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Abstract: 

 

In this paper, a systematic data-driven fuzzy modelling methodology is proposed, 

which allows to construct Mamdani fuzzy models considering both accuracy 

(precision) and transparency (interpretability) of fuzzy systems. The new 

methodology employs a fast hierarchical clustering algorithm to generate an initial 

fuzzy model efficiently; a training data selection mechanism is developed to identify 

appropriate and efficient data as learning samples; a high-performance Particle Swarm 

Optimisation (PSO) based multi-objective optimisation mechanism is developed to 

further improve the fuzzy model in terms of both the structure and the parameters; and 

a new tolerance analysis method is proposed to derive the confidence bands relating 

to the final elicited models. This proposed modelling approach is evaluated using two 

benchmark problems and is shown to outperform other modelling approaches. 

Furthermore, the proposed approach is successfully applied to complex high-

dimensional modelling problems for manufacturing of alloy steels, using ‘real’ 

industrial data. These problems concern the prediction of the mechanical properties of 

alloy steels by correlating them with the heat treatment process conditions as well as 

the weight percentages of the chemical compositions. 
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1 Introduction 

 

There are many modelling problems for which accurate mathematical models do not 

exist or are difficult to obtain for complex environments [1], and yet the available data 

that represent the input-output relationships may be abundant. In these cases, 

alternative data-driven modelling techniques, such as those associated with fuzzy 

systems, may be suitable techniques to represent related system responses and 



 2 

behaviours. 

 

In material engineering, it is essential to establish accurate and reliable mechanical 

property prediction models for materials design and development. But it may be 

‘tricky’ to precisely describe the behaviour of mechanical properties using 

mathematical models alone due to the complexity of materials’ chemical composites 

and their underlying physical processing mechanisms, such as hot rolling and heat 

treatment. Thus, developing a fast, efficient and transparent data-driven modelling 

framework for material property prediction is still a priority. 

 

In the past, some prediction models relating to mechanical properties or 

manufacturing processes were developed, which were mainly based on linear 

regression methods [2], fuzzy regression methods [3, 4] or artificial neural networks 

[5, 6]. Such linear models are only designed for specific classes of steels and specific 

processing routes, and are not sophisticated enough to account for more complex 

interactions, while neural networks are black-box techniques and the knowledge 

behind this kind of models cannot be understood fully. In recent years, fuzzy 

modelling techniques were also introduced for the prediction of mechanical 

properties, for instance in [7, 8], but all these attempts did not include multi-objective 

optimisation as the core solution provider. 

 

Particularly in this work, several important mechanical properties of heat-treated alloy 

steels were studied, including the Ultimate Tensile Strength (UTS), elongation and 

Charpy impact energy. These problems are high-dimension modelling problems and 

have no less than fifteen input variables, which include the weight percentages for 

various chemical composites as well as the processing parameters of the heat 

treatment. Moreover, these problems are associated with a large amount of industrial 

data, which are not well-distributed and may be quantitatively redundant for training 

purposes. Thus, a training data selection mechanism is needed to find the most 

appropriate representative data so as to improve the modelling efficiency as well as to 

reduce computational complexity. 

 

Based on the above consideration, a systematic data-driven fuzzy modelling 

methodology is proposed in this paper. The most important features of this approach 

consist of the following: 

1. Mamdani fuzzy models [9], instead of TSK fuzzy models [10] (less 

transparent), are used in the context of the regression problems where precise 

predictions are needed. 

2. A new version of the agglomerative complete-link clustering algorithm [11] is 

employed to generate the initial fuzzy model. It can reduce the computational 

complexity and is shown to outperform the well-known clustering algorithm 

FCM [12]. 
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3. A new data selection technique is proposed for selecting the appropriate and 

representative data for training. By using this technique, the modelling 

efficiency can be improved significantly. 

4. The multi-objective optimisation technique is employed to improve the 

modelling performance, taking into account both the accuracy and the 

interpretability attributes of fuzzy models. As a result, a set of Pareto-optimal 

fuzzy models with different accuracy and interpretability levels can be 

generated, which provide a wider choice of different solutions to users. 

5. A novel and efficient evolutionary technique, an improved version of PSO [13, 

14], is employed in order to optimise both the parameters and the structure of 

fuzzy systems, which is shown to work effectively in optimising the complex 

modelling problems. 

6. The proposed fuzzy modelling approach is developed to solve not only low-

dimensional modelling problems but also challenging high-dimensional 

modelling problems. In this work, all the proposed high-performance 

paradigms cooperate together in a ‘symbiosis-like’ fashion to tackle the high-

dimensional modelling problem efficiently. 

7. A new analytical method is proposed for deriving the confidence bands 

relating to the elicited models. This method can help provide useful 

information about how confident one can be when analysing an output 

prediction. 

 

This paper is organised as follows. Section 2 introduces details of the proposed 

modelling framework. In Section 3, the related experimental studies are presented. 

First, the proposed modelling approach is applied to the modelling of two benchmark 

problems, one is a problem of static nonlinear system approximation and the other is a 

dynamical system identification problem. Furthermore, the modelling framework is 

applied to the modelling of the mechanical properties of alloy steels using real 

industrial data. Finally, Section 4 concludes this paper. 

 

2. The proposed modelling methodology 

 

The fundamental concept of fuzzy systems was first introduced by Zadeh in 1965 [15] 

and later expanded upon in 1973 [16]. The main advantages of fuzzy systems consist 

of the following: First, fuzzy systems are interpretable (transparent). They include an 

explicit knowledge representation in the form of linguistic ‘If-Then’ rules, which can 

easily be understood and explained by humans to allow them to gain a deeper insight 

into uncertain, complex and ill-defined systems. Second, fuzzy systems are, more 

often than not, viewed as robust ‘universal approximators’ [17] capable of performing 

nonlinear mappings between inputs and outputs. Last, fuzzy systems are relatively 

easy to design and relatively inexpensive to implement. 

 



 4 

Fuzzy modelling in particular is a systems modelling approach employing fuzzy 

systems. Normally, there are two complementary ways for fuzzy modelling, namely 

‘knowledge acquisition’ from human experts and ‘knowledge discovery’ from data. 

The knowledge acquisition approach lends itself to the design of fuzzy models based 

on existing expert-knowledge. However, the complete and consistent expert 

knowledge is not always available or the cost of deriving such expert knowledge may 

be too high. On the other hand, knowledge discovery from data, i.e. ‘data-driven’ 

fuzzy modelling, can enable one to identify the structure and the parameters of fuzzy 

models from numerical data automatically. In recent years, people have witnessed a 

significant growth in both the generation and the collection of data, which allow the 

data-driven modelling approach to take on a more ‘pragmatic’ flavour. 

 

Generally, data-driven fuzzy modelling is a two-step process. The first step consists of 

initially generating a ‘crude’ approximation of the fuzzy model. This can be achieved 

via two methods: the grid-partitioning based method or the clustering based method. 

For the first method, the grid-partitioning defines a number of fuzzy sets for each 

variable. These fuzzy sets are shared by all the fuzzy rules. The big disadvantage of 

this method is its huge number of fuzzy rules for high-dimensional modelling problem. 

