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Abstract: A new class of generalised additive multiscale wavelet models (GAMWMs) is introduced 

for high dimensional spatio-temporal evolutionary (STE) system identification. A novel two-stage 

hybrid learning scheme is developed for constructing such an additive wavelet model. In the first stage, 

a new orthogonal projection pursuit (OPP) method, implemented using a particle swarm optimisation 

(PSO) algorithm, is proposed for successively augmenting an initial coarse wavelet model, where 

relevant parameters of the associated wavelets are optimised using a particle swarm optimiser. The 

resultant network model, obtained in the first stage, may however be a redundant model. In the second 

stage, a forward orthogonal regression (FOR) algorithm, implemented using a mutual information 

method, is then applied to refine and improve the initially constructed wavelet model. The proposed 

two-stage hybrid method can generally produce a parsimonious wavelet model, where a ranked list of 

wavelet functions, according to the capability of each wavelet to represent the total variance in the 

desired system output signal is produced. The proposed new modelling framework is applied to real 

observed images, relative to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, 

and the associated identification results show that the new modelling framework is applicable and 

effective for handling high dimensional identification problems of spatio-temporal evolution sytems.  

Keywords: Coupled map lattices, evolutionary algorithms, generalised additive models, orthogonal 

least squares, parameter estimation, particle swarm optimisation, spatio-temporal 

evolutionary systems, wavelets. 
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1.  Introduction 

Spatio-temporal evolutionary (STE) systems, considered in this study, are a class of complex 

dynamical systems where the system states evolve spatially as well as temporally. Spatio-temporal 

evolutionary phenomena widely exist in various areas of science and engineering including biology, 

chemistry, ecology, geography, medicine, physics, and sociology (Kaneko 1993, Jahne 1993, Silva 

and Principe 1997, Astic et al. 1998, Bascompte and Sole 1998, Czaran 1998, Spors and Grinvald 

2002, Dimitrova and Berezney 2002, Berezney et al. 2005, Dolak and Schmeiser 2005). To replicate, 

imitate, or analyse STE phenomena, several efficient representations, for example the well known 

cellular automata (CA) (Wolfram 1994, Ilachinski 2001), coupled map lattice (CML) models (Kaneko 

1993), and cellular neural networks (CNNs) (Chua and Yang 1988a, 1988b, Chua and Roska 2002, 

have been proposed. In these representations, it is often assumed that the associated mathematical 

model structure, along with the model parameters, is known, so that the model can be used to describe 

or imitate some specific phenomena. However, the evolution law of real-world STE phenomena may 

not always be completely known, and relative evolution rules need to be acquired from observed data 

of relevant images or patterns. Hence, in recent years, identification problems of spatio-temporal 

systems have received much attention and interest from researchers in diverse fields, and several 

efficient identification methods and algorithms have been proposed, see for example Adamatzky and 

Bronnikov (1990), Adamatzky (1994, 1997), Parlitz and Merkwirth (2000), Sitz et al. (2003), Coca 

and Billings (2001), Mandelj et al. (2001), Billings and Coca (2002), Veenman et al. (2003), Billings 

and Yang (2003), Xia and Leung (2005), Billings et al. (2005). 

One prominent feature of STE systems, compared with classical pure temporal signals or static 

images, is that there exists, in any given STE system, an inherent evolution law that determines the 

dynamical variation of relevant patterns with time. The individual value of a state at a local position of 

the current pattern, at the present time instant, is determined by individual values at several local 

positions of one or more previous patterns. In this sense, approaches for dealing with STE systems are 

often significantly different from those for processing classical pure temporal signals or static images, 

even though spatio-temporal approaches are also involved in some complex image processing, see for 

example Kim and J. Woods (1997, 1998), Ricquebourg and Bouthemy (2000), Sanchez-Marin et al. 

(2001), Caspi and Irani (2002), Ngo et al. (2003), Yang and Parvin (2003), and Nguyen et al. (2007). 

Compared to classical pure temporal signal modelling and static image processing, the identification 

and modelling of high dimensional STE systems are more challenging.  

The central task in any STE system identification is to learn, from available observations of 

patterns or images of the relevant system, nonlinear models that can represent, as close as possible, the 

observed spatio-temporal evolution behaviours. The evolution law in real-world STE systems often 

involves many local state variables at past times and at different local positions, thus the identification 

procedure of STE systems may need to construct, based on available data, very high dimensional 
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nonlinear models containing a great number of ‘input’ variables. However, because of the curse-of-

dimensionality, which is ubiquitously involved in any high dimensional nonlinear function learning 

and nonlinear modelling procedures, most existing STE system identification approaches can only 

handle low dimensional problems, where only a small size of neighbourhood and a very short time lag 

are considered. 

Additive models and generalised additive models (GAMs) (Stone 1985, 1986, Buja et al. 1989, 

Hastie and Tibshirani 1990) are an important class of representations for high dimensional nonlinear 

signals. It follows that GAMs can not only avoid the curse of dimensionality, but also provide the 

ability to detect nonlinear dynamics and nonlinear patterns, without sacrificing interpretability of the 

relevant component functions. Also, GAMs, combined with other modelling techniques, have recently 

become extremely popular and have been widely applied in high dimensional data processing and 

modelling (Aerts et al. 2002, Ruppert et al. 2003, Wood 2004, Brezger and Lang 2006, Lado et al. 

2006, Wei and Billings 2006a). Wavelet transforms (Daubechies 1992, Mallat 1998), due to their 

inherent properties and excellent capability for time-frequency domain representations of arbitrary 

signals (Unser 1995, Van De Ville et al. 2004), should be one of the best candidates to form the most 

powerful elementary building blocks to implement generalised additive models. 

The construction of wavelet-based adaptive additive models may need to solve some nonlinear-in-

the-parameters problems. Traditionally, Gaussian-Newton type nonlinear optimisation methods are 

often applied to estimate the unknown model parameters, with a stipulation that the gradients of the 

associated object functions are differentiable and easy to explicitly calculate. In this study, however, 

the recently developed particle swarm optimisation (PSO) algorithm (Eberhart and Kennedy 1995, 

Kennedy and Eberhart 1995) is employed as an alternative to solve complex nonlinear optimisation 

problems. Compared with classical nonlinear least squares algorithms, the PSO algorithm, as a 

population-based evolutionary method, possesses several desirable attractive properties, for example, 

this type of algorithm is easy to implement but quite efficient in dealing with a wide class of nonlinear 

optimisation problems. As a stochastic algorithm, PSO does not need any information on the gradients 

of the relevant object functions, this ensures that PSO is highly suitable for nonlinear optimisation 

problems where the relevant object functions are not differentiable or the gradients are 

computationally expensive or very difficult to obtain (van den Bergh 2002). 

