33 research outputs found

    Logic synthesis and testing techniques for switching nano-crossbar arrays

    Get PDF
    Beyond CMOS, new technologies are emerging to extend electronic systems with features unavailable to silicon-based devices. Emerging technologies provide new logic and interconnection structures for computation, storage and communication that may require new design paradigms, and therefore trigger the development of a new generation of design automation tools. In the last decade, several emerging technologies have been proposed and the time has come for studying new ad-hoc techniques and tools for logic synthesis, physical design and testing. The main goal of this project is developing a complete synthesis and optimization methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer. New models for diode, FET, and four-terminal switch based nanoarrays are developed. The proposed methodology implements logic, arithmetic, and memory elements by considering performance parameters such as area, delay, power dissipation, and reliability. With combination of logic, arithmetic, and memory elements a synchronous state machine (SSM), representation of a computer, is realized. The proposed methodology targets variety of emerging technologies including nanowire/nanotube crossbar arrays, magnetic switch-based structures, and crossbar memories. The results of this project will be a foundation of nano-crossbar based circuit design techniques and greatly contribute to the construction of emerging computers beyond CMOS. The topic of this project can be considered under the research area of â\u80\u9cEmerging Computing Modelsâ\u80\u9d or â\u80\u9cComputational Nanoelectronicsâ\u80\u9d, more specifically the design, modeling, and simulation of new nanoscale switches beyond CMOS

    Logic Synthesis for Established and Emerging Computing

    Get PDF
    Logic synthesis is an enabling technology to realize integrated computing systems, and it entails solving computationally intractable problems through a plurality of heuristic techniques. A recent push toward further formalization of synthesis problems has shown to be very useful toward both attempting to solve some logic problems exactly--which is computationally possible for instances of limited size today--as well as creating new and more powerful heuristics based on problem decomposition. Moreover, technological advances including nanodevices, optical computing, and quantum and quantum cellular computing require new and specific synthesis flows to assess feasibility and scalability. This review highlights recent progress in logic synthesis and optimization, describing models, data structures, and algorithms, with specific emphasis on both design quality and emerging technologies. Example applications and results of novel techniques to established and emerging technologies are reported

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Integrated circuit outlier identification by multiple parameter correlation

    Get PDF
    Semiconductor manufacturers must ensure that chips conform to their specifications before they are shipped to customers. This is achieved by testing various parameters of a chip to determine whether it is defective or not. Separating defective chips from fault-free ones is relatively straightforward for functional or other Boolean tests that produce a go/no-go type of result. However, making this distinction is extremely challenging for parametric tests. Owing to continuous distributions of parameters, any pass/fail threshold results in yield loss and/or test escapes. The continuous advances in process technology, increased process variations and inaccurate fault models all make this even worse. The pass/fail thresholds for such tests are usually set using prior experience or by a combination of visual inspection and engineering judgment. Many chips have parameters that exceed certain thresholds but pass Boolean tests. Owing to the imperfect nature of tests, to determine whether these chips (called "outliers") are indeed defective is nontrivial. To avoid wasted investment in packaging or further testing it is important to screen defective chips early in a test flow. Moreover, if seemingly strange behavior of outlier chips can be explained with the help of certain process parameters or by correlating additional test data, such chips can be retained in the test flow before they are proved to be fatally flawed. In this research, we investigate several methods to identify true outliers (defective chips, or chips that lead to functional failure) from apparent outliers (seemingly defective, but fault-free chips). The outlier identification methods in this research primarily rely on wafer-level spatial correlation, but also use additional test parameters. These methods are evaluated and validated using industrial test data. The potential of these methods to reduce burn-in is discussed

    Moving Towards Analog Functional Safety

    Get PDF
    Over the past century, the exponential growth of the semiconductor industry has led to the creation of tiny and complex integrated circuits, e.g., sensors, actuators, and smart power systems. Innovative techniques are needed to ensure the correct functionality of analog devices that are ubiquitous in every smart system. The standard ISO 26262 related to functional safety in the automotive context specifies that fault injection is necessary to validate all electronic devices. For decades, standardizing fault modeling, injection and simulation mainly focused on digital circuits and disregarding analog ones. An initial attempt is being made with the IEEE P2427 standard draft standard that started to give this field a structured and formal organization. In this context, new fault models, injection, and abstraction methodologies for analog circuits are proposed in this thesis to enhance this application field. The faults proposed by the IEEE P2427 standard draft standard are initially evaluated to understand the associated fault behaviors during the simulation. Moreover, a novel approach is presented for modeling realistic stuck-on/off defects based on oxide defects. These new defects proposed are required because digital stuck-at-fault models where a transistor is frozen in on-state or offstate may not apply well on analog circuits because even a slight variation could create deviations of several magnitudes. Then, for validating the proposed defects models, a novel predictive fault grouping based on faulty AC matrices is applied to group faults with equivalent behaviors. The proposed fault grouping method is computationally cheap because it avoids performing DC or transient simulations with faults injected and limits itself to faulty AC simulations. Using AC simulations results in two different methods that allow grouping faults with the same frequency response are presented. The first method is an AC-based grouping method that exploits the potentialities of the S-parameters ports. While the second is a Circle-based grouping based on the circle-fitting method applied to the extracted AC matrices. Finally, an open-source framework is presented for the fault injection and manipulation perspective. This framework relies on the shared semantics for reading, writing, or manipulating transistor-level designs. The ultimate goal of the framework is: reading an input design written in a specific syntax and then allowing to write the same design in another syntax. As a use case for the proposed framework, a process of analog fault injection is discussed. This activity requires adding, removing, or replacing nodes, components, or even entire sub-circuits. The framework is entirely written in C++, and its APIs are also interfaced with Python. The entire framework is open-source and available on GitHub. The last part of the thesis presents abstraction methodologies that can abstract transistor level models into Verilog-AMS models and Verilog- AMS piecewise and nonlinear models into C++. These abstracted models can be integrated into heterogeneous systems. The purpose of integration is the simulation of heterogeneous components embedded in a Virtual Platforms (VP) needs to be fast and accurate

