
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Logic Synthesis for
Established and Emerging
Computing

By ELEONORA TESTA , Student Member IEEE, MATHIAS SOEKEN, Member IEEE,
LUCA GAETANO AMARÙ, Member IEEE, AND GIOVANNI DE MICHELI, Fellow IEEE

ABSTRACT | Logic synthesis is an enabling technology to

realize integrated computing systems, and it entails solving

computationally intractable problems through a plurality of

heuristic techniques. A recent push toward further formaliza-

tion of synthesis problems has shown to be very useful toward

both attempting to solve some logic problems exactly—which

is computationally possible for instances of limited size today—

as well as creating new and more powerful heuristics based

on problem decomposition. Moreover, technological advances

including nanodevices, optical computing, and quantum and

quantum cellular computing require new and specific synthesis

flows to assess feasibility and scalability. This review highlights

recent progress in logic synthesis and optimization, describing

models, data structures, and algorithms, with specific empha-

sis on both design quality and emerging technologies. Example

applications and results of novel techniques to established and

emerging technologies are reported.

KEYWORDS | Algorithms; discrete optimization; emerging tech-

nologies; logic networks; logic synthesis; quantum computing;

satisfiability

I. I N T R O D U C T I O N

The fast evolution of computing and communication tech-
nologies has been enabled by a wide body of knowledge on

Manuscript received March 21, 2018; revised August 9, 2018; accepted
September 1, 2018. This work was supported by the Swiss National Science
Foundation (200021-169084MAJesty) and by H2020-ERC-2014-ADG 669354
CyberCare. (Corresponding author: Eleonora Testa.)

E. Testa,M. Soeken and G. De Micheli are with the École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland (e-mail:
eleonora.testa@epfl.ch).

L. G. Amarù is with Synopsys Inc., Mountain View, CA 94043 USA.

Digital Object Identifier 10.1109/JPROC.2018.2869760

how to represent and manipulate digital functions as well
as on how to optimize their realization. Logic synthesis is
a key component of digital design, as logic functions are
often extracted from high-level models, such as program-
ming (e.g., C, C++) or specialized hardware languages
(e.g., VHDL), and their optimization is crucial to achieve
effective implementations. Indeed, it was clear from the
early days that logic design is such a daunting task, because
of the problem size and plurality of choices, that design
automation is essential. Logic synthesis has progressed
through the years by combining theoretical results and
engineering practices. The notion of optimal design has
been obscured by the superposition of various concerns,
mainly related to the definition of the cost function (e.g.,
circuit complexity, delay, and power consumption) in terms
of the properties of the physical medium used to fabricate
the circuit and its interconnections. With the lack of a
precise objective function and due to the large design
space, engineers have relied on complex tool flows that
apply heuristics. These approaches have been shown to be
successful in designing large chips and represent the state
of the art [1]–[3]. Today logic synthesis is an essential
instrument to push the limits of performance (upwards)
and power consumption (downwards). These objectives
are often at odds and compounded by other goals such as
enhancing testability, reliability, and reducing area. Thus,
competitive synthesis tools are necessary for the design of
leading-edge chips.

Today, synthesis is a critical area of research for two
main reasons. 1) The computational fabric, in terms of
devices of various nature, is evolving. Postsilicon technolo-
gies have been shown to be viable and may provide us with
better substrates for computation. By the same token, new
architectures (e.g., neuromorphic, optical, and quantum

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

PROCEEDINGS OF THE IEEE 1

https://orcid.org/0000-0003-1114-8476

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

computing) can take advantage of this change in terrain
to provide us with solutions to our unstoppable appetite
for computing. 2) The current computing and storage
means make it possible to solve exactly problems that
were only approximated before, providing good working
solutions but whose quality may be far from optimum.
Moreover, new specialized circuits can be used as engines
for computational solvers, thus enabling a virtuous cycle
to achieve increasingly higher quality hardware [4]. The
frontier of computing architectures and digital systems has
been moving fast over the last two decades. The avail-
ability of a large number of devices on a single chip has
enabled multicore design in the last two decades. New dis-
ruptive architectures are exploiting circuit arrangements
for supporting (deep) learning. Recent digital systems have
shown the capability to leverage (to some limited extent as
of this writing) devices that perform quantum computation
by exploiting superposition and entanglement [5]. As a
result, the circuit primitives for logic design have increased
and changed over the years. Complementary metal–oxide–
semiconductor (CMOS) technology has favored circuits
based on NORs, NANDs, and their extensions, which can
be abstracted as negative unate single-output functions.
Today most product-level circuits leverage these prim-
itives and their extensions (e.g., AOI gates) collected
into libraries. With the downscaling of technologies, the
number of stacked transistors decreases thus reducing
also the fanin (or support size) of these functions. Field-
programmable gate arrays (FPGAs) are built out of pro-
grammable lookup tables that realize small-scale logic
functions. New emerging technologies, such as some opti-
cal technologies and quantum-dot cellular automata (QCA,
[6]), leverage majority (MAJ), and inverter (INV) gates as
primitives. Neuromorphic architectures exploit threshold
gates, which can be seen as majority gates with weighted
inputs. Combinational operations in quantum computing
(QC) [7] can be abstracted in terms of libraries of com-
ponents, such as the Toffoli gate [8], [9] that implements
a generalized form of exclusive OR (EXOR) operation. This
abstraction is further refined in terms of quantum gates
targeting devices available in specific QC technologies.

The objective of synthesis is to map data flows (i.e., sets
of logic and arithmetic operations in a partial order) into
optimal interconnections of circuits. We consider these
circuits as atomic primitives, because we want to use an
abstraction of the underlying computation valid in a large
class of technologies. Such circuits can be exemplified by
library cells in CMOS, optical computational devices, or
quantum circuits that realize one or more computation
steps in a quantum medium. Thus, a circuit is both—
according to the context—a physical device and an abstrac-
tion of a computation in terms of a stimulus/response pair
that can be represented by a logic function.

Since we address a plurality of technologies,
we consider logic synthesis as a task performed
independently of physical design. Whereas we are
cognizant of the importance of coupling physical and

logic design on nanotechnologies, we believe that we
need to separate the issues to formulate clear scientific
problems of broad applicability. It can also be argued, and
it was demonstrated before [10], that new robust logic
synthesis algorithms can lead eventually to better circuits
as evaluated after physical design.

In view of the progress and opportunities of technology,
logic synthesis has to be revisited while considering the
plurality of primitives that can be of interest, and as a result
the corresponding objective functions and optimization
problems. The objective of this paper is to present the
state of the art in a succinct manner (as other tutorials
and books are available [11]–[15]) to provide the basis
to describe data structures and algorithms for emerging
technologies and architectures. Whereas we presented in
[11] an array of novel computing technologies and one
computational approach for their synthesis, here we review
critically several logic synthesis methods and we show their
applicability to established and emerging technological
platforms. Namely, we want to capture here the essential
features of logic synthesis at the onset of architectural and
technological changes and thus we focus on combinational
synthesis and refer the interested reader to [12]–[14] for
the sequential counterpart.

This paper is organized as follows. After a brief his-
torical perspective, we first consider data structures for
logic synthesis that have been used in synthesis, such as
two-level and multilevel structures (e.g., including tables,
expressions, and diagrams). We consider logic synthesis
algorithms of various kinds. First, we describe algorithms
based on algebraic properties of the representation. Next
we consider Boolean methods that exploit specific Boolean
properties. As a third kind we consider exact approaches
for logic synthesis. We will also comment on decomposi-
tion methods that can be coupled to exact methods to make
the approach viable. Last, we will address specific appli-
cation technologies and their relations to logic synthesis.
Namely, we consider CMOS technologies, majority-based
nanoemerging technologies, and technologies that exploit
quantum effects, such as information quantization (e.g.,
QCA), superposition, and entanglement (e.g., quantum
computing).

II. A B R I E F H I S T O R I C A L P E R S P E C T I V E

Broadly speaking, the overall problem of logic synthesis
is the one of finding “the best implementation” of a logic
function, where that term “best” is used because it is impre-
cise as it may depend on goals and computational methods
and it may not be unique. Thus, synthesis encompasses
also logic optimization and the two terms are interchange-
able. We focus here on the combinational logic synthesis
approach, where “best” is understood in terms of complex-
ity, delay, and/or power consumption. The first approaches
to logic synthesis addressed sum-of-product (SOP) repre-
sentations, and attempted to reduce the cardinality of logic
covers (i.e., the number of product terms also called impli-
cants). Structured representations of SOP representations,

2 PROCEEDINGS OF THE IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

such as PLAs, have rectangular shapes with rows associ-
ated with product terms. Hence, reducing the number of
product terms reduces the area. The first logic synthesis
algorithm, the Quine–McCluskey algorithm [16], solves
the minimization of logic covers exactly. Subsequent imple-
mentations of this algorithm, enhanced by appropriate
data structures, enabled designers to solve most bench-
marks of relevant size [17]. Several approaches to heuristic
minimization of two-level forms [12], preferable to the
exact approach for computing time reasons, culminated
with program ESPRESSO, that provides irredundant covers
of near-optimum size. Irredundant covers are minimal with
respect to containment and have the advantage that the
corresponding AND/OR realizations are fully testable for
stuck-at faults. Thus, the program ESPRESSO [13], [17]
had a large impact on the design automation community.
Unfortunately, two-level logic implementations have two
major drawbacks. First, the delay is not correlated with
the stages of delay (as originally thought) but with fanin
and capacitive load. Second, efficient implementations in
CMOS require dynamic operation (which is complicated
at high speed) or pseudo-NMOS loads (which consume
excessive power) [18].

As a result, two-level logic optimization is used as a
method to reduce the complexity of a logic block, which
may have one or more outputs, as an intermediate step
in logic optimization. In a similar vein, extensive logic
synthesis research has been devoted to exclusive-sum-of-
product (ESOP) minimization. This problem can be solved
exactly [19], [20] or heuristically. At present, the most
used program is EXORCISM [20]. Also in this context,
single-output or multiple-output functions are optimized
as an intermediate step of a logic synthesis flow, with
no direct relation to the implementation. Nevertheless,
in the domain of design of quantum computing circuits,
ESOP minimization is important because ESOP forms can
be mapped into a cascade of Toffoli gates providing a
reversible logic solution.

Contemporary logic synthesis and its scientific and com-
mercial successes have risen in the 1980 with the establish-
ment of CMOS technology, semicustom design styles, and
libraries of components. The problem consists of mapping
logic functions into the “best” interconnection of instances
of library elements, and it bears a relation to computing
the complexity [21] of a Boolean function, which is com-
putationally intractable. Hence, most approaches divide
synthesis into a technology-independent phase, where the
interconnection of logic blocks is minimized independently
of the library, followed by a technology mapping step
where the instances of library elements are chosen. In prac-
tice, such an approach tends to provide a “good starting
condition” to the mapping problem. Recent approaches
to synthesis have tackled the problem from a different
angle. Rather than relying on various layers of heuristics
to find the solution, the following question is asked: “How
large can a logic block be so that an optimum realization
(possibly under constraints) can be found?” Optimum may

mean minimum area, which is the sum of the areas of
the chosen cells [22]–[24], or minimum delay [25], [26],
which is the critical path delay through the circuit that
can be computed once the cells are selected and possibly
verified after physical design. The optimum problem can
be cast in terms of satisfiability (SAT), and a SAT solver
is used to attempt its solution. It is not surprising that
increasingly larger optimum circuits (for area or delay)
can be computed as more powerful computer resources
become available. The main issue is the practicality of
such an approach for very large circuits that today can
involve millions of NAND-equivalent gates. Nevertheless,
the divide-and-conquer approach still applies: logic net-
works can be decomposed into blocks, and blocks syn-
thesized by exact methods. Moreover, the “best” real-
ization of functional blocks can be cached in libraries
and instantiated by synthesis algorithms at runtime. It is
important to note that the divide-and-conquer paradigm
is also a cornerstone of heuristic logic synthesis. Indeed
logic networks are interconnection of blocks, each block
represented by a logic function. This hybrid structure helps
containing the possible blow-up in size of the Boolean
function representations, and it provides an underlying
substrate for optimization algorithms. In the rest of the
paper, we will outline the data structures that capture
efficiently logic circuits as interconnection of blocks and
support optimization methods based on heuristic and exact
techniques.

III. D ATA S T R U C T U R E S

We present here various data structures that are commonly
used by logic synthesis algorithms. The subsections are
ordered according to the scalability of the data structures,
starting from truth tables, which are suitable for functions
with a small support (i.e., number of variables), to multi-
level logic networks, which are the ubiquitous data struc-
ture (in various forms and shapes) to represent Boolean
functions in almost all research and commercial tools. Each
section also briefly mentions some implementation hints to
enable efficient algorithms.

A. Truth Tables

A truth table is an explicit representation where the
function values are listed for all possible input combi-
nations. Formally, a truth table for a Boolean function
f(x1, . . ., xn) is a bitstring b2n−1b2n−2. . .b1b0 of 2n bits,
where f(x1, . . ., xn) = bx such that x = (xn. . .x1)2 is
the integer representation of the input assignment. Con-
sequently, we may also consider a truth table as a number
in the half-open interval [0, 22n

), for which the truth table
representation is the binary expansion of that number.