Starting with these observations, this study aims to introduce a novel class of generalised additive 

multiscale wavelet models (GAMWMs), which can be used to handle the identification problems of 

high dimensional STE systems. The construction procedure of the GAMWM is composed of two 

stages. At the first stage, a new constructive learning method, called the orthogonal projection pursuit 

(OPP), implemented with a particle swarm optimisation (PSO) algorithm, is used to form an initial 

coarse additive multiscale wavelet model by recruiting a number of optimised wavelets into the model 

in a stepwise manner. The OPP learning algorithm, which is in mechanism similar to conventional 

projection pursuit regression (Friedman and Stuetzle 1981), may produce a redundant model. Thus, at 
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the second stage, a forward orthogonal regression (FOR) learning algorithm (Billings and Wei 2007a, 

Wei and Billings 2007), implemented using a mutual information estimation method, is then applied to 

refine and improve the initially obtained wavelet model by removing redundant wavelet functions 

from the model. 

As will be seen from the illustrative example, by combining the PSO based nonlinear OPP learning 

method with the effective mutual information aided FOR algorithm, the resultant additive wavelet 

model can provide very good representations for a class of high dimensional STE systems. One feature 

of the new GAMWM, produced by the above two-stage hybrid learning algorithm, is that now the 

resultant model is transparent to model users. Involved wavelets are ranked according to the capability 

in representing the total variance in the system output signal. This is desirable for many application 

cases where physical insight on the individual variables and associated model basis functions are of 

interest. Also, notice that the proposed GAMWM is nearly self-implemented, that is, all model 

parameters can automatically be adjusted by the proposed algorithms. This is desirable for any 

structure-unknown or black-box modelling problem. In summary, the main contribution of this work is 

that it provides, for the first time, an effective automatic and adaptive model identification approach 

for STE systems involving very high dimensional modelling procedures, by means of the proposed 

two stage hybrid constructive learning scheme that can produce sparse and transparent models with 

good generalisation properties. 

This paper is organised as follows. In section 2, the general form of STE systems is briefly 

described. In section 3, the structure of the new GAMWM is presented. In section 4, a two-stage 

hybrid learning scheme, involving both the PSO based orthogonal projection pursuit approach and the 

mutual information aided forward orthogonal regression algorithm, is addressed in detail. In section 5, 

an example, relative to real observations for a chemical experiment, is presented to demonstrate the 

application of the new modelling framework. Some conclusions are given in section 6. 

2.  Spatio-Temporal Evolutionary Systems 

The general form of spatio-temporal evolutionary (STE) systems is briefly introduced. In this 

study, the 2-D case, which has obvious physical meaning and is widely applied in practice, is taken as 

an example. For simplicity, only the zero-input (autonomous) class of STE systems is considered here. 

Model representations for these situations can easily be extended to other more complex cases in a 

straightforward way. 

Assume that the 2-D image or pattern produced by an STE system, at the time instant t, consists of 

a JI ×  rectangular array of cells, ),( jiC t , with Cartesian coordinates (i,j), i=1,2, …, I, j=1,2, …, J.  

Following Chua and Roska (2002), let ),( jiS
t
r be the sphere of influence of the radius r of cell 

),( jiC
t , at the time instant t,  defined as  
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Table 1.    The )12()12( +×+ rr  neighbourhood defined by (1) 

 

C(i-r, j-r) 
x1 

… C(i-r, j) 
xr  

… C(i-r,j+r) 
x2r+1 

… … … … … 

C(i, j-r) 
xr(2r+1)+1 

… C(i,j) 
xr(2r+1)+(r+1) 

… C(i,j+r) 
x(r+1)(2r+1) 

 …  … … 

C(i+r,j-r) 
x2r(2r+1)+1 

… C(i+r,j) 
x2r(2r+1)+(r+1) 

… C(i+r,j+r) 
x(2r+1) (2r+1) 

 

}|}||,{|max:),({),(
1,1

rqjpijiCjiS
JqIp

tt
r ≤−−=

≤≤≤≤
                                                                 (1) 

where t=1,2, …, i=1,2, …, I, j=1,2, …, J, and r is a non-negative integer number indicating how many 

neighborhood cells are involved in the evolution procedure. The sphere ),( jiS t
r  is sometimes referred 

to as the )12()12( +×+ rr  neighbourhood. Let R∈)(, ts ji be the state variable representing the cell 

),(),( jiSjiC t
r

t ∈ . From the definition of ),( jiS t
r , a total of 2)12( +r state variables are involved in (1), 

see Table 1, where the symbol C(i,j) will be used to indicate cells at arbitrary evolution time instants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let )(, ts ji  be the (i,j)th cell to be updated at time t. A wide range of STE systems can be described 

by the discrete-time, discrete-space and continuous-state spatio-temporal difference equation of the 

form below 

))(,),2(),1(()(, lagji ntttfts −−−= sss L  

,),1(,),1(,),1(( ,,, LLL −−−= ++−− tststsf rjrijirjri  

,),2(,),2(,),2( ,,, LLL −−− ++−− tststs rjrijirjri  

))(,),(,),( ,,, lagrjrilagjilagrjri ntsntsnts −−− ++−− LL                                               (2) 

where f is some nonlinear function, lagn is the time lag, defined as a positive integer, indicating how 

many past images or patterns are involved in the evolution procedure, and )( kt −s  is the state vector 

formed by the 2)12( +r  state variables relative to the patterns at the time instant (t-k) with k=1,2, …, 

lagn , that is,  

 )](),(,),([)( ,,, ktsktsktskt rjrijirjri −−−=− ++−− Ls                                                              (3) 

Note that the general representation form (2) includes, as special cases, most typical coupled map 
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lattice models. For convenience of description, introduce d single-indexed variables )(txk  as below 

)](,),2(),1([)](,),(),([)( 21 lagd nttttxtxtxt −−−== sssx LL                                                  (4) 

where )](,),([)( 22 )12()12)(1(1
txtxkt

rkrk ++−+=− Ls  for k=1,2, …, lagn . For the case lagn =1, the 

description (4) is shown in Table 1. Also, let y(t) represent the state variable )(, ts ji  corresponding to 

the central cell ),( jiC t . Then, Eq. (2) becomes 

))(()( tfty x= ))(,),(),(( 21 txtxtxf dL=                                                                                (5) 

In conventional coupled map lattice models, the nonlinear function f in model (2) is often assumed 

to be known as some deterministic function, and the model is mainly used to imitate or produce some 

specific phenomena. However, for real-word complex STE systems, a pre-determined function f may 

not sufficiently characterise the underlying dynamics. It may be better to learn, from available real 

observations, an appropriate model for a given STE system. 

The task of STE system identification is to construct, based on available data, a model that can 

represent, as close as possible, the observed evolution behaviour. Unlike constructing static models for 

typical data fitting, the objective of dynamical modelling is not merely to seek a model that fits the 

given data well, it also requires, at the same time, that the model should be capable of capturing the 

underlying system dynamics carried by the observed data, so that the resultant model can be used in 

simulation, analysis, and control studies. 

