
sensors

Article

Are Inductive Current Transformers Performance
Really Affected by Actual Distorted Network
Conditions? An Experimental Case Study

Alessandro Mingotti * , Lorenzo Peretto, Lorenzo Bartolomei, Diego Cavaliere
and Roberto Tinarelli

Department of Electrical, Electronic and Information Engineering–Guglielmo Marconi, Alma Mater Studiorum,
University of Bologna, 40136 Bologna, Italy; lorenzo.peretto@unibo.it (L.P.); lorenzo.bartolomei@unibo.it (L.B.);
diego.cavaliere2@unibo.it (D.C.); roberto.tinarelli3@unibo.it (R.T.)
* Correspondence: alessandro.mingotti2@unibo.it

Received: 15 January 2020; Accepted: 8 February 2020; Published: 10 February 2020
����������
�������

Abstract: The aim of this work is to assess whether actual distorted conditions of the network are
really affecting the accuracy of inductive current transformers. The study started from the need to
evaluate the accuracy performance of inductive current transformers in off-nominal conditions, and to
improve the related standards. In fact, standards do not provide a uniform set of distorted waveforms
to be applied on inductive or low-power instrument transformers. Moreover, there is no agreement
yet, among the experts, about how to evaluate the uncertainty of the instrument transformer when the
operating conditions are different from the rated ones. To this purpose, the authors collected currents
from the power network and injected them into two off-the-shelf current transformers. Then, their
accuracy performances have been evaluated by means of the well-known composite error index and
an approximated version of it. The obtained results show that under realistic non-rated conditions of
the network, the tested transformers show a very good behavior considering their nonlinear nature,
arising the question in the title. A secondary result is that the use of the composite error should be
more and more supported by the standards, considering its effectiveness in the accuracy evaluation
of instrument transformers for measuring purposes.

Keywords: actual waveforms; inductive current transformers; measurement setup; composite error;
accuracy; uncertainty; electrical measurements; total harmonic distortion

1. Introduction

In recent years the operation of Instrument Transformers (ITs), either the legacy inductive type
and the new Low-Power Instrument Transformers (LPITs), has been affected by a huge revolution in
the power network. In particular, the spread of Renewable Energy Sources (RESs) among all voltage
levels; the massive installation of all kinds of energy meters; and last, but just from a chronological
point of view, the increasing presence of electric vehicles in the low-voltage (LV) level are affecting the
power quality of the network. Poor power quality leads to severe and unwanted consequences, both on
the electrical and electronic assets, as well as on end-users. Distorted voltages and currents can cause
luminous flux variations in lamps and serious consequences on human beings [1–3]. Furthermore, bad
power quality affects the reliability of electrical and electronic components, leading to heating effects or
degradation phenomena of insulation materials, or the combination of both [4–6]. In order to correctly
and properly address such issues, the measuring instruments used for evaluating Power Quality need
to operate accurately in a large frequency bandwidth. In particular, representing the weak elements
in the measurements chain for such purposes, they shall provide accurate measurements in all the
previous mentioned conditions. That is why a Standard dedicated to the use of ITs for power quality
measurements has been developed: the IEC 61869-103 [7].
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Moreover, users and manufacturers should be guided on how to test ITs to verify their correct
operation and level of uncertainty, also, in such off-nominal operating conditions (a starting point
for the tests is provided in ref. [7]). Focusing on ITs, in literature several other works, the Standards,
dealing with them, can be found. Starting from the Standards, the main series is the IEC 61869 where
61869-1 [8] deals with general requirements on ITs, while 61869-2, -3 and -4 are specifically written
for current, voltage and combined transformers (CTs, VTs and CVTs), respectively [9–11]. The same
structure has been adopted also for LPITs, but they are out of the aim of this work.

The ITs’ modeling can be considered quite developed to date; in fact, several works are present
in literature and new material is always being published [12–18]. However, the approaching of ITs
from their modeling does not always provide significant results in all fields of interest, such as in the
case of ITs working at off-nominal conditions. The studies on this particular aspect are spreading in
recent years, due to their relevance in the overall performance of ITs. For example, in [19–22] the effect
of temperature on IT has been studied, while construction methods and conducted disturbances are
analyzed in [23–25].

