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Abstract. This paper initiates an investigation of conditional measures
as simple measures on conditional events. As a first step towards this
end we investigate the construction of conditional algebras which allow
us to distinguish between the logical properties of conditional events and
those of the conditional measures which we can be attached to them.
This distinction, we argue, helps us clarifying both concepts.

Keywords. Conditionals Events; Uncertain Reasoning; Conditional Al-
gebra.

1 Introduction and Motivation

This paper offers a logico-algebraic perspective on conditionals which is moti-
vated by a number of pressing problems in field of logic-based uncertain rea-
soning. Indeed, conditionals play a fundamental role both in qualitative and
in quantitative uncertain reasoning. The former is a consequence of the very
fruitful interaction between philosophical logic and artificial intelligence, which
linked the semantic approaches to conditionals of the 1970s, mainly Stalnaker’s
and D. Lewis’s to the proof-theoretic and model-theoretic development of non
monotonic consequence relations in the 1990s (see [14]). But it is in quantitative
uncertain reasoning that conditionals play their most delicate role leading to
the key concept of conditional probability. Despite the apparent simplicity of
the “ratio definition”, on which more below, the notion of conditional probabil-
ity is far from being uncontroversial. Makinson, for instance, points out in [15]
how some rather undesirable behaviour can arise when conditioning on what he
refers to the “critical zone”. Things get inevitably more complicated if we move
to non-classical probability logic, i.e. probability defined on non-classical logics,
a rapidly expanding research field. Yet the problem with conditional probability
arises in much simpler contexts that those just mentioned.

Logician Ernest Adams is well-known for putting forward

Adam’s thesis: Conditional probability is the probability that the con-
ditional is true.



The thesis is quite plausible if one reasons as follows. Let θ be a sentence in
some propositional language, and let its probability be denoted by µ(θ). Then it
is very natural to interpret µ(θ) as the probability that θ is true. This is certainly
compatible with the Bayesian operational definition of subjective probability as
the price a rational agent would be willing to bet on event θ [7]. Now, if θ is of
the form p→ q, then µ(θ) appears to be naturally intepreted as the probability
that q is true given that p is also true, i.e. µ(p | q). But this gives rise to the

Lewis’s triviality: Adams’ thesis implies that µ(θ | φ) = µ(θ).

So, either → is not truth-functional or Adams’ thesis is wrong, and the two
alternatives are exclusive.1

This paper initiates a research project which aims at tackling the founda-
tional difficulties related to conditional probability by radically changing the
perspectives. In a nutshell our overall goal is to investigate conditional algebras
in such a way as to see conditional measures as simple measures (possibly with
further properties) on conditional events, i.e. the elements inhabiting conditional
algebras. Hence we adopt a two-fold perspective on conditionals. First, we char-
acterize conditional events as elements of an algebra which we term conditional
algebra. Within such structures conditionals are simple objects, a terminology
whose meaning will be apparent in a short while. Second, since we are interested
in modelling various epistemic attitudes that agents may exhibit in connection
to conditional events – and in particular rational belief under uncertainty – we
are ultimately interested investigating appropriate measures to be attached to
conditionals. This paper prepares the stage by foccusing on the first objective.

Whilst we are unaware of other proposals which separate the logico-algebraic
properties of conditionals from those of conditional measures, the notion of con-
ditional algebra has been investigated in the context of the so-called Goodman-
Nguyen-van Fraassen algebras. Since we will be in an ideal position to compare
this approach with ours after having introduced some formal details, suffice it to
mention now that the notion of Conditional Event Algebra (CEA) introduced
in [10] differs quite substantially from our notion of conditional algebra.

Let θ, φ sentences in a classical logic propositional language. We denote the
conditional assertion “φ given θ” by φ | θ. It will sometimes be convenient to
refer to φ as the consequent of the conditional and to θ as its antecedent. When
presented with a conditional of this form, there are three distinct questions that
we may ask:

(1) what are the syntactic properties of φ | θ ?

(2) what are the semantic properties of φ | θ?
(3) what properties should be satisfied by a (rational) measure of belief on φ | θ?

1 Among many other references, the reader may get an idea of the arguments in
support of Adam’s thesis which sees the probability of a conditional as conditional
probability from [2, 11, 19, 10], and from the arguments which reject it as ill-founded
from [13, 16].



