence m in question is 
completely erroneous. The quantities 

Belm(S)  =∆  ∑
O ⊆ S

  m(O)  (1) 

Plm(S)  =∆  ∑
O ∩ S ≠ ∅

       m(O)  (2) 

are called the belief and plausibility of the evidence, respectively and m(O) is the mass assignment for object O.  The 
relationships Belm(S) ≤ Plm(S) and Belm(S) = 1 – Plm (Sc)  are true identically and the interval [Belm(S),Plm (S)] is called the
interval of uncertainty, (IOUm). Knowing that Belm(S) → [0,1] and Plm(S) → [0,1], three relationships exist. The first is a 
direct use of Belm(S) to accept and Plm(S) to reject measurements. Another method is to use the interval of certainty (IOC) 
defined as [1, 1] – [Belm(S), Plm(S)] using interval subtraction. For example, [1, 1] - [0.8,0.9] = [1-0.9,1-0.8] = [0.1, 0.2]. 
Using the lower bound Belm(S) and upper bounds Plm(S) of the interval, we can assign a confidence measure Cm = 1 +  Belm
(S) - Plm(S) = 1 + 0.8 – 0.9 = 0.9.  Finally, the IOUm = [Belm(S), Plm(S)] can be mapped to a Gaussian distribution for belief-
based track tracking, using the IOUm center as the mean, µ, rescaling the bounds to a Normal distribution and tacking the 
estimates (mean and variance).  For example, µm = (0.8+0.9)/2 = 0.85.  As another example, assume low belief with many 
measurements plausible, then Belm(S) = 0.3 and Plm(S) = 0.9, where Cm = 0.6 is lower and the mean is µm = 0.6. 

The mass assignment can be recovered from the belief function via the Mo..bius transform: [61] 

 m(S) =∆  ∑
O ⊆ S

 (-1) |S - O|  Belm (O)  . (3) 

The set intersection quantity 

 (m ⊕ n) (S)  =∆  
1

1 - K ∑
X ∩ Y = S

 m(X(O)) n(Y(O))  (4) 

is called Dempster’s rule of combination, where K =∆  ∑
X(O) ∩ Y(O) = ∅

  m(X(O)) n(Y(O)) is called the conflict between the evidence m 

and evidence n. 

In the finite-universe case, the Dempster-Shafer theory (DST) coincides with the theory of independent, non empty subsets of 
U (see [62, 63]; or for a dissenting view, see [64]).  Given a mass assignment m, it is always possible to find a random subset 
Σ of U such that m(S) = p(Σ = S).  In this case, Belm(S) = p(Σ ⊆ S) = βΣ(S) and Plm(S) = p(Σ ∩ S ≠ 0) = ρΣ(S) where βΣ and 
ρΣ are the belief and plausibility measures of Σ, respectively.  Likewise, we can construct independent random subsets, Σ, Λ 
of U such that m(S) = p(Σ = S) and n(S) = p(Λ = S) for all S ⊆ U.  Then, it is easy to show that  
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 (m ⊕  n)(S) = p(Σ ∩ Λ | Σ ∩ Λ ≠ 0) (5) 

for all S ⊆ U.  Thus, an intersection of overlapping sets can be fused to generate a global set confidence, where confidence is 
defined on the range [1, 1] - [Belm,Plm] and uncertainty is [Belm,Plm].  As comparative to the optimal approach, the next 
section provides a comparison of the set theory approach to that of traditional Bayesian analysis. 

4. DEMPSTER-SHAFER VERSUS BAYESIAN THEORY
Recently, Dezert [65] has shown that Dempster’s rule is consistent with probability calculus and Bayesian reasoning if and 
only if the prior P(X) is uniform. However, when the P(X) is not uniform, then Dempster’s rule gives a different result.  Both 
Yen [66] and Mahler [67, 68] developed methods to account for non-uniform priors. Others have also tried to compare Bayes 
and DST methods [69, 70, 71, 72, 73, 74, 75]. Assuming that we have multiple measurements Z = {Z1, Z2, …} for object O 
being tracked, Bayesian and DS methods are developed next. 

Assuming conditional independence, one has the Bayes method: 

 P(X | Z1  I  Z2)  =  
P(X | Z1) P(X | Z2) / P(X)

∑
i = 1

 N
    P(Xi | Z1) P(Xi | Z2) / P(X i)

(6)

With no information from Z1 or Z2, then P(X | Z1, Z2) = P(X). Without Z2, then P(X | Z1, Z2) = P(X | Z1) and without Z1, then 
P(X | Z1, Z2) = P(X | Z2). Using Dezert’s formulation, then the denominator can be expressed as a normalization coefficient: 

m12 (∅)   =   1  −  ∑
X i ; X j |  X i I X j

    P(Xi | Z1) P(Xi | Z2)  (7) 

Using this relation, then the total probability mass of the conflicting information is  

 P(X | Z1  I  Z2)  =   
1

1  −  m12 (∅)  •  P(X | Z1) P(X | Z2) (8) 

which corresponds to Dempster’s rule of combination using Bayesian belief masses with uniform priors. When the prior’s 
are not uniform, then Dempster’s rule is not consistent with Bayes’ Rule.  For example, let m0 (X) = P(X), m1 (X) = P(X | Z1), 
and m2 (X) = P(X | Z2), then  

m(X)   =  
m0 (X)  m1 (X)  m2 (X)

 1 −   m012 (∅)    =   
P(X)   P(X | Z1)   P(X | Z2) 

∑
i = 1

 N
    P(X i)   P(Xi | Z1)   P(Xi | Z2) 

(9)

Thus, methods are needed to deal with non-uniform priors and appropriately redistribute the conflicting masses. 

5. DEZERT-SMARANDACHE THEORY (DSmT)
Recent advances in DS methods include Dezert-Smarandache Theroy (DSmT).  DSmT is an extension to the Dempster-
Shafer method of evidential reasoning which has been detailed in numerous papers and texts: Advances and applications of 
DSmT for information fusion (Collected works), Vols. 1-3 [76]. In 2002, Dezert [77] introduced the methods for the 
reasoning and in 2003, presented the hyper power-set notation for DSmT [78]. Recent applications include the DSmT 
Proportional Conflict Redistribution rule 5 (PCR5) applied to target tracking. Other applications of DSmT can be found in 
the list of references at (http://www.onera.fr/staff/jean-dezert/) . 

The key contributions of DSmT are the redistributions of masses such that no refinement of the frame Θ is possible unless a 
series of constraints are known. For example, Shafer’s model [79] is the most constrained DSm hybrid model in DSmT. 
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Since Shafer’s model, authors have continued to refine the method to more precisely address the combination of conflicting 
beliefs [80, 81, 82] and generalization of the combination rules [83, 84]. An adaptive combination rule [85] and rules for 
quantitative and qualitative combinations [86] have been proposed. Recent examples for sensor applications include 
electronic support measures, [87, 88], physiological monitoring sensors [89], and seismic-acoustic sensing [90].  

Here we use the Proportional Conflict Redistribution rule no. 5 (PCR5) and no. 6 (PCR6) and the Dezert-Smarandache 
Probability (DSmP) selections which are discussed below. We replace Smets’ rule [80] by the more effective PCR5 or 
eventually the more simple PCR6 and replace the pignistic transformation by the more effective DSmP transformation to 
estimate target classification probabilities. All details, justifications with examples on PCR5 and PCR6 fusion rules and 
DSmP transformation can be found freely from the web in the DSmT compiled texts [76], Vols. 2 & 3. 

5.1. PCR5 and PCR6 fusion rules 
In the DSmT framework, the PCR5 is used generally to combine the basic belief assignment (bba)’s. PCR5 transfers the 
conflicting mass only to the elements involved in the conflict and proportionally to their individual masses, so that the 
specificity of the information is entirely preserved in this fusion process. Let m1(.) and m2(.) be two independent bba’s, then 
the PCR5 rule is defined as follows (see [76], Vol. 2 for full justification and examples): mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}, 
where ∅ is the null set and 2Θ is the power set: 

mPCR5 (X)  =  ∑
X1; X2 ∈ 2 Θ

X1 I X2 = X

 

 m1(X1) + m2(X2)    + ∑
X2 ∈ 2 Θ

X2 I X = ∅

 

 ⎣
⎡

⎦
⎤ m1(X1) 2 m2(X2)

m1(X1) + m2(X2)  +
 m1(X1) m2(X2) 2
 m1(X1) + m2(X2) `(10)

where I is the interesting and all denominators in the equation above are different from zero. If a denominator is zero, that 
fraction is discarded. Additional properties and extensions of PCR5 for combining qualitative bba’s can be found in [76], 
Vol. 2 & 3. All propositions/sets are in a canonical form. A variant of PCR5, called PCR6 has been proposed by Martin and 
Osswald in [91], Vol. 2, for combining more than 2 sources. PCR6 coincides with PCR5 when one combines two sources. 
The difference between PCR5 and PCR6 lies in the way the proportional conflict redistribution is done as soon as three or 
more sources are involved in the fusion. For example, let’s consider three sources with bba’s m1(.), m2(.), and m3(.), A ∩ B = 
∅ for the model of the frame Θ, and m1(A) = 0.6, m2(B) = 0.3, and m3(B) = 0.1. With PCR5 the partial conflicting mass 
m1(A) m2(B) m3(B) = (0.6)(0.3)(0.1) = 0.018 is redistributed back to A and B only with respect to the following proportions 
respectively: xA

PCR5 = 0.01714 and xB
PCR5 = 0.00086 because the proportionalization is: 

           
xA

PCR5

m1(A)  =
xB

PCR5

m2(B) m3(B) =
m1(A) m2(B) m3(B)

 m1(A) + m2(B) m3(B) (11)

that is       
xA

PCR5

0.6   =
xB

PCR5

(0.3)(0.1) =
0.018

0.6 + 0.03 ≈ 0.02857

thus        xA
PCR5 = 0.60 (0.02857) ≈ 0.01714 

  xB
PCR5 = 0.03 (0.02857) ≈ 0.00086 

With the PCR6 fusion rule, the partial conflicting mass m1(A) m2(B) m3(B) = (0.6)(0.3)(0.1) = 0.018 is redistributed back to A 
and B only with respect to the following proportions respectively: xA

PCR6 = 0.0108 and xB
PCR6 = 0.0072 because the PCR6 

proportionalization is done as follows: 

xA
PCR6

m1(A)  = 
xB;2

PCR6

m2(B)   = 
xB;3

PCR6

m3(B)  =
m1(A) m2(B) m3(B)

 m1(A) + m2(B) + m3(B) (12)

that is        

xA
PCR6

0.6   = 
xB;2

PCR6

0.3  =  
xB;3

PCR6

0.1   =
0.018

0.6 + 0.3 + 0.1 ≈ 0.018

thus 
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xA
PCR6    = (0.6) (0.018) = 0.0108 

xB,2
PCR6 = (0.3) (0.018) = 0.0054 

xB,3
PCR6 = (0.1) (0.018) = 0.0018 

and therefore with PCR6, one gets finally the following redistributions to A and B: 

xA
PCR6    = (0.6) (0.018) = 0.0108 

xB
PCR6    = xB,2

PCR6  +  xB,3
PCR6 = 0.0054 + 0.0018 = 0.0072 

From the implementation point of view, PCR6 is simpler to implement than PCR5. For convenience, Matlab codes of PCR5 
and PCR6 fusion rules can be found in [76]. It is worth noting that there is a strong relationship between PCR6 rule and the 
averaging fusion rule which is commonly used to estimate the probabilities in the classical frequentist interpretation of 
probabilities. Such a probability estimate cannot be obtained using DS rule, nor the PCR5 rule and that is why we 
recommend to use PCR6 when combining more than two basic belief masses altogether [92]. 

5.2. The DSmP Transformation 
The DSmP probabilistic transformation is an alternative to the classical pignistic transformation which allows us to increase 
the probabilistic information content (PIC), i.e. to minimize the Shannon entropy, of the approximated subjective probability 
measure drawn from any bba. Justification and comparisons of DSmP(.) with respect to BetP(.) and to other transformations 
can be found in details in [93, 76 Vol. 3, Chap. 3].  

BetP: The pignistic transformation probability, denoted BetP, offers a compromise between maximum of credibility Bel and 
maximum of plausibility Pl for decision support. The BetP transformation is defined by BetP(∅) = 0 and ∀X ∈ GΘ \ {∅}by 

BetP(X)    =  ∑
Y ∈ G Θ

 

       
CM(X I Y)

 CM(Y)
  m(Y)         (13) 

where GΘ corresponds to the hyper-power set including all the integrity constraints of the model (if any). GΘ = 2Θ  if one 
adopts Shafer’s model for Θ and GΘ = DΘ (Dedekind’s lattice) if one adopts the free DSm model for Θ [76].  CM(Y) denotes
the DSm cardinal of the set Y, which is the number of parts of Y in the Venn diagram of the model M of the frame Θ under 
consideration [76, Book 1, Chap. 7]. The BetP reduces to the Transferable Belief Model (TBM) when GΘ reduces to classical 
power set 2Θ when one adopts Shafer’s model. 

DSmP transformation is defined by DSmPε(∅) = 0 and ∀X ∈ GΘ \ {∅} by: 

DSmPε(X)    =  ∑
Y ∈ G Θ

 

 
∑

Z ⊆ X I Y
C(Z)  = 1

 

   m(Z) + ε • C(X I Y)

∑
Z ⊆ Y

C(Z)  = 1

 

   m(Z) + ε • C(Y) 

        m(Y) (14)

where C(X ∩ Y) and C(Y) denote the cardinals of the sets  X ∩ Y and Y respectively; ε ≥ 0 is a small number which allows to 
reach a highest PIC value of the approximation of m(.) into a subjective probability measure, and Z is the new evidence. 
Usually ε = 0, but in some particular degenerate cases, when the DSmPε=0(.) values cannot be derived, the DSmPε>0 values 
can however always be derived by choosing ε as a very small positive number, say ε = 1/1000 for example in order to be as 
close as we want to the highest value of the PIC. The smaller ε, the better/bigger PIC value one gets. When ε = 1 and when 
the masses of all elements Z having C(Z) = 1 are zero, DSmPε=1(.) = BetP(.).  
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6. COMPARATIVE RESULTS OF DS, BAYES, AND PCR5-BASED TRACKING
Here we simulate two scenarios of the three rules: Bayesian, Dempster-Shafer, and PCR5 rules of combination. For each 
scenario, we assume that the target information is collected from a sensor that is precise in the position measurements, but 
the uncertainty in either the sensor position accuracy or the classification information results in a confusion matrix (CM) 
formulation. With a two object representation being tracked (e..g, the standard fighter/cargo example), we have CM = [O1 
O2; O2 O1]. In the first scenario, the target classification is CM = [0.75 0.25; 0.25 0.75], and the belief mass 
results are shown in Figure 2. 
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Figure 2. (a) Object 1 and (b) Object 2 tracking and identification results. CM = [0.75 0.25; 0.25 0.75] 

Figure 2 demonstrates that while there is uncertainty in the object tracking and classification, both the DS and Bayesian 
methods are close. The PCR5 results in better accuracy. Both DS and Bayesian methods have difficulty when the 
measurements change and suffer from a prior evidence biasing. In the next scenario, we decrease the sensor 
classification/ID accuracy; which results in more conflict in the analysis.  For the Scenario 2 sensor model, we use CM = 
[0.65 0.35; 0.35 0.65]. 
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Figure 3. (a) Object 1 and (b) Object 2 tracking and identification results. CM = [0.65 0.35; 0.35 0.65]. 

Figure 3 illustrates differences between the three methods. DS tracking methods are able to improve over standard 
Bayesian methods when there is conflict in the measurements (Fig 3a scan 10 to 20). However, as shown in Figure 3, the 
PCR5 demonstrates an ability to track and ID the target when the measurement information is conflicting and changing 
(Fig 3a scan 25 to 50).  The simple example illustrates the power of the PCR5 rule over standard DS and Bayesian 
methods to deal with conflicting, imprecise, and variations in target measurements for target tracking. 
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7. CONCLUSIONS
Conventional tracking techniques have difficulty in identifying targets when the number of targets is not known a priori., 
the targets are maneuvering, and there is conflict in the measurements. Throughout the last two decades, numerous 
researchers have explored Dempster-Shafer (DS) evidential (i.e., belief function) reasoning to solve the requirements of 
simultaneous tracking and identification. This paper has provided a literature review of most of the available publications 
that utilize the DS method in target, group/cluster, and multisensor tracking. Through a review of Bayesian, DS, and PCR5 
formulations; we presented a simulated comparative example to demonstrate the current state-of-the-art methods such as 
DSmT research [94]. The PCR5 method can be extended to nonlinear tracking and ID algorithms, coordinated with users 
for assisted tracking, and can enhance conventional covariance and information filter formulations [95]. The presented 
PCR5 technique demonstrates promise for multitarget tracking problems and warrants further exploration with real-world 
data where environmental effects, occlusions, lost sensor data, and unknown targets [96] are standard.    
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Tracking Applications with Fuzzy-Based Fusion Rules

Albena Tchamova
Jean Dezert

Abstract—The objective of this paper is to present and
evaluate the performance of a particular fusion rule based on
fuzzy T-Conorm/T-Norm operators for two tracking applications:
(1) Tracking Object’s Type Changes, supporting the process of
identification (e.g. friendly aircraft against hostile ones, fighte
against cargo) and consequently for improving the quality of
generalized data association; (2) Alarms identificatio and pri-
oritization in terms of degree of danger relating to a set of a
priori defined out of the ordinary dangerous directions. The
aim is to present and demonstrate the ability of TCN rule to
assure coherent and stable way for identificatio and to improve
decision-making process in temporal way. A comparison with
performance of DSmT based PCR5 fusion rule and Dempster’s
rule is also provided.

Keywords—Objects’ type identification Alarm classification
Data fusion; DSmT, TCN rule, PCR5 rule, Dempster’s rule.

I. INTRODUCTION

An important function of each surveillance system is to
keep and improve targets tracks maintenance performance, as
well as to provide a smart operational control, based on the
intelligent analysis and interpretation of alarms coming from
a variety of sensors installed in the observation area. Targets’
type estimates can be used during different target tracking pro-
cess stages for improving data to track association and for the
quality evaluation of complicated situations characterized with
closely spaced or/and crossing targets [1], [2]. It supports the
process of identification e.g. friendly aircraft against hostile
ones, fighte against cargo. In such case, although the attribute
of each target is invariant over time, at the attribute-tracking
level the type of the target committed to the (unresolved)
track varies with time and must be tracked properly in order
to discriminate how many different targets are hidden in the
same unresolved track. Alarms classificatio and prioritization
[3],[4],[5],[6],[7],[8] is very challenging task, because in case
of multiple suspicious signals (relating to a set of a priori
defined out of the ordinary dangerous directions), generated
from a number of sensors in the observed area, it requires
the most dangerous among them to be correctly recognized,
in order to decide properly where the video camera should be
oriented. There are cases, when some of the alarms generated
could be incorrectly interpreted as false, increasing the chance
to be ignored, in case when they are really significan and
dangerous. That way the critical delay of the proper response
could cause significan damages. In both cases above, the
uncertainty and conflict encountered in objects’ and signals

data, could weaken or even mistake the respective surveillance
system decision. That is why a strategy for an intelligent, scan
by scan, combination/updating of data generated is needed in
order to provide the surveillance system with a meaningful
output. In this paper we focus our attention on the ability
of the so called T-Conorm-Norm (TCN) fusion rule, define
within Dezert-Smarandache Theory (DSmT) of plausible and
paradoxical reasoning to improve the process of data fusion
and to successfully finaliz the decision-making procedures in
both described surveillance cases. This work is based on pre-
liminary research in [9],[10]. In section II we recall basics of
Proportional Conflic Redistribution rule no.5 (PCR5), define
within DSmT. Basics of PCR5 based TCN fuzzy fusion rule
are outlined in section III. Section IV presents the problem of
alarms classificatio and examine the ability of TCN fusion
rule to solve it. In section V the performance of TCN rule
is analyzed related to the problem of target type tracking. In
both sections, a comparative analysis of TCN rule solution with
those, obtained by PCR5 and Dempster-Shafer’s (DS) rule is
provided. Concluding remarks are given in section VI.

II. BASICS OF PCR5 FUSION RULE

The general principle of Proportional Conflic Redistribu-
tion rules is to: 1 ) calculate the conjunctive consensus between
the sources of evidences; 2 ) calculate the total or partial
conflictin masses; 3 ) redistribute the conflictin mass (total
or partial) proportionally on non-empty sets involved in the
model according to all integrity constraints. The idea behind
the Proportional Conflic Redistribution rule no. 5 define
within DSmT [9] (Vol. 2) is to transfer conflictin masses
(total or partial) proportionally to non-empty sets involved in
the model according to all integrity constraints. Under Shafer’s
model assumption of the frame Θ, PCR5 combination rule for
only two sources of information is define as: 𝑚𝑃𝐶𝑅5(∅) = 0
and ∀𝑋 ∈ 2Θ ∖ {∅}
𝑚𝑃𝐶𝑅5(𝑋) = 𝑚12(𝑋)+

∑

𝑋2∈2Θ∖{𝑋}
𝑋2∩𝑋=∅

[
𝑚1(𝑋)2𝑚2(𝑋2)

𝑚1(𝑋) +𝑚2(𝑋2)
+
𝑚2(𝑋)2𝑚1(𝑋2)

𝑚2(𝑋) +𝑚1(𝑋2)
] (1)

All sets involved in the formula (1) are in canonical form.
𝑚12(𝑋) corresponds to the conjunctive consensus, i.e:

𝑚12(𝑋) =
∑

𝑋1,𝑋2∈2Θ

𝑋1∩𝑋2=𝑋

𝑚1(𝑋1)𝑚2(𝑋2).

Originally published as Tchamova A., Dezert J., Tracking applications with fuzzy-
based fusion rules, Proc. of 2013 IEEE International Symposium on INnovations in 
Intelligent SysTems and Application (INISTA 2013), Albena, Bulgaria, June 19-21, 

2013, and reprinted with permission.
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All denominators are different from zero. If a denominator
is zero, that fraction is discarded. No matter how big or
small is the conflictin mass, PCR5 mathematically does a
better redistribution of the conflictin mass than Dempster-
Shafer’s rule since PCR5 goes backwards on the tracks of the
conjunctive rule and redistributes the partial conflictin masses
only to the sets involved in the conflic and proportionally to
their masses put in the conflict considering the conjunctive
normal form of the partial conflict PCR5 is quasi-associative
and also preserves the neutral impact of the vacuous belief
assignment.

III. BASICS OF TCN FUSION RULE

The T-Conorm-Norm rule of combination [11] represents
a class of fusion rules based on specifie fuzzy t-Conorm, t-
Norm operators [16]. Triangular norms (t-norms) and Triangu-
lar conorms (t-conorms) are the most general families of binary
functions that satisfy the requirements of the conjunction
and disjunction operators, respectively. TCN rule is define
within DSmT based PCR5 fusion rule. Under Shafer’s model
assumption of the frame Θ, the TCN fusion rule for only
two sources of information is define as: �̃�𝑇𝐶𝑁 (∅) = 0 and
∀𝑋 ∈ 2Θ ∖ {∅}
�̃�𝑇𝐶𝑁 (𝑋) = �̃�12(𝑋)+

∑

𝑋2∈2Θ∖{𝑋}
𝑋2∩𝑋=∅

[
𝑚1(𝑋).𝑇𝑛𝑜𝑟𝑚{𝑚1(𝑋),𝑚2(𝑋2)}
𝑇𝑐𝑜𝑛𝑜𝑟𝑚{𝑚1(𝑋),𝑚2(𝑋2)} +

𝑚2(𝑋).𝑇𝑛𝑜𝑟𝑚{𝑚2(𝑋),𝑚1(𝑋2)}
𝑇𝑐𝑜𝑛𝑜𝑟𝑚{𝑚2(𝑋),𝑚1(𝑋2)} ] (2)

where �̃�12(𝑋) corresponds to the conjunctive consensus,
obtained by:

�̃�12(𝑋) =
∑

𝑋1,𝑋2∈2Θ

𝑋1∩𝑋2=𝑋

𝑇𝑛𝑜𝑟𝑚{𝑚1(𝑋1),𝑚2(𝑋2)}.

TCN fusion rule requires a normalization procedure :

�̃�𝑇𝐶𝑁 (𝑋) =
�̃�𝑇𝐶𝑁 (𝑋)

∑

𝑋∈2Θ

𝑋 ∕=⊘
�̃�𝑇𝐶𝑁 (𝑋)

The attractive features of TCN rule could be define as: very
easy to implement, satisfying the impact of neutral Vacuous
Belief Assignment; commutative, convergent to idempotence,
reflect majority opinion, assures adequate data processing
in case of partial and total conflic between the information
granules. The general drawback of this rule is related to the
lack of associativity, which is not a main issue in temporal
data fusion.

IV. ALARMS CLASSIFICATION APPROACH

The approach assumes all the localized sound sources to
be subjects of attention and investigation for being indication
of dangerous situations. The specifi input sounds’ attributes,
emitted by each source, are sensor’s level processed and
evaluated in timely manner for their contribution towards
correct alarms’ classificatio (in term of degree of danger).
The applied algorithm considers the following steps:

∙ Definin the frame of expected hypotheses as
follows: Θ = {𝜃1 = (E )mergency , 𝜃2 =
(A)larm, 𝜃3 = (W )arning}. Here Shafer’s model
holds and we work on the power-set: 2Θ =
{∅,E ,A,W ,E ∪ A,E ∪W ,A ∪W ,E ∪ A ∪W }.
The hypothesis with a highest priority is Emergency,
following by Alarm and then Warning.

∙ Definin an input rule base to map the sounds’ at-
tributes (so called observations) obtained from all
localized sources into non-Bayesian basic belief as-
signments 𝑚𝑜𝑏𝑠(.).

∙ At the very firs time moment 𝑘 = 0 we start with
a priori basic belief assignment (history) set to be a
vacuous belief assignment 𝑚ℎ𝑖𝑠𝑡(𝐸 ∪ 𝐴 ∪𝑊 ) = 1 ,
since there is no information about the firs detected
degree of danger according to sound sources.

∙ Combination of currently received measurement’s bba
𝑚𝑜𝑏𝑠(.) (for each of located sound sources), based on
the input interface mapping, with a history’s bba, in
order to obtain estimated bba relating to the current
degree of danger 𝑚(.) = [𝑚ℎ𝑖𝑠𝑡⊕𝑚𝑜𝑏𝑠](.). TCN rule
is applied in the process of temporal data fusion to
update bba’s associated with each sound emitter.

