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Abstract: Alcohol intoxication is a significant phenomenon, affecting many social areas, including work
procedures or car driving. Alcohol causes certain side effects including changing the facial thermal
distribution, which may enable the contactless identification and classification of alcohol-intoxicated
people. We adopted a multiregional segmentation procedure to identify and classify symmetrical
facial features, which reliably reflects the facial-temperature variations while subjects are drinking
alcohol. Such a model can objectively track alcohol intoxication in the form of a facial temperature
map. In our paper, we propose the segmentation model based on the clustering algorithm, which is
driven by the modified version of the Artificial Bee Colony (ABC) evolutionary optimization with the
goal of facial temperature features extraction from the IR (infrared radiation) images. This model
allows for a definition of symmetric clusters, identifying facial temperature structures corresponding
with intoxication. The ABC algorithm serves as an optimization process for an optimal cluster’s
distribution to the clustering method the best approximate individual areas linked with gradual
alcohol intoxication. In our analysis, we analyzed a set of twenty volunteers, who had IR images taken
to reflect the process of alcohol intoxication. The proposed method was represented by multiregional
segmentation, allowing for classification of the individual spatial temperature areas into segmentation
classes. The proposed method, besides single IR image modelling, allows for dynamical tracking
of the alcohol-temperature features within a process of intoxication, from the sober state up to the
maximum observed intoxication level.

Keywords: image segmentation; IR image; evolutionary optimization; ABC; alcohol intoxication;
features tracking

1. Introduction

Alcohol, in particular ethanol, is one of the most significantly consumed drugs worldwide. As far
as we know, alcohol significantly contributes to the total number of hospital admissions and deaths,
mainly including those due to car accidents and overdose [1,2]. The molecule which is responsible
for alcohol intoxication is the ethanol (C;HgO). Present in all alcoholic beverages, ethanol reaches the
blood vessel system through normal digestion. Recognized as a toxin, ethanol is destroyed by the
body; mainly in the liver, as it filters blood [1-4].
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When the input of ethanol in the body is superior to the liver’s absorption capacity, for example,
when we drink, ethanol stacks in the bloodstream, and begins to have all sorts of effects. As a small
molecule, ethanol will make its way through most of our organs, including the brain, which induces
the most visible part of intoxication. Immediately after reaching the blood vessels system, ethanol
can be presented in the expired air. It is estimated that the air concentration is proportional to (x2100
at 294°), making it a very good estimator, in theory. As accessing the breath of a person is relatively
easy, this technique has been the most widely used to estimate BAC (blood alcohol content), through
devices called breathalyzers [5-8].

Since alcohol affects nearly all social areas, there is an urgent need to develop methods which
can precisely estimate the alcohol content in the human body and predict a tissue damage caused by
alcohol intoxication (BAC). Generally, each active substance may be effective only when reaching a
place it can affect [9,10]. It must resorb in the human body. The acute intoxication can be classified into
four stages (Table 1) [11,12].

One of the most popular methods for alcohol measurement is breath analysis. We recognize
three types: electrochemical, based on the oxidation of ethanol into acetic acid and water, producing a
measurable anode—cathode current; semiconductor-based, using a material whose resistance varies
with the amount of ethanol on its surface; and spectrophotometers operating in the near infrared
spectrum (NIR), which can detail measure the exhaled air’s composition. The latter is extremely
accurate and is used by police [5,6,12].

One of the major limitations of the conventional methods is that they require the intervention and
agreement of the tested person. Secondly, these methods allow for only the on-the-spot measurement,
which means current alcohol content. In our study, we take advantage the fact that gradual alcohol
intoxication is accompanied by features allowing for an estimate of gradual intoxication. One of
such features is facial thermal distribution, which shows differences in the spatial temperature map
whilst drinking, in comparison with the sober state [13-16]. A mathematical model which is able to
automatically extract the facial areas which the best reflect the level of alcohol intoxication would
significantly contribute to the study of the dynamical alcohol effect on the human body, and at the same
time such method would provide a contactless method for the measurement of alcohol intoxication.
Nevertheless, we should consider its limitations: it identifies only the remaining alcohol, and various
people may have different alcohol inclination, which may result in different thermal effects [17-19].

Based on the experimental observations, we indicate that the nose and forehead well reflect the
dynamical progress of the temperature distribution whilst drinking alcohol. The nose area is mostly
represented by colder intensity spectrum, and it is expected this intensity spectrum is reduced with
increased alcohol intoxication. Contrarily, the forehead is represented by pixel values indicating a
higher temperature which is expanded with intoxication. These alcohol-features may serve as good
predictors of a dynamical progress of alcohol intoxication.

We suppose that the temperature distribution may be observable from the IR image records, which
are intended for mapping of thermal distribution. In this sense, the clustering may be able to identify
finite groups of pixels representing different facial thermal features. Such an approach would allow for
classification of the IR facial images into a finite number of the segmentation classes. This model allows
for extraction of the dynamical features serving as predictors for alcohol intoxication. In our study;,
we propose the multiregional segmentation model which is based on a hybrid approach, including
K-means clustering and a modified ABC evolutionary algorithm. The ABC algorithm is focused for the
optimization of cluster definition with the goal to define the most homogenous symmetrical clusters as
possible, which reflect facial temperature maps during alcohol intoxication.

On the other hand, we are aware of certain limitations of facial temperature modeling. The
experimental measurements should be done via standardized conditions, tested persons should not
use any medicaments would influence the thermoregulation, and alcohol inclination can also play an
important role. There are other limitations which may influence facial temperature distribution such
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as wearing glasses, make up, adipose tissues, age, gender, anthropometry, circadian rhythms, hair
density, skin emissivity, metabolic rate, and skin blood-flow [20-22].

In our research, we take advantage the fact that individual facial regions reflect alcohol intoxication
in different ways. Furthermore, the temperature effect undergoes evolution within the time of
intoxication. This dynamic effect can be automatically identified via multiregional segmentation which
can identify temperature clusters into regions. Features of these regions consequently allow for the
dynamical tracking of alcohol intoxication. We proposed a K-means algorithm which is driven by
evolutionary optimization to build a prediction model which can identify facial temperature areas
with dynamical features whilst drinking.

We did experiments with alcohol intoxication on twenty volunteers. We studied the effect of
alcohol intoxication in the thermal area. We captured sober state IR images through the gradual
intoxication of the subjects to study the effects of alcohol. Besides the IR images, we also recorded
further information related to intoxication, e.g., the alcohol breath content or medicaments which
may influence the temperature distribution within intoxication. Thermal area, in comparison with
the visible spectrum, is capable of identifying facial-temperature distribution. Based on these facts,
we tracked the temperature spectrum in the nose and forehead area, where these areas reflect the
temperature dynamic whilst drinking.

Organization of the paper is as follows. In Section 2 we describe the recent method for alcohol
intoxication. We are primarily focused on the methods, which are applied on IR images to investigate
facial features whilst drinking alcohol. As a part of the review, we also refer to the IR datasets
description, which are crucial for estimating alcohol intoxication from the IR images. Section 3 is
dedicated to the procedure of facial IR measurement and data acquisition. Section 4 deals with
the proposal of the model for estimating alcohol intoxication from IR images. Firstly, we describe
the IR image preprocessing, which is aimed at improving the facial features used for the IR image
segmentation. Consequently, we describe and analyze the proposed segmentation model for alcohol
intoxication analysis. In Section 5, we state the results, showing alcohol intoxication analysis from the
IR images, as well as correlation analysis with the alcohol breath results within intoxication. Section 6
brings the quantitative comparison of the proposed method against selected state-of-the-art methods
for the application of deterministic image noise. Section 7 summarize the results and issues of the
research of alcohol intoxication dynamic and points out on the limitations of image segmentation for
alcohol intoxication analysis.

Table 1. Classification of the acute alcohol intoxication.

Level of Intoxication Level of Alcohol in Blood Features

1. Stage Euphoria <1% Excitation, worsening of concentration

2. Stage Hypnotic 1-2% Disturbance of balance and movement coordination
3. Stage Narcotic 2-3% Disturbance of consciousness

4. Stage Asphyxia >3% Deep coma, hypothermia

2. Related Work

Identification and tracking of alcohol intoxication’s features, which are linked with real intoxication,
represent a relatively new and challenging area. In our work, we investigate alcohol intoxication
depending on spatial thermal distribution expressing dynamical progress exhibited whilst drinking
alcohol. In comparison with the visible spectrum, IR imaging brings the opportunity to identify facial
temperature distribution which is linked with the real alcohol intoxication. Thus, by using the IR
imaging it is possible to track the facial-temperature features, related with intoxication. Most of the
reported papers are focused on the classification: sober/drunk person from the IR images, but do not
study the dynamical progress of intoxication.