With the present work, instead, the authors want to obtain a bifold result. In fact, the aim is to
understand whether the CTs are really affected, in terms of accuracy, by operating conditions different
from the rated ones, but realistic. Furthermore, in doing so, several distorted test waveforms, having
different levels of total harmonic distortion (THD), have been collected from the grid to be used in
this work as realistic test waveforms. The underlying idea that supports this choice comes from the
need of having a common set of distorted test waveforms to be applied to the ITs. This is something
that is not provided in the available standards; hence they should move in such a direction. However,
the literature tackling the CTs working under off-nominal power conditions is really vivid. For example,
some testing procedures are described in [26,27], while error and non-linearity correction have been
studied and proposed in [28–31]. Finally, accuracy measurements and calibration procedures are
discussed in detail in [32–35].

In light of the above, this work uses the literature as a starting point to raise and to study the issue
of which of the effects are really causing the power network off-nominal conditions on CTs in realistic
experimental conditions.

Authors started in [36] by using COMTRADE files [37] with distorted transient waveforms
collected in the field (from faulty operating conditions). Such waveforms were injected into a CT to
assess its performance.

In this paper, instead, steady-state actual distorted waveforms have been collected from the
grid and then applied to two CTs typically implemented in the Medium Voltage (MV) network.
Afterwards, the performance of the CTs have been evaluated through the use of the well-known
composite error and of an approximated version of it. This choice has been supported by the fact
that the well-known frequency response analysis is not particularly efficient to assess the accuracy
performance of a nonlinear instrument like the inductive CT.

Such a way to assess the CT’s accuracy is typical of, but not limited to, protective ITs. For example,
a virtual instrument has been developed in [38]; in [39] a model has been studied to assess ITs affected
by power quality issues; [40,41] instead, describe the use of ratio error applied to each harmonic
component and the application of the frequency response approach, respectively. The application
of the composite error on the evaluation of the ITs’ performance in a variety of network conditions
is studied in [35,42,43]; finally, the relevance and criticality of the accuracy when dealing with ITs is
confirmed by [44–49].

The paper is structured as follows: Section 2 contains the complete description on how the actual
steady-state distorted signals have been acquired. Section 3 describes the simple measurement setup
implemented to test the inductive CTs. The main tests performed are listed in Section 4, while in
Section 5 the results and the postprocessing analysis are included. Finally, a brief conclusion with the
key points is drawn in Section 6.
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2. Acquisition of Actual Signals

Two off-the-shelf CTs have been tested using actual signals. Before describing the CT testing (see
Section 4), it is necessary to describe how such signals have been acquired. First of all, the measurement
instrument developed for the current collection is depicted in Figure 1.
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Figure 1. Measurement instrument developed for the acquisition of actual currents.

It simply consists of a Hall-effect-based current sensor, a direct current (DC) generator to supply
it, and a data acquisition board (DAQ) to collect the samples. The current sensor is a LEM LA 100-P
with a primary measuring range of 0–150 A; a secondary nominal current of 50 mA and an accuracy of
±0.45%. As for the DAQ, an NI 9238 has been used. Its main characteristics are summarized in Table 1.

Table 1. Main features of the data acquisition board (DAQ) NI 9238.

Architecture 24-bit Max Input Signal ±500 mV

Sample rate 50 kS/s/ch Simultaneous channels YES
ADC Delta Sigma Temperature range −40 to 70 ◦C

Gain Error ±0.07% Offset Error ±0.005%

Since the DAQ supports only voltage inputs, and the LEM LA 100-P provides a current output,
a resistor has been inserted as current sensor’s load. Then, the voltage across the load has been acquired
by means of the DAQ. The setup has been then used, inside the laboratory environment, to acquire
currents flowing along the LV network when using different instrumentation; e.g., a thermostatic
chamber, air conditioner, calibrator, power source, etc. According to the current sensor’s specifications,
the measurand expected magnitude and the DAQ’s max input signal, a 100 Ω load resistance has been
chosen. The acquired signals have been sorted in terms of THD, because the aim is to have signals with
a variety of actual harmonic content, regardless the source of that content. Hence, values in Table 2
are listed from signals A to E for the sake of simplicity. The collected signals have all a THD < 10%,
which is a plausible and realistic distortion for the currents absorbed by users in LV and MV systems,
according to IEEE Std. 519-2014 [50].
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Table 2. List of the acquired signals and their total harmonic distortion (THD).

Signal THD [%]

A 4.5
B 7.2
C 7.7
D 8.7
E 9.9

As an example, the waveform of signals A and E have been plotted and presented in Figure 2. It is
worth the effort to highlight that, within the limits fixed in [50], it is not straight forward to recognize
the level of distortion of a signal. The same comment can be extended to the voltages of the network,
the THD limits for which MV and LV networks are defined in the EN (European standards) 50,160 [51],
and are even more strict compared to those in [50].

