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Abstract

Periodic composite ultrasonic transducers offer many advantages but the peri-

odic pillar architecture can give rise to unwanted modes of vibration which interfere

with the piston like motion of the fundamental thickness mode. In this paper, vis-

coelastic loss is incorporated into a three dimensional plane wave expansion model

(PWE) of these transducers. A comparison with experimental and finite element

data is conducted and a design to damp out these lateral modes is investigated.

Scaling and regularisation techniques are introduced to the PWE method to reduce

ill-conditioning in the large matrices which can arise. The identification of the modes

of vibration is aided by examining profiles of the displacements, electrical potential

and Poynting vector. The dispersive behaviour of a 2-2 composite transducer with

high shear attenuation in the passive phase is examined. The model shows that

the use of a high shear attenuation filler material improves the frequency band gap

surrounding the fundamental thickness mode.

Keywords: COMPOSITES, ULTRASONIC TRANSDUCER, PLANE WAVE EX-

PANSION, VISCOELASTIC LOSS

PACS Code: 43.35.+d
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1 Introduction

Periodic composite transducers are generally accepted as the design of choice in many

biomedical [1], sonar [2] and nondestructive testing applications [3]. This is due to the

constituent materials combining to realise better operational characteristics, coupled with

the availability of new materials [4, 5]. The most frequently used designs are manufac-

tured by dicing the ceramic into a series of pillars and then filling the void with a passive

polymer phase [6]. The 1-3 design has connectivity in only one direction for the ceramic

phase but in all three directions for the polymer phase. For the 2-2 design, the ceramic is

cut longitudinally in one direction so that there is connectivity in two directions for both

the ceramic and polymer phases. However, one of the problems with this architecture

is the presence of parasitic waves, which are generated between adjacent pillars (inter-

pillar modes) or within the pillars (intra-pillar modes), interfering with the piston like

behaviour of the fundamental thickness mode [7]. Extensive experimental observations

have highlighted the intricate dependency between the geometry of the design, the mate-

rial properties and the key operational characteristics of the device. It has been suggested

that a passive material with a low transverse coupling would enhance the transducer’s

efficiency [7, 8].

There have been numerous theoretical approaches to modelling non-piezoelectric (elec-

trically passive) composite materials. Shui et al studied striated passive composite mate-

rials and, by neglecting loss mechanisms, formulated a mechanical model in each phase

and applied a set of interface conditions [9]. This partial wave expansion method fa-

cilitated the study of the effects of varying the volume fraction of each constituent on

the lateral resonant frequencies. These typically provide the upper and lower limits of

any stop band gap which encompasses the main mode of vibration. Geng and Zhang

used a similar approach for passive materials and found that if the thickness resonant

frequency is lower than the lateral mode, then there will be a frequency near the ceramic

thickness mode where both constituents vibrate in phase [10]. Certon et al studied the

lateral modes of an infinitesimally thin (membrane model) passive composite [11]. This

simplified the previous model but restricts the analysis to stop band gaps in the trans-
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verse modes and, by its very nature, does not permit variations in material parameters

in the thickness mode direction. It was found that a large ceramic width to pitch ratio

resulted in the largest frequency band gaps around the thickness mode. An alternative

approach is to capture the spatial variations in the material properties using a Fourier

series expansion. Vasseur et al used this plane wave expansion (PWE) method to study

the modal behaviour of an anisotropic passive material consisting of a regular array of

uni-directional cylindrical fibres embedded in an epoxy matrix [12]. They found that a

marked contrast between the two constituent material parameters provides the best op-

portunities for realising large band gaps. The membrane model was also studied using

this method [13] and this highlighted the flexibility of the approach in studying irregular

geometries.