In [13], Zhihua et al. adopted a combination of the wavelet transformation and discrete cosine
transformation with support vector machines to identify drunken people. In [14], Koukiou et al.
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proposed a concept of neural networks, which is used for alcohol intoxication classification. The authors
are primarily focused on classification of the facial area. In [17], Koukiou et al. focus on analysis of the
recognizable space between sober and drunken people. This analysis is done based on discriminant
analysis. As a part of this analysis, the authors described tracking temperature distribution among
individual face areas with the goal to recognize the most significant facial areas of drunken people.
In [18], Koukiou et al. focused on facial blood vessels as one of the possible intoxication predictors
of alcohol-intoxicated people analyzed based on anisotropic diffusion in combination with Top-Hat
transformation. In [19], Koukiou et al. analyzed the distribution of the eye area with the main goal
of the iris and sclera temperature identification to recognize drunken people. In [23], Koukiou et al.
attempted to recognize drunkenness based on the application of the local difference patterns on the
forehead with the goal of the extraction of significant alcohol features.

The current research shows that infrared (IR) spectrum detects specific facial features for face
recognition, which cannot be acquired from the visible spectrum, [24-28]. The main idea is to track
face recognition depending on physiological conditions, which are related to facial blood vessel
distribution [29]. Another important part of the study of alcohol intoxication deals with analysis of the
psychological properties for person identification and face recognition. Such systems have potential to
be used on biometric systems [30,31]. Nevertheless, it is important to note that these studies have not
been focused on alcohol-intoxicated people [32].

An important part of the research in the facial feature’s extraction is the used dataset. Generally,
data can be acquired via different ambient conditions, which may influence facial temperature
distribution. Another important issue is particular IR camera, which may affect the facial IR images.
Another issue is also used kind of the alcohol. Various people may have different inclinations to
different alcohols, and this should be considered in the analysis. In [13], the camera used was the
ThermoVision A40, also manufactured by FLIR Systems operating in the 8 um-14 pum range. The data
was composed as follows: 200 images of one drunken person, 200 images of the same drunk person at
a different time, and 10 images of 40 sober persons, resulting in a total of 800 images evenly distributed
between drunk and sober individuals. These images were then normalized in scale and positioned
into 60 X 80 px images. The environment was air-conditioned, and the temperature was kept between
24.3 °C and 25.3 °C. In [17,18], authors worked with a set of the images taken from 20 individuals
(12 males and 8 females), taken by the Thermal Vision Micron/A10 infrared camera manufactured by
FLIR Systems Inc. This camera operated in wavelengths from 7.5 um to 13 um. Each person drank a
330 mL glass of beer, four times, spaced by 20 min intervals. One acquisition was made before every
drink and one 20 min after the last beer. Each acquisition is composed of 50 frames, resulting in 250
frames for each person in total. Room temperature was kept constant, as well as the temperature of
the beverages. The subjects were calm, rested, and in normal psychological conditions. In [14,19],
beer was replaced by 120 mL glasses of red wine (13% vol.), of which 41 (31 males and 10 females)
participants drank four in a one-hour time period, and acquisition occurred only at the beginning
(sober), and 30 min after the last glass. The rest remained unchanged. Again, the subjects were calm,
rested, and in normal psychological conditions. In all those studies, the thermograms were grayscale
encoded, meaning that their values had only one dimension.

3. Facial IR Image Records and Measurement

For our analysis, we performed IR measurements, including twenty volunteers. Within the
experiment, we captured six images for each tested person to track the dynamical progress of alcohol
intoxication, where the first IR image corresponds with the sober state, and the others represent
individual alcohol intoxication (Figure 1). The measurement procedure was done in the Faculty of
Safety Engineering, in the Technical University of Ostrava on 15 December 2016 and 3 May 2017.
The measuring room was airconditioned. All the measurements started at 4:00 p.m., and the outside
temperature was +1 °C (15 December 2016) and 13 °C (3 May 2017). All the measurements were done
via standardized conditions for the IR image capturing. The IR camera was placed at a distance of two
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meters from the measured person. After all the measurements were done, the data from the IR camera
were exported in the mat format, which is readable in the software MATLAB, in which we develop all
the algorithms of the IR image processing.

All the tested persons came in at the agreed time, and they did not consume any food, by
instruction. Besides the IR measurements, we also tracked the following parameters: age, weight,
height, used medicaments (due to possible influence of the thermoregulation), heart rate, current
diseases, and a subjective level of alcoholism on the following scale: 1 (abstinent) to 4 (alcoholic).
Extracts of these parameters are reported in Table 2. All the probands reported they were healthy,
without increased human body temperature, and had not been practising any physical activity in the
last 5 h. We also tracked the blood pressure by Tonometr Sencor SBP 690, and a level of the alcohol
by the breath analyzer Drager Alcotest® 7510. Tonometr Sencor SBP 690 works on the principle of
oscilometric method and have a memory for 60 measurements. This device enables the measurement
range: 40-199 beats/minute. Tonometr Sencor SBP 690 is distributed in the Czech Republic by Sencor
brand with the place in Ricany near Prague. The breath analyzer is approved by the Czech Metrologic
Institute with the mark TCM 144/08-4644 as a set gauge. Drager Alcotest® 7510 is distributed in the
Czech Republic by Dréager Safety s.r.o. with the place in Cestlice.

Table 2. Extract of physiological parameters whilst alcohol intoxication measurement.

Height  Weigh

Sex A Medicaments Alcohol Breath [%] Heart Rate [bpm]
[m] [kg]

w 25 1.7500 62 contraception [0, 0.1700, 0.4300, 0.6700, 0.9100, 0.9200]  [82, 88, 81, 76, 75, 73]
m 23 1.7800 70 XYZAL [0, 0.1200, 0.2900, 04900, 0.6800, 0.8700]  [70, 70, 67, 69, 60, 59]
m 23 1.7900 85 none [0, 0.0900, 0.2400, 0.4000, 0.5600, 0.6500]  [86, 83, 83, 81, 85, 80]
m 23 1.8200 78 none [0, 0.1700, 02900, 0.4600, 0.6300, 0.7200]  [58, 52, 53, 50, 51, 49]
m 31 1.7700 65 none [0,0.2300, 0.5400, 0.7400, 0.9400, 0.9500]  [93, 84, 78, 75, 73, 70]
w 47 1.7200 100 none [0, 0.1600, 0.2600, 04200, 0.5500, 0.5900]  [93, 87, 86, 82,79, 77]
w 67 1.6700 95 LORISTA [0,0.2100, 0.4100, 0.6400, 0.8500, 0.9300]  [80, 75, 68, 63, 63, 61]
m 23 1.8200 90 none [0,0.0100, 0.1600, 0.3900, 0.5200, 0.6900]  [66, 63,70, 71,73, 77]
m 23 1.8600 87 none [0,0.1700, 0.3200, 0.4900, 0.5800, 0.7100]  [50, 60, 56, 61, 63, 66]
m 25 1.8800 92 none [0,0.1900, 0.3200, 0.4500, 0.5900, 0.7200]  [50, 61, 56, 63, 63, 69]

In order to achieve reproducible results, and avoid facial temperature influence, all the
measurements were performed indoors, via the standardized conditions including: the atmospheric
pressure 1002.5 hPa, indoor temperature 22 °C and humidity 55%.

All the measurements were performed with the permission of the ethical board due to possible
effect of the alcohol on the human’s health. All the persons signed an agreement statement to declare
not using any medicaments would influence facial temperature. Before the IR measurements, all the
tested persons also had signed an agreement in the Czech language that their data could be published,
and they were aware of alcohol consuming. A physician was present during all the measurements. The
tested persons were perceived in a calm state for 30 min to avoid the outdoor temperature’s influence.
After acclimatization, all the tested persons’ systolic and diastolic blood pressures were measured.
Consequently, breath analysis was done. During the measurement, the tested persons were given a
38% alcohol in 0.041 doses. The gradual intoxication was driven by 30 min time intervals between
individual doses.