This paper focusses on (1) and provides an algebraic interpretation for (2),
leaving the investigation of question (3) as future research. The answers put
forward in this paper can be informally illustrated as follows:

1. Though it makes perfectly good sense to distinguish, in the conditional φ | θ,
the antecedent from the consequent, we will assume that conditional events are
simple objects which live in a conditional structure. The fundamental conse-
quence of this approach is that the “global” properties, so to speak, of condi-
tionals are defined for the underlying algebraic structure and not at the object
level of the conditional formula.

2. The semantic properties of conditionals are also given at the level of the con-
ditional algebra. For instance, by suitably constraining the ideals of a particular
freely generated Boolean algebra we will be in a position to characterize the
semantic properties we want conditional events to satisfy. As will become ap-
parent, all the results of this paper fail for counterfactuals. The reason for this
lies in the adoption of a principle which we refer to as the rejection constraint
according to which a conditional φ | θ is (semanticaly) meaningless if the an-
tecedent fails to be true (under a suitably defined valuation). This property, as
we shall shortly see, is motivated by reflections on conditional events.

2 The logic of conditionals

The most general feature on conditionals is that they express some form of
hypothetical assertion: the assertion of the consequent based on the supposition
that the antecedent is satisfied (with respect, of course, to a suitably defined
semantics). As Quine put it some four decades ago:

[An] affirmation of the form ‘if p then q’ is commonly felt less as an
affirmation of a conditional than as a conditional affirmation of the con-
sequent. If, after we have made such an affirmation, the antecedent turns
out true, then we consider ourselves committed to the consequent, and
are ready to acknowledge error if it proves false. If, on the other hand,
the antecedent turns out to have been false, our conditional affirmation
is as if it had never been made ([20] Added emphasis)

The idea here is that the semantic evaluation of a conditional (in this inter-
pretation) amounts to a two-step procedure. We first check the antecedent. If
this is rejected, the conditional ceases to mean anything at all. Otherwise we
move on to evaluating the consequent. Note that is in full consonance with de
Finetti’s semantics for conditional events, an interpretation which lies at the
foundation of his betting interpretation of subjective probability [7] and which
can be extended to more general measures of belief [8]. In particular, with respect
to a fixed possible world v,

a bet on θ | φ is


won if v(φ) = v(θ) = 1;

lost if v(φ) = 1 and v(θ) = 0;

called off if v(φ) = 0.



The final clause is of course the most interesing one, for it states that under the
valuation which assigns 0 to the conditioning event, a conditional bet must be
called off (all paid moneys are returned). This property is what we will hence-
forth name Rejection Constraint stating that in the process of realization of a
conditional bet into a fixed world v, we must agree to invalidate bets made on
conditionals whose antecedents are evaluated to 0.2 An immediate consequence
of this is that any expression of the form θ | ⊥ cannot be considered a condi-
tional event. Indeed, in this interpretation, it does not make sense to bet on a
conditional whose antecedent is false independently on the possible world v in
which the conditional is realized, because it would be always rejected.

The latter observation, leads us to impose a second constraint to our analysis,
namely we will require the algebra of conditional events to be Boolean. This prop-
erty of conditionals is what we will call Boolean Constraint and it is essentially
motivated to provide conditional events with an algebraic structure which is a
suitable domain of uncertainty measures. Indeed, as recalled in Section 1, in our
future work we will investigate simple (i.e. unconditional) uncertainty measures
on conditional algebras. Moreover, Section 4 presents an algebraic construction
that defines conditional Boolean algebras in a modular way.

3 Algebraic preliminaries

For every Boolean algebra A we denote by δ : A×A→ A the well known symmet-
ric difference operator. In other words δ stands for the following abbreviation:
for every x, y ∈ A,

δ(x, y) = (x ∨ y) ∧ ¬(x ∧ y) = ¬(x↔ y). (1)

In any Boolean algebra A, the following equations hold:

(i) δ(x, y) = δ(y, x) (iv) δ(x,⊥) = x
(ii) δ(x, δ(y, z)) = δ(δ(x, y), z) (v) δ(x, x) = ⊥
(iii) δ(δ(x, y), δ(y, z)) = δ(x, z)

Therefore, in particular δ is (i) commutative; (ii) associative; and (iv) has ⊥ as
neutral element.