In contrast, the second method employs data clustering (grouping) information to 

define fuzzy sets. The fuzzy sets are not shared by all the rules, but each set is only 

mapped into one particular fuzzy rule. In this method, each fuzzy rule is associated to 

one cluster. 

 

The second step of data-driven fuzzy modelling consists of optimising the initial 

fuzzy sets and the initial fuzzy rules to lead to a final optimised fuzzy model. The 

main techniques for this work include linear least squares, gradient descent methods, 

and some evolutionary optimisation techniques. Two of the most successful 

paradigms to implement these learning and optimisation methods relate to neuro-

fuzzy systems [18] and evolutionary fuzzy systems [19]. Neuro-fuzzy systems view 

fuzzy systems as a particular type of neural networks (RBF networks [18]) and 

employ related neural networks’ training techniques, such as the Back-Propagation 

algorithm (BP) [18], to improve the parameters of the fuzzy sets. On the other hand, 

evolutionary fuzzy systems employ evolutionary techniques, such as Genetic 

Algorithms (GAs) [19], Evolution Strategies (ESs) [20] and Particle Swarm 

Optimisation (PSO) [21], to improve the initial fuzzy systems, because of their 

capability for searching relatively large multidimensional solution spaces. Compared 

with neuro-fuzzy systems, evolutionary fuzzy systems are able to realise 

improvements on not only the parameters but also the structure of the fuzzy systems. 

 

Moreover, multi-objective optimisation techniques within the evolutionary 

computation can prove very helpful in studying the trade-off between the accuracy 

and the interpretability of fuzzy systems. Some recent works in the literature [22-25] 
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have employed multi-objective optimisation techniques to tackle the trade-off issue of 

Mamdani fuzzy models [9]. But all of them were carried out based on grid-

partitioning-type fuzzy sets and cannot avoid the difficulty associated with the curse 

of dimensionality. For high-dimensional problems in a continuous input-output 

domain where precise numerical prediction is required, such models require a 

significant number of fuzzy rules, which can potentially exponentially increase when 

the dimensionality of the problem is increased. Some applications of multi-objective 

optimisation techniques have also been discussed in the literature [26-29] to study the 

trade-off between accuracy and interpretability of Takagi-Sugeno (TS) fuzzy models 

[10]. Compared with Mamdani fuzzy systems, TS fuzzy systems are relatively less 

transparent, since they replace the linguistic consequent parts of the Mamdani fuzzy 

systems with mathematical (deterministic) functions. 

 

2.1 The framework of the proposed modelling methodology 

 

Figure 1 shows the flow chart of the proposed fuzzy modelling approach. This 

approach will be referred to throughout as the Hierarchical Fuzzy Modelling approach 

with a training Data Selection method and a Multi-objective Optimisation mechanism 

(HFM-DSMO). It can be divided into several parts and the execution steps can be 

described as follows: 

1. Data clustering: A data clustering algorithm, such as the proposed new 

version of the agglomerative complete-link clustering algorithm, is employed 

to process training data in order to obtain the information relating to clusters. 

2. Initial model construction: The information about clusters is then used to 

construct an initial fuzzy model. 

3. Crude data selection: The clusters information is also used for a selection of 

training data. Following this operation, an initial representative training data-

set is obtained. 

4. Accuracy optimisation and missing data selection: In this step, the initial 

fuzzy model is briefly improved in terms of accuracy and a further 

representative training data set is selected. After this step, a relatively accurate 

fuzzy model is obtained and a complete reduced training data-set is formed. 

5. Multi-objective optimisation: By using a multi-objective optimisation 

algorithm, such as nMPSO [13, 14], the previous fuzzy model is further 

optimised according to the accuracy and interpretability objectives. Finally, a 

set of Pareto-optimal fuzzy models should be obtained. 

 

<Figure 1> 

 

2.2 Data clustering and initial fuzzy model construction 

 

Clustering is an unsupervised form of classification of data into different clusters 



 6 

(groups) [30]. In fuzzy modelling, clustering techniques are widely used to generate 

the partitions of fuzzy sets automatically [31, 32]. 

 

In [11], a new hierarchical clustering algorithm, which is an improved agglomerative 

complete-link clustering algorithm, was designed to reduce the computation 

complexity and improve the efficiency. The algorithm has been shown to perform 

better than other well-known clustering algorithms, such as the fuzzy c-means (FCM) 

clustering algorithm [12], in initial fuzzy model generation. 

 

By using the clustering algorithm, a predefined number of clusters can be obtained 

from the training data. The information that these clusters will provide is then used to 

construct an initial fuzzy model. In this modelling approach, one cluster corresponds 

directly to one fuzzy rule; the centres of membership functions are defined using the 

information of their corresponding clusters’ centre positions; other parameters relating 

to the membership functions are defined under the principle that one membership 

function must cover all the training data, which are included in its corresponding 

cluster. More details relating to this issue can be obtained from [11]. 

 

2.3 Training data selection 

 

It is well-known that more training data will not necessarily lead to a better 

performance for data-driven models. Sometimes, one can identify a scenario where 

the training data are abundant and are concentrated in a small area of the input/output 

space. In this situation, if all the data are used in the training phase, then the areas 

with high data densities will be trained well and the areas with low data densities will 

be trained less so. It means that the extracted model will be accurate in some areas but 

not that so accurate in others. 

 

To balance the training performance in different areas, one needs to reduce the 

training data in the areas with high data densities and some of the most representative 

data should be held and used in the later training phase. Obviously, another important 

advantage of the data selection mechanism is that it will save effort and time for 

training, since the data selection will reduce the size of the training data set. 

 

For selecting the representative data that include all the important information of the 

original data set, the clustering technique may prove helpful. In data clustering, all the 

data are classified into several clusters with different features. In other words, the data 

in different clusters contain different information. Thus, the representative data should 

be selected from each cluster. To balance the influence of different clusters, the 

number of the selected data from each cluster should be approximately equal. For 

every cluster, the data with a minimal or maximal value in each dimension are very 

important. They provide one with the information of the cluster boundaries. The 
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generated model using this type of data can avoid the problem associated with 

generalisation. Therefore, these data should be included in the selected training data 

set. 

 

In the previous initial fuzzy model extraction approach, the hierarchical clustering 

algorithm has been employed. The clustering result can be directly applied to select 

the training data. In summary, this selection method can be described as follows: For 

every cluster, the data including the minimal or maximal value in each input or output 

dimension are selected as the training data. If the number of the data which include 

the minimal or maximal value in one particular dimension is more than one, then only 

one data point (vector) will be randomly chosen and kept in the training data set. As a 

result, if the number of clusters is Nc and the dimension of the problem is D+1 (D-

input and 1-output), then the number of the selected training data will be less than 

2×Nc×(D+1). This method can be qualified as a ‘crude data selection’. 

 

The above training data selection method is able to find a set of training data with 

some representative features, but it may still miss some important data. First, if more 

than one datum includes the minimal or maximal value in one specific input or output 

dimension, some data will be abandoned. The abandoned data may however contain 

some important information. Second, the data located inside the clusters, which do not 

have any minimal or maximal value, are also likely to contain some useful 

information for modelling. 

