3,648 research outputs found

    Analysis of electrical transients created by lightning

    Get PDF
    A series of flight tests was conducted using a specially-instrumented NASA Learjet to study the electrical transients created on an aircraft by nearby lightning. The instrumentation included provisions for the time-domain and frequency-domain recording of the electrical signals induced in sensors located both on the exterior and on the interior of the aircraft. The design and calibration of the sensors and associated measuring systems is described together with the results of the flight test measurements. The results indicate that the concept of providing instrumentation to follow the lightning signal from propagation field, to aircraft skin current, to current on interior wiring is basically sound. The results of the measurement indicate that the high frequency signals associated with lightning stroke precursor activity are important in generating electromagnetic noise on the interior of the aircraft. Indeed, the signals produced by the precursors are often of higher amplitude and of longer duration that the pulse produced by the main return stroke

    The development of an electrochemical technique for in situ calibrating of combustible gas detectors

    Get PDF
    A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector

    Applied Aspects of Modern Metrology

    Get PDF
    In the modern era of scientific and technological development, the role of measurements and metrology in scientific research is becoming more and more important due to the increase in the testing of various products. Moreover, requirements for the accuracy and reliability of measurement results are increasing significantly and their ranges are expanding. Improving measurement accuracy allows us to identify the shortcomings of certain technological processes and either eliminate them or reduce their influence. This leads to better-quality products and contributes to saving energy and other resources, as well as raw materials and materials. This book discusses relevant aspects of practical metrological activity to establish traceability of measurements while increasing their accuracy and reliability. It also presents procedures for the calibration and testing of measuring instruments

    Testing and diagnostics of medium- and high-voltage instrument transformers

    Get PDF
    Instrument transformers for medium- and high-voltage applications play a key role in energy supply. Acting as the link between the primary network and the metering or protection equipment connected to the secondary side, a safe and reliable operation without failures is essential. In relation to this background, this paper discusses testing and diagnostic methods for instrument transformers. Different application examples are presented that help to ensure an efficient production process at the manufacturing site and efficient on-site testing for site acceptance, commissioning or regular maintenance

    Integrated self-consistent macro-micro traffic flow modeling and calibration framework based on trajectory data

    Get PDF
    Calibrating microscopic car-following (CF) models is crucial in traffic flow theory as it allows for accurate reproduction and investigation of traffic behavior and phenomena. Typically, the calibration procedure is a complicated, non-convex optimization issue. When the traffic state is in equilibrium, the macroscopic flow model can be derived analytically from the corresponding CF model. In contrast to the microscopic CF model, calibrated based on trajectory data, the macroscopic representation of the fundamental diagram (FD) primarily adopts loop detector data for calibration. The different calibration approaches at the macro- and microscopic levels may lead to misaligned parameters with identical practical meanings in both macro- and micro-traffic models. This inconsistency arises from the difference between the parameter calibration processes used in macro- and microscopic traffic flow models. Hence, this study proposes an integrated multiresolution traffic flow modeling framework using the same trajectory data for parameter calibration based on the self-consistency concept. This framework incorporates multiple objective functions in the macro- and micro-dimensions. To expeditiously execute the proposed framework, an improved metaheuristic multi-objective optimization algorithm is presented that employs multiple enhancement strategies. Additionally, a deep learning technique based on attention mechanisms was used to extract stationary-state traffic data for the macroscopic calibration process, instead of directly using the entire aggregated data. We conducted experiments using real-world and synthetic trajectory data to validate our self-consistent calibration framework

    Calibration and Characterization of the IceCube Photomultiplier Tube

    Full text link
    Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.Comment: 40 pages, 12 figure

    Linear Accelerator Test Facility at LNF Conceptual Design Report

    Full text link
    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\Phi}NE collider, as it is also a key element of the electron/positron beam facility. The main lines of these two developments can be identified as: consolidation of the LINAC infrastructure, in order to guarantee a stable operation in the longer term; upgrade of the LINAC energy, in order to increase the facility capability (especially for the almost unique extracted positron beam); doubling of the BTF beam-lines, in order to cope with the signicant increase of users due to the much wider range of applications.Comment: 71 page

    Electronic test instrumentation and techniques: A compilation

    Get PDF
    The uses of test equipment and techniques used in space research and development programs are discussed. Modifications and adaptations to enlarge the scope of usefulness or divert the basic uses to alternate applications are analyzed. The items of equipment which have been of benefit to professional personnel in the enlargement and improvement of quality control capabilities are identified. Items which have been simplified or made more accurate in conducting measurements are described

    Scalable, Detailed and Mask-Free Universal Photometric Stereo

    Full text link
    In this paper, we introduce SDM-UniPS, a groundbreaking Scalable, Detailed, Mask-free, and Universal Photometric Stereo network. Our approach can recover astonishingly intricate surface normal maps, rivaling the quality of 3D scanners, even when images are captured under unknown, spatially-varying lighting conditions in uncontrolled environments. We have extended previous universal photometric stereo networks to extract spatial-light features, utilizing all available information in high-resolution input images and accounting for non-local interactions among surface points. Moreover, we present a new synthetic training dataset that encompasses a diverse range of shapes, materials, and illumination scenarios found in real-world scenes. Through extensive evaluation, we demonstrate that our method not only surpasses calibrated, lighting-specific techniques on public benchmarks, but also excels with a significantly smaller number of input images even without object masks.Comment: CVPR 2023 (Highlight). The source code will be available at https://github.com/satoshi-ikehata/SDM-UniPS-CVPR202

    Are inductive current transformers performance really affected by actual distorted network conditions? An experimental case study

    Get PDF
    The aim of this work is to assess whether actual distorted conditions of the network are really affecting the accuracy of inductive current transformers. The study started from the need to evaluate the accuracy performance of inductive current transformers in off-nominal conditions, and to improve the related standards. In fact, standards do not provide a uniform set of distorted waveforms to be applied on inductive or low-power instrument transformers. Moreover, there is no agreement yet, among the experts, about how to evaluate the uncertainty of the instrument transformer when the operating conditions are different from the rated ones. To this purpose, the authors collected currents from the power network and injected them into two off-the-shelf current transformers. Then, their accuracy performances have been evaluated by means of the well-known composite error index and an approximated version of it. The obtained results show that under realistic non-rated conditions of the network, the tested transformers show a very good behavior considering their nonlinear nature, arising the question in the title. A secondary result is that the use of the composite error should be more and more supported by the standards, considering its effectiveness in the accuracy evaluation of instrument transformers for measuring purposes
    corecore