We kept a distance of 2 m of the tested person from the IR camera with an emissivity 0.96. For
the IR image background, we used white stucco plaster. All the IR images were taken by a FLIR
T640 camera. This camera has an image resolution 640 x 480 px and thermal sensitivity (NETD) <
0.035 °C. For the practical purpose of the measurement, we used two kinds of the detectors: FOL41
(f =41.3 mm, 15 °C) and FOL25 (f = 24.6 mm, 25 °C). Calibration of the IR camera was done using
Flat Field Correction (FFC). This method represented an offset calibration which was performed at
power up, when the IR camera was changing temperature, and consequently during the process. This
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calibration compensated errors during operation of the IR camera. All the acquired IR facial images
contained the conversion scale, converting the temperature scale into the color spectrum.

In our analysis, we focused on certain facial features (nose and forehead), which were analyzed for
alcohol intoxication. To extract these facial areas, we use the Viola—Jones object detector. It is perceived
as a strong, binary classifier, which was composed from several weak detectors. During the learning
stage, a cascade of these detectors was trained to gain the desired hit rate and miss rate. For object
detection, the original facial image was classified into several rectangular areas, where each of them
was sent to the cascade. The rectangular image went through of all the cascade stages, then it was
classified as positive. In general, each weak classifier was based on a very simple visual feature. Such
kinds of features are commonly referred as “Haar-like features” [33-35].

Figure 1. Extract of the IR measurement of three individuals (rows) where: (a) sober state, (b) 40 mL,
(c) 80 mL, (d) 120 mL, (e) 160 mL, and (f) 200 mL of alcohol. The forehead and nose were detected by
using the Viola—Jones object detection to indicate individual facial areas. The hottest area of the forehead

is getting expanded, while the coldest area of the nose is getting reduced within alcohol intoxication.

4. Materials and Methods

In this section, we introduce the complex model for alcohol intoxication. The proposed model
for the dynamic tracking of alcohol intoxication from the facial IR images was composed from two
essential parts. Firstly, we introduce the image preprocessing with the aim to investigate the individual
R, G, B layers of the IR images. This procedure leads to reflection of alcohol intoxication for individual
image layers. In the consequent step, we introduce the multiregional segmentation procedure, which
is aimed on separation of individual facial temperature clusters into the segmentation classes. This
procedure is based on the K-means clustering, driven by the evolutionary optimization.

In this part, we introduce analysis of the IR image pre-processing. The input IR image is
represented by the RGB structure containing three channels (R, G, B). We need to achieve the best
observation for facial features representing alcohol intoxication. We performed a decomposition of
the original RGB model into individual layers (Figure 2). Apart from identification of individual
intensity sub-spectrums, this procedure also converts three dimensional RGB image into 2D space
which is more convenient for the further processing. The proposed segmentation algorithm is capable
of working with 2D structures, therefore, the monochromatic conversion is necessary. Furthermore,
certain isolated R, G, B channels better reflect facial temperature spectrum during alcohol intoxication
than the complex RGB structure. Based on these facts, the RGB decomposition is a crucial task for
our study.
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a) b) Ty

Figure 2. Comparison of the RGB decomposition for sober state (top row) and after 200 mL of 38%
alcohol (down row), where: (a) R layer, (b) G layer, and (c) B layer.

Based on the RGB image decomposition, different representations of facial temperature distribution
is observable on different layers. The B layer reflects the forehead’s hot intensity spectrum, while the G
layer reliably reflects the nose cold spectrum. Based on these features, these two models are intended
for use in the modeling. Consequently, we focused on objectivization of a presence of the dynamical
features in individual parts of the face, including the nose, mouth, cheeks, and forehead. Individual IR
images were created by using the Viola—Jones object detector to justify which parts of the face express
the most significant thermal progress whilst drinking alcohol. In this analysis, we evaluated differences
between the sober state and after 100 and 200 mL of the consumed alcohol (Figure 3). The black
color indicates areas with no differences, contrarily the blue color on the forehead and yellow on the
nose stands for dynamical progress on the forehead and nose respectively. We performed measuring
differences for the all facial regions to prove the forehead and nose are the most significant features,
regarding the dynamical progress of drinking alcohol. The measurement was evaluated based on the
simple differences (Diff) and Mean Squared Error (MSE). The averaged results for twenty people are
reported in the Tables 3 and 4. The best results in a sense of the maximum dissimilarity are highlighted.

a) b)

Figure 3. Showing differences of the IR image taken after (a) 100 mL of the alcohol and (b) 200 mL of
alcohol against the sober state.

Table 3. Dissimilarity measurement based on the Mean Squared Error (MSE).

Alcohol State Nose Forehead Cheeks Mouth
Sober state—100 mL of alcohol 35.12 36.19 5.41 2.36
Sober state—200 mL of alcohol 4412 49.58 6.69 5.78

Table 4. Dissimilarity measurement based on the simple average differences.

Alcohol State Nose [%] Forehead [%] Cheeks|[%] Mouth [%]

Sober state—100 mL of alcohol 19.56 22.11 3.95 1.15
Sober state—200 mL of alcohol 28.15 35.87 11.15 9.42
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Swarm intelligence optimization algorithms represents a rapidly emerging field, which is inspired
by the collective intelligence of insect or animals organizing in groups, like in ant or bee colonies. The
concept of the collective intelligence was originally introduced in [36-38] with the target to describe
the self-organizing and intelligent behavior of ants. One of the most popular evolutionary algorithms
is the Artificial Bee Colony algorithm (ABC) which was originally introduced in [39]. This algorithm is
inspired by behavior of a honeybee swarm to solve unconstrained optimization issues [40].

In this section, we introduce the segmentation method for facial IR image features modelling. The
proposed segmentation model is based on the clustering which is driven by the modified version of
ABC. The ABC algorithm represents a genetic optimization process, searching for the most optimal
symmetrical distribution of the clusters to achieve the most suitable approximation of the thermal
areas separation, expressing significant different facial thermal features. Such a procedure is much
more effective, when compared with the conventional K-means algorithm, which generates only one
distribution of clusters. Such is the limitation of some clustering algorithmes, it is likely the K-means
may predetermine less accuracy of pixel classification because there is no unified scheme for the
initial centroids’ placement. We employ the modified ABC algorithm for optimal finding of the initial
centroids for the facial IR images.

4.1. Segmentation Based on K-Means

We suppose that the IR image area I(r), represented by the coordinates r = ({x,y}, can be
decomposed into a finite number of n segmentation classes forming a multiregional segmentation.
In such configuration, each segmentation class specifies a finite group of the intensity spectrum
expressing similar thermal features. Supposing a finite vector of the m-intensity values: 1 =
{Ii, I, ...,Im}, which are supposed to be classified into a finite element vector of clusters: C =
{Cq, Cg, ...,Cho1, Ch). Each cluster is determined by its centroid p. Thus, the centroid py of the cluster
Cx = {Il, I, ..., Ink} is defined in the following way:

o ZVIkGCk Ik
ny

Hi (1)
The K-means-based segmentation searches for an optimal distribution of pixels to minimize the
squared error between the empirical mean of the cluster and the respective points belonging to this
cluster. This squared error between the cluster’s centroid p; and arbitrary point belonging to the

cluster Cy is defined as follows:
J(C) = Y - P )

I eCyx

By this way, the K-means clustering minimizes the squared error over all the n clusters based on

the equation:
n

Q) = Y, Y =P 6)

k = 1IxeCy

The K-means algorithm can be summarized into the following steps:

e  Definition of the initial partitioning of the pixels into n clusters. Consequently, the next two steps
are repeated until algorithm does not reach a convergence.

e  Then algorithm then defines the further partitioning based on the pixel’s assignment to the closest
cluster’s centroid.

e  New clusters are recomputed.

4.2. Genetic Optimization of K-Means Clustering

In this section, we introduce a genetic optimization of the K-means clustering based on the
modified ABC algorithm with improved searching strategy. The K-means clustering achieves the
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convergence relatively fast. On the other hand, the main limitation of this approach is the initial phase
where pixels are firstly grouped into individual classes. The farther from the real centroids the initial
centroids are placed, the worse partitioning is achieved. It may result in inaccurate modelling of the
thermal features, which are badly interpreted in the segmentation model. It is important to realize that
there is not a uniformly-applicable approach for the initial placement of the centroids. Because of this,
different image data acquired by various devices have different intensity features. These facts may
significantly influence pixels’ distribution, thus segmentation results may be sensitive against such
phenomena. Furthermore, we must consider the image noise, which also may significantly influence
the clustering accuracy. Based on these facts, the initial phase of the K-means should be optimized to
improve the segmentation accuracy.