Notice that equation (2) involves a total of lagnrd
2

)12( += variables. A large value for either r or 

lagn will mean that a great number of variables may be involved in the representation (2). For example, 

let r=2 and lagn =4, then a total of 100 variables will be involved. This means that the identification 

procedure of STE systems may require constructing a very high dimensional nonlinear model 

involving a great number of ‘input’ (or ‘independent’) variables. This property of STE systems 

prohibits most traditional identification and modelling frameworks that are suitable for classical pure 

temporal dynamical process modelling, and new identification approach for STE systems need to be 

developed. 

3.  The New Generalised Additive Multiscale Wavelet Model 

The new generalised additive multiscale wavelet models (GAMWMs) are a special 

implementation of the typical generalized additive models, where the additive functional components 

are approximated using a family of multiscale wavelet functions. Starting with the discretisation of the 

wavelet transform, this section represents the architecture of the new GAMWMs. 

3.1 Wavelet frames and wavelet series 



 8 

Consider a wavelet family below 






 −= −

a

bx
axba ψψ 2/1, )(                                                                                                        (6) 

where +∈Ra , R∈b , and the mother waveletψ is admissible. The admissibility condition is depicted 

using the Fourier transform )(ˆ ξψ of the function ψ as ∞<= ∫
∞

∞−
− ξξψξψ dC

21
)(ˆ . It has been shown 

(Daubechies 1992) that for reasonableψ , there exists a grid },;,:),{( ZRR ∈∈∈= +
nmbabaG nmnm

, 

such that the family )()(
12/1

, nmmnm bxaax −= −− ψψ , with Gba nm ∈),( , constitute a frame for )(2 RL (the 

space of all square integrable functions), with frame bounds A, B; that is, for all )(2 RLg ∈  

∑ ≤><≤
nm

nm fBgfA
,

22
,

2 |||||,||||| ψ                                                                                       (7) 

where the symbols ‘<, >’ and ‘|| ||’ denote the inner product and the norm, respectively, following the 

ordinary definitions. The fact that 
nm ,ψ , whose parameters are restricted to a grid G, constitute a frame 

for )(2 RL can guarantee that for any )(2 RLg ∈ , there exits a sequence )(},:{ 22
, ZZ l∈∈nmc nm (the set 

of all double square summable sequences of complex numbers indexed by integers) such that 

∑∑=
m n

nmnm xcxg )()( ,, ψ                                                                                                        (8) 

A special choice of the grid G is to let m
m aa 0= , m

n anbb 00= , with 10 >a , 00 >b . Daubechies (1992) 

gave a theoretical approach for calculating the wavelet coefficients nmc ,  in (8). For some very special 

choices of ψ  and G, the family 
nm ,ψ  can constitute an orthogonal basis for )(2 RL . The most popular 

choice is 20 =a , 10 =b , for which there exists ψ , with good time-frequency localisation properties, 

such that )2(2)(
2/

, nxx
mm

nm −= −− ψψ  constitute an orthogonal basis for )(2 RL . 

Notice that this study considers nonlinear spatio-temporal dynamical modeling problems, where 

relative observations are often sparse and where the independent (input) variables involved in the 

dynamical model are often formed by some variables representing the past states in time and at 

different spatial locations. This is different from a typical signal decomposition, where a given signal 

is represented using a static model formed by some wavelet-based elementary building blocks. For 

nonlinear dynamical modeling, the choice 20 =a and 10 =b  may not usually be optimal. In fact, the 

choices of optimal values for 0a and 0b are still an open problem when wavelet decompositions are used 

for nonlinear dynamical modelling. One best alternative is perhaps to let the data speak for themselves, 

that is, to let the relevant observed data themselves adaptively and automatically choose the dilation 

and translation parameters. 

 



 9 

3.2  The new GAMWM 

Generalised additive models (GAMs) (Stone 1985, 1986, Buja et al. 1989, Hastie and Tibshirani 

1990) provide an efficient approach for dealing with data fitting problems in some high dimensional 

space. GAMs can not only avoid the curse of dimensionality, but also provide the ability to detect 

nonlinear dynamics and nonlinear patterns, without sacrificing interpretability of the relevant 

component functions. A general representation of GAMs for a d-dimensional function f of the form (5) 

is given as 

))(,),(),(()( 21 txtxtxfty dL=  

))(())(())(( 22110 txftxftxff dd++++= L                                                                     (9) 

where 0f  is a constant, generally set to be the mean value of the desired ‘output’ signal y(t), and )(⋅if  

are some univariate nonlinear functions that need to be identified. In practice, several specific 

functions, including splines and wavelets, have been introduced as the elementary building blocks to 

construct GAMs (Aerts et al. 2002, Ruppert et al. 2003, Wood 2004, Billings and Wei 2005, Wei and 

Billings 2006b).  

In this study, wavelet frames will be adopted to represent these d functional components )(⋅if  for 

i=1,2, …, d.  It is assumed that these d functional components are square-integrable over the domain 

of interest for given data sets. Also, the constant term 0f  can be set to zero and thus can be omitted. If 

the constant term is different from zero for a given system, it can then be assimilated by one or more 

of the d functional components, which are approximated using multiscale wavelet decompositions. 

While the wavelet decomposition (8), where the dilation and translation parameters ma and nb are 

predetermined and constricted to a grid G,  can be applied to identify a generalised model (9) for some 

low dimensional identification problems (d is small), for very high dimensional identification 

problems  (d is large), the employment of (8) may be undesirable and the resultant model may become 

intractable, because now the model may involve a large number of candidate wavelet basis functions, 

and data arranging and data storage for such a situation may become prohibited.  

An alternative to overcome the above difficulty is to approximate each of the d functional 

components, using an adaptive wavelet decomposition, where the dilation and translation parameters 

are estimated by means of nonlinear optimisation. For simplicity of description, the balance 

factor 2/1−a in (6) will be dropped, and the family of wavelets of the form  

)(),;()(),( baxbaxxba −== ψψψ                                                                                          (10) 

will be used as the elementary building blocks to approximate the ith functional component )(⋅if  as 

∑
=

=
im

k

kikiikiii batxctxf
1

,,, ),);(())(( ψ                                                                                         (11) 
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where the parameters kikiki cba ,,, ,, are estimated, from given data, using some nonlinear optimisation 

algorithm. The model (9) can now be written as  

))(,),(),(()( 21 txtxtxfty dL=  

∑∑∑
= ==

==
d

i

m

k

kikiiki

d

i

ii

i

batxctxf
1 1

,,,

1

),);(())(( ψ                                                                    (12) 

The generalised additive multiscale wavelet model (GAMWM) given by (12) will be used, in this 

study, to represent high dimensional STE systems. The remaining issue is how to construct, from 

given data, such an additive wavelet model. 