∙ Flag for an especially high degree of danger has to
be taken, when during the a priori define scanning
period, the maximum Pignistic Probability [9] is as-
sociated with the hypothesis Emergency. In this work,
we assume Shafer’s model and we use the classical
Pignistic Transformation [9], [15] to take a decision
about the mode of danger. It is define for ∀𝐴 ∈ 2Θ

by

𝐵𝑒𝑡𝑃 (𝐴) =
∑

𝑋∈𝐷Θ

∣𝑋 ∩𝐴∣
∣𝑋∣ ⋅𝑚(𝑋) (3)

where ∣𝑋∣ denotes the cardinality of 𝑋 .

A. Simulation Scenario

A set of three sensors located at different distances from
the microphone array are installed in an observed area for
protection purposes, together with a video camera [13]. They
are assembled with alarm devices: Sensor 1 with Sonitron,
Sensor 2 with E2S, and Sensor 3 with System Sensor. In
case of alarm events (smoke, flame intrusion, etc.) they emit
powerful sound signals with various duration and frequency of
intermittence (Table 1), depending on the nature of the event.

Table 1 Sound signal parameters.
Continuous Intermittent-I Intermittent-II
(Warning) (Alarm) (Emergency)
𝑓𝑖𝑛𝑡 = 0Hz 𝑓𝑖𝑛𝑡 = 5Hz 𝑓𝑖𝑛𝑡 = 1Hz
𝑇𝑠𝑖𝑔 = 10s 𝑇𝑠𝑖𝑔 = 30s 𝑇𝑠𝑖𝑔 = 60s

The frequency of intermittencies 𝑓𝑖𝑛𝑡, associated with the lo-
calized sound sources is utilized in the specifi input interface
(the rule base) below.

Rule 1: if 𝑓𝑖𝑛𝑡 → 1𝐻𝑧 then 𝑚𝑜𝑏𝑠(𝐸) = 0.9 and 𝑚𝑜𝑏𝑠(𝐸 ∪
𝐴) = 0.1.
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Fig. 1. TCN rule Performance for danger level estimation.

Rule 2: if 𝑓𝑖𝑛𝑡 → 5𝐻𝑧 then 𝑚𝑜𝑏𝑠(𝐴) = 0.7, 𝑚𝑜𝑏𝑠(𝐴 ∪𝐸) =
0.2 and 𝑚𝑜𝑏𝑠(𝐴 ∪𝑊 ) = 0.1.

Rule 3: if 𝑓𝑖𝑛𝑡 → 0𝐻𝑧 then 𝑚𝑜𝑏𝑠(𝑊 ) = 0.6 and 𝑚𝑜𝑏𝑠(𝑊 ∪
𝐴 ∪ 𝐸) = 0.4.

Three main cases are estimated: the probabilities of modes,
evaluated for Sensor 1 (associated with Emergency mode),
Sensor 2 (associated with Alarm mode), and Sensor 3 (asso-
ciated with Warming mode. The decisions should be governed
at the video camera level, taken periodically, depending on: 1)
specificitie of the video camera (time needed to steer the video
camera toward a localized direction); 2) time duration needed
to analyze correctly and reliably the sequentially gathered
information. We choose as a reasonable sampling period for
camera decisions 𝑇𝑑𝑒𝑐 = 20𝑠𝑒𝑐, i.e. at every 10th scan.

B. TCN rule performance for danger level estimation.

Fig.1 shows the values of Pignistic Probabilities of each
mode (E, A, W) associated with three sound emitters (1st
source in E mode, (subplot on the top), 2nd source in A mode
(subplot in the middle), and 3rd source in W mode, (subplot
in the bottom)) during the all 30 scans. Each source has
been perturbed with noises in accordance with the simulated
Ground Truth, associated with particular sound source. These
probabilities are obtained for each source independently as
a result of sequential data fusion of 𝑚𝑜𝑏𝑠(.) sequence using
TCN combinational rule. For a completeness of study and for
comparison purposes, the respective performances of PCR5
and DS rule are presented in fig. and fig.3

TCN rule shows a stable, quite proper and effective behav-
ior, following the performance of PCR5 rule. A special feature
of TCN rule performance are the smoothed estimates and more
cautious decisions taken at the particular decisive scans.

The results obtained show the strong ability of PCR5 rule
to take care in a coherent and stable way for the evolution of all
possible degrees of danger, related to all the localized sources.
It is especially significan in case of sound sources data
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Fig. 2. PCR5 rule Performance for danger level estimation.
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Fig. 3. Dempster’s rule Performance for danger level estimation.

discrepancies and conflicts when the highest priority mode
Emergency occurs. PCR5 rule prevents to produce a mistaken
decision, that way prevents to avoid the most dangerous case
without immediate attention. A similar adequate behavior of
performance is established in cases of lower danger priority.

DS rule shows weakness in resolving the cases examined.
In Emergency case, DS rule does not reflec at all new obtained
informative observations supporting the Warning mode. This
pathological behavior reflect the dictatorial power of DS
rule realized by a given source [12], which is fundamental
in Dempster-Shafer reasoning [14]. In our particular case
however, DS rule leads to a right fina decision by coincidence,
but this decision could not be accepted as coherent and reliable,
because it is not built on a consistent logical ground. In cases of
lower dangers priority (perturbed Warning and Alarm mode),
DS rule could cause a false alarm and can deflec the attention
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from the existing real dangerous source by assigning a wrong
steering direction to the surveillance camera.

V. TARGET TYPE TRACKING APPROACH

The problem can be simply stated as follows:

∙ Let 𝑘 = 1, 2, ..., 𝑘𝑚𝑎𝑥 be the time index and consider
𝑀 possible target types 𝑇𝑖 ∈ Θ = {𝜃1, . . . , 𝜃𝑀} in
the environment; for example Θ = {𝐹𝑖𝑔ℎ𝑡𝑒𝑟, 𝐶𝑎𝑟𝑔𝑜}
and 𝑇1 ≜ 𝐹𝑖𝑔ℎ𝑡𝑒𝑟, 𝑇2 ≜ 𝐶𝑎𝑟𝑔𝑜; or Θ =
{𝐹𝑟𝑖𝑒𝑛𝑑, 𝐹𝑜𝑒,𝑁𝑒𝑢𝑡𝑟𝑎𝑙}, etc.

∙ at each instant 𝑘, a target of true type 𝑇 (𝑘) ∈ Θ
(not necessarily the same target) is observed by an
attribute-sensor (we assume a perfect target detection
probability here).

∙ the attribute measurement of the sensor (say noisy
Radar Cross Section for example) is then processed
through a classifie which provides a decision 𝑇𝑑(𝑘)
on the type of the observed target at each instant 𝑘.

∙ The sensor is in general not totally reliable and is
characterized by a 𝑀 ×𝑀 confusion matrix

C = [𝑐𝑖𝑗 = 𝑃 (𝑇𝑑 = 𝑇𝑗 ∣𝑇𝑟𝑢𝑒𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑦𝑝𝑒 = 𝑇𝑖)]
The goal is to estimate 𝑇 (𝑘) from the sequence of decla-

rations done by the unreliable classifie up to time 𝑘, i.e. how
to build an estimator 𝑇 (𝑘) = 𝑓(𝑇𝑑(1), 𝑇𝑑(2), . . . , 𝑇𝑑(𝑘)) of
𝑇 (𝑘). The principle of the estimator is based on the sequential
combination of the current basic belief assignment (drawn
from classifie decision, i.e. our measurements) with the prior
bba estimated up to current time from all past classifie
declarations.

The algorithm follows the next main steps:

∙ Initialization step (i.e. 𝑘 = 0). Select the target type
frame Θ = {𝜃1, . . . , 𝜃𝑀} and set the prior bba 𝑚−(.)
as vacuous belief assignment, i.e 𝑚−(𝜃1∪. . .∪𝜃𝑀 ) =
1 since one has no information about the firs target
type that will be observed.

∙ Generation of the current bba 𝑚𝑜𝑏𝑠(.) from the cur-
rent classifie declaration 𝑇𝑑(𝑘) based on attribute
measurement. At this step, one takes 𝑚𝑜𝑏𝑠(𝑇𝑑(𝑘)) =
𝑐𝑇𝑑(𝑘)𝑇𝑑(𝑘) and all the unassigned mass 1 −
𝑚𝑜𝑏𝑠(𝑇𝑑(𝑘)) is then committed to total ignorance
𝜃1 ∪ . . . ∪ 𝜃𝑀 .

∙ Combination of current bba 𝑚𝑜𝑏𝑠(.) with prior bba
𝑚−(.) to get the estimation of the current bba 𝑚(.).
Symbolically we will write the generic fusion operator
as ⊕, so that 𝑚(.) = [𝑚𝑜𝑏𝑠 ⊕ 𝑚−](.) = [𝑚− ⊕
𝑚𝑜𝑏𝑠](.). The combination ⊕ is done according either
Demspter’s rule (i.e. 𝑚(.) = 𝑚𝐷(.)) or PCR5 rule
(i.e. 𝑚(.) = 𝑚𝑃𝐶𝑅5(.)).

∙ Estimation of True Target Type is obtained from 𝑚(.)
by taking the singleton of Θ, i.e. a Target Type, having
the maximum of belief (or eventually the maximum
Pignistic Probability).

∙ set 𝑚−(.) = 𝑚(.); do 𝑘 = 𝑘 + 1 and go back to step
b).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scan number

pr
ob

ab
ili

ty
 m

as
s 

as
si

gn
ed

 to
 C

ar
go

 ty
pe

Estimation of belief assignment for Cargo Type

 

Groundtruth
Demspter’s rule
PCR5 rule
TCN rule (sum−min) 
TCN rule (max−min)
TCN rule (max−bounded product)

Fig. 4. Estimation of belief assignment for Cargo type.

A. Simulations results
In order to evaluate the performances of TCN-based

estimator, a set of Monte-Carlo simulations on a very
simple scenario for a 2D Target Type frame, i.e. Θ =
{(𝐹 )𝑖𝑔ℎ𝑡𝑒𝑟, (𝐶)𝑎𝑟𝑔𝑜} is realized for classifie with a follow-
ing confusion matrix:

C =

[

0.9 0.1
0.1 0.9

]

We assume there are two closely spaced targets: Cargo and
Fighter. Due to circumstances, attribute measurements received
are predominately from one or another and both targets gen-
erates actually one single (unresolved kinematics) track. To
simulate such scenario, a Ground Truth sequence over 100
scans was generated. The sequence starts with the observation
of a Cargo type and then the observation of the target type
switches two times onto Fighter type during different time
duration. At each time step 𝑘 the decision 𝑇𝑑(𝑘) is randomly
generated according to the corresponding row of the confusion
matrix of the classifie given the true target type (known in
simulations). Then the algorithm from above is applied. The
simulation consists of 10000 Monte-Carlo runs. The computed
averaged performances (on the base of estimated belief masses
obtained by the tracker) are shown on the figure 4 and 5.
They are based on TCN fusion rule realized with different
t-conorm and t-norm functions. On the same figures for a
comparison purposes, the respective performances of PCR5
and DS rule are presented. It is evident, that PCR5 fusion rule
outperforms the results based on TCN rule, because PCR5 al-
lows a very efficien Target Type Tracking, reducing drastically
the latency delay for correct Target Type decision. TCN fusion
rule shows a stable and adequate behavior, characterized with
more smoothed process of re-estimating the belief masses in
comparison to PCR5. TCN fusion rule with t-conorm=max and
t-norm=bounded product reacts and adopts better than TCN
with t-conorm=sum and t-norm=min, followed by TCN with
t-conorm=max and t-norm=min.
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Fig. 5. Estimation of belief assignment for Fighter type.

presented: (1) Tracking Object’s Type Changes, supporting
the process of identification (2) Alarms identificatio and
prioritization in terms of degree of danger relating to a set
of a priori defined out of the ordinary dangerous directions.
The ability of TCN rule to assure coherent and stable way
of identificatio and to improve decision-making process in
temporal way are demonstrated. Different types of t-conorm
and t-norms, available in fuzzy set/logic theory provide us with
richness of possible choices to be used applying TCN fusion
rule. The attractive features of TCN rule is it’s easy imple-
mentation and adequate data processing in case of conflict
between the information granules.
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Abstract— For many operational information fusion systems, both 
reliability and credibility are evaluation criteria for collected 
information. The Uncertainty Representation and Reasoning 
Evaluation Framework (URREF) is a comprehensive ontology that 
represents measures of uncertainty. URREF supports standards such 
as the NATO Standardization Agreement (STANAG) 2511, which 
incorporates categories of reliability and credibility. Reliability has 
traditionally been assessed for physical machines to support failure 
analysis. Source reliability of a human can also be assessed. 
Credibility is associated with a machine process or human 
assessment of collected evidence for information content. Other 
related constructs for URREF are data relevance and completeness. 
In this paper, we seek to develop a mathematical relation of weight of 
evidence using credibility and reliability as criteria for 
characterizing uncertainty in information fusion systems. 

Keywords: Reliability, Credibility, URREF, PCR5, STANAG2511 

I.  INTRODUCTION 

Information fusion is based on uncertainty reduction; wherein 
the International Society of Information Fusion (ISIF) 
Evaluation of Techniques of Uncertainty Reasoning Working 
Group (ETURWG) has had numerous discussions on 
definitions of uncertainty. One example is the difference 
between reliability and credibility, which is called out in 
NATO STANAG 2511 [1]. To summarize these ETURWG 
discussions, we detail an analysis of credibility and reliability. 

Information fusion consumers comprise users and machines of 
which the man-machine interface requires understanding of 
how data is collected, correlated, associated, fused, and 
reported. Simply stating an uncertainty representation of 
“confidence” is not complete.  From URREF discussions [2]:  

reliability relates to the source, and  
credibility refers to the content reported. 

There are scenarios in which reliability and credibility need to 
be differentiated. Examples of information fusion application 
areas include medical, legal, and military domains. A common 
theme is involvement of humans in aggregating information. 
In many situations, there is cause for concern about the 
reliability of the source that may or may not be providing an 
accurate and complete representation of credible information. 
In cases where there is a dispute (e.g., legal), the actors each 
seek their own interests and thus are asked a series of 

questions by their own and opposing representations to judge 
the veracity of their statements.   

Weight of Evidence (WOE) is addressed in various fields (risk 
analysis, medical domain, police, legal, and information 
fusion). In addition to credibility and reliability, Relevance 
assesses how a given uncertainty representation is able to 
capture whether a given input is related to the problem that 
was the source of the data request. A final metric to consider is 
completeness, which reflects whether the totality of evidence 
is sufficient to address the question of interest. These criteria 
relate to high-level information fusion (HLIF) [3] systems that 
work at levels three and above of the Data Fusion Information 
Group (DFIG) model. For the URREF, we then seek a 
mathematical representation the weight of evidence: 

  WOE = f (Reliability, Credibility, Relevance, Completeness)   (1)  

where f is an function to be defined with operations on how to 
combine such as a utility analysis. 

Sect. II. provides related research and Sect. III overviews 
information fusion. Sect. IV discusses the weight of evidence 
including relevance and completeness. Sect. V describes the 
modeling of reliability and credibility with Sect. VI providing 
a simulation over evidence processing. Sect. VII provides 
discussion and conclusions.   

II. BACKGROUND

There are many examples of reliability analysis for system 
components [4]. Typically, a reliability assessment is 
conducted on system parts to determine the operational life of 
each component over the entire collection of parts [5]. A 
reliability analysis can consist of many attributes such as 
survivability [6], timeliness, confidence, and throughput [7, 8]; 
however the most notable is time to failure [9]. Reliability is 
typically modeled as a continuous analysis of a part; however, 
a discrete analysis can conducted for the number of failures in 
a given period of time [10]. Real-time analysis requires 
information fusion between continuous and discrete analysis 
over new evidence [11], covariance analysis [12, 13], and 
resource analysis [14] to control sensors.  

To assess the performance of sensors (and operators)  requires 
analysis of the physical reliability of components. Data fusion 
can aid in fault detection [15], predictive diagnostics [16], 
situation awareness [17], and system performance. A model of 

Originally published as Blasch E., Laskey K.B., Jousselme A.-L., Dragos V., 
Costa P.C.G., Dezert J., URREF reliability versus credibility in information 

fusion (STANAG 2511), Proc. of Fusion 2013 Int. Conference on Information 
Fusion, Istanbul, Turkey, July 9-12, 2013, and reprinted with permission.
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reliability includes time-dependent measures for operational 
lifetime analysis and controllability which are aspects of a data 
fusion performance analysis [18]. Use of multiple systems can 
aid in reducing failures through redundancy or system 
reconfiguration in response to failed sensors [19] for such 
applications as robotics  [20, 21], risk analysis for situation 
awareness [22, 23], and cyber threats [24, 25, 26]. 

Time-dependent measures such as times between failures are 
appropriate for processes that operate over time to produce a 
stream of outputs; and failures can render the output stream 
unreliable. For systems that respond to discrete queries or 
produce alerts, such as human operators in a fusion center or 
pattern recognition systems, reliability is assessed through 
correspondence between outputs and the actual situation. The 
confusion matrix (CM) is a typical measure [27]. Reliability 
also relates to the opinions of observers [28]. 

Credibility To analyze credibility of evidence, we can use 
probabilistic or credibilistic frameworks such as Bayes, 
Dempster-Shafer, or following proportional conflict 
redistribution (PCR) principle, etc. [29, 30, 31]. Credibility of 
a hypothesis can be assessed through its prior probability or 
belief; and also through conflict: information is more credible 
when it does not conflict with other information.  

To summarize,  

• Reliability is an attribute of a sensor or other information source,
and measures the consistency of a measure of some phenome-
non. Reliability can be assessed by variance, probability of 
occurrence, and/or a small spatial variance of precision.  

• Credibility, also known as believability, comprises the content of
evidence captured be a sensor which includes veracity, 
objectivity, observational sensitivity, and self-confidence. 

Reliability from the engineering design domain (e.g., mean 
time between failures) refers to consistent ability to perform a 
function, and reliability of a source means consistently 
measuring the target phenomenon. It may be useful to model 
source failures over time using an exponential or Poisson 
distribution. For information fusion and systems analysis, we 
need both a source element (reliability) as well as a content 
element (credibility) to characterize information quality. Next, 
we describe the information model that consists of data 
sources from human and machines that requires uncertainty 
analysis. 

III. INFORMATION FUSION

A. Information Fusion Evaluation 
Information fusion combines information from multiple 
sources, distributions [32], or information over various 
system-level model processing levels as described in the Data 
Fusion Information Group (DFIG) model [33, 34, 35], 
depicted in Figure 1. The DFIG model outlines various 
processes for information fusion such as object assessment 
[36] (Level 1 – L1), situational assessment (L2), impact 
assessment (L3), and resource management (L4). Data and 
information fusion can be applied to assess the operating 
performance of algorithms [37], sources (reliability), as well 
as message content (credibility). For system-level analysis, it 

is important to look at source context reliability of humans 
(L5) and data sources for sensor (L4) and mission 
management (L6). 

Figure 1 - DFIG Information Fusion model. 

  In the DFIG model, the goal is to separate information fusion 
(L0-L3) from sensor control, platform placement, and user 
selection to meet mission objectives (L4-L6) [38, 39, 40]. 
Information fusion across all the levels includes many metrics 
that need to be evaluated over uncertainty measures [41]. 
Challenges for information fusion, both at the hardware (i.e. 
components and sensors) and the software (i.e. algorithms and 
processes) levels were addressed by the ETURWG 
[http://eturwg.c4i.gmu.edu] [2]. Definitions of uncertainty 
measures such as accuracy [42], precision [43], reliability, and 
credibility are important for measures of effectiveness 
including validity and verification [44]. For example, accuracy 
(i.e., validity) measures distance from the truth, while 
precision (i.e., reliability) measures repeatability of results. 

Examples of information fusion include tracking accuracy 
[45, 46], tracking filter credibility [47], and object detection 
credibility [48, 49] which are important for information 
quality and quality of service metrics [50]. 

B. NATO STANAG 2511 
For STANAG 2511, as an update to STANAG2022, there are 
general listings of categories for reliability and credibility that 
are of interest to the ETRUWG [51, 52, 53]. Table 1 lists the 
STANAG 2511 issues that provided initial discussion for the 
ETURWG and the subsequent discussions in the URREF. 
Reliability and credibility are independent criteria for 
evaluation. The resultant rating will be expressed in the 
appropriate combination of letter and number (STANAG 
2511). Thus information received from a "usually reliable" 
source which is adjusted as "probably true" will be rated as 
"B2". Information from the same source of which the "truth 
cannot be judged" will be rated as "B6". 

The URREF ontology, shown in Figure 2, distinguishes 
between reliability and credibility in evidence handling and 
evidence processing; respectively. In this paper, we utilize the 
STANAG 2511 definitions of reliability (of source) and 
credibility (of information). From the ETURWG discussions, 
credibility and reliability also relate to weight of evidence, 
relevance, and completeness; although others are currently 
being explored.  
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Figure 2 – URREF Ontology: Criteria Class [2]. 

IV. WEIGHT OF EVIDENCE

Weight of evidence (WOE) has different meanings in different 
contexts. A commonality is the need to integrate different 
sources or lines of evidence to form a conclusion or a decision. 

In the field of risk analysis, WOE consists of a set of methods 
developed to assess the level of risks associated to factors or 
causes [54]. In most cases, WOE is a means of synthesizing 
information, while the solution adopted for 
weighing evidence is not explicit, or the 
evidence is presented without any interpretation. 
While some approaches rely on scoring 
techniques (see for instance research on sedi-
ments assessment described in [55]), the overall 
solutions remain qualitative in nature, developed 
for particular applications and poorly adaptable. 
Further discussion on WOE, as tackled within 
the risk analysis area is provided in [56]. 

WOE is addressed in a similar way in the 
medical domain, in relation to the rise of a new 
set of medical practices known as “evidence 
based medicine”, promoting clinical solutions 
supported by practical experience, for which 
scientific support is not (yet) available. 

From a different perspective, WOE is used in 
the law and policy domain to convey a 
subjective assessment of an expert analyzing 
different items of evidence, most often in 
relation to a causal hypothesis [57]. Intuitively, 
the concept is used to signify that the value of 
evidence must be above a critical threshold to 
support decisions or conclusions. In law, stand-
ards of evidence are recognized (for instance a 
three-level standard classifies evidence as 
“preponderance”, “clear and convincing” and 
“beyond a reasonable doubt”), but experts will 

still exercise their judgment on the strength of evidence, as 
there is no methodology to assess this parameter. Without such 
methodologies, the variance in expert’s judgments could be 
important, as subjective factors shape inevitably the outcome 
of the evidence in the evaluation. 

A. Weight of evidence for information fusion  
In the field of information fusion, WOE captures the intuition 

Table 1: STANAG 2511 Reliability and Credibility Relations and Definitions

RELIABILITY CODE EXPLANATION From STANAG 2511 
Completely Reliable A A tried and trusted source which can be depended upon with confidence 
Usually Reliable B A past successful source for which there is still some element of doubt in particular cases 
Fairly Reliable C A past occasionally used source upon which some degree of confidence can be based 
Not Usually Reliable D A source which has been used in the past but has proved more often than not unreliable 
Unreliable E A source which has been used in the past and has proved unworthy of any confidence 
Cannot be judged F It refers to a source which has not been used in the past 

CREDIBILITY CODE EXPLANATION From STANAG 2511 
Confirmed 1 If it can be stated with certainty that the reported information originates from another source 

than the already existing information on the same object 
Probably true 2 If the independence of the source cannot be guaranteed, but if, from the quantity and quality of 

previous reports, its likelihood is nevertheless regarded as sufficiently established 
Possibly true 3 If insufficient confirmation to establish any higher degree of likelihood, a freshly reported 

item of information does not conflict with the previously reported target behavior 
Doubtful 4 An item of information which tends to conflict with the previously reported or establish 

behavior pattern of an intelligence target 
Improbable 5 An item of information which positively contradicts previously reported information of 

conflicts with the established behavior pattern of an intelligence target in a marked degree 
Cannot be judged 6 If its truth cannot be judged 
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that there is more or less evidence in the data, and this can be 
related to different parameters: the value of information itself 
(whether a piece of evidence conveys rich or poor 
information), the credibility of this information, in conjunction 
with the reliability of its source (can or should we believe this 
information), and finally the utility (or completeness) of this 
information with respect to a considered goal or task (is this 
data adding any detail to our existent data set?). WOE is an 
attribute of information and its values should be assessed by 
following a justifiable, repeatable and commonly accepted 
process. Therefore, several solutions have been developed to 
propose assessment mechanisms. 

Among them, [58] proposes a probabilistic approach for 
information fusion where data items are weighted with respect 
to the accuracy or reliability of their source. This solution 
considers only independent information items and its 
adaptation to correlated information was developed [59]. 
In the field of evidential reasoning, the discounting operation 
introduced by Shafer [60], allows us to consider knowledge 
about the reliability of information sources. Smets and 
colleagues propose a method for learning a sensor’s reliability, 
at various detail levels defined by users [61]. This method is 
generalized in Mercier, et. al. [62] by introducing the 
contextual discounting. 

From a different perspective, [63] extends this frame in order 
to combine sources having different reliabilities and 
importance levels, while making a clear distinction between 
those notions. 

It should be noticed that all references above consider only 
attributes of sources, while the weight of evidence should also 
be a function of information credibility. Underlying the same 
intuition of assigning different importance levels to items 
when fusing information, we can also cite research on 
prioritized and weighted aggregation operators, described in 
[64] and [65]. 

B. Relevance in Information Fusion  
Relevance has these components: property relation and piece 
of evidence (POE). Relevance is often considered as a relation 
between one property (or feature) and a conditional. That 
means that a property is relevant (or related) to another one “if 
it leads us to change our mind concerning whether the second 
property holds” [66]. 

For instance, in classification, relevance criteria determine 
how well a feature (a property) discriminates between the 
classes (another property). In this case, the feature selection 
step aims at identifying the features that are most relevant to 
the classification problem. We distinguish between the filter 
mode and the wrapping mode. In the filter mode, measures of 
relevance are used to characterize the features. In the wrapping 
mode, a classifier is used and the optimal subset of relevant 
features is the one which maximizes the given performance 
measures, such as the recognition rate, the area under curve, 
etc., subject to a penalty on the number of features. Classical 
relevance measures are based on: mutual information, 
distances between probabilities, cardinality distances, etc. 