4.3. Proposal of Modified ABC Algorithm

The optimization process generated by the ABC algorithm is utilized for optimal distribution of
the clusters representing significant facial thermal areas. This initial step predetermines an efficiency
and robustness of the proposed model for alcohol intoxication. In the ABC algorithm, there are three
groups of artificial bees, which are classified as: employed bees (EB), onlooker bees (OB), and scout
bees (SB).

The first step of the ABC algorithm deals with generating of the initial population of food
sources (SN) representing a set of possible solutions for the initial distribution of the centroids. In the
conventional ABC, this step is done randomly. We take advantage a fact that the centroids are supposed
to be defined in surrounding of the histogram peaks representing spots with high and concentrated
intensity values. Thus, initial set of the food sources X; (SN) is given by the equation:

Xi = Rin+*En 4)

where R; ,, € [0; 1] represents a vector of random number, ascended ordered to satisfy the condition:
0<Ri1 £Rj2,...,Rin-1 £ Rjn < 1and E, stands for a vector representing n the most significant peaks
of the IR image histogram. We use a finite interval for the random numbers R; , due to histogram
normalization: I[0,255] — I[0,1]. The term I[0, 255] stands for 256 shade levels of the IR images. In the
EB phase, we define for each X; alternative surrounding solution V; which is defined by the following
way:

Vik = Xpest(i)k T Pik (X k = Xi2x) )

In this equation, the index k € {1,2,...,n} is randomly chosen from a number of centroids,
$ik € [0;1] stands for a random number and parameters r1,12 € {1,2,...SN} represent mutually
selected integers. A crucial element in this equation is the randomly chosen solution Xp,egi) k- For each
index k, we randomly select p% food sources X;, where we select k™ centroid of such X; satisfying the

. s AP . . . . . . .
following condition: Xbest Mk = g}(ié;({fltxﬂ/ fitx,, ..., fltxrl}. In this expression, the fity , represents the

fitness function of the lth randomly selected X;.

Since X; and respective V; are determined, their fitness functions are compared. If fity, < fity, than
algorithm keeps V; as better solution, otherwise a new V; is generated within a selected number of
iterations, called the selection limit S;. We use S| = 15. After reaching this limit, the respective X; is
perceived as exhausted X, and eliminated from the memory.

In the OB phase, the wheel choice selection is applied. It is supposed that OB = EB. Thus, if some
Xj are identified, new V; are generated until OB = EB. The respective ith food source is randomly
selected, depending on its fitness function. A higher fitness function predetermines a higher chance of
selection. Each considered food source is given by the probabilistic value p; given by the following
way: .

it;
P T fi (6)
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A selected X is also compared with the Vj, as in the previous phase. Note that a higher fit;
corresponds with a higher probability p; thus, better solution. A food source with the highest p, is
selected as the most suitable for the multiregional segmentation.

Lastly, the SB phase is employed. The scouts identify the exhausted food sources Xf. Instead of
such food sources, the new are generated (Equation (7)), and the process of evolution is repeated.

Xi,k = Xmin,j + rand(O, 1) (Xmax,k + Xmin,k) (7)

wherei = {1, 2, ...,SN}andk = {1, 2, ...,n}.
The modified ABC Algorithm 1 is defined as follows:

Algorithm 1. Modified ABC Algorithm

Definition of initial parameters: number of food sources (SN), p% food sources X;, number of iterations (It),

selection limit (S)), trial; = 0 and number of centroids (n).
Step 1: Generate the initial population of solutions X; (e.g., 4).
Step 2: Calculate the population

Step 3: Iteration =1

Step 4: Repeat

Step 5: Employed Bee Phase (EB)

Step 6: Generate new solutions for the employed bees.
Step 7: ForI=1to SN do

Step 8: For each randomly selected k € {1,2,...,n}

Step 9: Randomly select p% food sources X;

Step 10: Define Xrb)est(i),k

Step 11: Define k' element of the alternative solution V;.

Step 12: end for
Step 13: end for
Step 14: if fit, < fity, then

Step 15: Keep V; as a better solution.
Step 16: Otherwise define a new V; within a predefined S;.
Step 17: After reaching this limit, X; is transformed into exhausted X{.

Step 18: end if

Step 19: Onlooker Bee Phase (OB)

Step 20: if OB < EB then

Step 21: Define new X;.

Step 22: end if

Step 23: until (OB = EB)

Step 24: Evaluate the probability p; (e.g., 6) in order to evaluate a better solution defined by the fitness function.
Step 25: P=0andI=1

Step 26: Repeat

Step 27: if random p; is selected then

Step 28: Apply a greedy procedure between X; and Vj, and consequently select the superior one.
Step 29: if Xj is not modified then

Step 30: trial; = trial; + 1

Step 31: otherwise trial; = 0

Step 32: p=p+l

Step 33: end if

Step 34: end if

Step 35: until (p = SN)

Step 36: Scout Bee Phase (SB)

Step 37: if exhausted X{ are identified then

Step 38: Define new X; by the Equation (7), and repeat evaluation process.
Step 39: end if

Step 40: Remember the best fitness so far.

Step 41: Iteration = iteration+1

Step 42: until (iteration = max number of iterations)

Step 43: Select a food source with the highest fitness, which represent the initial centroids distribution.
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4.4. Design of Fitness Function

Fitness function stands for a key element in the entire optimization process. The fitness function
globally evaluates individual solutions and decides which is more suitable. Firstly, we define an
objective function J(Cy) evaluating statistical features in the respective segmentation class (cluster).
Here, we suppose that the intensity spectrum inside any cluster should be concentrated without
significant intensity variations. This assumption takes into advantage proximal similarity of the
thermal features. A cluster which is less concentrated contains intensity values which have dissimilar
features, thus the segmentation model is not consistent. The similarity of the intensity values can be
measured by the statistical variance by the following way:

n m
_ 1 2
J(Cx) —;;ml )%, VI € Clhy) ®)
and the fitness function is defined as follows:
1
fit = ——— 9
S ENI(eY) )

The evolution process of the objective function can be tracked by the convergence characteristics
(Figures 4 and 5) showing the average and best objective values for each iteration. We report two
stages of the testing of the objective function. Firstly, we report the convergence characteristics for the
initial population: SN = 80 (Figure 4), and for SN = 200 (Figure 5). Both tests are performed for
the number of iterations: {50, 80, 100, 150}. All the testing are performed for the IR images with the
resolution 640 x 480 px.

5. Best: 0.740369 Mean: 2.04617 5. Best: 0.492777 Mean: 0.618801
18 18
16 16
14 14
o 12 ) 12+
Q10 SAU
TR T
6 6
4 4
%5 10 15 20 25 30 35 40 45 50 % 10 20 30 40 S0 60 70 80
Iteration (-) Iteration (-)
a) b)
20, Best: 0.575836 Mean: 1.49227 50, Best: 0.504553 Mean: 0.532
18+ 18+
16 16
14 14
12} 12
é 10 é 10
~ o3 o8l
6 6
4 4 )
2 2 L ) N
0() 10 20 30 40 50 60 70 80 90 100 0 50 100 150
Iteration (-) Iteration (-)
©) d)

Figure 4. Convergence characteristics for the objective function J(Cy) for the initial population SN = 80:
(a) 50, (b) 80, (c) 100, and (d) 150 iterations.

Consequently, we test and compare the objective function for different IR image size. We
gradually modify a size of the image resolution for the following sequence: {640 x 480, 500 x 500,
300 x 300, 50 x 50}. In the Tables 5-8, we report the average and best results of J(Cyx), SN =
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100, It = 50, p = 20%, and S; = 15 for three tested persons within alcohol intoxication. Based on the
experimental result the objective function is getting increased when resizing original IR images. Such

fact leads to a higher dispersion of the pixel intensities in individual clusters.

Best: 0.559751 Mean: 0.574206

5. Best: 0.671627 Mean: 1.02397

16} '
250
14 L.
12 20+
=10 =
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- 8 -
6 10+
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0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 60 70 80
Iteration (-) Iteration (-)
a) b)
,5 Best: 0.510033 Mean: 0.715616 50, Best: 0.568673 Mean: 0.779042
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oL e vt e N 0 et e PR
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Figure 5. Convergence characteristics for the objective function J(Cy) for the initial population SN =

200: (a) 50, (b) 8

0, (c) 100, and (d) 150 iterations.