    Convergence of Intelligent Data Acquisition and Advanced Computing Systems

    Get PDF
    This book is a collection of published articles from the Sensors Special Issue on "Convergence of Intelligent Data Acquisition and Advanced Computing Systems". It includes extended versions of the conference contributions from the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2019), Metz, France, as well as external contributions

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Design Development Test and Evaluation (DDT and E) Considerations for Safe and Reliable Human Rated Spacecraft Systems

    Get PDF
    A team directed by the NASA Engineering and Safety Center (NESC) collected methodologies for how best to develop safe and reliable human rated systems and how to identify the drivers that provide the basis for assessing safety and reliability. The team also identified techniques, methodologies, and best practices to assure that NASA can develop safe and reliable human rated systems. The results are drawn from a wide variety of resources, from experts involved with the space program since its inception to the best-practices espoused in contemporary engineering doctrine. This report focuses on safety and reliability considerations and does not duplicate or update any existing references. Neither does it intend to replace existing standards and policy

    DESIGN AND SYNTHESIS OF HIGH DENSITY INTEGRATED CIRCUITS

    Get PDF
    Gordon E. Moore, a co-founder of Fairchild Semiconductor, and later of Intel, predicted that after 1980 the complexity of an Integrated Circuit would be expected to double every two years. The prevision made by Moore held for decades, for this reason it is also called \u201cMoore\u2019s law\u201d. The trend in ICs is driven by a reduction of area and power consumption. Today scaled CMOS technologies are the main solution for digital processing. However, the interconnection scaling is not optimal. At every new technology node, the number of metal layers and their thickness increases, exploiting the vertical direction. The reduction of the minimum distance between interconnections and the growth in vertical dimension increase the parasitic capacitance and consequently the dynamic power consumption. Moreover, due to the non-optimal scaling of the interconnections, signal routing is becoming more and more challenging at every technology node advancement. Very scaled technologies make possible to reach a great transistor density. However, the design must comply to strict rules for metal interconnections. The aim of this thesis is to find possible solutions to the disadvantages of scaled CMOS technologies. This goal is obtained in two different ways: using ad-hoc design techniques on today CMOS technologies and finding new approaches to logic synthesis of nanocrossbars, that are an emerging post-CMOS technology. The two approaches used corresponds to the two parts of this thesis. The first part presents the design of an Associative Memory focusing the attention on develop design and logic synthesis techniques to reduce power consumption. The field of applicability of AMs is real-time pattern-recognition tasks. The possible uses range from scientific calculations to image processing for intelligent autonomous devices to image reconstruction for electro-medical apparatuses. In particular AMs are used in High Energy Physics (HEP) experiments to detect particle tracks. HEP experiments generate a huge amount of data, but it is necessary to select and save only the most interesting tracks. Being the data compared in parallel, AMs are synchronous ICs that have a very peaked power consumption, and therefore it is necessary to minimize the power consumption. This AM is designed within the projects IMPART and HTT in 28 nm CMOS technology, using a fully-CMOS approach. The logic is based on the propagation of a \u201ckill signal\u201d that, if one of the bits in a word is not matching, inhibits the switching of the following cells. Thanks to this feature, the designed AM array consumes less than 0.7 fJ/bit. A prototype has been fabricated and it has proven to be functional. The final chip will be installed in the data acquisition chain of ATLAS experiment on HL-LHC at CERN. In the future nanocrossbars are expected to reduce device dimensions and interconnection complexity with respect to CMOS. Logic functions are obtained with switching lattices of four-terminal switches. The research activity on nanocrossbars is done within the project NANOxCOMP. To improve synthesis are used some algorithmic approaches based on Boolean function decomposition and regularities, in particular P-circuits, EXOR-Projected Sums of Products (EP-SOP), Dimension-reducible (D-red) functions and autosymmetric functions. The decomposed functions are implemented into lattices using internal and external decomposition methods. Experimental results show that this approaches reduce the complexity of the single synthesis problem and leads, in average, to a reduction of lattice area and synthesis time. Lattices are made of self-assembled structures and they have a non-negligible defectivity ratio. To cope with this limitation, some techniques to reduce sensitivity to defects have been studied
    corecore