3,159 research outputs found

    Evaluation of CNN-based Single-Image Depth Estimation Methods

    Get PDF
    While an increasing interest in deep models for single-image depth estimation methods can be observed, established schemes for their evaluation are still limited. We propose a set of novel quality criteria, allowing for a more detailed analysis by focusing on specific characteristics of depth maps. In particular, we address the preservation of edges and planar regions, depth consistency, and absolute distance accuracy. In order to employ these metrics to evaluate and compare state-of-the-art single-image depth estimation approaches, we provide a new high-quality RGB-D dataset. We used a DSLR camera together with a laser scanner to acquire high-resolution images and highly accurate depth maps. Experimental results show the validity of our proposed evaluation protocol

    Shape manipulation using physically based wire deformations

    Get PDF
    This paper develops an efficient, physically based shape manipulation technique. It defines a 3D model with profile curves, and uses spine curves generated from the profile curves to control the motion and global shape of 3D models. Profile and spine curves are changed into profile and spine wires by specifying proper material and geometric properties together with external forces. The underlying physics is introduced to deform profile and spine wires through the closed form solution to ordinary differential equations for axial and bending deformations. With the proposed approach, global shape changes are achieved through manipulating spine wires, and local surface details are created by deforming profile wires. A number of examples are presented to demonstrate the applications of our proposed approach in shape manipulation

    Blending using ODE swept surfaces with shape control and C1 continuity

    Get PDF
    Surface blending with tangential continuity is most widely applied in computer aided design, manufacturing systems, and geometric modeling. In this paper, we propose a new blending method to effectively control the shape of blending surfaces, which can also satisfy the blending constraints of tangent continuity exactly. This new blending method is based on the concept of swept surfaces controlled by a vector-valued fourth order ordinary differential equation (ODE). It creates blending surfaces by sweeping a generator along two trimlines and making the generator exactly satisfy the tangential constraints at the trimlines. The shape of blending surfaces is controlled by manipulating the generator with the solution to a vector-valued fourth order ODE. This new blending methods have the following advantages: 1). exact satisfaction of 1C continuous blending boundary constraints, 2). effective shape control of blending surfaces, 3). high computing efficiency due to explicit mathematical representation of blending surfaces, and 4). ability to blend multiple (more than two) primary surfaces

    Hydromagnetic waves - Theory and applications Scientific report

    Get PDF
    Magnetohydrodynamic wave influence on various physical phenomen

    Measurement methods and analysis tools for rail irregularities. A case study for urban tram track

    Get PDF
    Rail irregularities, in particular for urban railway infrastructures, are one of the main causes for the generation of noise and vibrations. In addition, repetitive loading may also lead to decay of the structural elements of the rolling stock. This further causes an increase in maintenance costs and reduction of service life. Monitoring these defects on a periodic basis enables the network rail managers to apply proactive measures to limit further damage. This paper discusses the measurement methods for rail corrugation with particular regard to the analysis tools for evaluating the thresholds of acceptability in relation to the tramway Italian transport system. Furthermore, a method of analysis has been proposed: an application of the methodology used for treating road profiles has been also utilized for the data processing of rail profilometric data

    Automatic post-processing for tolerance inspection of digitized parts made by injection moulding

    Get PDF
    This paper presents the advancements of an automatic segmentation procedure based on the concept of Hierarchical Space Partitioning. It is aimed at tolerance inspection of electromechanical parts produced by injection moulding and acquired by laser scanning. After a general overview of the procedure, its application for recognising cylindrical surfaces is presented and discussed through a specific industrial test case

    C2 Continuous Blending of Time-Dependent Parametric Surfaces.

    Get PDF
    Surface blending is widely applied in mechanical engineering. Creating a smooth transition surface of C2 continuity between time-dependent parametric surfaces that change their positions and shapes with time is an important and unsolved topic in surface blending. In order to address this issue, this paper develops a new approach to unify both time-dependent and time-independent surface blending with C2 continuity. It proposes a new surface blending mathematical model consisting of a vector-valued sixth-order partial differential equation and blending boundary constraints and investigates a simple and efficient approximate analytical solution of the mathematical model. A number of examples are presented to demonstrate the effectiveness and applications. The proposed approach has the advantages of (1) unifying time-independent and time-dependent surface blending, (2) always maintaining C2 continuity at trimlines when parametric surfaces change their positions and shapes with time, (3) providing effective shape control handles to achieve the expected shapes of blending surfaces but still exactly satisfy the given blending boundary constraints, and (4) quickly generating C2 continuous blending surfaces from the approximate analytical solution with easiness, good accuracy, and high efficiency
    • …
    corecore