 

Compared with the data that have already been selected, the missing data 

representative must possess some different features. Thus, the prediction model, 

which is trained based on the data that have already been selected, must be inaccurate 

as far as the missing data are concerned. As a result, the following method is proposed 

which is used to detect the missing representative data to be added to the training data 

set: 

1. Train the initial fuzzy model using the data selected by the ‘crude data 

selection’ method. This model does not need to be well optimised. 

2. Calculate the output prediction of all the available training data using the 

trained model. Find a set of data with the biggest differences between the 

predicted output value and the true output value. 

3. The data found in Step 2 are added to the training data set and the new training 

data set is used to improve the existing fuzzy model. 

It should be noted that the above missing data selection procedure may need to be 

repeated several times to ensure that all the representative data are included in the 

final selected training data set. 

 

By combining the initially selected training data and the subsequently detected 

training data, one can obtain the final training data, which are the representatives of 
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all the training data which can then be used in the next model improvement stage. 

Figure 2 shows the flow chart of the joint mechanism for accuracy optimisation and 

missing data detection. Normally, the termination criterion for this mechanism is 

designed so that the loop iteration achieves a predefined number. 

 

<Figure 2> 

 

2.4 Multi-objective optimisation of accuracy and interpretability 

 

The improvement of interpretability of fuzzy systems is tantamount to reducing the 

number of fuzzy rules, reducing the length of fuzzy rules, reducing the number of 

fuzzy sets, and adjusting these sets to be evenly distributed along the universes of 

discourse. These tasks can be achieved using the following four-step operation 

(Section 2.4.1 – 2.4.4). 

 

2.4.1 Removing redundant fuzzy rules 

 

This operation can reduce the number of fuzzy rules. Concomitantly, some fuzzy sets, 

which are only involved in these redundant rules, may also be removed. To evaluate 

whether a fuzzy rule is redundant or not, two evaluation measures are used, namely 

confidence and support [33]. In [33], the confidence measure is introduced as follows: 
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where μA(xi) is the compatibility grade of the input vector xi with the antecedent part 

A = [A1, A2, …, AD]
T
 of the fuzzy rule R, and μB(yi) is the compatibility grade of the 

output value yi with the consequent part B of R. μA(xi) is usually defined by the 

minimum operator or the product operator [33]. Such as: 
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where μAj(xj
i
) is the membership function of the antecedent fuzzy set Aj. On the other 

hand, the support of a fuzzy rule A → B is defined as follows [33]: 
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In this work, the product of support and confidence is used as the criterion for the 

fuzzy rule selection. A threshold Th1 for this rule selection is also defined. If the 

product criterion of one rule is smaller than the threshold Th1, then this fuzzy rule is 

deemed redundant, and as a consequence the fuzzy rule and the fuzzy sets that are 
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only included by this redundant rule are removed. 

 

2.4.2 Merging similar fuzzy rules 

 

This operation can reduce the number of fuzzy rules. At the same time, the fuzzy sets 

involved within similar rules are also merged. To decide whether two fuzzy rules are 

similar enough for combination or not, one only needs to evaluate the similarity of the 

antecedent parts of the rules. Two fuzzy rules with very similar antecedents but 

different consequents usually indicate that these two rules conflict with each other. 

Therefore, we should either merge these rules into one new rule or delete one of them. 

 

To calculate the degree of similarity for the antecedents of two fuzzy rules, the 

similarity of every fuzzy set pair should be checked. For the kth fuzzy rule Rk, the 

corresponding preconditions are A1
k
, A2

k
, …, AD

k
. Similarly, the corresponding 

antecedents of the lth rule Rl are A1
l
, A2

l
, …, AD

l
. Thus, the similarity measure can be 

characterised as follows [20]: 
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where S(Am
k
, Am

l
) is the similarity of two fuzzy sets Am

k
 and Am

l
 and it is defined in 

Section 2.4.4. 

 

Once SR(Rk, Rl) reaches a threshold Th2, then these two fuzzy rules as well as the 

fuzzy set pairs of these two rules are considered to be similar. The two fuzzy rules are 

then merged into a new rule Rnew. The new antecedents and consequent of Rnew are 

obtained by merging the corresponding fuzzy sets (see Section 2.4.4). 

 

2.4.3 Removing redundant fuzzy sets 

 

This operation can reduce the number of fuzzy sets by removing the ones that cover 

others. In addition, this operation can also shorten the length of fuzzy rules because 

some of their premises, which include redundant fuzzy sets, should also be removed 

from the fuzzy rules simultaneously. 

 

In this method, the similarity for each fuzzy set An to the universal set U (μU(x) = 1) is 

calculated. If the similarity value is greater than a threshold value Th3, then this fuzzy 

set is counted as a redundant fuzzy set. As a result, the associated fuzzy set should be 

removed. If Gaussian membership functions are involved, then the similarity of one 

fuzzy set to the universal set can be represented using the parameter σn. 

 

2.4.4 Merging similar fuzzy sets 

 

This operation can keep the number of fuzzy sets low and also tune the fuzzy sets so 
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as not to overlap. For an evaluation purpose, some fuzzy similarity measures have 

already been introduced in the past [34], one of which is as follows: 

),(1

1
),(

21

21
AAd

AAS


 ,                                                                  (6) 

where d(A1, A2) is the distance between two fuzzy sets A1 and A2. 

 

If Gaussian membership functions are employed, then the distance between two fuzzy 

sets can be approximated using the following simple expression [35]: 

2

21

2

2121 )()(),(   ccAAd .                                               (7) 

 

A threshold Th4 for merging similar fuzzy sets is then defined, where Th4 ∈  (0, 1]. If 

S(A1, A2) > Th4, i.e., the fuzzy sets A1 and A2 are highly overlapping, then these two 

fuzzy sets should be merged into one new fuzzy set Anew, where cnew = (c1 + c2) / 2 and 

σnew = (σ1 + σ2) / 2. Because the fuzzy sets in the antecedent part and those in the 

consequent part have a different influence on the performance of a fuzzy model, 

different thresholds should be separately set. 

 

2.4.5 The proposed multi-objective optimisation mechanism 

 

Based on the advised four-step interpretability improvement operation, a multi-

objective optimisation mechanism, which is intended to optimise both the accuracy 

and the interpretability of fuzzy systems, is developed. Specifically, a multi-objective 

optimisation algorithm is employed to optimise the parameters of the membership 

functions of fuzzy sets, as well as optimise the rule base by finding the optimal 

thresholds for interpretability improvement operation. Figure 3 outlines the procedure 

behind the proposed mechanism. It works according to the following steps: 

1. Initial threshold values generation: Randomly generate the values of 

thresholds within predefined bounds. 

2. Interpretability improvement: Based on the reduced training data, improve 

the previous fuzzy model in interpretability using the proposed 4-step 

improvement operation. In this step, the input rule-base is fixed and remains as 

such while the parameters of the membership functions and the thresholds 

vary after each loop. Following this step, a new fuzzy model is elicited. 