A piece of evidence (POE) is relevant if it impacts previous 
beliefs. In this case, the relevance of a piece of information 

can only be evaluated in conjunction with the combination 
(updating, revision) operator used, as the null element and the 
properties in general may differ from one operator to another. 
For example, in Information Retrieval, the process is used to 
assess the relevance of retrieved items (documents) based on a 
given query. 

Measures of relevance are based on traditional recall and 
precision measures: Precision is the fraction of retrieved items 
that are relevant, and Recall is the fraction of relevant items 
that have been retrieved [67]. 

Relevance is defined with respect to a goal (or a context) and 
assesses quantitative and qualitative information change. 

• Quantitative approaches: In quantitative approaches, the notion
of relevance is often intimately linked to the notion of 
independence. For instance, in classical probability theory, 
according to Gärdenfors [68], a proposition p is relevant to 
another proposition r on evidence e if p and r are conditionally 
dependent given e. 

• Qualitative approaches: In qualitative approaches, the notion of
relevance is linked to the material implication (see for instance 
the work of Goodman [69]): If a then b, a → b, then a should be 
relevant to b. 

C. How to evaluate a Relevance Criterion? 
First, we should clarify what is the object under evaluation, or 
what do we mean by uncertainty representation (UR). We 
follow here the distinction put forward in [70] about the 
difference between uncertainty calculi and decision 
procedures. 

If UR means uncertainty calculus (UC) (mathematical 
framework, theory), then we are asking if, for instance, 
possibility theory or probability theory is able “to capture how 
a given input is relevant [...]”, and to what degree. Although 
this is a very general question with certainly no binary answer, 
some evaluation could be done. 

For instance, using a literature survey for document retrieval, 
what is needed is a notional scale. An example of a scale to be 
defined over methods, measures, or models : 

A. exist and are well developed with the theory and results are 
significant; 

B. exist but some further developments are required or results are 
not significant;  

C. are missing, or 
D. the concept is not addressed. 

We could conclude for instance probability theory is very 
good at dealing with relevance since a plethora of methods and 
measures are defined (A), compared to possibility theory for 
which only few methods exist (B). This would be an empirical 
evaluation, mainly based on a literature survey. Although we 
could conclude that a theory is very good at dealing with the 
relevance concept (numerous methods, measures, papers etc), 
an absence of evidence in this sense for another theory would 
not mean that the latter is not good. Rather it would identify a 
research gap. 

Each of the following elements can be evaluated separately: 

(UC-1) The mathematical model for uncertainty representation 
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(UC-2) The uncertainty measures 
(UC-3) The inference rules and combination operator 
(UC-4) Transformation functions 

If UR is a decision procedure (DP), we are asking if a 
particular algorithm, relying on possibly several theories, is 
able “to capture how a given input is relevant [...]”, and to 
what degree. A DP distinguishes between the method and its 
implementation (e.g., fusion algorithm). Also, note that the 
same DP could be represented by several algorithms. 

Two steps underlying may be distinguished: 
1. Identification and assessment of pieces of information (or

properties) according to their relevance; and 
2. Filtering of irrelevant pieces of information.

Example of an experiment to be elaborated could be: 

i. Consider a dataset with both relevant and irrelevant pieces of
information; 

ii. Each piece of information should have been previously labeled as
relevant or irrelevant, possibly with some degrees; 

iii. Run the decision procedure (fusion algorithm) with only relevant
pieces of information and add progressively irrelevant (or less
relevant) ones; and

iv. Evaluate the decision procedure based on other independent
criteria such as the execution time, true positive rate,
conclusiveness, interpretation, etc.

 

We could observe for instance that a given Decision 
Procedure, say DP-A, is better than another one, say DP-B, 
because its execution time is lower with an equivalent true 
positive rate. Even if DP-A is based on evidence theory and 
DP-B is based on probability theory, concluding that evidence 
theory is better for dealing with relevance than probability 
theory is obviously not trivial and would require special care. 

A thinner-grained assessment of relevance criterion can be 
performed by assessing separately each of the following 
elements of an Atomic Decision Procedure (ADP): 

(ADP-1) Universe of discourse 
(ADP-2) Instantiated uncertainty representation 
(ADP-3) Reasoning step 
(ADP-4) Decision step 

For instance, one could assess if one particular universe of 
discourse better allows expressing relevance concepts than 
another. Relevance contributes to WOE. Evaluating whether a 
representation is able to deal with relevance should rely on 
other criteria of the ontology (if UR is a decision procedure) 
and or on other empirical criteria to be defined (if UR is an 
uncertainty calculus).  In addition to relevance affecting re-
liability and credibility, completeness needs to be considered. 

D. Evidence Completeness 
Reliability versus credibility is highly related to completeness 
of evidence. For example, we cannot postulate that: (P1) 
reliability of a source => credibility of information 
(that is more a source is reliable, more the credibility of the 
information it provides is high) WITHOUT assuming the 
completeness of pieces of evidences available for the source. 

For example: (Ming vase): Let's consider an apparent Ming 
vase (a counterfeit or a genuine one) to be analyzed. Suppose 
that an expert provides his report based on only two attributes 

(say the shape and color of the vase) and concludes (based on 
these two attributes/pieces of evidences only) that the vase is a 
genuine Ming vase. Because it is based on this knowledge 
only, and because both attributes fit perfectly with those of a 
genuine Ming vase, the Expert is 100% reliable (he didn't 
make a mistake) in assessing the two attributes; however, we 
are still unsure of his reliability in assessing whether the vase 
is genuine. Additional POE if available may be 100% reliable 
and support the opposite conclusion. For example, let's 
suppose that when looking at the vase we see the printed 
inscription "Made in Taiwan". So we are now sure that we are 
facing a counterfeit Ming vase. 

So we see that the reliability and credibility notions are highly 
dependent on the underlying completeness of pieces of 
evidence and the relationship of the evidence to the conclusion 
of interest. In the Ming vase example, if we treat the two 
attributes (color and shape) as complete evidence sufficient to 
establish the absolute truth, then if Expert is fully reliable, the 
information he/she provides becomes highly credible due to 
reliability of the source and completeness of the evidence. 

When there is incompleteness of POE, nothing conclusive can 
be inferred about credibility unless some additional 
assumptions are introduced about the evidence necessary to 
establish the truth.  

The fundamental question behind this, is to know if a source 
based only on local/limited knowledge (evidences) can (or 
not) conclude with an absolute certainty about an hypothesis, 
or its contrary so that any other/additional pieces of evidences 
cannot revise his/her conclusion. Depending on the standpoint 
we choose, we accept or reject (P1) which makes a big 
difference in reasoning. In summary, the ETURWG analysis 
highlights uncertainty elements of a WOE. 

E. URREF Weight of evidence  
With respect to criteria defined by URREF we can define 
weight of evidence as: 

WOE = f (Reliability, Credibility, Relevance, Completeness)  

where f is an function to be defined and relevance is related to 
the problem (or mission). 

This is a translation of the following reasoning: 
If (the source is reliable) then 
If (the information provided is credible) then 
If (this information is relevant to my problem) then 
If (this information can enrich my existent information set) then 
this information has some weight of evidence. 

The four terms above are URREF criteria, while the last 
corresponds to a task-specific parameter that affects utility. 
For instance, utility can be evaluated by taking into 
consideration a distance between the set of information 
already available and a new item to determine utility 
completeness. Next, we demonstrate a modeling technique 
that brings together reliability and credibility to instantiate 
WOE calculations. 
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V. RELIABILITY AND CREDIBILITY ANALYSIS 
A reliability assessment affects modern equipment systems 
performance capability, maintainability, usability, and the 
operational support cost. Knowing the system’s reliability is 
important for efficient and effective performance. Due to the 
high complexity of system’s engineering integration, it is 
difficult to evaluate system-level reliability. Some ways to 
estimate system-level reliability include: (1) predicting 
operational reliability based on design data, (2) statistically 
analyze operational data, or (3) develop performance models 
based on real-world operational constraints. 

Reliability prediction depends on models, such as life-cycle 
analysis. Typical models include Poisson, Exponential, 
Weibull, or Bernoulli distributions. Standard components, 
operating for a long time, may have data to support a priori 
analysis and modeling; however, the likelihood of reliability 
effectiveness is subject to real-world conditions that have not 
been modeled. For exponentially distributed failure times, the 
density function and the cumulative distribution function for 
time to failure of the system components are: 

f(t) = λ e −λ t     ; F(t) = 1 − e −λ t (2) 

The physical meaning of F(t) is the probability that a failure 
(doubt) occurs before the time t and f(t) is the failure density: 
the probability that the component will fail in a small interval 
t±∆t is given by 2f(t)∆t. As t increases, the value of F(t) 
approaches 1 at t = ∞. 

For a fusion or reliability metric of a source, we need to map 
the semantics into quantifiable metrics based on the source 
context. Here we assume that we take discrete measurement 
and a consistent source has almost no failures. On the other 
hand, a non consistent source fails quickly. As a quick look we 
show a notional example, but realize that for human sources 
this model does not hold. For example, to ascertain a “not 
usual source” is difficult to quantify and caution and 
improvements would be forthcoming from the ETURWG.   

Classification systems process evidence features by an 
algorithm to classify evidence into classes. Results are tested 
against truth and reported using a confusion matrix (CM) [27]. 
A CM can thus be used to measure reliability of a 
classification system. A CM is an estimate of likelihoods of 
the accumulated evidence of classifier. The elements of a 
confusion matrix are c i j = Pr{Classifier decides o j when o i is 
true}, where i is the true object class, j is the assigned object 
class, and i = 1, …., N for N true classes. The CM elements 
can be represented as probabilities as c i j = Pr{ z = j | o i} = p{ 
z j | o i}. To determine an object declaration, we need to use 
Bayes’ rule to obtain p{o i | z j} which requires the class priors, 
p{oi}. We denote the priors and likelihoods as column vectors 

p(o−)  =  
⎣
⎢
⎡

⎦
⎥
⎤p(o1)

p(o2)
 :

p(oN)

    ;   p(z j | o−)  =  
⎣
⎢
⎡

⎦
⎥
⎤p(z j | o1)

p(z j | o2)
 :

p(z j | oN)

 . (3) 

For M decisions, a confusion matrix would be of the form 

 C  =  

⎣
⎢
⎡

⎦
⎥
⎤p(z 1 | o1) p(z 2 | o1)  .. p(z M | o1)

 p(z 1 | o2) p(z 2 | o2)  .. p(z M | o2)
… … ⋱ …

 p(z 1 | oN) p(z 2 | oN)  .. p(z M | oN)

 . (4) 

VI.  RESULTS

For the simulation, we do both reliability and credibility 
assessment formulation to model the STANAG2511 criteria 
for uncertainty representation. Note that we assume 
completeness and relevance in these simulations. 

A. Reliability 
For source reliability, the parameter of choice is λ, which 
captures the rate of time between failures. Figure 3 
demonstrates the intuition that reliable and unreliable sources 
remain unreliable and reliable. However, the interesting cases 
are those which are termed “usually reliable” (code B) which 
affects the uncertainty analysis.  
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Figure 3 – Reliability Analysis 

For Figure 3, a representative analysis of the reliability 
parameters are:   

Code A Completely Reliable :  λ = 0 
Code B Usually Reliable :  λ = 0.001 
Code C Fairly Reliable :  λ = 0.01 
Code D Not Usually Reliable : λ = 0.1 
Code E Unreliable :  λ = 1 
Code F Cannot be judged λ  undefined 

C. Credibility 
For credibility, since STANAG 2511 definitions deal with 
conflicts, we utilize comparisons between Dempster-Shafer 
Theory and the PCR5 rule. Setting up the modeling using CM 
of classifiers from the information content, we can develop 
representative CMs for the different definitions: 

%%% Confusion Matrices for Classifiers (two sources) 
CM1=[0.999 0.001; 0.001 0.999] 
CM2=[0.95 0.05; 0.05 0.95]       
CM3=[0.70 0.30; 0.30 0.70]  

Now, we define credibility levels as follows, based on the 
confusion matrices of the two classifiers and whether or not 
their outputs agree: 

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

414



Confirmed:    CM1, outputs agree 
Probably (independently confirmed): CM2, outputs agree 
Possibly (does not conflict):  CM3, outputs agree 
Doubtful (tends to conflict):    CM3, outputs disagree 
Improbable (conflicts): CM1 or CM2, outputs disagree 

Figure 4 shows a comparison of the CM results of a “possibly 
true” (code 3) to validate that the PCR5 rule better supports 
evidence analysis than the Dempster-Shafer method. 
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Figure 4 – DS versus PCR5 for “Possibly True” (Code 3) 

Figure 5 and 6 highlight the credibility relations associated 
with a DS and PCR5 formulation, where PCR5 better 
represents an expected analysis for calculating the STANAG 
2511 credibility codes. 
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VII. CONCLUSIONS

In this paper, we overviewed uncertainty representation 
discussions from the ETURWG as related to the STANG 2511 
reliability and credibility. In our URREF model for weight of 
evidence, included are relevance and completeness. We 
demonstrated modeling for reliability and credibility and 
provided simulations as related to evidence reasoning methods 
of the PCR5 rule. These results provide a more tractable (and 
mathematical) ability to calculate the STANAG 2511 codes.  

Reliability and credibility affect higher levels of information 
fusion (i.e. beyond Level 2 fusion) grand challenges [71] of 
uncertainty representation [72], ontologies [73, 74] and 
uncertainty evaluation [75, 76]. Future research will further 
explore the uncertainty ontology within the URREF, use cases 
of real systems for a combined credibility/reliability 
assessment, and mathematical inclusion of other metrics such 
as relevance  and completeness. 
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Application of New Absolute and Relative 
Conditioning Rules in Threat Assessment

Ksawery Krenc
Florentin Smarandache

Abstract—This paper presents new absolute and relative con-
ditioning rules as possible solution of multi-level conditioning in
threat assessment problem.

An example of application of these rules with respect to target
observation threat model has been provided.

The paper also presents useful directions in order to manage
the implemented multiple rules of conditioning in the real system.

I. INTRODUCTION

Contemporary Command & Control systems operate with
multiple sensors in order to elaborate consistent and complete
information required for decision making [1]. These systems,
however, must face another very important requirement, which
is cooperation with other information systems. Dealing with
information of different processing levels is inevitable conse-
quence of the imposed demands, and requires specific tools for
fusion in order to take this diversity into account effectively.

As Threat Assessment is one of the most important tasks
imposed on C2 systems [2], [3], these systems must be
able to deal with information obtained from uncertain and
even unreliable sources, where the quality measures are often
subjective. For this reason Theory of Evidence seems to be an
appropriate approach.

Theory of Evidence known as Dempster-Shafer Theory
(DST) [4] does not make any distinction to fusion operations
regarding uncertainty of the gathered information. So called
Dempster’s rule of combination has been used in order to
combine strong evidences from reliable sources, as well as
poor evidences from unreliable sources, and hybrid (strong
evidence with poor evidence). For many years researchers
have been inventing diverse combination rules as alternative to
Dempster’s rule [5], [6], and [7]. These rules are different from
each other mainly in the way the conflicting mass (referring to
contradicting hypotheses) is distributed. However, according
to knowledge of the authors, none of these rules takes into
account possible different processing levels of the integrated
information, which cannot be expressed with basic belief
assignments.

Theory of Evidence by Dezert and Smarandache (DSmT) [8]
distinguishes two operations: combination and conditioning
for fusion of uncertain information and integration of uncertain
pieces of information with confirmed i.e. certain evidence

respectively. Aware of this fact, a certain idea of using con-
ditioning operation (as an alternative of combination [9]) for
the purpose of multiple level fusion has been published [10].
However, as it was presented in [11], [12], each of these
solutions has its drawbacks, and in general neither is preferable
over the other. The main disadvantage of combination as
multiple level fusion operation is that it does not take into
account the predominance of the conditioning information
from the external system over the local sensor data, and
in result it makes no distinction between the information
processing levels. On the other hand, the main disadvantage
of conditioning is that the condition is treated, by definition,
as an absolute and literate fact, which is the assumption very
hardly accepted in the real world.

For this reason another class of fusion rules, called relative
conditioning, has been invented. In this type of rules the pre-
dominance of the condition over the uncertain evidence is
stated explicitly, while the trust in the conditioning hypothesis
is not absolute by definition.

In this paper two of these rules will be presented as
possible solution of the multi-level conditioning [12] in threat
assessment problem.

II. NEW CONDITIONING RULES

Let Θ be a frame of discernment formed by n singletons
defined as:

Θ = {θ1, θ1, ..., θn}, n ≥ 2 (1)

and its Super-Power Set (or fusion space):

SΘ = (Θ,∪,∩, C) (2)

which means the set Θ is closed under union ∪, intersection
∩, and complement C respectively.

Let m(.) be a mass:

m(.) : SΘ → [0, 1] (3)

and a non-empty set A ⊆ It where It = θ1 ∪ θ2 ∪ ...θn is the
total ignorance.

Originally published as Krenc K., Smarandache F., Application of 
New Absolute and Relative Conditioning Rules in Threat Assessment, 

Proc. of Fusion 2013 Int. Conf., Istanbul, Turkey, July 9-12, 2013, 
and reprinted with permission.
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Conditioning of m(.|.) becomes:

∀X ∈ SΘ,m(X|A) =
∑

Y ∈SΘ\∅
Y ∩A=X

m(Y ) +

+
∑

Y ∈SΘ\∅
Y ∩A=∅
X=A

m(Y ) · ωA + δAX ·m(X) · ω0 (4)

where:

δAX =

{
1, A = B

0, A 6= B
(5)

and ω0 and ωA are the weights for all sets which are com-
pletely outside of A, and respectively for all sets which are
inside or on the frontier of A.

ω0, ωA ∈ [0, 1], ω0 + ωA = 1 (6)

For a more refined/ optimistic redistribution, all masses of the
elements situated outside of A are redistributed, according to
the formula (7).

∀X ∈ SΘ,m(X|A) =
∑

Y ∈SΘ\∅
Y ∩A=X

m(Y ) +

+
m(X)∑

Y ∈SΘ\∅
Y⊆A

m(Y )6=0

m(Y )

∑
Y ∈SΘ\∅
Y ∩A=∅
X=A

m(Y ) · ωA + δAX ·m(X) · ω0 (7)

From the practitioner’s point of view these formulas provide
directions on how the mass of hypotheses not involved or
partially involved in condition should be redistributed. In order
to explain the idea of these rules it is suggested to consider a
simple example of a model consisting of three hypotheses: A,
B, and C, where A and B overlap each other, and C is disjoint.
Assume the condition is A.

For this example, application of the rule (4) will cause the
following action:

– former masses of A and A∩B remain unchanged, sup-
plying A and A∩B hypotheses respectively,

– former mass of B is transferred to A∩B,
– former mass of C is transferred to A.
When applying the absolute version of the rule (4) all

masses are transferred exactly as described above. Otherwise,
i.e. relative conditioning, the mass of C is weighted according
to the given ω0 and ωA.

Application of the rule (7) will cause the following action:
– former masses of A and A∩B remain unchanged, sup-

plying A and A∩B hypotheses respectively,
– former mass of B is transferred to A∩B,
– former mass of C is transferred to A and A∩B propor-

tionally to their masses
Similarly as for the rule (4) when applying the absolute

version of the rule (7) all masses are transferred exactly as
described above. Otherwise, i.e. relative conditioning, the mass
C is weighted according to the given ω0 and ωA.

Figure 1. Mass transfer in case of application of the rule (4)

Figure 2. Mass transfer in case of application of the rule (7)

III. THREAT ASSESSMENT EXAMPLE

In order to illustrate application of the introduced rules it
is suggested to consider the following conditioning example
referring to the threat assessment problem. Assume the frame
of discernment is defined as:

Θ = {F,H,U,N} (8)

where:
– F denotes FRIEND,
– H denotes HOSTILE,
– U denotes UNKNOWN,
– N denotes NEUTRAL.

Additionally assume:

S = H ∩ U (9)
A = F ∩ U (10)
K = F ∩H (11)

J = F ∩H ∩ U (12)

where:
– S denotes SUSPECT,
– A denotes ASSUMED FRIEND,
– K denotes FAKER i.e. FRIEND acting as HOSTILE for

training purposes, [13], [14], [15], and [16]
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– J denotes JOKER i.e. FRIEND acting as SUSPECT for
training purposes, [13], [14], [15], and [16].

Consider a scenario, where a local system, equipped with
sensors and performing target threat observation and infor-
mation fusion, gets informed by an external system about
its decision, referring to the observed target. The decision
transferred to the local system is that the target is FRIEND,
which performs a conditioning information.

Figure 3. Venn’s diagram of the observed target threat

Figure 3. shows a Venn’s diagram describing the tar-
get threat observation model, where information obtained
from the external system has been colored in gray. Notice
that the model refers to observation of the target threat
(not to the target threat in itself), which means it describes
what the target looks like (not what the target really is). This is
significant for justification why FAKER may be defined as
the intersection of FRIEND and HOSTILE, not as a subset
of FRIEND, which is by definition of FAKER in [13], [14],
[15], and [16].

Consider that the local system has already performed sensor
fusion and its results are summarized in basic belief assign-
ment (bba) below:

m(F ) = 0.2, m(H) = 0.1, m(U) = 0.1
m(A) = 0.1, m(S) = 0.1, m(K) = 0.1
m(J) = 0.2, m(N) = 0.1

Application of (4) leads to the following updated bba for
absolute (ω0 = 0 and ωA = 1) conditioning:

m(F |F ) = 0.3, m(H|F ) = 0, m(U |F ) = 0
m(A|F ) = 0.2, m(S|F ) = 0, m(K|F ) = 0.2
m(J |F ) = 0.3, m(N |F ) = 0

For the relative conditioning with the following weights
ω0 = 0.3 and ωA = 0.7 one should get:

m(F |F ) = 0.27, m(H|F ) = 0, m(U |F ) = 0
m(A|F ) = 0.2, m(S|F ) = 0, m(K|F ) = 0.2
m(J |F ) = 0.3, m(N |F ) = 0.03

For the absolute opposite (ω0 = 1 and ωA = 0) conditioning
one should get:

m(F |F ) = 0.2, m(H|F ) = 0, m(U |F ) = 0
m(A|F ) = 0.2, m(S|F ) = 0, m(K|F ) = 0.2
m(J |F ) = 0.3, m(N |F ) = 0.1

Application of (7) leads to the following updated bba for
absolute conditioning:

m(F |F ) = 0.233, m(H|F ) = 0, m(U |F ) = 0
m(A|F ) = 0.217, m(S|F ) = 0, m(K|F ) = 0.217
m(J |F ) = 0.333, m(N |F ) = 0

For the relative conditioning with the following weights
ω0 = 0.3 and ωA = 0.7 one should get

m(F |F ) = 0.223, m(H|F ) = 0, m(U |F ) = 0
m(A|F ) = 0.212, m(S|F ) = 0, m(K|F ) = 0.212
m(J |F ) = 0.323, m(N |F ) = 0.03

For the absolute opposite conditioning one should get:

m(F |F ) = 0.2, m(H|F ) = 0, m(U |F ) = 0
m(A|F ) = 0.2, m(S|F ) = 0, m(K|F ) = 0.2
m(J |F ) = 0.3, m(N |F ) = 0.1

Analysis of the obtained results shows that there are sub-
stantial differences in results between conditioning rules (4)
and (7) for the considered case. Depending on the particular
rate of belief (values of ω0 and ωA) in condition the mass
of the condition (FRIEND), as well as subsequent masses
of hypotheses contained in the hypothesis of the condition
(FAKER, JOKER, ASSUMED FRIEND) have been supplied
with masses of hypotheses not contained in the condition
(HOSTILE, UNKNOWN, SUSPECT, and NEUTRAL).

For both of the rules, in the first place the absolute condi-
tioning case has been considered as a specific circumstance
of relative conditioning. As the second, the relative condition-
ing has been performed with given weights of ω0 and ωA.
Then, the absolute opposite conditioning has been presented
as another special circumstance of relative conditioning.

The reason for the absolute opposite conditioning in this
case is purely illustrative. Theoretically, it could be useful
if the condition hypothesis was complex (expressed as union
or intersection of multiple hypotheses) and it was convenient
to consider the complement of the condition. However, in most
of the cases the condition, as output of the external system is
simple. Thus, it is very unlikely that such kind of conditioning
would be applied in threat assessment.

Regarding the distinction in the presented rules, in this case,
the essential difference between conditioning rules (4) and
(7) resides in the manner the mass of NEUTRAL hypothesis
is redistributed. For the rule (4) the mass of NEUTRAL is
transferred completely to the mass of FRIEND, while for
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the rule (7) the mass of NEUTRAL is transferred to FRIEND,
JOKER, FAKER, and ASSUMED FRIEND proportionally
to their masses. In other words, in case of the rule (7)
the redistribution is performed with the higher degree of trust
in the adequacy of the target threat observation model. There-
fore it may be regarded as more optimistic in comparison
to pessimistic rule (4).

IV. CHOOSING THE PROPER CONDITIONING RULE

Choosing the proper rule is one of the most important
questions related to application of any fusion techniques
(conditioning and combination). Since there are many rules
of combination and conditioning [8], [11], [9], [10], and even
more possible fusion cases, the choice of any particular rule for
the particular case could be a topic of papers for the next few
decades. Moreover, since there are no existent standardized
fusion cases for particular domains the choice of the optimal
rule seems to be a philosophical problem.

Since in this paper there are two rules of conditioning
proposed the problem of selection of the proper one still
holds. Additionally, each of these rules introduces weights
(ω0 and ωA) in order to establish the ’relativity’ of the condi-
tioning, and setting particular values to these weights requires
a comment.

According to the knowledge of the authors [11], [9], [10],
and [12], in most of the cases selection of the particular rule for
conditioning (as well as combination) is done experimentally.
For the particular fusion task e.g. threat assessment in Com-
mand and Control system one chooses the rule which returns
the closest results to the expected values. However, even within
the particular fusion task it is possible to find situations,
where another rule returns results substantially better than the
previously selected one. That means two things:

– there is no universal rule of conditioning, correct in every
conditions,

– if that is so, the particular fusion task should be split for
at least two subtasks.

In other words, the particular rule of conditioning should
be selected dynamically according to specified circumstances
of information integration process.

In this section, the authors would like to define the factors
which may influence on the choice of the particular rule
of conditioning.

Quality of gathered information could be regarded as a basic
parameter that affects selection of conditioning rules. Further,
this parameter may be decomposed for two components refer-
ring to attribute (observation) model and data. Thus, the quality
aggregates both: model adequacy and data precision. The fun-
damental question is how these model adequacy and data
precision may be assessed and transformed into the quality
in order to make choice of conditioning rule?