Example 1: The truth table for a majority-of-three
(majority-3) function 〈x1x2x3〉 = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧
(x2∨x3) is 1110 1000. Since the binary notation can quickly
become very large, it is customary to use a hexadecimal

PROCEEDINGS OF THE IEEE 3

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

notation, in which each block of 4 b is represented by the
corresponding hexadecimal digit. For the majority-of-three
function, the hexadecimal truth table is #e8. (We use the
hash prefix to indicate a hexadecimal number.)

Clearly, truth tables cannot provide a scalable function
representation. Nevertheless, for small functions they can
be beneficial as they enable very fast implementations. For
example, a truth table for a six-variable function requires
26 = 64 b and therefore fits into a single unsigned integer
of a 64-b computer architecture. Many operations, e.g.,
computing the AND of two functions can be performed
using bitwise AND, which accounts for a single proces-
sor instruction. Such an approach works reasonably well
in practice up to 16-variable functions, which require
210 = 1024 64-b unsigned integers, and therefore 8 MB
of memory.

A truth table is a canonical (i.e., unique) representation
of a function. Consequently, for small functions, truth
tables can be used for a simple equivalence check of
two functions, if a truth table can be efficiently derived
from them.

B. Two-Level Representations

Logic functions can be represented in disjunctive normal
form, also referred to as sum-of-products

f = p1 ∨ p2 ∨ · · · ∨ pk (1)

where each

pi = x
qi,1
1 ∧ xqi,2

2 ∧ · · · ∧ xqi,n
n (2)

is a product of literals with 0 ≤ qi,j ≤ 2R − 1 for 1 ≤ i ≤ k

and 1 ≤ j ≤ n and where R is a radix. We have R = 2 for
binary Boolean logic, R = 3 for ternary logic, etc. This rep-
resents the so-called positional cube notation [12] where
usually the qi,j are represented in binary form. Therefore,
for binary-valued logic, the negative and positive literals
are x1 = x{01} = x̄ and x2 = x{10} = x, respectively,
x3 = x{11} is a don’t care term (i.e., both values of a
variable are possible), and x0 = x{00} = ∅ is the empty
set (i.e., no value).

Example 2: Let f(x1, x2, x3) = x1 ?x2 :x3, which is also
called the if–then–else operator. A disjunctive normal form
is f = x1x2x̄3 ∨ x1x2x3 ∨ x̄1x2x3 ∨ x̄1x̄2x3. An alternative,
shorter form is f = x1x2 ∨ x̄1x3. In general, one is inter-
ested in finding a disjunctive normal form that minimizes
the number of product terms k.

Many algorithms have been presented to find dis-
junctive normal forms with some minimality properties
(see, e.g., [19]). Also, other two-level representations have
been investigated. Examples are conjunctive normal forms,
or product-of-sums [that interchange “∨” and “∧” in (1)
and (2)] or exclusive sum-of-products [which use “⊕”

Fig. 1. BDD for the function (x� ⊕ x�x� ⊕ x�x� ⊕ x�) ∨∨∨ (x� ⊕ x�x� ⊕ x�x� ⊕ x�).

instead of “∨” in (1)]. Conjunctive normal forms play
a central role in Boolean satisfiability solving (see, e.g.,
[27] and [28]) and can be seen as the dual representation
of disjunctive normal forms [29]. Exclusive sum-of-product
representations find extensive use in cryptography appli-
cations (see, e.g., [30]–[32]) and quantum computing
(see, e.g., [33] and [34]). Recently, also exclusive product-
of-sum representations, which are the dual of exclusive
sum-of-products, have been investigated in the context of
Boolean satisfiability of cryptography applications [35].

It is often feasible to represent Boolean functions in
two-level representations for 20–30 variables. Conjunc-
tive normal forms are possible for functions with many
variables, if one allows additional helper variables [36].
Product terms for functions with up to 32 variables can be
represented in a computer using 64-b unsigned integers:
the first 32 b are used to represent which variables occur
in the product term, and the second 32 b are used to
represent whether the occurring literals are positive or
negative.

C. Binary Decision Diagrams

Logic functions can be expressed by decision diagrams in
many ways. The most common representation is the binary
decision diagram (BDD) [21], [37] which is a directed
acyclic graph where internal nodes are associated with
the Shannon (also credited to Boole) expansion of the
function, i.e., f = xifxi ⊕ x̄ifx̄i , where fxi and fx̄i are the
cofactors obtained from f when the variable xi is assigned
1 or 0, respectively. When referring to BDDs, it is usually
implicitly understood that the variables are ordered and
the diagram reduced (i.e., BDD refers to ROBDDs [37]).
Moreover BDDs are constructed and manipulated so that
redundancy is avoided, and thus they are canonical repre-
sentation of logic functions.

Example 3: Fig. 1 shows the BDD for the function (x1 ⊕
x2) ∨ (x3 ⊕ x4). Solid and dashed lines represent here
positive and negative cofactors, respectively.

BDDs exploit the fact that for many functions of prac-
tical interest, smaller subfunctions occur repeatedly and
need to be represented only once. Combined with an
efficient recursive algorithm that makes use of caching

4 PROCEEDINGS OF THE IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

techniques and hash tables to implement elementary
operations, BDDs are a powerful data structure for Boolean
function representation and manipulation. Indeed, algo-
rithms for BDD manipulation have polynomial-time com-
plexity (usually quadratic or cubic) in the number of
nodes, and such a number grows mildly with the prob-
lem size (i.e., variables) in many—but not all—cases,
e.g., multipliers.

The variable order in BDDs affects their size. Improving
the variable ordering for BDDs (i.e., minimizing the BDD
graph size) is NP-complete [38]. An exact algorithm [39]
and many heuristics [40] have been presented that aim
at finding a good ordering. It is easy to fit a single BDD
node, which contains the variable index and pointers to
its two children, into a single 64-b unsigned integer [21].
Thus, BDDs can represent a good scalable representation
for logic functions. They can cope with larger functions
as compared to truth tables. When their storage becomes
excessive, functions are usually decomposed into blocks
forming logic networks.

D. Multilevel Logic Networks

A multilevel logic network (LN) is interconnection of
blocks, each implementing a logic function and whose
representation style may vary. The interconnection is mod-
eled by a directed acyclic graph where nodes represent
primary inputs and outputs, as well as local functions. In
most cases, such functions are restricted to have a single
output, by similarity to CMOS logic gates. For internal
nodes, the indegree and outdegree are referred to as fanin
and fanout, respectively. Note that LNs can be extended to
deal with sequential cyclic circuits [12], but such cases are
not considered here.

We use a formal notation for Boolean logic networks
that is also referred to as straightline programs or Boolean
chains in the literature. Given primary inputs x1, . . ., xn, a
Boolean logic network consisting of r local functions is a
sequence

xi = fi(xi1 , xi2 , . . ., xiar(fi)
) for n < i ≤ n+ r (3)

where fi is a gate function with ar(fi) inputs and 0 ≤ ij < i

for 1 ≤ j ≤ ar(fi) are indexes to primary inputs or
previous gates in the sequence. For convenience, we define
x0 = 0. Also, we define a sequence of primary outputs
y1 = xo1 , . . ., ym = xom .

Example 4: A full adder with inputs x1, x2, x3 can be
realized by the network

x4 = x1 ⊕ x2 ⊕ x3, x5 = 〈x1x2x3〉

with outputs y1 = x4 for the sum and y2 = x5 for the carry.
The network uses the parity function f4 and the majority
function f5.

Logic networks can be specialized by placing restrictions
on the internal nodes. A homogeneous LN is one where
the fanin of each internal node is fixed. Restrictions can
be applied to local functions as well (e.g., networks con-
sisting of NANDs and/or NORs). For example, AND-inverter
graphs (AIGs), [41], [42] employ AND and inverters (or
equivalently apply AND functions to positive/negative lit-
erals). Majority-inverter graphs (MIGs), [43] use majority
and inverter gates and XOR-majority graphs (XMG) [44]
use majority and EXOR gates. For FPGA design, bounded
input lookup tables k-LUT networks are used, where
ar(f) ≤ k.

Example 5: Fig. 2 shows logic networks for a 4-b full
adder, which computes (x4x3x2x1)2 + (x8x7x6x5)2 =

(y5y4y3y2y1)2. Fig. 2(a)–(c) shows an AIG, an MIG, and
an XMG, respectively. Inverted inputs are drawn using
dashed edges. Fig. 2(d) shows a 4-LUT network. The gate
functions are f9 = #6, f10 = #936c, f11 = #137f,
f12 = #69, f13 = #2b, f14 = #69, and f15 = #d4.

Combinational logic functions can be represented by
many different logic networks. A central task in logic
synthesis is to optimize some figure of merit that relates
to area, performance, and/or power consumption of the
final implementation. Commonly used cost functions are
the size r of the logic network, measured in the number
of nodes, the depth d of the logic network, which is
the longest path from any primary input to any primary

Fig. 2. Logic networks for a 4-b adder: (a) and-inverter graph;

(b) majority-inverter graph; (c) xor-majority graph; and (d) 4–LUT

network.

PROCEEDINGS OF THE IEEE 5

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

output, and the switching activity.1 Most synthesis methods
use stepwise refinement, i.e., an iterated replacement of
fragments of the network while preserving input/output
(I/O) behavior, mainly driven by heuristics descent strate-
gies. Heuristics are chosen for the optimization goal (e.g.,
area recovery subject to timing constraints) and select net-
work nodes where logic transformations are likely to have
a beneficial effect. Recently, exact methods have emerged
as a means to achieve directly the optimum network for a
function, but its applicability is limited by the size of the
network. Heuristic and exact methods are reviewed next.

IV. A L G O R I T H M S

We present here the underlying techniques for logic
optimization algorithms. The minimization of two-level
SOPs can be achieved by the program ESPRESSO [17],
which embodies both an efficient implementation of the
Quine–McCluskey [16] algorithm for exact minimization
and fast near-optimum heuristics [13], [17]. The latter
is used most often. The minimization of BDDs has been
addressed by Drechsler [39] (exact method) and by others
through heuristics. Here, we concentrate on multilevel
networks as this model is the most widespread, and we
present heuristics first and exact methods later. It is inter-
esting to remark that artificial intelligence methods (in
particular expert systems) were used in the early 1980s
[45], [46] and later abandoned. A resurgent interest in
machine learning synthesis is noticeable at the time of this
writing [47], [48], but the related results are not (yet)
strong enough and broadly used to deserve a report.

Various approaches to LN optimization have historical
names that we preserve here, namely algebraic methods
(based on polynomial algebra), algebraic rewriting (based
on algebraic axioms, possibly of Boolean algebra), and
Boolean methods (based on Boolean algebra). Heuris-
tics are used in these approaches to select the type and
sequence of transformations. While a combination of these
methods (as often provided by the scripts of commercial
tools) provide adequate engineering solutions, very few
properties can be claimed on the synthesized circuits. This
has motivated the recent search for exact methods that can
yield subcircuits with provable properties.

A. Algebraic Methods

Traditional algebraic methods represent each LN node
in SOP form (minimal with respect to single-cube con-
tainment [49]) and treat them as polynomials [49], [50].
This simplifying abstraction enables fast manipulation of
very large LNs. Algorithms are designed as operators that
iterate one type of transformation until the LN reaches a
local minimum (with respect to the transformation itself).

1We use abstract logic models to assess the quality of the network
because we present and compare various emerging technologies. For
established technologies, physical design and logic synthesis are com-
bined, and optimality indicators are extracted from the circuit physical
layout.

Examples of transformations are extraction, substitution,
decomposition, and algebraic rewriting [12], [49].

1) Extraction: Extraction consists of searching common
subexpressions of two (or more) functions, expressed as
polynomials, in order to simplify the original ones. It relies
on the search of appropriate common divisors (called ker-
nels) that can be extracted to represent a new local func-
tion; the associated variable can thus be used to simplify
the original expressions. The extraction problem can fur-
ther be characterized as extraction of single-cube expres-
sion (i.e., of a monomial), and of multiple-cube expres-
sions (i.e., of a polynomial). The algorithm for computing
kernels was proposed by Brayton and McMullen [49].

Example 6: Consider the logic network given by

yi = x1x3x5 + x2x3x5 + x4

yj = x3x4x5 + x2. (4)

The common expression yk = x3x5 can be extracted, and
the network can be reexpressed as

yi = yk(x1 + x2) + x4

yj = ykx4 + x2

yk = x3x5. (5)

2) Substitution: Substitution (also called resubstitution)
means simplifying a local function by using an additional
input coming from a node already present in the network.
This input realizes already a part of the function that thus
needs not to be replicated. Algebraic substitution makes
use of algebraic division [49]: an expression yi can be
expressed as yjyquotient + yremainder, where yj is a divisor
of the original function yi.

Example 7: Consider the logic network given by

yi = x1x3 + x1x4 + x2x3 + x2x4 + x5

yj = x1 + x2. (6)

Function yj is a divisor of yi and can therefore be used to
express the network as

yi = yj(x3 + x4) + x5

yj = x1 + x2. (7)

The implementation of algebraic substitution algorithms
[49] can be very fast and provide an efficient algorithm for
logic optimization.