The following proposition collects further properties of δ. Owing to space
limitations we are forced omit proofs.

Proposition 1. The following hold in any Boolean algebra A:

(a) δ(x, y) = ⊥ iff x = y (c) δ(x, y) = δ(¬x,¬y)
(b) δ(x, z) ≤ δ(x, y) ∨ δ(y, z) (d) δ(x ∨ y, z ∨ k) = δ(x, z) ∨ δ(y, k).

2 Note that the Rejection Constraint forces us to exclude counterfactual conditionals
from our analysis.



A non-empty subset i of a Boolean algebra A is said to be an ideal of A if:
(1) ⊥ ∈ i; (2) for any x, y ∈ i, x ∨ y ∈ i; (3) if x ∈ i, and y ≤ x, then y ∈ i.
If X ⊆ A, denote by I(X), the ideal generated by X, i.e. the least ideal (w.r.t.
inclusion) containing X. For every x ∈ A, we denote by ↓x the principal ideal of
A generated by x, i.e. ↓x = {y ∈ A : y ≤ x} = I({x}).

Proposition 2. Let A be a Boolean algebra, and let i be an ideal of A. Then
for every x, y ∈ A, the equation x = y is valid in the quotient algebra A/i iff
δ(x, y) ∈ i.

Remark 1. The above Proposition 2 immediately implies that, whenever i is a
proper ideal, and ¬δ(x, y) ∈ i, then the quotient algebra A/i makes valid ¬(x =
y). In fact if ¬δ(x, y) ∈ i, then δ(x, y) 6∈ i (otherwise δ(x, y) ∨ ¬δ(x, y) = > ∈ i,
and hence i would not be proper) iff in A/i, ¬(x = y) holds true i.e. x 6= y.

3.1 On the conjunction of conditionals

Let A be a Boolean algebra, and denote by A | A the set {a | b : a, b ∈ A}. The
problem of defining operations between the objects in A | A has been discussed
extensively in the context of measure-free conditionals [6].

Whilst widespread consensus exists about defining the negation of a condi-
tional as ¬(a | b) = ¬a | b, there are at least three major proposals competing
for the definition of conjunction:

(Schay, Calabrese) (a | b) &1 (c | d) = [(b → a) ∧ (d → c) | (b ∨ d)] (cf.
[5, 21] and see also [1] where this conjunction between conditionals is called
quasi-conjunction).

(Goodman and Nguyen) (a | b) &2 (c | d) = (a∧c) | [(¬a∧b)∨(¬c∧d)∨(b∨d)]
(cf. [11])

(Schay) (a | b) &3 (c | d) = (a ∧ c) | (b ∧ d) (cf. [21])

Disjunctions ⊕1,⊕2 and ⊕3 among conditionals, are defined by De Morgan’s
laws from &1,&2 and &3 above. Schay [21], and Calabrese [5] show that &1, and
⊕1 are not distributive with respect to each other, and hence the class A | A of
conditionals, endowed with &1 and ⊕1 is no longer a Boolean algebra. There-
fore &1 does not satisfy the Boolean constraint mentioned in the introductory
Section. For this reason we reject &1 as a suitable definition of conjunction.

Similarly, the Boolean constraint leads us to reject also &3, and ⊕3 as can-
didates for defining conjunction and disjunction betwen conditionals. Indeed, if
we defined the usual order relations by

1. (a1 | b1) ≤1 (a2 | b2) iff (a1 | b1) &3 (a2 | b2) = (a1 ∧ a2 | b1 ∧ b2) = (a1 | b1),
2. (a1 | b1) ≤2 (a2 | b2) iff (a1 | b1)⊕3 (a2 | b2) = (a1 ∨ a2 | b1 ∧ b2) = (a2 | b2),

then ≤1 6=≤2. To see this, let a be a fixed element in A. Then (a | >)&3(a | a) =
(a | a) and hence (a | a) ≤1 (a | >). On the other hand (a | >)⊕3 (a | a) = (a | a)
as well, and therefore (a | >) ≤2 (a | a) for every a ∈ A, and in particular for a
such that a | a 6= a | >. Conversely, it is easy to see that, if we restrict to the class



of those conditionals ai | b with a fixed antecedent b, then ≤1=≤2. Therefore &3

is suitable as a definition of conjunction only for those conditionals a1 | b1 and
a2 | b2, such that b1 = b2. Interestingly enough, when when restricted to this
class of conditionals, &2 and &3 do coincide.