There has also been some theoretical investigation of piezoelectric (electrically active)

composite transducers using finite element (FE) modelling [14, 15]. Such models can

incorporate realistic operating conditions, such as viscoelastic loss, backing and matching

layers, mechanical and electrical loads and electrode patterning. The major drawback

is the high computational cost. FE modelling can be used in the frequency domain

[16] but for the modelling of periodic composite transducers the method is often used

in the time domain [19]. In the time domain approach the harmonic analysis requires a

numerical Fourier transform of the predicted displacements, which can be problematic if

the mode amplitudes have a large variance. Due to the computational cost, a quarter

symmetry of a unit cell with appropriate periodic boundary conditions is often employed.

For regular geometries this does not present a problem but essentially excludes the study

of irregular designs in three dimensions. FE modelling has recently shown that Lamb

wave propagation is responsible for inter-element crosstalk and has a detrimental effect

on beam forming and transducer sensitivity [4]. It has been suggested that a passive filler

with high shear loss may aid the damping of these unwanted Lamb waves [17].

In this paper viscoelastic loss is incorporated into the 3-dimensional PWE model [18].

Loss is vital for reducing crosstalk between adjacent ceramic pillars in the transducer,

it facilitates a comparison with experimental results and is necessary for any discussion
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regarding the use of alternative polymer phases. Scaling and regularisation techniques

are introduced to reduce ill-conditioning in the large matrices which arise in this method.

The identification of the modes is aided by examining profiles of the displacements and

the Poynting vector. As mentioned previously, FE modelling [4, 5] can lose important in-

formation on low amplitude modes and high frequency modes but since the PWE method

operates in the frequency domain no such restrictions apply.

In the next section the geometry of the transducer is described in terms of a Fourier

series and then the PWE method and associated boundary conditions are briefly outlined.

It follows the derivation of Wilm et al [18], with an alternative notation for the Fourier

coefficient indexing. As such only a brief outline is given to clarify the later discussions

on the inclusion of viscoelastic loss and numerical implementation issues. In Section 3

the inclusion of viscoelastic loss into the model is described, followed by a discussion

on the use of scaling and regularisation in the method’s implementation. In Section

4 a comparison between the PWE method, FE modelling and experimentally measured

behaviour is reported. Finally, a composite transducer with a high shear loss passive phase

is examined. Dispersion curves, electrical impedance plots and a modal analysis using

displacement and Poynting vector profiles are used to discuss the operating characteristics.

2 Formulation of the method

2.1 The geometry

The model is configured for periodic 2-2 and 1-3 composites with thickness in the x3

direction (see Figure 1). By using the periodicity of the structure the material constants,

M(r), can be expanded as Fourier series where M represents either the density ρ, the

elasticity tensor cijkl, the piezoelectric stress tensor eijk, or the permittivity tensor εij.

Figure 1:

For the 1-3 composite structure shown in Figure 1 the material constants only depend

on x1 and x2. Denote by p1 the period of the geometry in the x1 direction and by p2 the
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period of the geometry in the x2 direction. The width of the ceramic pillar in the x1 and

x2 direction is denoted by s and t, respectively. A Fourier series representation for this

geometry can be written

M(x1, x2) =
∞
∑

m=−∞

∞
∑

n=−∞

Mmne
−( 2πm

p1
x1+ 2πn

p2
x2)

(1)

where

Mmn =
(φ − θ)

π2mn
sin(

πms

p1

) sin(
πnt

p2

), (m,n 6= 0) (2)

M00 = θ+(φ−θ)st/p1p2, Mm0 = (φ−θ)t/(p2πm) sin(πms/p1), M0n = (φ−θ)s/(p1πn) sin(πnt/p2)

and φ and θ are the particular material property in the ceramic phase and polymer phase

respectively. This double subscript notation can be simplified by ordering the Fourier

coefficients. Define the ordered set

H = {(−N,−M), (−N,−M + 1), . . . , (−N,M), (−N + 1,−M), . . . , (N,M)} (3)

so that if

Gs =

(

2π

p1

Hs,1,
2π

p2

Hs,2, 0

)