4.  Constructing the New GAMWM 

Inspired by the successful applications of the projection pursuit regression (PPR) (Friedman and 

Stuetzle 1981) and other constructive learning algorithms (Fahlman and Lebiere 1990, Jones 1992, 

Hwang et al. 1994, Kwok and Yeung 1997a, 1997b, Reed and Marks 1999), this study proposes a 

simple orthogonal projection pursuit (OPP) learning scheme, implemented by a particle swarm 

optimisation (PSO) algorithm. Similar to other constructive algorithms, models produced by the OPP 

algorithm may, however, be redundant. To remove or reduce redundancy, a forward orthogonal 

regression (FOR) learning algorithm (Billings and Wei 2007a, Wei and Billings 2007), implemented 

using a mutual information estimation method, is applied to refine and improve the initially generated 

model by the OPP algorithm. 

Note that in the following, the inner product is defined for sampled vectors in N-dimensional 

Euclidian space, for example, the inner product of the two vectors TNuuu )](,),2(),1([ L=u and 

T
Nvvv )](,),2(),1([ L=v is defined as ∑ ==>=< N

k

T
kvku

1
)()(, vuvu ; this is different from that defined 

in (7), where the inner product is imposed to functions in )(2 RL . 

4.1  The OPP algorithm for coarse model identification 

The basic idea of the OPP algorithm for coarse model identification is to successively approximate 

the function f by progressively minimising approximation errors. At each step, the wavelet transform 

(10) is performed on each of the d involved model variables )}(,),(),({ 21 txtxtx dL , and the resultant 

wavelets are then used to approximate the same relevant “fake desired target signal”, by minimising 

the approximation error using a PSO algorithm. A total of d individual wavelets, with optimised 

parameters, are involved at each step. But only one wavelet function, which produces the minimum 

approximation error, is included in the coarse model. In other words, only the most competent and 

competitive variable, whose wavelet transform, with optimised parameters, produces the best 

approximation is considered at each step.  
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Let NTNyyy R∈= )](),...,2(),1([y be the vector of given observations of the output signal, 

T
kkkk Nxxx )](,),2(),1([ L=x   the vector of the observations for the kth input variable, with k=1,2, …, 

d. For any given Tcba ],,[=θ , let ),;( bakk xψ ψ=  and kk cψθxg =);( .  

The OPP algorithm is implemented in a stepwise fashion; at each step a construction vector that 

minimises the projection error will be determined. Starting with yr =0 , let 

}||);({||minarg 2
0,0 θxgr

θ
kk −=Θ  and 2

,00,0 ||);(|| kkkJ Θ−= xgr . The first construction vector can then 

be chosen as );(
111 ll θxgg = , where }{minarg ,01 k

k
J=l  and 

kk ll ,0Θ=θ .The residual vector, which 

can be used as the “fake desired target signal” to produce the second construction vector 2g , is defined 

as 1101 grr α−= , where 2
1101 ||||/, ggr >=<α .  It can be shown that the residual vector 1r is orthogonal 

with the relevant construction vector 1g .  

Assume that at the (n-1)th step, a total of (n-1) construction vectors );(
jjj ll θxgg = , with 

j=1,2, …, n-1, have been obtained. Let 1−nr be the associated residual vector,  

}||);({||minarg 2
1, θxgr

θ
knkn −=Θ −  and 2

,1, ||);(|| knknknJ Θ−= − xgr . The nth construction vector can 

then be given by );(
nnn ll θxgg = , where, }{minarg ,kn

k
n J=l  and 

kk n ll ,Θ=θ . 

The associated residual vector can be defined as  

nnnn grr  1 α−= −                                                                                                                       (13) 

where 

2
1

||||

 ,

n

nn
n

g

gr ><= −α                                                                                                                      (14) 

From (14),  

2

2
12

1
2

|| ||

 ,
||||||||

n

nn
nn

g

gr
rr

><−= −
−                                                                                                 (15) 

By respectively summing (13) and (15) for n from 2 to m+1, yields 

m

m

n
n

n

nn rg
g

gr
y ∑

=

− +><=
1

2

1

||||

,
m

m

n
nn rg∑

=
+=

1

α                                                                                  (16) 

∑
=

− ><−=
m

n n

nn
m

1
2

2
122

||||

,
||||||||

g

gr
yr                                                                                               (17) 

The residual sum of squares, also called the sum of squared error, 2|||| nr , can be used to form a 

criterion to stop the growing procedure. For example, the criterion can be chosen as the error-to-signal 
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ratio: 22 ||||||||ESR yrn= ; when ESR becomes smaller than a pre-specified threshold value, the 

growing procedure can then be terminated.  

Now the OPP algorithm can briefly be summarised as follows. 

The OPP algorithm: 

Initialisation: yr =0 ; ESR=0; 

while { η≥ESR or PEMmn ≤ };       //{η  is a pre-specified very small threshold value.}// 

//{mOPP is the maximum number of construction functions 

// permitted to be included in the network} // 
for n=1 to mOPP  

                  for k=1 to d 

                                                                  //{Starting from some random (but reasonable) value for the 

// parameter vectorθ , optimise the following function using 

//  the PSO algorithm.}// 

{ }2
1, ||);(|| minarg θxgr

θ
knkn −=Θ −  ;   

2
,1, ||);(|| knknknJ Θ−= − xgr ; 

end for (k) 

}{minarg ,kn
k

n J=l ; 

nn n ll ,Θ=θ ; 

);(
nnn ll θxgg = ;                      // The involved wavelet is )(),;(

nnnnnn
bxabax llllll −=ψψ // 

2

1

||||

 ,

n

nn
n

g

gr ><= −α ; 

nnnn grr α−= −1 ;    

22 ||||||||ESR yrn= ; 

end for (n) 

end while 

      It is clear from (15) that the sequence 2
|||| nr  is strictly decreasing and positive; thus, by following 

the method given in Kwok and Yeung (1997b) and Huang et al. (2006), it can easily be proved that the 

residual nr is a Cauchy sequence, and as a consequence, the residual nr converges to zero. The 

algorithm is thus convergent. The above OPP algorithm is in structure similar to the projection pursuit 

regression (Friedman and Stuetzle 1981) and other constructive learning algorithms (Mallat and Zhang 

1993, Hwang et al. 1994, Kwok and Yeung 1997a, 1997b), however the implementation of the OPP 

algorithm is totally different from these existing algorithms. For example, in the projection pursuit 

regression method, the construction functions are nonparametric and in general unknown before hand; 

in the OPP algorithm, however, the construction functions are formed by a family of wavelets. In the 

matching pursuit method, the construction functions are restricted to a specified dictionary, where 

relevant adjustable parameters of individual candidates are permitted to vary on a given grid, while in 

the OPP algorithm no such limits are imposed on construction functions. Moreover, in the OPP 

algorithm, the elementary building blocks are some wavelets, where unknown parameters are 

optimised by using some PSO algorithm that does not need any information on the gradients of the 

object functions, this enables the PSO to be very suitable for nonlinear optimisation problems where 
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the relevant object functions are not differentiable or the gradients are computationally expensive or 

difficult to obtain. However, like the projection pursuit regression and the matching pursuit algorithms, 

the OPP algorithm may produce redundant models. To refine and improve the OPP produced network 

models, the forward orthogonal regression (FOR) learning algorithm, assisted by a mutual information 

method (Billings and Wei 2007a), is then applied to remove any severe redundancy. 