It is worth noticing that the above conjunctions are defined in order to make
the class A | A of conditional objects closed under &i, and hence an algebra.
Therefore for every a1, b1, a2, b2 ∈ A, and for every i = 1, 2, 3, there exists
c, d ∈ A such that, (a1 | b1) &i (a2 | b2) = (c | d). This leads us to introduce a
further constraint:

Context constraint (CC): Let a1 | b1, a2 | b2 be conditionals in A | A. If
b1 = b2, then the conjunction (a1 | b1) AND (a2 | b2) is a conditional in the
form c | d, and in that case d = b1 = b2.

The Context constraint is better understood by pointing out that, whenever the
object (a1 | b1) AND (a2 | b2) cannot be reduced to a conditional c | d, then
necessarily b1 6= b2

Note that each of the &i’s above satisfy the stronger requirement, denoted
by (CC)’, that for every a1 | b1, and a2 | b2, (a1 | b1) AND (a2 | b2) is a
conditional in the form c | d (but in general d 6= b1, and d 6= b2). This stronger
condition ensures in fact that A | A is closed under &i, and hence makes &i

a total operator on A | A. On the other hand, as we are going to show in the
next section, our construction of conditional algebra, defines a structure whose
domain strictly contains all the elements a | b for a in A, and b belonging to a
particular subset of A guaranteeing the satisfaction of our Rejection constraint.
This allows us to relax this condition of closure as stated above. Indeed, for every
pair of conditionals of the form a1 | b1 and a2 | b2 belonging to the conditional
algebra, their conjunction will always be an element of the algebra (i.e. the
conjunction is a total, and not a partial, operation), but in general it will be
not in the form c | d. Therefore we will provide a definition for conjunction
between conditionals that satisfies (CC), but not, in general, (CC)’. Moreover
our definition of conjunction behaves as &2, and &3 whenever restricted to those
conditionals (a1 | b1), (a2 | b2) with b1 = b2.

4 Conditional Boolean algebras

We now show how a conditional Boolean algebra can be built up from any
Boolean algebra A and a non-empty {⊥}-free subset of A, which we will call a
bunch of A, and denote by A′.

Let A be any Boolean algebra and let A×A′ be the cartesian product of A
and A′ (as sets). We denote by

F(A×A′) = (F(A×A′),∧F ,∨F ,¬F ,⊥F ,>F )

the Boolean algebra freely generated by the pairs (a, b) ∈ A×A′ (cf. [4][II §10]).
Consider the following elements in F(A × A′): for every x, z ∈ A, y, k ∈ A′,



x1 ∈ A and z1 ∈ A′ with x1 6≥ z1, and x2 ∈ A and y2, z2 ∈ A′ such that
x2 → y2 = y2 → z2 = >

(t1) δ((y, y),>F ) (t4) δ((x ∧ y, y), (x, y))
(t2) δ((x, y) ∧F (z, y), (x ∧ z, y)) (t5) ¬δ((x1, z1), (z1, z1))
(t3) δ(¬F (x, y), (¬x, y)) (t6) δ((x2, z2), (x2, y2) ∧F (y2, z2)).

Consider the proper ideal C of F(A×A′) that is generated by the set of all the
instances of the above introduced terms (t1)-(t6).

Definition 1. For every Boolean algebra A and every bunch A′ of A, we say
that the quotient algebra C(A,A′) = F(A × A′)/C is the conditional algebra of
A and A′.

Thus, every conditional algebra C(A,A′) is a quotient of a free Boolean al-
gebra, whence is Boolean. So our Boolean constraint is satisfied.

We will denote atomic elements of A × A′ by a | b instead of (a, b). In a
conditional algebra C(A,A′) we therefore have atomic conditionals in the form
a | b for a ∈ A, and b ∈ A′, and also compound conditionals being those elements
in C(A,A′) that are the algebraic terms definable in the language of Boolean
algebras, modulo the identification induced by C. The operations on C(A,A′) are
denoted using the following notation, which is to be interpreted in the obvious
way:

C(A,A′) = (C(A,A′),∩C,∪C,¬C,⊥C,>C).

