5,635 research outputs found

    Structural Health Monitoring of Large Structures Using Acoustic Emission-Case Histories

    Get PDF
    Acoustic emission (AE) techniques have successfully been used for assuring the structural integrity of large rocket motorcases since 1963 [...

    Investigation and modeling of viscoelastic moduli for multilayered polymeric systems using high frequency ultrasonic waves

    Get PDF
    Mechanical characterization of both the bulk and individual layer properties of layered polymer stacks provides important information for their use in novel applications. A single technique to measure both the bulk and layer properties is atempted. Ultrasonic testing provides an opportunity to determine the mechanical characteristics for layered samples in the form of the complex mechanical moduli. These moduli express the viscoelastic properties of the materials. Using ultrasound, this can be done for the bulk and the layers in a single test. With ultrasound, the ability to determine the complex moduli in single layers has been demonstrated. The moduli were determined within the expected range. The ultrasonic testing has also allowed the determination of the speed of sound of the individual layers in a 2 layer sample consisting of layers of Polycarbonate and Poly(methyl methacrylate). Internal interference limited the ability to measure attenuation. To attempt to allow for analysis of these complex waveforms, a secondary technique for waveform analysis has been proposed and developed. This method employs a finite element simulation to replicate the experiment. By deriving a simulation with the complex moduli as inputs, it is possible to use the simulation results to measure the moduli of multilayered samples. This is done comparatively through iteration of the simulation inputs. When a set of inputs creates a simulated result matching the experimental scans, a solution has been found. A preliminary version of the simulation is presented and demonstrated

    Ultrasound for Material Characterization and Processing

    Get PDF
    Ultrasonic waves are nowadays used for multiple purposes including both low-intensity/high frequency and high-intensity/low-frequency ultrasound. Low-intensity ultrasound transmits energy through the medium in order to obtain information about the medium or to convey information through the medium. It is successfully used in non-destructive inspection, ultrasonic dynamic analysis, ultrasonic rheology, ultrasonic spectroscopy of materials, process monitoring, applications in civil engineering, aerospace and geological materials and structures, and in the characterization of biological media. Nowadays, it is an essential tool for assessing metals, plastics, aerospace composites, wood, concrete, and cement. High-intensity ultrasound deliberately affects the propagation medium through the high local temperatures and pressures generated. It is used in industrial processes such as welding, cleaning, emulsification, atomization, etc.; chemical reactions and reactor induced by ultrasonic waves; synthesis of organic and inorganic materials; microstructural effects; heat generation; accelerated material characterization by ultrasonic fatigue testing; food processing; and environmental protection. This book collects eleven papers, one review, and ten research papers with the aim to present recent advances in ultrasonic wave propagation applied for the characterization or the processing of materials. Both fundamental science and applications of ultrasound in the field of material characterization and material processing have been gathered

    Bend propagation in the flagella of migrating human sperm

    Get PDF
    A pre-requisite for sexual reproduction is successful unification of the male and female gametes; in externally-fertilising echinoderms the male gamete is brought into close proximity to the female gamete through chemotaxis, the associated signalling and flagellar beat changes being elegantly characterised in several species. In the human, sperm traverse a relatively high-viscosity mucus coating the tract surfaces, there being a tantalising possible role for chemotaxis. To understand human sperm migration and guidance, studies must therefore employ similar viscous in vitro environments. High frame rate digital imaging is used for the first time to characterise the flagellar movement of migrating sperm in low and high viscosities. While qualitative features have been reported previously, we show in precise spatial and temporal detail waveform evolution along the flagellum. In low viscosity the flagellum continuously moves out of the focal plane, compromising the measurement of true curvature, nonetheless the presence of torsion can be inferred. In high viscosities curvature can be accurately determined and we show how waves propagate at approximately constant speed. Progressing waves increase in curvature approximately linearly except for a sharper increase over a distance 20-27 m from the head/midpiece junction. Curvature modulation, likely influenced by the outer dense fibres, creates the characteristic waveforms of high viscosity swimming, with remarkably effective cell progression against greatly increased resistance, even in high viscosity liquids. Assessment of motility in physiological viscosities will be essential in future basic research, studies of chemotaxis and novel diagnostics

    Noise-Corrected Estimation of Complex Modulus in Accord With Causality and Thermodynamics: Application to an Impact Test.