3) Decomposition: Decomposition splits a local func-
tion (that may be too complex) into two smaller ones.
The reverse transformation, i.e., merging to local func-
tions is called elimination. There are many ways to per-

6 PROCEEDINGS OF THE IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

Fig. 3. Example of AIG rewriting from [52]. (a) Functionally

equivalent AIG structures. (b) Rewrite structure A into B. (c) Rewrite

structure B into A.

form decomposition of logic functions [12], [50], [51].
A straightforward way is to divide algebraically a function
yi by one of its kernels that becomes a new node in the
LN associated with variable j. Thus, yi can be expressed as
jyquotient + yremainder. In contrast to substitution, decom-
position associates a new variable with the divisor. Decom-
position can be applied recursively on the quotient and
remainder.

Example 8: Consider the expression

yi = x1x2x5 + x2x3x5 + x4. (8)

Let us introduce a new variable j = x1x2 +x2x3; it follows
yi can be decomposed as

yi = jyquotient + yremainder = jx5 + x4. (9)

4) Algebraic Rewriting: The purpose of algebraic rewrit-
ing is to reshape portions of an LN in order to improve
the number of nodes and levels [52]. The general idea
consists of applying transformation rules (based on alge-
braic axioms) with the objectives of improving some fig-
ure of merit. Rewriting is more effective when LNs are
homogeneous (e.g., AIGs, MIGs, and XMGs), because logic
transformations can be made specific. Algebraic rewriting
has been used extensively in ABC [52]. For example, one
can hold a database of precomputed circuit structures
for a function. For any subcircuit, one can compute its
function and check whether replacing the subcircuit by a
precomputed structure leads to an improvement. If other
nodes in the circuit are reused in the rewriting, it may be
even beneficial to replace a smaller structure by a larger
one.

Example 9: An example for AIG rewriting as it is imple-
mented in ABC is shown in Fig. 3. Fig. 3(a) shows
three functionally equivalent AIGs structures. These equiv-
alences are employed in Fig. 3(b) and (c) to reshape the
structure of AIGs into functionally equivalent ones.

Refactoring is a variant of rewriting, in which large
cones of logic feeding a node are iteratively selected
with the aim to replace them by a factored form of the
function. The change is accepted if there is an improve-
ment in the selected cost metric (usually the number of
nodes) [52], [53].

Algebraic rewriting is very effective for MIGs and XMGs.
The related majority algebra and axiomatic system Ω have
been described in [43], where it is shown that Ω is sound
and complete, providing reachability in the solution space.
In simple words, this means that for MIGs and XMGs there
exist a sequence of steps leading to the optimum solution.
Such a path may not exist in other representation frame-
works. Indeed, experimental evidence has shown that the
MIGhty program [43] implementing algebraic rewriting
has outperformed other tools on several benchmarks [43],
and especially on large arithmetic functions.

The MIG axiomatic system Ω consists of five primitive
transformation rules that can be used to rewrite MIGs

Ω

����������������������
���������������������

Commutativity−Ω.C

〈xyz〉 = 〈yxz〉 = 〈zyx〉
Majority−Ω.M

〈xxy〉 = x 〈xx̄y〉 = y

Associativity−Ω.A

〈xu〈yuz〉〉 = 〈zu〈yux〉〉
Distributivity−Ω.D

〈xy〈uvz〉〉 = 〈〈xyu〉〈xyv〉z〉
Inverter Propagation−Ω.I

〈xyz〉 = 〈x̄ȳz̄〉.

(10)

An MIG can be transformed into another MIG by
just using the rules in Ω in either direction as well as
additional rules. Such rules can reduce the number of
nodes and depth of an LN, or any other metric [10].
Note that MIGs can be generalized to using majority-n
functions [54], [55].

Example 10: An MIG for function y and its optimized
version are presented in Fig. 4. The optimized version
[see Fig. 4(b)] has been obtained by applying the dis-
tributivity rule and by considering that 〈10x〉 = x. Both
depth (number of levels) and size (number of nodes) are
optimized. Details about MIG theory and implementation
in program MIGhty can be found in [10] and [43].

B. Boolean Methods

When using Boolean methods, each node of the LN is
associated with both a local function and a local don’t care
set [12], [56]. The full power of Boolean algebra is used to
construct local transformations that attempt to improve the
LN characteristics [12], [49], [57]. This can be typically
done by checking that the perturbation introduced by
the optimization step is contained in the don’t care set,

PROCEEDINGS OF THE IEEE 7

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

Fig. 4. MIG algebraic rewriting. (a) MIG: before algebraic

rewriting. (b) MIG: after rewriting.

which represents the tolerance on the perturbation. In this
scenario, often the function at a node n can be changed
to another function without affecting the functionality at
the primary outputs [58], [59]. The new function was
called a permissible function for node n by Muroga, who
did pioneering work on these methods [59]. Unfortunately,
his work based on tabular descriptions had limited impact
because the data structure and algorithms, as well as the
contemporary computers, were not efficient enough to
operate on LN of reasonable size.

Boolean methods evolved through time as different
engines became available for doing the essential task
of detecting the existence of permissible functions. The
MIS/SIS program [50] used program ESPRESSO to find
permissible functions by optimizing the literal count of
two-level logic expressions associated with LN nodes
and their don’t care sets. This approach is fast and
practical, but not general enough as it may miss good
solutions.

Other tools used BDDs to check if a function is a
permissible replacement of another by checking the tau-
tology of their equivalence. Fast tautology check can be
provided by BDD tools [60] and thus desirable permissible
replacements of a local function can be quickly evaluated.
As a specific example, technology mapping with Boolean
matching aims at replacing a portion of an LN by an
element of a cell library. The feasibility of the match-
ing is done using BDDs [61], [62]. Moreover, when the
candidate permissible functions are many, their implicit
enumeration through BDDs [62] makes their search very
effective.

In general, Boolean methods can also be enabled by
casting the search for permissible functions as a satisfia-
bility problem, and using an effective SAT solver for this
task [63]. Overall, Boolean methods leverage a variety
of transformations that eventually resort to an engine for
verifying their applicability. Examples of engines are two-
level minimizers, BDD, and SAT packages. We review some
transformations next.

1) Substitution: As in the algebraic methods, substitu-
tion reexpresses the local function of an existing node
using the input of other nodes already present in the
LN. Substitution can be computed in various ways and it

is inherently more expensive than algebraic substitution.
Traditionally, it is realized by minimizing a local function
with its local don’t care set, which may contain variables
not originally present in the function support. Indeed the
local don’t care set expresses the mutual controllability and
observability links among local functions in an LN, and
thus enables the reexpression of a portion of a function
through a new input.

Example 11: Consider the logic network given by

y1 = x1 + x2x3x4 + x5

y2 = x1 + x3x4. (11)

Assume that we want to substitute y2 into y1. Then, we
minimize y1 with the don’t care conditions induced by
the second assignment y2 ⊕ (x1 + x3x4). The minimized
expression yields

y1
∗ = x1 + x2y2 + x5

y2 = x1 + x3x4 (12)

thus effectively reducing one literal in the first expression
by using the output of the second one.

2) Rewriting: Rewriting aims at minimizing the size
of an LN by iteratively selecting subnetworks and by
replacing them with smaller precomputed subgraphs,
while preserving the functionality. This is achieved by
applying a Boolean equivalence check (modulo the
don’t cares).

Example 12: Examples of typical precomputed subnet-
works are all four variables functions, or their 222 NPN
equivalence classes [23], [44], [52]. Here, the idea is to
replace four-input subnetworks with their optimum pre-
computed representation.

3) Redundancy Removal and Rewiring: Redundancy
removal is a common technique that uses automatic test
pattern generators (ATPGs) to detect untestable stuck-at
faults in an LN and modifies the network at the faulty
net by setting it to a constant value [64], [65]. Rewiring
improves on redundancy removal because it adds new
connections in an LN to create redundancies that later can
be removed. In practice, it adds and removes nets and it
aims at removing nets related to long wires [66].

Rewiring fits into a general paradigm where an LN is
optimized by changing a local function (to improve overall
size and/or depth) by introducing errors that are then
corrected by changing the local functionality somewhere
else [67]. The following example shows this type of trans-
formation for MIGs.

Example 13: We show an example that makes use of an
induced error correction technique for MIGs, which was
first explained in [68]. The technique is based on the

8 PROCEEDINGS OF THE IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

Fig. 5. Rewiring based on induced error correction in MIGs.

(a) Initial MIG. (b) Optimized MIG.

property that

y = 〈y1y2y3〉 if, and only if

(y ⊕ yi)(y ⊕ yj) = 0 for all 1 ≤ i < j ≤ 3.

(13)

We can think of each yi, i = 1, 2, 3 as a convenient
(i.e., reduced and thus incorrect) version of y. The dif-
ference between yi and y is expressed by (y ⊕ yi) in the
local error. The condition on the right-hand side of (13)
states that all three errors must be pairwise orthogonal,
i.e., the pairwise differences have an empty intersection.
In this condition, the majority operator restores the correct
functionality. Fig. 5(a) shows an MIG for the function y,
which has the truth table #f8f8f8e0f8e0e0e0. One can
easily verify that the right-hand side condition in (13) is
satisfied for y1 = 〈x1x2x3〉, y2 = x3, and y3 = 〈x4x5x6〉,
and therefore, y = 〈〈x1x2x3〉x3〈x4x5x6〉〉, for which an
MIG is shown in Fig. 5(b). The optimized MIG reduces both
size and depth to half of their original values. More details
on this technique including methods to derive valid fault
candidates are described in [68].

C. Exact Methods

Exact synthesis is the problem of finding the optimum
logic representation for a given Boolean function with
respect to some cost criterion. We consider here logic
networks where the cost is either the number of gates (or
equivalently nodes and correlated to area) or the depth
of the LN (or equivalently the critical path and correlated
to delay). For example, a well-known exact algorithm is
FlowMap that determines a minimum-depth mapping of
an LN into k-LUTs in polynomial time [69]. Note that an
optimum circuit implementation is not necessarily unique.
For example, the majority-5 function can be realized with
the minimum number of majority-3 gates in more than one
way, for example

〈〈x3x4x5〉x2〈x1x2〈x3x4x5〉〉〉

and
〈x1x2〈〈x3x4x5〉x2〈x3x4x5〉〉〉.

Theoretical bounds can be derived under various
assumption. For example all four-variable Boolean func-
tions can be represented using SOPs with at most
eight implicants [19]. All five-variable Boolean functions
can be represented using two-input LNs with at most
12 gates [21]. Since the number of Boolean functions
grows double exponentially with the support size, it is
hard to compute bounds for a larger number of variables.
To give a sense of the kind and applicability of exact
synthesis, we present here two exact synthesis methods:
1) an implicit LN enumeration method for area minimiza-
tion; and 2) an explicit LN enumeration method for delay
minimization. We refer the interested reader to [70] for
details and other approaches.

1) Implicit Network Enumeration Methods: Implicit net-
work enumeration methods aim at exploring the logic
representation space, in search for optimum networks,
with the help of constraint satisfaction and optimiza-
tion techniques, such as integer linear programming or
Boolean satisfiability [71]. Implicit enumeration methods
are considered the most scalable ones for exact synthesis,
especially considering Boolean functions of five, six, or
more variables, implemented in common technologies. In
this work, we focus on Boolean satisfiability as a main
reasoning engine for exact synthesis.

To showcase how implicit enumeration methods for
exact synthesis can be driven by SAT engines, we present
in the following details on “SAT-based exact synthesis for
minimum gate count.” The same approach can be naturally
extended to minimum delay, minimum power, and other
types of network costs, hence it will not be discussed here
for the sake of brevity.

a) SAT-based exact synthesis: Given an m-tuple of m
functions over n variables

(y1(x1, . . ., xn), . . ., ym(x1, . . ., xn))

we can formulate the exact synthesis of these functions as
a sequence of decision problems P0, P1, P2, Problem
Pr corresponds to the question: Can functions y1, . . ., ym

be computed by an r-gates Boolean LN? Without loss of
generality, we assume as a default situation that any two-
input logic gate is available for synthesis, but the problem
formulation can be tailored to a given technology library
that implements a universal gate set. Each instance Pr can
be described by a SAT formula.2 Hereafter, we describe
what such a formula looks like, how additional constraints
can speed up the synthesis process, as well as some experi-
mental results. We attribute the SAT formulation described
here to Kojevnikov et al., [22], Knuth [28], and Eén[71].
Knuth [28] improved previous approaches, by restricting
synthesis to normal Boolean functions.

2In practice, P0 is often handled as a trivial special case, since it
means that all y1, . . .ym are constants or variable projections.

PROCEEDINGS OF THE IEEE 9

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

b) Definitions and variables: For our SAT-based exact
synthesis purposes, an r-gates LN with n inputs x1, . . ., xn

is a sequence of (two-input) gates (xn+1, . . ., xn+r)

with

xi = xj(i) ◦i xk(i), for n+ 1 ≤ i ≤ n+ r. (14)

That is, each gate combines two previous gates or inputs
with j(i) < k(i) < i using ◦i, which is one of the two-
input Boolean functions. For single-output functions, the
last gate xn+r is considered the network’s output. For
multiple-output networks, each gate could potentially be
an output. We call a single-output function f normal, if
f(0, . . ., 0) = 0. A multiple-output function is normal, if
all of its component functions are normal. An LN rep-
resents normal functions if all of its gate functions are
normal.

To proceed with the formulation of this exact synthesis
problem, we define the variables to be used in the SAT
formula. For 1 ≤ h ≤ m, n < i ≤ n + r, and 0 < t < 2n,
define the following:

xit : tthbit ofxi
′struthtable

gih : [yh = xi]

sijk : [xi = xj ◦i xk]for 1 ≤ j < k < i

fipq : ◦i(p, q)for 0 ≤ p, q ≤ 1, p+ q > 0.

