17,013 research outputs found

    Final Research Report for Sound Design and Audio Player

    Get PDF
    This deliverable describes the work on Task 4.3 Algorithms for sound design and feature developments for audio player. The audio player runs on the in-store player (ISP) and takes care of rendering the music playlists via beat-synchronous automatic DJ mixing, taking advantage of the rich musical content description extracted in T4.2 (beat markers, structural segmentation into intro and outro, musical and sound content classification). The deliverable covers prototypes and final results on: (1) automatic beat-synchronous mixing by beat alignment and time stretching – we developed an algorithm for beat alignment and scheduling of time-stretched tracks; (2) compensation of play duration changes introduced by time stretching – in order to make the playlist generator independent of beat mixing, we chose to readjust the tempo of played tracks such that their stretched duration is the same as their original duration; (3) prospective research on the extraction of data from DJ mixes – to alleviate the lack of extensive ground truth databases of DJ mixing practices, we propose steps towards extracting this data from existing mixes by alignment and unmixing of the tracks in a mix. We also show how these methods can be evaluated even without labelled test data, and propose an open dataset for further research; (4) a description of the software player module, a GUI-less application to run on the ISP that performs streaming of tracks from disk and beat-synchronous mixing. The estimation of cue points where tracks should cross-fade is now described in D4.7 Final Research Report on Auto-Tagging of Music.EC/H2020/688122/EU/Artist-to-Business-to-Business-to-Consumer Audio Branding System/ABC D

    On the reliability of electrical drives for safety-critical applications

    Get PDF
    The aim of this work is to present some issues related to fault tolerant electric drives,which are able to overcome different types of faults occurring in the sensors, in thepower converter and in the electrical machine, without compromising the overallfunctionality of the system. These features are of utmost importance in safety-criticalapplications. In this paper, the reliability of both commercial and innovative driveconfigurations, which use redundant hardware and suitable control algorithms, will beinvestigated for the most common types of fault: besides standard three phase motordrives, also multiphase topologies, open-end winding solutions, multi-machineconfigurations will be analyzed, applied to various electric motor technologies. Thecomplexity of hardware and control strategies will also be compared in this paper, sincethis has a tremendous impact on the investment costs

    Small-Signal Modelling and Analysis of Doubly-Fed Induction Generators in Wind Power Applications

    Get PDF
    The worldwide demand for more diverse and greener energy supply has had a significant impact on the development of wind energy in the last decades. From 2 GW in 1990, the global installed capacity has now reached about 100 GW and is estimated to grow to 1000 GW by 2025. As wind power penetration increases, it is important to investigate its effect on the power system. Among the various technologies available for wind energy conversion, the doubly-fed induction generator (DFIG) is one of the preferred solutions because it offers the advantages of reduced mechanical stress and optimised power capture thanks to variable speed operation. This work presents the small-signal modelling and analysis of the DFIG for power system stability studies. This thesis starts by reviewing the mathematical models of wind turbines with DFIG convenient for power system studies. Different approaches proposed in the literature for the modelling of the turbine, drive-train, generator, rotor converter and external power system are discussed. It is shown that the flexibility of the drive train should be represented by a two-mass model in the presence of a gearbox. In the analysis part, the steady-state behaviour of the DFIG is examined. Comparison is made with the conventional synchronous generators (SG) and squirrel-cage induction generators to highlight the differences between the machines. The initialisation of the DFIG dynamic variables and other operating quantities is then discussed. Various methods are briefly reviewed and a step-by-step procedure is suggested to avoid the iterative computations in initial condition mentioned in the literature. The dynamical behaviour of the DFIG is studied with eigenvalue analysis. Modal analysis is performed for both open-loop and closed-loop situations. The effect of parameters and operating point variations on small signal stability is observed. For the open-loop DFIG, conditions on machine parameters are obtained to ensure stability of the system. For the closed-loop DFIG, it is shown that the generator electrical transients may be neglected once the converter controls are properly tuned. A tuning procedure is proposed and conditions on proportional gains are obtained for stable electrical dynamics. Finally, small-signal analysis of a multi-machine system with both SG and DFIG is performed. It is shown that there is no common mode to the two types of generators. The result confirms that the DFIG does not introduce negative damping to the system, however it is also shown that the overall effect of the DFIG on the power system stability depends on several structural factors and a general statement as to whether it improves or detriorates the oscillatory stability of a system can not be made