, (4)

then (1) can be rewritten for a finite number of terms (N in direction x1 and M in

direction x2) as

M(x1, x2) =

(2N+1)(2M+1)
∑

s=1

M se−Gs.r (5)

where Hs,i is the ith component of element s of H. The dependent variables F (r, t)

propagating within these periodic structures are approximated as Floquet series

F (r, t, k, ω) =

(2N+1)(2M+1)
∑

s=1

F s(k, ω)e(ωt−k·r−Gs·r) (6)

where r = (x1, x2, x3), t is time, ω is the angular frequency and k = (k1, k2, k3) is the wave

vector.
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2.2 The Model

The piezoelectric constitutive equations, together with Newton’s second law and Gauss’s

law for dielectric media are [20]

Tij = cijkluk,l + elijφ,l (7)

Di = eikluk,l − εilφ,l (8)

ρ
∂2uj

∂t2
= Tij,i (9)

Di,i = 0. (10)

Equations (7) to (10) constitute 16 equations in the 16 unknowns which are the stresses

Tij, the displacements uk, the electric potential φ and the electrical displacements Di .

Denote the generalized displacement field by u where u = (u1, u2, u3, u4 = φ) and the

generalized stress vectors by ti = (Ti1, Ti2, Ti3, Di). Substituting the expansion (6) into

(7) and (8), and equating coefficients, gives

T p
ij =

(2N+1)(2M+1)
∑

q=1

−(kl + Gq
l )(c

V p,q

ijkl uq
k + eV p,q

lij uq
4) (11)

and

Dp
i =

(2N+1)(2M+1)
∑

q=1

−(kl + Gq
l )(e

V p,q

ikl uq
k − εV p,q

il uq
4) (12)

where the particular Floquet series component is given by

V p,q =















































p + (2N+1)(2M+1)+1
2

− q, if 1 ≤ p + (2N+1)(2M+1)+1
2

− q ≤ (2N + 1)(2M + 1)

and |Hp,1 − Hq,1| ≤ N |Hp,2 − Hq,2| ≤ M

0, otherwise

(13)
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and MV p,q

= 0 if V p,q = 0. In terms of the generalized stress vectors (11) and (12) give

tpi =

(2N+1)(2M+1)
∑

q=1

(kl + Gq
l )A

p,q
il uq (14)

where

Ap,q
il =













































cV p,q

i11l cV p,q

i12l cV p,q

i13l eV p,q

li1

cV p,q

i21l cV p,q

i22l cV p,q

i23l eV p,q

li2

cV p,q

i31l cV p,q

i32l cV p,q

i33l eV p,q

li3

eV p,q

i1l eV p,q

i2l eV p,q

i3l −εV p,q

il













































. (15)

The same analysis can be carried out for equations (9) and (10) to obtain the expression

(ki + Gp
i )t

p
i =

(2N+1)(2M+1)
∑

q=1

ω2Rp,quq, (16)

where

Rp,q =



















ρV p,q

0 0 0

0 ρV p,q

0 0

0 0 ρV p,q

0

0 0 0 0



















.

Now let Ti =
[

t1i , . . . , t
p
i , . . . , t

(2N+1)(2M+1)
i

]T

, U =
[

u1, . . . , uq, . . . , u(2N+1)(2M+1)
]T

,

Aij =



















A1,1
ij A1,2

ij . . . A
1,(2N+1)(2M+1)
ij

A2,1
ij A2,2

ij . . . A
2,(2N+1)(2M+1)
ij

...
...

. . .
...

A
(2N+1)(2M+1),1
ij A

(2N+1)(2M+1),2
ij . . . A

(2N+1)(2M+1),(2N+1)(2M+1)
ij



















, (17)
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and

R =



















R1,1 R1,2 . . . R1,(2N+1)(2M+1)

R2,1 R2,2 . . . R2,(2N+1)(2M+1)

...
...

. . .
...