Possible solution of this problem may reside in analysis
of bba subjected to conditioning. Bba, by definition, performs
a kind of distribution, where subsequent masses reflect the de-
gree of belief in particular hypotheses. If sensors are not
reliable relatively high mass will be transferred to hypothesis

describing complete ignorance. For instance, for the consid-
ered case it could be I = F ∪ H ∪ U ∪ N. By implication
if the sensors are reliable the mass referring to the complete
ignorance is zero. That may be regarded as the first insight
in data precision. Another inference on data precision may
be done by overview of distribution of mass over the rest
of the hypotheses. Conciseness of the distribution means
higher precision. Adequacy of the attribute (observation)
model, on the other hand, may be defined by compliance of
hypothesis of the highest mass with the hypothesis of the con-
dition. If there exists any relation between the highest mass
hypothesis and the condition, e.g. including or intersecting
they may be regarded as compliant. On the other hand if they
are disjoint they are regarded as noncompliant.

Referring the deductions above to the features of the pre-
sented rules a simple logic (briefly described in Table I) may
be applied in order to choose the proper conditioning rule.

Table I
CHOICE OF THE CONDITIONING RULE BASED ON MODEL ADEQUACY AND

DATA RELIABILITY

Model Data Quality Description Conditioning

poor poor poor mmax 6= Cond, m(Θ) ↑ absolute, (4)
poor good poor mmax 6= Cond, m(Θ) ↓ absolute, (4)
good poor poor mmax

∼= Cond, m(Θ) ↑ absolute, (7)
good good good mmax

∼= Cond, m(Θ) ↓ relative, (7)

If the highest mass hypothesis is not compliant with the con-
dition, which means the attribute (observation) model is not
adequate, no matter if the data are precise or not, in such
case absolute conditioning should be applied with no respect
to the attribute (observation) model. This may be achieved
by using the rule (4) with ω0 = 0 and ωA = 1.

If the mass referring to total ignorance is relatively high and
the highest mass hypothesis is compliant with the condition
that means that the sensor data are poor and the attribute
(observation) model is adequate. In such case absolute con-
ditioning should be applied with respect to the attribute
(observation) model which may be achieved by using the rule
(7) with ω0 = 0 and ωA = 1.

Finally, if the mass referring to total ignorance is relatively
low and the highest mass hypothesis is compliant with the con-
dition that means that the sensor data are reliable (good)
and the attribute (observation) model is adequate. In such
case relative conditioning should be applied with respect
to the attribute (observation) model which may be achieved by
using the rule (7) with ω0, ωA ∈ (0, 1), where: ω0 + ωA = 1.

As a summary of this section it is worth of notice that
particular values of the ’relativity’ weights (ω0 and ωA)
depend only on the specific configuration of the fusion system.
In the authors’ opinion it is pointelss to discuss any specific
values without reference to the particular system since there
are no general guidelines for presetting.

V. SELECTION OF CONDITIONING RULES - EXAMPLES

In order to illustrate the selection mechanism few more
examples have been delivered. However, in the first place, it is
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suggested to reconsider the example from Section III. Table II
presents the summarized bba (before and after conditioning).
In this very case, before conditioning performed, the dominant
masses had referred to FRIEND and FAKER hypotheses,
which was compliant with the condition hypothesis (FRIEND).
That means the model was adequate. Additionally, the total ig-
norance mass has not been defined (as nonzero), which means
the data were reliable. According to Table I, in such case
the relative version of the rule (7) should be selected, which
was exactly what was decided.

Table II
EXAMPLE 1: BBA BEFORE AND AFTER CONDITIONING OPERATION

Threat \ bba m m(7)R(·|F )

F 0.2 0.223
H 0.1 0

U 0.1 0

A = F ∩ U 0.1 0.212

S = H ∩ U 0.1 0

K = F ∩ H 0.1 0.212

J = F ∩ H ∩ U 0.2 0.323

N 0.1 0.03

I = F ∪ H ∪ U ∪ N 0 0

In the next example it is suggested to consider bba given
in the second column of the Table III. In this case the biggest
mass has been assigned to total ignorance. Furthermore, there
is no predominance of any particular primary hypotheses [17]
(FRIEND, HOSTILE, UNKNOWN, NEUTRAL) or secondary
hypotheses [17] (ASSUMED FRIEND, SUSPECT, FAKER,
JOKER). That means that the gathered data are not reliable
and and the model adequacy has not been proven. Therefore
the absolute version of the rule (4) should be chosen.

Table III
EXAMPLE 2: BBA BEFORE AND AFTER CONDITIONING OPERATION

Threat \ bba m m(4)A(·|F )

F 0.1 0.56
H 0.1 0

U 0.1 0

A = F ∩ U 0.06 0.16

S = H ∩ U 0.06 0

K = F ∩ H 0.06 0.16

J = F ∩ H ∩ U 0.06 0.12

N 0.06 0

I = F ∪ H ∪ U ∪ N 0.4 0

In the last example it is suggested to consider bba given
in the second column of the Table IV. In this case the biggest
mass has also been assigned to total ignorance, which proves
relatively low sensor reliability. However, except m(I), there
is a predominance of FRIEND hypothesis over the other hy-
potheses. Thus the model be regarded as adequate. Therefore
the absolute version of the rule (7) should be chosen.

In the presented procedure of selection of the conditioning

Table IV
EXAMPLE 3: BBA BEFORE AND AFTER CONDITIONING OPERATION

Threat \ bba m m(7)A(·|F )

F 0.16 0.422
H 0.1 0

U 0.1 0

A = F ∩ U 0 0.1

S = H ∩ U 0.06 0

K = F ∩ H 0.06 0.259

J = F ∩ H ∩ U 0.06 0.219

N 0.06 0

I = F ∪ H ∪ U ∪ N 0.4 0

rules bba provides qualitative information on data reliability
as well as model adequacy. Analyzing the above examples,
some harsh reader could regard reasoning about the adequacy
of the model based on the bba as vague, due to the fact bbas
are affected with measuring errors, and it is possible these
errors influence on the decision whether a particular model
is adequate or not. However, it is important to notice that
in real systems these bbas are updated regularly, which enables
to improve statistically the reference for decision making.
That means that any predominance of a certain hypothesis
may be confirmed by the subsequent version of updated bba.

It is also a matter of convention how to deal with a particular
case when m(Θ) = m(I) is the maximal mass in the bba.
Assuming that the condition hypothesis does not refer to total
ignorance: On one hand, since bba influences both data relia-
bility and model adequacy it is justified to select the absolute
version of the rule (4). On the other hand, it is reasonable
to exclude the total ignorance hypothesis m(Θ) = m(I)
while deciding about the adequacy of the model, in order to
distinguish two aspects (qualitative features) of the gathered
bba, which is preferable by the authors.

VI. CONCLUSION

The introduced new rules of conditioning have been in-
vented as a response for problems emerging while applying
the existing absolute conditioning techniques in the real world.
Considering the condition as identical with the ground truth
may be useful in theory, however in practice it often performs
an assumption hard to accept [11]. Updating attribute fusion
results with evidence from the external system is an excellent
example for that. Each time the highly processed information
is used, no matter how good the system is, there is a risk that
the output information is corrupted or at least slightly changed
[18], [19].

The presented conditioning rules enable to set weights
in order to define the degree of belief in the external system
output. These weights should be treated as tactical and tech-
nical parameters of the system performing combination and
conditioning. Certainly, depending on the actual needs, they
may be fixed or changeable dynamically. However the exact
values should result from the particular system configuration
thus no theoretical preference is made.
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In case of choosing a particular rule of conditioning it is
different, and some general guidelines may be established.
The proposed method of selection of the conditioning rules
may be applied in Command and Control systems, where
multiple rules may be implemented. In such case the choice
of the proper conditioning rule may perform an element
of so called Conditioning Management.
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A DSmT Based Combination Systems 
for Handwritten Signature Verification 
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Abstract: The identification or authentication from the handwritten signature is the most 
accepted biometric modality for identifying a person. However, a single handwritten signature 
verification (HSV) system does not allow achieving the required performances. Therefore, 
rather than trying to optimize a single HSV system by choosing the best features or classifier for 
a given system, researchers found more interesting to combine different systems. In that case, 
the DSmT is reported as very useful and powerful theoretical tool for enhancing the 
performance of multimodal biometric systems. Hence, we propose in this chapter a study of 
applying the DSmT for combining different HSV systems. Two cases are addressed for 
validating the effective use of the DSmT. The first one is to enhance the performance of off-line 
HSV systems by associating features based on Radon and Ridgelet transforms for each 
individual system. The second one is associating off-line image and dynamic information in 
order to improve the performance of single-source biometric systems and ensure greater 
security. Experimental results conducted on standard datasets show the effective use of the 
proposed DSmT based combination for improving the verification accuracy comparatively to 
individual systems. 

1.1 Introduction 
Biometrics is one of the most widely used approaches for identification and authentication 

of persons [1]. Hence, several biometric modalities have been proposed in the last decades, 
which are based on physiological and behavioral characteristics depending on their nature. 
Physiological characteristics are related to anatomical properties of a person, and include for 
instance fingerprint, face, iris and hand geometry. Behavioral characteristics refer to how a 
person performs an action, and include typically voice, signature and gait [1, 2]. Therefore, 
the choice of a biometric modality depends on several factors such as nonuniversality, 
nonpermanence, intraclass variations, poor image quality, noisy data, and matcher limitations 
[1, 3]. Thus, recognition based on unimodal biometric systems is not always reliable. To 
address these limitations, various works have been proposed for combining two or more 
biometric modalities in order to enhance the recognition performance [3, 4, 5]. This 
combination can be performed at data, feature, match score, and decision levels [3, 4]. 

Compilation of: N. Abbas and Y. Chibani, “SVM-DSmT Combination for Off-Line Signature Verification,” IEEE 
International Conference on Computer, Information and Telecommunication Systems (CITS), Amman, Jordan, pp. 1-5, 

May 14-16, 2012., and of N. Abbas and Y. Chibani, “SVM-DSmT combination for the simultaneous verification of off-line 
and on-line handwritten signatures,” International Journal of Computational Intelligence and Applications (IJCIA), vol. 11, 

no. 3, 2012, and reprinted with permission.
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However, with the existence of the constraints corresponding to the joint use of classifiers 
and methods of generating features, an appropriate operating method using mathematical 
approaches is needed, which takes into account two notions: uncertainty and imprecision of 
the classifier responses. In general, the most theoretical advances which have been devoted to 
the theory of probabilities are able to represent the uncertain knowledge but are unable to 
model easily the information that is imprecise, incomplete, or not totally reliable. Moreover, 
they often lead to confuse both concepts of uncertainty and imprecision with the probability 
measure. Therefore, new original theories dealing with uncertainty and imprecise information 
have been introduced, such as the fuzzy set theory [6], evidence theory [7], possibility theory 
[8] and, more recently, the theory of plausible and paradoxical reasoning developed by 
Dezert-Smarandache theory (DSmT) [9, 10, 11]. The DSmT has been elaborated by Jean 
Dezert and Florentin Smarandache for dealing with imprecise, uncertain and paradoxical 
sources of information. Thus, the main objective of the DSmT is to provide combination rules 
that would allow to correctly combine evidences issued from different information sources, 
even in presence of conflicts between sources or in presence of constraints corresponding to 
an appropriate model (i.e. free or hybrid DSm models [9]).  

The use of the DSmT has been used justified in many kinds of applications [9, 10, 11]. 
Indeed, the DSmT is reported as very useful and powerful theoretical tool for enhancing the 
performance of multimodal biometric systems. Hence, combination algorithms based on 
DSmT have been used by Singh et al. [12] for robust face recognition through integrating 
multilevel image fusion and match score fusion of visible and infrared face images. Vatsa et al. 
proposed a DSmT based fusion algorithm [13] to efficiently combine level-2 and level-3 
fingerprint features by incorporating image quality. Vatsa et al. proposed an unification of 
evidence-theoretic fusion algorithms [14] applied for fingerprint verification using level-2 and 
level-3 features. A DSmT based dynamic reconciliation scheme for fusion rule selection [15] 
has been proposed in order to manage the diversity of scenarios encountered in the probe 
dataset. 

Generally, the handwritten signature is considered as the most known modality for 
biometric applications. Indeed, it is usually socially accepted for many 
government/legal/financial transactions such as validation of checks, historical documents, etc 
[16]. Hence, an intense research field has been devoted to develop various robust verification 
systems [17] according to the acquisition mode of the signature. Thus, two modes are used for 
capturing the signature, which are off-line mode and on-line mode, respectively. The off-line 
mode allows generating a handwriting static image from the scanning document. In contrast, 
the on-line mode allows generating dynamic information such as velocity and pressure from 
pen tablets or digitizers. For both modes, many Handwritten Signature Verification (HSV) 
systems have been developed in the past decades [17, 18, 19]. Generally, the off-line HSV 
systems remains less robust compared to the on-line HSV systems [16] because of the 
absence of dynamic information of the signer. 

Generally, a HSV system is composed of three modules, which are preprocessing, feature 
generation and classification. In this context, various methods have been developed for 
improving the robustness of each individual HSV system. However, the handwritten signature 
verification failed to underline the incontestable superiority of a method over another in both 
steps of generating features and classification. Hence, rather than trying to optimize a single 
HSV system by choosing the best features for a given problem, researchers found more 
interesting to combine several classifiers [20]. 

Recently, approaches for combining classifiers have been proposed to improve signature 
verification performances, which led the development of several schemes in order to treat data 
in different ways [21]. Generally, three approaches for combining classifiers can be 
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considered: parallel approach [22, 23], sequential approach [24, 25] and hybrid approach [26], 
[27]. However, the parallel approach is considered as more simple and suitable since it allows 
exploiting the redundant and complementary nature of the responses issued from different 
signature verification systems. Hence, sets of classifiers have been used, which are based on 
global and local approaches [28, 29] and feature sets [30, 31], parameter features and function 
features [32, 33], static and dynamic features [34, 35]. Furthermore, several decision 
combination schemes have been implemented, ranging from majority voting [23, 36] to Borda 
count [37], from simple and weighted averaging [38] to Dempster-Shafer evidence theory [37, 
39] and Neural Networks [40, 41]. The boosting algorithm has been used to train and integrate
different classifiers, for both verification of on-line [42, 43] and off-line [44] signatures. 

In this research, we follow the path of combined biometric systems by investigating the 
DSmT for combing different HSV systems. Therefore, we study the reliability of the DSmT 
for achieving a robust multiple HSV system. Two cases are considered for validating the 
effective use of the DSmT. The first one is to enhance the performance of off-line HSV 
systems by associating features based on Radon and Ridgelet transforms for each individual 
system. The second one is associating off-line image and dynamic information in order to 
improve the performance of single-source biometric systems and ensure greater security. For 
both cases, the combination is performed through the generalized biometric decision 
combination framework using Dezert-Smarandache theory (DSmT) [9, 10, 11]. 

The chapter is organized as follows. We give in Section 1.2 a review of sophisticated 
Proportional Conflict Redistribution (PCR5) rule based on DSmT. Section 1.3 describes the
proposed verification system and Section 1.4 presents the performance criteria and datasets of 
handwritten signatures used for evaluation. Section 1.5 discuss the experimental results of the 
proposed verification system. The last section gives a summary of the proposed verification 
system and looks to the future research direction. 

1.2 Review of PCR5 combination rule 
Generally, the signature verification is formulated as a two-class problem where classes are 

associated to genuine and impostor, namely 𝜃𝑔𝑒𝑛  and 𝜃𝑖𝑚𝑝 , respectively. In the context of the 
probabilistic theory, the frame of discernment, namely Θ, is composed of two elements as: 
Θ =  𝜃𝑔𝑒𝑛 , 𝜃𝑖𝑚𝑝  , and a mapping function 𝑚 ∈  0, 1  is associated for each class, which 
defines the corresponding mass verifying 𝑚 ∅ = 0 and 𝑚 𝜃𝑔𝑒𝑛  + 𝑚 𝜃𝑖𝑚𝑝  = 1. 

When combining two sources of information and so two individual systems, namely 
information sources 𝑆1 and 𝑆2, respectively, the sum rule seems effective for non-conflicting
responses  [3]. In the opposite case, an alternative approach has been developed by Dezert and 
Smarandache to deal with (highly) conflicting imprecise and uncertain sources of information 
[9, 10, 11]. For two-class problem, a reference domain also called the frame of discernment 
should be defined for performing the combination, which is composed of a finite set of 
exhaustive and mutually exclusive hypotheses. Example of such approaches is PCR5 rule. 

The main concept of the DSmT is to distribute unitary mass of certainty over all the 
composite propositions built from elements of Θ with ∪ (Union) and ∩ (Intersection) 
operators instead of making this distribution over the elementary hypothesis only. Therefore, 
the hyper-powerset 𝐷Θ is defined as 𝐷Θ =  ∅, 𝜃𝑔𝑒𝑛 , 𝜃𝑖𝑚𝑝 , 𝜃𝑔𝑒𝑛 ∪ 𝜃𝑖𝑚𝑝 , 𝜃𝑔𝑒𝑛 ∩ 𝜃𝑖𝑚𝑝  . The
DSmT uses the generalized basic belief mass, also known as the generalized basic belief 
assignment (gbba) computed on hyper-powerset of Θ and defined by a map 𝑚 .  ∶  𝐷Θ  ⟶
  0, 1  associated to a given source of evidence, which can support paradoxical information, as 
follows: 𝑚 ∅ = 0 and 𝑚 𝜃𝑔𝑒𝑛  + 𝑚 𝜃𝑖𝑚𝑝  + 𝑚 𝜃𝑔𝑒𝑛 ∪ 𝜃𝑖𝑚𝑝  + 𝑚 𝜃𝑔𝑒𝑛 ∩ 𝜃𝑖𝑚𝑝   = 1. The 
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(2) 

combined masses 𝑚𝑃𝐶𝑅5 obtained from 𝑚1 .   and 𝑚2 .   by means of the PCR5 rule [10] is 
defined as: 

   𝑚𝑃𝐶𝑅5 𝐴 =
0        if 𝐴 ∈ Φ
𝑚𝐷𝑆𝑚𝐶  𝐴 + 𝑚𝐴∩𝑋 𝐴  otherwise

 (1.1) 

Where 

𝑚𝐴∩𝑋 𝐴 =
𝑚1 𝐴  2 𝑚2 𝑋

𝑚1 𝐴 + 𝑚2 𝑋 
+  

𝑋∈𝐷Θ∖ 𝐴 

𝑐 𝐴∩𝑋 =∅

 𝑚2 𝐴  2 𝑚1 𝑋

𝑚2 𝐴 + 𝑚1 𝑋 

and Φ ={Φℳ, ∅} is the set of all relatively and absolutely empty elements, Φℳ is the set of 
all elements of 𝐷Θ which have been forced to be empty in the Shafer’s model ℳ defined by 
the exhaustive and exclusive constraints, ∅ is the empty set, and 𝑐 𝐴 ∩ 𝑋  is the canonical 
form (conjunctive normal) of 𝐴 ∩ 𝑋 and where all denominators are different to zero. If a 
denominator is zero, that fraction is discarded. Thus, the term 𝑚𝐷𝑆𝑚𝐶  𝐴  represents a 
conjunctive consensus, also called DSm Classic (DSmC) combination rule [9], which is 
defined as: 

       𝑚𝐷𝑆𝑚𝐶  𝐴 =
0  if 𝐴 = ∅

𝑚1 𝑋 𝑚2 𝑋  𝑋,𝑌∈𝐷Θ,𝑋∩𝑌=𝐴  otherwise (1.2) 

1.3 System description 
The combined individual HSV system is depicted in Figure 1.1, which are composed of an 

off-line verification system, an on-line or off-line verification system and a combination 
module. 𝑠1 and 𝑠2 define the off-line and on-line or off-line handwritten signatures provided 
by two sources of information 𝑆1 and 𝑆2, respectively. Each individual verification system is 
generally composed of three modules: pre-processing, feature generation and classification. 

Figure 1.1: Structure of the combined individual HSV systems. 
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1.3.1 Pre-processing 
According the acquisition mode, each handwritten signature is pre-processed for 

facilitating the feature generation. Hence, the pre-processing of the off-line signature includes 
two steps: Binarization using the local iterative method [45] and elimination of the useless 
information around the signature image without unifying its size. The pre-processing steps of 
a signature example are shown in Figure 1.2. The binarization method was chosen to capture 
signature from the background. It takes the advantages of locally adaptive binarization 
methods [45] and adapts them to produce an algorithm that thresholds signatures in a more 
controlled manner. By doing this, the local iterative method limits the amount of noise 
generated, as well as it attempts to reconstruct sections of the signature that are disjointed. 

Figure 1.2: Preprocessing steps: (a) Scanning (b) Binarization 
(c) Elimination of the useless information. 

While the on-line signature, no specific pre-processing is required. More details on the 
acquisition method and pre-processing module of the on-line signatures are provided in Refs. 
[46] and [47]. 

1.3.2 Feature generation 
Features are generated according the acquisition mode. In the combined individual HSV 

systems, we use the uniform grid, Radon and Ridgelet transforms for off-line signatures and 
dynamic characteristics for on-line signatures, respectively. 

a. Features used for combining individual off-line HSV systems
The first case study for evaluating the performance of the proposed combination using

DSmT is performed with two individual off-line HSV systems. Features are generated from 
the same off-line signature using the Radon and Ridgelet transforms. The Radon transform is 
well adapted for detecting linear features. In contrast, the Ridgelet transform allows 
representing linear singularities [48]. Therefore, Radon and Ridgelet coefficients provide 
complementary information about the signature. 

 Radon transform based features: The Radon transform of each off-line signature is
calculated by setting the respective number of projection points 𝑁𝑟  and orientations 𝑁𝜃 ,
which define the length of the radial and angular vectors, respectively. Hence, a radon
matrix is obtained having a size  𝑁𝑟 × 𝑁𝜃   which provides in each point the cumulative

(a) 

(c) (b) 
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intensity of pixels forming the image of the off-line signature. Figure 1.3 shows an 
example of a binarized image of an off-line signature and the steps involved for 
generating features based on Radon transform. Since the Radon transform is redundant, 
we take into account only positive radial points   𝑁𝑟 /2 × 𝑁𝜃 . Then after, for each 
angular direction, the energy of Radon coefficients is computed to form the feature 
vector 𝑥1 of dimension  1 × 𝑁𝜃 . This energy is defined as: 

𝐸𝜃
𝑟𝑎𝑑 =

2

𝑁𝑟
𝑇𝑟𝑎𝑑

2  𝑟, 𝜃
𝑁𝑟 2 
𝑟=1 , 𝜃 ∈  1, 2, … , 𝑁𝜃 (1.3) 

where 𝑇𝑟𝑎𝑑  is the Radon transform operator. 

Angular axis 

Figure 1.3: Steps for generating the feature vector from the Radon transform. 

 Ridgelet transform based features: For generating complementary information of the
Radon features, the wavelet transform (WT) is performed along the radial axis allowing
generating the Ridgelet coefficients [49]. Figure 1.4 shows an example for generating
the feature vector from the Ridgelet transform.  For each angular direction, the energy
of Ridgelet coefficients is computed taking into account only details issued from the
decomposition level 𝐿 of the WT. Therefore, the different values of energy are finally
stored in a vector 𝑥2 of dimension  1 × 𝑁𝜃 . This energy is defined as:

2

𝑁𝑟

𝑁𝑟 2 
𝑟=1 𝐸𝜃

𝑟𝑖𝑑 = 𝑇𝑟
2
𝑖𝑑 𝑎, 𝑏, 𝜃 , 𝜃 ∈ 1, 2, … , 𝑁𝜃   ( 1.4)

where 𝑇𝑟𝑖𝑑  is the Ridgelet transform operator whereas 𝑎 and 𝑏 are the scaling and 
translation factors of the WT, respectively. 

Figure 1.4: Steps for generating the feature vector from the Ridgelet transform. 

b. Features used for combining individual off-line and on-line HSV systems
The second case study is considering for evaluating the performance of the proposed

DSmT for combining both individual off-line and on-line HSV systems. Features are 
generated from both off-line and on-line signatures of the same user using the uniform grid 
(UG) and dynamic characteristics, respectively. The UG allows extracting locally features 
without normalization of the off-line signature image. On each grid, the densities are 
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computed providing overall signature appearance information. In contrast, dynamic 
characteristics computed from the on-line signature allow providing complementary dynamic 
information in the combination process. 

 Uniform grid based features: Features are generated using the Uniform Grid (UG)
[50, 51], which consists to create 𝑛 × 𝑚 rectangular regions for sampling. Each region
has the same size and shape. Parameters 𝑛 and 𝑚 define the number of lines (vertical
regions) and columns (horizontal regions) of the grid, respectively. Hence, the feature
associated to each region is defined as the ratio of the number of pixels belonging to the
signature and the total number of pixels of images. Therefore, the different values are
finally stored in a vector 𝑥1 of dimension 𝑛 × 𝑚, which characterizes the off-line
signature image.
Figure 1.5 shows a 3 × 5 grid, which allows an important reduction of the representation
vector, but it preserves wrongly the visual information. In contrast, a 15 × 30 grid which
provides an accurate representation of images, but it leads a larger characteristic vector.
A 5 × 9 grid seems to be an optimal choice between the quality of representation and
dimensionality. Thus, the optimal choice of the grid size for all writers is obviously too
important to effectively solve our problem of signature verification. In our case, for all
experiments, the parameters 𝑛 and 𝑚 of are fixed to 5   and 9, respectively.

Figure 1.5: Visualization of different grid sizes. 

 Dynamic information based features: For the individual on-line verification system,
features are generated using only the dynamic features. Each on-line signature is
represented by a vector 𝑥2 composed of 11 features, which are signature total duration,
average velocity, vertical average velocity, horizontal average velocity, maximal
velocity, average acceleration, maximal acceleration, variance of pressure, mean of
azimuth angle, variance of azimuth angle and mean of elevation angle. A complete
description of the feature set is shown in Table 1.1.

1.3.3 Classification based on SVM 
a. Review of SVMs

The classification based on Support Vector Machines (SVMs) has been widely used in
many pattern recognition applications as the handwritten signature verification [35, 52]. The 
SVM is a learning method introduced by Vapnik et al. [53], which tries to find an optimal 
hyperplane for separating two classes. Its concept is based on the maximization of the 
distance of two points belonging each one to a class. Therefore, the misclassification error of 
data both in the training set and test set is minimized. 

