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Abstract

The worldwide demand for more diverse and greener energy supply has had a significant

impact on the development of wind energy in the last decades. From 2 GW in 1990,

the global installed capacity has now reached about 100 GW and is estimated to grow to

1000 GW by 2025. As wind power penetration increases, it is important to investigate its

effect on the power system. Among the various technologies available for wind energy

conversion, the doubly-fed induction generator (DFIG) is one of the preferred solutions

because it offers the advantages of reduced mechanical stress and optimised power capture

thanks to variable speed operation. This work presents the small-signal modelling and

analysis of the DFIG for power system stability studies.

This thesis starts by reviewing the mathematical models of wind turbines with DFIG

convenient for power system studies. Different approaches proposed in the literature for

the modelling of the turbine, drive-train, generator, rotor converter and external power

system are discussed. It is shown that the flexibility of the drive train should be repre-

sented by a two-mass model in the presence of a gearbox.

In the analysis part, the steady-state behaviour of the DFIG is examined. Comparison

is made with the conventional synchronous generators (SG) and squirrel-cage induction

generators to highlight the differences between the machines. The initialisation of the

DFIG dynamic variables and other operating quantities is then discussed. Various meth-

ods are briefly reviewed and a step-by-step procedure is suggested to avoid the iterative

computations in initial condition mentioned in the literature.

The dynamical behaviour of the DFIG is studied with eigenvalue analysis. Modal

analysis is performed for both open-loop and closed-loop situations. The effect of pa-

rameters and operating point variations on small signal stability is observed. For the

open-loop DFIG, conditions on machine parameters are obtained to ensure stability of

the system. For the closed-loop DFIG, it is shown that the generator electrical transients

may be neglected once the converter controls are properly tuned. A tuning procedure is

proposed and conditions on proportional gains are obtained for stable electrical dynamics.
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Finally, small-signal analysis of a multi-machine system with both SG and DFIG is

performed. It is shown that there is no common mode to the two types of generators.

The result confirms that the DFIG does not introduce negative damping to the system,

however it is also shown that the overall effect of the DFIG on the power system stability

depends on several structural factors and a general statement as to whether it improves or

detriorates the oscillatory stability of a system can not be made.
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Chapter 1

Wind energy background

The present thesis investigates the small-signal modelling and behaviour of the doubly-fed

induction generator (DFIG) in grid connected wind energy conversion systems.

To place the work into context, this chapter starts by giving general background on

wind energy and the DFIG. In the first section, relevant concepts and common terminolo-

gies are introduced. In the second section, studies on the dynamical behaviour of the

DFIG and its impact on the power system are reviewed. A summary is given on the mod-

elling alternatives, control approaches and study methods reported in the literature. The

third section concludes the chapter by presenting the objectives, motivations and contri-

butions of the present work.

1.1 Background 1: Topics on wind energy

1.1.1 Wind power worldwide and in the UK

The growing demand for more secure and greener energy supply has had a significant

impact on the development of wind energy in the last decades. From about 2 GW in

1990, the global installed capacity has now reached nearly 100 GW (Fig. 1.1 [1, 2]). For

the last ten years, the sector has been growing exponentially at about 30% annually with

Europe leading the market (Fig. 1.2 [1]). Predictions for the future give the same order of

growth figure and it is estimated that global installed capacity may reach up to 1000 GW

by 2025 [3]. Denmark, Germany and Spain have presently the highest wind penetration

in terms of wind capacity to peak demand (Table 1.1 [1, 4, 5]). In terms of production,

in 2006, wind power plants generated 100 TWh in Europe, representing 3.3% of the EU
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electricity consumption [1].

Figure 1.1: Worldwide installed wind power capacity in GW from 1990 to 2007

Figure 1.2: Installed wind power capacity per region in GW by end 2007

Two critical aspects that have a direct impact on the growth of wind energy are the

policy frameworks and the manufacturing capabilities. A well-known example of poli-

cies impact is the Production Tax Credit (PTC) in the US. Under this scheme, wind farm

developers receive a tax credit (1.9 cent/kWh) over the first 10 years of a project opera-

tions. In 2003 the PTC expired without being renewed, and new installations amounted

to 389 MW in 2004. By the end of that year the PTC was finally extended, and more than

2400 MW were installed in each of the following years [1]. The other aspect is the ability

of the supply chain to keep up with the strong demand. Wind farms developers have now

(2006-2007) to wait 12 months for the manufacturing of the turbines and the growing de-



1.1 Background 1: Topics on wind energy 17

Table 1.1: Installed capacity and penetration level of top ten countries

Top 10 capacity wind capacity* peak demand** penetration [%]
= 81.1 GW [GW] [GW] (wind cap/peak dem)

1 Germany 22.2 76.6 29.0
2 US 16.8 na na
3 Spain 15.1 43.2 35.0
4 India 8.0 na na
5 China 6.1 na na
6 Denmark 3.1 4.7 66.7
7 Italy 2.7 53.4 5.1
8 France 2.5 86.1 2.9
9 UK 2.4 na na
10 Portugal 2.2 8.9 24.7

*end 2007 , **Jan 07

mand suggests that this waiting period is likely to increase to 18-24 months [1]. Industry

experts predict that the current bottleneck issues will be overcome by 2009 [1].

In the UK, recognising the role of renewables in reducing carbon emissions, the gov-

ernment introduced the Renewables Obligation (RO) in 2002 requiring all electricity sup-

pliers to provide 10% of their supply from renewables by 2010 (the exact figure is different

for England & Wales, Scotland and Nothern Ireland, but the idea behind the scheme is

the same) [6,7]. In 2003, the Energy White Paper was published and stated a goal of 60%

reduction in carbon emission by 2050. In response to the ambitious programme, the RO

target was increased to 15% of electricity supply by 2015 [7].

To comply with the RO, suppliers can either buy Renewable Obligation Certificates

(ROCs) which are issued to renewable generators for each MWh of electricity produced,

or they can pay a buy-out fund (30£/MWh in 2002) [6]. The RO does not specify which

particular technology is preferred and ROCs are issued to all types of renewables. How-

ever, it is expected that three-quarter of the 10% by 2010 target (about 8 GW of capacity)

will be supplied by wind power as it is relatively more mature and economical [7].

The location of potential future wind farms in the UK is shown in Fig. 1.3 [8–10]. In

Scotland, most interest has been expressed for onshore sites [8]. In England and Wales,

most development is expected to come from offshore [8] due to the less favorable wind

conditions onshore. To accommodate this, the Crown Estate has made available areas of
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seabeds through two rounds of competitive tenders. Wind farms sited in the leased areas

of Round one and two are estimated to provide 1.3 and 7.1 GW respectively [8].

Figure 1.3: Present and future UK wind farm connections by end 2007

In February 2007, the UK achieved a new milestone in the wind energy sector as

it reached 2 GW of total installed capacity (onshore and offshore) [11]. By end 2007,

operational capacity increased to 2.4 GW with in addition 1.3 GW of wind farms under

construction, 5.2 GW of consented projects, and 9.2 GW of planning projects [10]. The

present 2.4 GW represents 1.5% of UK electricity supply (1.1 million homes) and places

the UK in the top 10 countries worldwide (Table 1.1).

1.1.2 Capacity factor and generation cost

The term capacity factor of a wind power plant refers to the ratio of actual electricity

production over the total production if the plant was running continuously at full capacity
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[6]. It is equivalent to the term load factor of conventional plants. Since wind turbines are

operating most of the time at less than full capacity, the capacity factor of wind plants are

typically lower than conventional plants [6]. For wind units, a capacity factor of 0.25-0.3

can be considered as reasonable and a capacity factor of 0.4 as very good [12]. These

values can be compared to average load factor of conventional plants ranging from 0.5 to

1 [13] (developed countries with more excess capacity tend to operate at the lower end of

the range, developing countries with more pressing demand tend to operate at the higher

end of the range).

The capacity factor depends on the location and technology of the wind farm. In the

UK, typical values of onshore plants are between 0.20-0.40 [6]. The industry standard

is to assume a value of 0.30 [6]. For the near future, it is expected that this figure will

increase (up to 0.35-0.40 [6]) as windier sites and offshore wind farms are developed.

Table 1.2 [13] shows average capacity factors of other European countries. It is seen that

the UK has indeed better wind resources.

Table 1.2: Capacity factor of wind plants in Europe in 2005

UK 0.28
Spain 0.25
Denmark 0.24
Germany 0.16
Sweden 0.19

There are various ways to evaluate the economics of a wind farm (generation cost,

integration cost, wind farm cost, etc). In the following, a brief discussion on generation

cost is given, as it is often used to compare different types of generation.

Generation cost is expressed in £/kWh, hence both total cost and total production of

a wind farm over its lifetime influence the estimated figure. The total production de-

pends mainly on the average wind speed and is site specific (the higher the wind speed,

the higher the output, and hence the lower the generation cost). The total cost can be

split into investment capital (planning, construction, transport, material, grid connection,

etc), operational expenses (maintenance, repair, administration, etc) and integration costs

(reserve, emissions, network reinforcement, subsidies).
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Due to the high level of initial investment, the total cost is very sensitive to the interest

charged on the capital and the repayment period. These two parameters differ from coun-

try to country, which explains partly the wide range of reported cost figures. For example,

Danish wind farms are typically cheaper because utilities use public sector interest rate

and repayment periods (about 5% over life time of the plant). In UK, where the industry

is liberalised and undertaken by the private sector, interest rates are higher and repayment

period shorter (about 8-10% over 15-20 years) [6]. The integration costs are still subject

to debates and it is unclear whether to include them.

Depending on the assumptions, estimated generation costs can be very different, as

shown in Table 1.3 [6,7,14] for the UK. The most notable differences are for nuclear and

Table 1.3: Estimated generation cost in the UK

RAE [p/kWh] BWEA [p/kWh] SDC [p/kWh]
Mar 04 Nov 04 May 05

CCGT 2.0-2.5 + 1.5 for CO2 2.6-3.0 + 0.2 for CO2 2.3-3.0
Coal 2.2-3.4 + 2.0 for CO2 2.6-3.2 + 0.6 for CO2 3.0-3.5
Nuclear 2.2-2.4 3.0-4.3 3.0-4.0
Onshore wind 3.7-5.4 2.6-3.9 3.2
Offshore wind 5.5-7.2 3.7-5.0 5.5
RAE = Royal Acadamy of Engineering [14], BWEA = British Wind Energy Assoc. [7],
SDC = Sustainable Development Commission [6]

wind. For nuclear generation, the RAE assumes simpler and cheaper modern technology.

For wind, it assumes cost of back up eight times larger than those of the BWEA [15]. The

estimates show nevertheless that present wind generation cost is higher than CCGT, and

offshore generation is more expensive than onshore due to the higher capital cost. It is

forecast that by 2020 the cost may drop to 1.5-2.5 p/kWh for onshore and 2.0-3.0 p/kWh

for offshore due to economies of scale and exploitation of windier sites [6].

1.1.3 Wind energy conversion systems

Horizontal and vertical axis wind turbines

From the physical setup viewpoint, there are horizontal axis wind turbines (HAWT) and

vertical axis wind turbines (VAWT) [16]. For HAWT, the blade rotate about an axis

parallel to the ground and windflow. Common examples are the old-style Dutch windmill
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and modern wind turbine. For the VAWT the blades rotate about an axis perpendicular to

the ground. The most common design are the Darrieus (curved blades), Giromill (straight

blades) and Savonius (scoop blades), as shown in Fig. 1.4.

Figure 1.4: Examples of horizontal and vertical axis wind turbines

Nearly all the larger turbines employed in modern wind farms are HAWT [17]. One

reason is that they are more suitable for harnessing the higher and smoother wind speed

at higher altitude. In terms of blade loading and fatigue, HAWT are subject to revers-

ing gravitational loads (structural load is reversed when the blade goes from upwards to

downwards position) which imposes a limit on the size of such turbine [16]. In terms of

material, VAWT have greater solidity (fraction of swept area that is solid) and hence are

more heavy [16]. Presently, HAWT are the most commercially viable.

Drag and lift powered motion

The rotation of both HAWT and VAWT can be powered predominantly by lift or drag

force depending on the design of the blade. In drag design, the wind pushes the blade out

of the way. The rotational speed is typically slower. Due to their high torque capabilities,

drag powered turbines are suitable for pumping, sawing or grinding [17]. The typical

example of such design is the old style Dutch windmill. In lift design, the blade cross

section has an airfoil shape so that when the wind passes by the blade, the pressure on the

lower surface is higher and hence lifts the blade. The same principle allows airplanes and

birds to fly. Lift powered turbines have much higher rotational speed than drag-powered

turbine and are well suited for electricity generation [17]. In general, lift machines are
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more efficient than their drag counterpart [18].

Number of blades

In order to extract a maximum amount of wind power, each blade should interact as much

as possible with the wind passing through the swept area. Hence the lesser the blades the

higher the rotational speed of the turbine, as the blades have to move faster to ‘fill up’

the swept area [16]. In theory, the more blades a turbine has, the more efficient it should

be. However for larger number of blades there is more interference and a blade is more

likely to pass in the disturbed weaker flow of the previous blade. In practice, low-solidity

turbines tend to have a higher efficiency [16].

From a structural stability viewpoint, the number of blades of lift powered HAWT

should be odd and greater or equal to 3, in which case the dynamic properties of the tur-

bine rotor are similar to those of a disc [19]. For an even number of blades, the structure is

subject to more important bending forces because when a blade is in the uppermost posi-

tion receiving most wind power, another blade is in the lowermost position in the shadow

of the tower. The majority of commercialized modern wind turbines are three bladed.

Sometimes two bladed or even single bladed design are used to save the cost of blades.

However these turbines require more complex structural design to avoid heavy shocks

(two-bladed turbines require a teetering hub, one bladed turbines require a counterweight

on the hub) and are visually more intrusive due to their higher rotational speed [19].

Betz limit

An important operational characteristic of wind turbines is the Betz limit. It indicates

the theoretical maximum amount of wind energy that can be extracted by a turbine. If

turbines were 100% efficient all the airflow energy would be extracted and the flow speed

after passing through the turbine would be zero, which is impossible. In 1928, Betz

showed that under ideal assumptions (uniform rotor disk with infinite number of blades)

the maximum efficiency of a turbine is 16/27 (59.3%) [16]. In practice, this coefficient is

less due to non-idealities (wake rotation behind the rotor, finite number of blades, blade-

tip losses, frictional drag, etc). Present turbines have efficiency around 30-40% [16, 18].
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1.1.4 Components

The main components of a wind turbine generator is shown in Fig. 1.5 (drawing not

in scale). The turbine is formed by the blades, the hub and the connecting components

(bearings, pitching actuators). It transforms wind kinetic energy into mechanical energy.

For multi-megawatt turbines, dimensions are large with blade length ranging from 35-60

meters [20].

Figure 1.5: Main components of a wind turbine generator

The drive train is formed by the turbine rotating mass, low-speed shaft, gearbox, high-

speed shaft and generator rotating mass. It transfers input power (turbine mechanical

power) to the point where useful power (generator mechanical power) is used. In most

cases, a gearbox is required because the rotating speed of the turbine is much lower than

that of the generator. For multi-MW units the gearbox ratio is about 50-100 as the typical

speed range of the turbine is 10-20 rpm while for the generator it is about 1000-2000

rpm [20]. For smaller wind turbines, the turbine speed is higher, hence the gearbox ratio

may be less than 50 [19]. The low speed shaft contains pipes for the hydraulics system that

operates the aerodynamic brake [19]. The high speed shaft is equipped with an emergency

mechanical brake that is used in case of failure of the aerodynamic brake [19].

The generator converts mechanical power into electrical power. For variable speed
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generators, an ac-dc-ac converter is required. Usually the generator produces power at

690 V and a transformer steps up this voltage to 33 kV for underground cable transmission

[21]. The transformer may be placed at the bottom of the tower [19] or in the nacelle for

losses consideration [6]. The power is then transmitted to the wind farm substation where

a further voltage step-up may be done to 110∼765 kV for long distance transmission [18].

Other components include the anemometer and vane which measure the wind speed

and direction respectively. Wind speed measurement is used to start and stop the turbine.

Wind direction measurement is used by the yaw-control mechanism (see next subsection).

Devices such as electric fans and oil coolers are used to cool the gearbox and generator.

1.1.5 Aerodynamic torque control

The mechanical input torque can be controlled in many ways. Fig. 1.6 [16, 18] shows

the tower yaw angle γ and blade pitch angle β, which can be actively controlled for

aerodynamic torque regulation.

Figure 1.6: Definition of aerodynamical angles, forces, and wind speeds

The yaw angle is usually controlled to make sure that the turbine is facing the wind
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(γ = 0◦). It is done by rotating the nacelle about the yaw axis (tower axis) [19]. In

theory, it can also be used to reduce the captured power by turning the turbine out of the

wind. However this is only possible for very small turbines (≤ 1 kW) because operation

with yaw error increases fatigue loads (cyclical varying stresses, bending torques) which

damage the structure [19].

Reduction of input mechanical power is usually done with the blades. In stall-

controlled turbines, the aerofoil shape (blade cross-section) is designed so that above a

certain speed the blade goes into stalling mode (Fig. 1.7 [22]) [18]. When the blade is

stalled, the wind flow is partly detached on the upper surface, reducing the lift and hence

performance. Stall-regulated turbine can be passive- or active-stall controlled. In the for-

mer case, the blades are bolted on the hub at fix angle [19]. In the latter case, a pitching

mechanism pitches the blade to stall (increases the angle of attack) when required.

Figure 1.7: Laminar flow (left) and stalled flow (right)

The counterpart of stall-controlled turbines are pitch-controlled turbines. In these

configurations, the windflow is always laminar and the aerodynamic torque is regulated

by pitching the blade to feather (by reducing the angle of attack). Pitch regulated turbines

can also be active- or passive-pitch controlled. In the former case, a pitching mechanism

(usually hydraulics system) is in place. In the latter case, the blades are mounted on the

hub so that the thrust force pitches the blade (i.e. the blades are “self-pitched”) [18].

Rotation to feather (smaller angle of attack) gives quieter operation and easier con-

trol [18]. Rotation to stall (larger angle of attack) is faster but gives more noise, bending

loads, and less exact control due to the unsteady nature of stalled flow [18]. The advan-

tage of stall-regulation is that complex control for blade pitching is not required. The

aerodynamic and structural design of the turbine are however more complex. In the early

days, most wind turbines where fixed speed stall regulated [22], nowadays the trend is the



1.1 Background 1: Topics on wind energy 26

use of variable speed pitch regulated turbines because of increased performance (notable

but not the main reason) and less mechanical loads (main reason) [18, 23].

1.1.6 Generator concepts

There are mainly four types of electrical generator used commercially (Fig. 1.8 [24])

[24–26]. Depending on the generator type, the turbine is referred to as fixed or variable

speed.

Figure 1.8: Electrical generator used in commercial wind turbines

The simplest type is the fixed speed squirrel cage induction generator (SCIG) which

makes up the biggest share of the smaller wind turbines already installed and scattered

on the network [22]. The rotor consists in short circuited bars i.e. the rotor voltage is

zero. The speed varies within a very narrow range (practically constant) and the mechan-

ical torque is usually controlled by stalling the blades actively or passivily [18, 22]. The

advantages of the SCIG are its simplicity and robustness [22]. For small size turbines in

a strong grid, this is arguably the most economical solution as the grid is able to provide

reactive power and maintain a satisfactory voltage profile. Capacitor banks are installed

to complement the reactive power consumption. The capacitors must be carefully sized to

avoid self excitation [18]. Soft-starter are used to mitigate the high starting currents [18].

The second type of generator is a wounded rotor induction generator with variable

rotor resistance (best known under the commercial brand name “opti-slip” from Vestas).
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It is essentially a fixed-speed machine, where the speed range is increased to typically

2-10% [24] by inserting an adjustable resistor bank in the rotor. The mechanical input

is controlled by pitch regulation for optimal wind power capture. The advantage of this

generator type is its larger slip range compared to the conventional SCIG and simpler

control structure compared to the following two generator types. It has however the same

problems as the SCIG. Reactive compensation and soft-starters are required and voltage

quality is easily deteriorated in weak networks. Compared to the SCIG it has increased

losses due to the larger rotor resistance.

The third type of generator is the doubly-fed induction generator. It is a variable

speed asynchronous generator where the rotor consists in conductors with slip-rings fed

by an ac-dc-ac converter connected to the grid. The provision of non-zero rotor volt-

age at slip frequency results in speed variability. Modern transistor based back-to-back

converters allow bi-directional rotor power flows and hence operation at both sub- and

super-synchronous speed [27]. Typically the slip range is ±30% (determined by the size

of the converters). The advantages of the DFIG are the speed variability which reduces

mechanical stress [28, 29], the possibility to optimise the power capture by regulating the

electrical torque and control reactive power independently [27, 30]. Recent studies inves-

tigated further potential advantages such as frequency control and power system stabilizer

capabilities [31, 32]. Both acquired and potential capabilities of the DFIG are achieved

by appropriate control of the rotor voltage.

The last type of generator is the fully-converted SG or fully-converted SCIG. Synchro-

nous generators are suitable for large rating applications as they operate at unity power

factor. Induction generators need reactive power compensation from the generator side

converter or additional capacitor banks, hence are more suitable for small rating applica-

tions [19]. For the SG which can be excited externally or with permanent magnet, using

a multi-pole design removes the need of the gearbox [25]. As the converter rating is the

full rating of the generator, the slip range is not limited to ±30%. The main advantage

of the fully converted generator is the complete decoupling of the generator from the grid

which can facilitate the control of the system under severe disturbances from the wind or

network. The main disadvantage is the higher cost of the large converter.
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The present trend in the industry is to use variable speed generators [33]. Initially, the

main reasons were the reduced mechanical stress (longer life time), better wind capture,

smoother power output (due to both variable speed and controllable electrical torque), and

ability to operate at unity power factor. Nowadays, tighter grid connection requirements

(see Subsection 1.1.8) and advances in semi-conductors make converters economically

justifiable. It is not yet clear which of the DFIG or fully converted generator will be the

preferred choice in the future. It has been suggested that experienced manufacturers tend

to propose the fully-converted design for new wind farm development [34]. In the last

decade, a significant share of the wind farms installed was DFIG based [33].

1.1.7 Operating regimes

The operating regimes of wind machines can be illustrated by their power curve, which

gives the estimated power output as function of wind speed. Examples from two leading

manufacturers are shown in Fig. 1.9 [35, 36] . The power curve gives three important

values:

(1) Cut-in wind speed: wind speed at which usable power is generated.

(2) Rated wind speed: wind speed at which the turbine generate a designated rated

power, which is often but not always the maximum power [18].

(3) Cut-out wind speed: wind speed at which the turbine is shut down (with automatic

brakes and/or blade pitching) to protect the turbine from mechanical damage [18].

Below rated wind speed the wind turbine is said to be in sub-rated regime. Above rated

wind speed, it is said to be in rated regime. In each region the turbine can be controlled

in various ways to achieve specific objectives. Table 1.4 [18] gives an overview of typical

control strategies used for fixed speed and variable speed systems [18]. The primary goals

are to optimize the power capture in subrated regime, and reduce power capture in rated

regime [18]. It is noted that the pitch angle is usually kept constant in subrated regime to

limit the mechanical wear of the pitching mechanism [18].

A remark on power curves is that in practice they are obtained by field measurements

[19]. Though, they may also be obtained by computation using blade element methods
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Figure 1.9: Power curve of GE 3.6 MW and Vestas 3MW turbines

Table 1.4: Typical control strategies used for fixed speed and variable speed systems

Below rated speed Above rated speed
Optimized performance Reduced performance

Fixed
speed

Stall
controlled

Design aerofoil for lami- Design aerofoil for stall with/without
nar flow pitching (active/passive stall)

Pitch
controlled

Use fixed pitch and const- Control pitch (difficult as fast pitching
ant speed is required due to constant speed)

Variable
speed

Stall
controlled

Control generator torque Control generator torque

Pitch
controlled

Use fixed pitch and cont- Coordinate pitch and generator
rol generator torque torque control

[18, 37]. Due to the difficulty of measuring accurately the wind speed (the anemometer

must be able to measure the undisturbed wind flow speed, which is virtually impossible

for the feasible positioning of the device [19]) and due to the sensitivity of power output

to wind speed (power is related the cubic power of wind speed), measurements are made

of a collection of scattered points and the power curve is fitted through the data. Because

of the uncertainty in measurements, power curves may not be used to evaluate the exact

power output at a certain wind speed [19]. They do however give a good estimation.

1.1.8 Grid integration issues

Grid connected wind generators raise a series of issues due to their fluctuating active

power output, demand in reactive power (fixed speed systems), and injection of harmonics

by converters (variable speed systems). The difficulty of integration depends, among other
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things, on the grid strength1. In weak grids, penetration of wind energy is often limited

because the issues listed below can not be addressed economically.