R(2N+1)(2M+1),1 R(2N+1)(2M+1),2 . . . R(2N+1)(2M+1),(2N+1)(2M+1)



















. (18)

Equations (14) and (16) can then be written compactly as

Ti = AijΓjU (19)

and

ω2RU = Γi (Ti) (20)

where

Γi =



















(ki + G1
i )I4 0 . . . 0

0 (ki + G2
i )I4 . . . 0

...
...

. . .
...

0 0 . . . (ki + G
(2N+1)(2M+1)
i )I4



















. (21)

Equations (20) and (21) can be combined to give the generalised eigenvalue problem





ω2R − B 0

−C2 I









U

T3



 = k3





C1 I

D 0









U

T3



 (22)

in the 8(2N + 1)(2M + 1) eigenvalues k
(r)
3 and corresponding eigenvectors





U

T3





(r)

where B =
∑

i,j=1,2 ΓiAijΓj, C1 =
∑

i=1,2 ΓiAi3, C2 =
∑

j=1,2 A3jΓj and D = A33. Solving

equation (22) and introducing the relative amplitudes A(r) gives





u(r, t)

tq3(r, t)



 = e(ωt−k1x1−k2x2)

(2N+1)(2M+1)
∑

q=1

e−Gq ·r







8(2N+1)(2M+1)
∑

r=1

A(r)e−k
(r)
3 x3





uq

tq3





(r)





.

(23)

Energy distribution within the transducer can be used to clarify particular types of

modes in conjunction with examining profiles of the displacements, stresses and electric
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potential. The energy distribution in the device can be examined using the Poynting

vector, defined as

Pj = −Tijui,t + φDj,t. (24)

Substituting equations (7) and (8) into equation (24) gives

Pj = −ω(cijkluk,l + elijφ,l)ui + ωφ(ejkluk,l − εjlφ,l). (25)

2.3 Boundary conditions

The method is sufficiently general to cope with a wide range of boundary conditions but

for simplicity the mechanical boundary conditions of a stress free plate are considered.

From equation (23)

0 =

8(2N+1)(2M+1)
∑

r=1

A(r)e−k
(r)
3 h(T q

3i)
(r), q = 1, . . . , (2N + 1)(2M + 1) (26)

and

0 =

8(2N+1)(2M+1)
∑

r=1

A(r)(T q
3i)

(r), q = 1, . . . , (2N + 1)(2M + 1). (27)

For the electrical boundary conditions the electrical potentials at the top and bottom of

the transducer are prescribed. The lower surface is a monolithic plate with zero electrical

potential. The upper plate has a set of electrodes which follow a periodic spatial pattern.

The top surface electrical potential is therefore described by

φ(x1, x2, t) = V0e
(ωt−γ1x1−γ2x2), (28)

where γi = kipi/(2π) (i=1,2) denotes the electrode spacing. This has been nondimension-

alised as the ratio of the periodicity of the device architecture to the wavelength. So for

example a half wavelength electrode spacing would correspond to γ = 1/2. From equation

(23) at x3 = h
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8(2N+1)(2M+1)
∑

r=1

A(r)φq,(r)e−k
(r)
3 h = V0 sinc

(

(k1 + Gq
1)

p1

2

)

(29)

× sinc
(

(k2 + Gq
2)

p2

2

)

, q = 1, . . . (2N + 1)(2M + 1)

and at x3 = 0

8(2N+1)(2M+1)
∑

r=1

A(r)φq,(r) = 0. (30)

Equations (26), (27), (29) and (30) constitute 8(2N +1)(2M +1) equations in the 8(2N +