Table 5. The average and best values for the objective function J(Cy) for three tested persons within

the gradual alcohol intoxication. Testing for the image resolution: 640 x 480 px.

Best Average Best Average Best Average
Alcohol = Areaof = j(cy)  j(@)  J(@)  NHG) I J(CW)
Content Interest
Person 1 Person 2 Person 3

Nose 1.45 1.82 0.27 0.43 0.24 0.24
Soberstate g\ head 349 8.74 0.52 1.22 0.10 0.36
40 mL Nose 1.54 1.55 0.32 0.84 0.27 0.58
Forehead 2.98 7.67 0.45 0.56 0.27 0.33
Nose 1.15 154 0.34 0.82 0.26 0.96
80 mL Forehead 2.45 8.00 0.48 1.12 0.43 1.66
120 mL Nose 1.47 5.20 0.29 0.62 0.29 0.38
Forehead 3.33 7.66 0.57 1.51 0.66 0.69
Nose 0.88 1.90 0.29 0.39 0.27 0.36
160 mL Forehead 2.92 10.14 0.53 1.03 0.55 1.27

Table 6. The average and best values for the objective function J(Cy) for three tested persons within

the gradual alcohol intoxication. Testing for the image resolution: 500 x 500 px.

Best Average Best Average Best Average
Alcohol — Areaof — j(c) j(G)  J(CG)  J(@)  H(G)  J(Ck)
Content Interest
Person 1 Person 2 Person 3
Sober stat Nose 1.62 1.87 0.38 0.42 0.28 0.25
OPErstale  Forehead  3.55 9.12 0.74 1.25 0.17 0.38
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Table 6. Cont.

Best Average Best Average Best Average
Alcohol = Areaof = j(c,) J(@) J(G)  J(@)  J(C)  T(Cw)

Content Interest
Person 1 Person 2 Person 3

Nose 1.67 1.69 0.39 0.84 0.28 0.63
40 mL Forehead 3.12 7.87 0.84 0.92 0.32 0.41
Nose 1.17 1.64 0.41 0.64 0.32 1.14
80 mL Forehead 2.55 8.57 0.52 1.18 0.47 1.84
Nose 1.69 5.28 0.36 0.69 0.51 0.78
120 mL Forehead 3.87 7.69 0.61 1.67 0.69 0.84
Nose 1.14 1.96 0.35 0.85 0.32 0.42
160 mL Forehead 2.96 10.23 0.62 1.52 0.58 1.54

Table 7. The average and best values for the objective function J(Cy) for three tested persons within
the gradual alcohol intoxication. Testing for the image resolution: 300 x 300 px.

Best Average Best Average Best Average
Alcohol Areaof  y(c)  g(@) (@) (@) T(C) J(C)

Content Interest
Person 1 Person 2 Person 3

Nose 191 1.92 0.42 0.42 033 0.52
Soberstate o head 385 9.55 0.86 1.44 0.45 0.45
Nose 1.59 1.67 0.41 0.92 0.32 0.71
40 mL Forechead 351 8.01 0.92 1.62 0.45 0.45
Nose 1.95 1.95 0.55 0.73 0.66 152
80mL  pochead 262 8.68 0.56 1.62 0.55 1.87
Nose 1.74 5.36 0.45 0.76 0.58 0.65
120mL g chead 392 7.74 0.66 1.84 0.74 0.89
Nose 1.38 252 0.81 0.89 0.45 0.52
160mL g ehead 315 10.44 0.71 1.68 0.99 1.66

Table 8. The average and best values for the objective function J(Cy) for three tested persons within
the gradual alcohol intoxication. Testing for the image resolution: 50 X 50 px.

Best Average Best Average Best Average
Alcohol - Areaof = j(c,) j(@) J(G)  J(@)  J(C)  T(Cw)

Content Interest
Person 1 Person 2 Person 3

Nose 245 2.54 1.84 1.22 1.12 1.42
Soberstate g ihead 455 10.84 1.65 1.49 1.35 1.92
Nose 1.95 2.45 1.42 1.57 1.12 1.74
40 mL Forehead 3.84 8.63 1.38 1.63 1.65 1.95
Nose 2.21 2.45 1.69 1.91 1.31 1.69
80 mL Forehead 2.93 8.99 1.31 1.87 1.43 1.92
Nose 2.62 6.41 1.41 1.85 1.31 1.45
120 mL Forehead 4.81 7.84 1.56 2.32 1.36 1.89
Nose 1.83 2.76 1.21 1.84 1.12 1.52
160 mL Forehead 3.94 11.13 1.62 2.37 1.63 2.52

5. Experimental Results and Evaluation

In this section, we introduce experimental results of the IR facial modeling of alcohol intoxication.
Modeling of alcohol intoxication is done in all twenty volunteers, while we report, in this section,
three cases for different segmentation settings. We suppose that the coldest area in the nose will
reduce, while the hottest intensity spectrum in the forehead will expand, whilst drinking alcohol. The
proposed multiregional segmentation enables identification of finite clusters, grouping intensity values
with similar features. The number of segmentation classes is an important parameter in controlling
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partitioning of the facial thermal map. In our analysis, we compare different number of clusters
to obtain an optimal cluster setting, which will reflect temperature variations caused by alcohol
intoxication. We report a comparison for 3 (Figures 6 and 7), 8 (Figures 8 and 9) and 11 (Figures 10
and 11) clusters. When comparing different numbers of segmentation clusters, we found out that lower
numbers of the clusters (3 clusters) are not able to detect weaker temperature differences, and contrarily
a higher number of the clusters lead to the noise presence in the segmentation model, exhibited by
discontinuities in the segmentation map. Therefore, we experimentally set eight segmentation classes
for the modelling. These settings appear as a good compromise, where facial temperature features are
observable within the process of gradual intoxication. Each segmentation class is represented by a
unique color, which enables visual differentiation of individual clusters. The coldest spectrum in the
nose is indicated by the red class. Individual rows indicate gradual drinking process from the sober
state (first up row) up to the maximal intoxication (first down row).

Figure 6. Multiregional segmentation with three clusters of the nose area for three tested persons for:
(a) SN =100, It = 100, (b) SN = 70, It = 90 and (c) SN = 120, It = 160. From the top, each row corresponds
with gradual intoxication: (1) sober state, (2) 40 mL, (3) 80 mL, (4) 120 mL, (5) 160 mL, and (6) 200 mL.

1. 2. 3.
FAFF e 1))
P R A £ £ R A e
U AR AP B B B B4 A B
y L L T 1T B
s 1t P 1 b ..
y  r r £ B B F U b

a) b) ¢) a) b) ¢) a) b) ¢)
Figure 7. Multiregional segmentation with three clusters of the forehead area for three tested persons
for: (a) SN = 100, It = 100, (b) SN = 70, It = 90, and (c) SN = 120, It = 160. From the top, each row

corresponds with gradual intoxication: (1) sober state, (2) 40 mL, (3) 80 mL, (4) 120 mL, (5) 160 mL, and
(6) 200 mL.
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Figure 8. Multiregional segmentation with eight clusters of the nose area for three tested persons for:
(a) SN =100, It = 100, (b) SN = 70, It = 90 and (c) SN = 120, It = 160. From the top, each row corresponds
with gradual intoxication: (1) Sober state, (2) 40 mL, (3) 80 mL, (4) 120 mL, (5) 160 mL, and (6) 200 mL.
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Figure 9. Multiregional segmentation with eight clusters of the forehead area for three tested persons
for: (a) SN = 100, It = 100, (b) SN = 70, It = 90, and (c) SN = 120, It = 160. From the top, each row
corresponds with gradual intoxication: (1) sober state, (2) 40 mL, (3) 80 mL, (4) 120 mL, (5) 160 mL, and
(6) 200 mL.
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Figure 10. Multiregional segmentation with eleven clusters of the nose area for three tested persons
for: (a) SN = 100, It = 100, (b) SN = 70, It = 90, and (c) SN = 120, It = 160. From the top, each row
corresponds with gradual intoxication: (1) sober state, (2) 40 mL, (3) 80 mL, (4) 120 mL, (5) 160 mL, and
(6) 200 mL.
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Figure 11. Multiregional segmentation with eleven clusters of the forehead area for three tested persons
for: (a) SN = 100, It = 100, (b) SN = 70, It = 90, and (c) SN = 120, It = 160. From the top, each row
corresponds with gradual intoxication: (1) sober state, (2) 40 mL, (3) 80 mL, (4) 120 mL, (5) 160 mL, and
(6) 200 mL.