In the early days, utilities were faced with small SCIGs scattered over the distribution

system. The main integration issues were mainly related to voltage and power quality

problems such as [18, 38]:

• Steady-state voltage change

• Voltage flicker

• Harmonics (for fully converted IG)

Steady-state voltage changes with the wind farm average production. It depends largely

on the system X/R ratio and generator characteristics [18]. For X/R of about 2 (typical

range is 0.5-10), voltage fluctuation of the SCIG is the lowest [39]. Voltage flicker refers

to fast and small variations caused by switching operations (connection, disconnection)

and torque fluctuations (tower shadow, pitch change, turbulence). Various standards are

in place, such as the IEC 1000-3-7 and 61000-4-15 (International Electrotechnical Com-

mision), which give guidelines for emission limits and measurement [38]. Harmonics

relate to the distortion of the grid voltage fundamental sinewave and are typically caused

by inverters. Older inverters (mostly grid commutated, thyristor based) produce integer

harmonics in the range of hundreds Hz. Modern inverters (mostly self-commutated, tran-

sistor based) have harmonics in the range of kHz which are easier to filter out [38].

The shift towards the DFIG during the last decade has alleviated some of the above

integration issues since such generators have smoother power output, are able to control

power factor, and use modern power electronics. However, new integration issues are

raised because of the increasing size and geographic concentration of modern wind farms.

In the recent years, most countries have enforced new grid codes requiring larger wind

farms to behave more as conventional plants [8]. Examples of new requirements are:

• Power factor control at point of common coupling (PCC)

• Voltage control

• Frequency control

• Ride through capabilities
1A wind farm is said to be connected to a strong grid if the short circuit ratio (short circuit level at the

connection point over rated capacity of the wind plant) is above 20-25, and weak if it is below 8-10 [38]
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The challenge of the above issues are more related to their cost rather than their tech-

nical feasibility. Recent studies have shown how the various control capabilities can be

achieved by modifying the control algorithm (see Subsection 1.2.2). There are usually re-

quirements for performance sacrifice (operation at less than optimal power capture) [40]

and larger or additional compensation devices such as uninterruptible power supplies [41].

It can be argued that when addressing these new integration issues the economics and

easiness of implementation put the DFIG and fully converted SG on the same foot. This

probably explains the recent shift towards the latter scheme by large manufacturers.

1.2 Background 2: Topics on DFIG

Following the introduction on general topics of wind energy, the present section reviews

the main studies related to the dynamical behaviour of the DFIG and its impact on the

power system stability. The research results that are relevant to the present thesis can be

broadly classified into three areas:

• Modelling

• Control

• Dynamical behaviour in power systems

Before reviewing each of these areas, it is noted that the present work studies modern

DFIG with back-to-back transistor based converters. The older configurations, such as

slip energy recovery drives (SERD) with diode rectifiers (unidirectional rotor power flow)

are not discussed. Details on SERD, DFIG with cycloconverters or thyristor based con-

verters, and history of variable speed wind turbines can be found in [27, 30, 42–44]. Sim-

ilarly, hardware implementation issues are not in the scope of the present work. Experi-

mental settings and ways of practical realisation of various control schemes (e.g. without

rotor speed measurement encoder) can be found in [27, 45–47].

1.2.1 Modelling

Depending on the purpose of the study (power quality, steady-state stability, dynamical

stability, protection) different modelling details may be pursued. Clearly, the component

subject to or causing the dynamics of interest should be modelled in greater detail, e.g.:
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• Mechanical engineers will pay more attention to the turbine and its aerodynamics

to ensure structural stability and performance (fatigue, vibration, soundness, effi-

ciency), while electrical engineers will be more concentrated on the generator and

its controllers to ensure stable and compliant electrical power production [39].

• For power system stability studies, the interest is in low frequency dynamics over a

time frame of 0.1-10 seconds after a fault, hence fast dynamics that are damped out

very quickly are ignored [48,49]. For fault current and protection studies, the focus

is on the first few cycles after a fault, requiring consideration of subtransients and

non-linear phenomena such as magnetic saturation and iron losses [39].

In dynamical studies of wind energy conversion systems (WECS) with DFIG, the

modelling is mostly done in a modular fashion [18, 22, 48, 50–52]. This approach allows

the testing of different models for a particular module (component) to determine which

degree of complexity or simplicity should be used. Below, an overview of the common

modelling alternatives for the main components of the wind driven DFIG is given. The

specific models used in this work are detailed in Chapter 2.

Turbine

For the turbine, a non-linear algebraic model (i.e. without dynamical equations) is used

in power system studies [48, 51–53]. The model gives the mechanical torque as function

of wind speed, turbine rotational speed and blade pitch angle. Since it is algebraic, it

assumes that the torque changes instantaneously with its input variables. In contrast,

dynamical models require the modelling of wind power capture dynamics (aerodynamics

of windflow around the turbine) with advanced fluid theory and methods. In the context

of power system studies, the additional accuracy gained with detailed dynamical turbine

models does not justify the extra computational cost [54]. To address the issue, different

modelling methods have been proposed to represent the impact of aerodynamics in power

system studies.

In these approaches, the focus is essentially on refining the wind speed model. The

windflow dynamics are approximated by replacing the incoming wind speed with an

equivalent signal that generates an input torque containing the disturbances of interest,
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such as dynamic stall and inflow (also known as induction lag, which is the dynamical

effect of wake adjustment after wind speed or blade pitch angle change), evening out

of wind speed variations over the rotor surface, and tower shadow (dynamical effect of

blade passing in front of the tower) [25, 39, 53, 55, 56]. The equivalent wind speed signal

is obtained by passing the average wind speed through different functions which can be

approximated by first order filters [39] and/or second-order rational functions [53, 56].

With the simpler filters, the accuracy in response is only possible for low frequencies up

to 2Hz [39], restricting the applicability of such models.

Apart from the dynamical phenomena accounted with the filtered signals, the stochas-

tic nature of the wind (mean, ramp, gust, turbulence) can be represented by models based

on Kaimal spectrum (common stochastic model used for wind speed signal to predict

wind turbulence) [48, 53] or alternatively one can use recorded wind speed data [53, 57].

When investigating the impact of the SCIG on the network voltage, detailed model

of the wind input is important because for fixed speed generators the wind disturbances

are directly translated into electrical torque disturbances [39]. For power system stability

studies of the DFIG, it has been observed that the pulsating torque does not seem to

have significant impact [57] and it is common to simply assume a constant wind speed

[51, 58, 59]. In such case it is argued that the effect of aerodynamics and stochasticity are

negligible over the time frame of network disturbance studies (5-30 seconds [59]).

Pitching

Blade pitching is a slow process (in the order of seconds) due to the heaviness of the

blades and limited capability of the actuators [48, 60]. This sluggish behaviour must

be represented as it can have a significant impact on the required coordination with the

electrical torque control (rotor-side conveter) [60] and on power system dynamics [51].

The pitching behaviour is usually represented by a first order actuator [50, 53, 58, 61–

64] or second order with delay [65]. The simpler model (first order) is used for power

system studies, the more detailed model for pitch control design. In few cases, actuators

dynamics have been neglected by only considering the controller dynamics with a satura-

tion constraint on the controller output and its rate of change [52]. This approach should

however be avoided because it assumes that the pitch angle reaches its setpoint instanta-
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neously (β = βref ) when the rate limit is not exceeded, or that the outputs of a rate limiter

and first order system are identical (which is not the case) when the rate limit is exceeded.

The finite bandwith (response speed) of the actuators are represented by inserting

limiters on the rate of change and actual value of the pitch angle within the first order

model [58, 61–63]. A deadzone can also be included for avoidance of too frequent small

pitch angle changes which cause unwanted wearing of the components [50, 62, 63].

Drive train

For the drive-train, the common discussion is whether to use the single or two-mass

model. The lumped mass model is often suggested simply to follow the modelling ap-

proach of conventional power plants [29, 51, 61, 66–70]. On the other hand, the two-

mass model has been recommended to reflect the fact that the shaft stiffness in wind

applications is typically lower (due to the gearbox) than that of conventional power

plants [71–73]. Obviously, soft and stiff drive trains behave differently. One difference

is that a softer shaft damps the high frequency input variations [39]. There is however

not yet an agreement on whether the lower shaft stiffness has a significant impact on

power system stability [51] and recent large scale studies have been performed with both

lumped-mass model [37, 59, 67] and two-mass models [44, 58, 74].

By taking a closer look at the research findings, it may be argued that the two-mass

model should be preferred. On one hand, for the fixed speed SCIG, it has been shown

that the response to large voltage disturbances with the lumped mass model may be over-

optimistic [72]. This can be explained by the fact that for a larger inertia (such as the

lumped-mass model), the pull-out torque of the SCIG is reached more slowly and hence

the stability margin may be overestimated. On the other hand, for the variable speed

DFIG, it has been suggested that the one-mass model could be used because the converter

control decouples the electrical frequency and generator rotor speed (whose mechani-

cal oscillations can be damped by well-designed controllers) [48]. In other words, since

the electrical torque is controlled, assuming different shaft flexibility affects the particu-

lar frequency and damping of the mechanical oscillations, but does not change the final

steady-state. This is reasonable if the interest is in the final steady-state. However, as rotor

speed is the controlled variable, the way it varies (which depends on the shaft model), has
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significant impact on the control performance and coordination of the electrical torque

(rotor-side converter) and mechanical torque (pitch) control. When assessing novel con-

trol schemes such as frequency support capabilities with exploitation of the kinetic en-

ergy [31, 40, 67], it may be important to have an accurate estimation of the available and

feasible acceleration or deceleration. In such cases, the two-mass model should be used

for a more accurate evaluation.

Generator

For the generator model, the practice is to express the machine equations in a rotating two-

axis frame so that decoupled control of active and reactive variables can be formulated.

Derivation of the model from three-phase to two axis frame (abc-to-dq) are found in

[29, 49, 75] and will be recalled in detail in Chapter 2. In such framework, it is assumed

that the system is balanced (so that the zero sequence component can be neglected). The

exact expression of the induction generator equations given in the litterature, may differ

according to:

• the choice of state variables: flux [27, 45, 61, 67, 68], current [76], or equivalent

voltage behind transient impedance [29, 37, 44, 57, 69, 70, 75, 77],

• whether the dq-frame is rotating at synchronous (most ref.) or rotor speed [47, 75],

• the alignment of the rotating frame: d-axis along stator flux (Ψqs = 0) [27, 37, 57,

61, 69, 76, 77], d-axis along airgap flux [45], q-axis along terminal voltage (vds =

0) [28, 29, 31, 68], or d-axis along terminal voltage (vqs = 0) [44],

• whether the q-axis (most ref.) or d-axis [75] is leading,

• whether the abc-dq transformation is power invariant (most ref.) or not [27,45,76],

• whether the direction of positive current is defined according to the motor [27, 29,

44, 45, 67, 68, 75, 76] or generator convention [25, 37, 57, 61, 69, 70, 77],

• whether equations are in per unit (most ref.) or actual units [27, 45, 61, 70, 76].
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These choices give different arbitrary constant and/or sign, however when the same dy-

namics are modelled, results on stability and performance are evidently unchanged.

For power system studies, the different generator models relate to whether stator and

rotor electrical dynamics are represented. In all the reviewed references, stator transients

are neglected for transients studies. The justification put forward is always identical to that

given for conventional synchronous generator, namely that stator transients are associated

with 50 Hz oscillations [48, 78]. This was shown to be the case for the open-loop DFIG

(rotor voltage maintained at a fixed value) [24, 46], for the DFIG with open outer-loop

control (no outer-loop feedback, see Subsection 1.2.2) [29, 52], and for the SCIG (zero

rotor voltage) [79]. In addition, it has also been suggested that rotor electrical transients

can be neglected due to the fast acting of the converter controls [25,51,61]. This is because

when rotor currents are instantaneously equal to their setpoints (infinitely fast current

control), rotor voltage equations are not needed for finding the operating point [30].

Saturation, skin effect, and iron losses (hysteresis and eddy currents) are neglected in

power system stability studies because they are mainly important during the first few cyles

after a fault, and because they mainly influence the current transients. In other words,

these phenomena are more important for loss-performance, sub-transient and transient

fault studies. For faults occurring close to the generator, including magnetic saturation

in the machine model gives a larger current transient during the first peak period (10 %

larger during the first 20 ms [80]) but does not change the dynamical characteristics of the

response. Hence, when the interest is in low frequency oscillations, these phenomena are

ignored [25, 39, 79].

For the sake of completeness, the different modelling approaches that are commonly

used to represent the sub-transient and transient phenomena are briefly mentioned. For ex-

ample, saturation of the main flux can be modelled by varying the magnetising inductance

(instead of assuming it constant) according to the level of flux with an algebraic or dif-

ferential relationship [79]. For the cage induction machine, observing particular transfer

functions showed that saturation influences mainly the amplitude of the response but not

its frequency [79]. Iron losses may be represented as equivalent resistance in parallel with

the magnetising inductance [79] or finite element methods (FEM) may be used to analyse
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their effect [47]. Skin effect can be considered by using a double-cage model [68, 79].

In such models, the current subtransient displacement effects in the rotor are represented

with two or more parallel RL-ladder circuits [64]. These models were originally proposed

for fault current studies of induction motors. It is noted that the accuracy of these detailed

models depend largely on the accuracy of the additional parameters that are required [79].

Converter

For the converter modelling in power system studies, the discussion is often about whether

they should be represented as voltage or current sources and whether the dc-link dynamics

should be considered (Fig. 1.10). Switchings are not discussed because modern convert-

ers with self commutated transistor based design have dynamics in the range of kHz that

can be easily filtered out [38, 68, 81]. From the power system stability perspective, the

concern is less in the dynamics and filtering of switching effects but more in the control

algorithm i.e. the way in which the values of the voltage or current sources are produced.

Figure 1.10: Components of the back-to-back converter

The choice between voltage or current source model depends on the assumption made

regarding the current-controllers (inner-loop controllers of the converters). If they are

assumed to be infinitely fast (infinite bandwidth), the converters are modelled as current

sources. This means that controlled currents are instantaneously equal to their setpoint

(given by the outer-loop controllers). This approach is often adopted [30, 46, 48, 51, 52,

61, 76] because the typical time constant of the current controllers is in the order of 10

ms [48,52]. One modelling advantage of the current source model (though not a rigorous

argument) is that there are less control parameters that need to be specified since the

inner-loop control is simply ignored.
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If the limited bandwidth or design of the current controller is considered (e.g. to

evaluate the effect of over-current protection), the converters are modelled as voltage

sources. In this case, the controlled voltages can be assumed to be equal to their setpoint

(given by the inner-loop controllers) [29,37,68] or a delayed version of their setpoint [44].

In most of the reviewed references, the grid-side converter (GSC) is represented as a

current source. For the rotor-side converter (RSC), both voltage and current source models

have been employed. A comparative study showed that from the power system transient

stability viewpoint (defined as the rotor angle stability of synchronous generators on the

network) the voltage and current source models give similar response for faults that are

electrically far from the DFIG [37]. For faults close to the DFIG however, it is suggested

that assuming ideal current controllers may not be suitable [64, 82, 83].

For the dc-capacitor, its dynamics are represented when testing the ability of the GSC

to maintain instantaneous active power transfer between the DFIG rotor and terminal

(i.e. its ability to maintain constant dc-voltage) [27, 52, 82]. For power system stability

studies, if it is assumed that an appropriate control acting sufficiently fast is in place, the

dynamics of the dc-link can be neglected and the dc-voltage assumed constant [29,68,77].

It has been suggested that when studying the fault-ride through behaviour of the DFIG,

where controller saturation and converter protection are of interest, the dc-capacitor model

should be incorporated [82, 83] otherwise the triggering of protection devices may not be

observed accurately.

Another modelling ‘paradigm’ is to assume the whole converter control as ideal (in-

stantaneous) and consider the DFIG as a controlled electrical torque and reactive power

source [48, 51]. The value of the electrical torque is determined from the measured rotor

speed according to an optimal torque-speed characteristic. The reactive power can be ob-

tained from the voltage error through a PI-control [51] or P-control [48] and a first order

lag whose time constant depends on the external network [48]. This model is generic in

the sense that no particular control scheme is considered for the torque control, and it is

attractive because only few control parameters (voltage loop) need to be specified.

Protection
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The modelling of the DFIG protection consists mainly in specifying the sequence of pro-

tective actions that is followed when converter current or voltage limits are reached or

when the grid frequency is out of the permitted range. Although large frequency devia-

tions are not necessarily fatal for the DFIG, they indicate problems on the external system

such as islanding in which case the generator should be disconnected [38]. Over-current

situation happens typically when the DFIG terminal voltage is depressed.

In general, the first step is to switch to an open-loop control mode and to prioritize

a particular control channel, e.g. by limiting more restrictively the active rotor current

thereby prioritizing the reactive power control [51]. If the disturbance is such that the

converters are still driven to their limits the next step involves disconnection of the rotor

converters and short circuiting the DFIG rotor with crowbars [68, 84]. At this stage if

emergency components are provided such as uninterruptible power supply, they may be

switched on [41]. For persistant or even larger disturbance the switchgear at the DFIG

terminal disconnect the unit [37, 51]. Nowadays with the fault-ride through requirements

of revised grid codes, intensive research activities are going on in order to devise innov-

ative ride-through capabilities, e.g. with robust control techniques [85], non-linear meth-

ods [86], storage systems [41, 87], or alternative control loops during the fault [88, 89].

Wind farm aggregate model

In power system stability studies, it is common to represent a wind farm with several

turbines by one equivalent machine with suitable scaling and adjustment of the trans-

former and line between the generator and PCC (to account for the wind farm internal

cabling) [37,76,90]. Alternatively, semi-aggregate models may be used where the electri-

cal part of the wind farm (generator) is aggregated but not the aerodynamical part (wind

speed and turbine) and/or mechanical part (drive train) [64]. For stability studies of the

electrical transmission system, the single equivalent model is acceptable [51, 64, 91]. In-

dividual representation along with detailed wind speed model taking into account the

geographic spread of the wind farm is more important when evaluating the wind farm

internal dynamics, such as anti-phase oscillations between turbines (not excited by the

electrical network [71]), partial disconnection in some area of the wind farm, etc [64].
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1.2.2 Control

As for any controlled system, the behaviour of the DFIG is largely determined by its

controllers [24, 39, 68, 92]. These are located in three entities: the rotor side converter,

the grid side converter, and the pitch angle controller [48, 50, 53]. The RSC controls

the rotor speed and electrical torque (for maximum power capture in subrated regime

and for rated power production rated regime), and the power factor or terminal voltage.

The GSC controls the dc-link voltage and may participate to power factor control by

sharing reactive power production with the DFIG stator [58]. The pitch angle controller

is activated in rated regime, where speed control is achieved by both the pitch controller

(mechanical torque control) and the RSC (electrical torque control). Electrical control of

the converter is very fast in the order of 100 ms [60, 93]. Mechanical control is typically

slower [62] due to heavy blades and limited bandwidth of the pitch actuator.

The distinctiveness of the DFIG control resides in the fact that decoupled and simul-

taneous regulation can be done for active variables (speed, active power or torque) and

reactive variables (voltage, reactive power or power factor) [28]. This is achieved by for-

mulating the control algorithm in a synchronously rotating two axis reference frame, with

each axis taking care of either the active or reactive control [28]. When the rotor power

flow is allowed to flow in both direction, the control can be done over a wide range of

rotor speed covering both sub- and super-synchronous speed [27, 28, 30].

In wind driven DFIG, the primary control objectives are to maximise power capture

in subrated condition, limit the rotor speed in rated regime and control power factor at all

times. Additional control objectives in modern large scale wind farms are to provide fre-

quency control and voltage-ride through (VRT) capabilities. Numerous control schemes

have been proposed to realize these objectives. They can be distinguished according to

their controller layout, controlled variables, and manipulated variables.

Controller layout

Fig. 1.11 shows two layouts that are often proposed for the controllers of the converter.

In the reported literature, the inner-loop current control is always done in a closed-loop

fashion with PI-controllers. For the outer-loop control, various solutions have been tested.



1.2 Background 2: Topics on DFIG 41

Figure 1.11: Two common layouts for the rotor-side and grid converter control

When the outer-loop control is not closed, the rotor current setpoints are obtained from

output measurements processed through some algebraic functions (look-up tables). This

scheme has been used for both the reactive power (or voltage) control [45] and speed (or

electrical torque) control [29, 46, 61, 68, 69]. This simple approach is generic in the sense

that the functions used to obtain the setpoints are derived from the machine equations

directly and there is no control parameters to be tuned for the outer-loop. However, the

control performance relies on accurate machine parameter values (needed in the algebraic

function). In most cases, a steady-state error will be present.

When the outer-loop control is closed, the rotor current setpoint is obtained from an

error signal processed by some controller. The controller can be made of a simple propor-

tional gain [29, 48, 69], a PI-controller [30, 50, 53, 58, 67, 76], or a PID-controller [37].

Steady-state errors are eliminated when integral controllers are employed. To ensure

tighter tracking, feedforward voltage decoupling terms may be added [27, 69, 76]. To

improve stability margins, lead-lag compensators may be inserted [31]. Clearly, the sta-

bility and control performance relies on the adequate tuning of the controllers and com-

pensators. Apart from these classical controllers (P, PI or PID), more innovative solutions

have been proposed such as fuzzy logic based controllers [30, 70] and non-linear con-

trollers [86]. Although these may offer better performance, their adoption in the industry
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is often hindered by the more complex theory and required training.

It is noted that when the converters are modelled as controlled current sources, the

inner-loop control is simply ignored as it is assumed that the current controllers have

infinite bandwidth (are infinitely fast). In such case, the machine rotor currents are equal

to their setpoints (iqr = iqr,ref , idr = idr,ref ).

For the pitch controller, a common layout is shown in Fig. 1.12. In most cases, a

PI controller corrects the error in the output [53]. Alternatively, it has been suggested

that due to wind speed variation, the DFIG is never at steady-state and hence a simple

proportional controller is sufficient [48]. Other types of controller such as the PD or PID

have also been proposed for better performance [50, 63]. Filters and/or additional control

signals may be added to attenuate tower resonance and displacement [94]. However as

for any controlled system, there is a trade-off between control action (pitching activity)

and number of additional control capabilities [94]. Non-linear control methods have been

applied to the pitch controller to consider conflicting objectives in an optimal way [94].

Figure 1.12: Common layout for the pitch angle control

It is recalled that due to the slowness of the pitching mechanism, the pitch angle

is not equal to its setpoint, but to a delayed version (typically first order) of it. As a

remark, differential pitch control (independent pitch control of each blade) as opposed to

collective pitch control has also been suggested [94]. The benefit is a better reduction of

the structural loading (fatigue loads). However the effectiveness of such method relies on

the availability of measurement of asymmetrical loads over the turbine [94].

Controlled variables

For the inner-loop control of the RSC and GSC, the controlled variables are usually the

rotor currents. In a few instances, the rotor flux [31] and equivalent internal voltage [84]
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have been chosen instead. From an implementation viewpoint, rotor current control (and

measurement) is easier. From a theoretical viewpoint, the different options are all valid

and should give similar performance because the DFIG torque can be derived as being

proportional to each of the considered variables.

For the active outer-loop control of the RSC, the controlled variable can be:

• the electromagnetic torque [30, 95],

• the stator active power [50, 76],

• the total active power output (stator and rotor active power) [32, 58, 62, 64, 67],

• the airgap power (electromagnetic torque multiplied by rotor speed) [31, 84],

• the rotor speed [27, 45, 57, 70, 77, 96].

The latter choice (rotor speed control) is claimed to give better tracking performance

(maximum power tracking) [27], however it is difficult to realize in practice because the

computation of the setpoint requires either reliable online wind speed measurements (not

easily obtained) [18], or a mechanical torque observer (not easily designed) [27]. When

torque or airgap power is controlled, the setpoint is obtained conveniently as function of

the measured rotor speed according to the optimal torque-speed characteristic [27,48,68].

Controlling the stator or total active power will give slightly less than optimal operation

because the reference power setpoint is obtained from the mechanical input which is the

total power plus friction and copper losses. Controlling the electromagnetic torque or the

airgap power gives better result as only friction losses are neglected.

For the active outer-loop control of the GSC, the controlled variable is the dc-link volt-

age [27]. Keeping it constant ensures that the rotor power flow is transmitted completely

to or from the grid without being stored in the dc-link capacitor.

For the reactive outer-loop control of the RSC, the controlled variable can be:

• the stator reactive power [28, 44, 53],

• the power factor [47],

• the terminal voltage [37, 48, 51, 61, 67–69].

When the stator reactive power is controlled, the setpoint can be obtained in different

ways and depends on the sharing strategy with the GSC. In theory, any arbitrary reactive

power sharing scheme (between the DFIG stator and the GSC) can be chosen as long as
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the total reactive power matches the requirement of the network (Qtot = Qs + QGSC). In

practice some choices make more sense depending on the objective being pursued. E.g.:

• One possibility is to impose the magnetisation current (calculated as function of the

terminal voltage) as the setpoint of the reactive rotor current [61,68,69]. This makes

the DFIG rotor provide the magnetization of the machine. It results in some level

of stator reactive power and the GSC has to provide the remaining compensation

required for terminal voltage or power factor control.