 53   95   3015
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Ranking Feature Description Ranking Feature Description 
1 𝑡𝑛 − 𝑡1 7 max

𝑖=1,…,𝑛−2

𝑑𝑖𝑠𝑡𝐸𝑢𝑐𝑙  𝑃𝑡𝑖 , 𝑃𝑡𝑖+2 

 𝑡𝑖+1 − 𝑡𝑖 
2

2  𝑑𝑖𝑠𝑡𝐸𝑢𝑐𝑙  𝑃𝑡𝑖 ,𝑃𝑡𝑖+1 
𝑛−1
𝑖=1

𝑡𝑛 − 𝑡1

8  𝑃𝑟𝑖 −
𝑃𝑟𝑖

𝑛
𝑖=1

𝑛

2𝑛

𝑖=1

3 
 𝑦𝑖+1 − 𝑦𝑖

𝑛−1
𝑖=1

𝑡𝑛 − 𝑡1

9 𝐴𝑧𝑖
𝑛
𝑖=1

𝑛

4 
 𝑥𝑖+1 − 𝑥𝑖

𝑛−1
𝑖=1

𝑡𝑛 − 𝑡1

10  𝐴𝑧𝑖 −
𝐴𝑧𝑖

𝑛
𝑖=1

𝑛

2𝑛

𝑖=1

5 max
𝑖=1,…,𝑛−1

𝑑𝑖𝑠𝑡𝐸𝑢𝑐𝑙  𝑃𝑡𝑖 , 𝑃𝑡𝑖+1 

𝑡𝑖+1 − 𝑡𝑖
11 𝐴𝑙𝑖

𝑛
𝑖=1

𝑛

6  𝑑𝑖𝑠𝑡𝐸𝑢𝑐𝑙  𝑃𝑡𝑖 ,𝑃𝑡𝑖+1
𝑛−1
𝑖=1

 𝑡𝑛 − 𝑡1 
2

Table 1.1: Set of dynamic features. 𝑠 = 𝑃𝑡1, 𝑃𝑡2, … , 𝑃𝑡𝑛  denotes an on-line signature 
composed of 𝑛 events 𝑃𝑡𝑖 𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑃𝑟𝑖 , 𝐴𝑧𝑖 , 𝐴𝑙𝑖 denote x-position, y-position, 
pen pressure, azimuth and elevation angles of the pen at the 𝑖𝑡  time instant 𝑡𝑖 ,
respectively. 

Basically, SVMs have been defined for separating linearly two classes. When data are non 
linearly separable, a kernel function is used. Thus, all mathematical functions, which satisfy 
Mercer’s conditions, are eligible to be a SVM-kernel [53]. Examples of such kernels are 
sigmoid kernel, polynomial kernel, and Radial Basis Function (RBF) kernel. Generally, the 
RBF kernel is used for its better performance, which is defined as: 

𝐾 𝑥, 𝑥𝑘 = 𝑒𝑥𝑝  −
𝑥−𝑥𝑘 2

2 𝜎2 (1.5) 

Where σ is the kernel parameter,  𝑥 − 𝑥𝑘  is the Euclidian distance between two samples. 
Therefore, the decision function 𝑓: ℝ𝑝   −1, +1 , is expressed in terms of kernel expansion
as: 

     𝑓 𝑥 = 𝛼𝑘𝑦𝑘
𝑆𝑣
𝑘=1 𝐾 𝑥, 𝑥𝑘 + 𝑏 (1.6) 

where 𝛼𝑘  are Lagrange multipliers, 𝑆𝑣 is the number of support vectors 𝑥𝑘  which are training 
data, such that 0 ≤ 𝛼𝑘 ≤ 𝐶, 𝐶 is a user-defined parameter that controls the tradeoff between 
the machine complexity and the number of nonseparable points [54], the bias 𝑏 is a scalar 
computed by using any support vector. Finally, test data 𝑥𝑑 , 𝑑 =  1,2 , are classified 
according to: 

         𝑥𝑑 ∈
𝑐𝑙𝑎𝑠𝑠  +1     if 𝑓 𝑥𝑑 > 0

𝑐𝑙𝑎𝑠𝑠  −1       otherwise
 (1.7) 

b. Decision rule
The direct use of SVMs does not allow defining a decision threshold to assign a signature

to genuine or forgery classes. Therefore, outputs of SVM are transformed to objective 
evidences, which express the membership degree (MD) of a signature to both classes (genuine 
or forgery). In practice, the MD has no standard form. However, the only constraint is that it 
must be limited in the range of  0, 1  whereas SVMs produce a single output. In this chapter, 
we use a fuzzy model which has been proposed in [50, 51, 55] to assign MD for SVM output 
in both genuine and impostor classes. Let 𝑓 𝑥𝑑  be the output of a SVM obtained for a given 
signature to be classified. The respective membership degrees 𝑑 𝜃𝑖 , 𝑖 =  𝑔𝑒𝑛, 𝑖𝑚𝑝  
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associated to genuine and impostor classes are defined according to membership models 
given in the Algorithm 1 [51]. To compute the values of membership degrees  𝑑 , 𝑑 = 1, 2 , 
we consider the two case studies as follows: 

 in first case study, the main problem for generating features is the appropriate number
of the angular direction 𝑁𝜃  for the Radon transform and the number of the
decomposition level 𝐿 of the WT (Haar Wavelet) in the Ridgelet domain. Hence, many
experiments are conducted for finding the optimal values for which the error rate in the
training phase is null. In this case, feature vectors are generated from both Radon
 𝑑 = 1  and Ridgelet  𝑑 = 2  of the same off-line signature by setting 𝑁𝜃  and 𝐿 to 32 
and 3, respectively. 

 in second case study, we calculate the values  𝑑 , 𝑑 = 1  of off-line signature by using
the optimal size  5 × 9  of the grid for which the error rate in the training phase is null.
In the same way, we calculate also the values  𝑑 , 𝑑 = 2  of on-line signature by using
the vector of 11 dynamic features for which the error rate in the training phase is null.

Respective membership models for two classes. 

if 𝑓 𝑥𝑑 > 1 then

𝑑 𝜃𝑔𝑒𝑛  ← 1

𝑑 𝜃𝑖𝑚𝑝  ← 0

else       
 if 𝑓 𝑥𝑑 < −1 then

 𝑑 𝜃𝑔𝑒𝑛  ← 0

    𝑑 𝜃𝑖𝑚𝑝  ← 1

else       

 𝑑 𝜃𝑔𝑒𝑛  ←
1 + 𝑓 𝑥𝑑  

2

 𝑑 𝜃𝑖𝑚𝑝  ←
1 − 𝑓 𝑥𝑑 

2
end if 

end if      

Hence, a decision rule is performed about whether the signature is genuine or forgery as 
described in Algorithm 2. 

Algorithm 2. Decision making in SVM framework. 

if 
𝑑 𝜃𝑔𝑒𝑛  

𝑑 𝜃𝑖𝑚𝑝  
≥ 𝑡 then

𝑠𝑑 ∈ 𝜃𝑔𝑒𝑛

else 
𝑠𝑑 ∈ 𝜃𝑖𝑚𝑝

end if       

Where 𝑡 defines a decision threshold. 

Algorithm 1.
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The proposed combination module consists of three steps: i) transform membership 
degrees of the SVM outputs into belief assignments using estimation technique based on the 
dissonant model of Appriou, ii) combine masses through a DSmT based combination rule and 
iii) make a decision for accepting or rejecting a signature.

a. Estimation of masses
In this chapter, the mass functions are estimated using a dissonant model of Appriou,

which is defined for two classes [56]. Therefore, the extended version of Appriou’s model in 
DSmT framework is given as: 

   𝑚𝑖𝑑 ∅ = 0       (1.8) 

      𝑚𝑖𝑑 𝜃𝑖 =
 1−𝛽𝑖𝑑   𝑑 𝜃𝑖 

1+𝑑  𝜃𝑖 
(1.9) 

            𝑚𝑖𝑑 𝜃𝑖
  =

1−𝛽𝑖𝑑

1+𝑑  𝜃𝑖 
(1.10) 

𝑚𝑖𝑑 𝜃𝑖 ∪ 𝜃𝑖
  = 𝛽𝑖𝑑 (1.11) 

             𝑚𝑖𝑑 𝜃𝑖 ∩ 𝜃𝑖
  = 0        (1.12) 

where 𝑖 =  𝑔𝑒𝑛, 𝑖𝑚𝑝 , 𝑑 𝜃𝑖  is the membership degree of a signature provided by the 
corresponding source 𝑆𝑑   𝑑 = 1, 2 ,  1 − 𝛽𝑖𝑑  is a confidence factor of 𝑖-th class, and 𝛽𝑖𝑑

defines the error provided by each source  𝑑 = 1, 2  for each class 𝜃𝑖 . In our approach, we 
consider 𝛽𝑖𝑑  as the verification accuracy prior computed on the training database for each 
class [14]. Since both SVM models have been validated on the basis that errors during 
training phase are zero, therefore 𝛽𝑖𝑑  is fixed to 0.001 in the estimation model. 

Note that the same information source cannot provide two responses, simultaneously. 
Hence, in DSmT framework, we consider that the paradoxical hypothesis 𝜃𝑖 ∩  𝜃 𝑖 has no 
physical sense towards the two information sources 𝜃𝑔𝑒𝑛 and 𝜃𝑖𝑚𝑝 . Therefore, the beliefs 
assigned to this hypothesis are null as given in Equation (1.12). 

b. Combination of masses
The combined masses are computed in two steps. First, the belief assignments  𝑚𝑖𝑑 .  , 𝑖 =

 𝑔𝑒𝑛, 𝑖𝑚𝑝   are combined for generating the belief assignments for each source as follows: 

𝑚1 = 𝑚 𝑔𝑒𝑛  1 ⊕ 𝑚 𝑖𝑚𝑝  1                       (1.13) 

           𝑚2 = 𝑚 𝑔𝑒𝑛  2 ⊕ 𝑚 𝑖𝑚𝑝  2 (1.14) 

where ⊕ represents the conjunctive consensus of the DSmC rule. 

Finally, the belief assignments for the combined sources  𝑚𝑑 .  , 𝑑 = 1, 2  are then computed 
as: 

𝑚𝑐 = 𝑚1 ⊕ 𝑚2                                              (1.15) 
where ⊕ represents the combination operator, which is composed of both conjunctive and 
redistribution terms of the PCR5 rule. 

1.3.4 Classification based on DSmT 
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A decision for accepting or rejecting a signature is made using the statistical classification 
technique. First, the combined beliefs are converted into probability measure using a 
probabilistic transformation, called Dezert-Smarandache probability (DSmP), that maps a 
belief measure to a subjective probability measure [11] defined as: 

𝐷𝑆𝑚𝑃𝜖 𝜃𝑖 = 𝑚𝑐 𝜃𝑖 +  𝑚𝑐 𝜃𝑖 + 𝜖 𝑤ℳ  (1.16) 

where 𝑤ℳ is a weighting factor defined as: 

𝑤ℳ =
𝑚𝑐 𝐴𝑗  

𝑚𝑐 𝐴𝑘 + 𝜖 𝐶ℳ 𝐴𝑗𝐴𝑘∈2Θ

𝐴𝑘⊂𝑋

𝐶ℳ 𝐴𝑘 =1

𝐴𝑗∈2Θ

𝐴𝑗⊃𝜃𝑖

𝐶ℳ 𝐴𝑗  ≥2

such that is a tuning parameter, ℳ is the Shafer’s model for Θ, and 𝐶ℳ 𝐴𝑘  denotes the DSm 
cardinal [11] of the set 𝐴𝑘 . Therefore, the likelihood ratio test is performed for decision 
making as described in Algorithm 3. 

Algorithm 3. Decision making in DSmT framework. 

if 
𝐷𝑆𝑚𝑃𝜀 𝜃𝑔𝑒𝑛  

𝐷𝑆𝑚𝑃𝜀 𝜃𝑖𝑚𝑝  
≥ 𝑡 then

𝑠𝑑 ∈ 𝜃𝑔𝑒𝑛

else 
𝑠𝑑 ∈ 𝜃𝑖𝑚𝑝

end if 

Where 𝑡 defines a decision threshold and 𝑠 =  𝑠1, 𝑠2  is the j -th signature represented by two 
modalities according the case study as follows: 

 in first case study, 𝑠 is an off-line signature characterized by both Radon and Ridgelet
features.

 in second case study, 𝑠 is a signature represented by both off-line and on-line
modalities.

1.4 Performance criteria and dataset description 

In this section, we briefly describe datasets used and performance criteria for evaluating 
the proposed DSmT for combing individual handwritten signature verification systems. 

1.4.1 Dataset description 

To evaluate the verification performance of the proposed DSmT based combination of 
individual HSV systems, we use two datasets of handwritten signatures: (1) CEDAR signature 
dataset [57] used for evaluating the performance for combining individual off-line HSV 
systems and (2) NISDCC signature dataset [58] for the experiments related to the 
simultaneous verification of individual off-line and on-line HSV systems. 

c. Decision rule
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The Center of Excellence for Document Analysis and Recognition (CEDAR) signature 
dataset [57] is a commonly used for off-line signature verification. The CEDAR dataset 
consists of 55 signature sets, each one being composed by one writer. Each writer provided 24 
samples of their signature, where these samples constitute the genuine portion of the dataset. 
While, forgeries are obtained by asking arbitrary people to skillfully forge the signatures of 
the previously mentioned writers. In this fashion, 24 forgery samples are collected per writer 
from about 20 skillful forgers. In total, this dataset contains 2640 signatures, built from 1320 
genuine signatures and 1320 skilled forgeries. Figures 1.6(a) and 1.6(b) show two examples 
of both preprocessed genuine and forgery signatures for one writer, respectively. 

Figure 1.6: Signature samples of the CEDAR. 

b. NISDCC signature database
The Norwegian Information Security laboratory and Donders Centre for Cognition

(NISDCC) signature dataset has been used in the ICDAR’09 signature verification 
competition [58]. This collection contains simultaneously acquired on-line and off-line 
samples. The off-line dataset is called ―NISDCC-offline‖ and contains only static information 
while the on-line dataset which is called ―NISDCC-online‖ also contains dynamic 
information, which refers to the recorded temporal movement of handwriting process. Thus, 
the acquired on-line signature is available under form of a subsequent sampled trajectory 
points. Each point is acquired at 200 Hz on tablet and contains five recorded pen-tip 
coordinates: x-position, y-position, pen pressure, azimuth and elevation angles of the pen [59] 
The NISDCC-offline dataset is composed of 1920 images from 12 authentic writers (5 
authentic signatures per writer) and 31 forging writers (5 forgeries per authentic signature). 
Figures 1.7(a) and 1.7(b) show an example of both preprocessed off-line signature and a 
plotted matching on-line signature for one writer, respectively. 

(a) Off-line signature. (b) On-line signature. 
Figure 1.7: Signature samples of the NISDCC signature collection. 

1.4.1 Performance criteria 
For evaluating performances of the combined individual HSV systems, three different 

kinds of error are considered: False Accepted Rate (FAR) allows taking into account only 
skilled forgeries; False Rejected Rate (FRR) allows taking into account only genuine 
signatures and finally the Half Total Error Rate (HTER) allows taking into account both rates. 
Thus, Equal Error Rate is a special case of HTER when FRR = FAR. 

(a) Genuine signatures. (b) Forgery signatures. 

a. CEDAR signature database
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1.4.2 SVM model 
For both case studies, signature data are split into training and testing sets for evaluating 

the performances of the proposed DSmT based combination of individual HSV systems. 
Thus, the training phase allows finding the optimal hyperparameters for each individual SVM 
model. In our system, the RBF kernel is selected for the experiments. 

a. SVM models used for combined individual off-line HSV systems
In first case study, the SVM model is produced for each individual off-line HSV system

according the Radon and Ridgelet features, respectively. For each writer, 2/3 and 1/3 samples 
are used for training and testing, respectively. The optimal parameters  𝐶, 𝜎  of each SVM are 
tuned experimentally, which are fixed as  𝐶 = 19.1, 𝜎 = 4  and  𝐶 = 15.1, 𝜎 = 4.6 , 
respectively. 

b. SVM models used for combined individual off-line and on-line HSV systems
In second case study, the SVM model is produced for both individual off-line and on-line

HSV systems according the uniform grid features and dynamic information, respectively. For 
each writer and both datasets, 2/3 and 1/3 samples are used for training and testing, 
respectively. The optimal parameters  𝐶, 𝜎  for both SVM classifiers (off-line and on-line) 
are tuned experimentally, which are fixed as  𝐶 = 9.1, 𝜎 = 9.4  and  𝐶 = 13.1, 𝜎 = 2.2 , 
respectively. 

1.5 Experimental results and discussion 
For each case study, decision making will be only done on the simple classes. Hence, we 

consider the masses associated to all classes belonging to the hyper power set 𝐷Θ =

 ∅, 𝜃𝑔𝑒𝑛 , 𝜃𝑖𝑚𝑝 , 𝜃𝑔𝑒𝑛 ∪ 𝜃𝑖𝑚𝑝 , 𝜃𝑔𝑒𝑛 ∩ 𝜃𝑖𝑚𝑝   in both combination process and decision making. 
In the context of signature verification, we take as constraint the proposition that 𝜃𝑔𝑒𝑛 ∩

𝜃𝑖𝑚𝑝 = ∅ in order to separate between genuine and impostor classes. Therefore, the hyper 
power set 𝐷Θ is simplified to the power set 2Θ as 2Θ =  ∅, 𝜃𝑔𝑒𝑛 , 𝜃𝑖𝑚𝑝 , 𝜃𝑔𝑒𝑛 ∪ 𝜃𝑖𝑚𝑝  , which
defines the Shafer’s model [9]. This section presents the experimental results with their 
discussion. 

To evaluate the performance of the proposed DSmT based combination, we use two 
individual off-line HSV systems using the CEDAR database at the first case study. Indeed, 
the task of the proposed combination module is to manage the conflicts generated between the 
two individual off-line HSV systems for each signature using the PCR5 combination rule. For 
that, we compute the verification errors of both individual off-line HSV systems and the 
combined individual off-line HSV systems using PCR5 rule. Figure 1.8 shows the FRR and 
FAR computed for different values of decision threshold using both individual off-line HSV 
systems of this first case study. Table 1.2 shows the verification errors rates computed for the 
corresponding optimal values of decision threshold of this case study. Here HSV system 1 is 
the individual off-line verification system feeded by Radon features that yields an error rate of 
7.72% corresponding to the optimal value of threshold 𝑡 = 1.11 while HSV system 2 is the 
individual off-line verification system feeded by Ridgelet features, which provides the same 
result with an optimal value of threshold 𝑡 = 0.991. Consequently, both individual off-line 
HSV systems give the same verification performance since the corresponding error rate of 
HTER = 7.72% is the same. 
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The proposed DSmT based combination of individual off-line HSV systems yields a HTER 
of 5.45% corresponding to the optimal threshold value 𝑡 = 0.986. Hence, the combined 
individual off-line HSV systems with PCR5 rule allows improving the verification 
performance by 2.27%. This is due to the efficient redistribution of the partial conflicting 
mass only to the elements involved in the partial conflict. 

(a) Off-line HSV system 1. (b) Off-line HSV system 2. 

Figure 1.8: Performance evaluation of the individual off-line HSV systems. 

HSV Systems Optimal 
Threshold FAR FRR HTER 

System 1 1.110 7.72 7.72 7.72 
 System 2 0.991 7.72 7.72 7.72 
Combined Systems 0.986 5.45 5.45 5.45 

Table 1.2: Error rates (%) obtained for individual and combined HSV systems. 

In the second case study, two sources of information are combined through the PCR5 rule. 
Figure 1.9 shows three examples of conflict measured between off-line and on-line signatures 
for writers 3, 7, and 10 of the NISDCC dataset, respectively. The values 𝐾𝑐3  ∈
 0.00, 0.35  , 𝐾𝑐7  ∈  0.00, 0.64  , and 𝐾𝑐10   ∈  0.00, 1.00   represent the mass assigned to 
the empty set, after combination. We can see that the two sources of information are very 
conflicting. Hence, the task of the proposed combination module is to manage the conflicts 
generated from both sources  𝐾𝑐𝑤 , 𝑤 = 1, 2, … , 12  for each signature using the PCR5 
combination rule. For that, we compute the verification errors of both individual off-line and 
on-line HSV systems and the proposed DSmT based combination. Figure 1.10 shows the FRR 
and FAR computed for different values of decision threshold using both individual off-line and 
on-line HSV systems of this second case study. For better comparison, Table 1.3 shows the 
HTER computed for the corresponding optimal values of decision threshold of this case study.  

The proposed DSmT based combination of both individual off-line and on-line HSV 
systems yields a HTER of 0% corresponding to the optimal threshold value 𝑡 = 0.597. 
Consequently, the proposed combination of individual off-line and on-line HSV systems 
using PCR5 rule yields the best verification accuracy compared to the individual off-line and 
on-line HSV systems, which provide conflicting and complementary outputs. 
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Figure 1.9: Conflict between off-line and on-line signatures 
for the writers 3, 7, and 10, respectively. 

Figure 1.10: Performance evaluation of the individual off-line and on-line HSV systems. 

HSV Systems Optimal 
Threshold FAR FRR HTER 

System 1 0.012 12.44 12.50 12.47 
 System 2 0.195 0.98 0.00 0.49 
Combined Systems 0.597 0.00 0.00 0.00 

Table 1.3: Error rates (%) obtained for individual and combined HSV systems. 

1.6 Conclusion 
This chapter proposed and presented a new system based on DSmT for combining 

different individual HSV systems which provide conflicting results. The individual HSV 
systems are combined through DSmT using the estimation technique based on the dissonant 
model of Appriou, sophisticated PCR5 rule and likelihood ratio test. Hence, two cases have 
been addressed in order to ensure a greater security: (1) combining two individual off-line 
HSV systems by associating Radon and Ridgelet features of the same off-line signature (2) 
and combining both individual off-line and on-line HSV systems by associating static image 

(a) Off-line HSV system 1. (b) On-line HSV system 2. 
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and dynamic information of the same signature characterized by off-line and on-line 
modalities. Experimental results show in both case studies that the proposed system using 
PCR5 rule allows improving the verification errors compared to the individual HSV systems.  

As remark, although the DSmT allows improving the verification accuracy in both studied 
cases, it is clearly that the achieved improvement depends also to the complementary outputs 
provided by the individual HSV systems. Indeed, according to the second case study, a 
suitable performance quality on the individual on-line HSV system can be obtained when the 
dynamic features of on-line signatures are carefully chosen. Combined to the grid features 
using DSmT allows providing more powerful system comparatively to the system of the first 
case study in term of success ratio. In continuation to the present work, the next objectives 
consist to explore other alternative DSmT based combinations of HSV systems in order to 
attempt improving performance quality of the writer-independent HSV whether the signature 
is genuine or forgery as well as in the false rejection and false acceptance concepts. 
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Automatic Aircraft Recognition using DSmT and HMM
Xin-de Li

Jin-dong Pan
Jean Dezert

Abstract—In this paper we propose a new method for solving
the Automatic Aircraft Recognition (AAR) problem from a
sequence of images of an unknown observed aircraft. Our method
exploits the knowledge extracted from a training image data set
(a set of binary images of different aircrafts observed under three
different poses) with the fusion of information of multiple features
drawn from the image sequence using Dezert-Smarandache
Theory (DSmT) coupled with Hidden Markov Models (HMM).
The first step of the method consists for each image of the
observed aircraft to compute both Hu’s moment invariants (the
first features vector) and the partial singular values of the outline
of the aircraft (the second features vector). In the second step,
we use a probabilistic neural network (PNN) based on the
training image dataset to construct the conditional basic belief
assignments (BBA’s) of the unknown aircraft type within the set
of a predefined possible target types given the features vectors
and pose condition. The BBA’s are then combined altogether by
the Proportional Conflict Redistribution rule #5 (PCR5) of DSmT
to get a global BBA about the target type under a given pose
hypothesis. These sequential BBA’s give initial recognition results
that feed a HMM-based classifier for automatically recognizing
the aircraft in a multiple poses context. The last part of this
paper shows the effectiveness of this new Sequential Multiple-
Features Automatic Target Recognition (SMF-ATR) method with
realistic simulation results. This method is compliant with real-
time processing requirement for advanced AAR systems.
Keywords: Information fusion; DSmT; ATR; HMM.

I. INTRODUCTION

ATR (Automatic Target Recognition) systems play a ma-
jor role in modern battlefield for automatic monitoring and
detection, identification and for precision guided weapon as
well. The Automatic Aircraft Recognition (AAR) problem is
a subclass of the ATR problem. Many scholars have made
extensive explorations for solving ATR and AAR problems.
The ATR method is usually based on target recognition using
template matching [1], [2] and single feature (SF) extraction
[3]–[7] algorithms. Unfortunately, erroneous recognition often
occurs when utilizing target recognition algorithms based on
single feature only, specially if there exist important changes in
pose and appearance of aircrafts during flight path in the image
sequence. In such condition, the informational content drawn
from single feature measures cannot help enough to make a
reliable classification. To overcome this serious drawback, new
ATR algorithms based on multiple features (MF) and fusion
techniques have been proposed [8]–[12]. An interesting MF-
ATR algorithm based on Back-Propagation Neural Network

(BP-NN), and Dempster-Shafer Theory (DST) of evidence
[23] has been proposed by Yang et al. in [11] which has been
partly the source of inspiration to develop our new improved
sequential MF-ATR method presented here and introduced
briefly in [12] (in chinese). In this paper we will explain in
details how our new SMF-ATR method works and we evaluate
its performances on a typical real image sequence.

Although MF-ATR approach reduces the deficiency of SF-
ATR approach in general, the recognition results can some-
times still be indeterminate form a single image exploitation
because the pose and appearance of different kinds of air-
crafts can be very similar for some instantaneous poses and
appearances. To eliminate (or reduce) uncertainty and improve
the classification, it is necessary to exploit a sequence of
images of the observed aircraft during its flight and devel-
op efficient techniques of sequential information fusion for
advanced (sequential) MF-ATR systems. Two pioneer works
on sequential ATR algorithms using belief functions (BF)
have been proposed in last years. In 2006, Huang et al. in
[13] have developed a sequential ATR based on BF, Hu’s
moment invariants (for image features vector), a BP-NN for
pattern classification, and a modified Dempster-Shafer (DS)
fusion rule1. A SF-ATR approach using BF, Hu’s moment
invariants, BP-NN and DSmT rule has also been proposed
in [14] the same year. In these papers, the authors did clearly
show the benefit of the integration of temporal SF measures
for the target recognition, but the performances obtained were
still limited because of large possible changes in poses and
appearances of observed aircrafts (specially in high maneuver
modes as far as military aircrafts are under concern). The
purpose of this paper is to develop a new (sequential) MF-ATR
method able to provide a high recognition rate with a good
robustness when face to large changes of poses and ppearances
of observed aircraft during its flight.