4.2  The PSO algorithm for parameter optimisation 

Particle swarm optimisation (PSO), originally inspired by some sociological behaviour associated 

with, for example, bird flocking (Kennedy et al.  2001), is a population-based stochastic optimisation 

algorithm that was first proposed by Kennedy and Eberhart in 1995 (Kennedy and Eberhart 1995, 

Eberhart and Kennedy 1995). In PSO, the population is referred to as a swarm, while the individuals 

are referred to as particles; each particle moves, in the search space, with some random velocity, and 

remembers and retains the best position it has ever been. The mechanism of PSO can succinctly be 

explained as follows. The position of each particle can be viewed as a possible solution to a given 

optimization problem. In each iteration (one step move), each particle accelerates its move toward a 

new potential position, by adaptively using information about its own personal best position obtained 

so far, as well as the information of the global best position achieved so far by any other particles in 

the swarm. Thus, if any promising new position is discovered by any individual particle, then all the 

other particles will move closer towards it. In this way, PSO will finally find, in an iterative manner, a 

best solution to the given optimisation problem (Parsopoulos and Vrahatis 2004, van den Bergh and 

Engelbrecht 2004). 

Now consider an s dimensional optimisation problem, where the relevant parameter vector to be 

optimised is denoted by sT
s R⊂Θ∈= ],,,[ 21 θθθ Lθ . Assume that a total of L particles are involved in 

the relevant swarm. Denote the position of the ith particle at the present time t by )(tiθ , the relative 

velocity by )(tiv , the personal best position by )(tip , and the global best position obtained so far by 

)(tgp . Following Kennedy et al. (2001), Shi and Eberhart (1998a, 1998b), Clerc and Kennedy (2002), 

PSO can be implemented using the iterative equations below 

)]()([)({)1( 11 ttrctt iiii θpvv −+=+ χ )]}()([22 ttrc ig θp −+                                                     (18a) 

)1()()1( ++=+ ttt iii vθθ                                                                                                        (18b) 

where i=1,2, …, L; 1c  and 2c are the acceleration coefficients, also referred to as the cognitive and 

social parameters; |42|/2
2 φφφχ −−−= , with 421 >+= ccφ , is a constriction factor used to 

obtain good convergence performance by controlling explosive particle movements; 1r  and 2r are 

random numbers that are uniformly distributed in [0,1]. Typical choices for 1c  and 2c  are to 

set 221 == cc  (Kennedy and Eberhart 1995, Eberhart and Kennedy 1995). 
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Let )(θπ be the function that needs to be minimised, then the personal best position of each particle 

can be updated as below (van den Bergh and Engelbrecht 2004)   





<++
≥+

=+
))(())1(( if     ),1(

))(())1(( if          ),(
)1(

ttt

ttt
t

iii

iii

i
pθθ

pθp
p

ππ
ππ

                                                                     (19) 

While the global best position achieved by any particle during all previous iterations is defined as 

))1((minarg)1( +=+ tt ig
i

pp
p

π ,      Li ≤≤1 .                                                                          (20) 

In the OPP algorithm discussed in the previous section, the objective function is defined as 

∑
=

−−− −=−=
N

t

knknn txgtr
1

2
1

2
11 )]);(()([||);(||)( θθxgrθπ                                                           (21) 

where ))(());(( 213 θθψθ −= txtxg k θ  and N is the number of training samples.  

With regard to the termination of the optimisation procedure, the criterion can be chosen as 

follows. Let ‘mPSO’ be the maximum number of permitted iterations. The optimization procedure can 

then be terminated when either the iteration index exceeds ‘mPSO’, or when the parameter to be 

optimized becomes stable, that is, when δ≤−+ 2||)()1(|| tt θθ , where δ is a pre-specified small number, 

say 510−≤δ . 

4.3  The FOR algorithm for model refinement 

Assume that a total of jm wavelets of the form )(),;()( ,,,,, kjikjkjkjjikj bxabaxx −== ψψψ , with 

k=1,2, …, jm , are involved for the jth ‘input’ variable jx , after having performed the PSO based OPP 

procedure on the given data set. The number of involved wavelets for all the d variables is then 

M= 1m + L+2m dm+ . Denote the set of these M wavelets by  

}),(),,;()(:{ ,,,, Γ∈==Ω kjbaxx kjkjjjkjkj ψψψ                                                                      (22) 

where },,2,1;,,2,1:),{( jmkdjkj LL ===Γ . Note that all the parameters kja . and kjb , have already 

been estimated at the coarse model identification procedure. Experience shows that the set Ω may be 

redundant, and a refinement procedure thus needs to be performed to produce a parsimonious model.  

The objective of this refinement stage is to reselect the most significant wavelet functions from the 

set Ω , to form a more compact model for a given nonlinear identification problem. Let y and kx be 

defined as in previous sections, and let ),;( ,,, kjkjjkj baxψ ψ= , where Γ∈),( kj . Also, let D be a set 

that exactly consisting of the M wavelet vectors kj ,ψ  in Ω , with Γ∈),( kj , that is, 

},,2,1,:{ MiD ii L=Ω∈= φφ                                                                                                (23) 
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The model refinement problem amounts to finding, from the vector dictionary D, a full dimensional 

subset },,{ 1 mmD pp L=  },,{
1 mii φφ L= , where

kik φα = , },,2,1{ Mik L∈  and k=1,2, …, m (generally 

Mm << ), so that y can be satisfactorily approximated using a linear combination of mppp ,,, 21 L  as 

below 

mmm eppy +++= ββ L11                                                                                                       (24) 

where me is the associated model residual vector.  

The orthogonal least squares (OLS) type algorithms (Billings et al. 1989, Chen et al. 1989) can be 

used to determine model basis functions (model terms). In this study, however, a variation of the OLS 

algorithm, called the forward orthogonal regression (FOR) algorithm, implemented using a mutual 

information method (Billings and Wei 2007a, Wei and Billings 2007), is employed for the model 

refinement. Assume that x and y are two random discrete variables, with alphabet X  and Y , 

respectively, and with a joint probability mass function p(x, y) and marginal probability mass functions 

)(xp and )( yp . The mutual information ),( yxI  is the relative entropy between the joint distribution 

and the product distribution )()( ypxp , given as (Cover and Thomas 1991) 






= ∑∑
∈ ∈ )()(

),(
log),(),(

ypxp

yxp
yxpI

x yX Y

yx                                                                                (25) 

The mutual information ),( yxI is the reduction in the uncertainty of y due to the knowledge of x, and 

vice versa. Mutual information provides a measure of the amount of information that one variable 

shares with another one. If y is chosen to be the system output (the response), and x is one regressor in 

a linear model, ),( yxI can then be used to measure the coherence of x with y in the model. Several 

algorithms have been proposed to estimate mutual information from observed data, see for example 

Moddemeijer (1989, 1999), Darbellay and Vajda (1999), and Paninski (2003) and the references 

therein. 