• Another possibility is to impose zero reactive rotor current [27] with as consequence

the reactive power required by the machine flowing completely via the stator. In this

case, the rotor current is solely used for speed control thereby minimizing the rotor-

side converter losses. However it is done at the expense of the GSC as the latter has

to take care of the terminal voltage or power factor control.

• A third possibility is to impose the stator reactive power at a value that minimizes

the machine losses [30]. In such scheme the GSC is also operated at non-unity

power factor as it has to complement the reactive power production.

• A fourth option is to impose the stator reactive power as the total reactive power

required by the network so that the GSC is operated at unity factor [37, 48, 68, 81].

This alternative was shown to be very effective as reactive power injection through

the RSC is amplified with a factor 1/s where s is the slip [68, 97].

Table 1.5 summarises the above sharing schemes.

When the terminal voltage control is done, the reactive rotor current setpoint can be

obtained in different ways as well. It can be the output of a PI-controller acting on the

terminal voltage error [48, 51, 67]. Alternatively, it can be determined as the sum of a

magnetising component (calculated from the measured terminal voltage) and a voltage

control component (obtained by amplifying the terminal voltage error) [37, 61, 68, 69].

For the reactive outer-loop control of the GSC, coordination is required with that of

the RSC so that the reactive demand of the network is met. When the RSC does not

control explicitly the terminal voltage or power factor, the task has to be done by the
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Table 1.5: Common reactive power sharing schemes between the DFIG stator and GSC

Stator reactive power Qs GSC reactive power QGSC

1 Qs so that Qr = Qr,magn QGSC = Qtot,ref−Qs 6= 0
2 Qs so that Qr = 0 QGSC = Qtot,ref−Qs 6= 0
3 Qs so that copper losses are min. QGSC = Qtot,ref−Qs 6= 0
4 Qs = Qtot,ref QGSC = 0
Qr is the rotor reactive power, Qr,magn is the magnetizing reactive power,
Qtot,ref is the reactive power required by the network, or determined by
an outer voltage control loop

GSC. In such case, the controlled variable can be either terminal voltage or the terminal

power factor. When the DFIG controls directly the terminal voltage or power factor, the

GSC operates at unity power factor.

For the pitch controller, the controlled variable can be either the rotor speed [32, 50,

53, 61, 63–65, 67], or the total active power output [28, 62, 94]. When rotor speed is the

controlled variable, the active power may be used to provide a compensation signal [51].

Speed control does not differentiate between shaft acceleration due to increase in wind

speed or system faults. In either case, the response (increase in pitch angle setpoint) is

appropriate [74]. For power control, a fault in the network or an increase in wind speed

give output error of opposite signs, which is less desirable.

Manipulated variables

For the rotor-side converter as a voltage source, the manipulated variables are in most

cases the cartesian components (real and imaginary parts) of the rotor voltage (vqr and

vdr). It has been shown that polar components (magnitude and angle) of the rotor voltage

(Vr,mag and Vr,ang) [98], rotor flux (Ψr,mag and Ψr,ang) [31], or equivalent voltage behind

impedance (E ′
mag and E ′

ang) [84] can also be used. Such scheme has been referred to as

flux-magnitude and angle controller (FMAC) [31, 84] and was proposed to interpret the

control of the DFIG like that of conventional synchronous machines.

Using cartesian or polar components of the rotor voltage or flux results in different

control formulation and layout. However, the physics of the DFIG are the same i.e. two

control inputs must be specified to the rotor to determine an operating point. The choice

of one scheme over the other is more likely to be decided by the practicality and feasibility
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of the required measurements. It is not yet clear if one framework performs significantly

better or worse, though it was shown that the FMAC has difficulty around synchronous

speed [84].

Control for large wind farms

As mentioned in Subsection 1.1.8, frequency control is presently required for larger wind

farms. This dynamical capability can be achieved in two ways. For short term support

(duration for the SG governors action to take place), the kinetic energy of the DFIG rotor

and turbine may be used by extracting/storing power out of/into it. This can be done

by imposing additional control signal in the active control loop of the RSC [31, 67, 95].

One issue with this method is that input torque (mechanical torque) changes with rotor

speed, hence the turbine may be driven inadvertently into stalling mode when extracting

kinetic energy. This would reduce the output power and as a consequence inhibit the

frequency control. Another issue is that sufficient kinetic energy must be available, hence

the performance of this frequency support method depends on the initial rotor speed (how

far away from minimum or maximum). More quantitative investigations are needed to

address these issues.

The second way of providing frequency control is to operate the turbine with partial

deloading [32, 40, 67, 99]. This is feasible on large scale and over a realistically longer

period. The drawback however is extraction of less than optimal wind power, which is

more of an economical issue rather than a technical one. Depending on the required

degree of control flexibility, partial deloading may require the pitch control to be active

at all time [32]. In such case, pitching activity would be increased and more important

wearing of the components would be expected.

To conclude, other innovative control schemes for large wind farms have been ex-

plored, such as coordination with external system components and hierarchical control

within the windfarm. By sending the DFIG status to on-load tap changers on the network

(which requires additional communication links) better voltage control can be achieved

in a particular area [97]. By formulating the wind farm control in a hierarchical structure,

individual command for active and reactive power of the turbines can be computed in or-

der to provide the requested output at the point of common coupling and simultaneously
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minimise losses within the wind farm [32, 40].

1.2.3 Dynamical behaviour in power systems

In the reported literature, the impact of the DFIG on the power system stability has been

assessed primarily by comparing it to the SG and SCIG. The study approaches have con-

sisted in both time domain and eigenvalue analysis. Time domain studies have been

used to investigate the voltage recovery profile of the DFIG following severe network

faults [57, 59, 67], and the critical clearing time (CCT) of synchronous machines on the

network [37,58,72, 77]. Eigenvalue analysis has been used to see how the low-frequency

oscillating modes of the synchronous machines are affected [59, 74, 84, 100, 101].

One salient characteristic of the DFIG with respect to its synchronous and fixed speed

counterparts, is the decoupling between the grid frequency (electrical) and the rotor speed

(mechanical) due to the converter controls [25, 48]. As the electrical torque is explicitly

controlled, variation in mechanical input torque (due to wind speed variation, shaft tor-

sion, tower shadow) translates into speed variation dictated by the torque unbalance rather

than electrical torque variation as in fixed speed generators. Because of the high inertia,

rotor speed change is small and hence the output power variation is limited. This is also

why variable speed generators are said to act as buffer of wind speed variations [25, 48].

A second notable difference of the DFIG with respect to both the SG and SCIG is its

better controllability. For the SCIG any dynamical control has to be provided by addi-

tional components (e.g. dynamic voltage compensator). For the SG since all the control

is done by regulating the field voltage magnitude, additional control such as power system

stabilizer capability is realized at the expense of voltage control performance [84]. For

the DFIG, the control flexibility is greater since two independent variables (rotor voltage

direct and quadrature components) are used to control output variables.

From the time domain studies, it has been shown as expected that, compared to the

SCIG, the voltage recovery profile of the DFIG is much better [57, 67]. One obvious

reason is that unlike the SCIG where the uncontrolled reactive power demand is very

sensitive to voltage level and rotor speed, the DFIG can control its reactive power or

terminal voltage independently of rotor speed. The voltage behaviour of the SCIG is
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typically poor because at fault clearing the machine has accelerated, resulting in higher

currents (along with higher active and reactive power magnitude) and more important

longer lasting voltage drop in the network lines [57]. If the SCIG has exceeded its pull-

out torque the machine accelerates further and may be tripped by overspeed protection

logic [57]. Compared to the synchronous generator, the DFIG with power factor and

VRT control has a slower voltage recovery profile [58]. With voltage and VRT control,

the DFIG voltage recovers better than that of the SG [59, 67].

For the CCT criteria, the DFIG gives also better result compared to both the SCIG

[37] and SG [58] (i.e. when replacing the SCIG or SG by a DFIG), which can again be

explained by the better controllability of the DFIG.

From the eigenvalue studies, it has been shown that the DFIG does not introduce

problematic oscillatory modes [100]. Replacing an SG by a DFIG gives better damping

of the network lower oscillation frequency modes (inter-area modes) [59,74,84,100,101]

because in such scenario, the size of the total synchronous inertia that participate into

system oscillations is reduced [100]. Mode shape analysis has shown that indeed the

DFIG does not contribute (neither positively or negatively) to inter-area mode [74]. In fact

with suitable control design, the DFIG can even actively improve the network oscillation

damping [84]. This requires that the DFIG output power is injected into the grid so that

it produces an electrical torque component in the SGs that is in phase with their rotor

speed [84]. The design of such compensator for the DFIG may not be a trivial task

depending on the network and SG location.

1.3 Present thesis

1.3.1 Objectives

The objectives of the present thesis is to study the small-signal behaviour of the DFIG in

view of building a better understanding of its inherent dynamics and effect on the external

system. The research questions of interest can be summarised as follows:

• Inherent dynamics of the DFIG: Which variables are coupled or decoupled? What

are the typical oscillations frequencies and damping? What are they caused by?
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• Influence of machine parameters and operating condition: How sensitive are the

DFIG dynamics to machine parameters and operating point? Is there any case for

which the system is unstable? When is it more stable and when is it closer to

instability?

• Role of the controllers: What is the difference between open-loop and closed-loop

operation? How do the control settings change or determine the behaviour of the

DFIG?

• Effect on the external network: What distinguishes the DFIG from the SG and

SCIG? What are the consequences in terms of behaviour in the power system?

1.3.2 Motivation

As reviewed in Section 1.1, the DFIG is one of the preferred option for variable speed

wind energy conversion systems. The advantages are its wide range of feasible rotor

speed, reduced mechanical stress, reduced power electronics rating and optimized power

capture. These technical and economical characteristics have motivated the introduction

of the technology in modern wind farms. To facilitate its further integration into the

power system, it is therefore important to assess its dynamical behaviour, performance

and impact on the network. The present work aims at contributing the understanding of

the DFIG in that respect.

The review of Section 1.2 helped identify the above research questions. Some of these

have been addressed in the reported literature and Section 1.2 provided a summary of the

main results. It was shown that the dynamics of the DFIG has been mostly assessed

with time domain studies and modelling practice has followed essentially that adopted for

conventional synchronous machines (neglecting stator transients, one mass drive train,

etc). The present work takes an alternative approach (eigenvalue analysis) in order to

provide analytical justifications and additional observations.

The results and conclusions made in this thesis are obtained from theoretical studies,

as opposed to experimental ones. Since assumptions have a significant impact on this type

of study, a considerable part is dedicated to the derivation of the mathetical models.
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In addition, as the dynamical behaviour of the DFIG is determined by its controllers,

the tuning of the control settings is also examined. The importance of the controllers

and the non-triviality of their tuning have been recognized [70, 81], hence the details of

how the control parameters are obtained in this work is provided. Understanding how

the DFIG dynamics are influenced and modified by the controllers helps in the tuning

process; hence this was identified as one of the research questions.

1.3.3 Approach

The research questions of Section 1.3.1 can be answered by experimental studies, sim-

ulation studies, or analytical analysis. The present work considers the latter approach.

In first instance, the DFIG is considered in normal operating conditions and under small

disturbances so that linear system theory such as eigenvalue analysis can be applied.

The eigenvalues of a system contain a whole spectrum of information. They indicate

for example the stability of the system and they can be used to determine the coupling be-

tween the system’s variables or to tune the system’s controllers. In power system studies,

it has been typically used to assess the oscillatory behaviour of synchronous machines. In

this work it used to analyze the doubly-fed induction generator itself.

Also, eigenvalue analysis is a convenient tool that can be automated to examine the

problem in a systematic way. It offers an alternative interpretation of the system behaviour

and can reinforce the results obtained with simulation studies. It also allows the justifica-

tion of certain modelling practice such as two-mass drive train and neglect of both stator

and rotor electrical transients after appropriate control design.

1.3.4 Contributions

The contributions of the present work can be summarised as follows:

• Improving the understanding of the DFIG modelling: Usual practice and purpose

of the different modelling alternatives are reviewed for the building blocks of the

DFIG wind turbine. The relevant models are derived and typical parameters that

are available in the literature are compared. Recommendation is made for selecting

the appropriate model for the purpose of this work.



1.3 Present thesis 51

• Improving the understanding of the DFIG dynamics: Steady-state, open-loop and

closed-loop behaviour are examined in detail. From the steady-state analysis, the

sign of the process gains are determined and the impact on DFIG control design is

explained. From the modal analysis of the open and closed-loop system, the typical

time frame and characteristics of the different dynamical parts are determined and

the effects of closing the control loops are identified.

• Investigating further the distinction of the DFIG with respect to the SG and SCIG:

It is well known that unlike the SG the DFIG is an asynchronous machine and that

unlike the SCIG the DFIG is fed with non-zero rotor voltage. Additionally, vari-

ability of the speed and controllability of the electrical torque result in decoupling

of electrical and mechanical dynamics. The impact of this feature on the modelling

adequacy is examined.

• Proposing a tuning procedure for generic PI-controllers: The effect of the control

parameters on the location of the eigenvalues are identified. The result allows a pole

placement process which considers the poles of both DFIG and controllers. The

range of parameters value that can not be used for stability and resonance reasons

are determined. A step-by-step method is formulated and the robustness of the

resulting controller is verified.

• Explaining the observations made in previous research: Among other points, it

is shown that the poorly damped mode near line frequency observed in [46] as

being the stator mode, is indeed the stator mode but for the open-loop DFIG. For

the closed-loop DFIG, the situation is different because of the rotor-side converter

control actions. It is also shown why voltage control parameters should not be too

high as stated in [51]. The answer is obtained by examining the sensitivity of the

DFIG electrical dynamics to these particular control parameters.

• Implementing an automated routine for eigenvalue analysis of a grid connected

DFIG: The grid can consist of a simple infinite bus or it can consist of a network

with multiple synchronous machines and other DFIGs. The routine performs a full
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initialization of the DFIG for specified load flow configuration. Different model

assumptions such as omission of the DFIG electrical transients can be tested. Root-

loci are obtained conveniently so that the effect of control parameters, machine

parameters or operating point can be assessed in a systematic fashion.

1.3.5 Layout of the thesis

The present thesis can be divided in two main parts: Modelling and analysis.

The next chapter describes the modelling of a wind turbine with doubly-fed induction

generator. The models that are suitable in the context of this work, namely eigenvalue

analysis of the DFIG from the power system viewpoint, are reviewed in detail.

In the analysis part, the study begins with the steady-state behaviour in Chapter 3.

Comparison is made with the conventional SCIG and differences are highlighted. In

Chapter 4, the open-loop system is examined. The inherent dynamics are identified and

similarities with the SCIG are observed. Chapter 5 presents the behaviour of the closed-

loop system and proposes a tuning procedure for generic PI-controllers. Finally in Chap-

ter 6 a multi-machine network with both SG and DFIG is analysed.

Conclusions and discussions are summarized in Chapter 7. Future work is also dis-

cussed.
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Chapter 2

Modelling

Eigenvalue analysis requires a set of equations representing the system dynamics. The

first part of this work consists therefore in determining a suitable mathematical model

that can be used to answer the research questions listed in Subsection 1.3.1. As reviewed

in the previous chapter, many modelling alternatives have been proposed (Subsection

1.2). The models chosen for the purpose of this work are described in the following.

For each component, the different modelling approaches proposed in the literature are

briefly explained, the justification for selecting a particular model is given, and the model

equations are presented.

2.1 Turbine

For the turbine modelling, it is important to understand the airflow dynamics around the

structure because the resulting unsteady forces determine the turbine performance (energy

yield), structural loads and acoustic noise. Inaccurate predictions may lead to non-optimal

design, larger capital investments and larger operation/maintenance costs.

From a mechanical aspect, the turbine converts power by withstanding various kinds

of stresses due to the air movement surrounding the turbine. Hence the detailed airflow

dynamics are of interest to the turbine designer because they determine the soundness and

fatigue life of the structure.

From an electrical viewpoint, the turbine applies an input torque on the drive train.

Any unbalance with respect to the load torque applied by the generator translates into

acceleration or deceleration of the shaft and associated variation of electrical variables.
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Hence for the electrical engineer, the interest is mainly in the dynamics of the input

torque, while the complex airflow dynamics and associated mechanical vibrations and

deformations may be ignored.

2.1.1 Modelling approaches

Broadly speaking, there are two approaches to calculate the turbine input torque. In the

first approach, referred to as ‘theoretical approach’ in this work, airflows surrounding the

turbine are modelled so that forces on the blades and hence torque on the shaft can be

calculated. In the second approach, referred to as ‘empirical approach’ in this work, the

input torque is expressed as an algebraic function of selected input variables (wind speed,

pitch angle, turbine speed). Table 2.1 shows the main turbine modelling methods that are

used presently. The different methods are described in the following subsections.

Table 2.1: Turbine modelling approaches and methods

Theoretical approach Empirical approach
- Blade elememt theory methods - Constant input power
- Engineering models or torque
- Wake methods - Algebraic Cp curves
- Computational fluid dynamics methods - Dynamical Cp curves

Theoretical models are extremely computational intensive and mostly used for tur-

bine design. Empirical models are satisfactory for power system studies and give a right

balance between accuracy and complexity. Although theoretical methods are not used in

this work, they are briefly reviewed for a better understanding of wind turbine modelling

issues.

2.1.2 Theoretical modelling methods

The aerodynamics of a wind turbine are quiet complex because the flow field surrounding

the structure results from many types of interacting sources, as shown in Table 2.2, making

both measurements and calculations difficult [102]. Some sources are mostly periodic

such as the wind flow itself, the yawing system related oscillations (oscillation of the

nacelle about the tower axis), and the tower shadow effect (passage of the blades in front
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of the tower which modifies the free wind flow). Other sources are mostly aperiodic

such as turbulence (gusts), wake behaviour (disturbed fluid movement further behind the

turbine), and blade-wake interactions.

Table 2.2: Aerodynamic sources contributing to turbine airloads

Mostly periodic Mostly aperiodic
- Wind inflow - Wind turbulence
- Yaw dynamics - Wake dynamics
- Tower shadow - Blade-wake interactions

The theoretical description of fluid flows are given by the so-called Navier-Stokes

equations (equations of motion for viscous fluids) [103]. Analytical solutions are only

known for few special cases and numerical solutions present stability difficulties and re-

quire prohibitive computational time. In non-academic environment, simpler modelling

strategies are used [18].

The theoretical modelling strategies used in practice can be roughly classified into

three types: blade element (BE) theory based methods, wake model based methods and

computational fluid dynamic (CFD) methods [18, 103]. In BE methods also known as

strip theory methods, the blades are divided in small sections and the forces on each

of them are calculated. These are then converted into accelerations and integrated into

velocities and positions. In wake methods also known as vortex methods, a more complex

model is considered for the actual flow field. The wake behaviour further upfront and

further behind the turbine is considered. It usually predicts fluctuating torques that are not

forecast by BE methods. In CFD methods, the solution of the Navier-Stokes equations

are approximated numerically. Table 2.3 summarises the main modelling alternatives and

their validation status; more details can be found in [54].

A fourth type of theoretical modelling approach consists in the so-called ‘engineering

models’, which were formulated to address slow unsteady flow phenomena [104]. In

terms of complexity, engineering models lay between the BE and wake methods. Slow

unsteady flow phenomena (5∼10 s) relate to the ‘dynamical inflow’. They account for

the influence of the time-varying wake vorticity (rate of rotational spin in a fluid) on the

inflow velocity in the rotor plane. Dynamical inflow may have some effect during events
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Table 2.3: Theoretical turbine modelling alternatives and validation status

BE methods Wake methods CFD methods
- BE theory only (experimental - Prescribed wake (geom- - Euler (non-viscous form
data needed a priori) etry fixed or limited) of N-S equations)

- BE + momentum theory - Free wake - Navier-Stokes
- Acceptable predictions - Predictions with mixed - Consistent and realistic
under simplified conditions performance simulations of flow field

- Implemented in aeroelastic - Simplest versions imple- - Not yet validated enough
design codes mented in design codes for design purpose

→ → Increasing complexity → →

happening on the same time scale, such as windgusts (few seconds), blade pitching actions

(0.5∼2 s) and yawing operations (1∼2 s). In [104] it is argued that the pitching transients

and overshoots in shaft torque measured on the Tjaereborg 2 MW turbine (Oye, Technical

University of Denmark) are due to dynamical inflow; models are proposed to represent

the effects.

A comparative study of various aerodynamic models can be found in [105]. The study

involved 30 experts from 18 organisations and models were generated from 19 different

turbine modelling tools. Predictions were made for precise conditions and measurements

were carried out in the same conditions (Nasa-Ames wind tunnel test). In order to avoid

reluctant participation, results were not identified by modeller and were compared anony-

mously. The results clearly showed that there were significant differences between the

various predictions and also significant deviations from measurements. For example, tur-

bine power predictions ranged from 25 to 175% of measured. This unfavourable conclu-

sion reflected the complexity of the subject and need for improvement.

2.1.3 Model for power system studies

The theoretical methods reviewed in the previous subsection are mostly used for wind

turbine design and wind farm economic evaluation. In these cases detailed modelling is

desired because the design and economic value are very specific to the site and turbine

considered. In power system studies it is more desirable to use generic models represent-

ing a whole class of wind turbine (e.g. megawatt variable speed wind turbines). Hence
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simple models that are less computational intensive and yet capture turbine power con-

version process are preferred.

The simplest turbine model is to assume a constant input power or torque, which is

the same as assuming constant wind speed, rotor speed and pitch angle. This model can

be used in small network disturbance studies with constant wind speed because in such

cases, the variation in rotor speed and hence pitch angle is small. Obviously, for studies

with changing wind speed or significant rotor speed variation, this model can not be used.

A more realistic assumption is to use the algebraic relationship Pt = CpPw where Pt

is the turbine power, Pw is the wind power and Cp is performance coefficient representing

the portion of wind power that is extracted by the turbine. The expression for Pw is

obtained as follows [16]. The kinetic energy of a mass of air m moving at an average

speed vw is Ek = 0.5 m v2
w. The associated power is equal to the rate of change of Ek,

i.e. Pw = d(Ek)/dt = 0.5(dm/dt)v2
w where dm/dt is the mass of air transferred per unit

time. If the air is passing through an area A then (dm/dt) = ρ A vw where ρ is the air

density. Hence the power of the air passing through that area is Pw = 0.5ρAv3
w and the

extracted turbine power is Pt = CpPw = 0.5 ρACpv
3
w.

In BE methods, Cp is determined analytically by integrating the force and torque

of each blade section over the blade length for all the blades. For generic power system

studies, numerical approximations expressing Cp as function of tip-speed ratio λ and pitch

angle β may be used [50, 61]. Hence if R is the blade length, the turbine model is:

Pt = 0.5 ρπR2Cp(λ, β)v3
w (2.1)

Examples of expressions for Cp(λ, β) are given in the next subsection. The model in

(2.1) is a non-linear expression relating turbine input power to wind speed, pitch angle

and turbine speed. It is an algebraic model where airflow dynamics are ignored, hence

turbine power changes instantaneously from one operating point to another when there is

a change in wind speed, tip-speed ratio, or blade pitch angle.

Dynamical Cp models have been proposed to represent aerodynamics related tran-

sients such as dynamic stall [106] and dynamical inflow [107]. Dynamic stall happens

during rapid aerodynamic changes. It can result in high transient forces when the wind

speed increases and it usually delays the static stall behaviour (stall by design) [18]. The



2.1 Turbine 58

associated time constant is in the order of the time for the relative wind to traverse the

blade chord. For large wind turbines, the associated time scale is about 0.2 sec at the

blade root to 0.01 sec at the blade tip. Dynamical inflow relates to the flow field dynam-

ics due to turbulence or changes in the turbine operation (rotational speed or blade pitch

angle). It can result in larger transients turbine loads [18]. The associated time constant

is in the order of 2R/vw,av. E.g. for a large wind turbine with blade length R = 40 [m]

and average wind speed vw,av = 15 [m/s], the time constant is in the order of 5.33 [s]. It

has been suggested in [104] that dynamic inflow transients occur ‘in the good direction’,

e.g. when the pitch angle increases the turbine torque first decreases excessively before

stabilising to its new operating value and vice versa.

Dynamical Cp models are not considered in this work because dynamic stall and dy-

namical inflow are more relevant for turbine efficiency or fatigue studies. For power

system stability studies, dynamical stall is a relatively fast phenomenon. Neglecting it

means that overshoots may be underestimated, however the overall dynamical behaviour

of the turbine-generator would not change significantly. For the dynamical inflow phe-

nomenon, the result in [104] suggests it is more conservative not to consider it. More

detailed validation is needed for the relevance and suitability of the proposed dynamical

models for power system stability studies, however this is out of the scope of the present

work.