    No full text
    International audienceMethods for estimation of the complex modulus generally produce data from which discrete results can be obtained for a set of frequencies. As these results are normally afflicted by noise, they are not necessarily consistent with the principle of causality and requirements of thermodynamics. A method is established for noise-corrected estimation of the complex modulus, subject to the constraints of causality, positivity of dissipation rate and reality of relaxation function, given a finite set of angular frequencies and corresponding complex moduli obtained experimentally. Noise reduction is achieved by requiring that two self-adjoint matrices formed from the experimental data should be positive semidefinite. The method provides a rheological model that corresponds to a specific configuration of springs and dashpots. The poles of the complex modulus on the positive imaginary frequency axis are determined by a subset of parameters obtained as the common positive zeros of certain rational functions, while the remaining parameters are obtained from a least squares fit. If the set of experimental data is sufficiently large, the level of refinement of the rheological model is in accordance with the material behavior and the quality of the experimental data. The method was applied to an impact test with a Nylon bar specimen. In this case, data at the 29 lowest resonance frequencies resulted in a rheological model with 14 parameters. The method has added improvements to the identification of rheological models as follows: (1) Noise reduction is fully integrated. (2) A rheological model is provided with a number of elements in accordance with the complexity of the material behavior and the quality of the experimental data. (3) Parameters determining poles of the complex modulus are obtained without use of a least squares fit

    Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    Get PDF
    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research

    Mathematical Contributions to the Dynamics of the Josephson Junctions: State of the Art and Open Problems

    Full text link
    Mathematical models related to some Josephson junctions are pointed out and attention is drawn to the solutions of certain initial boundary problems and to some of their estimates. In addition, results of rigorous analysis of the behaviour of these solutions when the time tends to infinity and when the small parameter tends to zero are cited. These analyses lead us to mention some of the open problems.Comment: 11 page

    Ultrasonic Guided Wave Phased Array Inspection of Pipelines

    Get PDF
    Piping systems are often inspected ultrasonically to ensure afety. This can be accomplished by a series of point to point tests from the out ide surface of the pipe. If coating cover the pipe, as is often the case, access LO the outside surface requires removal of the coating to perform the test, and then re-installation when testing is complete. Removal and reinstallation of coating is not only time consuming but in most cases it is prohibitively expensive too. Ultrasonic guided waves provide an attractive alternative solution to the basic bulk wave ultrasonic test. Using Guided Waves, a probe can be applied to the pipe at a single location and several meters of the pipe can be in pected. The coating is only removed where the probe is applied. This paper describes the visco-elastic properties of two different coating materials: Bitumen tape and wax tape is considered, an FEM simulation of the propagation ofaxi ymmetric guided wave through bare and coated pipes having different coating thicknesses. The ABAQUS FEM code is used and validation of FEM simulation re ult through experiment in bare and coated pipes using guided wave inspection sy tern is reported

    Harmonic analysis of lossy piezoelectric composite transducers using the plane wave expansion method

    Get PDF
    Periodic composite ultrasonic transducers oer many advantages but the periodic pillar architecture can give rise to unwanted modes of vibration which interfere with the piston like motion of the fundamental thickness mode. In this paper, viscoelastic loss is incorporated into a three dimensional plane wave expansion model (PWE) of these transducers. A comparison with experimental and nite element data is conducted and a design to damp out these lateral modes is investigated. Scaling and regularisation techniques are introduced to the PWE method to reduceill-conditioning in the large matrices which can arise. The identication of the modes of vibration is aided by examining proles of the displacements, electrical potentialand Poynting vector. The dispersive behaviour of a 2-2 composite transducer with high shear attenuation in the passive phase is examined. The model shows thatthe use of a high shear attenuation ller material improves the frequency band gap surrounding the fundamental thickness mode

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version
    • …
    corecore