11 research outputs found

    Análisis descriptivo de datos de planificación y programación de obras para la automatización de la cuarta dimensión (4D) del sistema de modelamiento de información

    Get PDF
    Descargue la tesis en el repositorio institucional de la Universtiy of Illinois: http://hdl.handle.net/2142/106135La necesidad de la automatización del proceso 4D BIM se hace necesaria para agilizar los flujos de trabajo en las etapas de preconstrucción y construcción. Aunque el proceso de 4D BIM tiende a ser laborioso, los beneficios de su ejecución son múltiples: visualización, monitoreo y control de proyectos; seguridad de obras; aumento de productividad; etc. Diferentes esfuerzos para automatizar su aplicación han sido publicados, sin embargo, existe una falta de estudios orientados al análisis y relación entre las dos variables principales que permiten su automatización: la planificación y programación de obras, y los objetos 3D-BIM. El presente estudio plantea cubrir esta brecha a través de un análisis cualitativo y cuantitativo de los datos de programación de obra y los objetos 3D-BIM, y su contraste con los testimonios de expertos en la industria AEC de los Estados Unidos. Los resultados muestran que el 60% no utilizan un estándar para la programación de obras y un 53% realizan practicas de actualización de manera mensual. Asimismo, el análisis revela que un 77% de actividades en la construcción son relacionables con BIM y solo un 19% con un LOD muy elevado podrían ser modelables. Métodos para lograr la automatización de 4D BIM han sido discutidos y sugeridos

    A BIM-based framework for construction project scheduling risk management

    Get PDF
    The management of risks has been at the heart of most construction projects. Building Information Modelling (BIM) provides opportunities to manage risks in construction projects. However, studies about the use of BIM in risk management are sketchy with a lack of a systematic approach in using BIM for managing risk in construction projects. Based on existing risk models, this study investigated and developed a BIM-based framework for the management of construction project scheduling risk. Although, the frameworks were developed by mining risk management processes from Synchro and Vico, both being amongst leading 4D/5D BIM software systems, they can inform risk management in BIM projects that are supported by 4D/5D BIM software systems that contain risk management modules. The frameworks were validated for their syntactic and semantic correctness

    Evaluating Federal Information Technology Program Success Based on Earned Value Management

    Get PDF
    Despite the use of earned value management (EVM) techniques to track development progress, federal information (IT) software programs continue to fail by not meeting identified business requirements. The purpose of this logistic regression study was to examine, using IT software data from federal agencies from 2011 to 2014, whether a relationship between schedule variance (SV), cost variance (CV), and actual cost (AC) could predict the success of IT software program, as operationalized by meeting the identified business requirements. The population of interest was 132 IT software programs developed between 2011 and 2014 for federal agencies. The sample source was an archival database located at ITdashboard.gov. The theoretical framework for the study was earned value (EV) project management theory. The EV project management theory is a project performance measurement system that involves integrating cost, schedule, and performance elements for planning and control. EVM contributes to project success by providing early warnings when programs deviate from cost and schedule plans. This study found that only SV was significant (SV days, p = .002). The null hypothesis was rejected, suggesting that a relationship exists between IT program success and the SV, CV, and AC. This study may contribute to social change by increasing the program managers\u27 understanding of EV in federal project management and by decreasing federal spending through successful programs and more cost-efficient use of taxpayers\u27 money

    A BIM-based Approach for Predictive Safety Planning in the Construction Industry

    Get PDF
    The number of safety incidents in the construction industry is higher than that in most of the other industries. These safety incidents can be attributed to a lack of information and training. The new line of thinking in management has been moving toward predictive decision-making methods with the aid of artificial intelligence (AI). In this regard, the construction industry has been lagging on embracing modern management concepts. Hence, it is vital to re-engineer construction management to be on par with industries such as manufacturing. Building Information Modelling (BIM) can be recognized as the most promising technology that is introduced to the construction sector in the recent past. The information contained in a BIM model can be manipulated to aid construction safety management. This research presents BIM-based methods for predictive safety planning in the construction industry. At first, a comprehensive review of construction management challenges was conducted. This review revealed that although there are some studies regarding BIM-based predictive decision-making, still some knowledge gaps can be mentioned in the safety management of construction workers and building residents. To address the mentioned challenges, at first, this study integrates BIM with fuzzy logic to improve predictive safety planning to reduce the safety incidents in the construction projects. A Fuzzy Inference System (FIS) was developed based on the causality of safety incidents. The FIS extracts construction project data from BIM models while automatically assessing the risk of each potential hazard and also the total risk of a project. The proposed method enables construction managers to prevent construction incidents and enhance the health and safety of construction workers. Furthermore, this study develops a methodological framework for rule checking and the safety-focused ruleset for BIM-enabled building construction projects in Ontario, Canada. Identified safety standards were defined in Solibri Model checker software as a ruleset. The outcomes of this section will ensure the occupant’s safety through a proper design. Moreover, the findings of this will support promoting BIM in the Canadian construction industry

