3,695 research outputs found

    A Modified Neuro-Fuzzy System Using Metaheuristic Approaches for Data Classification

    Get PDF
    The impact of innovated Neuro-Fuzzy System (NFS) has emerged as a dominant technique for addressing various difficult research problems in business. ANFIS (Adaptive Neuro-Fuzzy Inference system) is an efficient combination of ANN and fuzzy logic for modeling highly non-linear, complex and dynamic systems. It has been proved that, with proper number of rules, an ANFIS system is able to approximate every plant. Even though it has been widely used, ANFIS has a major drawback of computational complexities. The number of rules and its tunable parameters increase exponentially when the numbers of inputs are large. Moreover, the standard learning process of ANFIS involves gradient based learning which has prone to fall in local minima. Many researchers have used meta-heuristic algorithms to tune parameters of ANFIS. This study will modify ANFIS architecture to reduce its complexity and improve the accuracy of classification problems. The experiments are carried out by trying different types and shapes of membership functions and meta-heuristics Artificial Bee Colony (ABC) algorithm with ANFIS and the training error results are measured for each combination. The results showed that modified ANFIS combined with ABC method provides better training error results than common ANFIS model

    A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels

    Get PDF
    In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows to construct Mamdani fuzzy models considering both accuracy (precision) and transparency (interpretability) of fuzzy systems. The new methodology employs a fast hierarchical clustering algorithm to generate an initial fuzzy model efficiently; a training data selection mechanism is developed to identify appropriate and efficient data as learning samples; a high-performance Particle Swarm Optimisation (PSO) based multi-objective optimisation mechanism is developed to further improve the fuzzy model in terms of both the structure and the parameters; and a new tolerance analysis method is proposed to derive the confidence bands relating to the final elicited models. This proposed modelling approach is evaluated using two benchmark problems and is shown to outperform other modelling approaches. Furthermore, the proposed approach is successfully applied to complex high-dimensional modelling problems for manufacturing of alloy steels, using ‘real’ industrial data. These problems concern the prediction of the mechanical properties of alloy steels by correlating them with the heat treatment process conditions as well as the weight percentages of the chemical compositions

    Prediction model of alcohol intoxication from facial temperature dynamics based on K-means clustering driven by evolutionary computing

    Get PDF
    Alcohol intoxication is a significant phenomenon, affecting many social areas, including work procedures or car driving. Alcohol causes certain side effects including changing the facial thermal distribution, which may enable the contactless identification and classification of alcohol-intoxicated people. We adopted a multiregional segmentation procedure to identify and classify symmetrical facial features, which reliably reflects the facial-temperature variations while subjects are drinking alcohol. Such a model can objectively track alcohol intoxication in the form of a facial temperature map. In our paper, we propose the segmentation model based on the clustering algorithm, which is driven by the modified version of the Artificial Bee Colony (ABC) evolutionary optimization with the goal of facial temperature features extraction from the IR (infrared radiation) images. This model allows for a definition of symmetric clusters, identifying facial temperature structures corresponding with intoxication. The ABC algorithm serves as an optimization process for an optimal cluster's distribution to the clustering method the best approximate individual areas linked with gradual alcohol intoxication. In our analysis, we analyzed a set of twenty volunteers, who had IR images taken to reflect the process of alcohol intoxication. The proposed method was represented by multiregional segmentation, allowing for classification of the individual spatial temperature areas into segmentation classes. The proposed method, besides single IR image modelling, allows for dynamical tracking of the alcohol-temperature features within a process of intoxication, from the sober state up to the maximum observed intoxication level.Web of Science118art. no. 99

    Generalised cellular neural networks (GCNNs) constructed using particle swarm optimisation for spatio-temporal evolutionary pattern identification