2.1.4 Parameters data

In general, Cp curves are provided by manufacturers from field testing [18]. For academic

purpose, numerical approximations can be used [22]. An example of generic expression

for the performance coefficient is [22, 108]:

Cp(λ, β) = c1

(
c2

λ + c8β
− c2c9

β3 + 1
−c3β−c4β

c5−c6

)
exp

( −c7

λ + c8β
+

c7c9

β3 + 1

)
+ c10λ

(2.2)

where β [deg] is the pitch angle and λ the tip speed ratio (ratio between the speed at the

tip of the blade and average wind speed):

λ =
ωtR

vw

(2.3)
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In (2.3) ωt [rad/s] is the turbine speed, R [m] is the blade length, and vw [m/s] is the

average wind speed. Parameters from different references are given in Table 2.4.

Table 2.4: Cp curves parameters from different references.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Heier [22] 0.5 116 0.4 0 0 5 21 0.08 0.035 0
Matlab [108] 0.5176 116 0.4 0 0 5 21 0.08 0.035 0.0068
Sl01 [61] 0.22 116 0.4 0 0 5 12.5 0.08 0.035 0
Sl03-CS [48] 0.44 125 0 0 0 6.94 16.5 0 −0.002 0
Sl03-VS [48] 0.73 151 0.58 0.002 2.14 13.2 18.4 −0.02 −0.003 0

CS = constant speed, VS = variable speed

The typical shape of Cp curves can be observed in Fig. 2.1, which shows the curves for

the parameters of Table 2.4. Heier [22], Matlab [108] and Slootweg01 [61] give similar

Cp curves, while Sl03-CS and Sl03-VS [48] describe different types of turbine. The latter

curve approximates the performance of the GE 1.5 and 3.6 MW DFIG [48, 51].

The maximum performance Cpmax is reached when the blade pitch angle β is zero.

The tip-speed ratio at which this occurs is the optimal tip-speed ratio λopt. Table 2.5

gives Cpmax and λopt for the Cp curves of Table 2.4. In subrated conditions (when power

produced is less than rated power), variable speed wind turbines are controlled so that their

operating point on the Cp curve stays around Cpmax. This is achieved by maintaining the

tip speed ratio at λopt by adjusting the rotor speed appropriately as the wind speed changes.

Table 2.5: Maximum Cp and corresponding optimal λ

Cpmax λopt

Heier [22] 0.411 7.954
Matlab [108] 0.48 8.1
Sl01 [61] 0.4382 6.325
Sl03-CS [48] 0.4906 8.7622
Sl03-VS [48] 0.4412 7.2064

For a DFIG operating initially at Cpmax at a given rotor speed, if the wind speed

increases suddenly (wind gust), the tip speed ratio decreases and the operating point on

the Cp curve falls in the positive slope region. Similarly for a DFIG operating initially at

Cpmax at a given wind speed, if the rotor speed increases suddenly (e.g. due to a fault on
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Figure 2.1: Cp curves as function of tip speed ratio with pitch angle (β) as parameter

the network), the tip speed ratio increases and the operating point on the Cp curve falls

in the negative slope region. In both cases, the performance coefficient and hence the

captured and produced power by the DFIG is less than optimal right after a disturbance.

In rated regime, speed control can be done by stall regulation or by variable pitch

regulation. In stall control, the operating point goes on the ‘left’ of the Cp curve, where

the blade is in stalling mode [63] the wind flow becomes partially detached from the blade

surface. In pitch regulation the operating point stays on the ‘right’ portion of Cp curve

where the wind flow is laminar i.e. stays attached to the blade surface. Stall control

does not require pitching mechanism however requires better overtorque capability and

corresponding rating adjustment of the generator [27].

In practice, dimensions of the turbine are also given by the manufacturer. For generic

studies where numerical approximations of Cp curves are used, the parameters of the

turbine can be computed from (2.1). This is done by considering the operating point

where the turbine goes from subrated to rated conditions. At this operating point the

turbine produces rated power Prated, the wind speed is the rated wind speed vw,rated and
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the coefficient performance is at its maximum Cp,max, hence:

R =
√

Prated[W]/(0.5ρπCpmaxv3
wrated) (2.4)

From (2.4), for a given Prated and vw,rated, the higher Cp,max the lower R. This is as

expected since the higher the performance, the more efficient the turbine and hence the

smaller the required swiped area to capture a given level of wind power. Table 2.6 shows

indeed that for a given Prated and vw,rated the rotor radius R obtained with the ‘Matlab’

Cp curve (Cp,max = 0.48) is the smallest.

At rated wind speed, the tip speed ratio relationship in (2.3) gives the turbine rated

speed ωt,rated [rad/s] and the blade rated tip speed ωt,tip [m/s] as:

ωt,rated = (vw,ratedλopt)/R (2.5)

ωtip,rated = ωt,ratedR = vw,ratedλopt (2.6)

From (2.6), the blade rated tip speed depends only on λopt for a given vw,rated. To

avoid excessive rotational blade tip speed, the blade design should ensure that the optimal

tip speed ratio λopt is not too high. This is shown in Table 2.6, where the blade rated tip

speed is the lowest for the ‘Sl01’ Cp curve (λopt = 6.325).

Table 2.6: Turbine parameters obtained for different Cp curves

Prated vw,rated Cp,max R λopt ωtip,rated ωt,rated nt,rated

Cp curve [MW] [m/s] [m] [m/s] [rad/s] [rpm]

Sl01 [61]
3 12 0.4382 45.38 6.325 75.90 1.67 15.97
5 12 0.4382 58.58 6.325 75.90 1.30 12.37

Heier [22]
3 12 0.411 46.86 7.954 95.45 2.04 19.45
5 12 0.411 60.49 7.954 95.45 1.58 15.07

Matlab [108]
3 12 0.48 43.36 8.1 97.20 2.24 21.41
5 12 0.48 55.97 8.1 97.20 1.74 16.58

To summarize the above observations, Cp,max should be made as high as possible to

keep the rotor blade length within reasonable limit, and λopt (λ at which Cp,max is reached)

should be made as low as possible so that the blade tip speed stays within acceptable limit.

Cp,max and λopt are design parameters (they depend on the airfoil shape, material, etc).

In the above procedure, turbine dimensions are calculated from a theoretical Cp curve.

In practice, the process is reversed. The rated wind speed vw,rated is decided from statistics
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collected at the wind farm site. Turbine dimensions Prated and R are determined from

design criteria and technology. The Cp curve is subsequently obtained by field testing.

Due to confidentiality reasons, these parameters are rarely fully disclosed. In this work,

where the focus is on generic modelling, the parameters are calculated as in (2.4).

2.2 Drive train

The drive train of the wind turbine can be represented as a series of rotating disks con-

nected by shafts [18]. If the disks are rigid and the shafts are massless the system dif-

ferential equations are obtained by writing Newton’s motion equation for each disk an-

gular speed. If the disks have some elasticity and the shafts have some distributed mass,

wave equations with their continuity boundary conditions have to be established for each

body [109].

From a mechanical viewpoint, drive train shafts are subject to twisting stresses.

Hence, for the drive train designer a detailed model is needed in order to evaluate these

stresses and determine the shaft strength required. From an electrical aspect, reduced

order models can be used as long as electrical variable variations caused by drive-train

dynamics are correctly represented.

In power system stability studies, it is reasonable to consider the turbine, gearbox and

generator as rigid disks and shafts as massless torsional springs [18]. These assumptions

are acceptable when comparing the components relatively. The turbine, generator and

gearbox have negligible twisting compared to the shafts. The shafts have negligible mass

compared to the turbine and generator.

2.2.1 Terminology

For easier discussion, some concepts that are used in the description of rotating mechani-

cal systems are briefly defined here, for more details see [109].

Area moment of inertia Ja: Also known as the second moment of area, Ja is a property

of shape indicating its resistance to bending and deflection. It is defined as Ja =
∫

r2dA

[m4] where r is the perpendicular distance of the area dA from the rotation axis.
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Mass moment of inertia J: Also known as angular mass, J describes the mass distri-

bution of a rigid body rotating about an axis. It is defined as J =
∫

r2dm [kg m2] where

r is the perpendicular distance of the mass dm from the rotation axis.

Torsional Stiffness k: For torsional systems represented by equivalent spring-mass

models, the constant k called stiffness or spring constant relates torque to angular dis-

placement. It has units of [Nm/rad] and is defined as k = Tsh/θtw = GJa/l where Tsh

[Nm] is the shaft torque, θtw [rad] the twist angle, G [N/m2] the shaft material modulus

of rigidity (material constant), l [m] the shaft length, and Ja [m4] the area moment of

inertia. The stiffness of a shaft is its resistance to twisting when experiencing a torque,

i.e. the amount of torque Tsh required to twist the shaft by an angle θtw. It depends on the

material and is lower for shafts that are longer with smaller cross-section.

A parallel or series connection of n springs with stiffness k1, k2,..., kn can be reduced

to an equivalent spring with stiffness keq,par = k1 + k2 + . . . + kn or k−1
eq,ser = k−1

1 +

k−1
2 + . . . + k−1

n respectively. In a parallel connection the equivalent stiffness is larger

than the initial largest stiffness. Conversely, in a series connection the equivalent stiffness

is smaller than the initial smallest stiffness.

Geared systems: For geared system, the low speed angular mass JLS and stiffness kLS

can be referred to the high speed side by establishing kinetic and potential energy balance

respectively [109]. The result gives J ′LS = JLS/n2
gb and k′LS = kLS/n2

gb where J ′LS and

k′LS are the low speed parameters referred to the high speed side, ngb is the gearbox ratio.

From the above definitions, it is seen that stiffness depends on material and geometry

of the shaft. For geared system the impact of the parameter ngb (gear ratio) is the highest.

A large ngb gives a low (inversely proportional to ngb squared) equivalent stiffness when

viewed from the high speed side (referred value). This is the reason why WECS drive

train with gearbox is much more flexible than conventional drive trains.

2.2.2 Modelling alternatives

Fig. 2.2 shows a schematic representation of the DFIG drive train. A natural translation

of the physical system into mathematical equations would be a 5th order model with

three masses (turbine, gearbox and generator) and two shafts (low-speed and high-speed).
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Depending on the point of interest and system characteristics, simplified models may be

used as shown in Table 2.7.

Figure 2.2: Schematic representation of the drive train

Table 2.7: Drive train model alternatives

3-mass 2-shaft - LS and HS shaft are flexible (2 DE)
(5th order) - dω/dt is different for each mass (3 DE)

2-mass 1-shaft - Equivalent shaft is flexible (1 DE)
(3rd order) - dω/dt is different for each mass (2 DE)

1-mass no-shaft - All shafts are rigid
(1st order) - dω/dt is same for each mass (1 DE)

DE = differential equation, ω = rotational speed
LS = low-speed, HS = high-speed

In Fig. 2.2 the turbine inertia represents the lumped-mass of blades and hub. For

power system studies this is satisfactory (i.e. there is no need to represent the blades and

hub with additional rotating masses and shafts) because the modes associated with the

blades and hub are either well damped or out of the frequency range of interest [71].

In Table 2.7 the 3rd order model can be obtained from the 5th order model in two

ways. In the first way, the gearbox inertia is ignored with respect to turbine and generator

inertia, and the two shafts in series are replaced by an equivalent shaft [20]. In the second

way, the HS shaft is considered as rigid compared to the LS shaft, hence the gearbox and

generator inertia are lumped together and the equivalent shaft is the LS shaft [106].

The first approach can be justified by the definition of the moment of inertia. If the

gearbox dimension and mass are much smaller than those of the turbine and generator,
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it can be considered as having negligible area and mass moment of inertia. The second

approach can be justified by comparing LS and HS shaft stiffness kLS and kHS . For

consistent comparison they have to be referred to the same speed side. For example kLS

referred to the high speed side is k′LS = kLS/n2
gb. As the gearbox ratio ngb is at least 50,

the HS shaft can be considered as relatively rigid compared to the LS shaft.

Whichever approach, the two-mass model accounts for the fact that turbine and gen-

erator may oscillate with respect to each other. In both approaches the equivalent stiff-

ness is mainly determined by the low speed shaft since the first approximation gives

keq = 1/(k′−1
LS + k−1

HS) ≈ k′LS and the second keq = k′LS .

In power system stability studies, the two most common models for the drive train are

the lumped-mass and two-mass models. The two-mass model is recommended because it

correctly represents the elasticity (or flexibility, or softness) of the shafts [50, 72]. How-

ever as reviewed in the previous chapter, the lumped mass-mass model is still frequently

used.

The discrepancy between the two models has been observed experimentally and with

simulation studies. From the experimental study (islanding of a wind farm in West Den-

mark), it was concluded that the lumped-mass model may be too optimistic for short-

term voltage stability studies [20]. Measurements showed that the lumped-mass model

underpredicted the reactive power requirement; and overpredicted the speed of voltage

restoration. Similar results were obtained with simulation studies, which showed that for

the SCIG, the lumped mass model can be over-optimistic as it can stand a much longer

fault (critical clearing time) [72, 73].

The reason of the better behaviour of the lumped-mass model for the SCIG is its

slower acceleration. The slower acceleration is due to two facts: higher mass and no shaft

potential energy. For the two-mass model, during fault as the electrical torque drops the

stored potential energy of the shaft is released further accelerating the generator [72, 73].

Hence the SCIG goes beyond its pull-out torque more quickly. For the DFIG, although

there is no problem of pull-out torque for a well defined torque-speed control charac-

teristic (see Subsection 2.4.1), the two-mass model is still important for control tuning

and coordination. For the DFIG, the electrical torque setpoint is determined from the ro-
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tor speed, hence the way in which it accelerates should be correctly represented for an

accurate evaluation of the control performance.

Below, a simple illustration is given to show that for wind generators with gearbox,

the rotating bodies do not behave as a single equivalent mass as opposed to the situation

of conventional synchronous machines. The observation is made by comparing the two-

mass two-spring system and its equivalent one-mass one-spring system in Fig. 2.3.

Figure 2.3: Two-mass two-spring system (left) and equivalent one-mass one-spring system. θe,
ke = electrical twist angle and stiffness (external network); θtw, ksh = mechanical twist angle and
stiffness (drive train); ωr, Hg = generator speed and inertia; ωt, Ht = turbine speed and inertia.

The fixed end in the figure represents the infinite bus, ke the equivalent stiffness of

the electrical network and ksh the equivalent stiffness of the generator drive train. The

dynamics of the two-mass system with no damping are given by:

dθe/dt = ωr (2.7)

dωr/dt = (0.5/Hg)(kshθtw − keθe) (2.8)

dθtw/dt = ωt − ωr (2.9)

dωt/dt = (0.5/Ht)(−kshθtw) (2.10)

The dynamics of the lumped-mass model with no damping are described by:

dθe/dt = ωr (2.11)

dωr/dt = (0.5/Heq)(−keθe) (2.12)

where Heq is the equivalent inertia. Substituting (2.11) in (2.12) gives θ̈e +

(ke/(2Heq))θe = 0 which has as solution θ = C sin((2πf)t + Φ) where C is the os-

cillation amplitude, f = (1/(2π))
√

ke/(2Heq) the oscillation frequency, and Φ the phase

angle [109]. Table 2.8 shows the oscillation frequencies for different values of stiffness

and inertia.
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Table 2.8: Oscillation frequencies of the mass-spring systems in Fig. 2.3

2-mass model: Hg = 0.5, Ht = 5 [s]
ke ksh f1 [Hz] f2 [Hz]
20 200 0.206 2.46
20 20 0.157 1.02
20 0.2 0.022 0.715

1-mass model with Heq = Hg + Ht

ke = 20 f = 0.215

When ke ¿ ksh the lower frequency mode (f1) can be approximated by the one-mass

model with Heq = Ht + Hg. When ke ≈ ksh or ke À ksh, the oscillatory dynamics of the

two models are completely different.

For conventional power plants with synchronous generators the equivalent electrical

stiffness ke (between the generator and infinite bus) is much lower than the mechanical

stiffness ksh (between the generator and turbine) [71]. Hence the drive-train can be ap-

proximated by the equivalent lumped-mass model. For wind power plants with a gearbox

in the drive-train, the shaft is much slender, resulting in a mechanical stiffness ksh of

same order or lower than the equivalent electrical stiffness ke [71, 73]. Hence the two-

mass model should be used to preserve correctly the oscillatory behaviour.

2.2.3 Model for power system studies

In the previous subsection the reasons for preferring the two-mass model for the drive train

instead of the lumped-mass model were given. In this subsection the mathematical model

is presented and an interpretation is given by means of an electro-mechanical analogy.

The dynamical equations of the two-mass model are obtained from Newton’s equa-

tion of motion for each mass (rotational speed) and shaft (torsion or twist angle) [109].

In actual units, variables and parameters have to be referred to a same speed side. For

power system studies, a convenient choice is the high speed side (generator) since one is

interested in the electrical variables. With turbine side variables referred to the generator
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side, the drive-train dynamical equations are:

J ′t
d

dt
ω′t = T ′

t − Tsh (2.13)

Jg
d

dt
ωr = Tsh − Te (2.14)

Tsh = keqθtw,eq + ceq
d

dt
θtw,eq (2.15)

d

dt
θtw,eq = ω′t − ωr (2.16)

where the apostrophe indicates referred variables; J ′t, Jg are the turbine and generator in-

ertia; ω′t, ωr the turbine and generator speed; keq, ceq the stiffness and damping coefficient

of the equivalent shaft; θtw,eq the shaft torsional angle; T ′
t , Te the turbine and generator

torque.

The understanding of the above model may be facilitated with an electromechanical

analogy. Electromechanical analogies were used before the development of digital com-

puters to simulate mechanical systems [109] (p. 413). Presently, they can also be useful

for implementing the drive train model in software packages like EMTP [72].

In such framework, complex mechanical systems such as gear trains or automobile

suspensions are reduced to a spring-mass-damper equivalent circuit, and their dynami-

cal behaviour are analysed by implementing the equivalent electrical circuit. There are

two types of analogy. If the mechanical force is set analogous to electrical voltage (hence

velocity analogous to electrical current), the analogy is referred to as ‘force-voltage’ anal-

ogy. If the mechanical force is set analogous to electrical current (hence velocity anal-

ogous to electrical voltage) the analogy is referred to as ‘force-current’ analogy. The

force-current analogy is often preferred because the equivalent electrical structure ‘looks’

like the original mechanical system [109].

Figure 2.4 and Table 2.9 show the force-current equivalence between a two-speed

rotational system and two-voltage electrical circuit. It is seen that speed change is deter-

mined by torque unbalance in a similar way as voltage change is determined by current

unbalance. Dampers and resistances dissipate energy, while inertia, springs and capaci-

tances, inductances store it.

In power system studies, it is often more convenient to express all variables and pa-

rameters in per unit (per unit values are normalised values with respect to some chosen
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Figure 2.4: Force-current analogy between rotational and electrical systems.

Table 2.9: Force-current analogy between rotational and electrical systems

Rotational variables Electrical variables
ω rotational speed [rad/s] V voltage [V]
T torque [Nm] I current [A]
c−1 damping−1 [Nm.s/el.rad]−1 R resistance [Ω]
k−1 stiffness−1 [Nm/el.rad]−1 L inductance [H]
J angular mass [kg m2] C capacitance [F]
θtw twist angle [el.rad] ψ flux [wb-turns]

LS referred to HS LV referred to HV
ω′t = ngbωt V ′

LV = nVLV

T ′m = Tm/ngb I ′in = Iin/n

c′−1
LS = n2

gbc
′−1
LS R′

LV = n2RLV

k′−1
LS = n2

gbk
′−1
LS L′LV = n2LLV

J ′t = Jt/n2
gb C ′

LV = CLV /n2

θ′twLS = ngbθtwLS ψ′LV = nψLV

c−1
eq = c′−1

LS + c−1
HS Req = R′

1 + R2

k−1
eq = k′−1

LS + k−1
HS Leq = L′1 + L2

J ′t
d
dtω

′
t = T ′m − Teq C ′

LV
d
dtV

′
LV = I ′in − Ieq

Jg
d
dtωr = Teq − Te CHV

d
dtVHV = Ieq − Iout

Teq = keqθtw,eq + ceq
d
dtθtw,eq Ieq = 1

Leq
ψeq + 1

Req

d
dtψeq

d
dtθtw,eq = ω′t − ωr

d
dtψeq = V ′

1 − V2

LS = low speed, HS = high speed LV = low voltage, HV = high voltage

base). The conversion of the drive train equations into per unit can be done in two steps:

(1) each variable in actual unit is replaced by xact = xpuxB (actual value = per unit value

times base value); (2) common variables are simplified on the left and right hand sides of
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the equations. The turbine base speed and base torque are:

ωtB = ωrB/ngb (2.17)

TtB = TeBngb (2.18)

where ngb is the gearbox ratio, ωrB = ωel/npp and TeB = Prated/ωrB are the generator

mechanical base speed and generator electrical base torque (ωel = 2π50 is the electrical

speed, npp is the generator pole pairs number). Using the definitions in Table 2.9, the

differential equation (2.13) for ω′t can be rewritten as:

{ Jt

n2
gb

} d

dt
{ωtngb} = { Tt

ngb

} − Tsh (2.19)

Jt

n2
gb

d

dt
{ωt,puωtB}ngb =

{Tt,puTtB}
ngb

− {Tsh,puTeB} (2.20)

Jt

n2
gb

ωrB
d

dt
ωt,pu = TeB(Tt,pu − Tsh,pu) (2.21)

If the turbine inertia constant is defined as:

Ht =
1

2

Jt

n2
gb

ωrB

TeB

(2.22)

the differential equation of the turbine speed in per unit becomes:

2Ht
d

dt
ωt,pu = Tt,pu − Tsh,pu (2.23)

If the generator rated power is chosen as the generator base power i.e. SB = Prated, the

electrical base torque is TeB = SB/ωrB and other equivalent definitions of Ht are:

2Ht =
Jt

n2
gb

ωrB

TeB

= J ′t
ωrB

TeB

= J ′t
ω2

rB

SB

=
Jt

n2
gb

ω2
rB

SB

= Jt
ω2

tB

SB

(2.24)

Similarly the differential equation (2.14) for the rotor speed ωr and the equivalent defini-

tions of the generator inertia Hg are:

2Hg
d

dt
ωr,pu = Tsh,pu − Te,pu (2.25)

2Hg = Jg
ωrB

TeB

= Jg
ω2

rB

SB

(2.26)

From the units of J [kg m2], ωr [rad/s] and S [VA], it is seen that H is in [s].
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Equation (2.15) for the shaft torque Tsh can be written as:

{Tsh,puTeB} = {keq,pukeqB} θtw,eq + {ceq,puceqB} d

dt
θtw,eq (2.27)

If the base stiffness is defined as keqB = TeB/(1 el.rad) i.e. base torque per electrical

radian, and the base damping coefficient as ceqB = TeB/(1 el.rad / 1 sec) i.e. base torque

per electrical radian per second, (2.27) becomes:

Te,pu = k∗eq,puθtw,eq + c∗eq,pu

d

dt
θtw,eq (2.28)

where k∗eq,pu = keq,pu/(1 el.rad) is the the per unit stiffness per electrical radian and

c∗eq,pu = ceq,pu/(1 el.rad / 1 sec) is the per unit damping per electrical radian per sec-

ond. It is noted that in (2.28) the equivalent twist angle θtw,eq is not converted in per unit

as the interpretation of angles is easier in actual units (radians).

In the remainder of this text, equations are expressed in per unit unless otherwise

specified. Hence the subscript ‘pu’ and ‘eq’ and superscript ‘∗’ are dropped, and the drive

train equations can be summarized as:

d

dt
ωt =

1

2Ht

(Tt − Tsh) (2.29)

d

dt
ωr =

1

2Hg

(Tsh − Te) (2.30)

Tsh = kθtw + c
d

dt
θtw (2.31)

d

dt
θtw = ωelB(ωt − ωr) (2.32)

with k in [pu/el.rad], c in [pu.s/el.rad]; Hg, Ht, t are in [s]; ωelB in [el.rad/s], θtw in [rad].

2.2.4 Parameters data

Table 2.10 gives typical values of stiffness and inertia for modern wind plants [20]. Fig.

2.5 [71] shows a comparison of typical drive train parameters for different generation

schemes.

Although the data in Fig. 2.5 may be outdated for wind plants (1982), parameters for

conventional plants can still be consulted as the technology has changed to a lesser extent.

Considering the updated values of Table 2.10, it is seen that wind farms have indeed more

flexible drive trains.