    Novel Employer-Oriented Frameworks to Manage Delay Causes in Traditional (Non-BIM) and Building Information Modelling (BIM)-Enabled Construction Projects

    Get PDF
    Construction delays are considered among the foremost common issues that inflict adverse effects on project owners and employers. Thus, it is essential to identify the causes of delays to attenuate and reduce the delays and related expenses. No prior research has addressed employer delays separately in a detailed manner from the more comprehensive coverage of countries or continents. A few studies on delays consider traditional and building information modelling (BIM) current practices for different continents. Hence, this research aimed to develop a novel and comprehensive framework to address or prevent construction delays caused by employers

    The 45th Australasian Universities Building Education Association Conference: Global Challenges in a Disrupted World: Smart, Sustainable and Resilient Approaches in the Built Environment, Conference Proceedings, 23 - 25 November 2022, Western Sydney University, Kingswood Campus, Sydney, Australia

    Get PDF
    This is the proceedings of the 45th Australasian Universities Building Education Association (AUBEA) conference which will be hosted by Western Sydney University in November 2022. The conference is organised by the School of Engineering, Design, and Built Environment in collaboration with the Centre for Smart Modern Construction, Western Sydney University. This year’s conference theme is “Global Challenges in a Disrupted World: Smart, Sustainable and Resilient Approaches in the Built Environment”, and expects to publish over a hundred double-blind peer review papers under the proceedings

    Measuring knowledge sharing processes through social network analysis within construction organisations

    Get PDF
    The construction industry is a knowledge intensive and information dependent industry. Organisations risk losing valuable knowledge, when the employees leave them. Therefore, construction organisations need to nurture opportunities to disseminate knowledge through strengthening knowledge-sharing networks. This study aimed at evaluating the formal and informal knowledge sharing methods in social networks within Australian construction organisations and identifying how knowledge sharing could be improved. Data were collected from two estimating teams in two case studies. The collected data through semi-structured interviews were analysed using UCINET, a Social Network Analysis (SNA) tool, and SNA measures. The findings revealed that one case study consisted of influencers, while the other demonstrated an optimal knowledge sharing structure in both formal and informal knowledge sharing methods. Social networks could vary based on the organisation as well as the individuals’ behaviour. Identifying networks with specific issues and taking steps to strengthen networks will enable to achieve optimum knowledge sharing processes. This research offers knowledge sharing good practices for construction organisations to optimise their knowledge sharing processes

    A systematic risk management model for construction project management: a case study of the new infrastructure project in the University of Mpumalanga