3. Performance evaluation: The new fuzzy model is evaluated using designed 

fitness functions (objective functions). 

4. Pareto-optimal fuzzy models preservation: Compare the fitness of every 

generated model; preserve the adequate Pareto-optimal models via the archive 

mechanism in nMPSO [13]. 

5. New parameters and thresholds generation: This task is accomplished by 

the nMPSO algorithm based on some particular principles, which are related 

to the fitness values and the location of individual solutions. 
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6. Termination estimation: If the termination criteria are achieved, then stop the 

mechanism and return the final Pareto-optimal fuzzy models; otherwise, 

replace the old membership function’s parameters and threshold values with 

new ones and go back to Step 2. 

Normally, the termination criteria are designed so that the number of function 

evaluations achieves a predefined value. It should been noted that the structure of a 

fuzzy model is not directly coded into the optimisation procedure, but is rather varied 

and optimised via controlling the thresholds. Generally, it is recommended that the 

thresholds should be located in the ranges shown in Table 1. 

 

<Figure 3> 

<Table 1> 

 

The accuracy of a fuzzy model can be evaluated using the Root Mean Square Error 

(RMSE) index, which is described as follows: 
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where yl
m
 is the measured output data and yl

p
 is the predicted output data, l = 1, 2, …, 

N; N is the total number of data. The interpretability of a fuzzy model is affected by 

the number of fuzzy rules (Nrule), the number of fuzzy sets (Nset) and the total length 

of fuzzy rules (Lrule). 

 

To normalise these two objectives and make them similar and comparable in scale, 

they are formulated as follows: 

Objective 1: 
IRMSE

RMSE
; 

Objective 2: 
III Lrule

Lrule

Nset

Nset

Nrule

Nrule
 ;                                          (9) 

where RMSEI  is the root mean square error of the fuzzy model that is not optimised 

using the multi-objective optimisation mechanism; NruleI, NsetI and LruleI represent 

the number of fuzzy rules, the number of fuzzy sets and the total rule length of this 

fuzzy model, respectively. 

 

In this mechanism, an improved version of PSO is employed. PSO is a powerful 

evolutionary computation technique that was originally introduced by Kennedy and 

Eberhart [36]. It was developed via the simulation of a simplified animal social 

behaviour of birds flocking and fish schooling. As a numerical optimisation 

algorithm, PSO is more suitable than the heuristic algorithms that are mainly designed 

for combinatorial optimisation problems, such as tabu search [37] and ant colony 

optimisation [38]. Compared with other numerical optimisation algorithms, such as 
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genetic algorithm [39] and artificial immune systems [40], PSO is easy to implement 

and is able to quickly converge to a reasonably good solution [21]. 

 

In the previously reported work [13], an alternative structure for PSO, named ‘nPSO’, 

was introduced. In nPSO, a ‘momentum term’ was proposed to replace the original 

inertia term of the standard PSO, which can help to avoid premature convergence and 

encourage the particles to jump out of any local optimum. To provide the particles of 

nPSO with more adaptability, a separate momentum weight was assigned to each 

particle as it dynamically adjusts itself according to the particle’s own search 

experience. In the later paper [14], the nPSO algorithm was further improved, 

whereby the population size of this algorithm can also be dynamically varied 

according to the algorithm’s search performance in the optimisation process. The 

modified algorithm was then extended to a multi-objective optimisation case as 

‘nMPSO’. These proposed algorithms have been compared with some salient single-

objective and multi-objective evolutionary algorithms using a large set of difficult 

benchmark optimisation problems. The results showed that the proposed algorithms 

outperform the other algorithms in most cases. 

 

2.5 Confidence band analysis 

 

Once the final fuzzy models have been elicited, one wishes to know how confident 

one can be of a particular output a prediction. Normally, the standard deviation of the 

prediction errors of all the training data is computed in order to represent the 

confidence band. But the standard deviation can only inform on a generalised view 

about the model. It cannot provide particular guidance for one specific prediction. For 

example, for different predictions given by a developed model, the tolerance should 

be different, while the standard deviation is only a fixed value, which shows the 

general confidence degree relating to the model. 

 

In this work, a confidence band named α%-range confidence band is designed. It is 

calculated as follows: 

1. When given a prediction value y
p
, define a prediction scope S where the lower 

bound is y
p
-0.005×α×Lp and the upper bound is y

p
+0.005×α×Lp, with Lp being 

the total range of the prediction values and it equals to the maximal prediction 

value minus the minimal prediction value. 

2. From all the training data, find the ones pi with their prediction output values 

yi
p
 including in the scope S, which is Sy p

i  , where i = 1, 2, …, Ns and Ns is 

the number of training data pi. 

3. The α%-range confidence band CB is defined using the standard deviation of 

the prediction errors of the training data pi: 
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where Error = {error1, error2, …, errorNs}; errorj = yj
p
 - yj

m
; yj

m
 are the 

measured output values of pi; i = 1, 2, …, Ns.

 

For an obtained model, it is not realistic to calculate the α%-range confidence band 

for every possible prediction. Generally, some averagely distributed prediction values 

are selected to provide some confidence bands which will be viewed as the 

representatives of all the possible prediction values. 

 

3. Experimental studies 

 

In order to validate the effectiveness of the proposed modelling strategy HFM-

DSMO, the associated approach was applied to the modelling of two benchmark 

problems, one is a problem of static nonlinear system approximation and the other is a 

dynamical system identification problem. Furthermore, HFM-DSMO was applied to 

the modelling of mechanical properties of alloy steels using a large amount of high-

dimensional, real industrial data. 

 

3.1 The nonlinear function approximation 

 

In this experiment, the proposed fuzzy modelling approach was used to approximate 

the following two-input-single-output nonlinear static system, which is introduced in 

[41]: 
25.1

2

2

1 )1(   xxy , 5,1 21  xx .                                                (11) 

 

In order to establish a quantitative comparison with the results obtained in other 

papers, the training data set was selected as being the same as the one described in 

[41], which consists of 50 data points. Furthermore, another 50 randomly generated 

data points were used for model testing. 

 

In this case, the initial fuzzy model was obtained using 8 clusters, resulting in a model 

with 8 rules and 24 fuzzy sets. For the optimisation algorithm nPSO and nMPSO [13], 

the population size was set to be 10; the acceleration coefficients c1 and c2 were set to 

1.5; the scaling parameters m1 and m2 were set to 0.5 and 2 respectively; ε = 10
-10

; the 

position parameter posid was updated using both the one-directional refresh 

mechanism (with the 70% probability of usage) and the multiple-directional refresh 

mechanism (with the 30% probability of usage) [13]; for nMPSO, the frequency of 

the weight changing H = 2000; the maximum number of function evaluation for nPSO 

and nMPSO were both set to 20,000. This parameters configuration was inspired from 

suggestions included in [11]. The data selection mechanism was not applied since the 
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training data are not considered to be redundant in this case. 