    Integrated electromechanical wind turbine control for power system operation and load reduction

    Get PDF
    With the penetration level of wind power in electric power networks increasing rapidly all over the world, modern wind turbines are challenged to provide the same grid services as conventional synchronous power plants. The dynamic interaction between wind turbines and grid has to be assessed first before replacing large amount of conventional power plants by wind power. Over the last few years many power system operators have revised their grid codes and established more demanding requirements for wind power connection. In the past, when wind turbines were small, they were allowed to simply disconnect during a grid fault/disturbance. However, as wind turbine size has increased considerably, their fault ride-through capability has to be improved if the penetration of wind power is to be further increased. Wind turbine design and control need to be improved to optimize the compatibility of wind power and the grid. Among the various requirements that wind turbines have to meet, fault ride-through is of great importance and a very challenging one. Grid faults cause transients not only in the electrical system, but also in the wind turbine mechanical system. The dynamic performance of wind turbines is determined by both mechanical and electrical systems. From the mechanical point of view, the grid disturbance adds extra loads on wind turbine components. Severe grid faults may even lead to wind turbine emergency shut-down. From the electrical point of view, wind farms may lose power generation during a grid fault, which deteriorates the fault impact and slows down the fault recovery. Advanced control and active damping is required to improve wind turbine operation and assist it to remain connected during a grid fault. The novelty of this research is the study of the interaction between mechanical and electrical systems of the wind turbine. The detailed modelling of both the wind turbine mechanical and electrical dynamics not only helps to identify possible problems that wind turbines encounter during grid faults, but also allows adopting a combined approach to design the wind turbine controller. This thesis aims at improving the wind turbine fault ride-through capability and the ability of wind turbine to provide network support during grid disturbances. The main contents are as follows: The detailed model of wind turbine and grid including wind turbine mechanical model, wind turbine controller, synchronous and induction generator model, doubly fed induction generator (DFIG) controller and a generic network model are presented; A wind turbine fault ride-through strategy considering structural loads alleviation is proposed; A controller for asymmetrical fault ride-through of DFIG wind turbines is presented; The effect of having Power System Stabilizer (PSS) on wind turbine is investigated. A multi-band PSS controller for DFIG wind turbine is demonstrated.With the penetration level of wind power in electric power networks increasing rapidly all over the world, modern wind turbines are challenged to provide the same grid services as conventional synchronous power plants. The dynamic interaction between wind turbines and grid has to be assessed first before replacing large amount of conventional power plants by wind power. Over the last few years many power system operators have revised their grid codes and established more demanding requirements for wind power connection. In the past, when wind turbines were small, they were allowed to simply disconnect during a grid fault/disturbance. However, as wind turbine size has increased considerably, their fault ride-through capability has to be improved if the penetration of wind power is to be further increased. Wind turbine design and control need to be improved to optimize the compatibility of wind power and the grid. Among the various requirements that wind turbines have to meet, fault ride-through is of great importance and a very challenging one. Grid faults cause transients not only in the electrical system, but also in the wind turbine mechanical system. The dynamic performance of wind turbines is determined by both mechanical and electrical systems. From the mechanical point of view, the grid disturbance adds extra loads on wind turbine components. Severe grid faults may even lead to wind turbine emergency shut-down. From the electrical point of view, wind farms may lose power generation during a grid fault, which deteriorates the fault impact and slows down the fault recovery. Advanced control and active damping is required to improve wind turbine operation and assist it to remain connected during a grid fault. The novelty of this research is the study of the interaction between mechanical and electrical systems of the wind turbine. The detailed modelling of both the wind turbine mechanical and electrical dynamics not only helps to identify possible problems that wind turbines encounter during grid faults, but also allows adopting a combined approach to design the wind turbine controller. This thesis aims at improving the wind turbine fault ride-through capability and the ability of wind turbine to provide network support during grid disturbances. The main contents are as follows: The detailed model of wind turbine and grid including wind turbine mechanical model, wind turbine controller, synchronous and induction generator model, doubly fed induction generator (DFIG) controller and a generic network model are presented; A wind turbine fault ride-through strategy considering structural loads alleviation is proposed; A controller for asymmetrical fault ride-through of DFIG wind turbines is presented; The effect of having Power System Stabilizer (PSS) on wind turbine is investigated. A multi-band PSS controller for DFIG wind turbine is demonstrated