Based on the multiregional segmentation modelling, we identify a respective segmentation class
representing the dynamical thermal features for the nose and forehead whilst alcohol consuming.
The Figures 12 and 13 represent a resulting mathematical model in the binary form for the nose and
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forehead area. We report the binary dynamical model for three persons. This model represents the
dynamical descending trend for the coldest intensity area of the nose, and the increasing dynamical
tendency of the hottest area for the forehead.

l) . . - . . .
’ . . - - . .
v
a) b) ¢) d) e) f)

Figure 12. Binary modeling of the nose dynamical features for three persons (rows) where each column
represents gradual alcohol intoxication: (a) Sober state, (b) 40 mL, (c) 80 mL, (d) 120 mL, (e) 160 mL,
and (f) 200 mL of the alcohol.

4
1)
’ ' . E ﬂ E H
’ . ﬂ . W ﬂ
a) b) c) d) e) f)

Figure 13. Binary modeling of the forehead dynamical features for three persons (rows) where each
column represents gradual alcohol intoxication: (a) Sober state, (b) 40 mL, (c) 80 mL, (d) 120 mL, (e)
160 mL, and (f) 200 mL of the alcohol.

Based on the binary models, we can objectively measure trend of the dynamical features. Since
we observe dynamical change of the area size of the model within the gradual alcohol intoxication, we
measure this size expressed by a number of pixels. As an example, we report this dynamical feature
for the nose area in the Figure 14.
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Figure 14. Averaged decreasing trend of the binary model size for the nose area of 5 tested persons.

An important part of the proposed segmentation model of alcohol intoxication is the validation
with the real alcohol content. As we already stated, we do not directly measure the alcohol content
in the human body, but an alcohol side effect causing facial temperature variations in the nose and
forehead. Since facial temperature is related with the real alcohol content, we validate our results
against results of the breath analysis. For the validation of the proposed model, we studied the
correlation coefficient between the alcohol content measured by the breath analyzer and the nose
and forehead area for individual stages of alcohol drinking. Figures 15 and 16 report result of this
analysis for all twenty volunteers. We achieve relatively high correlation of the forehead in the range:
corr € (0.59;0.98) and nose: corr € (0.76;0.99). The correlation in the nose is generally higher. This is
supposedly caused by the hair, which may influence the temperature distribution.

17 T T T
o o
0.95 1
0.9

0.85F ]

0.75 o 1

0.7 4

Correlation index (%)

0.65 | o
0.6+ 1

055 L 1 1 1 J
0 5 10 15 20

Order of tested person

Figure 15. Distribution of correlation index showing dependency between the alcohol content
measured from the breath and area size of the hottest area in the forehead calculated from the proposed
segmentation model.

In the next step, we measure the computation time of the segmentation process depending on
various optimization settings. Segmentation method is as effective, as works fast. In the Tables 9-11,
we report the time complexity for various ABC settings.
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Figure 16. Distribution of correlation index showing dependency between the alcohol content
measured from breath and area size of the coldest area in the nose calculated from the proposed

segmentation model.

Table 9. Time complexity for eight segmentation classes, SN = 100 and It = 100, p =20% and S; = 15.

Time Complexity [s]

Alcohol Content Area of Interest
Person 1 Person 2 Person 3

Nose 21.97 21.28 17.97

Sober State Forehead 3327 2267 20.52
Nose 23.66 19.41 17.02

40mL Forehead 35.48 18.03 20.97
Nose 25.83 17.69 18.28

L Forehead 33.67 19.25 20.57
Nose 23.01 18.89 19.57

120 mL Forehead 35.89 20.78 19.41
Nose 23.09 17.99 18.86

160 mL Forehead 3343 19.52 20.70
Nose 25.87 17.33 18.75

200 mL Forehead 31.87 18.37 19.62

Table 10. Time complexity for eight segmentation classes, SN = 70 and It = 90, p = 20%, and S5} = 15.

Time Complexity [s]

Alcohol Content Area of Interest

Person 1 Person 2 Person 3

Nose 31.07 15.28 15.14

Sober State Forehead 25.07 16.32 16.75

Nose 16.96 15.15 15.97

40 mL Forehead 26.14 17.20 15.41

20 . Nose 17.65 15.33 15.64

Forehead 28.70 14.94 15.42

Nose 18.72 14.86 14.98

120 mL Forehead 30.72 15.42 16.70

Nose 18.78 15.12 14.02

160 mL Forehead 24.25 16.29 15.72

Nose 16.20 15.72 14.83

200 mL Forehead 25.07 15.33 17.16
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Table 11. Time complexity for eight segmentation classes, SN = 120 and It = 60, p = 20%, and S| = 15.

Time Complexity [s]

Alcohol Content Area of Interest
Person 1 Person 2 Person 3

Nose 18.42 14.97 14.98

Sober State Forehead 25.19 1637 15.75
Nose 18.89 14.88 14.58

40mL Forehead 26.93 15.24 15.43
Nose 16.92 15.19 14.87

80 mL Forehead 26.05 16.09 14.76
Nose 17.49 14.47 14.96

120 mL Forehead 25.83 16.26 14.97
Nose 15.88 13.10 15.14

160 mL Forehead 28.46 14.59 15.04
Nose 17.11 14.06 14.21

200 mL Forehead 24.48 15.49 16.78

6. Quantitative Comparison

In this section, we present a quantitative comparison against selected segmentation methods by
using objective parameters enabling evaluation of the efficiency and robustness. We present quantitative
comparison for the native IR images, as well as for IR images corrupted by the deterministic noise.

This analysis is done for all the twenty tested persons. For each image, the gold standard is
defined manually. We consider the following scalar parameters for comparison:

Correlation coefficient (Corr) measures a level of the linear correlation between two samples.
Corr gives values in the range [0; 1] where 0 stands for no linear dependence, while 1 denotes totally
identical samples.

Rand index (RI) brings a comparison of a compatibility of assignment between pairs of elements
in two samples. RI gives results in [0; 1]. RI is defined by the following way:

2(ny1 +ngo)

RI(Cy, &) = N(N=1)

(10)
In the Equation (10), N stands for a total number of points, nj; represents number of pairs lying in
the same area C; and C; and nqp is a number of pairs in different segmentation classes.
Variation of information (VI) measures a distance between two regions in the sense of their
conditional entropy. The VI is defined as follows:

VI(Cy, C2) = H(C1) +H(Cr) —21(Cy, Cy) (11)

In the Equation (11), H(Cp) represents an entropy associated with the region C,, and I(Cy, C2)
stands for mutual information between regions C; and C,.

Mean Squared Error (MSE) measures the averaged error between two samples. This parameter is
defined as follows:

N
MSE(Cy,C,) = % Y (Q-Gr) (12)
i=1

As alternative methods for a comparison, we use the multiregional Otsu segmentation, K-means,
FCM clustering and region growing (RG) method (Table 12). We present a comparison for additive
artificial deterministic Gaussian (G(p, 02)) in the Tables 13 and 14, Salt and Pepper (SaP(d)) in the
Tables 15 and 16 and Multiplicative (M(y, 02)) noise in the Tables 17 and 18. The following tables
show the testing results where the best results are highlighted. All the comparisons are done for the
ABC settings: SN =100, It =100, p =20% and S} = 15.
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Table 12. Quantitative comparison for the native IR images (640 X 480 px).

Proposed Otsu K-Means FCM RG

Corr 0.94 0.91 0.88 0.93 0.74
RI 0.91 0.88 0.81 0.92 0.71
VI 3.11 3.21 4.15 411 5.01
MSE 28.45 35.87 36.12 29.98 36.88

Table 13. Quantitative comparison for the Gaussian noise: G(0, 0.05), (640 x 480 px).

Proposed Otsu K-Means FCM RG

Corr 0.91 0.88 0.84 0.82 0.69
RI 0.91 0.82 0.75 0.87 0.66
VI 2.98 3.27 5.11 4.52 5.44
MSE 31.52 34.57 33.18 31.99 38.74

Table 14. Quantitative comparison for the Gaussian noise: G(0, 0.8), (640 x 480 px).

Proposed Otsu K-Means FCM RG

Corr 0.88 0.75 0.81 0.69 0.48
RI 0.74 0.76 0.45 0.66 0.43
VI 3.87 4.12 5.56 4.75 7.57
MSE 33.87 36.88 34.12 35.41 39.45

Table 15. Quantitative comparison for the Salt and Pepper noise: SaP(0.04), (640 x 480 px).