2.2 Drive train 72

Table 2.10: Typical range for drive train parameters

Parameter Typical range
Generator inertia Hg [s] 0.4∼0.8
Wind turbine inertia Ht [s] 2∼6
High speed shaft stiffness kHS [pu/el.rad] 2∼4
Low speed shaft stiffness kLS [pu/el.rad] 0.35∼0.7
Equivalent shaft stiffness keq [pu/el.rad] 0.3∼0.6

Figure 2.5: Typical drive train parameters for different power generation schemes (H in
[s], k in [pu/el.rad])

An additional parameter that needs to be specified is the gearbox ratio. Although it

does not appear in the model (2.29)-(2.32), it is required for per unit conversion as shown

in (2.17)-(2.18). The gearbox ratio ngb is obtained as the rotor rated speed divided by the

turbine rated speed:

ngb =
ωr,rated

ωt,rated

(2.33)

The turbine rated speed ωt,rated is given in (2.5). The generator rated mechanical speed

ωr,rated can be chosen arbitrarily [27]. The higher ωr,rated, the higher the gearbox ratio, as

shown in Table 2.11.

Choosing a higher rated rotor speed ωr,rated may be desirable as power optimization

is done over a wider range of rotor speed. The effect of different ωr,rated on the DFIG

steady-state characteristics is discussed later in Chapter 3.

From Table 2.11, the gearbox ratio depends also on the number of generator pole

pairs npp. The higher the number of generator poles, the lower the gearbox ratio since the

generator mechanical speed is lower.



2.3 Induction generator 73

Table 2.11: Gearbox ratio for different rated generator speed

Prated vw,rated R ωt,rated ωr,rated ngb

Cp curve [MW] [m/s] [m] [rad/s] [rad/s]

Sl01 [61]

3 12 45.38 1.67 1.0 (ωel/npp) 93.91
3 12 45.38 1.67 1.2 (ωel/npp) 112.67
5 12 58.58 1.30 1.0 (ωel/npp) 121.23
5 12 58.58 1.30 1.2 (ωel/npp) 145.48

ωel = electrical base speed = 2π50 [rad/s], npp = gen. pole pair nb = 2

2.3 Induction generator

As explained in the literature review of the previous chapter, the modelling of the induc-

tion generator consists in expressing the machine equations in a two axis synchronously

rotating frame, referred to as the dq-frame. The dq-model is obtained from the three-

phase voltage equations. The derivation is presented in detail below so that parameters,

conventions and variables used in this work are unambiguously defined.

Magnetic saturation, iron losses (hysteresis and eddy currents), slot effects, and un-

balanced conditions are not considered (see Subsection 1.2.1). These assumptions keep

the model simple (only positive sequence components are simulated) and are appropriate

for power system dynamic studies with three-phase disturbances.

2.3.1 Model in abc-frame

The three-phase differential equations for the electrical dynamics of the induction gener-

ator are obtained by applying Kirchoff voltage law to the stator and rotor circuits of the

machine. The direction for positive current and induced voltage polarity used in this text,

is shown in Fig. 2.6. The generator convention is used as positive current flows out of

the coil. The voltage balance equation for the circuit in Fig. 2.6 is v = −pψ − Ri where

p = d
dt

. The minus sign of the derivative term is due to Lenz’s law, which states that the

polarity of the voltage induced by a changing flux is so that it results in a current that

opposes the change [110]. It is noted that for induction motors, the direction for positive

current in Fig. 2.6 is reversed and the voltage equation is v = pψ + Ri.

For the induction generator, whose stator and rotor circuits are shown in Fig. 2.7, the
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Figure 2.6: Convention for direction of positive current.

voltage equations are:



vas

vbs

vcs


= −p




ψas

ψbs

ψcs


−Rs




ias

ibs
ics


 ,




var

vbr

vcr


= −p




ψar

ψbr

ψcr


−Rr




iar

ibr
icr


 (2.34)

where vas, vbs, vcs are the stator phase voltages; ias, ibs, ics the stator phase currents; ψas,

ψbs, ψcs the flux linkages; Rs the stator resistance. Similar definitions are used for the

Figure 2.7: Induction machine stator and rotor circuits.

rotor. Flux linkages result from currents flowing through winding inductances:



ψas

ψbs

ψcs


=




Laas Labs Lacs

Lbas Lbbs Lbcs

Lcas Lcbs Lccs







ias

ibs
ics


 +



Lasar Lasbr Lascr

Lbsar Lbsbr Lbscr

Lcsar Lcsbr Lcscr







iar

ibr
icr




(2.35)


ψar

ψbr

ψcr


=




Laar Labr Lacr

Lbar Lbbr Lbcr

Lcar Lcbr Lccr







iar

ibr
icr


 +



Laras Larbs Larcs

Lbras Lbrbs Lbrcs

Lcras Lcrbs Lcrcs







ias

ibs
ics




(2.36)

where Laas, Lbbs, Lccs are stator winding self inductances; Labs, Lacs, Lbas, Lbcs, etc are

mutual inductances between stator windings; Lasar, Lasbr, Lascr, Lbsar, etc are mutual

inductances between stator and rotor windings. Similar definitions are used for the rotor.
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Assuming identical stator windings for the three phases and identical rotor windings for

the three phases:

Laas = Lbbs = Lccs = Lself,s , Laar = Lbbr = Lccr = Lself,r (2.37)

Labs = Lbas = Lacs = Lcas = Lbcs = Lcbs = Lmut,s (2.38)

Labr = Lbar = Lacr = Lcar = Lbcr = Lcbr = Lmut,r (2.39)

In the ideal case, the self inductance of a stator or rotor winding is [111]:

Lideal
self,s = µ0N

2
s

rl

g

π

4
, Lideal

self,r = µ0N
2
r

rl

g

π

4
(2.40)

where µ0 is the free space permeability, Ns and Nr the stator and rotor effective number

of turns, r the radius of the machine cross-section, l the length of the machine, and g

the airgap radial length. In practice there is also some leakage flux around a coil. Hence

the total self inductance of a winding can be written as the sum of an ideal magnetizing

inductance and a leakage inductance:

Lself,s = Lideal
self,s + Lls , Lself,r = Lideal

self,r + Llr (2.41)

The mutual inductance between two stator or between two rotor windings depends on the

angle between the windings as [111]:

Lmut,s = µ0N
2
s

rl

g

π

4
cos θss , Lmut,r = µ0N

2
r

rl

g

π

4
cos θrr (2.42)

where θss is the angle between two stator windings and θrr the angle between two rotor

windings. Since θss = θrr = 120◦:

Lmut,s = −0.5Lideal
self,s , Lmut,r = −0.5Lideal

self,r (2.43)

The mutual inductance between stator and rotor windings depends also on the angle be-

tween the two windings. As the rotor rotates, the angle is time dependent and the stator-

rotor mutual inductance is not constant. E.g. for the stator and rotor phase a windings:

Lasar = {µ0NsNr
rl

g

π

4
} cos θsr = Lsr cos θsr (2.44)

where Lsr is the peak value of the stator-rotor mutual inductance and θsr = θsr(t) is the

time dependent angle between the stator and rotor phase a windings as shown in Fig.
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2.7. Similar expressions are obtained for Lasbr, Lascr, Lbsar, etc. Considering the above

definitions and assuming that the system is balanced (ias + ibs + ics = 0), the stator flux

linkage of phase a is:

ψas = Lself,sias + Lmut,sibs + Lmut,sics + Lasariar + Lasbribr + Lascricr

= (Lself,s−Lmut,s)ias + Lmut,s(ias+ibs+ics) + Lasariar + Lasbribr + Lascricr

= (Lself,s − Lmut,s)ias + Lasariar + Lasbribr + Lascricr (2.45)

Similar expressions are obtained for the other stator and rotor phases.

In matrix form, (2.34)-(2.36) are rewritten as:

vabc,s = −pΨabc,s −Rsiabc,s (2.46)

vabc,r = −pΨabc,r −Rriabc,r (2.47)

Ψabc,s = Lssiabc,s + Lsriabc,r (2.48)

Ψabc,r = Lrriabc,r + Lrsiabc,s (2.49)

where Lss and Lrr referred to as ‘stator inductance’ and ‘rotor inductance’ are:

Lss = Lself,s − Lmut,s = Lideal
self,s + Lls − Lmut,s = 1.5 Lideal

self,s + Lls (2.50)

Lrr = Lself,r − Lmut,r = Lideal
self,r + Llr − Lmut,r = 1.5 Lideal

self,r + Llr (2.51)

and the matrices Lsr and Lrs = Lt
sr are:

Lsr = Lsr




cos θsr cos(θsr + 2π
3

) cos(θsr − 2π
3

)
cos(θsr − 2π

3
) cos θsr cos(θsr + 2π

3
)

cos(θsr + 2π
3

) cos(θsr − 2π
3

) cos θsr


 (2.52)

2.3.2 Model in dq-frame

In (2.48)-(2.49), the variables Lss and Lrr are constant while the matrices Lsr and Lrs are

time dependent. Hence, in the three phase axis frame (abc-frame) the coupling between

stator and rotor circuits is time-varying. The coupling can be made time invariant by

transforming stator and rotor three-phase variables into a common rotating two-axis frame

[111] with the transformation:

xqd0 = Tθxabc (2.53)
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Figure 2.8: Rotating dq-axis with respect to stationary stator three-axis frame.

Tθ =

√
2

3




sin θ sin(θ − 2π
3

) sin(θ + 2π
3

)
cos θ cos(θ − 2π

3
) cos(θ + 2π

3
)

1/
√

2 1/
√

2 1/
√

2


 (2.54)

where xqd0 = [xq xd x0]
′, xabc = [xa xb xc]

′, and θ is an arbitrary rotation angle. The

factor
√

2/3 makes the transformation orthogonal i.e. T−1
θ = T′

θ, which results in a

power invariant transformation (see below). The third component x0 is a dummy vari-

able added for complete degree of freedom (transformation of three variables into three

variables) [49].

The stator abc-variables are transformed into dq-variables with θ = θsd(t) where θsd

is the angle between the d-axis and stator a-axis as shown in Fig. 2.8. For rotor variables,

a relative rotational angle must be used because of the rotor rotation i.e. θ = θrd(t) =

θsd(t)− θsr(t) where θsr is the angle between the stator and rotor a-axis as shown in Fig.

2.7. For a synchronously rotating dq-frame:

dθsd/dt = ωs , dθrd/dt = ωs − ωr = sωs (2.55)

where s is the rotor slip. Fig. 2.8 shows the dq-axis with respect to the stator three-axis

frame. In this work the convention of [110] is followed i.e. the d-axis is leading the q-

axis. Applying transformations (2.54) with (2.55) to the stator voltage equations (2.46)

gives:

Tθsdvabc,s = −TθsdpΨabc,s −RsTθsdiabc,s

vqd0,s = −(
p{TθsdΨabc,s} − {pTθsd}Ψabc,s

)−Rsiqd0,s

vqd0,s = −(
pΨqd0,s − {pTθsd}Ψabc,s

)−Rsiqd0,s (2.56)
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where the term in brackets follows the product derivative rule and:

{pTθsd}Ψabc,s =

√
2

3
ωs



− sin θsd − sin(θsd − 2π

3
) − sin(θsd + 2π

3
)

− cos θsd − cos(θsd − 2π
3

) − cos(θsd + 2π
3

)
0 0 0







ψas

ψbs

ψcs




= ωs



−ψds

+ψqs

0


=




0 −ωs 0
ωs 0 0
0 0 0







ψqs

ψds

ψ0s


= MωsΨqd0,s (2.57)

Since Mωs has only off-diagonal non-zero elements, (2.57) represents the cross-coupling

between the stator dq-variables. The same procedure is applied to the rotor voltage equa-

tions in (2.47). For the stator flux linkages in (2.48) the abc-dq transformation gives:

TθsdΨabc,s = LssTθsdiabc,s + TθsdLsriabc,r

Ψqd0,s = Lssiqd0,s + {TθsdLsr} iabc,r

Ψqd0,s = Lssiqd0,s + {(3/2)LsrTθrd} iabc,r (2.58)

The same procedure is applied to the rotor flux linkage voltage in (2.49). To sum up, the

two-axis model of the induction generator is in matrix form:

vqd0,s = −pΨqd0,s + MωsΨqd0,s −Rsiqd0,s (2.59)

vqd0,r = −pΨqd0,r + MsωsΨqd0,r −Rriqd0,r (2.60)

Ψqd0,s = Lssiqd0,s + (3/2)Lsriqd0,r (2.61)

Ψqd0,r = Lrriqd0,r + (3/2)Lsriqd0,s (2.62)

Taking the d- and q-components of (2.59)-(2.62) gives:

vqs = −Rsiqs − pψqs + ωsψds (2.63)

vds = −Rsids − pψds − ωsψqs (2.64)

vqr = −Rriqr − pψqr + sωsψdr (2.65)

vdr = −Rridr − pψdr − sωsψqr (2.66)

ψqs = Lssiqs + Lmiqr (2.67)

ψds = Lssids + Lmidr (2.68)

ψqr = Lrriqr + Lmiqs (2.69)

ψdr = Lrridr + Lmids (2.70)
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where Lss, Lrr are defined in (2.50), (2.51); and Lm referred to as ‘mutual inductance’ is

defined as Lm = (3/2)Lsr.

From the above equations, the active power and electromagnetic torque of the induc-

tion generator can be obtained in terms of dq-components. The total power output is:

Ptot = v′abc,siabc,s + v′abc,riabc,r

= v′abc,sT
′
θsd

Tθsdiabc,s + v′abc,rT
′
θrd

Tθrdiabc,r

= v′qd0,siqd0,s + v′qd0,riqd0,r

= vqsiqs + vdsids + vqriqr + vdridr (2.71)

Substituting (2.63)-(2.66) in (2.71) gives:

Ptot = −Rs(i
2
qs + i2ds)−Rr(i

2
qr + i2dr)

−iqs
d

dt
ψqs − ids

d

dt
ψds − iqr

d

dt
ψqr − idr

d

dt
ψdr

+ωsψdsiqs − ωsψqsids + sωsψdriqr − sωsψqridr (2.72)

The first two terms correspond to the machine losses, the second four terms to the power

associated with flux variation, and the last four terms to the airgap power, i.e. the power

converted from mechanical to electrical form:

Pag = ωsψdsiqs − ωsψqsids + sωsψdriqr − sωsψqridr (2.73)

The electromagnetic torque Te is the airgap power divided by the mechanical speed:

ωr,mech =
ωr,el

npp

=
(1− s)ωs

npp

(2.74)

where npp is the number of pole pairs. Hence substituting (2.67)-(2.70) in Te =

Pag/ωr,mech gives:

Te = nppLm(iqsidr − idsiqr) (2.75)

Other equivalent expressions for the electrical torque may be obtained, e.g. by adding and

subtracting the term Lrridriqr in (2.75) and using (2.69)-(2.70) gives:

Te = npp(ψqridr − ψdriqr) (2.76)
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Adding and subtracting Lssiqsids in (2.75) and using (2.67)-(2.68) gives:

Te = npp(ψqsids − ψdsiqs) (2.77)

Adding and subtracting (Lss/Lss)Lmiqridr in (2.75) and using (2.67)-(2.68) gives:

Te = npp(Lm/Lss)(ψqsidr − ψdsiqr) (2.78)

Adding and subtracting (Lrr/Lrr)Lmiqsids in (2.75) and using (2.69)-(2.70) gives:

Te = npp(Lm/Lrr)(iqsψdr − idsψqr) (2.79)

Multiplying (2.75) by (LssLrr − L2
m)/(LssLrr − L2

m) and using (2.67)-(2.70) gives:

Te = nppLm/(LssLrr − L2
m)(ψqsψdr − ψdsψqr) (2.80)

The factor npp is due to the fact that (2.75)-(2.80) are expressed in actual units [Nm]. In

per unit this factor does not appear in the equation.

2.3.3 Per unit conversion

As mentioned in the previous section, a common practice for power system studies is to

express all variables and parameters in per unit (normalised value with respect to a base

value). The per unit system conveniently simplifies the computations and understanding

of the system as it allows comparison between systems with different ratings and removes

arbitrary constants [49, 112]. Examples of arbitrary constants are transformation turn

ratio, gearbox ratio, generator number of pole pairs, etc. The main task when converting

equations in per unit is to define appropriate base quantities. The procedure consists in

choosing three base quantities (usually power, voltage and some variable involving time),

then deducing the other base quantities [49, 112]. Base quantities are normally chosen so

that variables of interest are equal to one per unit under rated condition.

In wind applications, it is convenient to take the generator rated power, nominal volt-

age, and electrical synchronous speed as the chosen base values. The different base volt-

ages (on the low and high voltage sides of transformers) are related to each other with the

appropriate turn ratio. The different base speeds (on the low and high speed sides of gear-

boxes) are related to each other with the gearbox ratio. The base speeds for mechanical
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and electrical rotation are related to each other with the generator pole pair number. Table

2.12 gives the chosen and deduced base quantities for the DFIG. The quantities refer to

three-phase variables and parameters.

Table 2.12: Chosen and deduced base quantities for three-phase variables and parameters.

Chosen electrical base quantities
SB = S3ph,rated 3-phase generator rated power [VA rms]
VB = VLL,rated stator rated line-to-line rms voltage [V rms]
ωelB = ωel = 2π50 electrical base speed [el.rad/s]

Deduced electrical base quantities
IB = SB/(

√
3VB) base current [A rms]

ZB = VB/(
√

3IB) = V 2
B/SB base impedance [Ω]

RB , XB = ZB base resistance and reactance [Ω]
LB = XB/ωelB = ZB/ωelB base inductance [H]
ψB = LBIB = VB/(

√
3ωelB) base flux [wb-turns]

PB , QB = SB base active and reactive power [W], [VAr]

Deduced mechanical base quantities
ωrB = ωelB/npp base generator mechanical speed [mech.rad/s]
ωtB = ωrB/ngb base turbine speed [mech.rad/s]

Deduced electro-mechanical base quantities
TeB = SB/ωrB = 3nppψBIB base electromagnetic torque [Nm]
TtB = SB/ωtB = ngbTeB base turbine torque [Nm]

For dq-variables and parameters the choice of the base voltage is not straightforward

as the abc-dq transformation does not correspond to a physical transformer transforma-

tion. In [112], the base voltage of the 3-phase variables is also used as the base voltage for

the dq-variables. In this work, the dq-base voltage is chosen so that the dq-base current

is the rated line current. This choice follows the situation for the three-phase quantities

where the deduced base current is the actual rated line current, as shown in Table 2.13,

for both cases where the line-to-line and line-to-neutral voltage is chosen as the base volt-

age. Table 2.14 shows the chosen dq-base voltage for both cases where a power invariant

and ‘power variant’ (no factor
√

2/3 in (2.54)) abc-dq transformation is used. Table 2.15

shows the chosen and deduced base quantities for the DFIG dq-variables and parameters.

Their relationship with the three-phase base quantities is also given.
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Table 2.13: Choice of base voltage for three phase variables and parameters

VB = LL voltage VB = LN voltage
Chosen base power SB = S3ph,rated SB = S3ph,rated

Chosen base voltage VB = VLL,rated VB = VLN,rated

Since total power is Stot =
√

3VLLILL Stot = 3VLNILN

→ Deduced base current is IB = SB/(
√

3VB) = Iline IB = SB/(3VB) = Iline

LL = line-to-line, LN = line to neutral

Table 2.14: Choice of base voltage for dq-variables and parameters

Tθ = power invariant Tθ = not power invariant
Chosen base power SB = S3ph,rated SB = S3ph,rated

Chosen base voltage VBdq =
√

3VLL,rated VBdq = (2/3)
√

3VLL,rated

Since total power is Stot = VdqIdq Sdq = (3/2)VdqIdq

→ Deduced base current is IBdq = SB/(VBdq) = Iline IBdq = SB/((3/2)VBdq) = Iline

Table 2.15: Chosen and deduced base quantities for the dq-variables and parameters

Chosen dq-base quantities
SBdq = SB base power [VA]
VBdq =

√
3VLL,rated =

√
3VB base voltage [V]

Deduced dq-base quantities
IBdq = SB/VBdq = IB base current [A]
ZBdq = VBdq/IBdq = 3ZB base impedance [Ω]
RBdq, XBdq = ZBdq = 3ZB base resistance and reactance
LBdq = ZBdq/ωelB = 3LB base inductance [H]
ψBdq = LBdqIBdq = 3ψB base flux [wb-turns]
PBdq, QBdq = SBdq = SB base active and reactive power [W], [VAr]

Deduced mechanical dq-base quantities
ωrBdq = ωrB base generator mechanical speed [mech.rad/s]
ωtBdq = ωtB base turbine speed [mech.rad/s]

Deduced dq-electro-mechanical quantities
TeBdq = TeB = nppψBdqIBdq base electromagnetic torque [Nm]
TtBdq = TtB base turbine torque [Nm]
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With the defined base quantities, the conversion of the IG equations in per unit is done

by using the relationship xact = xpuxB (actual value = per unit value times base value).

E.g. the torque Te in (2.75) is rewritten as:

{Te,puTeBdq} = npp{Lm,puLBdq}
(
{iqs,puIBdq}{idr,puIBdq} − . . .

. . . {ids,puIBdq}{iqr,puIBdq}
)

Te,pu nppLBdqI
2
Bdq = npp Lm,puLBdqI

2
Bdq

(
iqs,pu idr,pu − ids,pu iqr,pu

)

Te,pu = Lm,pu(iqs,pu idr,pu − ids,pu iqr,pu) (2.81)

It is seen that in per unit the pole pair number does not appear in the torque equation.

Similarly, the voltage equation in (2.63) can be written as:

{vqs,puVBdq} = −{Rs,puRBdq} {iqs,puIBdq} − p{ψqs,puψBdq}+ . . .

. . . {ωs,puωelB}{ψds,puψBdq}
vqs,pu

√
3VB = −Rs,pu iqs,pu

√
3VB − pψqs,pu (

√
3VB/ωelB) + . . .

. . . ωs,puωelBψds,pu (
√

3VB/ωelB)

vqs,pu = −Rs,pu iqs,pu − pψqs,pu (1/ωelB) + ωs,puψds,pu (2.82)

It is seen that in per unit, there is a factor (1/ωelB) in the derivative term. This is because

the time t is in [s]. Time is not converted in per unit as the interpretation is easier in [s].

In the remainder of this text, the induction generator variables and parameters are

expressed in per unit, unless otherwise specified. Hence the subscript ‘pu’ is dropped,

and the DFIG voltage equations in per unit are summarised as:

vqs = −Rsiqs − 1

ωel

d

dt
ψqs + ωsψds (2.83)

vds = −Rsids − 1

ωel

d

dt
ψds − ωsψqs (2.84)

vqr = −Rriqr − 1

ωel

d

dt
ψqr + sωsψdr (2.85)

vdr = −Rridr − 1

ωel

d

dt
ψdr − sωsψqr (2.86)
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ψqs = Lssiqs + Lmiqr (2.87)

ψds = Lssids + Lmidr (2.88)

ψqr = Lrriqr + Lmiqs (2.89)

ψdr = Lrridr + Lmids (2.90)

Te = Lm(iqsidr − idsiqr) (2.91)

Te = (ψqridr − ψdriqr) (2.92)

Te = (ψqsids − ψdsiqs) (2.93)

Te = (Lm/Lss)(ψqsidr − ψdsiqr) (2.94)

Te = (Lm/Lrr)(iqsψdr − idsψqr) (2.95)

Te = Lm/(LssLrr − L2
m)(ψqsψdr − ψdsψqr) (2.96)

2.3.4 Model for power system studies

For power system studies it is common to represent generators with a simple equivalent

model whereby the machine is represented as a voltage source behind transient impedance

as shown in Fig. 2.9. For the synchronous generator (SG) and squirrel cage induction

generator (SCIG), the current injected to the grid is the stator current Is. For the DFIG,

the current injected to the grid is the sum of the stator current Is and grid-side converter

ac-current IGSC (to be more accurate, the current IGSC in Fig. 2.9 is in fact the grid side

converter output current passed through some filter and/or transformer).