The construction of C(A,A′), and in particular the role of the ideal C, is best
illustrated by means of an example.

Example 1. Let A be the four elements Boolean algebra {>, a,¬a,⊥}, and con-
sider the bunch A′ = A \ {⊥}. Then A × A′ = {(>,>), (>, a), (>,¬a), (a,>),
(a, a), (a,¬a), (¬a,>), (¬a, a), (¬a,¬a), (⊥,>), (⊥, a), (⊥,¬a)}. The cartesian
product A×A′ has cardinality 12, whence F(A×A′) is the free Boolean algebra

of cardinality 22
12

, i.e. the finite Boolean algebra of 212 atoms. The conditional
algebra C(A,A′) is then obtained as the quotient of F(A × A′) by the ideal C
generated by (t1)-(t6). Having in mind Proposition 2, we can easily see that the
ideal C of F(A×A′) specifically forces the free algebra F(A×A′) about which
elements are equal as conditionals. For instance, following Proposition 3 (see
below), in C(A,A′) the following equations hold: > | > = a | a = (¬a) | (¬a);
(> | >) ∩C (a | >) = (> ∧ a) | > = (a | >); ¬C(> | >) = ⊥ | >, ¬C(a | ¬a) =
(¬a) | (¬a) = > | >.

Notice that the conditional algebra C(A,A′) can be defined as a quotient
of the free Boolean algebra F(X) by C, where X is the subset of A × A′

whose pairs are not redundant under C, i.e. X = {(xi, yi) ∈ A × A′ : ∀i 6=
j, δ((xi, yi), (xj , yj)) 6∈ C} = {(>,>), (a,>), (¬a,>), (⊥,>)}. Therefore F(X) is
the free Boolean algebra with 24 atoms.

Proposition 3. Every conditional algebra C(A,A′) satisfies the following equa-
tions:



(e1) For all y ∈ A′, y | y = >C

(e2) For all x, z ∈ A and y ∈ A′, (x | y) ∩C (z | y) = (x ∧ z) | y
(e3) For all x ∈ A and y ∈ A′, ¬C(x | y) = (¬x | y)

(e4) For all x ∈ A, for all y ∈ A′, (x ∧ y | y) = (x | y)

(e5) For all x, y ∈ A, if (x | >) = (y | >), then x = y

(e6) For all y ∈ A′, ¬y | y = ⊥C

(e7) For all x, z ∈ A, and y ∈ A′, (x | y) ∪C (z | y) = (x ∨ z | y)

(e8) For all x ∈ A and y, z ∈ A′ such that x → y = y → z = >, (x | z) = (x |
y) ∩C (y | z).

Remark 2. (1) As we have already stated, for all a1 | b1, a2 | b2 ∈ A × A′, their
conjunction is the element (a1 | b1) ∩C (a2 | b2) that belongs to the conditional
algebra by definition. Notice that (a1 | b1) ∩C (a2 | b2) = (c | d) iff, from
Proposition 2, δ((a1 | b1)∩C (a2 | b2), (c | d)) ∈ C. Therefore (t2) ensures that, if
b1 = b2 = d, then (a1 | d)∩C (a2 | d) = (c | d) (see Proposition 3 (e2)). Therefore
our Context constraint (CC) is satisfied. Also notice that (CC)’ is not satisfied
in general by the conjunction we have defined in C(A,A′). In fact, when b1 6= b2,
we cannot ensure in general (a1 | b1) ∩C (a2 | b2) to be atomic, and hence in the
form (c | d). In any case C(A,A′) is closed under ∩C.

(2) The Rejection constraint introduced in Section 2, forces our construction
to drop ⊥ from the algebra intended to contain the antecedents of conditionals.
For this reason we defined the bunch as a bottom-free subset of A. Notice that if
we allowed the conditional algebra to represent counterfactual conditionals (i.e.
had we not imposed the Rejection constraint), the resulting algebraic structure
would have not be Boolean as shown in [19, 22]. In this sense, the Rejection
constraint can be seen as being closely connected to the Boolean one.