1)(2M + 1) unknowns A(r). Hence this system of linear equations can be solved and

the displacements, stresses etc. can be examined using equation (23). One advantage of

studying piezoelectric composites is that the electrical operating characteristics provide

an alternative means of deriving the dispersion curves. The admittance (Y ) expresses

the ease with which an alternating current flows through the transducer and the resonant

modes are signified by maxima in the real part of the admittance. Using continuity of the

electrical potential at the front interface [18] it can be shown that

Y (k1, k2, ω) = ω

(2N+1)(2M+1)
∑

q=1





8(2N+1)(2M+1)
∑

r=1

A(r)
(

D
q,(r)
3 − ε0|κ|φ

q,(r)
)

e−jk
(r)
3 h





×p1 sinc
(

(k1 + Gq
1)

p1

2

)

p2 sinc
(

(k2 + Gq
2)

p2

2

)

(31)

where κ =
√

(k1 + Gq
1)

2 + (k2 + Gq
2)

2.

3 Frequency dependent, viscoelastic loss model

The degree of mechanical loss is usually expressed in terms of a dimensionless loss tangent

tan δ [21], a mechanical factor Q, or an attenuation coefficient α [22]. Frequency dependent

loss can be introduced into the ceramic via tan δ using

tan δ =

(

ω

ω0

)(

1

Q0

)

, (32)
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where ω is the natural frequency, Q0 is the measured mechanical Q factor and ω0 is the

natural frequency at which Q0 is measured. Equation (32) is used to define the imaginary

parts of the elastic constants in equations (7) and (11) using

cV p,q

ijkl = cV p,q

ijkl (1 +  tan δ). (33)

The polymer phase is assumed to be isotropic and so the elastic constants are expressed

in terms of the complex Lamé coefficients µ and λ, defined as

µ = µ′ + µ′′ and λ = λ′ + λ′′ (34)

so that the complex velocities are given by [23]

vs =

√

µ′ + µ′′

ρ
, vl =

√

(λ′ + 2µ′) + (λ′′ + 2µ′′)

ρ
, (35)

where vs is the shear velocity, vl is the longitudinal velocity and ρ is the density. The

loss is however usually expressed for these materials in terms of a longitudinal attenuation

coefficient (αl) and a shear attenuation coefficient (αs). Using the Voigt model for internal

friction these can be related to tan δ via [22]

tan δs =
2αs|vs|

ω
, tan δl =

2αl|vl|

ω
. (36)

The frequency dependency can be included via the attenuation coefficients using αl/s =

α0
l/s(ω/ω0)

2, where α0
l/s is the experimentally measured attenuation coefficient at frequency

ω0. Using Equations (35) and (36) the imaginary parts of the Lamé coefficients are then

given by

µ′′ =

√

√

√

√

8α4
sµ

′4

ω4ρ4

(

1 +

√

1 +
ρ2ω4

4α4
sµ

′4

)

(37)

and

λ′′ =

√

√

√

√

8α4
l (λ

′ + 2µ′)4

ω4ρ4

(

1 +

√

1 +
ρ2ω4

4α4
l (λ

′ + 2µ′)4

)

− 2µ′′. (38)

So given α0
l/s, ω0, λ′, µ′, ρ and ω, equations (37) and (38) can be used to give the

complex valued elasticity tensor in equation (7) and associated Fourier coefficient in (11).

The degree of shear loss in the polymer phase can be varied by multiplying the shear
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attenuation coefficient αs by a parameter ζ. The effect that changing from low shear

attenuation to high shear attenuation has on the frequency band gap surrounding the

fundamental thickness mode of the transducer will be investigated in Section 5.

3.1 Implementation

From section 2.3 the vibrational modes of the transducer must satisfy the system of

equations XA(r) = Q, given by equations (26), (27), (29) and (30), where X(k, ω) is an

8(2N + 1)(2M + 1) × 8(2N + 1)(2M + 1) matrix and Q(k) is a column vector of length