Figure 2.9: Generators as voltage source behind transient impedance: SG and SCIG (left);
DFIG (right)

The DFIG model equations (2.63)-(2.70) can be written in terms of the variables
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shown in Fig. 2.9 with the following definitions:

e′qs = Kmrrωsψdr (2.97)

e′ds = −Kmrrωsψqr (2.98)

L′s = Lss − (L2
m/Lrr) (2.99)

Tr = Lrr/Rr (2.100)

where Kmrr = Lm/Lrr (the parameters σr = 1/Kmrr, σs = Lm/Lss and σ = L′s/Lss

are also known as leakage factors [93]). The variables e′qs and e′ds are proportional to the

rotor flux ψdr and ψqr respectively. Substituting (2.97)-(2.98) in (2.83)-(2.90) gives:

L′s
ωelB

d

dt
iqs = −R1iqs + ωsL

′
sids +

ωre
′
qs

ωs

− e′ds

ωsTr

− vqs + Kmrrvqr (2.101)

L′s
ωelB

d

dt
ids = −ωsL

′
siqs −R1ids +

e′qs

ωsTr

+
ωre

′
ds

ωs

− vds + Kmrrvdr (2.102)

1

ωsωelB

d

dt
e′qs = R2ids −

e′qs

ωsTr

+ (1− ωr

ωs

)e′ds −Kmrrvdr (2.103)

1

ωsωelB

d

dt
e′ds = −R2iqs − (1− ωr

ωs

)e′qs −
e′ds

ωsTr

+ Kmrrvqr (2.104)

iqr = −(e′ds/Xm)−Kmrriqs (2.105)

idr = (e′qs/Xm)−Kmrrids (2.106)

ψqs = −(1/ωs)e
′
ds + L′siqs (2.107)

ψds = (1/ωs)e
′
qs + L′sids (2.108)

where R1 = Rs + R2 and R2 = K2
mrrRr. To show that (2.101)-(2.108) can be rep-

resented by the equivalent model shown in Fig. 2.9, the dq-variables are interpreted

as real and imaginary parts of complex variables, e.g. E
′
s = e′qs + je′ds. Grouping

{(2.101)−(2.104)}+j{(2.102)+(2.103)} and {(2.101)+(2.104)}+j{(2.102)−(2.103)} and

writing complex variables with an overline, gives:

V s = E
′
s − Z

′
sIs − 1

ωelB

d

dt
(L′sIs + j

E
′
s

ωs

) (2.109)

V r = E
′
r −RrIr − 1

ωelB

d

dt
(j

E
′
s

ωsKmrr

) (2.110)
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where E
′
r = (s/Kmrr)E

′
s and Z

′
s = Rs + jX ′

s. For both stator and rotor circuits, the

voltage is equal to a voltage source minus a voltage drop across an impedance, mi-

nus a term that is non-zero only during transients. Grouping {(2.105)+j(2.106)} and

{(2.107)+j(2.108)} gives:

Ir = j
E
′
s

Xm

−KmrrIs (2.111)

Ψs = j
E
′
s

ωs

+ L′sIs (2.112)

The DFIG stator and rotor equivalent circuit in terms of complex variables (2.109)-

(2.112) are shown in Fig. 2.10. The rotor voltage V r is a controlled voltage source,

Figure 2.10: DFIG stator and rotor equivalent circuits

which is determined by the rotor-side converter controls (see next section). The converter

current IGSC is a controlled current source, which is determined by the grid-side converter

controls (see next section). The coupling between stator and rotor circuit is defined by the

relationship E
′
s = E

′
r(Kmrr/s). The latter expression shows the amplification factor 1/s

(Kmrr = Lm/Lrr ≈ 1) when going from rotor to stator circuit. This explains why reactive

power control is more economical to do from the rotor-side converter rather than from the

grid-side converter, as reviewed in the previous chapter (Subsection 1.2.2).

2.3.5 Parameters data

DFIG parameters are not readily available and differ between references. Table 2.16

shows a comparison in terms of ratios (it is noted that parameters of ‘Akh03’ [113] are

given for a SCIG). Parametric studies with small-signal analysis can be done to assess the

effect of parameters variation on DFIG dynamics and stability. Such investigations are

performed in the following chapters.
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Table 2.16: DFIG parameters from references

Prated, VsLL Rs [pu] Rr/Rs Lm [pu] Ls/Lm Lr/Ls Hg [s] Ht [s]
Pen96 [27] 7.5kW, 415V .0462 0.755 Xs/Rs = 61.2 1.134 Htot = 5.48
Pap97 [42] 90kW, 380V .0326 0.616 1.57 1.05 1 1.11 -
Les99 [114] 660kW, NA .0078 1.053 4.1 1.019 1.077 0.1 4.05
Slo01 [61] 2MW, NA .01 1 3 1.033 0.994 Htot = 3.64
Ak03 [113]∗ 2MW, 690V .048 0.375 3.8 1.02 1.012 0.5 2.5
Hol03 [69] 2MW, 690V .0049 1.125 3.95 1.023 1.002 Htot = 3.5
vMe03 [115] 2MW, 690V .0069 1.307 3.3 1.025 1.006 Htot = 3.52
∗ parameters given for SCIG; Htot = Ht + Hg.

2.4 Converter

The ac-dc-ac converter in the rotor circuit (Fig. 2.11) is required to produce rotor voltage

at slip frequency. Modern design use two pulse-width modulated (PWM) inverters con-

nected back-to-back via a dc-link. This configuration allows bidirectional power flows in

the rotor circuit and hence operation at both sub- and super-synchronous speed.

Figure 2.11: Ac-dc-ac converter in the rotor circuit with back-to-back PWM converters.
RSC = rotor side converter; GSC = grid side converter.

As reviewed in the previous chapter, there are several ways to control the ac-dc-ac

converter. Usually the control algorithm of the converters are formulated in a synchro-

nously rotating two-axis frame so that decoupled control can be achieved for real and

reactive power in each converter. The control objectives of the RSC and GSC have to be

coordinated so that the system is stable.
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For the active power flow control, the RSC is controlled so that maximum wind power

is extracted in subrated regime and constant torque is tracked in rated regime (the coor-

dinated action of the pitch control in rated regime achieves the overall speed control, see

Section 2.5), and the GSC is controlled so that the dc-link voltage is constant.

For the reactive power flow control, different operating strategies may be pursued

depending on the sharing of reactive power production between the DFIG stator and GSC.

For a desired level of total reactive power output (imposed by the grid), the RSC can be

controlled so that the DFIG stator produces an arbitrary portion (subject to machine limits)

while the GSC produces the rest of it. For minimum converter rating, the GSC is operated

at unity power factor and the DFIG stator delivers the total reactive power.

As described in Subsection 1.2.1, the converters can be represented as controlled volt-

age or current sources. In Fig. 2.10 showing the generator equivalent model used in this

work, the rotor-side converter is modelled as a controlled voltage source and injects an

ac-voltage at slip frequency to the DFIG rotor; the grid-side converter is modelled as a

controlled current source and injects an ac current at grid frequency to the network. This

representation of the ac-dc-ac converter follows the choice to consider in more detail the

controls of the RSC, while the dynamics of the dc-link GSC controls are assumed as ideal.

The GSC controls are not considered because they are not specific to wind driven

DFIG applications and because they influence mainly the dc-link dynamics. The latter

may be more important for fault-ride through studies, which are not in the scope of the

present work. The ways in which the GSC maintains the dc-link voltage constant and

controls the power factor of its ac-output have been treated in other applications of back-

to-back converters, see e.g. [116–119].

The RSC controls, on the other hand, are considered because they are specific to wind

driven DFIG applications (optimization of wind power capture) and because they have a

direct effect on the dynamics of the generator (since generator speed/torque and power

factor/voltage are directly controlled) and hence on the system stability.

It is also assumed that the ac-dc-ac converter is made of lossless components and the

switching dynamics are not considered (not in the frequency range of interest).
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2.4.1 Rotor-side converter

There are various ways to implement the RSC controls, as reviewed in Subsection 1.2.2.

In this work, generic PI-controllers are considered. The converter controls consist in two

decoupled loops, with each loop made of PI-controllers in cascade. The slower outer

loop achieves electrical torque or reactive power control and produces the setpoint for

the faster inner current control loop. Fig. 2.12 shows the generic control loops of the

RSC. Feedforward decoupling terms can also be included, however as shown in Chapter

5, adequate tuning of the PI-controllers removes the need of such terms.

Figure 2.12: Generic control loops of the rotor side converter. Te = electrical torque, Qs =
stator reactive power, iqr and idr = quadrature and direct component of the rotor, subscript
‘ref ’ = setpoints, Kx = proportional gains, Tx = integral times.

If terminal voltage instead of reactive power control is desired, the variables Qs,ref and

Qs in Fig. 2.12 are replaced by Vs,ref and Vs respectively. Similarly if active power instead

of electromagnetic torque control is desired, the variables Te,ref and Te are replaced by

Ptot,ref = Te,refωr and Ptot. In Fig. 2.12, the ac-voltage of the RSC is determined by

imposing a constraint on the electrical torque control and another on reactive power, i.e.:

V r = V r,ref so that 1) Te = Te,ref , 2) Qs = Qs,ref (2.113)

Since this work studies grid-connected DFIG applications, preference is given to the

control of reactive power directly (or voltage or power factor) in the d-axis. The magneti-

zation current is not explicitly controlled (see Subsection 1.2.2) as such approach makes

more sense for drive applications where voltage is provided by the network. In the q-axis,

preference is given to torque (or power) control rather than speed control. This is because
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the latter scheme requires either a mechanical torque observer or accurate measurements

of undisturbed wind speed, which are difficult to realize (see Subsection 1.2.2).

In Fig. 2.12, the reference reactive power Qs,ref is determined by the wind farm con-

trol centre, or it can be given by an outer voltage control loop. The reference electromag-

netic torque Te,ref depends on the operating regime. In subrated conditions, the electrical

torque is determined so that the resulting tip speed ratio is optimal (i.e. maximum power

is extracted from the wind). In rated condition, the torque control operates in conjunction

with the pitch control to maintain the generator speed and power at their designated level

(often the rated level). Fig. 2.13 shows examples of typical electrical torque reference as

function of rotor speed for different chosen values of rated rotor speed.

Figure 2.13: Typical reference electromagnetic torque as function of the rotor speed.

It is noted that the torque-speed curve in Fig. 2.13 is not the same as the power curves

shown in Subsection 1.1.7. The optimal torque-speed curve gives the electrical torque as

function of rotor speed. The power curve gives output power as function of wind speed.

To achieve maximum power tracking (MPT) in subrated regime and rated torque

tracking in rated regime, as shown in Fig. 2.13, the following reference torque is used:

Te,ref = Kopt ω2
r in subrated regime (ωr < ωr,rated) (2.114)

Te,ref = Te,rated in rated regime (ωr ≥ ωr,rated) (2.115)

where Kopt is a constant determined from (2.1) and (2.3) with Cp = Cp,max and λ = λopt.
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In actual unit and in per unit, Kopt is obtained as:

Kopt,act = 0.5ρπR5Cpmax / λ3
opt (2.116)

Kopt,pu = 0.5ρπR5Cpmaxω
3
tB / (λ3

optSB) (2.117)

where ωtB and SB are the turbine base speed and power (see Table 2.12).

In rated conditions, the RSC keeps the electrical torque constant at its rated level

Te,rated while the pitch control regulates the rotor speed. Hence constant power tracking

in rated regime is achieved by the action of both RSC and pitch controllers. In Fig. 2.13,

the torque reference in rated regime is shown in dotted line because it is not a steady-state

condition. For any point on the dotted part, the pitch control will act until the speed comes

back to rated level.

One may be tempted to replace the reference torque in rated regime given in (2.115) by

Te,ref = Pag,rated/ωr so that power is constant. However, this would make the load torque

Te decrease for increasing rotor speed, which would further decrease the load torque and

hence increase the rotor speed, etc. As pitch control is much slower (due to the blade

inertias), it may not be able to bring the speed back to its rated value leading to unstable

operation. In other words, if the RSC does constant power tracking instead of constant

torque tracking in rated regime, the DFIG has a pull-out torque problem as in the SCIG

and stability performance would be deteriorated. To avoid this, it is better for the RSC

to do constant torque tracking while pitch control does rated speed tracking, so that the

combined effect is rated power tracking.

The DAE of the controllers shown in Fig. 2.12 can be written as:

dΦTe

dt
= Te,err (2.118)

dΦiq

dt
= KTeTe,err +

KTe

TTe

ΦTe − iqr (2.119)

vqr = KiqKTeTe,err + Kiq
KTe

TTe

ΦTe −Kiqiqr +
Kiq

Tiq

Φiq (2.120)

dΦQs

dt
= Qs,err (2.121)

dΦid

dt
= KQsQs,err +

KQs

TQs

ΦQs − idr (2.122)

vdr = KidKQsQs,err + Kid
KQs

TQs

ΦQs −Kididr +
Kid

Tid

Φid (2.123)
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Equations (2.118)-(2.120) represent the q-axis control loop; Te,err = Te,ref − Te is the

torque error; ΦTe is the state variable of the outer controller; Φiq is the state variable of the

inner controller. Similarly, (2.121)-(2.123) represent the d-axis control loop; ΦQs and Φid

are the state variables of the outer and inner controllers; Qs,err = Qs,ref−Qs is the reactive

power error. The parameters Kiq, Kid, KTe, KQs are the controller proportional gains

(P-gains). They may be positive or negative depending on the steady state relationship

between input and output [92] (which also depends on the definition of positive current

direction). From Fig. 2.12, Kiq and Kid have units of impedance, KTe has units of speed

over voltage, and KQs has units of voltage inversed. In the following, their values are

given in per unit on machine base. The parameters Tiq, Tid, TTe, TQs are the controller

reset times or integral times (I-times) [92]. As they are time parameters, they are positive

and have units of second.

2.4.2 Grid-side converter and dc-link

As explained above, the GSC and dc-link dynamics are not considered in the present

work. The dc-voltage is assumed constant and the GSC is represented as a current source.

It is also assumed that the GSC is operated at unity power factor. Since the GSC controls

are done instantaneously, the grid-side converter ac-current is such that the active power

injected to the mains matches that of the rotor-side converter at unity power factor, i.e.:

IGSC = IGSC,ref so that 1) PGSC = Pr , 2) QGSC = 0 (2.124)

The dc-link voltage error is used to measure the imbalance. Hence by assuming in-

stantaneous rotor active power transfer, the dc-link voltage is constant and no dynamical

model is required for the dc-link capacitor. The role of the dc-link capacitor is to act as

a voltage source to the converters. For drive applications using a diode rectifier on the

rotor-side, the dynamics of the dc-link components may not be ignored because of the dc-

energy storage mechanism, bulkier dc-components, and lesser control capability [118].

For back-to-back converters however, an adequate control eliminates the need of storage

in the dc-link and ensures a practically constant dc-voltage [116–119].
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When the dc-link dynamics are neglected, the model of the GSC is simply:

PGSC = Pr (2.125)

QGSC = αQtot (2.126)

where α defines the reactive power sharing between stator and GSC. For minimum con-

verter rating, as assumed in this text, no sharing is done and α = 0, QGSC = 0,

Qs = (1 − α)Qtot = Qtot. The injected current grid-side converter current is therefore

IGSC = (PGSC + jQGSC)/V s = Pr/V s.

2.4.3 Alignment of the dq-frame

Decoupled control of the generator speed (or active power) and terminal voltage (or reac-

tive power) is achieved by formulating the control algorithm of the converter in a synchro-

nously rotating two-axis frame. The rotating frame can be aligned with any synchronously

rotating variable such as the terminal voltage or stator flux (see Subsection 1.2.1). In the

latter case, the control algorithm is similar to that of the vector control used in variable

speed drive applications (induction motors). The preference of an alignment over another

is not discussed as it is not the objective of this work. The choice of a particular align-

ment may have some effect on implementation issues but will not modify the dynamical

properties of the system. In this work, the q-axis is aligned with stator voltage and the

d-axis is leading the q-axis; hence V s = vqs + jvds and vqs = |V s|, vds = 0.

2.5 Blade pitching

In variable pitch wind turbines, the mechanical input power can be limited by increasing

the blade pitch angle. As mentioned in Subsection 1.1.7, the pitch control is activated in

rated condition (i.e. when the wind speed is sufficiently high so that the maximum power

extractable from the wind is larger than the rated power of the generator).

Coordination between the RSC and pitch controller is done whereby the rotor side

converter regulates the load torque (electrical torque) by maintaining it constant at its rated

value (defined as rated power over rated speed), while the pitch controller regulates the
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input torque (mechanical torque) by adjusting the blade pitch angle so that the mechanical

torque matches the electrical torque at desired rotor speed (the rated speed).

2.5.1 Mechanism and control

The pitching mechanism consists in the pitch controller, the actuators and the blades (in-

ertia). As reviewed in Subsection 1.2.2, the pitch controller produces the pitch angle

setpoint from the rotor speed error or power output error. When the pitch mechanism is

actuated there is a lag between the reference (setpoint) and actual value of the blade pitch

angle due to the dynamics of the actuators and blade inertias. The former are very fast (<

5 ms [65]) while the latter are relatively slow (∼ 0.5 s [63]).

Fig. 2.14 shows a generic pitch controller and actuator model [63]. The PI-controller,

Figure 2.14: Pitch controller and actuator.

with proportional gain Kωr and integral time Tωr , computes the reference pitch angle that

is required so that the rotor rotates at desired speed. The actuator is modelled as a first

order system with time constant Tβ which represents the lag due to the blade inertias. In

this simple model, the lag associated with the actuators are not represented as they are

relatively small. To limit the actuator motions and noise in command signal, a pitch rate

limiter (|dβ/dt|max) and dead zone (|dβ/dt|min) are included.

If a more detailed model is deemed necessary (e.g. for turbine design or for detailed

control algorithm development) the model proposed in [65] can be used, where the actu-

ators dynamics are modelled with a delay (represented by a Pade approximation) and the

blades dynamics with a second order system. In this work the generic model in Fig. 2.14

is used as the focus is on the overall effect of the wind generator on the power system

rather than the study of a particular control algorithm.
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In some cases, gain scheduling (non-linear control) is provided to express non-

linearities amplification of the system (at large pitch angle, a unit change in pitch an-

gle gives larger decrease in input power) [55]. When linear control gives instability in

high wind speed, the gain scheduling block adjusts the total gain of the system so that it

remains stable. Details of the gain scheduling design and implementation are in [55].

2.5.2 Model equations

The differential algebraic equations for the model in Fig. 2.14 are obtained as:

dΦωr

dt
= − 1

Tωr

Φωr +
1

Kωr

βref (2.127)

dβ

dt
=

1

Tβ

(βref − β) (2.128)

βref = (ωr,ref − ωr)Kωr + Φωr

Kωr

Tωr

(2.129)

where Φωr , Kωr , Tωr are respectively the state variable, proportional gain, and integral

time constant of the PI-controller (hence Kωr/Tωr is the integral gain); Tβ is the time

constant of the actuators; βref and ωr,ref are the pitch angle and rotor speed setpoints.

2.5.3 Parameters data

Table 2.17 shows the typical parameter values of the pitching mechanism. Control pa-

rameters are given in Chapter 5 where the tuning of the controllers and pitch activation

conditions are discussed.

Table 2.17: Pitching mechanism model parameters

NREL99 Riso03 ECN03 Cigre06
[63] [55] [65] [120]

Tβ [s] 0.5 na na 0.3∼1
|dβ/dt|max [◦/s] 10 8 4 (10 in emergency) 10
|dβ/dt|min [◦/s] 0.1 0.5 0.5 na
βmin∼βmax [◦] 3∼60 na −2.5∼90 0∼30
na = not available, |dβ/dt|max = rate limit, |dβ/dt|min = deadzone
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2.6 External network

2.6.1 Admittance matrix

In power system stability studies, the electromagnetic transients (very fast dynamics) of

the network are neglected [49] and an algebraic admittance matrix Y bus is used to repre-

sent the power system network:

Y bus =




y11 y12 y13 . . .
... . . . ...

yij . . . yii

...
... . . . ynn




(2.130)

In (2.130), n is the number of busses, yii is the sum of the admittances connected to bus

i, yij is −1 multiplied by the admittance between bus i and j [49].

In this work, transmission lines are represented by an equivalent pi-model, where the

series resistance and reactance represent the active and reactive losses over the line and

the shunt conductance and susceptance represent the line charging. Transformers are

represented by a series reactance.

For time domain studies, the operating point of the power system is found by solving

the equation:

V bus = Y
−1

busIbus (2.131)

where Ibus are the net injected current at each bus and depend on generators and loads.

For frequency domain studies (eigenvalues computation), the network is represented

by the algebraic power flow equations:

0 =
n∑

k=1

ViVkYik cos(θi − θk − αik)− Ptot,i (2.132)

0 =
n∑

k=1

ViVkYik sin(θi − θk − αik)−Qtot,i (2.133)

where Ptot,i and Qtot,i are the active and reactive power injected at bus i, the parameters

Yik, αik are the magnitude and angle of the element (i,k) of the bus admittance matrix

[121]. The variables Vi, θi are the magnitude and angle of the voltage at bus i.
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2.6.2 Interfacing between the DFIG and network

When studying the dynamics of a grid connected DFIG, all equations must be expressed

on the same per unit base and in a same rotational frame (i.e. all rotation angles must be

referred to a same reference angle). The base power of the DFIG and external system are

often different hence suitable conversion factors must be included where appropriate.

Similarly, the common reference frame (e.g. that of the slack bus synchronous ma-

chine) here referred to as DQ-frame, is different from the DFIG dq-frame. Both DQ-axis

and dq-axis frames rotate synchronously, thus the angle δ between the q- and Q-axis is

constant and the relationship between dq- and DQ-variables is

Xdq = XDQ exp(−δ) (2.134)

where Xdq = xq + jxd and XDQ = xQ + jxD.

If the synchronous dq-frame is aligned with the stator voltage, as assumed in this

work, the dq-components of the terminal voltage are vqs = |V s| [pu] and vds = 0, and

the angle between the rotating frames is δ = γVs where γVs is the DFIG terminal voltage

angle given by solving (2.131).

2.7 Dynamic model equations

The differential algebraic equations of the DFIG are summarized as follows:

L′s
ωelB

d

dt
iqs = −R1iqs + ωsL

′
sids +

ωre
′
qs

ωs

− e′ds

ωsTr

− vqs + Kmrrvqr (2.135)

L′s
ωelB

d

dt
ids = −ωsL

′
siqs −R1ids +

e′qs

ωsTr

+
ωre

′
ds

ωs

− vds + Kmrrvdr (2.136)

1

ωsωelB

d

dt
e′qs = R2ids −

e′qs

ωsTr

+ (1− ωr

ωs

)e′ds −Kmrrvdr (2.137)

1

ωsωelB

d

dt
e′ds = −R2iqs − (1− ωr

ωs

)e′qs −
e′ds

ωsTr

+ Kmrrvqr (2.138)

d

dt
ωr =

1

2Hg

(kθtw + c
d

dt
θtw − Te) (2.139)

d

dt
θtw = ωelB(ωt − ωr) (2.140)

d

dt
ωt =

1

2Ht

(Tt − kθtw − c
d

dt
θtw) (2.141)
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0 =
n∑

k=1

ViVkYik cos(θi − θk − αik)− Ptot (2.142)

0 =
n∑

k=1

ViVkYik sin(θi − θk − αik)−Qtot (2.143)

where (2.135)-(2.136) represent the stator electrical dynamics, (2.137)-(2.138) the rotor

electrical dynamics, (2.139)-(2.141) the drive-train mechanical dynamics, (2.142)-(2.143)

the interface with the external network.

In (2.135) and (2.138), the q-axis component of the rotor voltage vqr is obtained from

the DAE of the q-axis controller of the rotor side converter:

dΦTe

dt
= Te,err (2.144)

dΦiq

dt
= KTeTe,err +

KTe

TTe

ΦTe − iqr (2.145)

vqr = KiqKTeTe,err + Kiq
KTe

TTe

ΦTe −Kiqiqr +
Kiq

Tiq

Φiq (2.146)

In (2.136) and (2.137), the d-axis component of the rotor voltage vdr is obtained from the

DAE of the d-axis controller of the rotor side converter:

dΦQs

dt
= Qs,err (2.147)

dΦid

dt
= KQsQs,err +

KQs

TQs

ΦQs − idr (2.148)

vdr = KidKQsQs,err + Kid
KQs

TQs

ΦQs −Kididr +
Kid

Tid

Φid (2.149)

In (2.141) the turbine torque Tt = Pt/ωt is obtained from the turbine algebraic model:

Pt = 0.5 ρπR2Cp(λ, β)v3
w (2.150)

where the pitch angle β is zero in subrated regime and is obtained from the pitch controller

in rated regime:

dΦωr

dt
= − 1

Tωr

Φωr +
1

Kωr

βref (2.151)

dβ

dt
=

1

Tβ

(βref − β) (2.152)

βref = (ωr,ref − ωr)Kωr + Φωr

Kωr

Tωr

(2.153)



2.8 Summary 99

In (2.142)-(2.143), the output power of the DFIG are obtained by the algebraic equations:

Ptot = Ps + Pr = vqsiqs + vdsids + vqriqr + vdridr (2.154)

Qtot = Qs + QGSC = Qs = −vqsids + vdsiqs (2.155)

where the grid-side converter reactive power is zero since it is operated at unity power

factor. The rotor currents are:

iqr = −(e′ds/Xm)−Kmrriqs (2.156)

idr = (e′qs/Xm)−Kmrrids (2.157)

Numerical values of the component parameters have been given at the end of each sec-

tion. The control parameters are given in Chapter 5 where the tuning procedure of the

controllers and specification of pitch activation are discussed.

2.8 Summary

In this chapter, the wind driven DFIG model was presented. Model equations were derived

and parameters data of each component were provided.

For the turbine, dynamical models (aerodynamics of the airflow around the turbine)

are used for turbine design or specific site-turbine evaluation. For power system stability

studies, a non-linear algebraic model is used, where the mechanical input power is ob-

tained from the wind speed, pitch angle and rotor speed. A procedure has been given for

consistent dimension calculation when using numerical approximations of the Cp curve.