 

The experiment was carried over for 20 runs. One set of results out of the 20 runs is 

randomly selected and shown in the following figures. Figure 4 shows their 

performances with respect to various indices, including the root mean square error, 

the number of fuzzy rules, the number of fuzzy sets and the length of the fuzzy rules. 

Figure 5 shows the prediction performance of the initial as well as the three selected 

fuzzy models, which include 8, 6 and 4 rules respectively. Figure 6 illustrates the 

distribution of their membership functions relating to two inputs (x1 and x2). It can be 

seen that, for these optimised models, more rules and more parameters will bring 

more accuracy while the models with fewer rules and parameters are simpler in 

structure and easier to understand. 

 

<Figure 4> 

<Figure 5> 

<Figure 6> 

 

To provide more details about these Pareto-optimal models, Figure 7 shows the rule-

base relating to the optimised system, which is the one associated with 8 rules, its 

other information being included in Figures 5(b) and 6(b). For this fuzzy model, the 

linguistic hedges approach [42] can be employed to derive the corresponding 

approximate linguistic rules [7, 41] as follows: 

R1: IF x2 is small, THEN y is medium large. 

R2: IF x1 is medium small AND x2 is medium large, THEN y is medium. 

R3: IF x1 is more or less medium large AND x2 is medium small, THEN y is 

medium small. 

R4: IF x1 is small, THEN y is large. 

R5: IF x1 is medium AND x2 is medium large, THEN y is small. 

R6: IF x1 is very medium AND x2 is medium, THEN y is medium small. 

R7: IF x2 is large, THEN y is small. 

R8: IF x1 is large AND x2 is medium, THEN y is small. 

By inspecting these linguistic rules, one can understand more about the system’s 

behaviour. 

 

<Figure 7> 

 

Figure 8 shows the three-dimensional input-output surfaces of the actual system and 

the optimised 8-rule fuzzy system. The 5%-range confidence band of this 8-rule fuzzy 

model is displayed in Figure 9. From this figure, one can infer more details of how 

confident one can be about a prediction. For instance, when a prediction is 4.6, its 

confidence band is relatively large, which means this prediction is not very reliable 

compared with most of the other predictions. 
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<Figure 8> 

<Figure 9> 

 

Table 2 describes the experimental results compared with those published via other 

research studies. Three groups of models out of all the Pareto-optimal models in 20 

runs, which include 8, 6 and 4 rules respectively, are chosen as the representatives and 

are listed in this table. It can be seen that HFM-DSMO performs better than the 

method, whose strategy is based on linguistic fuzzy systems [41]; for the method 

based on singleton fuzzy systems [1], it needs more fuzzy rules to reach the same 

accuracy level as that of HFM-DSMO. 

 

<Table 2> 

 

3.2 The identification of a dynamic system 

 

In this problem, the modelling target is a nonlinear second-order plant, which has 

been studied in [43-46], 

  )()2(),1()( kukykygky  ,                                                   (12) 
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where y() is the output of the system; g() is a nonlinear component; u() is the input 

signal; k is the index of the input signals. 

 

The output of this system depends on both its past states and the current input. The 

modelling purpose is to approximate the nonlinear component g(y(k – 1), y(k – 2)). 

Following the experimental settings in [46], 400 simulated data samples were 

generated from the plant model (12). With the starting equilibrium state (0, 0), the 

first 200 samples of training data were obtained by using a random input signal u(k) 

that is uniformly distributed in the interval [-1.5, 1.5] and the rest 200 samples of 

testing data were obtained by using a sinusoidal input signal u(k) = sin(2πk/25). 

 

In this case, the initial fuzzy model was also obtained with 8 clusters; the parameters 

of the optimisation paradigms were set the same as those in Section 3.1; the data 

selection mechanism was also not used in this case, since the training data are not 

redundant. 

 

This experiment was repeated 20 times. One set of models out of the 20 runs is 

randomly selected and shown in the following figures. Figure 10 demonstrates the 

trade-offs among the multiple objectives and criteria within 13 non-dominated fuzzy 
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system solutions. 

 

<Figure 10> 

 

To provide more details about these non-dominated models, the fuzzy rule-base of an 

optimised model, which includes 6 rules, is shown in Figure 11. For this fuzzy model, 

the following approximate linguistic rules can be derived by using the linguistic 

hedges approach [7, 41, 42]: 

R1: IF y(k – 1) is small AND y(k – 2) is medium large, THEN g(k) is large. 

R2: IF y(k – 1) is large AND y(k – 2) is medium large, THEN g(k) is large. 

R3: IF y(k – 1) is small AND y(k – 2) is medium small, THEN g(k) is small. 

R4: IF y(k – 1) is medium AND y(k – 2) is more or less medium small, THEN 

g(k) is medium. 

R5: IF y(k – 1) is large AND y(k – 2) is medium small, THEN g(k) is medium 

small. 

R6: IF y(k – 1) is medium AND y(k – 2) is medium large, THEN g(k) is 

medium. 

By inspecting these linguistic rules, one can obtain more knowledge relating to the 

system’s behaviour. 

 

<Figure 11> 

 

Figure 12 shows the three-dimensional response surfaces of the actual system and the 

optimised 6-rule fuzzy system. It can be observed that these two surfaces are perfectly 

matched. The 6-rule model’s 5%-range confidence band is shown in Figures 13. 

 

<Figure 12> 

<Figure 13> 

 

Table 3 compares the experimental results with some other studies previously 

reported in the literature [43-46]. Three groups of models out of all the Pareto-optimal 

models in 20 runs, which include 6, 4 and 3 rules respectively, together with the initial 

generated models are listed in this table. It can be seen that HFM-DSMO is able to 

produce more compact and simpler models compared to the other methods, since the 

modelling strategies reported in [43-45] needed more fuzzy rules and fuzzy sets to 

achieve the same accuracy level as that of HFM-DSMO. In other words, this proposed 

approach seems to strike a good balance between numerical accuracy and model 

simplicity, compared to the above mentioned fuzzy modelling methods. 

 

<Table 3> 

 

3.3 Mechanical properties prediction of alloy steels 
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In material engineering, specialist heat treatments consist of two main stages: 

hardening and tempering, are used to develop the required mechanical properties in a 

range of alloy steels [47]. It is not possible to accurately describe the process 

behaviour using mathematical models alone due to the complexity of the underlying 

physical mechanisms. In this work, several most important mechanical properties of 

heat-treated alloy steels are studied, including UTS, elongation and Charpy impact 

energy. The UTS represents a measure of the maximum load that a material can 

withstand. The elongation is a measure of ductility, which is usually expressed as a 

percentage change in the gauge length or diameter of the specimen after fracture [48]. 

Both the UTS and the elongation are obtained via an engineering tension test. On the 

other hand, a Charpy impact test is used as the indicator of toughness. It measures the 

energy (Charpy impact energy) necessary to fracture a standard Charpy V-notch bar 

specimen, by an impulse load [47]. 