Detailed discussions on the utility of the mutual information for model term selection can be found 

in Billings and Wei (2007a) and Wei and Billings (2007). Now, let nppp ,,, 21 L be the n selected 

linearly independent basis vectors after the nth step search, and let nqqq ,,, 21 L  be a group of 

orthogonal vectors, generated from the vectors nppp ,,, 21 L , by means of some orthogonal 

transformation. Following Billings et al. (1989), Chen et al. (1989), the error reduction ratio (ERR), 

produced by including the nth basis vector nq , or equivalently by including np , is defined as 

2

22

||||

||||
ERR

y

qnn
n

γ=                                                                                                                    (26) 
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where 2||||/, nnn qqy >=<γ . ERR can be used to measure the significance of individual model terms 

in that it provides an index indicating the contribution made by each selected individual model term to 

explain the total variance in the desired output signal. 

Let ne be the residual vector produced at the nth search step. Similar to in the OPP algorithm, the 

model residual vector ne can be used to form a criterion to terminate the search procedure. Following 

the suggestion in Billings and Wei (2007b), the following adjustable prediction error sum of squares 

(APRESS), also referred to as the adjustable generalised cross-validation (AGCV), will be used to 

monitor the regressor search procedure 

)(MSE)/1(APRESS
2

nNnn λ−=                                                                                           (27)  

where Nn n /||||)MSE( 2e= is the mean-square-error that is associated to the model of n model terms. 

The number of regressors (wavelet functions) will be chosen as the value where APRESS arrives it 

minimum. Billings and Wei (2007b) suggest that the adjustable parameter λ  be chosen between 5 and 

10. 

Following Billings and Wei (2007a) and Wei and Billings (2007), the mutual information based 

forward orthogonal regression (FOR) algorithm, is briefly summarised below.  

The FOR-MI algorithm: 

Step 1: Set },,2,1{1 MU L= ; 

               for j=1 to M 

jj φq =)1( ;  

  ),(][
)1(

0
)1(

jMIjI qr= ;                                   // Calculate the mutual information for all 

                             // candidate basis vectors.// 

                   end for 

                  ]}[{maxarg )1(
1

1

iI
Ui∈

=l ; }{ 11 l=V ;   

                  
11 lφp = ;   11 pq = ;  

2
1

1
1

||||

,

q

qy ><=γ ; 1001 qrr γ−= ; 

2

2
1

2
1

||||

||||
]1[ERR

y

qγ= ;
NN

2
1

2

||||

)/1(

1
]1[APRESS

r

λ−
= ;  

     Step n, 2≥n : 

                   For n=2 to M 

                     11 \ −−= nnn VUU ; 

                          for nUj ∈  

∑
−

=

><
−=

1

1
2

)(

||||

,n

k
k

k

kj

j
n
j q

q

qφ
φq ;  

            ),(][
)(

1
)( n

jn
n

MIjI qr −= ;              //Calculate the mutual information for all 

// for all candidate basis vectors.// 

//{if ,||||
2)( ε≤n

jq set 0][
)( =jI

n }// 

end for ( end loop for j )  
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                         ]}[{maxarg )( jI n

Uj
n

n∈
=l ; )}||(||arg{}{ 2)( ε<=

∈

n
j

Uj
nn

n

V qUl ;   

                          
nn lφp = ;   

)(n
n

nlqq = ;  
2

||||

,

n

n
n

q

qy ><=γ ; nnnn qrr γ−= −1 ; 

2

22

||||

||||
][ERR

y

qnnn
γ= ;

NNn
n n

2

2

||||

)/1(

1
][APRESS

r

λ−
= ;  

                      for k=1 to n 

                                   
2,

||||

,

k

kn
nkr

q

qp ><= , for nk < ; 1, =nkr , for nk = ; 

                          end for (end loop for k ) 

                   end for (end loop for n ) 

The FOR algorithm provides an effective tool for successively selecting significant model terms (basis 

functions) in supervised learning problems. Terms are selected step by step, one term at a time. The 

inclusion of redundant bases, which are linearly dependent on the previous selected bases, can be 

efficiently excluded by eliminating the candidate basis vectors for which 
2)(

||||
n
jq  are less than a 

predetermined threshold ε , say 1010−≤ε . Assume that a total of m significant vectors are selected, 

then the unknown parameter T
m],,,[ 21 βββ L=β , relative to the model (24), can easily be calculated 

from the triangular equation γRβ= , where R is an upper triangular matrix and 

T
m],,,[ 21 γγγ L=γ with 2

||||/, iii qqy >=<γ  for i=1,2,…, m. 

5.  Application in Chemical Reaction Modelling  

The new wavelet based additive modelling framework can be applied to identify some SPE 

phenomena, where the true models are unknown and the initial candidate models may thus involve a 

great number of ‘input’ or ‘independent’ variables. To illustrate the application of the new modelling 

procedure, the Belousov-Zhabotinsky (Belousov 1959, Zhabotinsky 1964, Winfree 1972, Kuramoto 

1984) reaction was considered here as an example.  

The BZ reaction, as an excitable medium, is an important class of chemical reactions exhibiting a 

spatio-temporal oscillatory behaviour. As a classical example of nonequilibrium thermodynamics, the 

BZ reaction provides an interesting chemical model of nonequilibrium biological phenomena, and the 

modelling and identification of these type of reactions is of extreme interest for theoretical analysis of 

relevant phenomena. 

By adopting the recipe given by Winfree (1972), an experiment resulting in a thin layer BZ 

reaction was carried out in the laboratory, and a set of images were captured (sampled) with equal time 

intervals during the experiment, using a digital video camera that is connected to a PC via a USB 

socket. The sampled images were processed and saved as patterns with a resolution of 360 by 500 

pixels. Some of these patterns are shown in Fig. 1.   
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Fig. 1   Some snapshots for the BZ reaction at different time instants. The size of each template is 500360 × (360 

pixels in the vertical direction and 500 pixels in the horizontal direction).  

 

The proposed GAMWM modelling framework was applied to these sampled images, and the 

objective was to identify a mathematical model for the BZ reaction. Details of the identification 

procedure are given below. 

5.1  The initial models and the training data 

Consider the model of the form (2), where the number of total model variables is determined by 

two factors: the radius of the neighbourhood, r, and the time lag, lagn . Two cases were considered 

here: r=1, lagn =4, and r=2, lagn =4. The initial models, corresponding to these two cases, thus involve 

a total of 364)112( 2 =×+×  and 1004)122( 2 =×+× model variables, respectively. For the later case, 

most existing identification approaches may be prohibited and thus are not applicable. The proposed 

GAMWM modelling framework, however, can effectively solve the identification problem associated 

with such a situation. 
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The state variable )(, ts ji , at the present time instant t, was initially assumed to be associated with 

state variables in the past four adjacent neighbourhoods at the previous time instants t-1, t-2, t-3, and t-

4. Any five patterns, at the abutting time instants t, t-1, t-2, t-3, t-4, are called an adjacent pattern group. 

For arbitrary time instant, the data pair, )}(),({ tytx , where )(tx and y(t) are defined by (4) and (5), is 

called a data pair. Notice that )(tx and y(t) are also implicitly associated with the spatial location 

indices i and j (see Table 1). As a consequence, for any given time instant t, there may be a large 

number of data pairs. 