The variables xit correspond to the value (at row t) of the
global truth table for gate xi. The gih variables determine
which outputs point to which gates. Thus, if gih is true,
it means that function yh is computed by gate i. The
sijk variables determine, for each gate i, the inputs j

and k. Also known as selection variables, their assignments
control the underlying DAG structure of the LN. The fipq

encode for all gates i what the corresponding Boolean
operator is. Since we synthesize normal logic networks,
we do not need to consider row 0 of the gate’s truth
tables and require only 2n − 1 truth table indices t. Also
p + q > 0, since the local function describing a gate’s
operation does not need to be specified for the case
p = q = 0.

c) Constraints: We now constrain the variables by a
set of clauses which ensure that the network computes
the correct functions. With the addition of these clauses,
the SAT formula is satisfiable if and only if the given
functions can be computed by an r-gate logic network. For
0 ≤ a, b, c ≤ 1 and 1 ≤ j < k < i, the main clauses
are

((sijk ∧ (xit ⊕ ā) ∧ (xjt ⊕ b̄) ∧ (xkt ⊕ c̄)) → (fibc ⊕ ā)).

In other words, if gate i has inputs j and k, and the tth bit
of xi is a, and the tth bit of xj is b, and the tth bit of xk

is c, then we must have ◦i(b, c) = a. We can rewrite these

Fig. 6. Illustration of a size-optimum (in a number of two-input

gates) logic network for a full adder with carry y� and sum y�.

constraints to CNF

(s̄ijk ∨ (xit ⊕ a) ∨ (xjt ⊕ b) ∨ (xkt ⊕ c) ∨ (fibc ⊕ ā)).

Here, a, b, and c are constants used to set the proper
variable polarities. In fact, these constraints may be sim-
plified in several cases. When b = c = 0, the final term
encodes fi00. If a = 0, this is trivially true, due to the
normality of the network. Hence, in that case, the entire
clause may be omitted. If a = 1, the final literal is omitted
from the clause. Similarly, xjt and xkt are constants if
j ≤ n or k ≤ n, and the appropriate simplifications can be
made.

Next, let (t1, . . ., tn)2 = t be the binary encoding of t,
such that ti refers to the ith bit of t. In order to fix the
proper output values, we add the clauses (ḡhi ∨ x̄it) or
(ḡhi ∨ xit) depending on the value yh(t1, . . ., tn). Finally,
we add the clauses

�n+r
i=n+1 ghi and

�
1≤j<k<i sijk, so that

every output h points to a gate in the network and to
ensure that every gate i has two inputs.

Example 14: We illustrate the encoding by means of the
example network in Fig. 6 that is size-optimum to realize
a full adder. Let us consider a variable assignment that
would synthesize it. It has five gates, so the corresponding
decision problem is P5 and r = 5. Further, it has three
inputs and two outputs. Hence, indices i and t range from
4 to 5 and from 1 to 7, respectively

t = 7 6 5 4 3 2 1

x4t = 1 0 0 0 1 0 0

x5t = 0 1 1 0 0 1 1

x6t = 0 1 1 0 0 0 0

x7t = 1 0 0 1 0 1 1

x8t = 1 1 1 0 1 0 0.

There are two outputs, each of which can point to five
gates, making for a total of ten ghi variables. In this
case, we have g17 = 1, g28 = 1, and ghi = 0 for all
other ghi.

From the DAG structure of the network, we can see that
s412 = 1, s512 = 1, s635 = 1, s735 = 1, and s846 = 1. All
other sijk are zero.

10 PROCEEDINGS OF THE IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

Table 1 Exact Area Synthesis of all Four and Five-Input NPN Classes and

a Set of Six-Input DSD Functions. All Runtimes Are in Milliseconds

Finally, the Boolean operators for the different gates are
assigned the following values:

(p, q) = (1, 1) (0, 1) (1, 0)

f4pq = 1 0 0

f5pq = 0 1 1

f6pq = 1 0 0

f7pq = 0 1 1

f8pq = 1 1 1.

d) Additional clauses: The above clauses are the min-
imum ones necessary to ensure that a valid logic network
is found. However, we may add additional constraints to
boost synthesis speed, such as clauses to force a colexico-
graphic order on the gates. We refer the reader to [28] for
the details.

e) Algorithms: Now that we know how to create the
SAT formula for Pr, we can use that to construct an exact
synthesis algorithm. We would start by solving SAT(Pi),
with i = 0, and then increasing i as long as the answer
is unSAT. It is evident that the first satisfiable answer
corresponds to an exact circuit solution.

f) Experimental results: Table 1 shows experimental
results for the synthesis of three sets of functions, using
the algorithm described in this section. The set NPN4
consists of all 222 four-input NPN classes. The set NPN5
consists of all 616 126 five-input NPN classes. The set
FDSD6 consists of 1000 fully disjoint support set (DSD)
decomposable functions [72]. NPN4 and FDSD6 sets of
functions can be fully synthesized in less than 70 s. On
average, all functions are synthesized in (much) less than
1 s. Interestingly, the six-input DSD functions have a lower
average runtime than the four-input NPN classes. This is
due to the fact DSD functions are rather special functions,
at times easier to synthesize. Considering NPN5, not only
the number of classes is about 3000× larger than NPN4,
but also the average complexity of each function increases.
As a result, exact synthesis of each five-variable function is
more difficult than in the four-variable case.

2) Explicit Network Enumeration Methods: Explicit enu-
meration methods aim at exhaustively exploring the logic
representation space, or a well-defined subportion, looking
for optimum networks. For Boolean functions with four,
five variables maximum, or considering exact synthesis
problems with special constraints on network topology,
a small number of gates, etc., explicit enumeration can
outperform implicit enumeration in terms of execution
runtime. For example, it takes less than 2 min to generate

all delay-optimal circuits of four variables, for more than
200 input arrival time patterns, using a recently introduced
explicit enumeration method [25]. On the other hand,
SAT-based methods can take more than 3 h to find the
same circuits. However, one has to be cautious when
using explicit network enumeration: when the number of
variables grows too much, or the filters on the search space
are not tight enough, explicit network enumeration may
be inapplicable because of the memory footprint, without
even considering the super-exponential runtime blowup.
Nevertheless, there are still applications in EDA where
explicit enumeration is of interest [73].

To showcase how explicit enumeration methods for
exact synthesis can be implemented effectively, we present
in the following a procedure for optimum delay circuits
enumeration. The same approach can be extended to the
minimum area and other metrics: we refer the reader
to [25] for more details.

a) Optimum delay circuits enumeration: We consider
the problem of finding all minimum delay logic circuits
of n variables, given a technology library L and input
arrival pattern T . This problem arises when a complete
exact delay database needs to be populated [25]. The
following procedure that we are going to describe depicts
a high-level flow for explicit circuit enumeration for exact
delay synthesis. We first store trivial circuits for the logic
constants and input variables. These circuits, which are
simple wires, are delay optimal by construction. Then, we
start an enumeration loop where we try to add a new gate
from L, in increasing delay order, having as fanin some
of the already stored functions, also in increasing arrival
time order. If the generated function is not already stored,
we save it. Otherwise, we already have a better delay
implementation stored for the generated function. We keep
iterating this procedure until we have stored circuits for
all the 22n

functions. It can be proven that this proce-
dure only stores optimum delay circuits. Note that such
procedure can be sped up by taking into account library
considerations and function filtering. On the library side,
we can filter based on the gate properties, e.g., functional
symmetry, delay dominance and decomposition, etc. On
the function side, we can filter based on considerations on
NPN classification properties of the already stored func-
tions. With all the filtering, explicit enumeration is fast. It
takes less than 2 min to generate all optimum delay circuits
of four variables for a typical L in CMOS technology [25].

Fig. 7 shows a sample entry for an optimum delay
database, generated by the aforementioned explicit circuit
enumeration algorithm. The minimum delay precision is
set to 0.5 delay units for this example, for practical reasons.
The gate delays are extracted from a characteristic CMOS
library in a 45-nm technology node.

D. Scalable Synthesis Flows

Boolean methods achieve better results than algebraic
methods; they are also more precise. However, the price

PROCEEDINGS OF THE IEEE 11

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

Fig. 7. Sample entry of an optimum delay circuit database.

for better quality is worse scalability. Exact methods can
find optimum circuits and are applicable when circuits
are sought in the presence of many constraints; but these
methods are only applicable to functions with a few num-
ber of inputs. This section discusses how such techniques
can nevertheless be integrated into a robust and scalable
synthesis flow, by making use of partitioning techniques.
Breaking down the logic network into smaller fractions
allows us to apply runtime-intensive methods in a control-
lable manner.

1) Windowing: A generic scalable logic synthesis frame-
work is described by Mishchenko and Brayton [53]. The
general idea is to move a small window (with restricted
and controllable fanin and unlimited fanout) over the
logic network. Algorithms can be applied on the window
resulting in local optimization of subgraphs. Generally, a
windowing procedure takes as input a directed acyclic
graph and two positive integers which denote the maximal
number of primary inputs of the window and the maximal
number of nodes, respectively. We refer the reader to [53]
for a detailed description of the algorithm.

2) LUT Mapping: LUT mapping allows us to cover the
logic network with k-input lookup tables. LUT mapping
is usually based on k-feasible cut enumeration [74]–[76],
and depth-optimal LUT mapping is based on the FlowMap
algorithm [69]. k-LUT mapping can be used as partition
method of large networks in order to apply exact solutions
on smaller functions of k inputs. Results of exact synthesis
algorithm on LUT-mapped networks can be found in [44]
to optimize size and in [26] to optimize logic depth.

V. A P P L I C AT I O N S

Logic synthesis is a technology enabler [11], in the sense
that it allows us to validate the effectiveness of new tech-
nologies on established and emerging architectures. Some
system and technology trends are reviewed in this special
issue. It can be argued that future computing systems will
involve a plurality of hardware solutions, in the search of
the best match to the application of interest.

Whereas the results of using logic synthesis in vari-
ous emerging technologies has been reported elsewhere
[77]–[79] and reviewed in [11], we consider here the
applications of logic synthesis methods to CMOS technol-
ogy, optical computing (focusing on plasmonic logic), and
quantum-dot cellular automata as well as quantum com-
puting. This choice is motivated by the belief that CMOS

will continue to be the mainstream technology, enhanced
by emerging optical computing and communication tech-
nology. Similarly, we think that a design flow including
specialized logic synthesis is necessary to scale up quantum
computing (in various technologies and embodiments)
to provide us with versatile and powerful computing
means.

A. CMOS Targeted Synthesis

This section demonstrates applications for classical
CMOS technologies in which the novel logic synthe-
sis data structures and algorithms described in this
paper lead to significant improvements. First, we show
how majority-based logic networks as intermediate rep-
resentation enable further logic optimization that car-
ries through to technology mapping. Second, we show
examples in which SAT-based techniques are successfully
employed into scalable synthesis flows for standard cell
and LUT-mapping.

The most recent results obtained using majority-based
(i.e., MIGhty) logic optimization are reported in [10].
Logic functions are represented by MIGs and further opti-
mized using both algebraic and Boolean methods, here
summarized in Section IV. A selection of circuits from
both IWLS’05 benchmarks and HDL arithmetic bench-
marks have been considered and synthesis results obtained
with MIGhty are compared to AIGs optimized by ABC
[80] in terms of size and depth. Considering the IWLS’05
benchmarks, an average 14% reduction in depth and 4%
in size are achieved by MIGhty. Focusing on the arithmetic
HDL benchmarks, MIGhty enables about 33% depth reduc-
tion combined with 4% reduction in size. Note that these
improvements are obtained with similar runtime between
MIGhty and ABC. The benefits in area and delay are also
found after place and route, although part of the advantage
is absorbed by place and route. For the case of FPGA design
(synthesis followed by place and route) on a commercial
28-nm technology node, employing MIGhty as front-end to
the FPGA design flow, better final circuits are obtained both
in terms of LUT count, delay, and power metrics. When
targeting delay as main optimization objective, a 10%
improvement is achieved [10, Table 3]. The application-
specific integrated circuit (ASIC) design follows a similar
trend on a commercial 22-nm technology node. MIGhty
achieves better final circuits both for area, delay and
power. Also in this case, when targeting delay as main
optimization objective, a 13% improvement is obtained
[10, Table 4].

The first SAT-based framework dealing with standard
cells has been recently included in ABC [53] and reported
in [81]. A novel SAT-based procedure is used to enumerate
standard-cell implementations of the target node. It is
employed as a postprocessing step, aiming at reducing
the size of already mapped networks. The experimental
results show that a 2.5% further reduction [81, Table 1]
in the number of standard cells is obtained when opti-
mizing circuits mapped using heuristics from ABC. A most

12 PROCEEDINGS OF THE IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

Fig. 8. (a) Layout for a plasmonic-based majority-3, and (b)

three-stage cascaded plasmonic majority circuit.

recent work has considered SAT-based area recovery for
technology mapping [82]. The SAT-based procedure has
been implemented in ABC and tested on a suite of EPFL
benchmarks [68] mapped into 6-LUT logic network. When
targeting area reduction, an average area reduction of
3.5% is obtained and a delay improvement is achieved
in most examples. For several arithmetic benchmarks, the
area reduction is very substantial, with values up to 11%
[82, Table 2].