    Get PDF
    The construction industry has become the significant player in the economy of many developed and developing countries in the world. The industry contributes to the Gross Domestic Product (GDP) and employment rate of many nations. As such, the industry is the engine for the economic development and growth across the world. Recently, African countries have received global attention due to its calls for massive infrastructure development and maintenance thereof. Accordingly, the South African government has adopted a National Infrastructure Development Plan (NIDP), which seeks not only to transform the economic landscape of the country, but also to support the integration of the African economies through infrastructure development. To ensure that the execution of these infrastructure projects is successfully delivered in terms of time, cost, and scope; project risk management in the construction industry has become an important area of interest in the execution and delivery of the infrastructure projects. However, the constantly increasing complexity and dynamics in the delivery of construction projects have serious effects on the risk management processes during the execution of the project. In practice, risk methods and techniques have proven to be unrealistic when using the traditional risk management approach in the context of the complexity and dynamic environments wherein construction projects are delivered. Worryingly, project management practitioners in engineering and construction projects still lack the holistic and systematic insight and understanding of construction projects when applying the risk management procedures in the complex and dynamic projects environments. As a result, there are growing reports of unsatisfactory delivery of construction projects in terms of time, cost, quality, and environmental objectives. In this regard, the call for embracing the systems thinking paradigm as the alternative approach that will provide more clarity in dealing with the complex management challenges and which will gradually substitute the traditional theoretical approach of dealing with construction project management, is becoming prominent. Against this background, this study uses a multiple case study approach to explore how a systematic risk management approach could be developed and applied towards successful delivery of construction projects, and subsequently to propose a systematic risk management model that is designed to depict and grasp the underlying complexities and dynamics embedded ix | P a g e in construction projects. The choice of the case study design is founded on its utility and appropriateness for in-depth investigations into phenomena in its context as well as its usefulness for exploratory studies. Therefore, to explore the risk management phenomenon in real-life settings, the unit of analysis in this study was based on three construction projects built in one of the new Institutions of Higher Learning in South Africa during the period between 2017 and 2019. Notwithstanding the unique characteristics of these projects, the complexity and dynamic environments of these projects also emanated from the facts that i) the successful delivery of the projects was a predecessor activity to the academic schedule and activities; ii) this was one of the first universities to be built by the democratic Republic of South Africa; and, iii) the construction contract used for the delivery of the construction projects is relatively new to the professionals in the country’s construction industry. This qualitative case study design has its backbone in the constructivism philosophical paradigm which is underpinned by the ontology that there are multiple realities as conceptualized, experienced, and perceived by the people in their real-life situations or natural settings. Accordingly, the construction professionals, projects’ documents as well as field work observations were purposively chosen as the essential and reliable methods of data collection for this case study. For analysis, a conventional content data analysis methodology was applied on the empirical data that was obtained from the multiple data sources to provide a clearer understanding of the contexts in which the risk management for construction projects is performed. Accordingly, a qualitative data analysis software system called MAXQDA was used to enable the performance of data coding, managing coding, and eventually the retrieving of the coded segments in a form of visual models and summary tables. Ultimately, the qualitative content analysis approach in this thesis was performed in terms of a ‘critical filter of thick description’ which involved a balanced approach between the deductive analysis and the inductive analysis processes. With the assistance of the MAXQDA, performing the multiple levels coding and analysis processes in this thesis has not only been efficient, but also more reliable. To shed insight into the empirical findings of the study, a hybrid theoretical framework has been applied in the discussion and interpretation of the findings. The theoretical framework of this study is underpinned by the complexity theory and the theory of systems engineering. The applicability of these theories in this study is essential in providing a x | P a g e systematic and logical explanation of the practices of risk management in construction projects and further helps to explain why particular events occurred in the processes of risk management. Eventually, the theoretical framework has enabled the designing and developing of a systematic risk management model that will assist in depicting and grasping the underlying complexities while supporting proactive decision making in the delivery of construction projects. To this end, this study has made several major contributions in three multiple folds in the body of knowledge. Firstly, this study makes theoretical contributions by developing an empirically underpinned systematic risk management model which provide more clarity on comprehending the multifaceted and complex risk factors embedded in construction projects. Secondly, the qualitative case study approach and the associated analysis methods thereof in this thesis provides novelty and lays the groundwork for future research and methodological replicability in another similar phenomenon elsewhere in the world. Thirdly, this study has gone some way towards expanding the understanding and the basis for managerial decision making in relation to front-end planning and proactive approach for risk management, and eventually to improve projects’ performances on cost, time, scope, and environmental sustainability. In this regard, the key practical implication for project management practitioners is that the adoption and embracing of the systematic and holistic thinking approach in the risk management processes could enhance the successful delivery of construction projects. In the literature, there is paucity and need for more research into the exploration and analysis of the integration and interplay between the systems engineering and complexity perspectives and the other knowledge areas in the PMBOK. In conclusion, this thesis therefore argues that to address the deficiencies in risk management practices during construction projects’ delivery, the solution requires a paradigm shift from the traditional linear approach which, by design, overlooks the complexities, non-linearity and interdependences of the elements that are underpinning and characterizing the nature of the contemporary construction projects. Therefore, this thesis supports the increasingly emerging debate on the discourse that the superior traditional and linear approaches do not solve the current problems, and as such they should be replaced with the systems and holistic thinking approach that will provide more clarity in dealing with the complex management challenges in contemporary construction projects.Thesis (PhD) -- Faculty of Engineering, Built environment and Information Technology, School of the built Environment 202
    corecore