Figure 2. Waveform of the signal A (top) and E (bottom). The two sampled waveforms are normalized to 1.

3. Measurement Setup for CT Testing

To inject the current, acquired as described in Section 2, the following measurement setup has
been improved and adopted. It consists of:

• A 14-bit Keysight Function/Arbitrary waveform generator 33,220A. It features a frequency
resolution of 1 µHz, a frequency accuracy of ±(20 ppm + 3 pHz), and a sampling frequency
of 50 MSa/s. The function generator has been used to replicate the current waveform
previously collected.
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• Fluke Transconductance 52,120A. Its task is to transduce the output voltage of the generator
into a current consistent with the rated values of the transformers under test (TUTs). The main
accuracy parameters of the transconductance are listed in Table 3.

• The MV TUTs. Their main characteristics are collected in Table 4.
• Two shunt resistors to measure both the primary and secondary currents of the TUTs. The first,

S1, is a 1 mΩ resistor, and it is installed in series to the primary current; the second resistor, S2,
has a 10 mΩ resistance, and it is installed in series to the secondary current and to a 220 mΩ/7 W
resistive burden to guarantee the TUT’s operation under rated conditions. As for their uncertainty,
they feature 0.01% and 0.005% for S1 and S2, respectively. No other information is available from
the manufacturer. Nevertheless, the characterization described in the next Section has provided
the information necessary for the TUTs’ proper testing. Finally, in [36] the two shunts have been
characterized vs frequency to assess whether they are affected from it or not. The results showed
that the frequency does not affect both shunts, reporting variations lower than 2× 10−6 Ω.

• An NI9238 DAQ is used to acquire the output voltages of both the shunts.

Table 3. Main features of the two transconductance 52120A.

Current Range % of Output % of Range

2 0.015 0.070
20 0.015 0.060
120 0.015 0.020

Table 4. Main features of the two transformers under test (TUTs).

TUT Ratio [A] Power [VA] Accuracy Class Extended Current Rating

T1 20/5 6 0.5 120% (24 A)
T2 100/5 6 0.2 120% (120 A)

The conceptual scheme of the measurement setup is depicted in Figure 3.

Figure 3. Schematic of the measurement setup used for the tests.

To summarize the operation of the setup, the signals listed in Table 2 have been reproduced with
the function generator, transduced by the transconductance amplifier 52,120A and then injected into
the TUT.
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4. Description of the Tests

The aim of the test is to acquire both primary and secondary currents of the TUTs. The currents
are then used to perform an accuracy evaluation of the TUTs. First, the signals in Table 2 have been
continuously fed from the function generator to the transconductance. Second, the output of the
transconductance has been set to values of currents in accordance with [9]. In particular, [9] states that
the ratio and phase errors, used to evaluate the accuracy class of the transformers, are evaluated at 5%,
20%, 100% and 120% of the transformer’s rated primary current.

Consequently, for the adopted TUTs, a set of RMS currents of 20, 4 and 1 A for T1 and of 100, 20
and 5 A for T2 have been generated by the transconductance and injected into the TUT. The 120%
current test has been omitted due to the limitations of the transconductance; however, over currents
are not the aim of this work, which tackles the normal operation of the network in actual conditions.

To measure the currents, two shunts have been adopted together with a DAQ NI9238 in order
to collect the output voltages. The whole measurement chain composed by the shunts and the DAQ
has been characterized before and after the tests to ensure its repeatability and to confirm the shunt
resistance values. The characterization process has been done by injecting the current of interest
I (5%, 20% and 100% of the primary and secondary currents) into the shunts by using a reference
calibrator (Fluke 6105A), and then by reading the voltage measurements from the DAQ. One hundred
measurements for each current level have been acquired, and the mean value Rm of the “shunts + DAQ”
chain conversion factor has been computed, whose measurement unit is the ohm. The results of the
characterization provided the estimate values of the equivalent resistances of the “shunts + DAQ” chain
for each measured current. Such resistance values, used to compute the currents from the measured
voltages, and their related extended uncertainty uR (coverage factor K = 2), are listed in Table 5.
The table includes the values of the first characterization, considering that the second characterization
provided the same results.

Table 5. Results of the characterization of the “shunts + DAQ” measurement chain.