Proposed Otsu K-Means FCM RG

Corr 0.93 0.79 0.86 0.88 0.69
RI 0.91 0.93 0.88 0.91 0.66
VI 3.54 4.18 5.48 4.12 6.55
MSE 28.45 30.12 31.15 34.47 36.84

Table 16. Quantitative comparison for the Salt and Pepper noise: SaP(0.9), (640 x 480 px).

Proposed Otsu K-Means FCM RG

Corr 0.79 0.65 0.66 0.71 0.38
RI 0.84 0.83 0.75 0.74 0.41
VI 5.12 5.99 7.84 6.12 6.77
MSE 33.54 31.85 33.45 33.32 39.85

Table 17. Quantitative comparison for the Multiplicative noise: M(0, 0.03), (640 x 480 px).

Proposed Otsu K-Means FCM RG

Corr 0.88 0.78 0.69 0.76 0.64
RI 0.91 0.82 0.83 0.79 0.68
VI 2.99 3.21 5.34 4.63 711
MSE 32.84 32.65 34.56 36.93 41.12

Table 18. Quantitative comparison for the Multiplicative noise: M(0, 0.6), (640 x 480 px).

Proposed Otsu K-Means FCM RG

Corr 0.74 0.68 0.61 0.59 0.48
RI 0.75 0.74 0.81 0.54 0.48
VI 3.16 3.93 591 517 8.15

MSE 33.54 32.89 36.45 39.62 44.19
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The best results indicate that the proposed clustering scheme driven by the modified ABC
algorithm shows the most robust results, even if comparing with the noisy images. Noise is important
aspect which should always be considered. Also, an importantissue is the model’s features representing
and quantifying the gradual alcohol drinking. Therefore, for the proposed algorithm we measure
the trend development for gradual drinking for native images in a comparison with individual noise
parameters. As is obvious, the results are only slightly different. This fact indicates a higher level of
robustness of the proposed method against additive noise.

Firstly, we analyze the Gaussian noise. The Figure 17 shows different parameters of the Gaussian
noise and the Figure 18 trend characteristics for the Gaussian noise. It is the most frequent type of the
noise. It is characterized by the normal distribution causing equal deterioration of the pixels. It means
that a level of the noise does not depend of the pixel intensity value. In the Gaussian noise, we set the
variance and mean value G(, ¢2)).

a) b) ) d)

Figure 17. Example of IR facial images corrupted by the Gaussian noise: (a) G(0, 0.01)), (b) G(0, 0.07)),
(¢) G(0, 0.3)), and (d) G(0, 0.5)).
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Figure 18. Trend characteristic for Gaussian noise G(u,02) with different settings u =0, 02 ={0.01, 0.05,
0.07,0.1,0.3, 0.5}.

Here, we report results of the Salt and Pepper noise. This noise has binary representation. The
salt and pepper noise is controlled by its density SaP(d). Figure 19 reports results of this noise for d =
{0.01, 0.05, 0.07, 0.5}, while Figure 20 reports the trend characteristic for the salt and pepper noise.

Lastly, we report results of the multiplicative noise M(i,0?), which is represented by the granulated
texture (Figure 21). This type of the noise is typical for ultrasound imaging and is generally caused by
improper transfer of the image data. It is not caused by random electrical noise but is related with
detector settings. We report the IR images corrupted by the multiplicative noise with parameters
=0, 0° ={0.01,0.05, 0.3, 0.5} (Figure 21), while the Figure 22 reports the trend characteristics for the
multiplicative noise.
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a) b) ) d)

Figure 19. Example of IR facial images corrupted by the Salt and Pepper: (a) SaP(0.01), (b) SaP(0.05),
(c) SaP(0.07), and (d) SaP(0.5).

6500
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—%— SaP(0, 0.01)
—*— SaP(0, 0.05)
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—— % 8aP(0, 0.5)
—¥— SaP(0, 0.3)

I

1 2 3 4 5 6
Alcohol state (-)

Figure 20. Trend characteristic for the salt and pepper noise SaP(d) with different density settings: d =
{0.01, 0.05, 0.07, 0.1, 0.3, 0.5}.

Figure 21. Example of IR facial images corrupted by the salt and pepper: (a) =0, 0> = 0.01, (b) 0 =0,
02=0.05,(c) u=0,02=03,and (d) u =0, 02 =0.5.

Lastly, we perform the analysis of the modified ABC algorithm against selected conventional
evolutionary schemes. The entire tested algorithms are implemented with the goal of a definition of
the initial clusters for the K-means method. All the testing is done for 8 segmentation classes, and
image resolution: 640 X 480 px. We select for a comparison Artificial Bee Colony (ABC), Particle
Swarm Optimization (PSO) and GA algorithm. All these optimization procedures are tested for same
IR images as the proposed modified ABC algorithm. Tables 19-21 represent experimental evolutionary
algorithm settings used for the comparative analysis. Details of the evolutionary optimization settings
can be found in [41]. For the alternative optimization methods settings (Tables 19-22), we use
recommendations from [41]. We tested all the optimization settings for IR image segmentation from
Tables 19-22. In the objective evaluation (Tables 23-25), we report the best results for each method. All
the experimental testing is done on the sample of twenty volunteers (nose and forehead IR images),
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together we analyze n = 40 IR images. The following parameters of the mentioned optimization

methods are considered for the comparison.
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Figure 22. Trend characteristic for the Multiplicative noise M(u,02) with different settings: = 0,0 =

{0.01, 0.05, 0.07, 0.1, 0.3, 0.5}.

Table 19. Parameters settings for the modified Artificial Bee Colony (ABC) algorithm.

Parameter Value

{80, 100, 200, 500}
{50, 100, 300, 500}
{10, 15}
(0, 1)

Number of food sources (SN)
Number of iterations (It)
selection limit (S;)
Lower limitation (Xyin) and upper limitation (Xmax)

Table 20. Parameters settings for the ABC algorithm.

Parameter Value

{80, 100, 200, 500}
{50, 100, 300, 500}
{10, 15}
(0, 1)

Number of food sources (SN)
Number of iterations (It)
selection limit (S;)
Lower limitation (Xin) and upper limitation (Xmax)

Table 21. Parameters settings for the Particle Swarm Optimization (PSO) algorithm.

Parameter

Value

Swarm size
Number of iterations (It)

{80, 100, 200, 500}
{50, 100, 300, 500}

Cognitive, social and neighborhood acceleration {2, 1, 3}
Lower limitation (Wyyi,) and upper limitation (Wmax) (0, 255)
Error goal 1x 1076
Maximal trial limit 450
Value of velocity weight at the end of the PSO iterations 0.3
Value of velocity weight at the beginning of the PSO 0.97
The fraction of the maximum iterations, for which W is linear evolved 0.6
Value of global minimum 0
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Table 22. Parameters settings for the GA.

Parameter Value
Population size {80, 100, 200, 500}
Number of iterations (It) {50, 100, 300, 500}
Crossover probability {0.2, 0.4, 0.5}
Mutation probability {0.1, 0.3, 0.5}
Number of bits for each variable 7
Eta () 1
Lower limitation (Xyin) and upper limitation (Xmax) (0, 1)

For the objective comparison of effectivity of the modified ABC algorithm against alternative
optimization strategies, we consider the following parameters:

Peak Signal-to-Noise Ratio (PSNR) [dB] expresses a ratio between the maximal power of the signal
and the corrupting noise [42—44]. By using the Mean Squared Error (MSE), the PSNR is defined as
follows:

MAX?
MSE )

In this expression, MAX; stands for the maximal pixel’s intensity value. We analyze 8-bit IR
images, so MAX; = 255.

Structural Similarity index (SSIM) is a parameter that predicts quality of the digital image [45—48].
SSIM is used for assessment and measurement of similarities between two images. Having two images
(gold standard and tested image) denoted as x and y, the SSIM is calculated as follows:

PSNR = 10logy, ( (13)

(2uxpy +€1) (20xy + 2)

SSIM(x, =
Cey) (M2 + 13 +c1) (02 + 03 + )

(14)

where p stands for the average, o2 is the variance, Oxy is the covariance of x and .

Feature Similarity index (FSIM) contains two stages: Phase congruency (PC), which a dimensionless
quantity of the significance of a local structure map. This stage is considered as a primary feature in
the FSIM. The second used feature is the image Gradient Magnitude (GM). These two features in the
FSIM are complementary of each other regarding specifying the image local quality [49-53].