For the drive-train, the presence of a gearbox results in a mechanical stiffness of the

same order as the electrical stiffness (equivalent stiffness of the external power network).

In such case, the drive train does not behave as a single equivalent rotating mass. In

addition to evaluate the control performance accurately, it is important to consider the

change in rotor speed as realistically as possible. Hence the two mass-model is used.

For the induction generator, the derivation of the model equations has been presented

to define unambiguously all parameters, variables and conventions used in the present

work. For power system studies, the DFIG can be represented as a voltage source (pro-

portional to rotor flux) behind transient impedance, with a shunt controlled current source
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at the terminal representing the current from the grid-side converter. Detailed explanation

for the per unit conversion and choice of the base values have been given.

For the ac-dc-ac converter, the grid side converter controls are assumed as ideal i.e.

the dc-voltage is constant (hence dc-link dynamics are ignored) and the GSC transfers the

rotor active power instantaneously to or from the grid. It is also assumed that the GSC is

operated at unity power factor. The RSC on the other hand is modelled as a controlled

voltage source. The rotor voltage setpoints are determined by two loops of PI-controllers

in cascade regulating the electrical torque and reactive power. Switching transients are

ignored and rotor voltages are instantaneously equal to their setpoints.

For the blade pitching mechanism, the slow response speed of the pitch angle to a

change in its setpoint is represented by a first order system. The setpoint of the blade

pitch angle is determined by a PI-controller regulating the rotor speed.

The ac-dc-ac converter and pitch control have to be coordinated. In subrated regime,

the pitch control is inactive and the rotor side converter ensures maximum power tracking

and constant reactive power (or power factor or terminal voltage). In rated conditions,

the RSC maintains a constant electrical torque and reactive power, while the pitch control

ensures that the rotor speed stays at its rated value. The combined effect keeps the power

output at rated level. At each instant, the grid side converter maintains a constant dc-link

voltage at unity power factor (for minimum converter rating).
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Chapter 3

Analysis: Steady-state behaviour

In the present chapter, the analysis of the DFIG behaviour is started by looking at the

steady-state operating characteristics of the machine. Comparison is made with the squir-

rel cage induction generator (SCIG) to show that the non-zero rotor voltage of the DFIG

results in completely different steady-state characteristics with controllable output power

(both active and reactive). The initialisation procedure, which is the first step in both

linear small-signal and non-linear large disturbance studies, is also discussed.

3.1 Steady-state equations

The steady state operating points of the induction generator can be obtained from the

machine voltage equations (2.83)-(2.90) with all time derivatives equal to zero:

vqs = −Rsiqs + ωs(Lssids + Lmidr) (3.1)

vds = −Rsids − ωs(Lssiqs + Lmiqr) (3.2)

vqr = −Rriqr + sωs(Lrridr + Lmids) (3.3)

vdr = −Rridr − sωs(Lrriqr + Lmiqs) (3.4)

For given stator voltage (vqs, vds), rotor voltage (vqr, vdr) and slip (s), (3.1)-(3.4) is a

system of four equations four unknowns and can be solved for the stator and rotor current

(iqs, ids, iqr, idr). Hence, if stator and rotor voltage are known, the outputs such as torque
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and power can be obtained as function of the slip s or rotor speed ωr = (1− s)ωs as:

Te = Lm(iqsidr − idsiqr) (3.5)

Ps = vqsiqs + vdsids (3.6)

Pr = vqriqr + vdridr (3.7)

Qs = −vqsids + vdsiqs (3.8)

Qr = −vqridr + vdriqr (3.9)

Fig. 3.1 shows the doubly-fed and squirrel cage induction generators along with their

power flows. The outputs of interest for the present analysis are the total active power

output Ptot and the stator reactive power output Qs. Ptot indicates the total useful power

production that can be expected in the steady-state. Qs indicates the compensation re-

quired from the DFIG grid-side converter or from the SCIG compensation device to meet

the requirements on Qtot (e.g. the grid operator may impose Qtot to be zero or within a

certain range for acceptable power factor operation).

Figure 3.1: Power flows of grid connected doubly-fed induction generator (top) and squir-
rel cage induction generator (bottom).

In the following, the familiar steady-state characteristics of the SCIG are briefly re-

called so that comparison can be made with the DFIG afterwards.
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3.2 Squirrel cage induction generator

For the SCIG, the rotor voltage is zero (vqr = vdr = 0). Hence assuming that the terminal

voltage is at nominal level (vqs = 1, vds = 0), the system (3.1)-(3.4) can be solved for the

machine currents over a chosen range of rotor speed (e.g. ωr = 0 to 2 pu, i.e. s = +1

to −1). The steady-state outputs can then be obtained with (3.5)-(3.9). The results1 are

shown in Fig. 3.2 and Fig. 3.3.

Figure 3.2: SCIG steady-state operating points as function of rotor speed under nominal
terminal voltage: torque and powers (left), current magnitudes (right).

Figure 3.3: Zoomed view of Fig. 3.2.

1The figures were obtained with the parameters of the DFIG given in the Appendix. It is noted that these
parameters may not be used in practice for a real SCIG as it results in very large pull-out torque and stall
current.



3.2 Squirrel cage induction generator 104

The SCIG is essentially a fixed speed device as it produces active power from 0 to 1

per unit within a very narrow slip range (s = 0-1% i.e. ωr = 1-1.01 pu) as can be seen

in Fig. 3.3. The machine produces active power only in the super-synchronous speed

region. In sub-synchronous speed, it operates as a motor. In both generator and motor

mode, the stator reactive power is negative. Hence the machine absorbs reactive power

and compensation must be provided to avoid voltage deterioration in weak systems.

An important trait of the SCIG behaviour is that torque, active power and reactive

power demand are very sensitive to rotor speed. A small change in rotor speed gives a

large change in power magnitude. Hence, if the input mechanical torque changes abruptly

by a large amount (e.g. due to sudden large wind speed change) the rotor speed has just to

change by a small amount for the electrical torque to match the mechanical torque i.e. for

the generator to reach its new steady-state operating point. This explains the larger power

fluctuations that are observed for SCIG based wind generators. As the rotor speed remain

virtually constant, disturbances in wind speed appear on the electrical outputs. For the

DFIG, as will be seen below, variability of the speed results in smoother behaviour.

The terminal voltage and mechanical power input of the SCIG can be controlled with

suitable design and components. Terminal voltage can be maintained in a satisfactory

range by using mechanically switched capacitor banks or more advanced reactive power

compensators such as static var compensators (SVC) which can provide continuously

variable susceptance [122]. Mechanical power input can be controlled by aedrodynamic

design of the blades and/or blade pitching. In high wind speed, the level of captured wind

power can be limited by stalling or pitching the blades as discussed in Chapter 1. In lower

wind speeds, since the SCIG is not controllable, the captured power can not be optimised.

The latter point is illustrated in Fig. 3.4 which shows the operating points2 of the

SCIG for different wind speeds and gearbox ratios. When the wind speed increases from

vw = 8 to 12 [m/s], the operating point goes from A to C. It can be seen that for a fixed

gearbox ratio3, the power capture can be optimised only for one particular wind speed.

2Steady-state operating points are in fact given by the intersection of the input mechanical torque Tm and
output electrical torque Te characteristics. However, if machine resistances are small, losses are negligible
under nominal voltage, and operating points can be approximated by the intersection of input and output
power curves, Pm and Ps, as shown in Fig. 3.4.

3Changing the gearbox ratio translates the tip-speed ratio with respect to the rotor speed and hence
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In the examples of Fig. 3.4, with the gearbox ratio ngb = 121.2, the power capture is

maximised for the wind speed vw = 12 [m/s] (point C). With a ngb = 145.5, the power

capture is maximised for vw = 10 [m/s] (point B). As will be shown below, the situation

for the DFIG is different and maximum power tracking can be achieved over wide range

of wind speed and rotor speed.

Figure 3.4: SCIG steady-state operating points at different wind speeds vw [m/s] and
gearbox ratios ngb.

3.3 Doubly-fed induction generator

For the DFIG, the rotor voltage is non-zero (vqr 6= 0, vdr 6= 0). Hence, the steady-state

equations (3.1)-(3.4) is a system of four equations and six unknowns for given terminal

voltage and rotor speed. As a result, two constraints have to be specified so that an operat-

ing point can be determined. In wind applications, it is sensible to impose a constraint on

the electrical torque (or rotor speed) for maximum power capture, and the other constraint

on the reactive power (or power factor) for terminal voltage control. The two constraints

can be written as:

Te,ref = Lm(iqsidr − idsiqr) (3.10)

Qs,ref = −vqsids + vdsiqs (3.11)

translates the input power curves Pm along the rotor speed axis.
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As explained in Section 2.4, the constraints (3.10) and (3.11) are the control objectives of

the rotor-side converter. The torque reference Te,ref is such that maximum power tracking

is achieved in subrated condition and rated torque tracking is achieved in rated condition.

The reference reactive power Qs,ref is determined by the desired power factor or terminal

voltage and by the sharing policy with the GSC.

3.3.1 Steady-state characteristics

Fig. 3.5 shows the steady-state characteristics obtained by solving (3.1)-(3.4) and (3.10)-

(3.11) with Te,ref given in (2.114)-(2.115), under the assumptions that the terminal voltage

is at nominal level (vqs = 1, vds = 0) and the DFIG at unity power factor (Qs,ref = 0). The

steady-state characteristics are shown for three examples of rated rotor speed (ωr,rated = 1,

1.1 or 1.2 pu). The figure shows also the input power Pm and operating point for different

wind speeds. Unlike the SCIG which is in generator mode only at super-synchronous

speed, the DFIG is able to produce active power (Ptot > 0) at unity power factor (Qs = 0)

regardless of the rotor speed. In addition, the DFIG is able to operate optimally in subrated

regime by capturing maximum input power over a wide range of wind speed and rotor

speed. It is seen that choosing a higher rated rotor speed gives lower electrical torque in

rated regime since the rated torque is defined as the rated airgap power (rated output plus

losses) divided by the rated rotor speed (Te,rated = Pag,rated/ωr,rated).

The fact that the DFIG can produce active power at both sub- and super-synchronous

speed is due to the ability of the rotor active power to flow in both directions (into or

out of the machine). Fig. 3.6 shows the DFIG active and reactive power flows in the

stator and rotor. In sub-synchronous speed, the rotor power Pr is negative and hence the

rotor absorbs active power. In super-synchronous speed, the opposite is true. For the

rotor reactive power Qr, it is seen that at unity power factor (Qs = 0), the rotor absorbs

and produces a moderate quantity of reactive power in sub- and super-synchronous speed

respectively. Within the operating speed range (ωr = 0.7 to 1.3) the rotor reactive power

magnitude is less than 0.1 pu. The effect of non unity power factor operation (Qs 6= 0) on

the DFIG steady-state characteristics is examined later.

The change in the direction of the rotor active power does not actually occur at exactly
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(a) Rated rotor speed ωr,rated = 1.0 pu

(b) Rated rotor speed ωr,rated = 1.1 pu

(c) Rated rotor speed ωr,rated = 1.2 pu

Figure 3.5: DFIG electrical torque and power as function of rotor speed under nominal
terminal voltage and unity power factor for different rated rotor speeds.
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the synchronous speed due to resistive losses. This is shown in Fig. 3.7 where it is seen

that at synchronous speed Pr has a small negative value which corresponds to the active

power required to cover the rotor copper losses. On the other hand, the rotor reactive

power Qr is indeed zero at synchronous speed, since in such case the rotor current is a

dc-current.

The active power flows are obtained by substituting (3.1)-(3.4) into (3.6)-(3.7):

Ps = −Rs(i
2
qs + i2ds) + ωsLm(iqsidr + idsiqr) (3.12)

Pr = −Rr(i
2
qr + i2dr)− sωsLm(iqsidr + idsiqr) (3.13)

Ptot = Ps + Pr = Pag − Plosses (3.14)

If winding losses are neglected, Pr ≈ −sPs and Pag ≈ (1 − s)Ps. If mechanical losses

are neglected, the airgap power is equal to the input power i.e. Pag ≈ Pm. Fig. 3.8 shows

schematically the active power flows in the three rotor speed regions (sub-synchronous,

synchronous, super-synchronous). At sub-synchronous speed (ωr < 1, s > 0), the rotor

consumes active power (Pr < 0) that has to be produced by the stator (Ps > Pag).

At synchronous speed (ωr = 1, s = 0), the rotor active power is nearly zero (rotor

winding losses) and the airgap power is transferred to the grid via the stator (Pr ≈ 0 and

Ps ≈ Pag). At supersynchronous speed (ωr > 1, s < 0), the airgap power is transferred

to the grid via both stator and rotor; the fraction 1/(1 − s) passes through the stator and

the fraction −s/(1− s) through the rotor.

Fig. 3.9 shows the rotor currents that are required to achieve the control objectives

in Fig. 3.5 (tracking of an optimal torque-speed curve at a desired power factor). The

relationship between electrical torque and quadrature rotor current can be observed (Te ∝
−iqr). It is seen that choosing a higher rated rotor speed ωr,rated gives lower current

magnitudes in rated regime.

Fig. 3.10 shows the rotor voltages that are required to achieve the control objectives

in Fig. 3.5. The approximation |Vr| ≈ s|Vs| can be observed (|Vr| = s|Vs| if losses and

leakage inductances are neglected i.e. if Rs = Rr = 0 and Lss = Lrr = Lm). It is noted

that unlike the SCIG, the rotor voltage is always greater than zero. This can be seen on

the zoomed view in Fig. 3.11.
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(a) Rated rotor speed ωr,rated = 1.0 pu

(b) Rated rotor speed ωr,rated = 1.1 pu

(c) Rated rotor speed ωr,rated = 1.2 pu

Figure 3.6: DFIG steady-state power flows in the stator and rotor: active power (left),
reactive power (right).
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(a) Rated rotor speed ωr,rated = 1.0 pu

(b) Rated rotor speed ωr,rated = 1.1 pu

(c) Rated rotor speed ωr,rated = 1.2 pu

Figure 3.7: Zoomed view of Fig. 3.6.
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Figure 3.8: DFIG active power flows.

As mentioned in Subsection 2.2.4, the rated rotor speed can be chosen arbitrarily by

adjusting the gearbox ratio. From Fig. 3.5 to 3.11, choosing different rated rotor speed

has mainly influence on the electrical torque and machine currents. Power curves are

translated along the rotor speed axis (for higher rated rotor speed a certain power output

level is reached at a higher speed) but maximum magnitudes are not changed. For the

rotor voltages, due to their small amplitudes the effect of different rated rotor speed is not

significantly noticeable.

From the converter rating viewpoint, higher values of rated rotor speed are better since

currents magnitudes in rated regime are lower. The rated rotor speed is usually chosen

in the super-synchronous region at a value less than the maximum speed. The margin

required between ωr,rated and ωr,max depends on the speed of the pitching mechanism and

generator inertia. Lighter generators with slower pitching require a larger margin since

they accelerate more quickly and the pitch control takes longer to limit the input torque.

In the remainder of this work the rated rotor speed will be assumed as ωr,rated = 1.2

pu, unless otherwise specified.
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(a) Rated rotor speed ωr,rated = 1.0 pu

(b) Rated rotor speed ωr,rated = 1.1 pu

(c) Rated rotor speed ωr,rated = 1.2 pu

Figure 3.9: Required rotor currents to achieve the steady-state characteristics in Fig. 3.5:
d- and q-axis components (left), magnitudes (right).
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(a) Rated rotor speed ωr,rated = 1.0 pu

(b) Rated rotor speed ωr,rated = 1.1 pu

(c) Rated rotor speed ωr,rated = 1.2 pu

Figure 3.10: Required rotor voltages to achieve the steady-state characteristics in Fig. 3.5:
d- and q-axis components (left), magnitudes (right).
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(a) Rated rotor speed ωr,rated = 1.0 pu

(b) Rated rotor speed ωr,rated = 1.1 pu

(c) Rated rotor speed ωr,rated = 1.2 pu

Figure 3.11: Zoomed view of Fig. 3.10.
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In the next two subsections, the effects of imposing different levels of reactive power

Qs,ref and electrical torque Te,ref are examined. The results are obtained for nominal

terminal voltage (vqs = 1, vds = 0).

3.3.2 Effect of d-axis control setpoint

Fig. 3.12 shows the effect of operating the DFIG at different levels of stator reactive

power (Qs,ref = +0.5, 0, −0.5) on the rotor active and reactive power. The rotor active

power Pr is not affected by a change in reactive power setpoint. For the rotor reactive

power Qr, the flow direction (sign of Qr) at a given rotor speed changes depending on the

requested setpoint Qs,ref .

Figure 3.12: Effect of Qs,ref on DFIG rotor active and reactive power.

When the stator is requested to deliver 0.5 pu of reactive power, the maximum ampli-

tude of Qr is about 0.25 pu at the extreme values of the operating speed range (ωr = 0.7 to

1.3). Hence, in case the grid requires a reactive power output of Qtot = 0.5 pu, the DFIG

can produce that in the following ways:

• via the stator, in which case the rotor-side converter maximum reactive power

amounts to about 0.25 pu and the grid-side converter operates at unity power factor,

i.e. Qs,ref = Qtot = 0.5, QRSC,max ≈ 0.25, QGSC = 0; or

• via the grid-side converter, in which case the DFIG stator operates at unity power

factor and the rotor-side converter maximum reactive power amounts to about 0.1



3.3 Doubly-fed induction generator 116

pu, i.e. Qs,ref = 0, QRSC,max ≈ 0.1pu, QGSC = Qtot = 0.5.

This shows that delivering reactive power via the stator rather than via the grid-side

converter is more economical for the converter sizing.

Fig. 3.13 shows the effect of different Qs,ref levels on the direct and quadrature com-

ponents of the rotor current and voltage. The figure shows the sign of the process gains

idr-to-Qs,ref and vdr-to-idr, which are important information for the tuning of the PI-

controllers (discussed in more detail in Chapter 5). At a given rotor speed (e.g. ωr = 0.7),

when the stator reactive power setpoint decreases (when Qs,ref goes from +0.5 to −0.5),

the rotor d-axis current decreases (idr goes from 0.76 to −0.25). Hence the process gain

idr-to-Qs,ref is positive and the process is referred to as direct acting. At a given rotor

speed, when the rotor d-axis current decreases (when idr goes from 0.76 to −0.25), the

rotor d-axis voltage increases (vdr goes from 0.0036 to 0.0107). The process gain vdr-to-

idr is therefore negative and the process is referred to as reverse acting4.

The direct or reverse action of a process determines the sign of the controller gains.

More explanations will be provided in Chapter 5.

Fig. 3.14 shows the effect of the reactive power setpoint Qs,ref on rotor voltage and

current magnitudes. The curves of the rotor current magnitude for Qs,ref = 0 or −0.5

are superposed because |iqr| and |idr| are approximately equal for these two values of

Qs,ref as shown in Fig. 3.13. For Qs,ref falling anywhere in between 0 and −0.5, the

rotor current magnitude is lesser than for Qs,ref = 0 or−0.5, because the direct axis rotor

current magnitude is smaller in this range of reactive power setpoint as shown in Fig. 3.13

(|idr| ≤ 0.25 when−0.5≤ Qs,ref ≤ 0). This means that when the DFIG operates at unity

power factor or when it absorbs reactive power from the grid up to 0.5 pu (with the grid-

side converter at unity power factor), the maximum rotor current magnitude has the same

value (|Ir|max ≈ 0.9 when −0.5 ≤ Qs,ref ≤ 0). Hence if the generator and converters are

rated for unity power factor operation, they will be able to absorb up to 0.5 pu of reactive

power without exceeding their rating limits.

On the other hand, when the DFIG delivers reactive power (Qs,ref > 0), the rotor
4It is noted that the directionality of the plant input-output process depends on the convention adopted

for positive current. As shown in Fig. 2.6 and 2.7, the rotor current is defined in this work as positive when
flowing out of the DFIG.
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Figure 3.13: Effect of Qs,ref on DFIG rotor d- and q-axis currents and voltages.

Figure 3.14: Effect of Qs,ref on DFIG rotor voltage and current magnitudes.

current magnitude is higher as expected. In Fig. 3.14, it is seen that for a reactive power

production of 0.5 pu, the maximum rotor current magnitude is about 1.15 pu. This repre-
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sents an increase in |Ir|max of nearly 30% with respect to zero reactive power production.

The rating of the rotor-side converter decides the maximum rotor current magnitude that

is permissible and hence the reactive power production capability of the DFIG.

3.3.3 Effect of q-axis control setpoint

To observe the effect of the electrical torque setpoint Te,ref at a given rotor speed, the

following control characteristics are considered:

• Te,ref1 = Te,ref − 0.2

• Te,ref2 = Te,ref

• Te,ref3 = Te,ref + 0.2

where Te,ref is given in (2.114)-(2.115). This is a purely academic exercise as in practice

only Te,ref2 = Te,ref is used (the other two curves are non-optimal torque-speed curves).

The analysis is however useful to verify the process gains of the q-axis variables.

Fig. 3.15 shows the effect of the electrical torque setpoint on the DFIG rotor active

and reactive power (all figures in this subsection are obtained with Qs,ref = 0).

Figure 3.15: Effect of Te,ref on DFIG rotor active and reactive power.

As expected, when the electrical torque setpoint is higher (Te,ref3) the rotor active

and reactive power magnitudes are higher. Hence, if at a given rotor speed, the DFIG is

required to extract more wind power, the rotor-side converter rating has to be larger.

Fig. 3.16 shows the effect of the torque setpoint Te,ref on the direct and quadrature

components of the rotor current and voltage. The process gains of iqr-to-Te and vqr-
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to-iqr can be observed by considering the operating points at a given rotor speed, e.g.

ωr = 0.7. When the reference torque decreases from Te,ref3 to Te,ref1, the q-axis rotor

current increases from −0.49 to −0.084. Hence the process gain iqr-to-Te is negative and

the process is reverse acting. Similarly, when the rotor current increases, the rotor voltage

decreases. The process gain vqr-to-iqr is therefore negative and the process reverse acting.

Figure 3.16: Effect of Te,ref on DFIG rotor d- and q-axis currents and voltages.

Fig. 3.17 shows the effect of the torque setpoint on the magnitude of the rotor current

and voltage. The change in rotor voltage magnitude is very small. As expected, the rotor

current magnitude is higher when the required torque is higher.
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Figure 3.17: Effect of Te,ref on DFIG rotor voltage and current magnitudes.

3.4 Initialisation

Initialisation relates to determining the initial steady-state operating point of the dynam-

ical system under consideration. It is the starting point for both non-linear time domain

simulations and linear small-signal stability analysis. In power system studies, the pro-

cedure involves essentially two steps. In the first step, the network is initialised by a

loadflow computation. The solution gives the DFIG terminal voltage (magnitude and an-

gle) and power output (active and reactive). In the second step, the value of the DFIG state

and algebraic variables are obtained by solving the steady-state equations (DAE with time

derivatives equal to zero) so that the loadflow solution is satisfied.

For the conventional synchronous generator, the initialisation procedure is well known

and is described in [121, 123]. For the DFIG, the fact that the rotor speed is not known

in subrated regime and that there are two additional constraints for the rotor voltage has

caused some confusion, resulting in different proposed methods [52, 106, 124, 125].

In [124], the equations to be solved and constraints to be considered during the ini-

tialisation are identified. However, the proposed method neglects the machine losses (i.e.

it is assumed that Pm = Ptot) and considers only subrated regime when pitch angle is

constant (β = 0◦). In [52, 106], the generator is initialised on one side from output to

input and the turbine is initialised on the other side from input to output. Hence repeti-

tive specification of initialisation starting point for both network and turbine are required
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so that the variables at the interface between the turbine and generator match. In [125],

the proposed method is also an iterative method as turbine and generator are initialised

from input to output on one hand, while the network is initialised from output to input on

the other hand. The interface where variables must match is between the generator and

network. Fig. 3.18 illustrates schematically the above three methods (top figure [124],

middle figure [52, 106], bottom figure [125]).

The motivation of using the methods in [52, 106, 125] is that the input wind speed

can be specified. However to avoid repetitive loadflow computations (so that variables are

matching between turbine and generator or between generator and network), the variables

of the turbine should not be specified at the beginning but should be calculated by the

initialisation procedure. Fig. 3.19 shows the procedure adopted in this work, where losses

are considered. Although neglecting losses, as done in [124], does not cause large errors,

including them is not be a problem since the equations are solved numerically.

The details of the three steps are as follows:

• Step 1: Compute the network loadflow solution which gives Vmag, Vang, Ptot and

Qtot at the DFIG bus.

• Step 2: If in subrated condition, solve (3.1)-(3.8) with the loadflow solution (vqs =

Vmag, vds = 0, Ptot = Ps + Pr, Qtot = Qs) and with the electrical torque equal to

its optimal value for maximum power tracking (Te = Te,ref = Koptω
2
r ), which is

a system of 7 equations and 7 unknowns (iqs, ids, iqr, idr, vqr, vdr, ωr). If in rated

condition, solve (3.1)-(3.4) and (3.6)-(3.8) with the loadflow solution and with the

rotor speed equal to its rated value (ωr = ωr,rated), which is a system of 6 equations

and 6 unknowns (iqs, ids, iqr, idr, vqr, vdr).