8(2N + 1)(2M + 1). In the first instance the short circuit situation given by V0 = 0 is

examined, that is Q = 0. The matrix X is ill-conditioned and to help obviate this problem

the matrix entries are balanced by scaling the parameters of the model (see Table 1). Each

of the parameters is made O(1) by a judicious choice of the scalings α, β, γ and ϕ so that

five equations in four unknowns must be satisfied. This is done by scaling the thickness

h by specifying β, scaling the density ρ by specifying α, scaling the piezoelectric stress

tensor eijk by specifying ϕ, scaling the elasticity tensor cijkl by specifying γ and this

results in an appropriate scaling for the permittivity tensor εij. Normally the modes

are determined by adjusting the frequency ω and complex wavenumbers k to make the

determinant of X equal to zero. As the number of Fourier coefficients are increased

within the PWE method the dimensions of X increase and the determinant becomes too

large to be stored. This problem occurs due to the exponential terms which arise when

calculating the boundary conditions at x3 = h. This term affects the rows between 1

and 3(2N + 1)(2M + 1) and 6(2N + 1)(2M + 1) + 1 and 7(2N + 1)(2M + 1) in the

matrix X. To prevent the problem occurring these row entries are multiplied by a scale

factor given by eMaxr{k′′(r)
3 }h, where k′′(r)

3 is the imaginary part of the wavenumber k
(r)
3 .

There are also numerical instabilities as the determinant of X approaches zero due to ill-

conditioning, and Tikhonov regularisation [24] is used here to circumvent this. The matrix

X is converted to a real, symmetric form by multiplying it by its complex, conjugate X ∗.

The zero eigenvalues of X are then translated along the real axis, away from the origin,

by adding a small amount, µ, to give
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(X∗X + µI)A(r) = X∗Q. (39)

The determinant of X∗X + µI is still large and so minima in the cost function sur-

face log |X∗X + µI| are found, parameterised by the angular frequency, ω, and complex

wavenumbers k1 and k2.

Table 1:

Figure 2:

The effects of Tikhonov regularisation are shown for a 2-2 composite in Figure 2 for

N = 3,M = 0. Ill-conditioning in the determinant calculation is indicated by the noise

in plot (a) which corresponds to no regularisation being used. A major improvement

can already be seen by making the matrix real and symmetric in plot (b). However the

introduction of the small parameter µ results in the smooth curve in plot (c). Truncated

Singular Value Decomposition [25] was also investigated but proved to be not as robust as

Tikhonov regularisation in this instance. The algorithm for obtaining a particular mode

for the 2-2 composite design sets k2 equal to zero, k1 to a real number (initially) and

then searches the cost function surface in the frequency direction until a number of local

minima are found. These interim minima are used as the initial values for a search in the

direction of the imaginary part of k1, although here the algorithm stops at the first local

minimum. This orthogonal stepping procedure is then performed for a range of k1 values.

4 Comparison with finite element modelling and ex-

perimental data

The methodology presented in the previous sections is illustrated here by investigating

the modal behaviour of some composite transducers. In this section the PWE method is

compared with experimental measurements and FE results.
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Table 2:

Table 3:

Table 4:

Table 5:

Figure 3:

In Figure 3 the PWE method is compared to FE modelling [5] by examining the

impedance characteristics of device A (see Table 2) with a range of polymer phase mate-

rials. The device has a half-wavelength electrode patterning on the top surface. Plot (a)

shows the response when using a standard hardset polymer HY1300/CY1301 [5] (see Ta-

ble 4). There is good agreement between both methods in the location of the modes (the

thickness mode is around 0.5 MHz) but the PWE method overpredicts the magnitude of

the impedance at the low frequency Lamb modes. The introduction of the high shear at-

tenuation materials in plots (b) and (c) demonstrates that these unwanted low frequency

Lamb modes can be damped down whilst maintaining a reasonable fundamental thick-

ness mode response magnitude. The important point to note is that this enhancement

of the device performance is predicted in a similar fashion by both modelling techniques.

So although the PWE methods has difficulty here in the quantitative prediction of the

impedance magnitude the modes, the qualitative improvements in performance are still

evident.