For all the tested methods, we selected such settings from the Tables 19-22 which reflect the
best results of the stated parameters. For each image resolution: {640 x 480, 500 x 500, 300 x 300,
50 x 50}, we report five images with the best results. The best result for each test is highlighted.

Table 23 reports results from the experimental testing of the PSNR for different resolution. PSNR.
This parameter takes the MSE as indicator of the segmentation variability (13) regarding to the gold
standard. The lower MSE we obtain, the higher similarity we obtain for segmentation model. Based
on the results (Table 23), we can deduce that the image resolution significantly reduces this parameter.
Thus, the image resolution has a substantial impact on the segmentation effectivity.

Second considered parameter is the structural similarity (SSIM). SSIM is conventionally used for
evaluation of the multiregional segmentation accuracy. This parameter evaluates degradation and
change of the structural information. The structural information represent idea that pixels have strong
inter-dependencies, especially when they are spatially close. Based on the experimental testing, the
structural information is also depended on the image resolution (Table 24). Decreasing number of
pixels degrades SSIM parameter. Among alternative tested methods, the proposed method achieves
the highest SSIM results. Higher values of the SSIM indicates better results.

Lastly, we evaluate the FSIM parameter (Table 25). FSIM evaluates a local image quality. As well
as in the previous cases, higher FSIM corresponds with better result. As well as this parameter is
depended on the image resolution. Also, this parameter achieves the best results for the proposed
segmentation model.
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Table 23. Quantitative comparison for modified ABC, ABC, GA and Particle Swarm Optimization

(PSO) based on the Peak Signal-to-Noise Ratio (PSNR) [dB].

PSNR [dB]
Testing IR Image [px] n

Modified ABC ABC GA PSO
1 2711 26.54 26.99 29.98
2 27.03 26.45 26.98 26.92
640 x 480 3 26.78 25.92 26.74 27.78
4 26.77 26.54 25.84 26.71
5 27.13 27.11 26.87 26.98
1 25.12 25.01 24.33 24.98
2 26.12 25.87 25.44 25.51
500 x 500 3 25.45 25.32 25.87 24.65
4 26.17 25.93 25.45 26.01
5 24.65 24.87 25.11 24.84
1 24.45 23.44 23.87 24.15
2 23.98 23.65 2411 24.05
300 x 300 3 24.54 24.21 23.59 23.93
4 23.84 23.45 23.11 23.81
5 22.84 23.13 24.54 23.41
1 21.45 21.21 21.35 20.48
2 21.65 21.36 20.48 20.16
50 x 50 3 20.84 20.65 20.94 21.13
4 21.32 20.45 20.84 20.44
5 21.55 20.98 20.74 2143

Table 24. Quantitative comparison for modified ABC, ABC, GA, and PSO based on the SSIM.

SSIM
Testing IR Image [px] n

Modified ABC ABC GA PSO
1 0.94 0.87 0.72 091
2 0.98 0.91 0.94 0.79
640 x 480 3 0.89 0.91 0.78 0.88
4 0.93 0.91 0.87 0.88
5 0.96 0.89 0.73 0.79
1 0.77 0.81 0.74 0.75
2 0.90 0.73 0.79 0.89
500 x 500 3 0.59 0.93 0.69 0.78
4 0.79 0.71 0.73 0.74
5 0.82 0.83 0.76 0.77
1 0.65 0.67 0.45 0.59
2 0.64 0.61 0.52 0.59
300 x 300 3 0.74 0.71 0.68 0.69
4 0.82 0.81 0.74 0.58
5 0.79 0.81 0.78 0.80
1 0.66 0.61 0.62 0.65
2 0.69 0.45 0.49 0.53
50 x 50 3 0.74 0.75 0.73 0.65
4 0.78 0.65 0.67 0.69
5 0.74 0.76 0.74 0.81
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Table 25. Quantitative comparison for modified ABC, ABC, GA, and PSO based on the FSIM.

FSIM
Testing IR Image [px] n

Modified ABC ABC GA PSO
1 0.88 0.84 0.87 0.83
2 0.95 0.77 0.81 0.93
640 x 480 3 0.91 0.88 0.89 0.93
4 0.79 0.77 0.68 0.78
5 0.87 0.86 0.86 0.84
1 0.69 0.72 0.73 0.75
2 0.72 0.71 0.65 0.71
500 x 500 3 0.83 0.81 0.79 0.68
4 0.81 0.74 0.79 0.80
5 0.78 0.81 0.78 0.81
1 0.65 0.69 0.64 0.64
2 0.72 0.71 0.59 0.63
300 x 300 3 0.65 0.69 0.61 0.59
4 0.78 0.71 0.73 0.74
5 0.77 0.73 0.74 0.68
1 0.59 0.57 0.45 0.53
2 0.54 0.51 0.52 0.61
50 x 50 3 0.61 0.54 0.59 0.60
4 0.68 0.55 0.58 0.59
5 0.71 0.68 0.56 0.70

7. Discussion and Future Perspectives

Alcoholintoxication is frequently discussed area due to its large importance. There are conventional
methods, which can detect and measure the alcohol content, for example, breath or blood analysis.
On the other hand, such methods usually serve for on-spot measurement, do not allow dynamical
tracking of alcohol intoxication, and require awareness of the tested person. Safety systems would
need additive systems allowing for automatic indication and classification of people, who may be
under the alcohol influence.

Despite conventional methods, alcohol may be estimated based on facial features representing a
dynamical progress of facial temperature distribution. The current reviewed papers show that alcohol
intoxication may be estimated via extraction of the facial features, which are linked with real intoxication.
One of the limitations of the current literature is its binary recognition: sober/drunk. Such an approach
does not allow tracking of the dynamical features as markers of alcohol intoxication. In our analysis,
we use the idea that the IR facial image domain can be decomposed via the multiregional segmentation
to identify and classify the temperature-facial features being changed within the gradual intoxication.

One of the crucial parts of IR facial image analysis is the dataset. We have done two measurement
with twenty tested persons. Our results show that multiregional segmentation is capable of identifying
the facial areas in the nose and forehead, which show significant temperature variations whilst alcohol
drinking. The relevance of the results is also supported by correlating the analysis with breath analysis.
This analysis shows a strong linear dependency between facial temperature and the breath analysis.
On the other hand, we are aware of limitations of the analysis. We used one IR camera, and images
were taken with unified resolution. It will be worth using different types of the IR cameras to compare
the proposed model effectivity for different data sources.

In this paper, we bring a novel clustering scheme focused on the dynamical tracking of alcohol
intoxication from IR images. Unlike conventional methods intended for on-spot measurement of a level
of intoxication, we analyzed thermal facial features enabling dynamical tracking of gradual intoxication.

A multiregional segmentation allows for a decomposition of the facial IR image into finite intensity
bands. Segmentation based on the clustering performs this decomposition based on the intensity
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features similarity. This similarity can be measured via distance function, which classifies respective
facial temperature to such a cluster with a minimal distance. One of the major limitations of the
K-means clustering is the initial centroids placement. For this task, there is no scheme versatility
applicable for any image data. The proposed method, which utilizes evolutionary optimization on the
modified ABC algorithm, generates a finite number of possible solutions of the centroids’ placement
which are evaluated during the optimization process. For this task, statistical variance is used to
evaluate the quality of the respective solution within the evolutionary optimization.

The proposed multiregional segmentation model identifies a finite number of clusters containing
thermal facial intensities with closely similar features. Based on the experimental results, we have
performed modeling of the hottest facial temperature spectrum in the forehead, and the coldest spectrum
in the nose. These model’s features show the dynamical trend of facial temperature distribution whilst
alcohol drinking. Lastly, we have objectivized the proposed segmentation model based on selected
parameters. Judging by the experimental results, the proposed method appear to be the most robust,
when comparing with selected alternative methods, even in the noisy environment.

The proposed model is primarily intended for the modeling and extraction of the facial-temperature
areas which express significant dynamical development whilst gradual alcohol drinking. The further
challenging issue may be classification of the respective stages of intoxication. Also, there are other
aspects, which should be significant regarding modeling intoxication. Various people may have
different inclinations to alcohol consumption or to types of particular alcohol. These aspects may be
noticeable in the IR facial records. Thus, the sensitivity of the model of such phenomena is important for
further development in this area. Lastly, the residual alcohol modeling may be important in this model.
In the future it will be worth investigating the model robustness and sensitivity in the stated features.
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