Training data sets, for the two initial models, corresponding to the two cases r=1, lagn =4, and r=2, 

lagn =4, were independently formed as follows. Firstly, 8 adjacent pattern groups were randomly 

chosen from the first 80 sampled patterns. Secondly, 500 data pairs were randomly chosen in each of 

these 8 adjacent pattern groups. The resultant two data sets, consisting of a total of N=4000 data pairs, 

Nkkyk ,...,2,1)}(),({ =x , were then used for model identification, where y(k) represents the value of the 

relevant central cell at the present time instant, and T
d kxkxkxk )](,),(),([)( 21 L=x  represent the 

values of the d involved cells at a squared lattice, at the previous time instants. Note that for the first 

case, d=36, and for the second case, d=100.  

5.2  Identification results 

The construction function was chosen to be the cardinal B-spline function of order 2, which is 

defined as   








≤≤−
≤≤−+

=
 otherwise.         ,0

10for        ,1

  01for     ,1

)( xx

xx

xψ                                                                                                (28) 

Note that the function given by (28) is not a ‘wavelet’ in the strict sense. This function, as well as 

other cardinal B-splines, however, as an elementary component with several key wavelet properties, 

can be used to form a class of biorthogonal wavelet systems, which can be applied for signal 

representation including multiresolution analysis (MRA) (Unser et al. 1993, Chui 1992, Unser 1999).  

The function (28) was used as the elementary building blocks for constructing the generalised 

additive multiscale wavelet models. All the experiment conditions involved in the modelling 

procedure are shown in Table 2. The error-to-signal ratio (ESR), produced by the OPP+PSO algorithm, 

for the two modelling cases, that is, for r=1, lagn =4 and r=2, lagn =4, is shown in Fig. 2. A total of 200 

construction functions of the form (10) were involved, for both of the two cases, after having 

performed the optimisation procedure on the associated data sets. 

Significant individual wavelets were then selected, using the FOR-MI algorithm, from the 

dictionary of the form (23), which contains 200 individual candidate wavelets of the 
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Table 2.   Some conditions involved in the modelling for the 

identification of the BZ reaction. 

Size of the arrays of cells 500360×  

Number of model variables For the first case: 36. 

For the second case: 100. 

mOPP in the OPP algorithm 200 

η  in the OPP algorithm 10-4 

Swarm’s size in the PSO algorithm 20 

c1, c2 in the PSO algorithm c1= c2=2.05 

χ  in the PSO algorithm 0.7298 

mPSO in the PSO algorithm 500 

δ in the PSO algorithm 10-5 

ε in the FOR algorithm 10-10 

λ  in the FOR algorithm 10 

 

form ),;( ,,, kjkjjkj baxψψ =  , with j=1,2, …, d (d=36 or 100) and k=1,2, …, jm . Note that both the 

dilation and translation parameters of the wavelets have already been optimised. The adjustable 

prediction error sum of squares (APRESS), defined by (27), suggests that a total of 26 and 22 wavelets 

should be included in the final models, respectively, for the two cases. The structure of the final 

models is of the form (12), and the parameters of the associated wavelets are shown in Tables 3 and 4, 

respectively, where the basis functions were ranked according to the order they have entered into the 

model. Notice that the symbols );,( ojis , in the first column of Tables 3 and 4, have the same meanings 

as those of )(, ojis , representing the stave variables associated with the cells at the locations (i, j). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2   The ESR index produced by the PSO based OPP algorithm. The solid line is for the first case r=1, 

lagn =4, and the dashed line is for the second case r=2, lagn =4.  
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Table 3.   Model parameters and the associated mutual information and ERR values for the first case 

modeling, where r=1and lagn =4. 

 Parameter 
Cell 

c a b 

Mutual 

Information 

ERR (%) 

s(i, j; t-1) -0.1113613234 3.8408459941 2.8450837979 0.4225 11.4484 

s(i, j; t-1) 0.0557852403 4.2996948717 3.2497767282 0.6439 1.6516 

s(i, j-1; t-1) 
1.7919585090 0.5078399143 0.9507093126 0.6496 86.5475 

s(i, j-1; t-1) 0.1394020814 4.0337783748 3.1490571756 0.2555 0.0330 

s(i, j-1; t-1) 0.0534835351 2.4148153204 1.4352719087 0.2852 0.0320 

s(i, j-1; t-1) 0.2087648842 5.0744523011 2.7837964511 0.3465 0.0003 

s(i, j; t-4) -0.0250904775 0.9499966382 -0.3344248874 0.3010 0.0101 

s(i, j; t-3) 0.1290364751 3.3279581627 2.3296782012 0.2933 0.0088 

s(i+1, j; t-1) -0.1724189094 1.1313358888 0.1327239467 0.2849 0.0227 

s(i-1, j; t-1) -0.1181300168 1.1650008763 0.1647982765 0.2492 0.0473 

s(i, j; t-3) -0.1059315572 3.1479703660 2.3208915380 0.3304 0.0034 

s(i-1, j+1; t-1) -0.9535664802 1.1016170640 -0.1513421027 0.3027 0.0131 

s(i, j; t-2) 0.2282715580 1.0233317306 0.0325486342 0.2610 0.0017 

s(i-1, j+1; t-1) -0.1118315067 1.2314969328 0.2314266980 0.2680 0.0033 

s(i+1, j-1; t-2) -0.0978967141 3.7570593203 2.571605679 0.2415 0.0004 

s(i+1, j; t-1) -0.0180375003 13.1181416431 10.1035711418 0.2390 0.0001 

s(i, j; t-4) 0.1478468955 1.1819682761 0.1847641348 0.2313 0.0026 

s(i+1, j-1; t-2) 0.0585486243 4.5782269976 3.1362071320 0.2557 0.0003 

s(i-1, j+1; t-1) 1.0128540478 0.8015637372 -0.3732090912 0.2574 0.0001 

s(i+1, j+1; t-2) -0.0489460422 2.8986512223 1.9034078809 0.2378 0.0025 

s(i, j+1; t-3) 0.0069154423 4.2272195966 2.8592631148 0.2060 0.0007 

s(i, j-1; t-3) 0.0203976108 9.9551936231 6.8318100170 0.1986 0.0004 

s(i-1, j-1; t-2) -0.0534139564 2.7418648560 1.6758961781 0.2039 0.0036 

s(i, j+1; t-3) 0.0498998614 4.6110908548 2.8916749940 0.2002 0.0002 

s(i-1, j+1; t-2) -0.0746461110 2.2972781915 1.3314358378 0.2075 0.0035 

s(i+1, j+1; t-1) -0.2650697089 1.1203267338 -0.1289945838 0.2046 0.0026 

Sum of ERR 99.8403% 

 

 

 

 

5.3  Model performance evaluation 

To evaluate the performance of the identified additive wavelet models, the short-term predictive 

capability of the models was inspected. Denote the observation of the image (pattern) measured at the 

time instant t by X(t). The k-step-ahead prediction, denoted by ),2(),1(),(|(ˆ −−+ tXtXtXktX  

));3( ftX − , where f  represents the identified nonlinear function, is the iteratively produced result by 

the identified model, on the basis of X(t), X(t-1), X(t-2) and X(t-3), but without using information on 

observations for patterns at any other time instants. As an example, the measurements at the time 

instants t=81, 82, 83, 84, were considered and used to calculate the 1-, 4-, and 8-step-ahead predictions, 

and these are shown in Fig. 3.  