Shunt I [A] Rm [mΩ] uR [µΩ]

S1

1 0.999 1
4 0.9995 0.4
5 0.9994 0.3
20 0.9994 0.1

100 0.99941 0.07

S2
0.25 10.028 3

1 10.029 1
5 10.0291 0.6

As for uR, it has been computed by means of the propagation of the uncertainties, as described in
the Guide to the expression of Uncertainty in Measurement [52]:

uR =

√(
∂R
∂V

)2

u2
Va +

(
∂R
∂I

)2

u2
Ib =

√u2
Va

I2

+ (
−

Vm

I2

)2
u2

Ib (1)

where:

• Vm is the average measured voltage across the shunt;
• uVa is the uncertainty of the measured voltage evaluated with type A method, as the standard

deviation of Vm;
• uIb is the uncertainty of the generated current evaluated with the type B method starting from the

accuracy specification of the calibrator (with transconductance for the case of 100 A).
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For the sake of completeness, the type A and type B methods are described in [52] as methods to
evaluate uncertainty due to random or systematic effects, respectively. The former method is based on
the estimation of the expected value of the measurand and of its standard deviation, starting from N
measurements. In the latter method instead, the contributions to the uncertainty are provided by the
manufacturer of the devices in terms of indices. These are basically two: the error on the full scale and
the one on the reading.

There are few considerations regarding (1) to be pointed out: first, the measured voltage Vm and
the generated current I are obviously uncorrelated quantities; second, the type B evaluated uncertainty
uVb does not appear in (1), since the whole “shunt + DAQ” measurement chain is the system to
be characterized.

In other words, the value of Rm already embodies the contribution due to the DAQ’s error in
every considered current scenario. This operation was possible because of the fact that exactly the
same setup has been implemented both in the characterization and in the measurement procedures.

Afterwards, for each signal of Table 2, 100 measurements of 10 periods of the above-mentioned
set of currents have been collected for both the primary and the secondary by acquiring the voltage
drop on the shunts S1 and S2 (sampling frequency 50 kSa/s).

To complete the set of tests, and to better evaluate the results, the two TUTs have been fed
with sinusoidal signals. In particular, the three currents of interest (100, 20, 5 A and 20, 4, 1 A)
have been injected as 50 Hz sinusoidal waveforms. Again, 100 measurements of both primary and
secondary currents have been collected. This last test has been considered fundamental to assess the
performance of the CTs at rated conditions; hence, to use the results as a comparison with the other
operating conditions.

5. Experimental Results

The evaluation of the TUTs accuracy has been carried out by means of the ratio error ε, the phase
error ∆ϕ, and the composite error εc, defined in [9]. The indices ε and ∆ϕ are used to assess the
performance of the CTs at sinusoidal conditions, whilst εc is introduced after the encouraging results
obtained in [36]. In fact, εc was used in [36] to assess the CT’s behavior in the presence of fault-derived
signals; while in this work, εc is applied to the evaluate CTs in presence of steady-state distorted signals.
For convenience, the formula of εc is reported:

εc ,

√
1
T

∫ T
0

(
kris−ip

)2
dt

Ip
· 100% (2)

where:

• kr is the rated transformation ratio;
• ip is the instantaneous value of the primary current;
• is is the instantaneous value of the secondary current;
• Ip is the RMS of the primary current;
• T is the duration of one cycle.

If ip and is are sinusoidal waveforms, then the approximated composite error ε∗c can be calculated
with (see [43]):

ε∗c ≈
√
ε2+ ∆ϕ2 . (3)

Attention shall be paid to the usage of ε and ∆ϕ: these two parameters are defined for the instrument
transformers only in the presence of sinusoidal quantities. When actual distorted waveforms are
considered, as done below, ε and ∆ϕ are computed for the 50 Hz components. This is a nonconventional
procedure, according to the ε and ∆ϕ definitions, even if commonly adopted.
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In Tables 6 and 7 the results are reported for T1 and T2, respectively. The following quantities are
shown: ε and ∆ϕ for the 50 Hz harmonic component; εc computed by the numerical implementation
of (2) and ε∗c. Each quantity is averaged over the 100 repeated measurements conducted for each signal
of Table 2 at 5%, 20% and 100% of the rated primary current Ipr.

Table 6. Results for T1. Averages of ε, ∆ϕ, εc, ε∗c for the sinusoidal case and all the distorted signals,
at 0.05 Ipr, 0.2 Ipr and Ipr.