Open source implementations of most of aforemen-
tioned synthesis algorithms for CMOS are available at
github.com/lsils/mockturtle.

B. Majority-Based Technologies

With transistor dimensions reaching their scaling lim-
its, it is interesting to look at disruptive computation
paradigms offered by emerging nanotechnologies. Exam-
ples of majority-based beyond CMOS technologies include,
but are not limited to, quantum-dot cellular automata
(QCA, [6]), nanomagnet logic [83], spin-based devices
(e.g., spin-wave devices [84] and spin torque majority
gates [85]), and plasmonic-based devices [86]. Here, we
describe as examples plasmonic-based devices and QCA,
and we illustrate how logic synthesis data structures and
algorithms described so far can be employed in order to
realize logic circuits based on these new paradigms of
computation. It is worth noting that logic synthesis for
spin-based devices has already been extensively studied
[11], [77]; nevertheless, the following discussion can be
easily extended and applied to other majority-based nan-
otechnologies.

1) Plasmonic-Based Devices: Plasmonic-based devices
[86] described hereafter are based on the propagation of
surface plasmon polaritons (SPP, [87]), which are electro-
magnetic waves propagating at the interface between a
dielectric and a metal. In particular, plasmonic-based logic
makes use of the phase φ of the SPP as logic variable.
The computation is based on the interference of waves: in
general, the output depends on the number of inputs with
phase φ and φ+ π.

Functionality: The phase of interfering SPP waves fol-
lows the majority rule; this makes the three-input majority
function easy to realize with plasmonic-based devices [86].
Fig. 8(a) shows a single-stage three-input plasmonic
majority gate layout.

Thanks to the physics of plasmonic devices that can
be abstracted as multivalued logic, it has been shown
[86] that a nine-input majority gate can be easily realized
using four three-input plasmonic devices. Note that the
best realization of majority-9 in binary-valued logic known
so far uses 15 majority-3 gates [55], and thus plasmonic
devices may be more efficient (as compared to other wave-
based devices) to realize logic circuits. The wave nature
of the computation allows us to easily implement the
INVerter by using a waveguide of half the length of the SPP
wavelength. Thanks to this property, a complete set of logic
primitives (INV and MAJ) can be build using plasmonic-
based devices.

a) Constraints and costs: As stated above, plasmonic-
based devices make a complete set of Boolean primitives;
however, some constraints arise due to the wave nature
and the physics of this device. As an example, the prop-
agation losses of SPP puts a limitation on the number of
cascaded stages (i.e., the number of levels of the circuits).
Currently, it is not efficient to have more than three stages,
which means that after the third stage, either an amplifier
or a converter to voltage domain is necessary. An example
of three-stage cascaded plasmonic majority is shown in
Fig. 8(b). The propagation losses across the first stage
are around 30%, and keep increasing at every cascaded
stage. The increase in propagation losses between the
different stages is a direct consequence of the size differ-
ence between the devices in different stages [as shown
in Fig. 8(b)]. As the size of the majority gates increases
with the number of stages, also the delay of devices at
different stages follows a similar trend. Furthermore, since
the SPP wavelength has different values according to the
stage, also the inversion cost depends on the stage at
which it is implemented. It should also be noted that most
emerging nanodevices target ultralow energy operation,
with an inherent low amplification and reduced driving
capabilities. Thus, in addition to the constraints already
considered, we expect this technology to have limitations
on the number of outgoing waves (i.e., to the maximum
fanout of each device).

b) Logic synthesis algorithms: The constraints in depth,
fanout, and functionality that arise with the use of
plasmonic-based technology are best dealt with using SAT-
based exact synthesis (see Section IV-C). In fact, any addi-
tional application constraint corresponds to an additional
constraint added to the SAT formula; at the same time, the
circuit size that the SAT solver has to work with is limited
by the depth constraint. A SAT constraint can be used to
target the use of the most suitable type of logic primitives,
according to the technology in use. For example, working
with plasmonic-based devices, one might wish to enable
the use of the compact MAJ-9 implementation. Depending
on the logic representations for which the synthesis has to
be performed (depth, fanout, etc.), additional constraints
may also be easily implemented. In [88], a SAT-based
method that works on MIGs is used to produce majority-
based networks that can be mapped using devices with

PROCEEDINGS OF THE IEEE 13

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

Fig. 9. QCA layout for (a) majority, and (b) inverter. The black cells

are the primary inputs.

restricted fan-out and depth. However, due to the limited
scalability of the SAT-based method [88] and the techno-
logical constraints of plasmonic-based devices, decompo-
sition solutions need to be addressed in order to be able
to support large functions. The core idea is to partition
the main function into smaller ones, where each of these
small functions meets the given constraints (for further
details refer to Section IV-D). In [88], a partition method
based on LUT-mapping is presented, showing that, on
average, 86.6% of 6-LUTs from EPFL benchmarks [68] can
be realized using majority-based plasmonic circuits with
maximum depth and fanout of 3.

2) Quantum-Dot Cellular Automata: QCA technology [6]
is based on the interaction of QCA cells; each cell consists
of four quantum dots and two free electrons. The two elec-
trons are coupled by tunnel barriers and they can tunnel
between the dots. The electrons are forced by Coulomb
repulsion in opposite corners of the cell producing two
energetically equivalent polarizations, i.e., P = 1 and P =

−1. The two polarizations are used as logic variables; i.e.,
to represent logic 1 and 0, respectively. However, for these
polarization states to be energetically stable, the operating
temperature is limited to ∼ 1K [89].

a) Functionality: The fundamental logic element of
QCA is the three-input majority gate [90]. Fig. 9(a) shows
the layout of a QCA majority gate; five QCA cells are
needed to build one single majority gate. The polarization
of the central logic cell, called device cell, is the majority
of the three inputs, while the output cell follows the
polarization of the device cell.

The inverter can be realized as shown in Fig. 9(b) [90],
using 13 quantum cells, and thus it is more expensive as
compared to majority.

In the last few years, five-input majority gate realizations
using QCA cells have been intensively studied [93]. The
majority-5 is a versatile primitive and it can be employed to
realize a variety of functions. Fig. 10 shows one of the first
implementations of the majority-5 [91]. It only requires
ten QCA cells; on the other hand, the input cells are close to
each other and difficult to be accessed. Improved versions

of five-input majority have been recently proposed [92],
[93]. In these implementations, the five inputs are easier
to reach, allowing single-layer accessibility to the input and
output cells.

b) Constraints and costs: QCA technology enables the
realization of three- and five-input majority gates, plus the
inversion. As in the previous case, some limitations and
costs for circuits realization need to be discussed.

The cost used to compare QCA blocks is the number of
QCA cells [93], i.e., the area. The area of a QCA layout
can be obtained by analyzing the layout with QCADesigner
[94], a tool for the layout and analysis of QCA technology
circuits. In this scenario, the inverter implementation is
very expensive in terms of number of cells as compared
to the majorities. Note that 11 QCA cells are needed for
a single five-input majority, while 13 are necessary to
change the polarity of each cell. It is thus preferable to
limit the number of inversions in the circuit. Considering
further constraints, each three- and five-input majority
block has a fanout limited to 3. This is due to the fact
that in order to have the same polarization, two cells
should be aligned and close to each other on one of the
square borders (being 3 for each output signal). More-
over, the fabrication of interconnections between build-
ing blocks needs to be handled efficiently for a better
stability. Until now, an efficient and robust realization
of wire crossing is not available, thus a river routing is
needed [93].

c) Logic synthesis algorithms: QCA technology is
mainly based on three-input majority and INV. This makes
MIGs a perfect data structure to fully exploit QCA func-
tionality. Several MIG optimization algorithms have been
proposed which can be employed to lower the cost metrics
with respect to both area and delay [10].

Logic synthesis algorithms need also to consider that
QCA technology does not offer efficient implementation
of inverters. Therefore, it is required to minimize their
application or even to eliminate them from implemented
circuits. In [95], an algorithm to minimize inversions with
application to QCA technology is presented, providing on
average an additional 5% area reduction on the EPFL arith-
metic benchmarks [68], already optimized using MIGhty.

A different approach is presented in [79] where circuits
are realized using only majorities, after moving all the INVs
to the primary inputs. The same work also tackles the issue
of gates with large fanout, describing an algorithm to limit
the fanout of each MIG node to a given maximum value.
Despite the strict constraints used, the results presented

Fig. 10. Layout of five-input majority with QCA [91].

14 PROCEEDINGS OF THE IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

in [79] show that having inverter-free circuits enables a
3.1× reduction in area delay energy product (ADEP).

Both plasmonic-based devices and QCA offer majority
gates with different arities as primitives. Larger majority-
gates can lead to cost reductions if properly exerted by
the logic synthesis algorithm. In general, majority-n logic
synthesis addresses such problems (see, e.g., [54], [96],
and [97]), including mapping combinational logic into
large majority gates and decomposing large majority gates
into smaller ones.

C. Quantum Computing

In this section, we illustrate how logic synthesis
techniques can be used in applications different from con-
ventional computing. We show how logic synthesis helps
to compile combinational logic for quantum computers.

Quantum computers are computers that exploit the
principles of quantum mechanics. Their premise is to exe-
cute quantum algorithms, which can be computationally
superior to their classical counterparts. Several quantum
algorithms have already been conceived, which can har-
ness the power of a quantum computer to eventually solve
complex problems more efficiently. The most prominent
one is arguably Shor’s algorithm [98] that can factorize
integers in polynomial time, whereas for classical com-
puting nothing better than a subexponential upper bound
is known [99]. Consequently, Shor’s algorithm can break
public-key cryptography which is based on the assumption
that integer factorization is a hard task. Other more generic
algorithms play a significant role in scientific applications
of high interest. Examples are as follows:

• Grover’s search algorithm [100], which enables faster
database queries;

• the HHL algorithm [101], which brings an exponen-
tial speedup to solve linear equations;

• quantum simulation (see, e.g., [102]) to model
atomic-scale interactions efficiently, allowing to
approximate behavior in drugs, organics, and mate-
rials in areas such as medicine, chemistry, and engi-
neering, respectively.

1) Functionality: A quantum computer consists of an
array of quantum bits, also called qubits, that in contrast
to classical bits, can be in a superposition state and can be
entangled [7]. Formally, a qubit is in a quantum state that
is a column vector |ϕ〉 =

�
α
β

�
of two complex numbers α

and β, called amplitudes, such that |α|2 + |β|2 = 1. The
squared amplitudes |α|2 and |β|2 indicate the probability
that the quantum state will collapse to the classical state
|0〉 =

�
1
0

�
or |1〉 =

�
0
1

�
after the qubit is measured. A

quantum state can be transformed into another quantum
state by applying quantum gates, which are represented
by 2 × 2 unitary matrices. For example, the Hadamard
gate H = (1/

√
2)(1 1

1 −1) transforms the classical quantum
state |0〉 into the state (1/

√
2)
�
1
1

�
, which is in the perfect

superposition between 0 and 1. Quantum states over n
qubits are represented by a column vector of 2n complex

values αx with x ∈ 2n such that
� |αi|2 = 1. Each

squared amplitude |αi|2 indicates the probability that after
measurement the n qubits are in classical states x. Quan-
tum states can be combined by applying the Kronecker
product to produce larger ones, e.g.,

�
1
0

� ⊗ (1/
√

2)
�
1
1

�
=

(1/
√

2)

	
1
1
0
0

, which represents a 2-qubit state that is in

the perfect superposition between the classical states 00
and 01. On the contrary, larger states cannot always be
represented in terms of smaller ones. For example, there
are no two independent qubit states |ϕ1〉 and |ϕ2〉 such that

|ϕ1〉 ⊗ |ϕ2〉 = (1/
√

2)

	
1
0
0
1

, the state that is in the perfect

superposition between the classical states 00 and 11. This
phenomenon is called entanglement. Quantum gates that
act on n qubits are represented in terms of 2n × 2n unitary
matrices. One frequently used two-input gate is the CNOT
gate that inverts one qubit conditioned on the other qubit.

Its 4 × 4 unitary matrix is
	

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

Quantum algorithms describe problem solutions by
manipulating quantum states using quantum operations.
Algorithm 1 shows the pseudocode for a Grover search
[100]. Given a Boolean function f : B

n → B such that
there exists exactly one x̂ with f(x̂) = 1, the algorithm
finds x̂ using only O(

√
2n) evaluations of f . A classical

computer cannot solve this problem in fewer than O(2n)

evaluations of f .

Algorithm 1 Grover Search Algorithm

Input: Boolean function f : B
n → B such that

exists exactly one x̂ with f(x̂) = 1
Output: x̂ with high probability

1: Let |ϕ〉 = |ϕ1〉 ⊗ . . .⊗ |ϕn〉
2: Set |ϕ〉|ψ〉 ← |0〉⊗n|1〉
3: Set |ϕ〉|ψ〉 ← H⊗n|ϕ〉 ⊗H |ψ〉
4: for O(

√
2n) times do

5: Set |ϕ〉|ψ〉 ← |ϕ〉|ψ ⊕ f(ϕ)〉
6: Set |ϕ〉 ← D|ϕ〉
7: end for
8: return Measure(|ϕ〉)

The algorithm works on n + 1 qubits and it can easily
be seen that the function f is only evaluated once in
each iteration of the loop. The exact number of required
iterations is (π/4) arcsin(1/

√
2n) ≈ π/(4

√
2n), therefore

a polynomial speedup is achieved using a linear number
of resources. We now explain the individual steps of the
algorithm and explicitly describe the quantum state of the
n-qubit register |ϕ〉, composed of 2n amplitudes αx for all
x ∈ B

n. The power of quantum computing is enabled by
simultaneously acting on exponentially many amplitudes
while applying an operation to a linear number of qubits.