The general principle of our SMF-ATR method is shown on
Fig.1. The upper part of Fig. 1 consists in Steps 1 & 2, whereas
the lower part of Fig. 1 consists in Steps 3 & 4 respectively
described as follows:
• Step 1 (Features extraction) : We consider and extract

only two features vectors in this work2 (Hu’s moment

1called the abortion method by the authors.
2The introduction of extra features is possible and under investigations.

Originally published as Li X.-D., Pan J.-D., Dezert J., Automatic Aircraft 
Recognition using DSmT and HMM, in Proc. of Fusion 2014 Int Conf 

onInformation Fusion, Salamanca, Spain, July 7-10, 2014, and reprinted with 
permission.
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Fig. 1: General principle of our sequential MF-ATR approach.

invariants vector, and Singular Values Decomposition
(SVD) features vector) from the binary images3

• Step 2 (BBA’s construction4) : For every image in the se-
quence and from their two features vectors, two Bayesian
BBA’s on possible (target type,target pose) are computed
from the results of two PNN’s trained on the image
dataset. The method of BBA construction is different
from the one proposed in [12].

• Step 3 (BBA’s combination) : For every image, say the
k-th image, in the sequence, the two BBA’s of Step 2
are combined with the PCR5 fusion rule, from which a
decision Ok on the most likely target type and pose is
drawn.

• Step 4 (HMM-based classifier) : From the sequence
OK = {O1, . . . , Ok . . . , OK} of K local decisions com-
puted at Step 3, we feed several HMM-based classifiers
in parallel (each HMM characterizes each target type)
and we find finally the most likely target observed in the
image sequence which gives the output of our SMF-ATR
approach.

The next section presents each step of this new SMF-ATR
approach. Section 3 evaluates the performances of this new
method on real image datasets. Conclusions and perspectives
of this work are given in Section 4.

II. THE SEQUENTIAL MF-ATR APPROACH

In this section we present the aforementioned steps neces-
sary for the implementation of our new SMF-ATR method.

3In this work, we use only with binary images because our image training
dataset contains only binary images with clean backgrounds, and working
with binary images is easier to do and requires less computational burden
than working with grey-level or color images. Hence it helps to satisfy real-
time processing. The binarization of the images of the sequence under analysis
is done with the the Flood Fill Method explained in details in [22] using the
point of the background as a seed for the method.

4The mathematical definition of a BBA is given in Section II-C.

A. Step 1: Features extraction from binary image

Because Aircraft poses in a flight can vary greatly, we need
image features that are stable and remain unchanged under
translation, rotation and scaling. In terms of aircraft features,
two categories are widely used: 1) moment features and 2)
contour features. Image moments have been widely used since
a long time specially for pattern-recognition applications [16].
Moment features which are the descriptions of image regional
characteristics are mainly obtained from the intensity of each
pixel of target image. Contour features are extracted primarily
by discretizing the outline contour and they describe the
characteristic of the outline of the object in the image. In terms
of moment features, Hu’s moment invariants [6] are used here.
As contour features, we use the SVD [15] of outlines extracted
from the binary images.

• Hu’s moments
Two-dimensional (p + q)-th order moments for p, q =

0, 1, 2, ... of an image of size M ×N are defined as follows:

mpq ,
M∑
m=1

N∑
n=1

mpnqf(m,n) (1)

where f(m,n) is the value of the pixel (m,n) of the binary
image. Note that mpq may not be invariant when f(m,n) by
translation, rotating or scaling. The invariant features can be
obtained using the (p + q)-th order central moments µpq for
p, q = 0, 1, 2, ... defined by

µpq ,
M∑
m=1

N∑
n=1

(m− x̄)p(n− ȳ)qf(m,n) (2)

where x̄, and ȳ are the barycentric coordinates of image (i.e.
the centroid of the image). These values are computed by
x̄ = m10

m00
= 1

C

∑M
m=1

∑N
n=1m × f(m,n) and ȳ = m01

m00
=

1
C

∑M
m=1

∑N
n=1 n × f(m,n), where C is a normalization

constant given by C = m00 =
∑M
m=1

∑N
n=1 f(m,n). The

centroid moments µpq is equivalent to the mpq moment whose
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center has been shifted to the centroid of the image. Therefore,
µpq are invariant to image translations. Scale invariance is ob-
tained by normalization [6]. The normalized central moments
ηpq are defined for p + q = 2, 3, . . . by ηpq , µpq/µ

γ
00, with

γ = (p+q+2)/2. Based on these normalized central moments
Hu in [16] derived seven moment invariants that are unchanged
under image scaling, translation and rotation as follows

Φ1 , η20 + η02

Φ2 , (η20 − η02)2 + 4η2
11

Φ3 , (η30 − 3η12)2 + (3η21 − η03)2

Φ4 , (η30 + η12)2 + (η21 + η03)2

Φ5 , (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2]

Φ6 , (η20 − η02)[(η30 + η12)2 − (η21 + η03)2]

+ 4η11(η30 + η12)(η21 + η03)

Φ7 , (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

− (η30 − 3η12)(η21 + η03)[3(η30 + η12)2 − (η03 + η21)2]

In this work, we use only the four simplest Hu’s moments to
compute, that is Φ = [Φ1 Φ2 Φ3 Φ4], to feed the first PNN
of our sequential MF-ATR method5.

• SVD features of the target outline
The SVD is widely applied signal and image processing

because it is an efficient tool to solve problems with least
squares method [21]. The SVD theorem states that if Am×n
with m > n (representing in our context the original binary
data) is a real matrix6, then it can be written using a so-called
singular value decomposition of the form

Am×n = Um×mSm×nVT
n×n

where Um×m and Vn×n are orthogonal7 matrices. The
columns of U are the left singular vectors. VT has rows that
are the right singular vectors. The real matrix S has the same
dimensions as A and has the form8

Sm×n =

[
Sr×r 0r×(n−r)

0r×(m−r) 0(m−r)×(n−r)

]
where Sr×r = Diag{σ1, σ2, . . . , σr} with σ1 ≥ σ2,≥ . . . ≥
σr > 0 and 1 ≤ r ≤ min(m,n).

Calculating the SVD consists of finding the eigenvalues and
eigenvectors of AAT and ATA. The eigenvectors of ATA
make up the columns of V, the eigenvectors of AAT make
up the columns of U. The singular values σ1,. . . , σr are the
diagonal entries of Sr×r arranged in descending order, and
they are square roots of eigenvalues from AAT or ATA.

A method to calculate the set of discrete points
{a1, a2, . . . , an} of a target outline from a binary image
is proposed in [17]. The SVD features are then computed

5It is theoretically possible to work with all seven Hu’s moments in our
MF-ATR method, but we did not test this yet in our simulations.

6For a complex matrix A, the singular value decomposition is A =
USVH , where VH is the conjugate transpose of V.

7They verify UT
m×mUm×m = Im× and VT

n×nVn×n = In×n, where
Im×m and In×n are respectively the identity matrices of dimensions m×m
and n× n.

80p×q is a p× q matrix whose all its elements are zero.

from the eigenvalues of the circulant matrix built from the
discretized shape of the outline characterized by the vector
d = [d1, d2, . . . , dn] where di is the distance of the centroid
of the outline to the discrete points ai, i = 1, 2, . . . , n of the
outline.

In our analysis, it has been verified from our image
dataset that only the first components of SVD features vector
σ = [σ1, σ2, . . . , σr] take important values with respect to
the other ones. The other components of σ tend quickly
towards zero. Therefore only few first components of σ play
an important role to characterize the main features of target
outline. However, if one considers only these few main first
components of σ, one fails to characterize efficiently some
specific features (details) of the target profile. By doing so,
one would limit the performances of ATR. That is why we
propose to use the partial SVDs of outline as explained in the
next paragraph.

To capture more details of aircraft outline with SVD, one
has to taken into account also additional small singular values
of SVD. This is done with the following procedure issued from
the face recognition research community [24]. The normalized
distance vector d̃ = [d̃1, d̃2, . . . , d̃n] is built from d by
taking d̃ = [1, d2/d1, . . . , dn/d1], where d1 is the distance
between the centroid of outline and the first chosen points
of the contour of the outline obtained by a classical9 edge
detector algorithm. To capture the details of target outline and
to reduce the computational burden, one works with partial
SVDs of the original outline by considering only l sliding
sub-vectors d̃w of d̃, where w is the number of components
of d̃w. For example if one takes w = 3 points only in the
sub-vectors and if d̃ = [d̃1, d̃2, . . . , d̃9], then one will take
the sub-vectors d̃1

w = [d̃1, d̃2, d̃3], d̃2
w = [d̃4, d̃5, d̃6] and

d̃3
w = [d̃7, d̃8, d̃9] if we don’t use overlapping components

between sub-vectors. From the sub-vectors, one constructs
their corresponding circulant matrix and apply their SVD to
get partial SVD features vectors σl=1

w , σl=2
w , etc. The number

l of partial SVD of the original outline of the target is given
by l = (n − w)/(w − m) + 1, where m is the number of
components overlapped by each two adjacent sub-vectors, and
n is the total number of discrete contour points of the outline
given by the edge detector.

B. Step 2: BBA’s construction with PNN’s

In order to exploit efficiently fusion rules dealing with
conflicting information modeled by belief mass assignments
(BBA’s) [18], [23], we need to build BBA’s from all features
computed from images of the sequence under analysis. The
construction of the BBA’s needs expert knowledge or knowl-
edge drawn from training using image dataset. In this paper,
we propose to utilize probabilistic neural networks (PNN)
initially developed in nineties by Specht [19] to construct the
BBA’s because it is a common technique used in the target
recognition and pattern classification community that is able to

9In this work, we use the cvcontour function of opencv software [22] to
extract the target outline from a binary image.
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achieve with large training dataset performances close to those
obtained by a human expert in the field. The details of PNN’s
settings for BBA’s construction are given in [12]. However,
because the neural network after training to some extent has a
good discriminant ability (close to an expert in the field), the
BBA is constructed by the neural network directly based on
the PNN’s output, which is different from the construction of
the BBA based on the confusion matrix described in [12].

Here we present how the two PNN’s (shown in Figure 1)
work. In our application, we have Nc = 7 types of aircrafts
in our training image dataset. For each type, the aircraft is
observed with Np = 3 poses. Therefore we have Ncp = Nc×
Np = 21 types of distinct cases in our dataset. For each case,
one has Ni = 30 images available for the training. Therefore
the whole training dataset contains Ncpi = NcNpNi = 7 ×
3× 30 = 630 binary images. For the first PNN (fed by Hu’s
features vector), the number of input layer neurons is 4 because
we use only Φ = [Φ1,Φ2,Φ3,Φ4] Hu’s moment invariants in
this work. For the second PNN (fed by partial SVD features
vector), the number of input layer neurons is constant and
equal to l × w because we take l windows with the width
w (so one has w singular values of partial SVD for every
window). The number of hidden layer neurons of each PNN is
the number of the training samples, Ncpi = 630. The number
of output layer neurons is equal to Ncp = 21 (the number of
different possible cases).

Our PNN’s fed by features input vectors (Hu’s moments
and SVD outline) do not provide a hard decision on the type
and pose of the observed target under analysis because in our
belief-based approach we need to build BBA’s. Therefore the
competition function of the output layer for decision-making
implemented classically in the PNN scheme is not used in
the exploitation10 phase of our approach. Instead, the PNN
computes the Ncp × Ni (Euclidean) distances between the
features vectors of the image under test and the Ncpi = 630
features vectors of the training dataset. A Gaussian radial
basis function (G-RBF) is used in the hidden layer of the
PNN’s [19] to transform its input (Euclidean) distance vector
of size 1 × Ncpi into another 1 × Ncpi distance (similarity)
that feeds the output layer through a weighting matrix of size
Ncpi×Ncp = 630×21 estimated from the training samples. As
a final output of each PNN, we get an unnormalized similarity
vector m of size (1×Ncpi)×(Ncpi×Ncp) = 1×Ncp = 1×21
which is then normalized to get a Bayesian BBA on the frame
of discernment Θ = {(targeti, posej), i = 1, . . . , c, j =
1, . . . , p}. Because we use only two11 PNN’s in this approach,
we are able to build two Bayesian BBA’s m1(.) and m2(.)
defined on the same frame Θ for every image of the sequence
to analyze.

C. Step 3: Fusion of BBA’s and local decision

A basic belief assignment (BBA), also called a (belief) mass
function, is a mapping m(.) : 2Θ 7→ [0; 1] such that m(∅) = 0

10when analyzing a new sequence of an unknown observed aircraft.
11A first PPN fed by Hu’s features, and a second PNN fed by SVD outline

features – see Fig. 1.

and
∑
X∈2Θ m(X) = 1, where Θ is the so-called frame of

discernment of the problem under concern which consists of
a finite discrete set of exhaustive and exclusive hypotheses12

θi, i = 1, . . . , n, and where 2Θ is the power-set of Θ (the set of
all subsets of Θ). This definition of BBA has been introduced
in Dempster-Shafer Theory (DST) [23]. The focal elements
of a BBA are all elements X of 2Θ such that m(X) > 0.
Bayesian BBA’s are special BBA’s having only singletons (i.e.
the elements of Θ) as focal elements.

In DST, the combination of BBA’s is done by Dempster’s
rule of combination [23] which corresponds to the normalized
conjunctive consensus operator. Because this fusion rule is
known to be not so efficient (both in highly and also in low
conflicting) in some practical situations [25], many alternative
rules have been proposed during last decades [18], Vol. 2.

To overcome the practical limitations of Shafers’ model
and in order to deal with fuzzy hypotheses of the frame,
Dezert and Smarandache have proposed the possibility to
work with BBA’s defined on Dedekind’s lattice13 DΘ [18]
(Vol.1) so that intersections (conjunctions) of elements of the
frame can be allowed in the fusion process, with eventually
some given restrictions (integrity constraints). Dezert and
Smarandache have also proposed several rules of combination
based on different Proportional Conflict Redistribution (PCR)
principles. Among these new rules, the PCR5 and PCR6 rules
play a major role because they do not degrade the specificity of
the fusion result (contrariwise to most other alternative rule),
and they preserve the neutrality of the vacuous BBA14. PCR5
and PCR6 provide same combined BBA when combining
only two BBA’s m1(.) and m2(.), but they differ when
combining three (or more) BBA’s altogether. It has been
recently proved in [26] that PCR6 is consistent with empirical
(frequentist) estimation of probability measure, unlike other
fusion rules15.These two major differences with DST, make
the basis of Dezert-Smarandache Theory (DSmT) [18].

In the context of this work, we propose to use PCR5 to
combine the two (Bayesian) BBA’s m1(.) and m2(.) built from
the two PNN’s fed by Hu’s features vector and SVD outline
features vector. Because for each image of the observed target
in the sequence, one has only two BBA’s to combine, the PCR5
fusion result is same as the PCR6 fusion result. Of course,
if one wants to include other kinds of features vectors with
additional PNN’s, the PCR6 fusion rule is recommended. The
PCR principle consists in redistributing the partial conflicting
masses16only to the sets involved in the conflict and propor-
tionally to their mass. The PCR5 (or PCR6) combination of

12This is what is called Shafer’s model of the frame in the literature.
13Dedekind’s lattice is the set of all composite subsets built from elements

of Θ with ∪ and ∩ operators.
14A vacuous BBA is the BBA such that m(Θ) = 1.
15except the averaging rule.
16For two BBA’s, a partial conflicting mass is a product m1(X)m2(Y ) >

0 of the element X ∩ Y which is conflicting, that is such that X ∩ Y = ∅.
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two BBA’s is done according to the following formula17 [18]

mPCR5/6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (3)

where all denominators in (3) are different from zero, and
mPCR5/6(∅) = 0. If a denominator is zero, that fraction
is discarded. All propositions/sets are in a canonical form.
Because we work here only with Bayesian BBA’s, the previous
fusion formula is in fact rather easy to implement, see [18]
(Vol. 2, Chap. 4).

In summary, the target features extraction in a sequence of
K images allows us to generate, after Step 3, a set of BBA’s
{mImagek(.), k = 1, 2, . . . ,K}. Every BBA mImagek(.) is
obtained by the PCR5/6 fusion of BBA’s mImagek

1 (.) and
mImagek

2 (.) built from the outputs of two PNN’s. From this
combined BBA, a local18 decision Ok can be drawn about
the target type and target pose in Imagek by taking the focal
element of mImagek(.) having the maximum mass of belief.

D. Step 4: Hidden Markov Model (HMM) for recognition

Usually (and specially in military context), the posture of
an aircraft can continuously change a lot during its flightpath
making target recognition based only on single observation
(image) very difficult, because some ambiguities can occur
between extracted features with those stored in the training
image data set. To improve the target recognition performance
and robustness, one proposes to use the sequence of target
recognition decision Ok drawn from BBA’s {mImagek(.), k =
1, 2, . . . ,K} to feed HMM classifiers in parallel. We suggest
this approach because the use of HMM has already been
proved to be very efficient in speech recognition, natural
language and face recognition. We briefly present HMM, and
then we will explain how HMMs are used for automatic
aircraft recognition.

Let us consider a dynamical system with a finite set of pos-
sible states S = {s1, s2, . . . , sN}. The state transitions of the
system is modeled by a first order Markov chain governed by
the transition probabilities given by P (s(tk) = sj |s(tk−1) =
si, s(tk−2) = sk, . . .) = P (s(tk) = sj |s(tk−1) = si) = aij ,
where s(tk) is the random state of the system at time tk. A
HMM is a doubly stochastic processes including an underlying
stochastic process (i.e. a Markov chain for modeling the state
transitions of the system), and a second stochastic process
for modeling the observation of the system (which is a
function of the random states of the system). A HMM, denoted
λ = (A,B,Π), is fully characterized by the knowledge of the
following parameters

17Here we assume that Shafers’ model holds. The notation mPCR5/6
means PCR5 and PCR6 are equivalent when combining two BBA’s.

18because it is based only on a single image of the unknown observed target
in the sequence under analysis.

1) The number N of possible states S = {s1, s2, . . . , sN}
of the Markov chain.

2) The state transition probability matrix19 A = [aij ] of
size N ×N , where aij , P (s(tk) = si|s(tk−1) = sj).

3) The prior mass function (pmf) Π of the initial state of
the chain, that is Π = {π1, . . . , πN} with

∑N
i=1 πi = 1,

where πi = P (s(t1) = si).
4) The number M of possible values V = {v1, . . . , vM}

taken by the observation of the system.
5) The conditional pmfs of observed values given the states

of the system characterized by the matrix B = [bmi] of
size M × N , with bmi , P (Ok = vm|s(tk) = si),
where Ok is the observation of the system (i.e. the local
decision on target type with its pose) at time tk.

In this work we consider a set of Nc HMMs in parallel,
where each HMM is associated with a given type of target
to recognize. We consider the following state and observation
models in our HMMs:
- State model: For a given type of aircraft, we consider a
finite set of distinct aircraft postures available in our training
image dataset. In our application, we consider only three states
corresponding to s1 = top view, s2 = side view and s3 =
front view as shown (for a particular aircraft) in Figure 2.

Fig. 2: Example of HMM states.

- Observation model: In our HMMs, we assume that each
state (posture) of aircraft is observable. Since we have
only Np = 3 states S = {s1, s2, s3} for each aircraft,
and we have Nc = 7 types of aircrafts in the training
dataset, we have to deal with Ncp = 3 × 7 = 21 possible20

observations (local decisions) at each time tk. As explained
previously, at the end of Step 3 we have a set of BBA’s
{mImagek(.), k = 1, 2, ...,K} that helps to draw the sequence
of local decisions OK , {O1, . . . , Ok, . . . , OK}. This
sequence of decisions (called also recognition observations)
is used to evaluate the likelihood P (OK |λi) of the different
HMMs described by the parameter λi = (Ai,Bi,Πi),
i = 1, 2, . . . , Nc. The computation of these likelihoods will
be detailed at the end of this section. The final decision
for ATR consists to infer the true target type based on
the maximum likelihood criterion. More precisely, one will
decide that the target type is i? if i? = arg maxi P (OK |λi).

• Estimation of HMM parameters
To make recognition with HMMs, we need at first to define

a HMM for each type of target one wants to recognize.
More precisely, we need to estimate the parameters λi =

19We assume that the transition matrix is known and time-invariant, i.e. all
elements aij do not depend on tk−1 and tk .

20We assume that the unknown observed target type belongs to the set of
types of the dataset, as well as its pose.
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(Ai,Bi,Πi), where i = 1, . . . , Nc is the target type in the
training dataset. The estimation of HMM parameters is done
from observation sequences drawn from the training dataset
with Baum-Welch algorithm [20] that must be initialized with
a chosen value λ0

i = (A0
i ,B

0
i ,Π

0
i ). This initial value is chosen

as follows:
1) – State prior probabilities Π0

i for a target of type i: For each
HMM, we consider only three distinct postures (states) s1, s2

and s3 for the aircraft. We use a uniform prior probability
mass distribution for all types of targets. Therefore, we take
Π0
i = [1/3, 1/3, 1/3] for any target type i = 1, . . . , Nc to

recognize.
2) – State transition matrix A0

i of a target of type i: The
components apq of the state transition matrix A0

i are estimated
from the analysis of many sequences21 of target i as follows

apq =

∑K−1
k=1 δ(s(tk), sp)× δ(s(tk+1), sq)∑K−1

k=1 δ(s(tk), sp)
(4)

where Np is the number of states of the Markov chain,
δ(x, y) is the Kronecker delta function defined by δ(x, y) = 1
if y = x, and δ(x, y) = 0 otherwise, and where K is
the number of images in the sequence of target i avail-
able in the training phase. For example, if in the train-
ing phase and for a target of type i = 1, we have the
following sequence of (target type, pose) cases given by
[(1, 1), (1, 1), (1, 2), (1, 1), (1, 3), (1, 1), (1, 1)], then from Eq.
(4) with K = 7, we get22

A0
i=1 =

2/4 1/4 1/4
1 0 0
1 0 0


3) – Observation matrix B0

i for a target of type i: The
initial observation matrix B0

i is given by the confusion matrix
learnt from all images of the training dataset. More precisely,
from every image of the training dataset, we extract Hu’s
features and partial SVD outline features and we feed each
PNN to get two BBA’s according to Steps 1-3. From the
combined BBA, we make the local decision (targeti, posej) if
m((targeti, posej)) is bigger than all other masses of belief
of the BBA. This procedure is applied to all images in the
training dataset. By doing so, we can estimate empirically
the probabilities to decide (targeti, posej) when real case
(targeti′ , posej′) occurs. So we have an estimation of all com-
ponents of the global confusion matrix B0 = [P (decision =
(targeti, posej) | reality = (targeti′ , posej′))]. From B0

we extract the c sub-matrices (conditional confusion matrices)
B0
i , i = 1, . . . , Nc by taking all the rows of B0 corresponding

to the target of type i. In our application, one has Nc = 7
types and Np = 3 postures (states) for each target type, hence
one has Ncp = 7 × 3 = 21 possibles observations. Therefore
the global confusion matrix B0 has size 21× 21 is the stack
of Nc = 7 sub-matrices B0

i , i = 1, ..., Nc, each of size
Np ×Ncp = 3× 21.

21The video stream of different (known) aircraft flights generate the
sequences of images to estimate approximately apq

22One verifies that the probabilities of each raw of this matrix sum to 1.

• Exploitation of HMM for ATR
Given a sequence OK of K local decisions drawn from the

sequence of K images, and given Nc HMMs characterized by
their parameter λi (i = 1, . . . , Nc), one has to compute all the
likelihoods P (OK |λi), and then infer from them the true target
type based on the maximum likelihood criterion which is done
by deciding the target type i? if i? = arg maxi P (OK |λi). The
computation of P (OK |λi) is done as follows [20]:
• generation of all possible state sequences of length
K, SKl = [sl(t1)sl(t2) . . . sl(tK)], where sl(tk) ∈ S

(k=1,. . . , K) and l = 1, 2, . . . , |S|K
• computation of P (OK |λi) by applying the total proba-

bility theorem as follows 23

P (SKl |λi) = πsl(t1) ·asl(t1)sl(t2) ·. . .·asl(tK−1)sl(tK) (5)

P (OK |λi, SKl ) = bsl(t1)O1
·bsl(t2)O2

· . . . ·bsl(tK)OK
(6)

P (OK |λi) =

|S|K∑
l=1

P (OK |λi, SKl )P (SKl |λi) (7)

III. SIMULATIONS RESULTS

For the simulations of SMF-ATR method, we have used
Nc = 7 types of aircrafts in the training image dataset. Each
image of the sequence has 1200× 702 pixels. The sequences
of aircraft observations in the training dataset take 150 frames.
The Np = 3 poses of every aircraft is shown in Fig. 3.
For evaluating our approach, we have used sequences (test
samples) of images of 7 different aircraft, more precisely
the Lockheed-F22, Junkers-G.38ce, Tupolev ANT 20 Maxime
Gorky, Caspian Sea Monster (Kaspian Monster), Mirage-F1,
Piaggio P180, and Lockheed-Vega, flying under conditions that
generate a lot of state (posture) changes in the images. The
number of the images in each sequence to test varies from
400 to 500. The shaping parameter of the G-RBF of PNN’s
has been set to 0.1. The simulation is done in two phases: 1)
the training phase (for training PNN’s and estimating HMM’s
parameters), and 2) the exploitation phase for testing the real
performances of the SMF-ATR with test sequences.
A - Performances evaluation

In our simulations, we have tested SMF-ATR with two
different fusion rules: 1) the PCR5 rule (see Section II-C),
and 2) Dempster-Shafer (DS) rule24 [23]. The percentages of
successful recognition (i.e. the recognition rate Ri) obtained
with these two SMF-ATR methods are shown in Table I for
each type i = 1, 2, . . . , Nc of aircraft. The performances of
these SMF-ATR versions are globally very good since one
is able to recognize with a minimum of 85.2% of success
the types of aircraft included in the image sequences under
test when using DS-based SMF-ATR, and with a minimum of

23The index i of components of Ai and Bi matrices has been omitted for
notation convenience in the last two formulas.

24Because Dempster’s rule is one of the basis of Dempster-Shafer Theory,
we call prefer to call it Dempster-Shafer rule, or just DS rule. This rule
coincides here with Bayesian fusion rule because we combine two Bayesian
BBA’s and we don’t use informative priors.
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Fig. 3: Poses of different types of aircrafts.