Ip [A] Signal ε [%] ∆ϕ [mrad] εc [%] ε*
c [%]

1

Sinusoid −0.7865 19.53 2.148 2.105
A −0.8117 19.49 2.156 2.111
B −0.8172 19.81 2.181 2.143
C −0.7534 19.42 2.120 2.083
D −0.8070 19.47 2.150 2.107
E −0.8000 19.38 2.142 2.097

4

Sinusoid −0.4752 12.497 1.3398 1.3370
A −0.4983 12.460 1.3448 1.3419
B −0.5216 12.568 1.3605 1.3607
C −0.4667 12.383 1.3239 1.3233
D −0.5195 12.324 1.3395 1.3374
E −0.4768 12.445 1.3345 1.3327

20

Sinusoid −0.2778 7.580 0.8086 0.8073
A −0.2966 7.577 0.8181 0.8137
B −0.3090 7.598 0.8239 0.8202
C −0.2820 7.584 0.8123 0.8092
D −0.3027 7.636 0.8274 0.8214
E −0.2830 7.592 0.8146 0.8102

Table 7. Results for T2. Averages of ε, ∆ϕ, εc, ε∗c for the 50 Hz case and all the distorted signals, at 0.05
Ipr, 0.2 Ipr and Ipr.

Ip [A] Signal ε [%] ∆ϕ [mrad] εc [%] ε*
c [%]

5

Sinusoid −0.176 6.04 0.649 0.629
A −0.173 5.73 0.617 0.598
B −0.192 5.81 0.630 0.612
C −0.190 5.77 0.629 0.608
D −0.234 5.96 0.659 0.640
E −0.219 6.11 0.667 0.649

20

Sinusoid −0.0331 3.877 0.391 0.3891
A −0.0876 3.639 0.376 0.3743
B −0.0937 3.633 0.391 0.3752
C −0.0838 3.632 0.381 0.3727
D −0.0936 3.636 0.380 0.3754
E −0.1040 3.605 0.383 0.3752

100

Sinusoid 0.0541 2.4116 0.24734 0.24714
A −0.0206 2.2879 0.23080 0.22973
B 0.0292 2.2702 0.22947 0.22889
C 0.0378 2.2468 0.22811 0.22784
D −0.0130 2.2804 0.22875 0.22842
E −0.0330 2.2995 0.23260 0.23231

From the graphical representation of Table 7 in Figure 4, it emerges that ε∗c slightly underestimates
εc for T2. It is also evident that the composite error decreases as the current gets closer to the rated one,
which is an expected behavior, and that the composite error variation among the different distortion
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cases is almost absent. As for T1, the same observations can be drawn from Table 6, and consequently,
their graphical representation is omitted.

Figure 4. Graphical representation of the results in Table 7.

For convenience, the maximum standard deviations of the averages of ε, ∆ϕ, εc and ε∗c, for every
current case, is reported in Table 8. The standard deviation of each parameter for both the TUTs gets
smaller as the primary current gets closer to the rated one. The composite error and the ratio error
are defined as dimensionless percentage quantities; thus, their standard deviation shall be expressed
accordingly as percentages.

The uncertainty of the parameters in the Table, evaluated with the type B method (as described
in [52]), has been omitted, because, for the comparison of the signals from A to E, in each current
category, the measurement chain involved is the same. Therefore, for the evaluation of the parameters’
variation, the uncertainty evaluated with type B method is not significative.

Table 8. σε, σ∆ϕ, σεc and σε∗c are the maximum standard deviations of the averages of ε, ∆ϕ, εc and ε∗c,
respectively, for both the TUTs at 0.05 Ipr, 0.2 Ipr and Ipr.

TUT I [A] σε [%] σ∆ϕ [mrad] σεc [%] σε*
c

[%]

T1
1 0.0009 0.01 0.002 0.001
4 0.0003 0.003 0.0005 0.0003

20 0.0003 0.002 0.0003 0.0002

T2
5 0.002 0.01 0.002 0.001

20 0.0004 0.004 0.003 0.0004
100 0.0002 0.0006 0.00009 0.00007

In Tables 6 and 7, note that both T1 and T2 are compliant with their rated accuracy class (0.5
and 0.2, respectively): the measured ratio and phase errors in the sinusoidal case are smaller than
the limits prescribed in [9]. The limits for the accuracy classes 0.2 and 0.5 are reported in Table 9,
showing the maximum admitted ratio error εmax and phase error ∆ϕmax. Since these limits are defined
for sinusoidal waveforms, then it is possible to extend Table 9 by applying (3) in order to estimate the
corresponding composite error limits ε∗cmax for each accuracy class. These values have been computed
and listed in the last three columns of Table 9.
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Table 9. ε and ∆ϕ limits for the 0.2 and 0.5 accuracy classes transformers defined in [2]. The table has
been extended with ε∗cmax

obtained from the limits εmax and ∆ϕmax.