• Line 2: Each qubit in |ϕ〉 is initialized to |0〉,
i.e., α00...0 = 1, and αx = 0 for all x �= 00. . .0.

• Line 3: Apply the Hadamard gate to each qubit in |ϕ〉,
resulting in αx = 1/

√
2n for all x ∈ B

n. (At this point,

PROCEEDINGS OF THE IEEE 15

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

measuring |ϕ〉 corresponds to sampling a value x ∈
B

n uniform at random; and the probability of finding
x̂ is 1/2n.)

• Line 5: When applying f to |ϕ〉, the amplitude αx̂

of the satisfying assignment is inverted and becomes
−αx̂; all other amplitudes remain unchanged. The
additional qubit |ψ〉 is used here to apply f as a uni-
tary operation. (Note that the sign inversion does not
change the probabilities of measurement outcome.)

• Line 6: The operation D, called Grover diffusion
operator, is described by the 2n × 2n unitary matrix
D = H⊗n ⊗ diag(1,−1,−1, . . .,−1) ⊗H⊗n. Its effect
on an amplitude is to reflect it with respect to the
mean value μ =

�
x∈Bx αx of all amplitudes, i.e., the

operation maps αx to 2μ − αx. Since αx̂ is negative,
the reflection amplifies its absolute value such that
after the operation |αx̂| > |αx| for all x ∈ B

x.
The difference grows in every iteration, as does the
probability of obtaining x̂ by measuring |ϕ〉.

• Line 8: After a sufficient number of iterations—and
not more than that—the measurement of |ϕ〉 yields
x̂ with a very high probability. The probability of
returning the wrong result is in O(1/

√
2n). [Checking

whether the returned result is correct is in O(1), since
it can be done by evaluating f classically once; if the
result turns out to be wrong, the Grover algorithm is
executed again.]

As an alternative representation to the textual one in
Algorithm 1, one can use quantum circuits to express the
interaction of quantum operations with qubits. Fig. 11
shows the quantum circuit representation of Algorithm 1.
The boxes denote gates, e.g., the Hadamard operation
H and the diffusion operator D. The gate in between
expresses the application of f onto |ϕ〉. Instruction
sequences for a quantum computer are also expressed
in terms of quantum circuits, with the requirement that
all quantum gates in the circuit correspond to actual
physical operations that can be executed on the physical
quantum computer [5]. Quantum compilers are software
programs that take a high-level description of a quantum
algorithm and map them into low-level quantum circuits.
The objective of quantum compilers is to find a quantum
circuit that meets the number of available qubits and
minimizes the number of quantum gates. Fig. 12 shows a
compiled and optimized quantum circuit for an instance
of the Grover algorithm in which n = 2 and f = x1 ∧ x2,
for which x̂ = 11. The gate set that is used in this quantum
computation is called Clifford+T [and generated by
the matrices H , T = diag(1, eiπ/4), and CNOT] and is,
e.g., supported by the IBM and Google superconducting
quantum computers [103], [104].

2) Constraints and Costs: Logic synthesis can help to
automatically translate high-level quantum operations that
appear in quantum algorithms or high-level quantum cir-
cuit descriptions into the low-level quantum operations
supported by a quantum computer. However, quantum

Fig. 11. Quantum circuit representation of Algorithm 1.

circuits differ significantly in comparison to classical cir-
cuits, which needs to be addressed by design automation
tools [105].

Although qubits may be in superposition or entangled,
when targeting purely Boolean functions, it is sufficient to
assume that all input values are Boolean inside the synthe-
sis algorithm, even though entangled qubits in superposi-
tion are eventually acted upon by the quantum hardware.

Since quantum gates are described in terms of unitary
matrices, also classical Boolean functions must be imple-
mented in terms of unitary operations. A direct transla-
tion is not always possible. For example, in the Grover
algorithm, an additional qubit, called ancilla, is necessary
in order to apply the function f to the quantum state.
For Boolean functions and algorithms, which are more
involved, the problem of determining how many ancillae
are necessary is not a simple task. Qubits are a limited
resource; therefore, the use of ancillae is restricted and
synthesis must find circuits that satisfy the number of
available qubits.

3) Logic Synthesis Algorithms: Quantum compilation
requires several different steps, such as decomposing arbi-
trary unitary operations into a given gate set [106]–[108],
optimizing low-level quantum circuits [109]–[112], map-
ping quantum circuits while respecting architectural con-
straints [113], [114], and applying error correction [115],
[116]. In the remainder, we focus on the task of translating
classical combinational operations, such as the operation f
in the Grover algorithm, into quantum circuits.

The translation of classical combinational opera-
tions into quantum circuits involves reversible logic
synthesis [117]. State-of-the-art approaches first create a
reversible logic circuit with reversible gates, which are
Boolean abstractions of classical reversible operations.
Other methods translate reversible gates into quantum
circuits [9], [118], [119]. Many approaches for reversible
logic synthesis have been proposed in the last 15 years
(e.g., [120]–[123]). Initial algorithms are based on explicit
truth table or permutation-based representations [120],
[124], [125]. All algorithms guarantee quantum circuits
with the minimum number of qubits, because the input
function is already reversible. But since truth tables grow

Fig. 12. Compiled and optimized instance of the Grover algorithm

for n � � and f � x� ∧ x�.

16 PROCEEDINGS OF THE IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

exponentially in size, the algorithms require exponential
space and runtime in the number of input variables. This
rules out their applicability to problem sizes of 20 qubits
or more. Symbolic implementations of theses algorithms
(see, e.g., [123], [126], and [127]) can overcome these
limitations for functions that have a compact symbolic
representation (e.g., in terms of a BDD) and result in
reversible circuits with a few number of gates.

By using data structures that allow a more compact
representation for the input function, and by relaxing
the constraint that the input function is reversible, more
scalable algorithms can be achieved, with the cost of
requiring additional qubits in their implementation. If it
is possible to find a two-level ESOP representation for a
Boolean function with n inputs and m outputs (i.e., m
ESOP representations), ESOP-based reversible logic syn-
thesis [33], [34] can find a reversible circuit using m + n

qubits, which requires as many reversible gates as product
terms in the ESOP expressions. Finding a two-level ESOP
representation for a function is not always simple, but
recent approaches show that it is possible to find represen-
tations for functions with up to 32 variables in a reasonable
amount of runtime [128].

Scalable reversible logic synthesis can be achieved when
using a multilevel logic representation for the input func-
tion. In so-called hierarchical reversible logic synthesis,
a reversible or quantum circuit is determined for sub-
structures in the multilevel representation, e.g., a gate
in a logic network, or a node in a BDD. The resulting
circuits are composed by using additional ancillae qubits
to store temporary results. Proposed approaches make
use of decision diagrams [122], [129], logic networks in
general [130], AIGs [131], XMGs [132], and most recently
LUT networks [105]. Hierarchical reversible logic synthesis
is as scalable as classical logic synthesis, since it depends
on the representation size of the input function. However,
this scalability comes at the cost of a significant number of
additional qubits—often far more than current and near-
term quantum computers support. Strategies based on the

reversible pebble game [133] can be used to reduce the
number of qubits for the cost of more gates [134].

VI. C O N C L U S I O N

The plurality of post-CMOS nanoemerging technologies
enforced a reorientation of classical logic synthesis meth-
ods. Different logic primitives are addressed by new logic
representations, such as majority-inverter graphs. Exact
methods guarantee valid solutions even in the presence of
various constraints, which need to be taken into consider-
ation especially for very recent emerging technologies.

Conventional CMOS technologies, such as FPGAs and
ASICs, can benefit largely from modern logic synthesis data
structures and techniques. If new data structures are used
as intermediate representations, logic synthesis algorithms
can exploit more optimization opportunities which results
in significant reductions after technology mapping. Fur-
thermore, the increase of compute power in combination
with the advances in SAT solvers enable the use of SAT-
based logic synthesis techniques in a scalable manner.
Exact synthesis can find optimum logic networks for vari-
ous cost functions and constraints, thus being appealing for
emerging technologies. Decomposition techniques allow us
to apply exact synthesis locally to large logic networks.

In this paper, we have shown a selection of modern
data structures, algorithms, and applications. The common
principle is to consider logic synthesis as a technology-
independent tool that can—efficiently and effectively—
express functionality in terms of small logic primitives,
and optimize the representation in terms of an application
and technology-dependent cost function. This general view
makes logic synthesis a key ingredient to numerous com-
puting platforms.

A c k n o w l e d g m e n t s

The authors would like to thank A. Mishchenko,
R. Brayton, P.-E. Gaillardon, and W. Haaswijk for fruitful
discussions.

R E F E R E N C E S
[1] (2018). Synopsys Design Compiler Graphical.

[Online]. Available:
https://www.synopsys.com/content/dam/
synopsys/implementation&signoff/datasheets/dc-
graphical-ds.pdf

[2] (2018). Cadence Genus Synthesis Solution.
[Online]. Available:
https://www.cadence.com/content/dam/
cadence-
www/global/en_us/documents/tools/digital-
design-signoff/genus-synthesis-solution-ds.pdf

[3] (2018). Mentor Graphics Oasys-RTL. [Online].
Available:
http://s3.mentor.com/public_documents/datasheet/
products/ic_nanometer_design/place-
route/realtime-designer/realttime-designer.pdf

[4] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and
J. Cong, “Optimizing FPGA-based accelerator
design for deep convolutional neural networks,”
in Proc. Int. Symp. Field Program. Gate Arrays,
2015, pp. 161–170.

[5] F. T. Chong, D. Franklin, and M. Martonosi,
“Programming languages and compiler design for
realistic quantum hardware,” Nature, vol. 549,

no. 7671, pp. 180–187, 2017.
[6] C. S. Lent, P. D. Tougaw, W. Porod, and

G. H. Bernstein, “Quantum cellular automata,”
Nanotechnology, vol. 4, no. 1, pp. 49–57, 1993.

[7] M. A. Nielsen and I. L. Chuang, Quantum
Computation and Quantum Information.
Cambridge, U.K.: Cambridge Univ. Press, 2000.

[8] T. Toffoli, “Reversible computing,” in Proc. Int.
Coll. Automat., Lang., Program., 1980,
pp. 632–644.

[9] D. Maslov, “Advantages of using relative-phase
Toffoli gates with an application to multiple
control Toffoli optimization,” Phys. Rev. A, Gen.
Phys., vol. 93, p. 022311, Feb. 2016.

[10] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli,
“Majority-inverter graph: A new paradigm for
logic optimization,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 35, no. 5,
pp. 806–819, May 2016.

[11] L. Amaru, P. E. Gaillardon, S. Mitra, and G. De
Micheli, “New logic synthesis as nanotechnology
enabler,” Proc. IEEE, vol. 103, no. 11,
pp. 2168–2195, Nov. 2015.

[12] G. De Micheli, Synthesis and Optimization of

Digital Circuits. New York, NY, USA: McGraw-Hill,
1994.

[13] R. K. Brayton, G. D. Hachtel, C. McMullen, and
A. Sangiovanni-Vincentelli, Logic Minimization
Algorithms for VLSI Synthesis, vol. 2. Springer,
1984.

[14] G. D. Hachtel and F. Somenzi, Logic Synthesis and
Verification Algorithms. Springer, 2006.

[15] S. Hassoun and T. Sasao, Logic Synthesis and
Verification, vol. 654. Springer, 2012.

[16] E. J. McCluskey, “Minimization of Boolean
functions,” Bell Syst. Tech. J., The, vol. 35, no. 6,
pp. 1417–1444, Nov. 1956.

[17] R. Rudell and A. Sangiovanni-Vincentelli,“Logic
synthesis for VLSI design,” Ph.D. dissertation,
Univ. California, Berkeley, Berkeley, CA, USA,
1989.

[18] N. Weste and K. Eshraghian, Principles of CMOS
VLSI Design. Reading, MA, USA: Addion-Wesley,
1993, ch. 8.

[19] T. Sasao, Switching Theory for Logic Synthesis.
Springer, 1999.

[20] N. Song and M. A. Perkowski, “Minimization of
exclusive sum-of-products expressions for

PROCEEDINGS OF THE IEEE 17

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

multiple-valued input, incompletely specified
functions,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 15, no. 4, pp. 385–395, Apr.
1996.

[21] D. E. Knuth, The Art of Computer Programming,
vol. 4A. Reading, MA, USA: Addison-Wesley, 2011.

[22] A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev,
“Finding efficient circuits using SAT-solvers,” in
Proc. Int. Conf. Theory Appl. Satisfiability Testing,
2009, pp. 32–44.

[23] M. Soeken, L. G. Amarù, P.-E. Gaillardon, and
G. De Micheli, “Exact synthesis of
majority-inverter graphs and its applications,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 36, no. 11, pp. 1842–1855, Nov. 2017.

[24] R. Drechsler and W. Günther, “Exact circuit
synthesis,” in Proc. Int. Workshop Logic Synth.,
1998.