 

All the data related to mechanical properties, which are used in this paper, are 

provided by Tata Corus (UK). They include no less than fifteen input variables and 

are considered as high-dimensional problems for modelling purposes. The UTS data 

include 15 inputs, which consist of the weight percentages for the chemical 

composites, namely carbon (C), silica (Si), manganese (Mn), sulphur (S), chromium 

(Cr), molybdenum (Mo), nickel (Ni), aluminium (Al) and vanadium (V), the test 

depth, the bar size, the treatment site, the quenching medium, as well as the hardening 

and tempering temperatures. In the elongation case, there are totally 16 inputs, which 

include all the inputs of the UTS case and another one, the elongation gauge length. 

The Charpy impact energy data also have 16 inputs variables, including the ones of 

the UTS data as well as the impact test temperature. 

 

Moreover, these modelling problems are associated with a large number of industrial 

data, including 3760 UTS data, 3804 elongation data and 1661 Charpy impact energy 

data. In the following sections, for one specific experiment, 75% of the data are used 

for training, 10% of the data are used for validation and the remaining 15% are used 

for final testing. 

 

3.3.1 The prediction of UTS 

 

In this experiment, the initial number of clusters was set to 15, which means that the 

initial fuzzy model was generated using 15 rules. For the optimisation algorithms 

nPSO and nMPSO, the parameter settings were the same as those in Section 3.1, 

except that the maximum numbers of function evaluation were both set to 50,000. 

After the operation of the training data selection mechanism, 440 data points out of 

2820 data points (all the training data) were selected and worked as the 

representatives of all the training data. 
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The experiment was run 20 times. One set of models out of the 20 runs is randomly 

chosen and shown in the following paragraphs. Figure 14 demonstrates the trade-offs 

among the multiple objectives and criteria, including the RMSE, the number of fuzzy 

rules, the number of fuzzy sets and the total length of fuzzy rules, within these Pareto-

optimal fuzzy models. Table 4 includes the main parameters of the initial model and 

the two optimised models, which are selected from all the Pareto-optimal models with 

13 and 10 rules respectively. 

 

<Figure 14> 

<Table 4> 

 

Figure 15 shows the prediction performance of these models. It can also be seen that 

the selected training data work well as the representatives of all the training data. By 

using these reduced data instead of all the training data, much computational time and 

user effort can be saved. 

 

<Figure 15> 

 

For more details about these Pareto-optimal UTS models, Figure 16 shows two rules 

(the 3
th

 rule and the 8
th

 rule) out of the rule-base of the optimised 10-rule model. For 

these fuzzy rules, they can be rewritten as the following approximate linguistic rules 

using the linguistic hedges approach: 

R3: IF Test Depth is small AND Size is more or less medium AND Site 

Number is more or less medium AND Si is medium AND Mn is small 

AND S is small AND Cr is medium small AND Mo is medium small 

AND Ni is more or less medium AND V is very small AND 

Tempering Temperature is large, THEN UTS is medium small. 

R8: IF Test Depth is more or less medium small AND Size is small AND Site 

Number is more or less large AND C is medium AND Si is more or 

less medium AND Mn is small AND S is medium small AND Cr is 

large AND Mo is more or less medium small AND Al is very small 

AND V is more or less small AND Hardening Temperature is more or 

less not large AND Cooling Medium Number is more or less medium 

AND Tempering Temperatures is medium, THEN UTS is large. 

It is clear that such linguistic fuzzy rules allow for a better insight into the heat-treated 

alloy steels process. 

 

<Figure 16> 

 

To verify the physical interpretation of the obtained models, Figure 17 shows the 

three-dimensional response surfaces of the 10-rule UTS model. These surfaces are 
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achieved by plotting two varying input variables against the output while keeping 

other input variables constant. The constant variables are set to the average values of 

the dominant steel grade, which is the 1%CrMo steel grade [47]. These plots in Figure 

17 are consistent with those variable effect plots in [47], which have been verified to 

follow the expected behaviour as predicted by theory or by expert knowledge. This 

10-rule model’s 5%-range confidence band is shown in Figure 18. From this figure, 

one can see that, for a prediction around 1700, it is more robust and reliable, when 

compared with a prediction around 1000. 

 

<Figure 17> 

<Figure 18> 

 

3.3.2  The prediction of elongation 

 

In this case, the configuration of all the parameters was set the same as those used in 

Section 3.3.1. After the data selection mechanism, 500 representative data points out 

of 2853 data points were selected and then used in the following training process. The 

experiment was run 20 times. One set of models out of the 20 runs is randomly 

selected and shown as follows: 

 

Figure 19 shows the trade-offs among the multiple criteria within these non-

dominated fuzzy models. Table 5 describes the main parameters of the initial 

elongation model and two optimised elongation models with 10 and 8 rules 

respectively, and Figure 20 shows the prediction performance of these models. 

 

<Figure 19> 

<Table 5> 

<Figure 20> 

 

The response surfaces of the 10-rule elongation model are shown in Figure 21, where 

the constant variables are set to be the average values of the 1%CrMo steel grade.  

These surfaces reveal a consistent match with the variable effect plots in [47], and this 

means the constructed models follow the expected behaviour as predicted by theory or 

by expert knowledge. 

 

<Figure 21> 

 

3.3.3 The prediction of Charpy impact energy 

 

In this example, the configuration of all the parameters was set the same as those in 

Section 3.3.1. Following the data selection exercise in Section 2.3, 455 data points out 

of 1246 data points were selected. The experiment was run 20 times. One set of 
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models out of these 20 runs is randomly selected and shown as follows: 

 

Figure 22 shows the trade-offs among the multiple criteria within these non-

dominated fuzzy solutions. Table 6 shows the main parameters of the initial impact 

energy model and two optimised impact energy models with 15 and 8 rules 

respectively. Figure 23 shows the prediction performance of these models. 

 

<Figure 22> 

<Table 6> 

<Figure 23> 

 

Figure 24 shows the three-dimensional response surfaces of the 15-rule impact energy 

model. For this case, the constant variables are set to the average values of the 

1%CrMo steel grade. This figure reveals a consistent match with the variable effect 

plots in [47], which have been verified to follow the theoretical or expert knowledge. 

It is also worth noting that the proposed modelling approach has a good nonlinear 

mapping and generalisation ability, which is evidenced by the smooth input-output 

response surfaces in Figures 8(b), 12(b), 17, 21 and 24. 

 

<Figure 24> 

 

4 Conclusions 

 

In this paper, a framework for data-driven fuzzy modelling, named HFM-DSMO, is 

proposed. It allows to construct Mamdani fuzzy models considering both the accuracy 

(precision) and the transparency (interpretability) attributes. Within this methodology, 

a fast hierarchical clustering algorithm is employed for the initial fuzzy model 

generation, which can reduce the computational complexity compared with its former 

version. Second, a training data selection mechanism is proposed for choosing most 

appropriate and efficient training data so as to save effort and time in training. Third, 

a high-performance multi-objective optimisation mechanism, which is based on the 

previously developed efficient optimisation algorithm nMPSO, is developed in order 

to optimise both the parameters and the structure of fuzzy systems in different 

accuracy and interpretability levels. Finally, a new analytical method is proposed for 

deriving the confidence bands relating to the final elicited models. 