Accuracy Class εmax [%] ∆ϕmax [mrad] ε*
cmax

[%]

0.05 Ipr 0.20 Ipr Ipr 0.05 Ipr 0.20 Ipr Ipr 0.05 Ipr 0.20 Ipr Ipr

0.2 0.75 0.35 0.2 9 4.5 3 1.17 0.57 0.36
0.5 1.5 0.75 0.5 27 13.5 9 3.09 1.54 1.03

At this point, it is interesting to compare the numerically computed values of εc with the
corresponding value of ε∗cmax , since it could be a criterion to assess the TUTs accuracy performance in the
steady-state distorted conditions. The composite error physical meaning is how well the instrument
transformer output matches the measurand, and ε∗cmax is the estimate of the worst tolerated scenario in
sinusoidal conditions. Therefore, if εc in the distorted cases is smaller than ε∗cmax , than the TUT accuracy
could be considered acceptable.

The results in Tables 6 and 7 shows that both TUTs present a composite error εc smaller than the
limit value ε∗cmax in all of the distorted cases. Additional tests were carried out to support the results
herein obtained: the first, at very high THD (25.0%) with random frequency components up to the
20th harmonic order; the second, at THD = 10%, but with a single frequency component which was
changed from the 20th (1000 Hz) to the 100th (5000 Hz) harmonic order. Under these conditions the
TUTs have maintained their accuracy class, showing consistency with the results obtained in Tables 6
and 7. As a further comment, the instrument current transformer performance evaluated by means of
the composite error suggests that its accuracy is mainly dependent upon the performance at 50 Hz and
only (very) slightly affected by the actual harmonic content of the measurand.

It is worth highlighting that all the above-mentioned results prove the applicability of (3) for
two main reasons. First, the set of currents used has an actual harmonic content consistent with the
Standards. Second, the peculiarity of using only the 50 Hz component is supported by the fact that
common measurement instruments (e.g., Phasor Measurement Unit, Energy Meters, etc.) already
extract such a component.

To validate the obtained results, the measurements have been repeated after more than a month to
ensure also their repeatability. The new set of results completely confirms what was already presented
in this section.

As a final and main comment, it is interesting to assess the obtained results from a practical
point of view. Such results allow to state that CTs are not affected by realistic distortions/off-nominal
conditions of the network up to a 25% of THD. Furthermore, the use of ε∗c and εc for measuring IT is
supported by the results and by the fact that, at off-nominal conditions, they provide a more significant
information compared to the ratio and phase errors.

6. Conclusions

The aim of the work is to raise the issue of whether or not realistic power network conditions
affect the accuracy performance of inductive current transformers. This has been done considering that
no standard defines how to proceed with such tests, which waveforms have to be injected, and how
much they are affected. Therefore, actual distorted currents have been collected from the grid and
injected to two off-the-shelf current transformers.

Afterwards the results have been evaluated in terms of the well-known composite error and
an approximated version of it. The former index is typically adopted for protective instrument
transformers. From the results it emerges that both transformers show really good behavior at rated
and at off-nominal conditions. Hence, in this particular case study, which involves devices adopted
by several utilities, it is reasonable to ask whether the influence of distorted signals (with values
within the limits suggested by IEEE std 519-2014) is really affecting the behavior of the transformers.
The answer to that question, from the presented results, is no. In other words, in practical cases, hence,
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when the transformer is operating at actual conditions, their behavior is only slightly affected by the
distorted input signals. Such a conclusion is not to be claimed as obvious, because the common idea
is that inductive CTs operation is quite affected by distorted primary currents. As a consequence,
several works in literature deal with how to solve such an issue despite is minor significance in realistic
conditions (even if the proposed solutions are typically effective).

A secondary conclusion is that, in light of the previous one, the application of the composite
error should be encouraged for the assessment of the transformers’ accuracy when they operate at
off-nominal conditions. As a matter of fact, it provides a more exhaustive information on the accuracy
of the transformer, compared to the one of ratio and phase errors.

Overall, on the one hand, standards should include more details for the users regarding how
to test the instrument transformers in more realistic conditions. On the other hand, such realistic
conditions should be tackled as much as they influence the accuracy of the transformers; and hence,
not considered if it is not the case.
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