Figure 4:

Figure 5:

Figure 6:

The PWE method is then compared to experimental and FE modelling data for device

B in Table 2 with a HY1300/CY1301 hardset polymer phase [5]. A dispersion diagram

showing the dependency of the phase velocity on the frequency is shown in Figure 4. In
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addition to predicting the Lamb modes the PWE method also predicts the presence of

bulk waves and interpillar modes. These latter waves are excited by the spacing between

adjacent pillars and diagonally opposite pillars, and are displayed as constant wavelength

’loadlines’ in the dispersion diagram. As such the loadlines should appear as straight lines

in this dispersion diagram. The slight deviations from linearity which occur in Figure 4

are indicative of the accuracy of the method in locating these modes. The deviation is

about 5 per cent and this gives a rough measure of the accuracy of the method. There is

good agreement between all three sets of results although the FE model predicts a larger

frequency range for the a0 mode than was observed experimentally. It should be borne

in mind however that the PWE method is computationally less intensive than the FE

model and its strength lies in providing a fast, qualitative prediction of the transducer’s

characteristics.

The number of Fourier coefficients used in the PWE method plays an analogous role to

that of the spatial discretisation used in the FE analysis. The balance between computa-

tional cost and model accuracy can therefore be controlled in both methods. The accuracy

can be gauged by comparison with experimental data and by examining the convergence of

the model predictions as the computational complexity is increased. A systematic study

of the convergence of the PWE method and its dependency on the number of Fourier

coefficients has not yet been conducted. Comparing the computational cost of the two

methods is difficult at present for the following reasons. The FE analysis conducted in

this paper used a commercial code which has been highly optimised for computational

efficiency [19] whereas the PWE method was implemented using a bespoke, suboptimal

coding (in FORTRAN77). The FE analysis is for a transducer of finite lateral dimensions

whereas the PWE method is for a periodic composite of infinite lateral extent. Thus re-

flections from the ends of the plate are included in the FE analysis and this explains some

of the differences in this case. A quantitative comparison of the speed of each method is

therefore problematic at present. However, it is clear from the simulations performed in

this paper that the PWE method is at least an order of magnitude faster, although one

must bear in mind the aforementioned distinctions in their implementations.
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The standard classification of the modes is problematic here as the supporting medium

is heterogeneous, anisotropic, lossy and piezoelectric. As such the descriptions of the

waves in terms of their symmetry, or as Lamb, Rayleigh, bulk waves etc. are only psuedo-

descriptions and the actual behaviour is far more complex. Identification of modes is

aided by spatial and/or temporal plots of the displacement, the Poynting vector and

the electrical potential. To illustrate the mode identification process, the a0 mode is

investigated. Figure 5 highlights the flexural nature of this mode, Figure 6 shows the

elliptical motion of the internal dynamics (with the associated reversals in the direction

of rotation) and demonstrates that the energy is predominantly at the plate boundaries.

These are all characteristics of a flexural Lamb wave.

5 Damping of unwanted lateral modes

In this section, device C (see Table 2) with a standard hardset polymer (see Table 4) is

investigated. To simulate the effect of increasing the shear attenuation a scaling parameter

ζ is used to scale the shear attenuation coefficient, α0
s.

Figure 7:

Figure 7 shows two lossy dispersion diagrams (phase velocity versus complex wavenum-

ber) which highlight the effect of introducing high shear loss into the passive phase. The

plots are shaded according to the magnitude of the imaginary part of the wavenumber

(k1), with the lighter shades corresponding to the highly attenuated modes. It can be

seen that the degree of attenuation increases with frequency and eventually leads to each

mode being cut off. By increasing the shear attenuation in the passive phase the frequency

range of each mode is further reduced. As was seen in Figure 4 the experimental data

displays mode cut-off and hence the inclusion of loss into the PWE method has consid-

erably improved its predictive capabilities. Although not presented on these dispersion

diagrams, it transpires that the extent of the band gap around the thickness mode widens

as the shear attenuation in the polymer phase increases.