[25] L. G. Amarù et al., “Enabling exact delay
synthesis,” in Proc. Int. Conf. Comput.-Aided
Design, Nov. 2017, pp. 352–359.

[26] M. Soeken, G. De Micheli, and A. Mishchenko,
“Busy man’s synthesis: Combinational delay
optimization with SAT,” in Proc. Design, Automat.
Test Eur., Mar. 2017, pp. 830–835.

[27] A. Biere, M. Heule, H. van Maaren, and T. Walsh,
Eds., Handbook of Satisfiability. Amsterdam, The
Netherlands: IOS Press, 2009.

[28] D. E. Knuth, The Art of Computer Programming,
Fascicle 6: Satisfiability, vol. 4. Reading, MA, USA:
Addison-Wesley, 2015.

[29] F. M. Brown, Boolean Reasoning: The Logic of
Boolean Equations. Springer, 2012.

[30] J. Boyar and R. Peralta, “A new combinational
logic minimization technique with applications to
cryptology,” in Proc. Int. Symp. Exp. Algorithms,
2010, pp. 178–189.

[31] J. Boyar and R. Peralta, “A small depth-16 circuit
for the AES S-box,” in Proc. Inf. Secur. Privacy
Conf., 2012, pp. 287–298.

[32] D. Canright and L. Batina, “A very compact
‘perfectly masked’ S-box for AES,” in Proc. Int.
Conf. Appl. Cryptogr. Netw. Secur., 2008,
pp. 446–459.

[33] K. Fazel, M. A. Thornton, and J. E. Rice,
“ESOP-based Toffoli gate cascade generation,” in
Proc. Pacific Rim Conf. Commun., Comput. Signal
Process., Aug. 2007, pp. 206–209.

[34] A. Mishchenko and M. Perkowski, “Logic synthesis
of reversible wave cascades,” in Proc. Int.
Workshop Logic Synth., 2002.

[35] M. Soos, K. Nohl, and C. Castelluccia, “Extending
SAT solvers to cryptographic problems,” in Proc.
Int. Conf. Theory Appl. Satisfiability Test., 2009,
pp. 244–257.

[36] G. S. Tseitin, “On the complexity of derivation in
propositional calculus,” in Studies in Constructive
Mathematics and Mathematical Logic Part 2
(Seminars in Mathematics), A. P. Slisenko, Ed.
Springer, 1970, pp. 115–125.

[37] R. E. Bryant, “Graph-based algorithms for Boolean
function manipulation,” IEEE Trans. Comput.,
vol. 35, no. 8, pp. 677–691, Aug. 1986.

[38] B. Bollig and I. Wegener, “Improving the variable
ordering of OBDDs is NP-complete,” IEEE Trans.
Comput., vol. 45, no. 9, pp. 993–1002, Sep. 1996.

[39] R. Drechsler, N. Drechsler, and W. Gunther, “Fast
exact minimization of BDD’s,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 19,
no. 3, pp. 384–389, Mar. 2000.

[40] M. Fujita, Y. Matsunaga, and T. Kakuda, “On
variable ordering of binary decision diagrams for
the application of multi-level logic synthesis,” in
Proc. Conf. Eur. Design Automat., Feb. 1991,
pp. 50–54.

[41] A. Kuehlmann, V. Paruthi, F. Krohm, and
M. K. Ganai, “Robust Boolean reasoning for
equivalence checking and functional property
verification,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 21, no. 12,
pp. 1377–1394, Dec. 2002.

[42] L. Hellerman, “A catalog of three-variable
or-invert and and-invert logical circuits,” IEEE
Trans. Electron. Comput., vol. EC-12, no. 3,
pp. 198–223, Jun. 1963.

[43] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli,
“Majority-inverter graph: A novel data-structure
and algorithms for efficient logic optimization,” in
Proc. Design Automat. Conf., Jun. 2014, p.
194:1–194:6.

[44] W. Haaswijk, M. Soeken, L. G. Amarù,
P.-E. Gaillardon, and G. De Micheli, “A novel basis
for logic optimization,” in Proc. Asia South Pacific
Design Automat. Conf., 2017, pp. 151–156.

[45] J. A. Darringer, W. H. Joyner, C. L. Berman, and
L. Trevillyan, “Logic synthesis through local
transformations,” IBM J. Res. Develop., vol. 25,
no. 4, pp. 272–280, Jul. 1981.

[46] A. J. de Geus and D. J. Gregory, “The Socrates
logic synthesis and optimization system,” in
Design Systems for VLSI Circuits: Logic Synthesis
and Silicon Compilation, vol. 136, G. De Micheli,
A. Sangiovanni-Vincentelli, and P. Antognetti, Eds.
1987, p. 473.

[47] W. Haaswijk et al., “Deep learning for logic
optimization algorithms,” in Proc. Int. Symp.
Circuits Syst., May 2018, pp. 1–4.

[48] C. Yu, H. Xiao, and G. De Micheli, “Developing
synthesis flows without human knowledge,” in
Proc. Design Automat. Conf., 2018, Art. no. 50.

[49] R. K. Brayton and C. T. McMullen, “The
decomposition and factorization of Boolean
expressions,” in Proc. Int. Symp. Circuits Syst.,
1982, pp. 49–54.

[50] R. K. Brayton, R. Rudell,
A. Sangiovanni-Vincentelli, and A. R. Wang, “MIS:
A multiple-level logic optimization system,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 6, no. 6, pp. 1062–1081, Nov. 1987.

[51] R. L. Ashenhurst, “The decomposition of switching
functions,” in Proc. Int. Symp. Theory Switching,
1957.

[52] A. Mishchenko, S. Chatterjee, and R. Brayton,
“DAG-aware AIG rewriting: A fresh look at
combinational logic synthesis,” in Proc. Design
Automat. Conf., Jul. 2006, pp. 532–535.

[53] A. Mishchenko and R. K. Brayton, “Scalable logic
synthesis using a simple circuit structure,” in Proc.
Int. Workshop Logic Synth., 2006, pp. 15–22.

[54] L. G. Amarù, P.-E. Gaillardon, A. Chattopadhyay,
and G. De Micheli, “A sound and complete
axiomatization of majority-n logic,” IEEE Trans.
Comput., vol. 65, no. 9, pp. 2889–2895, Sep.
2016.

[55] E. Testa, M. Soeken, L. Amarù, W. Haaswijk, and
G. D. Micheli, “Mapping monotone boolean
functions into majority,” 2018.

[56] K. A. Bartlett et al., “Multi-level logic
minimization using implicit don’t cares,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 7, no. 6, pp. 723–740, Jun. 1988.

[57] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch,
R. Brayton, and M. Chrzanowska-Jeske, “Using
simulation and satisfiability to compute
flexibilities in Boolean networks,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 25,
no. 5, pp. 743–755, May 2006.

[58] S. Muroga, “Logic synthesizers, the transduction
method and its extension, Sylon,” in Logic
Synthesis and Optimization, T. Sasao, Ed. Springer,
1993, pp. 59–86.

[59] S. Muroga, Y. Kambayashi, H. C. Lai, and
J. N. Culliney, “The transduction method-design of
logic networks based on permissible functions,”
IEEE Trans. Comput., vol. 38, no. 10,
pp. 1404–1424, Oct. 1989.

[60] C. Yang and M. Ciesielski, “BDS: A BDD-based
logic optimization system,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 21,
no. 7, pp. 866–876, Jul. 2002.

[61] F. Mailhot and G. Di Micheli, “Algorithms for
technology mapping based on binary decision
diagrams and on Boolean operations,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 12,
no. 5, pp. 599–620, May 1993.

[62] P. Vuillod, L. Benini, and G. De Micheli,
“Generalized matching from theory to
application,” in Proc. Int. Conf. Comput.-Aided
Design, Nov. 1997, pp. 13–20.

[63] A. Mishchenko and R. K. Brayton, “SAT-based

complete don’t-care computation for network
optimization,” in Proc. Design, Automat. Test Eur.,
Mar. 2005, pp. 412–417.

[64] F. Brglez, D. Bryan, J. Calhoun, G. Kedem, and
R. Lisanke, “Automated synthesis for testability,”
IEEE Trans. Ind. Electron., vol. 36, no. 2,
pp. 263–277, May 1989.

[65] F. D. Bryan, Brglez and R. Lisanke, “Redundancy
identification and removal,” in Proc. IWLS, 1991.

[66] S.-C. Chang, L. P. P. P. V. Ginneken, and
M. Marek-Sadowska, “Circuit optimization by
rewiring,” IEEE Trans. Comput., vol. 48, no. 9,
pp. 962–970, Sep. 1999.

[67] M. Damiani, J. C. Y. Yang, and G. D. Micheli,
“Optimization of combinational logic circuits
based on compatible gates,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 14,
no. 11, pp. 1316–1327, Nov. 1995.

[68] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli,
“The EPFL combinational benchmark suite,” in
Proc. Int. Workshop Logic Synth., 2015.

[69] J. Cong and Y. Ding, “FlowMap: An optimal
technology mapping algorithm for delay
optimization in lookup-table based FPGA
designs,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 13, no. 1, pp. 1–12, Jan. 1994.

[70] E. A. Ernst, “Optimal combinational multi-level
logic synthesis,” Ph.D. dissertation, Dept. Comput.
Sci. Eng., Univ. Michigan, Ann Arbor, MI,USA,
2009.

[71] N. Éen, “Practical SAT—A tutorial on applied
satisfiability solving,” FMCAD, Tech. Rep., 2007.

[72] V. Bertacco and M. Damiani, “Boolean function
representation based on disjoint-support
decompositions,” in Proc. Int. Conf. Comput.
Design, Oct. 1996, pp. 27–32.

[73] L. G. Amarù, P. Vuillod, J. Luo, and J. Olson,
“Logic optimization and synthesis: Trends and
directions in industry,” in Proc. Design, Automat.
Test Eur., Mar. 2017, pp. 1303–1305.

[74] J. Cong, C. Wu, and Y. Ding, “Cut ranking and
pruning: Enabling a general and efficient FPGA
mapping solution,” in Proc. Int. Symp. Field
Program. Gate Arrays, 1999, pp. 29–35.

[75] S. Ray, A. Mishchenko, N. Eén, R. K. Brayton,
S. Jang, and C. Chen, “Mapping into LUT
structures,” in Proc. Design, Automat. Test Eur.,
2012, pp. 1579–1584.

[76] A. Mishchenko, A. S. Chatterjee, and
R. K. Brayton, “Improvements to technology
mapping for LUT-based FPGAs,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 26,
no. 2, pp. 240–253, Feb. 2007.

[77] O. Zografos, L. Amaru, P.-E. Gaillardon,
P. Raghavan, and G. De Micheli, “Majority logic
synthesis for spin wave technology,” in Proc.
Euromicro Conf. Digit. Syst. Design, Aug. 2014,
pp. 691–694.

[78] R. Zhang, P. Gupta, and N. K. Jha, “Majority and
minority network synthesis with application to
QCA-, SET-, and TPL-based nanotechnologies,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 26, no. 7, pp. 1233–1245, Jul. 2007.

[79] E. Testa et al., “Inverter propagation and fan-out
constraints for beyond-CMOS majority-based
technologies,” in Proc. Annu. Symp. VLSI, Jul.
2017, pp. 164–169.

[80] R. Brayton and A. Mishchenko, “ABC: An
academic industrial-strength verification tool,” in
Computer Aided Verification. 2010, pp. 24–40.

[81] A. Mishchenko, R. Brayton, T. Besson,
S. Govindarajan, H. Arts, and P. van Besouw,
“Versatile SAT-based remapping for standard
cells,” in Proc. Int. Workshop Logic Synth., 2016,
pp. 1–5.

[82] B. Schmitt, A. Mishchenko, and R. K. Brayton,
“SAT-based area recovery in technology mapping,”
in Proc. Asia South Pacific Design Automat. Conf.,
2018, pp. 1–6.

[83] G. Csaba, A. Imre, G. H. Bernstein, W. Porod, and
V. Metlushko, “Nanocomputing by field-coupled
nanomagnets,” IEEE Trans. Nanotechnol., vol. 99,
no. 4, pp. 209–213, 2002.

[84] O. Zografos et al., “Design and benchmarking of
hybrid CMOS-spin wave device circuits compared

18 PROCEEDINGS OF THE IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

to 10 nm CMOS,” in Proc. Int. Conf. Nanotechnol.,
Jul. 2015, pp. 686–689.

[85] D. E. Nikonov, G. I. Bourianoff, and T. Ghani,
“Proposal of a spin torque majority gate logic,”
IEEE Electron Device Lett., vol. 32, no. 8,
pp. 1128–1130, Aug. 2011.

[86] S. Dutta et al., “Proposal for nanoscale cascaded
plasmonic majority gates for non-Boolean
computation,” Sci. Rep., vol. 7, no. 1, p. 17866,
2017.

[87] W. L. Barnes, A. Dereux, and T. W. Ebbesen,
“Surface plasmon subwavelength optics,” Nature,
vol. 424, no. 6950, pp. 824–830, 2003.

[88] E. Testa, M. Soeken, O. Zografos, F. Catthoor, and
G. De Micheli, “Exact synthesis for logic synthesis
applications with complex constraints,” in Proc.
Int. Workshop Logic Synth., 2017.