 

The experimental validation was then carried out based on two benchmark problems, 

a static nonlinear system approximation problem and a dynamical system 

identification problem. The experimental results have revealed that, HFM-DSMO 

works effectively in eliciting accurate and interpretable models; compared to other 

modelling methods, HFM-DSMO is able to produce more compact and simpler 

models. 
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Furthermore, the proposed modelling approach was successfully applied within the 

context of manufacturing of heat-treated alloy steels, which aims to predict the 

mechanical properties for heat-treated alloy steels by correlating them with the heat 

treatment process conditions as well as the weight percentages of the chemical 

composites using complex, high-dimensional industrial data. The physical 

interpretation of the obtained models has been shown to be consistent with the 

expected behaviour as predicted by theory or by expert knowledge. In addition to the 

above, it is worth noting that the fuzzy models constructed using HFM-DSMO has a 

good generalisation ability, which is evidenced by the smooth input-output response 

surfaces obtained using the elicited models. 
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Tables: 

 

Table 1. Recommended ranges for thresholds 

Threshold Minimum Maximum 

Th1 0 0.01 

Th2 0.01 1 

Th3 0.5 2 

Th4 0.8 1 

 

Table 2. The performance comparison of various models for the nonlinear function 

approximation problem. 

Fuzzy 

model 

Number of 

fuzzy rules 

Number of 

fuzzy sets 

Total rule 

length 

RMSE of 

training 

RMSE of 

testing 

[41], 

Mamdani 

models 

6 (initial) 
Input: 12 

Output: 6 
12 0.5639 N/A 

6 

(optimised) 

Input: 12 

Output: 6 
12 0.2811 N/A 

[1], 

Singleton 

models 

9 (case 1) Input: 6 18 0.5126 N/A 

16 (case 2) Input: 8 32 0.1755 N/A 

25 (case 3) Input: 10 50 0.0658 N/A 

HFM-

DSMO, 

Mamdani 

models 

8 (initial) 

Input: 16 ± 

0 

Output: 8 ± 

0 

16 ± 0 0.3828 ± 0 
0.4457 ± 

0.1227 

8 

(optimised) 

Input: 13.63 

± 1.41 

Output: 

7.88 ± 0.35 

15.25 ± 

1.04 

0.0262 ± 

0.0029 

0.0801 ± 

0.0140 

6 

(optimised) 

Input: 10.67 

± 0.82 

Output: 

5.95 ± 0.23 

11.86 ± 

0.38 

0.0582 ± 

0.0038 

0.1146 ± 

0.0201 

4 

(optimised) 

Input: 6.85 

± 0.69 

Output: 

4.00 ± 0 

7.22 ± 0.83 
0.0820 ± 

0.0045 

0.1609 ± 

0.0273 
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Table 3. The performance comparison of various models for the dynamical system 

identification problem. 

Fuzzy 

model 

Number of 

fuzzy rules 

Number of 

fuzzy sets 

Total rule 

length 

RMSE of 

training 

RMSE of 

testing 

[43], 

Singleton 

models 

36 (initial) Input: 12 72 0.0053 0.0715 

23 

(optimised) 
Input: 12 46 0.0056 0.0384 

[44], 

Singleton 

models 

25 (initial) Input: 25 50 0.0152 0.0202 

20 

(optimised) 
Input: 20 40 0.0261 0.0154 

[45], 

Singleton 

models 

40 (initial) Input: 40 80 0.0181 0.0263 

28 

(optimised) 
Input: 28 56 0.0182 0.0244 

[46], 

Singleton 

models 

7 (initial) Input: 14 14 0.1265 0.0346 

7 

(optimised) 
Input: 14 14 0.0548 0.0221 

HFM-

DSMO, 

Mamdani 

models 

8 (initial) 

Input: 16 ± 

0 

Output: 8 ± 

0 

16 ± 0 
0.1712 ± 

0.0121 

0.2923 ± 

0.0245 

6 

(optimised) 

Input: 9.46 

± 1.05 

Output: 

5.92 ± 0.28 

11.77 ± 

0.44 

0.0163 ± 

0.0013 

0.0207 ± 

0.0024 

4 

(optimised) 

Input: 7.67 

± 0.52 

Output: 4 ± 

0 

8 ± 0 
0.0628 ± 

0.0035 

0.0827 ± 

0.0079 

3 

(optimised) 

Input: 5.43 

± 0.53 

Output: 3 ± 

0 

5.71 ± 0.49 
0.0946 ± 

0.0056 

0.1143 ± 

0.0107 
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Table 4. Main parameters of some obtained UTS models. 

Fuzzy model 

Number of 

fuzzy sets for 

each variable 

Rule length 

of each fuzzy 

rule 

RMSE of the 

reduced 

training data 

RMSE of all 

the training 

data 

RMSE of the 

testing data 

Initial model 

with 15 rules 

Inputs: [15; 

15; 15; 15; 

15; 15; 15; 

15; 15; 15; 

15; 15; 15; 

15; 15] 

Output: 15 

[15; 15; 15; 

15; 15; 15; 

15; 15; 15; 

15; 15; 15; 

15; 15; 15] 

104.04 94.17 102.08 

Optimised 

model with 

13 rules 

Inputs: [13; 

11; 10; 11; 

10; 12; 12; 

13; 12; 11; 9; 

11; 11; 10; 

13] 

Output: 13 

[15; 13; 11; 

12; 11; 11; 

15; 15; 15; 

13; 14; 13; 

14] 

49.37 42.79 44.34 

Optimised 

model with 

10 rules 

Inputs: [10; 

10; 9; 11; 9; 

9; 10; 10; 9; 

8; 8; 10; 11; 

9; 10] 

Output: 9 

[15; 13; 12; 

15; 12; 13; 

15; 15; 13; 

14] 

53.91 45.17 47.11 
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Table 5. Main parameters of some obtained elongation models 

Fuzzy model 

Number of 

fuzzy sets for 

each variable 

Rule length 

of each fuzzy 

rule 

RMSE of the 

reduced 

training data 

RMSE of all 

the training 

data 

RMSE of the 

testing data 

Initial model 

with 15 rules 

Inputs: [15; 

15; 15; 15; 

15; 15; 15; 

15; 15; 15; 

15; 15; 15; 

15; 15; 15] 

Output: 15 

[16; 16; 16; 

16; 16; 16; 

16; 16; 16; 

16; 16; 16; 

16; 16; 16] 

2.90 2.39 2.23 

Optimised 

model with 

10 rules 

Inputs: [8; 6; 

9; 7; 8; 9; 9; 

3; 9; 9; 7; 6; 

5; 9; 9; 9] 

Output: 9 

[16; 15; 15; 

15; 15; 14; 

16; 13; 13; 

12] 

1.87 1.78 1.76 

Optimised 

model with 8 

rules 

Inputs: [5; 4; 

5; 2; 5; 5; 6; 

3; 4; 4; 5; 2; 

4; 5; 5; 5] 

Output: 7 

[13; 14; 13; 

12; 16; 12; 

13; 10] 

2.15 1.78 1.65 
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Table 6. Main parameters of some obtained Charpy impact energy models 