    Adapting x264 to asynchronous video telephony for the Deaf

    Get PDF
    Deaf people want to communicate remotely with sign language. Sign language requires sufficient video quality to be intelligible. Internet-based real-time video tools do not provide that quality. Our approach is to use asynchronous transmission to maintain video quality. Unfortunately, this entails a corresponding increase in latency. To reduce latency as much as possible, we sought to adapt a synchronous video codec to an asynchronous video application. First we compared several video codecs with subjective and objective metrics. This paper describes the process by which we chose x264 and integrated it into a Deaf telephony video application, and experimented to configure x264 optimally for the asynchronous environment.Telkom, Cisco, THRIP, SANPADDepartment of HE and Training approved lis

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Synaptotagmin 1 oligomers clamp and regulate different modes of neurotransmitter release

    Get PDF
    Release of neurotransmitters relies on submillisecond coupling of synaptic vesicle fusion to the triggering signal: AP-evoked presynaptic Ca2+ influx. The key player that controls exocytosis of the synaptic vesicle is the Ca2+ sensor synaptotagmin 1 (Syt1). While the Ca2+ activation of Syt1 has been extensively characterized, how Syt1 reversibly clamps vesicular fusion remains enigmatic. Here, using a targeted mutation combined with fluorescence imaging and electrophysiology, we show that the structural feature of Syt1 to self-oligomerize provides the molecular basis for clamping of spontaneous and asynchronous release but is not required for triggering of synchronous release. Our findings propose a mechanistic model that explains how Syt1 oligomers regulate different modes of transmitter release in neuronal synapses

    On the Expressiveness of Intensional Communication

    Get PDF
    The expressiveness of communication primitives has been explored in a common framework based on the pi-calculus by considering four features: synchronism (asynchronous vs synchronous), arity (monadic vs polyadic data), communication medium (shared dataspaces vs channel-based), and pattern-matching (binding to a name vs testing name equality). Here pattern-matching is generalised to account for terms with internal structure such as in recent calculi like Spi calculi, Concurrent Pattern Calculus and Psi calculi. This paper explores intensionality upon terms, in particular communication primitives that can match upon both names and structures. By means of possibility/impossibility of encodings, this paper shows that intensionality alone can encode synchronism, arity, communication-medium, and pattern-matching, yet no combination of these without intensionality can encode any intensional language.Comment: In Proceedings EXPRESS/SOS 2014, arXiv:1408.127

    Magnetic field effects on spin relaxation in heterostructures

    Full text link
    Effect of magnetic field on electron spin relaxation in quantum wells is studied theoretically. We have shown that Larmor effect and cyclotron motion of carriers can either jointly suppress D'yakonov-Perel' spin relaxation or compensate each other. The spin relaxation rates tensor is derived for any given direction of the external field and arbitrary ratio of bulk and structural contributions to spin splitting. Our results are applied to the experiments on electron spin resonance in SiGe heterostructures, and enable us to extract spin splitting value for such quantum wells.Comment: 6 pages, 4 figure
    • 

    corecore