38,818 research outputs found

    The Instability Transition for the Restricted 3-Body Problem. III. The Lyapunov Exponent Criterion

    Full text link
    We establish a criterion for the stability of planetary orbits in stellar binary systems by using Lyapunov exponents and power spectra for the special case of the circular restricted 3-body problem (CR3BP). The centerpiece of our method is the concept of Lyapunov exponents, which are incorporated into the analysis of orbital stability by integrating the Jacobian of the CR3BP and orthogonalizing the tangent vectors via a well-established algorithm originally developed by Wolf et al. The criterion for orbital stability based on the Lyapunov exponents is independently verified by using power spectra. The obtained results are compared to results presented in the two previous papers of this series. It is shown that the maximum Lyapunov exponent can be used as an indicator for chaotic behaviour of planetary orbits, which is consistent with previous applications of this method, particularly studies for the Solar System. The chaotic behaviour corresponds to either orbital stability or instability, and it depends solely on the mass ratio of the binary components and the initial distance ratio of the planet relative to the stellar separation distance. Our theoretical results allow us to link the study of planetary orbital stability to chaos theory noting that there is a large array of literature on the properties and significance of Lyapunov exponents. Although our results are given for the special case of the CR3BP, we expect that it may be possible to augment the proposed Lyapunov exponent criterion to studies of planets in generalized stellar binary systems, which is strongly motivated by existing observational results as well as results expected from ongoing and future planet search missions.Comment: 10 pages, 8 figures, 3 tables; accepted by Astronomy and Astrophysic

    Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions

    Full text link
    Earth-sized planets around nearby stars are being detected for the first time by ground-based radial velocity and space-based transit surveys. This milestone is opening the path towards the definition of missions able to directly detect the light from these planets, with the identification of bio-signatures as one of the main objectives. In that respect, both ESA and NASA have identified nulling interferometry as one of the most promising techniques. The ability to study distant planets will however depend on exozodiacal dust clouds surrounding the target stars. In this paper, we assess the impact of exozodiacal dust clouds on the performance of an infrared nulling interferometer in the Emma X-array configuration. For the nominal mission architecture with 2-m aperture telescopes, we found that point-symmetric exozodiacal dust discs about 100 times denser than the solar zodiacal cloud can be tolerated in order to survey at least 150 targets during the mission lifetime. Considering modeled resonant structures created by an Earth-like planet orbiting at 1 AU around a Sun-like star, we show that the tolerable dust density for planet detection goes down to about 15 times the solar zodiacal density for face-on systems and decreases with the disc inclination. The upper limits on the tolerable exozodiacal dust density derived in this study must be considered as rather pessimistic, but still give a realistic estimation of the typical sensitivity that we will need to reach on exozodiacal discs in order to prepare the scientific programme of future Earth-like planet characterisation missions.Comment: 17 pages, accepted for publication in A&

    The Case for Combining a Large Low-Band Very High Frequency Transmitter With Multiple Receiving Arrays for Geospace Research: A Geospace Radar

    Get PDF
    We argue that combining a high‐power, large‐aperture radar transmitter with several large‐aperture receiving arrays to make a geospace radar—a radar capable of probing near‐Earth space from the upper troposphere through to the solar corona—would transform geospace research. We review the emergence of incoherent scatter radar in the 1960s as an agent that unified early, pioneering research in geospace in a common theoretical, experimental, and instrumental framework, and we suggest that a geospace radar would have a similar effect on future developments in space weather research. We then discuss recent developments in radio‐array technology that could be exploited in the development of a geospace radar with new or substantially improved capabilities compared to the radars in use presently. A number of applications for a geospace radar with the new and improved capabilities are reviewed including studies of meteor echoes, mesospheric and stratospheric turbulence, ionospheric flows, plasmaspheric and ionospheric irregularities, and reflection from the solar corona and coronal mass ejections. We conclude with a summary of technical requirements