To quantitatively measure the performance of the identified models, the 2-D normalised mean-

square-error (NMSE), defined as below, was considered 
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Table 4.   Model parameters and the associated mutual information and ERR values for the second case 

modeling, where r=2and lagn =4. 

 Parameter 
Cell 

c a b 

Mutual 
Information 

ERR (%) 

s(i, j; t-1) 1.0000920021 1.2292201279 1.1692873968 0.4362 94.6567 

s(i+1, j-1; t-1) 1.0961117713 0.2252175522 1.1795704565 0.3454 1.4067 

s(i-1, j+2; t-2) 
-0.1443107728 2.3059178081 1.3076835666 0.2933 2.0007 

s(i, j; t-1) -0.1171817131 3.0572377230 2.3400923504 0.3349 1.6040 

s(i, j; t-2) 0.0110158450 4.4819903536 3.48612375230 0.3345 0.0047 

s(i+1, j; t-3) 0.2349323434 1.7830321993 0.9173262355 0.2930 0.0515 

s(i+1, j-1; t-2) 0.0047590764 7.6437365155 5.8012090756 0.3106 0.0001 

s(i+1, j-1; t-2) -0.0077441796 8.1703845040 5.5222689564 0.3103 0.0028 

s(i-2, j-1; t-1) -0.0374089268 3.8082029627 2.5280894175 0.2739 0.0022 

s(i+2, j+1; t-1) -0.0886680186 2.8836245906 1.8770173153 0.2669 0.0167 

s(i, j+2; t-2) -0.0280476559 5.8975582677 4.8570011044 0.2667 0.0016 

s(i+1, j; t-3) -0.0955759272 2.5469787758 1.2902705475 0.2501 0.0040 

s(i+2, j-1; t-2) -0.0654987697 2.3447767771 1.3473739411 0.2437 0.0034 

s(i+2, j+1; t-3) 0.0123840401 2.4881153550 1.5489510183 0.2442 0.0029 

s(i, j; t-1) 0.2500311636 2.5176213549 1.5514863164 0.2434 0.0227 

s(i, j+2; t-4) 0.2463242832 0.4876748764 -0.5138555005 0.2276 0.0128 

s(i, j+2; t-2) 0.0048319233 2.9458302335 1.9318118117 0.2323 0.0002 

s(i-1, j+2; t-2) 0.0123733687 5.7636275247 4.7199405993 0.2391 0.0017 

s(i-1, j; t-4) 0.0241436192 8.4533718197 5.5030465346 0.2319 0.0080 

s(i-1, j-2; t-2) -0.1667885198 1.3174794458 0.3064101933 0.2129 0.0116 

s(i-1, j; t-4) 0.0787648605 3.3853091789 2.2114094953 0.2294 0.0067 

s(i-2, j-2; t-3) -0.0079349342 4.8920332394 3.8801885685 0.2204 0.0003 

Sum of ERR 99.8224% 
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where )(, ts ji  represent the observations at the time instant t, )(ˆ )(
, ts
k
ji  represent the corresponding k-

step-ahead predicted values from a given model, and I and J define the size of the associated patterns. 

Starting with the observations at the time instants t=81, 82, 83, 84, the two identified models given in 

Tables 3 and 4 were used to calculate k-step-ahead predictions, for k=1,2, …, 10. The predicted values 

were then compared with the associated observations, corresponding to the time instants t=85, 86, …, 

94, respectively. The associated normalised mean-square-errors, for the two models, are shown in Fig. 

4. 

From Fig. 3 and Fig. 4, it can be concluded that: i) the identified additive wavelet models can 

capture the main spatio-temporal evolution dynamics of the BZ reaction; ii) both models can provide 

very good short term, say 1-step-ahead, predictions; iii) the model given by Table 3 is superior to the 

model given by Table 4, this implies that the radius of the neighbourhood, r, can be chosen as 1 when 

a generalised additive multiscale model is applied to represent the BZ reaction. 



 23 

 

(i) 

 

(a) 

 

(c) 

 

(b) 

 

(d) 

 

(e) 

 

(g) 

 

(f) 

 

(h) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3   The 1-, 4-, and 8-step-ahead predictions, based on the observations at the time instants t=81,82,83,84, for 

the BZ reaction. (a)-(c) True measurements at the time instants t=85, 89, and 94; (d)-(f) The 1-, 4-, and 8-step-

ahead predicted results for (a), (b) and (c), respectively, using the model given in Table 3; (g)-(i) The 1-, 4-, and 

8-step-ahead predicted results for (a), (b) and (c), respectively, using the model given in Table 4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4  The normalised mean-square-errors for k-step-ahead predictions, with k=1,2, …, 10. The circled-line is 

for the model given by Table 3, and the crossed-line is for the model given by Table 4. 
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6.  Conclusions 

Identification of spatio-temporal evolutionary (SEE) systems often involves a great number of 

‘input’ variables, meaning that a very high dimensional modelling problem may have to be solved. To 

effectively solve such types of very high dimensional identification problems, a new family of wavelet 

based generalized additive multiscale models has been introduced. A novel two-stage hybrid learning 

method has been proposed for constructing such an additive multiscale model. The new learning 

algorithm produces a transparent model, where individual basis functions (model terms) are explicitly 

available.  

By introducing the PSO algorithm, which is easy to implement, the calculation of gradients 

required by classical nonlinear optimisation algorithms can be avoided. This makes the new multiscale 

modelling framework very suitable for STE system identification, where relevant object functions may 

not be differentiable or relevant gradients are very difficult to obtain. By applying the mutual 

information based forward orthogonal regression (FOR) algorithm, the initially produced model by the 

PSO based orthogonal projection pursuit (OPP) learning algorithm, can significantly be refined and 

improved, and a parsimonious model containing only a small number of basis functions can then be 

obtained.  

The proposed learning scheme and algorithms can also be applied in high dimensional pure 

temporal dynamical system identification including very high dimensional time series modelling and 

prediction. In addition, the proposed method may also be adapted to an alternative approach for 

neighbourhood detection of STE systems, as discussed in the example. 
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