93.5% of success with the PCR5-based SMF-ATR. In term of
computational time, it takes between 5ms and 6ms to process
each image in the sequence with no particular optimization
of our simulation code, which indicates that this SMF-ATR
approach is close to meet the requirement for real-time aircraft
recognition. It can be observed that PCR5-based SMF-ATR
outperforms DS-based SMF-ATR for 3 types of aircraft and
gives similar recognition rate as with DS-based SMF-ATR for
other types. So PCR5-based SMF-ATR is globally better than
DS-based SMF-ATR for our application.

Target type 1 2 3 4 5 6 7
Ri (PCR5 rule) 95.7 93.5 96.3 98.2 96.3 98.5 97.3
Ri (DS rule) 95.7 93.5 85.2 97.8 96.3 98.5 97.2

TABLE I: Aircraft recognition rates Ri (in %).

B - Robustness of SMF-ATR to image scaling

To evaluate the robustness of (PCR5-based) SMF-ATR ap-
proach to image scaling effects, we did apply scaling changes
(zoom out) of ZO = 1/2, ZO = 1/4 and ZO = 1/8 in the
images of the sequences under test. The performances of the
SMF-ATR are shown in Table II. One sees that the degradation
of recognition performance of SMF-ATR due to scaling effects
is very limited since even with a 1/8 zoom out one gets 90%
of successful target recognition. The performance will decline
sharply if the targets zoom out goes beyond 1/16.
C - Robustness to compound type

Table III gives the performances of SMF-ATR on sequences
with two types of targets (475 images with type 1, and 382
images with type 2).

The two left columns of Table III show the performances

Target type 1 2 3 4 5 6 7
Ri (no ZO) 95.7 93.5 96.3 98.2 96.3 98.5 97.3
Ri (ZO=1/2) 95.0 92.0 95.2 94.7 96.1 96.6 95.4
Ri (ZO=1/4) 95.0 92.0 94.7 91.7 93.6 91.6 95.7
Ri (ZO=1/8) 95.0 92.2 93.1 89.3 93.6 94.5 90.7

TABLE II: Aircraft recognition rates Ri (in %) of (PCR5/6-
based) SMF-ATR with different zoom out values.

Aircraft Single Single Compound
Type 1 Type 2 Type

Ri (SMF-ATR) 96.3 % 98.5% 97.3%

TABLE III: Robustness to target compound.

obtained when recognizing each type separately in each sub-
sequence. The last column shows the performance when
recognizing the compound type Type 1 ∪ Type 2. One sees
that the performance obtained with compound type (97.3%) is
close to the weighted average25 97.5% recognition rate. This
indicates that no wide range of recognition errors occurs when
the targets type change during the recognition process, making
SMF-ATR robust to target type switch.

D - Performances with and without HMMs

We have also compared the performances of SMF-ATR,
with two methods using more features but which do not exploit
sequences of images with HMM. More precisely, the recogni-
tion is done locally from the combined BBA for every image
without temporal integration processing based on HMM. We
call these two Multiple Features Fusion methods MFF1 and
MFF2 respectively. In MMF1, one uses Hu’s moments, NMI
(Normalized Moment of Inertia), affine invariant moments, and
SVD of outline, PNN and PCR5 fusion, whereas MMF2 uses
same features as MMF1 but with BP network as classifier
and DS rule of combination. The recognition performances are
shown in Table IV. One sees clearly the advantage to use the
image sequence processing with HMMs because of significant
improvement of ATR performances. The recognition rate of
MFF2 declines seriously because the convergence of the BP
network is not good enough.

Target type 1 2 3 4 5 6 7
Ri (SMF-ATR) 95.7 93.5 96.3 98.2 96.3 98.5 97.3
Ri (MFF1) 89.2 92.0 91.2 86.9 92.2 93.5 95.0
Ri (MFF2) 64.9 51.6 82.8 82.2 70.8 48.3 58.9

TABLE IV: Performances (in %) with and without HMMs.

E - SMF-ATR versus SSF-ATR

We have also compared in Table V the performances
SMF-ATR with those of two simple SSF-ATR26 methods,
called SSF1-ATR and SSF2-ATR. The SSF1-ATR uses only
Hu’s moments features whereas SSF2-ATR uses only SVD
of outline as features. SSF1-ATR exploits image sequence
information using BP networks as classifier and DS rule for
combination, while SSF2-ATR uses PNN and PCR5/6 rule.

25According to the proportion of the two types in the whole sequence.
26SSF-ATR stands for Single-feature Sequence Automatic Target Recogni-

tion.
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Target type 1 2 3 4 5 6 7
Ri (SMF-ATR) 95.7 93.5 96.3 98.2 96.3 98.5 97.3
Ri (SFF1-ATR) 39.3 42.3 74.3 56.7 60.1 33.9 44.3
Ri (SFF2-ATR) 88.8 66.4 86.7 66.9 73.6 52.9 63.8

TABLE V: Performances (in %) of SMF-ATR and SFF-ATR.

One clearly sees the serious advantage of SMF-ATR with
respect to SFF-ATR due to the combination of information
drawn from both kinds of features (Hu’s and SVD of outline)
extracted from the images.

IV. CONCLUSIONS AND PERSPECTIVES

A new SMF-ATR approach based on features extraction has
been proposed. The extracted features from binary images feed
PNNs for building basic belief assignments that are combined
with DSmT PCR rule to make a local (based on one image
only) decision on target type. The set of local decisions ac-
quired over time for the image sequence feeds HMMs to make
the final recognition of the target. The evaluation of this new
SMF-ATR approach has been done with realistic sequences
of aircraft observations. SMF-ATR is able to achieve higher
recognition rates than classical approaches that do not exploit
HMMs, or SSF-ATR. Another complementary analysis of the
robustness of SMF-ATR to target occultation is currently under
progress and will be published in a forthcoming paper. Our
very preliminary results based only on few sequences indi-
cate that SMF-ATR seems very robust to target occultations
occurring randomly in single (non consecutive) images, but a
finer analysis based on Monte-Carlo simulation will be done
to evaluate quantitatively its robustness in different conditions
(number of consecutive occultations in the sequences, the level
of occultation, etc). As interesting perspectives, we want to
extend SMF-ATR approach for detecting new target types that
are not included in image data set. Also, we would want to
deal with the recognition of multiple crossing targets observed
in a same image sequence.
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Static versus Dynamic Data Information Fusion 
Analysis using DDDAS for Cyber Security Trust 
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Abstract 
Information fusion includes signals, features, and decision-level analysis over 

various types of data including imagery, text, and cyber security detection.  With the 
maturity of data processing, the explosion of big data, and the need for user acceptance; 
the Dynamic Data-Driven Application System (DDDAS) philosophy fosters insights 
into the usability of information systems solutions.  In this paper, we explore a notion of 
an adaptive adjustment of secure communication trust analysis that seeks a balance 
between standard static solutions versus dynamic-data driven updates. A use case is 
provided in determining trust for a cyber security scenario exploring comparisons of 
Bayesian versus evidential reasoning for dynamic security detection updates. Using the 
evidential reasoning proportional conflict redistribution (PCR) method, we demonstrate 
improved trust for dynamically changing detections of denial of service attacks.  

1 Introduction 
Information fusion (Blasch, et al., 2012) has a well-documented following of different methods, 

processes, and techniques emerging from control, probability, and communication theories. 
Information fusion systems designs require methods for big data analysis, secure communications, 
and support to end users. Current information fusion systems use probability, estimation, and signal 
processing. Extending theses techniques to operational needs requires an assessment of some of the 
fundamental assumptions such as secure communications over various data, applications, and 
systems. Specifically, the key focus of this paper is based on the question of measuring trust in static 
versus dynamic information fusion systems. 

Static versus dynamic information fusion comes from three perspectives such as data, models, and 
processing. As related to information fusion techniques, many studies exist on centralized versus 
distributed processing, single versus multiple models, and stovepipe versus multi-modal data.  In each 
case, static information fusion rests in centralized processing from single model estimation over a 
single source of data. On the other extreme is distributed processing, using multiple-models over 
multi-modal data; which in reality is supposed to cover the entire gamut of big data solutions captured 
in large-scale systems designs.  In reality, with such an ambitious goal, there are always fundamental 

Originally published as Blasch E., Al-Nashif Y., Hariri 
S., Static versus Dynamic Data Information Fusion 
analysis using DDDAS for Cyber Security Trust, in 

Proc. of 14th International Conference on 
Computational Science (ICCS 2014), 2014, and 

reprinted with permission.
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assumptions that tailor the system design to the user needs. For example, a system could be designed 
to capture all image data being collected from surveillance sensors; however filtering collections over 
a specific area, for a designated time internal, at a given frequency helps to refine answers to user 
requests. Thus, as a user selects the details of importance, responses should be accessible, complete, 
and trustworthy. 

Dynamic information fusion is a key analysis of the paper of which we focus on trust. If a machine 
is processing all the data, then time and usability constraints cannot be satisfied. Thus, either the user 
or the machine must determine the appropriate set of data, models, and processing that is needed for a 
specific application. Trust analysis is required to determine security and reliability constraints, and 
DDDAS provides a fresh look at the balance between static and dynamic information fusion.  In this 
paper, we explore the notions of dynamic information fusion towards decision making as cyber 
detections change. 

In Section 2 we overview information fusion and DDDAS. Section 3 discusses the notions of trust 
as a means to balance between information fusion and dynamic data detections. Section 4 compares 
Bayesian versus evidential reasoning. Section 5 provides a use-case for analysis for cyber trust and 
Section 6 provides conclusions..  

2 Information Fusion and DDDAS 
Information fusion and DDDAS overlap in many areas such as data measurements, statistical 

reasoning, and software development for various applications. Recently, there is an interest in both 
communities to address big data, software structures, and user applications. The intersection of these 
areas includes methods of information management (Blasch, 2006) in assessing trust in data access, 
dynamic processing, and distribution for applications-based end users. 

2.1 Information Fusion 
The Data Fusion Information Group (DFIG) model, shown in Figure 1, provides the various 

attributes of an information fusion systems design. Information fusion concepts are divided between 
Low-level Information Fusion (LLIF) and High-level Information Fusion (HLIF) (Blasch, et al., 
2012). LLIF (L0-1) composes data registration (Level 0 [L0]) and explicit object assessment (L1) 
such as an aircraft location and identity (Yang, 2009). HLIF (L2-6) composes much of the open 
discussions in the last decade. The levels, to denote processing, include situation (L2) and impact (L3) 
assessment with resource (L4), user (L5) (Blasch, 2002), and mission (L6) refinement (Blasch, 2005). 
Here we focus on Level 5 fusion by addressing cyber security trust in systems design. 

Figure 1. DFIG Information Fusion model (L = Information Fusion Level). 
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Data access for information fusion requires an information management (IM) model of the enterprise 
architecture, as shown in Figure 2. The IM model illustrates the coordination and flow of data through 
the enterprise with the various layers (Blasch, et al., 2012).  

People or autonomous agents interact with the managed information enterprise environment by 
producing and consuming information. Various actors and their activities/services within an IM 
enterprise surround the IM model that transforms data into information. Within the IM model, there 
are various services that are needed to process the managed information objects (MIOs). Security is 
the first level of interaction between users and data. 

 
Figure 2. Information Management (IM) Model. 

A set of service layers are defined that use artifacts to perform specific services. An artifact is a 
piece of information that is acted upon by a service or that influences the behavior of the service (e.g., 
a policy). The service layers defined by the model are: Security, Workflow, Quality of Service (QoS), 
Transformation, Brokerage, and Maintenance. These services are intelligent agents that utilize the 
information space within the architecture, such as cloud computing and machine analytics. Access to 
the data requires secure communications which is dynamic, data-type driven, and application specific. 

2.2 Dynamic Data Driven Application Systems (DDDAS) 
DDDAS is focused on applications modeling (scenarios), mathematical and statistical algorithms 

(theory), measurement systems, and systems software as shown in Figure 3. For a systems application, 
user mission needs drive data access over the scenarios. The available data is processed from 
measurements to information using theoretical principles. The data-driven results are presented to the 
user through visualizations; however the trust in the data is compounded by data quality, the model 
fidelity, and systems availability of which software is an integral part to a systems application. 
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Figure 3. DDDAS Aligned with Information Fusion. 

 
Using a cyber example for DDDAS, the application is secure data communications to meet 

mission needs (L6). While not a one-to-one mapping, it can be assumed that data management, driven 
by scenarios, identifies cyber threat attacks (L3) such as denial of service attacks. The theory and 
measurements come from the models of normal behavior (L1) which use computational methods to 
support cyber situation awareness (L2) visualization. The user (L5) interacts with the machine through 
data management (L4), as new measurements arrive. Current research seeks distributed, faster, and 
more reliable communication systems to enable such processing and coordination between the man 
and their machines, however, measurement of trust is paramount. 

3 Trust in Information Processing 
Several theories and working models of trust in automation have been proposed. Information 

which is presented for decision-aiding is not uniformly trusted and incorporated into situation 
awareness. Three proposed increasing levels, or ‘stages of trust’, for human-human interactions 
include: Predictability, Dependability, and Faith (Rempel, et al., 1985). Participants progress through 
these stages over time in a relationship. The same was anticipated in human-automation interactions, 
either via training or experience. The main idea is that as trust develops, people will make decisions 
based upon the trust that the system will continue to behave in new situations as it has demonstrated in 
the past. Building upon Rempel’s stages, (Muir & Moray, 1996) postulated that  

 
Trust = Predictability + Dependability + Faith + Competence + Responsibility + Reliability 

 
and further defined the construct of Distrust: which (1) can be caused by operator feeling that the 
automation is undependable, unreliable, unpredictable, etc. and a (2) set of dimensions related to 
automation failures, which may cause distrust in automated systems (location of failure, causes of 
failure or corruption, time patterns of failure). 

 
Table 1, adapted below from (Muir & Moray, 1996), depicts the quadrant of trust and distrust 

behaviors with respect to good or poor quality of the automation. Basically, the outcome of a wrong 
decision to trust the automation is worse than the outcome of a wrong decision to not trust the 
automation.  Hence, security is enforced to not trust a poor decision. 
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Operator’s trust & 
allocation of function 

Quality of the automation 
‘Good’                      ‘Poor’ 

Trusts and uses the 
automation 

Appropriate Trust (optimize 
system performance) 

False Trust (risk automated disaster) 

Distrusts and rejects the 
automation 

False Distrust (lose benefits of 
automation, inc. workload) 

Appropriate Distrust (optimize 
system performance) 

 

Table 1: Trust, Distrust, and Mistrust, (adapted from Muir and Moray, 1996) 

Trust in the automation clearly impacts a user mental model of secure communications. Therefore, 
dynamic models must be devised to account for different levels of attention, trust, and interactions in 
Human in the Loop (HIL) and Human on the Loop (HOL) designs. A user must be given permission 
to refine the assessment for final decision for validity and reliability of the information presented.  
User Trust issues then are confidence (correct detection), security (impacts), integrity (what you 
know), dependability (timely), reliable (accurate), controllability, familiar (practice and training), and 
consistent (reliable). 

Trust in information processing involves many issues; however, here we focus on the development 
of a cyber domain trust stack as shown in Figure 4. The trust stack composes policies, trust authority, 
collecting raw metrics and behavior analysis, leading to authentication and authorization, and then 
secure communications. Similar to the information management model, polices are important to 
determine whether data access is available. Likewise, sensor management gets access to raw metrics 
(Blasch, 2004) that need to be analyzed for situation awareness. The problem not being full addressed 
is the impeding results for secure communications. In what follows, we discuss the main functions to 
be provided by each layer in the trust stack shown in Figure 4. 

 

 
 

Figure 4. Trust Stack. 

3.1 Secure Communications, Authentication, and Authorization 
Secure communications is an important property to guarantee the confidentiality and integrity of 

the messages used to evaluate trust in the system. Certificates are used to verify the identify of 
communicating end-devices (Kaliski, 1993). The communication channel is encrypted using DES 
(Data Encryption Standard, 2010) in CFB64 (Cipher Feedback) mode. In this CFB mode, the first 8 
bytes of the key generated used to encrypt the first block of data. This encrypted data is then used as a 
key for the second block. This process is repeated until the last block is encrypted. The DES is still 
used in legacy virtual private networks (VPNs) and could benefit from a DDDAS trust analysis even 
used with multiple protocol authentication systems such as Kerberos. 

Multiple protocols have been developed over the years for password-based authentication, 
biometric authentication, and remote user authentication. In order to evaluate the trust of different 
entities with many users, multiple systems, and multiple domains, we assume the use of remote user 
authentication. Remote Authentication Dial-In User Service (RADIUS) (Willens, et al, 2000) is a 
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famous client/server protocol to allow remote entities to communicate with a server to authenticate 
remote users. RADIUS gives organization ability to maintain user profiles in a specific database that 
the remote servers share.  

The Domain Trust Enforcement (DTE) agent performs the authorization process for the end-to-
end adaptive trust. Based on the results of the authentication process and the received trust level, the 
DTE agent  grants or denies authorization to access the resources, i.e., allow or deny the 
communication between the different entities.   

3.2 Collecting Raw Measurements 
Much software, both commercial and open source, are available and provide important health and 

security information, such as Nagios (Nass, 2009). This information can be used to extract metrics 
that can be used to evaluate the trust of different entities. These metrics can be divided into multiple 
categories based on their source: User, Application, Machine, Connection, or Security Software 
Alerts. In order to evaluate the trust, the metrics need to be quantified and normalized (e.g., between 0 
and 1) to a common scale. Table 2 shows a set of measured metrics and their quantification function 
and Figure 5 shows these categories with some example metrics. 

Category Metric Quantification 

User Password Strength {

                                                                          

        
               

                       
           

User Days since last password 
change {

                                            

  
     

                      
           

User Number of authentication 
failures {

                                                     

  
         

                                  
           

User Lock Outs {
                                                  

  
          

                                   
           

Application Developer Reputation  
          

                  

Application Who manages the software {
                           
                         
                             

Connection Number of hops {

                                        

  
     

                      
           

Connection Number of discarded Packets {
                                                          

  
                 

                         
                                   

Machine Firmware version {
                              
                     
                            

 

Machine Shared Folders {
                                             
                                          
                                        

 

Analyzer Integrity Check {
                                                           
                                                   
                                              

 

Analyzer Virus Alerts {

                                                        
                                    
                                  
                                                   

Table 2: Examples of metric quantification 
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3.3 Behavior Analysis 
Behavior analysis techniques apply statistical and data mining techniques to determine the current 

operating zone of the execution environment (situation awareness) and also project its behavior in the 
near future. The operating point (OP) of an environment can be defined as a point in an n-dimensional 
space with respect to well-defined attributes. An acceptable operating zone can be defined by 
combining the normal operating values for each attribute. At runtime, the operating point moves from 
one zone to another and that point might move to a zone where the environment does not meet its trust 
and security requirements. We use these movements in the OP to adjust the trust value of the current 
environment as will be discussed in further detail in the Domain Trust Authority section. By 
continuously performing behavior analysis of the environment, we can then proactively predict and 
detect the anomalous behaviors that might have been caused by malicious attacks. Furthermore, once 
it is determined that the environment’s operating point is moving outside the normal zone, it will 
adopt its trust value and then determine the appropriate proactive management techniques that can 
bring back the environment situation to a normal operating zone.  

 

 
Figure 5. Trust Metrics. 

3.4 Domain Trust Authority 
DTA evaluates the end-to-end trust over secure communications. It defines a tuple (machine, 

application, user, data) to be an entity and all communications among entities has a certain context. 
Thus authentication is conducted per entity. Every entity has a trust level associated with it. In order 
to measure the trust, trust’s metrics are introduced, and they take values between 0 and 1. Where 0 
represents the distrust and 1 represent the blind or full trust. The trust measurements for all entities are 
stored in an entity call Trust Authority. The NIST standard SP 800-53 (NIST, 2010) is used and it 
defines four levels of trust: 

 
Level Distrust Low Trust Moderate High Trust 
Trust Value 0.00 0.33 0.66 1.00 
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Initially, a risk and impact analysis is performed to quantify the impact of each component on the 

overall operations of the network. Common Vulnerabilities and Exposures (CVE) and Common 
Vulnerability Scoring System (CVSS) are used to evaluate the initial impact for both software and the 
environment, and reputations of the users are used to assign their initial impacts. Based on the initial 
impact analysis, the initial trust values for each entity is determined. The risk and impact analysis 
performed is in consistence with the NIST “Recommended Security Controls for Federal Information 
Systems and Organizations” report. According to the NIST report, risk measures the extent to which 
entities are threatened by circumstances or events. The risk is a function of impact and its probability 
of occurrence. Risks arise from the loss of confidentiality, integrity, and/or availability of information 
and resources.  Thus the initial trust T can be viewed as an inverse function of the risk R: 

 
 T = 1 / R (1) 
 
Where the risk of an entity i is a function of the impact imp: 
 

R i = imp i (confidentiality) ● Pr imp i (confidentiality) +  
            imp i (integrity) ● Pr imp i (integrity) +  imp i (availability) ● Pr imp i (availability)  (2) 
 
When a new entity is added, it has to register with the Mutual Authentication (MA) module and 

then its initial trust value can be quantified according to Equations 1 and 2. 
 

Verify Trust 
When an entity communicates with another entity, an Autonomic Trust Management (ATM) agent 

obtains the trust level of the entity that needs to interact with from the Trust Authority (TA), see 
Figure 6.  If the trust level of the remote entity is below the minimum required trust level set in the 
policies, then the communication is dropped. By continuously checking with TA module, any 
interacting entities will not be able to communicate if they do not meet the end-to-end trust policies. 
Once the component trust level is verified, they can proceed and interact securely using the secure 
communications. 

 
Figure 6. Adaptive End-to-End Trust 

Adaptive Trust 
The trust value assigned to each component is not static and is updated continuously. The Trust 

Authority module is the one responsible for re-evaluating the trust at runtime. As mentioned in the 
previous section, the trust is measured per entity and the trust levels are between 0 and 1. 
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 T (E)  [0, 1] (3) 

                                                            Each interaction between entities is governed by a context C. Thus, trust level for entities is 
computed per context: 
 T (E, C)  [0, 1]  (4)  

 
A Forgiveness Factor, F, is assigned to provide an adaptive mechanism for compromised entities 

to start gaining trust after all existing vulnerabilities have been fixed. Based on the impact of the entity 
on the overall operations, we can control the time it takes for that entity to recover its trust level. 
Monitoring, measuring, and quantifying trust metrics are required, and they are performed by the 
ATM. Mi will denote the collected trust metric, where i is the metric identifier. The function mi() is a 
quantifying function that returns a measurement between 0 and 1 for the metric Mi.  

The overall trust for an entity is computed using two types of trust: 1) self-measured trust and 2) 
reputation-measured trust. The self-measured trust Ts is the trust that is evaluated based on the 
measurement performed by the ATM agent that manages the entity. While the reputation-measured 
trust, Tp is based on the trust metrics collected from peers based on a previous recent interaction with 
the entity for which the trust is being re-evaluated. The Ts and Tp are given by following equations: 

 

T S (E , C)  =  T (ATM E, C)  
i = 1

 L
    Ii (C)   mi (Mi) 

 T P (E , C)  =  
1
K    

j = 1

 K
    T (ATM j, C)  

i = 1

 L
    Ii (C)   mi (Mi) (5) 

 
The values of the metric weight Ii for metric i is determined based on the feature selection 

technique, where: 
 

 
i = 1

 L
    Ii (C)   =  1 (6) 

 
Based on the context and the type of operations, the end-to-end trust is evaluated using three trust 

evaluation strategies: Optimistic, Pessimistic, and Average. The end-to-end trust for each strategy can 
be evaluated as follows: 

 
Trust Confidence  Trust Evaluation Strategy 

Optimistic T(E, C) = max {TS (E, C), TP (E, C)}  
Average T(E, C) = ave {TS (E, C), TP (E, C)} 
Pessimistic T(E, C) = min {TS (E, C), TP (E, C)} 

 
Once T(E,C) is computed, then it is mapped to the nearest of trust level: (High, Moderate, Low, 

and None). 
The Trust Authority module continuously evaluates the trust for all components and their entities 

whenever new metrics are obtained from the ATM agents that require an update to entity trust 
evaluation above depending on the trust evaluation strategy. Various reasoning evaluation strategies 
exist, such as that of Bayesian, Evidential Reasoning, and Belief Functions (Blasch, et al, 2013), that 
can be used to evaluate trust. 

In a DDDAS cyber environment, there are many levels of information fusion, but to build a 
trustworthy DDDAS environment, we need to check the trust of each level of information fusion. The 
Domain Trust Authority is the place to verify the trust of each entity passing information within the 
DDDAS environment. When the trust level drops below certain threshold; the incoming data can be 
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dropped to enable secure communications. What follows are the DDDAS theory, simulations, 
measurements, and software analysis for Information fusion levels of cyber data, situation/behavior 
assessment, information management, and user refinement. 

3.5 Bayes versus Evidential Reasoning 
A fundamental technique for data fusion is Bayes Rule. Recently, (Dezert, et al., 2012) has shown 

that Dempster’s rule is consistent with probability calculus and Bayesian reasoning if and only if the 
prior P(X) is uniform. However, when the P(X) is not uniform, then Dempster’s rule gives a different 
result.  Both (Yen, 1986) and (Mahler, 1996) developed methods to account for non-uniform priors. 
Others have also tried to compare Bayes and evidential reasoning (ER) methods (Mahler, 2005, 
Blasch, et al., 2013). Assuming that we have multiple measurements Z = {Z1, Z2, …, ZN} for cyber 
detection D being monitored, Bayesian and ER methods are developed next. 

3.6 Relating Bayes to Evidential Reasoning 
Assuming conditional independence, one has the Bayes method: 

 

 P(X | Z1    Z2)  =  
P(X | Z1) P(X | Z2) / P(X)

  
i = 1

 N
    P(Xi | Z1) P(Xi | Z2) / P(X i)

 (7) 

 
With no information from Z1 or Z2, then P(X | Z1, Z2) = P(X). Without Z2, then P(X | Z1, Z2) = P(X | 

Z1) and without Z1, then P(X | Z1, Z2) = P(X | Z2). Using Dezert’s formulation, then the denominator 
can be expressed as a normalization coefficient: 

 m12 ()   =   1    
X i ; X j |  X i  X j

 
    P(Xi | Z1) P(Xi | Z2)  (8) 

 
Using this relation, then the total probability mass of the conflicting information is  
 

 P(X | Z1    Z2)  =   
1

 1    m12 ()    P(X | Z1) P(X | Z2)  (9) 

 
which corresponds to Dempster’s rule of combination using Bayesian belief masses with uniform 
priors. When the prior’s are not uniform, then Dempster’s rule is not consistent with Bayes’ Rule.  For 
example, let m0 (X) = P(X), m1 (X) = P(X | Z1), and m2 (X) = P(X | Z2), then  

 

 m(X)   =  
m0 (X)  m1 (X)  m2 (X)

 1    m012 ()    =   
P(X)   P(X | Z1)   P(X | Z2) 

 
i = 1

 N
    P(X i)   P(Xi | Z1)   P(Xi | Z2) 

 (10) 

Thus, methods are needed to deal with non-uniform priors and appropriately redistribute the 
conflicting masses. 