    Darwin -— an experimental astronomy mission to search for extrasolar planets

    Get PDF
    As a response to ESA call for mission concepts for its Cosmic Vision 2015–2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for life on them. In this paper, we describe different characteristics of the instrument

    Early Dynamical Evolution of the Solar System: Pinning Down the Initial Condition of the Nice Model

    Get PDF
    In the recent years, the "Nice" model of solar system formation has attained an unprecedented level of success in reproducing much of the observed orbital architecture of the solar system by evolving the planets to their current locations from a more compact configuration. Within the context of this model, the formation of the classical Kuiper belt requires a phase during which the ice giants have a high eccentricity. An outstanding question of this model is the initial configuration from which the Solar System started out. Recent work has shown that multi-resonant initial conditions can serve as good candidates, as they naturally prevent vigorous type-II migration. In this paper, we use analytical arguments, as well as self-consistent numerical N-body simulations to identify fully-resonant initial conditions, whose dynamical evolution is characterized by an eccentric phase of the ice-giants, as well as planetary scattering. We find a total of eight such initial conditions. Four of these primordial states are compatible with the canonical "Nice" model, while the others imply slightly different evolutions. The results presented here should prove useful in further development of a comprehensive model for solar system formation.Comment: 10 pages, 8 figures, 4 tables. Accepted to the Astrophysical Journal

    Power Quality Enhancement in Hybrid Photovoltaic-Battery System based on three–Level Inverter associated with DC bus Voltage Control

    Get PDF
    This modest paper presents a study on the energy quality produced by a hybrid system consisting of a Photovoltaic (PV) power source connected to a battery. A three-level inverter was used in the system studied for the purpose of improving the quality of energy injected into the grid and decreasing the Total Harmonic Distortion (THD). A Maximum Power Point Tracking (MPPT) algorithm based on a Fuzzy Logic Controller (FLC) is used for the purpose of ensuring optimal production of photovoltaic energy. In addition, another FLC controller is used to ensure DC bus stabilization. The considered system was implemented in the Matlab /SimPowerSystems environment. The results show the effectiveness of the proposed inverter at three levels in improving the quality of energy injected from the system into the grid.Peer reviewedFinal Published versio

    Structural Design Concepts for a Multi-Megawatt Solar Electric Propulsion (SEP) Spacecraft

    Get PDF
    As a part of the Space Exploratory Initiative (SEI), NASA-Lewis is studying Solar Electric Propulsion (SEP) spacecraft to be used as a cargo transport vehicle to Mars. Two preliminary structural design concepts are offered for SEP spacecraft: a split blanket array configuration, and a ring structure. The split blanket configuration is an expansion of the photovoltaic solar array design proposed for Space Station Freedom and consists of eight independent solar blankets stretched and supported from a central mast. The ring structural concept is a circular design with the solar blanket stretched inside a ring. This concept uses a central mast with guy wires to provide additional support to the ring. The two design concepts are presented, then compared by performing stability, normal modes, and forced response analyses for varying levels of blanket and guy wire preloads. The ring structure configuration is shown to be advantageous because it is much stiffer, more stable, and deflects less under loading than the split blanket concept

    Nonlinear Control of a DC MicroGrid for the Integration of Photovoltaic Panels

    Full text link
    New connection constraints for the power network (Grid Codes) require more flexible and reliable systems, with robust solutions to cope with uncertainties and intermittence from renewable energy sources (renewables), such as photovoltaic arrays. The interconnection of such renewables with storage systems through a Direct Current (DC) MicroGrid can fulfill these requirements. A "Plug and Play" approach based on the "System of Systems" philosophy using distributed control methodologies is developed in the present work. This approach allows to interconnect a number of elements to a DC MicroGrid as power sources like photovoltaic arrays, storage systems in different time scales like batteries and supercapacitors, and loads like electric vehicles and the main AC grid. The proposed scheme can easily be scalable to a much larger number of elements.Comment: arXiv admin note: text overlap with arXiv:1607.0848
    corecore