This can be visualised also by considering the electrical behaviour of the transducer.
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Figure 8:

The absolute value of the electrical conductance (G) for this device is shown in Figure 8,

wherein the thickness mode can be identified by the central peak of the plot at around

0.65 MHz. The lower frequency maxima correspond to Lamb waves whilst the inter-pillar

modes are the first set of peaks to the right of the thickness mode at around 1 MHz.

Plotting the electrical conductance shows the relative importance of each mode and in

this way it eradicates any spurious points found in the dispersion diagram. It can be seen

that the higher shear attenuation passive phase (dashed line) damps out the unwanted

inter-pillar modes. There also seems to be some slight increase in the magnitude of the

a0 Lamb mode. Note that high longitudinal attenuation in the passive phase is not

investigated here since this will have the undesired effect of attenuating the energy in the

thickness direction.

Figure 9:

Figure 10:

Figure 11:

To illustrate the mode identification process, two modes of vibration have been selected

from the plot shown in Figure 8. In Figure 9 the displacement u1 is negligible compared

to u3, which has its largest values at the faces of the transducer, within the ceramic. Of

course this is at one instant in time and it is useful to examine the temporal evolution

of various spatially fixed reference points within the device. Figure 10 shows that the

ceramic pillars are moving vertically with very little motion in the x1 direction (note

the axes scales), however the polymer is being pulled sideways with no motion in the x3

direction. The in-plane Poynting vector can be viewed by proportionally displacing the

x1 and x3 components to show where the energy is stored. Figure 11 shows that the

energy is distributed throughout the transducer, primarily in the thickness direction. The

symmetrical displacement profile in both directions, the large amplitude of oscillation and
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the dominant displacement being in the x3 direction all point to this being the thickness

mode.

Figure 12:

Figure 13:

In Figure 12, a comparison between low and high shear attenuation in the passive

phase is shown using the displacement at one instant in time for device C. The particular

mode shown is that of the unwanted inter-pillar wave. It can clearly be seen in plot

(b) that the introduction of the high shear loss damps out the vibrations in the passive

phase seen in plot (a). To aid in the identification of this mode the spatial variation in

the magnitude of the Poynting vector, integrated with respect to time over one period of

oscillation, is shown in Figure 13. It can be seen that the energy is concentrated in the

polymer phase which is characteristic of an inter-pillar mode.

6 Conclusions

The plane wave expansion (PWE) method is a frequency domain approach for studying

the modal behaviour of periodic piezoelectric composite transducers. It is shown in this

paper that the method can be extended to incorporate frequency dependent loss in both

phases. One advantage of this approach over time domain methods is that information

on low amplitude or high frequency modes is retained. A strict comparison between

the PWE and FE methods in terms of computational cost and accuracy is difficult at

present but it would appear that the PWE method provides a more qualitative predic-

tion at a fraction of the computational time. One advantage of investigating piezoelectric

composites is that the electrical characteristics provide an additional means of inferring

the mechanical wave dispersion properties. This approach can complement the harmonic

analysis which relies on searching the frequency/complex wavenumber parameter space

for zeros of the determinant of a large, ill-conditioned matrix. This paper has also shown
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however that the use of scaling and Tikhonov regularisation greatly improves the con-

ditioning of this latter approach. Although the standard classification of the modes is

difficult, as the supporting medium is heterogeneous, anisotropic, lossy and piezoelectric,

pseudo-descriptions of the main supported modes of vibrations can be obtained by using

spatial and/or temporal plots of the displacement and the Poynting vector. It is shown

that there is good agreement between the PWE method, FE analysis and experimental

data. Dispersion characteristics for low and high shear attenuation in the passive phase

were also compared and this showed that the use of a high shear loss polymer as the

passive phase in a 2-2 composite transducer results in an improved stop bad gap around

the fundamental thickness mode.
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