3.7 Proportional Conflict Redistribution 
Recent advances in DS methods include Dezert-Smarandache Theory (DSmT). DSmT is an 

extension to the Dempster-Shafer method of evidential reasoning which has been detailed in 
numerous papers and texts: Advances and applications of DSmT for information fusion (Collected 
works), Vols. 1-3 (Dezert, et al., 2009). In (Dezert, et al., 2002) introduced the methods for the 
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reasoning and in presented the hyper power-set notation for DSmT (Dezert, et al., 2003). Recent 
applications include the DSmT Proportional Conflict Redistribution rule 5 (PCR5) applied to target 
tracking (Blasch, 2013).  

The key contributions of DSmT are the redistributions of masses such that no refinement of the 
frame  is possible unless a series of constraints are known. For example, Shafer’s model (Shafer, 
1976) is the most constrained DSm hybrid model in DSmT. Since Shafer’s model, authors have 
continued to refine the method to more precisely address the combination of conflicting beliefs 
(Josang, et al., 2006) and generalization of the combination rules (Smaradache, et al., 2005, Daniel, 
2006). An adaptive combination rule (Florea, et al., 2006) and rules for quantitative and qualitative 
combinations (Martin, 2008) have been proposed. Recent examples for sensor applications include 
electronic support measures, (Djiknavorian, et al., 2010), physiological monitoring sensors (Lee, et al., 
2010), and seismic-acoustic sensing (Blasch, et al., 2011).  

Here we use the Proportional Conflict Redistribution rule no. 5 (PCR5)*. We replace Smets’ rule 
(Smets, 2005) by the more effective PCR5 to cyber detection probabilities. All details, justifications 
with examples on PCRn fusion rules and DSm transformations can be found in the DSmT compiled 
texts (Dezert, et al., 2009 Vols. 2 & 3). A comparison of the methods is shown in Figure 7.  

 

 
 

Figure 7. Comparison of Bayesian, Dempster-Shafer, and PCR5 Fusion Theories 

In the DSmT framework, the PCR5 is used generally to combine the basic belief assignment 
(bba)’s. PCR5 transfers the conflicting mass only to the elements involved in the conflict and 
proportionally to their individual masses, so that the specificity of the information is entirely 
preserved in this fusion process. Let m1(.) and m2(.) be two independent bba’s, then the PCR5 rule is 
defined as follows (see Dezert, et al., 2009, Vol. 2 for full justification and examples): mPCR5() = 0 
and X  2 \ {}, where  is the null set and 2 is the power set: 

mPCR5 (X)  =  
X1; X2  2 

X1  X2 = X

 

   m1(X1) + m2(X2)    + 
X2  2 

X2  X = 

 

       



 m1(X1) 2 m2(X2)

 m1(X1) + m2(X2)
  +  

 m1(X1) m2(X2) 2
 m1(X1) + m2(X2)

  

 

`(11)

 

 

                                                           
* Note: PCR used here is from information fusion technology and not the a Platform Configuration Register (PCR) of the 

Trusted Platform Module (TPM) hardware technology. 
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where  is the interesting and all denominators in the equation above are different from zero. If a 
denominator is zero, that fraction is discarded. Additional properties and extensions of PCR5 for 
combining qualitative bba’s can be found in (Dezert, 2009, Vol. 2 & 3) with examples and results. All 
propositions/sets are in a canonical form. 

3.8 Example of DDDAS Cyber Trust Analysis 
In this example, we assume that policies are accepted and that the trust stack must determine 

whether the dynamic data is trustworthy. The application system collects raw measurements on the 
data intrusion (such as denial of service attacks) and situation awareness is needed. Conventional 
information fusion processing would include Bayesian analysis to determine the state of the attack. 
However, here we use the PCR5 rule which distributes the conflicting information over the partial 
states. Figure 8 shows the results for a normal system being attacked and the different methods 
(Bayes, DS, and PCR5) to access the dynamic attack. Trust is then determined with percent 
improvement in analysis. Since the cyber classification of attack versus no attack is not consistent, 
there is some conflict in the processing of the measurement data going from an measurements of 
attack and vice versa.  The constant changing of measurements requires acknowledgment of the 
change and data conflict as measured using the PCR5 method. 

   
Figure 8. Results of Bayesian, Dempster-Shafer, and PCR5 Fusion Theories for trust. 

The improvement of PCR5 over Bayes is shown in Figure 8 and compared with the modest 
improvement from DS. The average performance improvement of PCR5 is 46% and DS is 2%, which 
is data and application dependent.  When comparing the results, it can be seen that when a system 
goes from a normal to an attack state, PCR5 responds quicker in analyzing the attack, resulting in 
maintaining trust in the decision.  Such issues of data reliability, statistical credibility, and application 
survivability all contribute to the presentation of information to an application-based user.  While the 
analysis is based on behavioral situation awareness, it is understood that polices and secure 
communications can leverage this information for domain trust analysis and authentication and 
authorization that can map measurements to software requirements.   

3.9 Policies Enforcement 
Policies are an important component of cyber trust (Blasch, 2012) as shown in Figure 9.  As an 

example, a policy is administered for retrieval of information. Policy information determines the 
attributes for decisions. Determining the decision leads to enforcement. Such a decision is based on 
trust processing from which effective enforcement can support secure communications. 
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Figure 9. Policy-Based Fusion of Information requiring Trust (Blasch, 2012) 
 
There are many possible information fusion strategies to enable data access from policies. Here we 

demonstrate an analysis of Bayesian versus evidential reasoning for determining cyber situation 
awareness trust. Future work includes threat intent (Shen, et al., 2009), impact assessment (Shen, et 
al., 2007), transition behaviors (Du, et al., 2011) and developing advanced forensics analysis (Yu, et 
al., 2013). 

4 Conclusions 
Information fusion (IF) and Dynamic Data-Driven Application Systems (DDDAS) are emerging 

techniques to deal with big data, multiple models, and decision making. One topic of interest to both 
fields of study is a measure of trust. In this paper, we explored a system for cyber security fusion 
which addresses system-level application issues of model building, data analysis, and polices for 
application trust.  IF and data-driven applications utilize a common framework of probability analysis 
and here we explored a novel technique of PCR5 that builds on Bayesian and Dempster-Shafer theory 
to determine trust. Future research would include real world data, complete analysis of the trust stack, 
and sensitivity of models/measurements in secure cyber situation awareness trust analysis. 
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Dezert, F. Smarandache, Forum of Fusion 2010 International Conference, Edinburgh, Scotland,
26-29 July, 2010.

3. Advances and Applications of DSmT for Information Fusion, by J. Dezert & F. Smarandache,
presented by F. Smarandache, ENSIETA, Brest, France, 17 June 2010.

4. An Introduction to Information Fusion Level 1 and to Neutrosophic Logic/Set with Applications,
ENSIETA (National Superior School of Engineers and the Study of Armament), Brest, France, 2
July 2010.

2009 

1. Advances and Applications of DSmT for Information Fusion (third version), by F. Smarandache
(co-author J. Dezert), Invited speaker at and sponsored by Air Force Institute of Technology
Wright-Patterson AFB in Dayton, Ohio, USA, May 1st, 2009.

2. Fusion of Sensors’ Information in the Machine Building Industry (DSmT), by F. Smarandache
(co-author J. Dezert), Universitatea din Craiova, Facultatea de Mecanică, Romania, 18 May 2009.

3. Advances in Quantitative and Qualitative Information Fusion, by J. Dezert (co-author F.
Smarandache), Lecture given at Institute of Intelligent Control School of Automation Southeast
University, Nanjing, China, May 19th, 2009.

4. Some Applications of Quantitative and Qualitative Information Fusion, by Jean Dezert (co-author
F. Smarandache), Lecture given at Institute of Intelligent Control School of Automation Southeast
University, Nanjing, China, May 20th, 2009.

5. Introduction to DSmT for Information Fusion, by Jean Dezert (co-author F. Smarandache),
Lecture given Huazhong University of Sciences and Technology, Wuhan, China, May 23rd, 2009.

6. Quantitative and Qualitative Information Fusion, by Jean Dezert (co-author F. Smarandache),
International Workshop on Information Fusion, Lecture given at Beihang University, Beijing,
China, May 28th, 2009.

7. Quantitative and Qualitative Information Fusion, by Jean Dezert (co-author F. Smarandache),
International Workshop on Information Fusion, Lecture given at Xi'an Jiaotong University, Xi'an,
China, May 31st, 2009.

8. Quantitative and Qualitative Information Fusion, by Jean Dezert (co-author F. Smarandache),
International Workshop on Information Fusion, Lecture given at Hangzhou Dianzi University,
Hangzhou, China, June 4th, 2009.

9. Advances and Applications of DSmT for Information Fusion (third version), by F. Smarandache
(co-author J. Dezert), Air Force Research Laboratory (AFRL), Rome, NY, USA, June 29, 2009.

10. Advances and Applications of DSmT for Information Fusion (third version), by F. Smarandache
(co-author J. Dezert), Griffiss Institute, Rome, NY, USA, July 1st, 2009.

11. Advances and Applications of DSmT for Information Fusion (fourth version), by J. Dezert & F.
Smarandache, Fusion 2009 International Conference, Seattle, USA, July 6th, 2009.

12. An Introduction to Fusion Level 1 and to Neutrosophic Logic/Set with Applications, presented by
F. Smarandache at Air Force Research Laboratory, in Rome, NY, USA, July 29, 2009.
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2008 

1. Extension of Inagaki General Weighted Operators and A New Fusion Rule Class of Proportional
Redistribution of Intersection Masses, by F. Smarandache, presented as poster at SWIFT 2008 -
Skovde Workshop on Information Fusion Topics, Sweden.

2. Advances and Applications of DSmT for Information Fusion, Tutorial by J. Dezert & F.
Smarandache, Fusion 2008 International Conference, June 30-July 3, 2008, Cologne, Germany.

3. Applications de la DSmT en pistage et robotique, by J. Dezert, Seminar at Institute Henri
Poincaré, 11 Rue Pierre et Marie Curie, 75005 Paris, France, 22 January, 3-4 p.m., 2008;
http://lastre.asso.fr/aubin/Sem-Viab-cont.html

2007 

1. Advances and Applications of DSmT for Information Fusion, by J. Dezert, F. Smarandache,
Tutorial at Fusion 2007 Int. Conference on Information Fusion, Québec City, July 2007.

2. Introduction à la Fusion et au Conditionnement de Croyances Quantitatives ou Qualitatives dans
le Cadre de la DSmT, by J. Dezert, Seminar on "Recents developpements en fusion de données",
ONERA, Chatillon, France, June 14th, 2007.

3. Advances and Applications of DSmT for Information Fusion, Pre-Conference Workshop, by J.
Dezert, F. Smarandache, Sensor Fusion Europe (Marcus Evans), 2nd Annual Assuring
Accessibility of Secure Information for the Warfighter, Brussels, Belgium, January 29, 2007.

2006 

1. Advances and Applications of DSmT for Plausible and Paradoxical Reasoning for Information
Fusion, by J. Dezert, International Workshop organized by the Bulgarian IST Centre of
Competence in 21st Century, December 14, 2006, Bulg. Acad. of Sciences, Sofia, Bulgaria.

2. Fusion of Qualitative and Quantitative Information using DSmT, Tutorial MO2 by J. Dezert, F.
Smarandache, Fusion 2006 International Conference, Florence, Italy, July 10-13, 2006.

3. Fusion d'informations incertaines et conflictuelles par la DSmT, by Jean Dezert, Round panel
Discussion on Prevision Methods, 38ièmes Journées de Statistique du 29 Mai 2006, EDF
Recherche et Developpement (ICAME/SOAD), Clamart (92), France;
http://www.jds2006.fr/index.php.

4. DSmT Approach for Quantitative and Qualitative Information Fusion, Invited Lecture given by F.
Smarandache (co-author J. Dezert), University Kristen Satya Wacana, Salatiga, May 26, 2006,
Indonesia.

5. DSmT Approach for Quantitative and Qualitative Information Fusion, Invited Lecture given by F.
Smarandache (co-author J. Dezert), University Sekolah Tinggi Informatika & Komputer
Indonesia, Malang, May 20, 2006, Indonesia.

6. DSmT Approach for Quantitative and Qualitative Information Fusion, Invited Lecture given by
Jean Dezert in Information Days on Advanced Computing,  supported by EU BIS21++ project
and organised by Institute for Parallel Processing, Bulgarian Academy of Sciences, March 21-23,
2006, Hotel "Kamena", Velingrad, Bulgaria.
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2005 

1. DSmT: Une Nouvelle Approche pour la Gestion d'Informations Conflictuelles, Jean Dezert,
ENSIETA, Brest, France, December 15, 2005, http://www.ensieta.fr/e3i2/Seminaire.html.

2. Dezert-Smarandache Theory (DSmT) of Plausible and Paradoxical Reasoning, J. Dezert, F.
Smarandache, Sensor Fusion Europe, Post-Conference Workshop, Marcus Evans Co., November
4th, 2005, Barcelona, Spain (invited).

2004 

1. To Be and Not To Be - An Introduction to Neutrosophic: A Novel Decision Paradigm, F.
Smarandache, S. Bhattacharya, Jadavpur University, Kolkata, India, 23 December 2004.

2. Uvod Do Dezert-Smarandachovy Teorie (domnenkove funkce, zobecnene domnenkove funkce a
jejich kombinovani) [About Dezert-Smarandache Theory (belief functions)], M. Daniel, Czech
Society for Cybernetics and Informatics, Praha, Czech Republic, 7 December, 2004.

3. An In-Depth Look at Information Fusion Rules & the Unification of Fusion Theories, by
Florentin Smarandache, Presented at NASA Langley Research Center (Hampton, Virginia), on
November 5th, 2004.

4. Recent Applications of Dezert-Smarandache Theory for Information Fusion, J. Dezert, A.
Tchamova, T. Semerdjiev, P. Konstantinova, S. Corgne, L. Hubert-Moy, M. Grégoire, NASA
Langley Research Center, Hampton, VA, USA, 5 November 2004.

5. An Overview of DSmT for Information Fusion, J. Dezert, F. Smarandache, NASA Langley
Research Center, Hampton, VA, USA, 5 November 2004;
http://www.nianet.org/ecslectureseries/smarandache_110504.php,
http://www.nianet.org/ecslectureseries/dezert_110504.php.

6. Nouvelles Avancées en Fusion d'Information, J. Dezert, MAnifestation des JEunes Chercheurs
STIC, Université du Littoral, Côte d’Opale, Calais, France, 14 October 2004, http://lil.univ-
littoral.fr/majecstic/.

7. Panel Discussion on DSmT Fusion 2004 Int. Conf. on Information Fusion, June 28-July 1, 2004,
Stockholm, Sweden, http://www.fusion2004.org.

8. Introduction à la DSmT pour la fusion de données incertaines et conflictuelles by Jean Dezert,
Seminar given at the Direction Générale de l'Armement (DGA/CTA/DT/GIP/PRO), 16 bis, Av.
Prieur de la Côte d'Or, 94114 Arcueil Cedex, France, January 20th, 2004.

2003 

1. A new framework for data fusion based on DSmT by Jean Dezert, Seminar given at Dept. of Elec.
Eng., Univ. of Melbourne, Melbourne, Australia, July 24th, 2003.

2. Théorie du raisonnement plausible et paradoxal pour la fusion d'informations by Jean Dezert,
Seminar given at Laboratoire PSI - FRE CNRS 2645, Université de Rouen, UFR des Sciences,
Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France, April 10th, 2003.

3. Théorie du raisonnement plausible et paradoxal pour la fusion d'informations by Jean Dezert,
Seminar given at Laboratoire COSTEL, LETG UMR CNRS 6554, Université Rennes 2 Haute-
Bretagne, Rennes, France, January 17th, 2003.

2002 

1. Théorie du raisonnement plausible et paradoxal pour la fusion d'informations, by Jean Dezert,
Seminar given at Institute Henri Poincaré,11 rue Pierre et Marie Curie 75005 - Paris, France,
November 12th, 2002.
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M.Sc. and Ph.D Theses related with DSmT 
1. 2004 – France - Ph.D. Thesis, Modélisation prédictive de l’occupation des sols en contexte

agricole intensif : application à la couverture hivernale des sols en Bretagne, Ph. D. Dissertation,
by Samuel Corgne, Advisor: Laurence Hubert-Moy, Université de Rennes 2, France, 10
December 2004. (in French)

2. 2004 – Australia - Ph.D. Thesis, Utility, Rationality and Beyond - From Behavioral Finance to
Informational Finance, Ph. D. Dissertation, by Sukanto Bhattacharya, Bond University,
Queensland, Australia, 2004.

3. 2006 – Iran - M.Sc. Thesis, Designing a Home Security System Using Sensor Data Fusion,
Arezou Moussavi, Islamic Azad University, Southern Unit, Tehran, Iran, September 2006.

4. 2007 – Canada - Ph.D. Thesis, Combinaison d’informations hétérogènes dans le cadre
unificateur des ensembles aléatoires : Approximations et robustesse, by Mihai Cristian Florea,
Université Laval, Québec City, Canada, 13 July 2007.

5. 2006 – China - Ph.D. Thesis, The Combination Rules、Performance Indexes and Applications
of Evidence Reasoning, J. Hou, Northwestern Polytechnical University.

6. 2007 – China – Ph.D Thesis, Research on fusion method of imperfect information from multi-
source and its application, by X.D. Li, Huazhong University of Science and Technology, China,
14 June 2007.

7. 2007 – China – Ph.D. Thesis, Information Superiority Oriented Study on Key Techniques of C-
4ISR System, Y. Wang, Northwestern Polytechnical University, May 2007.

8. 2008 – Canada - M.Sc. Thesis, Fusion d'informations dans un cadre de raisonnement de Dezert-
Smarandache appliquée sur des rapports de capteurs ESM sous le STANAG 1241, Pascal
Djiknavorian, Laboratoire de Radiocommunication et de Traitement du Signal, Laval University,
Canada, September 19, 2008.

9. 2008 – Italy - Ph.D. Thesis, Modelling and efficient fusion of uncertain information: beyond the
classical probability approach, Alessio Benavoli, Ph.D. in Computer and Control Engineering,
University of Firenze, Firenze, Italy, April, 2008.

10. 2008 – USA - Ph.D. Thesis, Quality Induced Secure Multiclassifier Fingerprint Verification
using Extended Feature Set, by Mayank Vatsa, Computer Sciences Dept., West Virginia
University, Morgantown, West Virginia, USA, Nov. 2008.

11. 2008 – France - Ph.D. Thesis, Indexation et fusion multimodale pour la recherche d'information
par le contenu. Application aux bases de données d'images médicales, by G. Quellec, Ecole
Nationale Supérieure des Telecommunications de Bretagne, Brest, France, September 19th,
2008. 

12. 2009 – China - M.Sc. Thesis, Information Fusion Method Based on Dezert-Smarandache Theory
for Fault Diagnosis, by H. Jiang, Hangzhou University of Electronic Science and Technology.

13. 2009 – Algeria - MAGISTER Thesis, Développement de modèles de fusion et de classification
contextuelle d’images satellitaires par la théorie de l’évidence et la théorie du raisonnement
plausible et paradoxal, by Nassim ABBAS,  University of Science and Technology Houari
Boumediene (USTHB), BP. 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria,  05 March 2009.

14. 2009 – France - Ph.D. Thesis, Prise en compte de l'incertitude dans l'expertise des risques
naturels en montagne par analyse multicritères et fusion d'information, Jean-Marc Tacnet, Ecole
Nationale Supérieure des Mines de Saint-Etienne, Laboratoire SITE, France, November 26th,
2009. (in French)

15. 2009 – China – Ph.D. Thesis, DSmT-based Trust Management in Open Computational Systems,
J. Wang, Nanjing University of Technology and Engineering.
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16. 2009 – China – Ph.D. Thesis, Information Fusion Technology Based on DSmT and Its
Application in the Map Building for Robot, J. Gao, Huazhong University of Science and
Technology.

17. 2009 – France - HDR Thesis, Modélisation et gestion du conflit dans la théorie des fonctions de
croyance, by A. Martin, Université de Bretagne Occidentale, 23 novembre 2009. (in French)

18. 2009 – Canada - Ph.D. Thesis, Cartographie de paramètres forestiers par fusion évidentielle de
données géospatiales multi-sources: Application aux peuplements forestiers en regénération et
feuillus matures du sud du Québec, Brice Mora, Sherbrooke Univ., Canada, March 5th, 2009.

19. 2010 – France - Ph.D.Thesis, Extraction de connaissances et indexation de données multimédia
pour la détection anticipée d'évènement indésirable, by Anas Dahabiah, Télécom Bretagne &
Université Rennes 1, Brest, France, October 8th, 2010.

20. 2010 – Poland - Ph.D. Thesis, Processing of information in C2 systems with application of
Dezert-Smarandache Theory, Ksawery Krenc, Military University of Technology (WAT), The
Department of Electronics, Supervisor Prof. Adam Kawalec, Warsaw, Poland, 10 June 2010.

21. 2010 – Netherlands - Ph.D. Thesis, Sensing, what matters?, W. Van Norden (CAMS -- Force
Vision), Delft Techn. Univ., Netherlands, 16 February, 2010.

22. 2010 – China – Ph.D. Thesis, Incomplete Information Fusion Technology and Its Application in
Mobile Robot, by P. Li, Huazhong University of Science and Technology.

23. 2010 - USA - Ph.D. Thesis, Context reasoning under uncertainty based on evidential fusion
networks in home-based care, by Hyun Lee, University of Texas at Arlington, USA, Aug. 2010.

24. 2011 – France - HDR Thesis, Planification de capteurs et fusion de l’information dans un
système d’observation et de renseignement, by F. Dambreville, University of Bretagne
Occidentale, ENSTA-Brest, France, November 16th, 2011. (in French)

25. 2011 – Romania - Ph.D. Thesis, Contributii privind monitorizarea retelelor de calculatoare,
Nicu-Sebastian Nicolaescu, Academia Tehnica Militara, Bucharest, Romania, 03 November
2011. (in Romanian)

26. 2013 – Canada - Ph.D. Thesis, Optimisation d'algorithmes d'approximation de fonctions de
croyance généralisées, Pascal Djiknavorian, Laval University, Québec, Canada, November 15th,
2013. (in French)

27. 2013 - Morocco - Ph.D. Thesis, Fusion d'images par la théorie de Dezert-Smarandache
(DSmT) en vue d'applications de télédétection, Azeddine El Hassouny, University Ibn Zohr,
Agadir, Morocco, June 22, 2013.

28. 2013 – Romania – Ph.D.Thesis, Contributions to the Development of Hybrid Force-Position
Control Strategies for Mobile Robots Control, Eng. Ionel Alexandru Gal, Institute of Solid
Mechanics, Romanian Academy, Bucharest, October 14, 2013.

29. 2014 - Germany - Ph.D. Thesis, Probabilistische Fahrzeugumfeldschätzung für Fahreras-
sistenzsysteme, Simon Steinmeyer, Fakultät für Elektrotechnik, Informationstechnik, Physik der
Technischen Universität Carolo-Wilhelmina zu Braunschweig, Germany, Mai 13th, 2014 (in
German).

30. 2014 – China - Ph.D. Thesis, Credal classification of uncertain data based on belief function
theory, by Zhunga Liu, Northwestern Polytechnical University (NPU), Xi'an, China in co-tutelle
with Telecom Bretagne, Brest France, defended at NPU in Xi'an on Nov. 24th, 2014.
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Awards 

 New Mexico-Arizona Book Award at the category Science & Math, for the book "DSm Super
Vector Space of Refined Labels", by W. B. Vasantha Kandasamy, F. Smarandache, 16 November
2012, Albuquerque, NM, USA.

 Best paper award for the paper entitled On the Behavior of Dempster’s Rule of Combination and
the Foundations of Dempster-Shafer Theory, by Tchamova A., Dezert J., presented at IEEE
IS’2012, Sofia, Bulgaria, Sept. 6-8, 2012.

Patent 

 DSmT (Dezert-Smarandache Theory)-based image target multi-characteristic fusion recognition
method, by Xinde Li, Weidong Yang, European Pattent Office, Espacenet, Bibliographic data:
CN102222240 (A), 2011-10-19.
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The fourth volume on Advances and Applications of Dezert-Smarandache 
Theory (DSmT) for information fusion collects theoretical and applied 
contributions of researchers working in different fields of applications and in 
mathematics. The contributions (see List of Articles published in this book, at 
the end of the volume) have been published or presented after disseminating 
the third volume (2009, http://fs.gallup.unm.edu/DSmT-book3.pdf) in 
international conferences, seminars, workshops and journals.  

First Part of this book presents the theoretical advancement of DSmT, dealing 
with Belief functions, conditioning and deconditioning, Analytic Hierarchy 
Process, Decision Making, Multi-Criteria, evidence theory, combination rule, 
evidence distance, conflicting belief, sources of evidences with different 
importance and reliabilities, importance of sources, pignistic probability 
transformation, Qualitative reasoning under uncertainty, Imprecise belief 
structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical 
proportional redistribution, basic belief assignment, subjective probability 
measure, Smarandache codification, neutrosophic logic, Evidence theory, 
outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist 
probability, mean square error, controlling factor, optimal assignment 
solution, data association, Transferable Belief Model, and others. 

More applications of DSmT have emerged in the past years since the apparition 
of the third book of DSmT 2009. Subsequently, the second part of this volume 
is about applications of DSmT in correlation with Electronic Support Measures, 
belief function, sensor networks, Ground Moving Target  and Multiple target 
tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple 
Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm 
classification, ability of human visual system, Uncertainty Representation and 
Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature 
Verification, Automatic Aircraft Recognition, Dynamic Data-Driven 
Application System, adjustment of secure communication trust analysis, and 
so on. 

Finally, the third part presents a List of References related with DSmT 
published or presented along the years since its inception in 2004, 
chronologically ordered. 
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