[89] C. S. Lent and P. D. Tougaw, “A device architecture
for computing with quantum dots,” Proc. IEEE,
vol. 85, no. 4, pp. 541–557, Apr. 1997.

[90] P. D. Tougaw and C. S. Lent, “Logical devices
implemented using quantum cellular automata,”
Appl. Phys. Lett., vol. 75, no. 3, pp. 1818–1825,
1993.

[91] K. Navi, R. Farazkish, S. Sayedsalehi, and
M. R. Azghadi, “A new quantum-dot cellular
automata full-adder,” Microelectron. J., vol. 41,
no. 12, pp. 820–826, 2010.

[92] S. Sheikhfaal, S. Angizi, S. Sarmadi,
M. H. Moaiyeri, and S. Sayedsalehi, “Designing
efficient QCA logical circuits with power
dissipation analysis,” Microelectron. J., vol. 46,
no. 6, pp. 462–471, Jun. 2015.

[93] T. N. Sasamal, A. K. Singh, and A. Mohan, “An
optimal design of full adder based on 5-input
majority gate in coplanar quantum-dot cellular
automata,” Optik, vol. 127, no. 20,
pp. 8576–8591, Oct. 2016.

[94] K. Walus, T. J. Dysart, G. A. Jullien, and
R. A. Budiman, “QCADesigner: A rapid design and
simulation tool for quantum-dot cellular
automata,” IEEE Trans. Nanotechnol., vol. 3, no. 1,
pp. 26–31, Mar. 2004.

[95] E. Testa et al., “Inversion optimization in
majority-inverter graphs,” in Proc. Int. Symp.
Nanosc. Architect., Jul. 2016, pp. 15–20.

[96] S. Amarel, G. E. Cooke, and R. O. Winder,
“Majority gate networks,” IEEE Trans. Electron.
Comput., vol. 13, no. 1, pp. 4–13, 1964.

[97] A. Chattopadhyay, L. G. Amarù, M. Soeken,
P.-E. Gaillardon, and G. De Micheli, “Notes on
majority Boolean algebra,” in Proc. Int. Symp.
Multiple-Valued Logic, May 2016, pp. 50–55.

[98] P. W. Shor, “Polynomial-time algorithms for prime
factorization and discrete logarithms on a
quantum computer,” SIAM J. Comput., vol. 26,
no. 5, pp. 1484–1509, 1997.

[99] C. Pomerance, “A tale of two sieves,” Notices AMS,
vol. 43, no. 12, pp. 1473–1485, 1996.

[100] L. K. Grover, “A fast quantum mechanical
algorithm for database search,” in Proc. Symp.
Theory Comput., 1996, pp. 212–219.

[101] A. W. Harrow, A. Hassidim, and S. Lloyd,
“Quantum algorithm for linear systems of
equations,” Phys. Rev. Lett., vol. 103, no. 15, p.
150502, Oct. 2009.

[102] T. H. Johnson, S. R. Clark, and D. Jaksch, “What is
a quantum simulator?” EPJ Quantum Technol.,
vol. 1, no. 10, pp. 1–12, 2014.

[103] N. M. Linke et al., “Experimental comparison of
two quantum computing architectures,” Proc. Nat.
Acad. Sci. USA, vol. 114, no. 13, pp. 3305–3310,
2017.

[104] I. L. Markov, A. Fatima, S. V. Isakov, and S. Boixo
(2018). “Quantum supremacy is both closer and
farther than it appears.” [Online]. Available:
https://arxiv.org/abs/1807.10749

[105] M. Soeken, M. Roetteler, N. Wiebe, and G. De
Micheli, “Hierarchical reversible logic synthesis
using LUTs,” in Proc. Design Automat. Conf., 2017,
pp. 78:1–78:6.

[106] V. Kliuchnikov and J. Yard (2015). “A framework
for exact synthesis.” [Online]. Available:
https://arxiv.org/abs/1504.04350

[107] S. Forest, D. Gosset, V. Kliuchnikov, and
D. McKinnon, “Exact synthesis of single-qubit
unitaries over Clifford-cyclotomic gate sets,”
J. Math. Phys., vol. 56, no. 8, p. 082201, 2015.

[108] A. Bocharov, Y. Gurevich, and K. M. Svore,
“Efficient decomposition of single-qubit gates into
V basis circuits,” Phys. Rev. A, Gen. Phys., vol. 88,
Jul. 2013, Art. no. 012313.

[109] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and
D. Maslov, “Automated optimization of large
quantum circuits with continuous parameters,”
Quantum Inf., vol. 4, no. 23, pp. 1–12, 2018.

[110] D. Maslov, “Basic circuit compilation techniques
for an ion-trap quantum machine,” Quantum Inf.,
vol. 19, Feb. 2017, Art. no. 023035.

[111] L. Heyfron and E. T. Campbell (2018). “An
efficient quantum compiler that reduces T count.”
[Online]. Available:
https://arxiv.org/abs/1712.01557

[112] M. Amy, D. Maslov, and M. Mosca,
“Polynomial-time T-depth optimization of cliffordT
circuits via matroid partitioning,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 33,
no. 10, pp. 1476–1489, Oct. 2014.

[113] A. Zulehner, A. Paler, and R. Wille (2018). “An
efficient methodology for mapping quantum
circuits to the IBM QX architectures.” [Online].
Available: https://arxiv.org/abs/1712.04722

[114] L. Lao et al. (2018). “Mapping of lattice
surgery-based quantum circuits on surface code
architectures.” [Online]. Available:
https://arxiv.org/abs/1805.11127

[115] C. Horsman, A. G. Fowler, S. Devitt, and R. Van
Meter, “Surface code quantum computing by
lattice surgery,” Quantum Inf., vol. 14, pp. 1–27,
Dec. 2012.

[116] R. Chao and B. W. Reichardt (2017).
“Fault-tolerant quantum computation with few
qubits.” [Online]. Available:
https://arxiv.org/abs/1705.05365

[117] M. Saeedi and I. L. Markov, “Synthesis and
optimization of reversible circuits—A survey,”
ACM Comput. Surveys, vol. 45, no. 2,
pp. 21:1–21:34, 2013.

[118] A. Barenco et al., “Elementary gates for quantum
computation,” Phys. Rev. A, Gen. Phys., vol. 52,
no. 5, p. 3457, 1995.

[119] N. Abdessaied, M. Amy, M. Soeken, and

R. Drechsler, “Technology mapping of reversible
circuits to cliffordT quantum circuits,” in Proc. Int.
Symp. Multiple-Valued Logic, May 2016,
pp. 150–155.

[120] D. M. Miller, D. Maslov, and G. W. Dueck, “A
transformation based algorithm for reversible
logic synthesis,” in Proc. Design Automat. Conf.,
Jun. 2003, pp. 318–323.

[121] V. V. Shende, A. K. Prasad, I. L. Markov, and
J. P. Hayes, “Synthesis of reversible logic circuits,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 22, no. 6, pp. 710–722, Jun. 2003.

[122] R. Wille and R. Drechsler, “BDD-based synthesis of
reversible logic for large functions,” in Proc. Des.
Automat. Conf., Jul. 2009, pp. 270–275.

[123] M. Soeken, R. Wille, C. Hilken, N. Przigoda, and
R. Drechsler, “Synthesis of reversible circuits with
minimal lines for large functions,” in Proc. Asia
South Pacific Des. Automat. Conf., Jan./Feb. 2012,
pp. 85–92.

[124] A. De Vos and Y. Van Rentergem, “Young
subgroups for reversible computers,” Adv. Math.
Commun., vol. 2, no. 2, pp. 183–200,
2008.

[125] M. Saeedi, M. S. Zamani, M. Sedighi, and
Z. Sasanian, “Reversible circuit synthesis using a
cycle-based approach,” ACM J. Emerg. Technol.
Comput. Syst., vol. 6, no. 4, p. 13, 2010.

[126] M. Soeken, L. Tague, G. W. Dueck, and
R. Drechsler, “Ancilla-free synthesis of large
reversible functions using binary decision
diagrams,” J. Symbolic Comput., vol. 73, pp. 1–26,
Mar./Apr. 2016.

[127] M. Soeken, G. W. Dueck, and D. M. Miller, “A fast
symbolic transformation based algorithm for
reversible logic synthesis,” in Proc. Int. Conf.
Reversible Comput., 2016, pp. 307–321.

[128] B. Schmitt, M. Soeken, A. Mishchenko, and
G. D. Micheli, “Scaling up collapsing into ESOP
expressions enables ancilla-free quantum
compilation,” 2018.

[129] M. Soeken, R. Wille, and R. Drechsler,
“Hierarchical synthesis of reversible circuits using
positive and negative Davio decomposition,” in
Proc. Int. Design Test Symp., 2010, pp. 143–148.

[130] M. Rawski, “Application of functional
decomposition in synthesis of reversible circuits,”
in Proc. Int. Conf. Reversible Comput., 2015,
pp. 285–290.

[131] M. Soeken and A. Chattopadhyay, “Unlocking
efficiency and scalability of reversible logic
synthesis using conventional logic synthesis,” in
Proc. Design Automat. Conf., Jun. 2016,
pp. 149:1–149:6.

[132] M. Soeken, M. Roetteler, N. Wiebe, and G. De
Micheli, “Design automation and design space
exploration for quantum computers,” in Proc.
Design, Automat. Test Eur., 2017,
pp. 470–475.

[133] C. H. Bennett, “Time/space trade-offs for
reversible computation,” SIAM J. Comput., vol. 18,
no. 4, pp. 766–776, 1989.

[134] A. Parent, M. Roetteler, and K. M. Svore, “REVS: A
tool for space-optimized reversible circuit
synthesis,” in Proc. Int. Conf. Reversible Comput.,
2017, pp. 90–101.

A B O U T T H E A U T H O R S

Eleonora Testa (Student Member, IEEE)
received the B.Sc. degree in physical engi-
neering from the Politecnico di Torino, Turin,
Italy, in 2013 and the joint M.Sc. degree in
micro and nanotechnologies for integrated
systems from Politecnico di Torino (Italy),
Grenoble INP (France), and EPFL (Switzer-
land) in 2015. Currently, she is working
toward the Ph.D. degree at the Integrated
Systems Laboratory at EPFL, Switzerland.
Her research interests include logic synthesis, electronic design

automation, and post-CMOS technologies.

Mathias Soeken (Member, IEEE) received
the Ph.D. degree in computer science and
engineering from the University of Bremen,
Bremen, Germany, in 2013.
He is a Scientist at the École Polytechnique

Fédéderale de Lausanne (EPFL), Lausanne,
Switzerland. His current research interests
include the many aspects of logic synthe-
sis and formal verification. He investigates
constraint-based techniques in logic synthesis and industrial-
strength design automation for quantum computing. He is actively
maintaining the logic synthesis frameworks CirKit and RevKit.

PROCEEDINGS OF THE IEEE 19

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Testa et al.: Logic Synthesis for Established and Emerging Computing

Dr. Soeken received a scholarship from the German Academic
Scholarship Foundation. He has been serving as TPC member for
several conferences, including DAC, DATE, and ICCAD and is a
reviewer for Mathematical Reviews as well as for several journals.

Luca Gaetano Amarù (Member, IEEE)
received the B.S. and M.S. degrees in
electronic engineering from the Politecnico
di Torino, Turin, Italy, in 2009 and 2011,
respectively, and the Ph.D. degree in com-
puter science from the Swiss Federal Insti-
tute of Technology Lausanne, Lausanne,
Switzerland, in 2015.
He is a Staff R&D Engineer in the Design

Group, Synopsys Inc., Mountain View, CA, USA, where he is respon-
sible for designing efficient data structures and algorithms for logic
synthesis. Prior to joining Synopsys, he was a visiting researcher
at Stanford University and research assistant at EPFL. His current
research interests include electronic design automation, logic in
computer science, and beyond CMOS technologies.
Dr. Amaru was a recipient of the IEEE TCAD Donald O. Pederson

Best Paper Award in 2018, the EDAA Outstanding Dissertation
Award in 2015, the Best Presentation Award at FETCH conference in
2013, and a Best Paper Award Nomination at ASP-DAC conference in
2013. He received fellowships and research contribution awards at
EPFL. He has been serving as TPC member for several conferences,
including DATE, IWLS and DSD. He is a reviewer for several IEEE
journals.

Giovanni De Micheli (Fellow, IEEE) is
Professor and Director of the Institute of
Electrical Engineering, École Polytechnique
Fédéderale de Lausanne (EPFL), Lausanne,
Switzerland. His research interests include
several aspects of design technologies for
integrated circuits and systems, such as
synthesis for emerging technologies, net-
works on chips, and 3-D integration.
Prof. De Micheli is a Fellow of the Association for Computing

Machinery (ACM) and a member of the Academia Europaea and
an International Honorary member of the American Academy of
Arts and Sciences. He is the recipient of the 2016 IEEE/CS Harry
Goode award for seminal contributions to design and design tools
of networks on chips, the 2016 EDAA Lifetime Achievement Award,
the 2012 IEEE/CAS Mac Van Valkenburg award for contributions to
theory, practice, and experimentation in design methods and tools,
the 2003 IEEE Emanuel Piore Award for contributions to computer-
aided synthesis of digital systems, and the D. Pederson Award for
the best paper in the IEEE Transactions on Computer-Aided Design
and ICAS in 1987 and 2018.

20 PROCEEDINGS OF THE IEEE