In a conditional algebra C(A,A′), as in any Boolean algebra, one can define
the order relation ≤ by the letting

(x | y) ≤ (z | k) iff (x | y) ∩C (z | k) = (x | y). (2)

Proposition 4. In every conditional algebra C(A,A′) the following hold:

(o1) For every x, y ∈ A, and for every z ∈ A′, (x | y) ≤ (z | z); moreover
(x | z) ≥ (z | z), implies x ≥ z

(o2) For every x, y ∈ A and z ∈ A′, if x ≤ y, then (x | z) ≤ (y | z) (where clearly
x ≤ y means with respect to A). In particular x ≤ y iff (x | >) ≤ (y | >)

(o3) For every x ∈ A and y ∈ A′, if x 6≥ y, then (x | y) 6= (y | y), and in particular
(x | y) < (y | y).

(o4) For every x, y ∈ A and z ∈ A′, if (x | z) 6= (y | z), then x 6= y. In particular
x 6= y iff (x | >) 6= (y | >).

(o5) For every x ∈ A′, (> | x) = (x | x) = >C, and (⊥ | x) = (¬x | x) = ⊥C

(o6) For every x, y ∈ A and z, k ∈ A′, (x | k)∩C (y | z) = (x | k) iff (x | k)∪C (y |
z) = (y | z).



Remark 3. As we have already observed, every conditional algebra C(A,A′) is
finite whenever A is finite. So, if A is finite, C(A,A′) is atomic. Moreover, since
the canonical homomorphism hC : F(A×A′)→ C(A,A′) is onto, we have:

22
|A×A′|

= |F(A×A′)| ≥ |C(A,A′)|.

Finally, recall that a conditional probability on a Boolean algebra A is a map
µ : A×A′ → [0, 1], where A′ is a bunch of A, such that:

(µ1) For all x ∈ A′, µ(x | x) = 1,
(µ2) If x1, x2 ∈ A, x1 ∧ x2 = 0 and y ∈ A′, µ(x1 ∨ x2 | y) = µ(x1 | y) + µ(x2 | y),
(µ3) If x ∈ A and y ∈ A′, µ(x | y) = µ(x ∧ y | y),
(µ4) If x ∈ A and y, z ∈ A′ such that x→ y = y → z = >, then µ(x | z) =

µ(x | y) · µ(y | z).
Theorem 1. Let A be a Boolean algebra, A′ a bunch of A and let µ : C(A,A′)→
[0, 1] be a simple (i.e. unconditional) probability further satisfying: for all x ∈ A
and y, z ∈ A′ such that x→ y = y → z = >

µ((x | y) ∩C (y | z)) = µ(x | y) · µ(y | z). (3)

Then, µ satisfies all the axioms of a conditional probability on A.

Proof. The properties (µ1) and (µ3) respectively follow from Proposition 3 (e1),
(e4) together, with the normalization property for probability measures: µ(>) =
1. In order to show (µ2), notice that whenever x1∧x2 = ⊥, then from Proposition
3 (e2), for every y ∈ A′, (x1 | y) ∩C (x2 | y) = (x1 ∧ x2 | y) = (⊥ | y) = ⊥C.
Therefore, since µ is additive, µ((x1 | y) ∪C (x2 | y)) = µ(x1 | y) + µ(x2 | y).
Therefore (µ2) also holds because by Proposition 3 (e7), (x1 | y) ∪C (x2 | y) =
(x1 ∨ x2) | y. Finally, by Proposition 3 (e8) together with (3), if x ∈ A and
y, z ∈ A′ are such that x → y = y → z = >, µ(x | z) = µ((x | y) ∧C (y | z)) =
µ(x | y) · µ(y | z).

5 Conclusions and further work

In general, the results reported in this paper constitute a first step towards pro-
viding a rather flexible framework for conditionals which builds on the distinction
between the properties of a conditional event and those of a conditional measure.
Our next step will involve relaxing the Boolean constraint, a relaxation which
implies a substantial generalization of the Rejection constraint as well and that
may have a significant impact on our understanding of conditional many-valued
probability, a topic to which considerable research effort has been devoted in the
past decade, see e.g. [9, 12, 18, 17]). Another interesting prospective (pointed out
by one of the referees) is to look at the conditional as a partial operation on a
Boolean algebra and apply techniques of theory of partial algebras [3].
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