Fuzzy model 

Number of 

fuzzy sets for 

each variable 

Rule length 

of each fuzzy 

rule 

RMSE of the 

reduced 

training data 

RMSE of all 

the training 

data 

RMSE of the 

testing data 

Initial Model 

with 15 rules 

Inputs: [15; 

15; 15; 15; 

15; 15; 15; 

15; 15; 15; 

15; 15; 15; 

15; 15; 15] 

Output: 15 

[16; 16; 16; 

16; 16; 16; 

16; 16; 16; 

16; 16; 16; 

16; 16; 16] 

31.56 30.54 31.44 

Optimised 

model with 

15 rules 

Inputs: [12; 

15; 14; 14; 

13; 15; 13; 

12; 14; 13; 

12; 13; 15; 

13; 11; 15] 

Output: 11 

[16; 16; 15; 

16; 16; 16; 

13; 14; 14; 

16; 16; 15; 

16; 13; 16] 

16.32 14.35 17.10 

Optimised 

model with 8 

rules 

Inputs: [8; 8; 

8; 7; 6; 7; 7; 

8; 7; 7; 7; 5; 

7; 7; 4; 7] 

Output: 8 

[16; 16; 16; 

15; 15; 16; 

16; 16] 

21.36 17.85 19.03 
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Figure 1. A framework for the proposed fuzzy modelling approach. 
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Figure 2. Flow chart of the mechanism for accuracy optimisation and missing data 

selection. 
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Figure 3. The framework of the proposed multi-objective optimisation mechanism. 
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Figure 4. The performance of one set of optimised Pareto-optimal fuzzy models for 

the nonlinear function approximation problem. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

Figure 5. The fuzzy models’ predicted outputs versus the measured outputs with the 

nonlinear function approximation problem: (a) the initial model, (b) an optimised 

model with 8 rules, (c) an optimised model with 6 rules, and (d) an optimised 

model with 4 rules; the green and red lines represent the +10% and -10% error 

bands respectively. 
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Figure 6. The fuzzy models’ membership functions with the nonlinear function 

approximation problem: (a) the initial model, (b) an optimised model with 8 rules, 

(c) an optimised model with 6 rules, and (d) an optimised model with 4 rules. 

 



 36 

 

IF x1 x2 THEN y 

R1  

0 2 4
0

0.5

1

 

 

2 4 6
0

0.5

1

 

R2 

0 2 4
0

0.5

1

 0 2 4
0

0.5

1

 

 

2 4 6
0

0.5

1

 

R3 

0 2 4
0

0.5

1

 0 2 4
0

0.5

1

 

 

2 4 6
0

0.5

1

 

R4 

0 2 4
0

0.5

1

 

  

2 4 6
0

0.5

1

 

R5 

0 2 4
0

0.5

1

 0 2 4
0

0.5

1

 

 

2 4 6
0

0.5

1

 

R6 

0 2 4
0

0.5

1

 0 2 4
0

0.5

1

 

 

2 4 6
0

0.5

1

 

R7  

0 2 4
0

0.5

1

 

 

2 4 6
0

0.5

1

 

R8 

0 2 4
0

0.5

1

 0 2 4
0

0.5

1

 

 

2 4 6
0

0.5

1

 

Figure 7. The optimised 8-rule fuzzy model for the nonlinear function approximation 

problem. 
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(a)                                                             (b) 

Figure 8. Response surfaces for the nonlinear function approximation problem: (a) the 

actual system and (b) the optimised 8-rule fuzzy system. 

 

 

 

(a)                                                            (b) 

Figure 9. (a) The prediction performance and (b) the 5%-range confidence band of the 

optimised 8-rule fuzzy model for the nonlinear function approximation problem. 
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Figure 10. The performance of one set of optimised Pareto-optimal models for the 

dynamical system identification problem. 
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IF y(k – 1) y(k – 2) THEN g(k) 
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Figure 11. The optimised 6-rule fuzzy model for the dynamical system identification 

problem. 
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(a)                                                             (b) 

Figure 12. Response surfaces for the dynamical system identification problem: (a) the 

actual system and (b) the optimised 6-rule fuzzy model. 
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(a)                                                             (b) 

Figure 13. (a) The prediction performance and (b) the 5%-range confidence band of 

the optimised 6-rule fuzzy model for the dynamical system identification problem. 

 



 41 

0.9 0.95 1 1.05 1.1 1.15
1.6

1.8

2

2.2

2.4

2.6

2.8

3

Objective 1

O
b

je
c
ti
v
e

 2

48 49 50 51 52 53 54 55 56 57 58
8

9

10

11

12

13

14

15

16

RMSE

N
u

m
b

e
r 

o
f 
F

u
z
z
y
 R

u
le

s

 

48 49 50 51 52 53 54 55 56 57 58
120

140

160

180

200

220

240

RMSE

N
u

m
b

e
r 

o
f 
F

u
z
z
y
 S

e
ts

48 49 50 51 52 53 54 55 56 57 58
120

140

160

180

200

220

240

RMSE

T
o

ta
l 
L

e
n

g
th

 o
f 
F

u
z
z
y
 R

u
le

s

 

Figure 14. The performance of one set of Pareto-optimal UTS models. 
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(c) 

Figure 15. The UTS models’ predicted outputs versus measured outputs: (a) the initial 

model, (b) an optimised model with 13 rules, and (c) an optimised model with 10 

rules; the green and red lines represent the +10% and -10% error bands 

respectively. 

 

 

 



 43 

 

 … R3 … R8 … 

IF Test Depth is 

 

AND Size is 

AND Site Number is 

AND C is 

AND Si is 

AND Mn is 

AND S is 

AND Cr is 

AND Mo is 

AND Ni is 

AND Al is 

AND V is 

AND Hardening 

Temperature is 

AND Cooling 

Medium Number is 

AND Tempering 

Temperature is 

THEN UTS is 

Figure 16. Rules of the optimised 10-rule UTS model. 
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Figure 17. Response surfaces of the optimised 10-rule UTS model. 
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(a)                                                             (b) 

Figure 18. (a) The prediction performance and (b) the 5%-range confidence band of 

the optimised 10-rule UTS model. 
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Figure 19. The performance of one set of Pareto-optimal elongation models. 

 



 46 

 
(a) 

 

(b) 

 

(c) 

Figure 20. The elongation models’ predicted outputs versus measured outputs: (a) the 

initial model, (b) an optimised model with 10 rules, and (c) an optimised model 

with 8 rules; the green and red lines represent the +10% and -10% error bands 

respectively. 
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Figure 21. Response surfaces of the optimised 10-rule elongation model. 
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Figure 22. The performance of one set of Pareto-optimal impact energy models. 
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(a) 

 

(b) 

 
(c) 

Figure 23. The impact energy models’ predicted outputs versus measured outputs: (a) 

the initial model, (b) an optimised model with 15 rules, and (c) an optimised 

model with 8 rules; the green and red lines represent the +10% and -10% error 

bands respectively. 
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Figure 24. Response surfaces of the optimised 15-rule impact energy model. 

 

 