    Get PDF
    Particle swarm optimization (PSO) is introduced to implement a new constructive learning algorithm for training generalized cellular neural networks (GCNNs) for the identification of spatio-temporal evolutionary (STE) systems. The basic idea of the new PSO-based learning algorithm is to successively approximate the desired signal by progressively pursuing relevant orthogonal projections. This new algorithm will thus be referred to as the orthogonal projection pursuit (OPP) algorithm, which is in mechanism similar to the conventional projection pursuit approach. A novel two-stage hybrid training scheme is proposed for constructing a parsimonious GCNN model. In the first stage, the orthogonal projection pursuit algorithm is applied to adaptively and successively augment the network, where adjustable parameters of the associated units are optimized using a particle swarm optimizer. The resultant network model produced at the first stage may be redundant. In the second stage, a forward orthogonal regression (FOR) algorithm, aided by mutual information estimation, is applied to re. ne and improve the initially trained network. The effectiveness and performance of the proposed method is validated by applying the new modeling framework to a spatio-temporal evolutionary system identification problem

    Wind turbine power output short-term forecast : a comparative study of data clustering techniques in a PSO-ANFIS model

    Get PDF
    Abstract:The emergence of new sites for wind energy exploration in South Africa requires an accurate prediction of the potential power output of a typical utility-scale wind turbine in such areas. However, careful selection of data clustering technique is very essential as it has a significant impact on the accuracy of the prediction. Adaptive neurofuzzy inference system (ANFIS), both in its standalone and hybrid form has been applied in offline and online forecast in wind energy studies, however, the effect of clustering techniques has not been reported despite its significance. Therefore, this study investigates the effect of the choice of clustering algorithm on the performance of a standalone ANFIS and ANFIS optimized with particle swarm optimization (PSO) technique using a synthetic wind turbine power output data of a potential site in the Eastern Cape, South Africa. In this study a wind resource map for the Eastern Cape province was developed. Also, autoregressive ANFIS models and their hybrids with PSO were developed. Each model was evaluated based on three clustering techniques (grid partitioning (GP), subtractive clustering (SC), and fuzzy-c-means (FCM)). The gross wind power of the model wind turbine was estimated from the wind speed data collected from the potential site at 10 min data resolution using Windographer software. The standalone and hybrid models were trained and tested with 70% and 30% of the dataset respectively. The performance of each clustering technique was compared for both standalone and PSO-ANFIS models using known statistical metrics. From our findings, ANFIS standalone model clustered with SC performed best among the standalone models with a root mean square error (RMSE) of 0.132, mean absolute percentage error (MAPE) of 30.94, a mean absolute deviation (MAD) of 0.077, relative mean bias error (rMBE) of 0.190 and variance accounted for (VAF) of 94.307. Also, PSO-ANFIS model clustered with SC technique performed the best among the three hybrid models with RMSE of 0.127, MAPE of 28.11, MAD of 0.078, rMBE of 0.190 and VAF of 94.311. The ANFIS-SC model recorded the lowest computational time of 30.23secs among the standalone models. However, the PSO-ANFIS-SC model recorded a computational time of 47.21secs. Based on our findings, a hybrid ANFIS model gives better forecast accuracy compared to the standalone model, though with a trade-off in the computational time. Since, the choice of clustering technique was observed to play a vital role in the forecast accuracy of standalone and hybrid models, this study recommends SC technique for ANFIS modeling at both standalone and hybrid models

    Generalised additive multiscale wavelet models constructed using particle swarm optimisation and mutual information for spatio-temporal evolutionary system representation

    Get PDF
    A new class of generalised additive multiscale wavelet models (GAMWMs) is introduced for high dimensional spatio-temporal evolutionary (STE) system identification. A novel two-stage hybrid learning scheme is developed for constructing such an additive wavelet model. In the first stage, a new orthogonal projection pursuit (OPP) method, implemented using a particle swarm optimisation(PSO) algorithm, is proposed for successively augmenting an initial coarse wavelet model, where relevant parameters of the associated wavelets are optimised using a particle swarm optimiser. The resultant network model, obtained in the first stage, may however be a redundant model. In the second stage, a forward orthogonal regression (FOR) algorithm, implemented using a mutual information method, is then applied to refine and improve the initially constructed wavelet model. The proposed two-stage hybrid method can generally produce a parsimonious wavelet model, where a ranked list of wavelet functions, according to the capability of each wavelet to represent the total variance in the desired system output signal is produced. The proposed new modelling framework is applied to real observed images, relative to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, and the associated identification results show that the new modelling framework is applicable and effective for handling high dimensional identification problems of spatio-temporal evolution sytems
    • …
    corecore