• Step 3: If in subrated condition, solve the equation Pm = 0.5ρπR2Cp(λ, β)v3
w

for vw with Pm = Tmωt and β = 0◦. If in rated condition, solve the equation

Pm = 0.5ρπR2Cp(λ, β)v3
w for β with Pm = Tmωt and vw equal to a chosen wind

speed above rated and below cut-out wind speed.

Table (3.1) and (3.2) give numerical examples of the DFIG initialisation in subrated and

rated condition respectively. The parameters of the DFIG are in Appendix 1. It is seen
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Figure 3.18: DFIG initialisation procedure alternatives
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Figure 3.19: DFIG initialisation procedure used in this work.

that for same rotor speed (i.e. same active power output) the DFIG is able to operate at

different power factors (i.e. different reactive power output) by adjusting the rotor voltage.

The direct and reverse relationship between the d-axis variables can also be observed. In

both Table (3.1) and (3.2) when Qtot increases, idr increases and vdr decreases. It is noted

however that the relationship for the q-axis variables can not observed in Table (3.1) and

(3.2) because both torque and speed change from one table to the other. As shown in

Fig. 3.16 the reverse relationship between iqr-vdr and Te-iqr is observed by varying the

electrical torque for a same rotor speed.

Table 3.1: DFIG initialisation in subrated condition

Step 1: Network
Vmag Ptot Qtot

1 0.5 −0.25
1 0.5 0
1 0.5 0.25

Step 2: DFIG
iqs ids iqr idr vqr vdr ωr

0.526 0.250 −0.531 −0.002 0.0481 0.0025 0.955
0.526 0 −0.531 0.251 0.0492 0.0010 0.955
0.527 −0.250 −0.532 0.503 0.0495 −0.0005 0.955

Step 3: Turbine

vw [m/s] β [◦]
9.55 0
9.55 0
9.55 0
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Table 3.2: DFIG initialisation in rated condition

Step 1: Network
Vmag Ptot Qtot

1 1 −0.25
1 1 0
1 1 0.25

Step 2: DFIG
iqs ids iqr idr vqr vdr ωr

1.006 0.250 −1.016 −0.001 0.006 −0.000 1.2
1.006 0 −1.016 0.251 0.006 −0.001 1.2
1.007 −0.250 −1.017 0.504 0.006 −0.002 1.2

Step 3: Turbine

vw [m/s] β [◦]
13 / 14 1.04 / 7.92
13 / 14 1.04 / 7.92
13 / 14 1.03 / 7.92

3.5 Summary

In this chapter, the operating characteristics of the SCIG and DFIG have been compared

by analyzing the induction generator equations in the steady-state. For the SCIG, the rotor

voltage is zero, the rotor speed is limited within a very narrow range and power capture

can only be optimized for a particular wind speed. The machine absorbs reactive power

at all times and electrical outputs are very sensitive to the rotor speed.

In case of the DFIG, the controllability of the rotor voltages results in controllable

active and reactive output regardless of the rotor speed. This means that wind power

capture can be optimised over a wide range of rotor speed and wind speed at desired

power factor. The observation of the rotor active and reactive power for various terminal

power factors showed that power factor control is more economical (for converter sizing)

with the RSC rather than the GSC.

The steady-state analysis also showed the process gains between the inputs and out-

puts of the RSC control loops. The results are:

• idr-to-Qs,ref is direct acting,

• vdr-to-idr is reverse acting,
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• iqr-to-Te,ref is reverse acting,

• vqr-to-iqr is reverse acting.

These observations are useful for the PI-tuning of the RSC controllers, as will be discussed

in Chapter 5.

Various initialisation procedures proposed in the literature have been discussed briefly.

A method has been proposed whereby no iteration in input specification is required.
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Chapter 4

Analysis: Open-loop behaviour

In the previous chapter, the behaviour of the DFIG in the steady-state i.e. when all dy-

namics are settled, has been analysed. In this chapter, the dynamical behaviour of the

open-loop DFIG in presence of small-disturbances is studied. The results will be com-

pared in the next chapter to the closed-loop control case. The comparison will thus show

the effect of the DFIG control from a dynamical behaviour viewpoint.

The system is referred to as open-loop as the rotor voltage produced by the rotor side

converter is assumed constant at its initial value (pre-disturbance value), instead of being

adjusted with output variations. Modal analysis (analysis of eigenvalue locations and

participation factors) of the open-loop DFIG is done to gain a better understanding of the

inherent strengths and weaknesses of the induction generator.

The open-loop analysis can be considered as a benchmark in the sense that the closed-

loop system (discussed in the next chapter) is expected to present better dynamical charac-

teristics. A weaker closed-loop dynamic performance would suggest an improper control

design. Furthermore, it is shown that the small-signal dynamics of the conventional SCIG

are similar to those of the open-loop DFIG at zero slip (synchronous speed). Hence, sensi-

tivity results (effect of changing operating condition on the eigenvalues location) obtained

for the open-loop DFIG at zero slip also hold for the SCIG.

This chapter begins with a brief review of the theoretical background for small-signal

analysis and stability. A base case is then described and taken as a reference case. The ef-

fects of changing the operating point, machine parameters and grid strength on the small-

signal dynamics are then discussed.
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4.1 Modal analysis

The dynamical behaviour of a system, such as a grid connected DFIG, can be described

by a set of differential algebraic equations (DAE) [49, 121, 126]:

d

dt
x = f(x, z, u) (4.1)

0 = g(x, z, u) (4.2)

where x, z, and u are respectively the column-vectors of state variables, algebraic vari-

ables, and control inputs; f and g are respectively the column-vectors of differential and

algebraic equations. In transient studies (time domain), (4.1)-(4.2) are solved simultane-

ously. The solution gives x, z and u as function of time, and allows calculation of the

system outputs:

y = h(x, z, u) (4.3)

where y is the column-vector of outputs and h the column-vector of output algebraic

equations. In small-signal studies (frequency domain), (4.1)-(4.3) are linearized around

an operation point and the eigenvalues of the state matrix A (defined below) allows as-

sessment of the system small-signal stability.

Linearization of (4.1)-(4.3) is done by a Taylor series expansion around an operat-

ing point (x0,z0,u0) computed by the system initialization procedure as described in the

previous chapter. Neglecting terms of order two and above, the linear model is:

∆ẋ =

[
∂f

∂x

]

0

∆x +

[
∂f

∂z

]

0

∆z +

[
∂f

∂u

]

0

∆u (4.4)

0 =

[
∂g

∂x

]

0

∆x +

[
∂g

∂z

]

0

∆z +

[
∂g

∂u

]

0

∆u (4.5)

∆y =

[
∂h

∂x

]

0

∆x +

[
∂h

∂z

]

0

∆z +

[
∂h

∂u

]

0

∆u (4.6)

where ∆x = x − x0, ∆z = z − z0, ∆y = y − y0, and [.]0 indicates that the term in

brackets is evaluated at the initial point (x0,z0,u0). Eliminating the algebraic variable z in

(4.4)-(4.6) gives:

∆ẋ = A∆x + B∆u (4.7)

∆y = C∆x + D∆u (4.8)
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where the matrices A, B, C and D are defined as:

A =

[
∂f

∂x
− ∂f

∂z

(
∂g

∂z

)−1
∂g

∂x

]

0

(4.9)

B =

[
∂f

∂u
− ∂f

∂z

(
∂g

∂z

)−1
∂g

∂u

]

0

(4.10)

C =

[
∂h

∂x
− ∂h

∂z

(
∂g

∂z

)−1
∂g

∂x

]

0

(4.11)

D =

[
∂h

∂u
− ∂h

∂z

(
∂g

∂z

)−1
∂g

∂u

]

0

(4.12)

The matrix A is the system state matrix. Its eigenvalues λ (real and/or complex) are the

natural modes of the system and contain information on the small-signal stability and

behaviour. If A is real, complex eigenvalues always appear in conjugate pairs.

For stable operation, all eigenvalues λ = σ ± jω must be in the left half plane (LHP)

i.e. σ < 0. The time constant τ [s], damping ratio ζ and oscillation frequency f [Hz] of

an eigenvalue are defined as:

τ = 1/|σ| (4.13)

ζ = −σ/
√

σ2 + ω2 (4.14)

f = ω/(2π) (4.15)

To determine the contributing dynamics (dominant states) of a particular mode (eigen-

value), participation factors are observed. The participation factors of the n state variables

into mode i are obtained as:

pi =




p1i

p2i

...
pni


 (4.16)

where pki is the normalized participation factor of the kth state into the ith mode:

pki = |Ψik||Φki| / (
n∑

k=1

|Ψik||Φki|) (4.17)

In (4.17), Ψik is the kth element of the ith mode left eigenvector, Φki is the kth element

of the ith mode right eigenvector [49, 121]. Participation factors are also known as the
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sensitivity of an eigenvalue to the diagonal elements of the state matrix A. Hence a larger

participation factor pki indicates that the location of eigenvalue λi is more sensitive to the

state variable xk. Conversely, if pki is zero, the eigenvalue λi is not affected by the value

of state variable xk.

The state matrix of the grid-connected DFIG is obtained by deriving (4.9) from the

set of differential algebraic equations (2.135)-(2.155). In the present chapter, two cases

of open-loop DFIG are considered:

• Case A: open-loop DFIG directly connected to the infinite bus,

• Case B: open-loop DFIG connected to the infinite bus via an external line.

Assuming the DFIG directly connected to the infinite bus means that the external grid

is infinitely strong and hence the terminal voltage (magnitude and angle) is constant. If

the DFIG is connected to the infinite bus via a line, the effect of grid strength can be

investigated, with a larger line impedance representing a weaker network. The variables

and functions for cases A and B are given in Table 4.1.

Table 4.1: Two cases of open-loop DFIG

Case A Case B
f(x, z, u) (2.135)-(2.141) (2.135)-(2.141)
g(x, z, u) - (2.154)-(2.155)

x [iqs ids e′qs e′ds ωr θtw ωt]’ [iqs ids e′qs e′ds ωr θtw ωt]’
z - [vqs γV s]’

u = u0 [vqr vdr vw β]’=[vqr0 vdr0 vw0 β0]’ [vqr vdr vw β]’=[vqr0 vdr0 vw0 β0]’
other constants vqs = Vs0, γV s = 0 -

4.2 Base case eigenvalues

For easier discussion, a particular operating point is defined as the base case. In the

base case, the terminal voltage magnitude is |Vs| = 1 pu, the rotor speed is equal to the

synchronous speed ωr = 1 pu, the corresponding total active power is Ptot = 0.575 pu,

and the total reactive power is Qtot = 0 pu (unity power factor). The DFIG is directly

connected to the infinite bus (Case A in Table 4.1), hence the terminal voltage is constant.

The effect of finite grid strength is investigated subsequently in Subsection 4.5.
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Table 4.2 shows the base case eigenvalues and corresponding participation factors (pa-

rameters are given in Appendix 1). The dynamics consist of four stable modes (negative

real part), three of which are oscillating (complex eigenvalue). The participation factors

indicate the dominant states for each mode. E.g. the high frequency eigenvalue λHF is

mainly contributed by the dynamics of the stator currents iqs and ids (48% and 46%) and

negligibly by those of the internal voltages e′qs and e′ds (2% and 3%).

Table 4.2: Base case eigenvalues and participation factors of open-loop DFIG

Operating point: Vs = 1, ωr = 1, Ptot = 0.575, Qtot = 0

Eigenvalue, frequency, damping ratio, time constant

λ = σ ± jω fosc [Hz] ζ τ [s]
λHF −16.15± j313.30 49.86 0.052 0.062
λMF −10.01± j63.67 10.13 0.155 0.100
λLF −0.47± j3.33 0.53 0.138 2.15
λNO −17.40 0 1 0.058

Participation factors
iqs ids e′qs e′ds ωr θtw ωt

λHF .48 .46 .02 .03 .00 .00 .00 E
λMF .02 .01 .01 .47 .46 .01 .00 EM
λLF .00 .00 .00 .01 .00 .49 .50 M
λNO .00 .00 .98 .00 .00 .00 .00 E

HF , MF , LF = high, medium, low freq., NO = non-oscillating
E, M, EM = electrical, mechanical, electro-mechanical mode

In the base case, the high frequency mode λHF is an electrical mode associated with stator

dynamics (iqs, ids). The medium frequency mode λMF is an electro-mechanical mode

associated with rotor electrical and rotor mechanical dynamics (q-axis flux e′ds ∝ ψqr and

generator speed ωr). The low frequency mode λLF is a mechanical mode associated with

shaft and turbine dynamics (torsion angle θtw and turbine speed ωt). The non-oscillating

mode λNO is a real eigenvalue associated with rotor electrical dynamics (d-axis flux e′qs ∝
ψdr). The modes are approximately decoupled since a particular state variable participates

significantly in only one of the modes.

Fig. 4.1 shows the response of the DFIG active power to a 50% voltage drop from 1

to 0.5 pu at t = 5 s for a duration of 100 ms. It is seen that the time domain behaviour

consists of a superposition of the characteristics given by the eigenvalues in Table 4.2.
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Figure 4.1: Active power response of open-loop DFIG to 100ms-50% voltage drop at base
case operating point. Thin light line = stator transient included; thick dark line = stator
transients neglected.

The low frequency mode λLF is the dominant mode (closest to the imaginary axis)

and hence has largest time constant. It has a frequency of about 0.5 Hz with a reasonable

damping ratio (>10 %). The medium frequency mode λMF oscillates around 10 Hz with

a similar damping ratio. The high frequency mode λHF oscillates around 50 Hz and has

the lowest damping ratio (∼5 %).

In Fig. 4.1, the responses are shown for both situations where stator transients are

represented and neglected. It can be seen that the difference consists of only the 50 Hz

mode and associated overshoot. Ignoring stator transients means that stator dynamics are

assumed to change infinitely fast i.e. stator variables are assumed to be algebraic variables

instead of state variables (derivatives terms in (2.135)-(2.136) are set to zero).

Oscillations due to stator transients can be omitted when they are: (a) stable (posi-

tive damping), (b) relatively faster (large real part magnitude), and (c) decoupled from

the dynamics of interest. The latter condition requires that the stator mode is only con-

tributed significantly by stator states and that stator states participate significantly only in

the stator mode. Conditions (a)-(c) are satisfied for the base case as shown in Table 4.2.

Hence if the interest is in the frequency range 0.1-10 Hz, stator dynamics can be ignored.

It should however be kept in mind that oscillation amplitudes are underestimated during

the few hundreds ms after a disturbance. This is shown in Fig. 4.2 where the underesti-
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mated torque overshoot translates into underestimated speed deviation. Depending on the

purpose of study, these approximations may or may not be acceptable.

Figure 4.2: Electrical torque and rotor speed response of open-loop DFIG response to
100 ms-50% voltage drop at base case operating point. Thin light line = stator transient
included; thick dark line = stator transients neglected.

4.3 Sensitivity to operating point

Since the DFIG may operate at large slip with different levels of active and reactive power

output, it is important to study how its dynamic behaviour changes with these conditions.

4.3.1 Rotor speed and active power

To observe the sensitivity of the eigenvalue locations to the level of active power and rotor

speed, the operating points in Fig. 4.3 are investigated. The rotor speed is varied from 0.7
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to 1.3 pu (slip range of ±30 %). Two sets of active power output are considered. Set (1)

represents the typical steady-state output power of the DFIG as function of rotor speed.

Set (2) represents a hypothetical case where the output is constant at 0.5 pu at all speeds.

Circle markers are used for operating points in the sub-synchronous speed region; triangle

markers are used for the super-synchronous region.

Figure 4.3: Investigated initial operating points for rotor speed and active power.

Fig. 4.4 shows the root-loci of the open-loop DFIG eigenvalues for the operating

points in Fig. 4.3. It is observed that the eigenvalue locations for the two sets of operating

points are not significantly different. In other words, small-signal dynamics are more

sensitive to rotor speed and relatively less sensitive to active power level.

Considering the scaling of the axes, the effect of initial rotor speed on the high

frequency mode (stator electrical dynamics) is not significant. For the medium fre-

quency modes (rotor electrical and/or mechanical dynamics) small-slip speed gives oscil-

lations with lower frequency (smaller imaginary part magnitude) and longer time constant

(smaller real part magnitude). The low frequency mode (mechanical dynamics) is closer

to the imaginary axis at zero and large negative slip i.e. at synchronous and large super-

synchronous speed (points at the middle and end extremity of the root-loci), however the

mode remains well damped (ζ > 10 %). The non-oscillating mode (rotor electrical or

mechanical dynamics) is closer to the imaginary axis at large slip (positive and negative).

Since all eigenvalues remain in the left half plane, the open-loop DFIG remains stable

within the operating slip range.
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Figure 4.4: Eigenvalues loci for operating points in Fig. 4.3 (DR = damping ratio).

Table 4.3 shows the open-loop DFIG eigenvalues and participation factors for three

particular operating points. As observed above, the rotor speed has significant effect

on all the eigenvalues, except for the high frequency mode. Participation factors are

also affected. At non-synchronous speed (sub- and super-), the electrical and mechanical

dynamics tend to be decoupled. It will be seen in the next chapter that for the closed-loop

system, the control actions decouple the electrical and mechanical dynamics at all speeds.

Fig. 4.5 shows the time domain response of the open-loop DFIG active power to a

100 ms-50% voltage drop with sub- and supersynchronous initial rotor speed. As ex-

pected from Fig. 4.4 and Table 4.3, in subsynchronous speed, the damping ratio of the

medium frequency mode is lower. In supersynchronous speed, the damping ratio of the

low frequency mode is lower.
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Table 4.3: Effect of rotor speed on open-loop DFIG eigenvalues and participation factors

At sub-synchronous speed: ωr = 0.70 pu, Ptot = 0.2 pu
λ = σ ± jω fosc ζ iqs ids e′qs e′ds ωr θtw ωt

λHF −16.29± j312.92 49.80 .052 .47 .45 .03 .04 .00 .00 .00 E
λMF −13.58± j113.50 18.06 .119 .04 .05 .34 .44 .13 .00 .00 E
λLF −4.91± 7.99 1.27 .524 .00 .04 .10 .00 .31 .49 .05 M
λNO −1.06 0 1 .00 .01 .03 .00 .10 .07 .79 M

At synchronous speed: ωr = 1 pu, Ptot = 0.575 pu (base case)
λ = σ ± jω fosc ζ iqs ids e′qs e′ds ωr θtw ωt

λHF −16.15± j313.30 49.86 .052 .48 .46 .02 .03 .00 .00 .00 E
λMF −10.01± j63.67 10.13 .155 .02 .01 .00 .48 .47 .01 .00 EM
λLF −0.47± j3.33 0.53 .138 .00 .00 .00 .01 .00 .49 .50 M
λNO −17.40 0 1 .00 .00 .99 .00 .00 .00 .00 E

At super-synchronous speed: ωr = 1.29 pu, Ptot = 1.075 pu
λ = σ ± jω fosc ζ iqs ids e′qs e′ds ωr θtw ωt

λHF −16.08± j313.50 49.90 .051 .49 .46 .02 .03 .00 .00 .00 E
λMF −16.79± j110.27 17.55 .151 .02 .05 .27 .50 .15 .00 .00 E
λLF −2.32± j9.27 1.48 .243 .00 .04 .17 .00 .27 .46 .06 M
λNO −0.26 0 1 .00 .01 .05 .00 .09 .00 .85 M
HF , HF , HF = high, medium, low freq., NO = non-oscillating
E, M, EM = electrical, mechanical, electro-mechanical mode

Figure 4.5: Open-loop DFIG response to 50% voltage drop during 100 ms with sub- and
supersynchronous initial rotor speed. Thin light line = stator transients represented; thick
dark line = stator transients neglected.
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4.3.2 Terminal voltage and reactive power

Fig. 4.6 shows the root loci of the open-loop DFIG when the terminal voltage is varied

from Vs = 0.5 ∼ 1.5 pu at different rotor speeds (ωr = 0.71, 1, 1.3 pu).

Considering the scaling of the axis, the high frequency mode is not significantly sensi-

tive to Vs. The medium frequency mode remains in the left half plane and well damped for

the tested range of terminal voltage. At non-synchronous speed, the low frequency and

non-oscillating modes are closer to the imaginary axis when the voltage level is lower.

At supersynchronous speed, the non-oscillating mode is in the right half plane for lower

voltage, hence the system is unstable.

Fig. 4.6 also shows the effect of reactive power. At each rotor speed, the root loci

Figure 4.6: Eigenvalues loci for different terminal voltage, power factor and rotor speed.
Triangles, stars, circles are used for Qtot = +0.5, 0, −0.5 respectively.
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are obtained for Qtot = +0.5, 0 and −0.5. It is seen that the influence on the eigenvalue

location is not significant. This means that small-signal dynamics are more sensitive to

terminal voltage and relatively less sensitive to reactive power level.

4.3.3 Comparison with SCIG

From the above analysis, the DFIG eigenvalue are mainly determined by the rotor speed

and terminal voltage level. The change in eigenvalue location due to variations of active

and reactive power is relatively less significant. As a consequence, the eigenvalues of the

SCIG can be expected to be close to those of the open-loop DFIG at zero slip, assuming

same terminal voltage conditions. The reason is that, although both machines have dif-

ferent active and reactive power outputs, their rotor speeds are nearly the same (the DFIG

speed is synchronous, while for the SCIG the speed is near synchronous).

Tables 4.4 gives the eigenvalues and participation factors of the SCIG. It can be seen

that they are indeed similar to those of the open-loop DFIG at synchronous speed given

in Table 4.2.

Table 4.4: Eigenvalues and participation factors of SCIG

Operating point: Vs = 1, ωr = 1.0056, Ps = 1, Qs = −0.353

Eigenvalues, frequency, damping ratio, time constant

λ = σ ± jω fosc [Hz] ζ τ [s]
λHF −16.13± j313.31 49.86 0.051 0.062
λMF −10.13± j62.69 9.98 0.160 0.099
λLF −0.44± j3.33 0.53 0.130 2.287
λNO −17.17 0 1 0.058

Participation factors
iqs ids e′qs e′ds ωr θtw ωt

λHF .48 .46 .02 .03 .00 .00 .00 E
λMF .02 .01 .00 .47 .46 .01 .00 EM
λLF .00 .00 .00 .02 .00 .48 .50 M
λNO .00 .00 .99 .00 .00 .00 .00 E

HF , MF , LF = high, medium, low freq., NO = non-oscillating
E, M, EM = electrical, mechanical, electro-mechanical mode

It is important to note that the similarity between the conventional SCIG and open-

loop DFIG at zero-slip is only from a modal behaviour viewpoint (eigenvalues location
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i.e. oscillation and stability characteristics). The steady-state operating points (pre- and

post-disturbance amplitudes) are indeed different for both cases as it was shown in the

previous section.

4.4 Sensitivity to machine parameters

In this subsection the effect of machine inductances (Lss, Lrr and Lm), resistances (Rs

and Rr) and mechanical parameters (Hg, Ht and k) on the eigenvalues of the open-loop

DFIG are observed. These parameters vary with the size of the machine, the design,

the materials used, and the working conditions (e.g. higher temperature). From the data

given in Chapter 2, the range of parameter values may be large. It is therefore worthwhile

to examine how the dynamics are affected and whether some particular values lead to

instability. In this subsection, all eigenvalues are obtained for the base case operating

point, i.e. nominal terminal voltage and synchronous rotor speed (Vs = 1 pu, ωr = 1 pu).

As explained above, conclusions drawn are also valid for the SCIG and do not depend on

the level of active or reactive power output for both DFIG and SCIG.

4.4.1 Inductances

The machine inductances have significant effect on the stability of the open-loop DFIG.

For some values, the open-loop DFIG at zero slip (and hence the SCIG) is unstable.

For the discussion, it is useful to define the ratio of stator self to mutual inductance

ass = Lss/Lm, the ratio of rotor self to mutual inductance arr = Lrr/Lm, and the ‘tran-

sient stator inductance’ L′s = Lss − L2
m/Lrr = Lm(ass − 1/arr). Table 4.5 shows the

eigenvalues of the open-loop DFIG at zero slip for different ratios ass and arr with mutual

inductance Lm = 4 pu.

The machine is stable (all eigenvalues with negative real part) for L′s ≥ 0.01. Al-

ternatively, a more restrictive stability condition is that both ass ≥ 1 and arr ≥ 1 i.e.

both Lss ≥ Lm and Lrr ≥ Lm, which means that leakage inductances are positive as

explained below. When the magnitude of L′s is small i.e. when assarr ≈ 1 (Lss ≈ Lm

and Lrr ≈ Lm) the eigenvalue sensitivity is larger and there is more coupling between the

modes (shown by participation factors).
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Table 4.5: Effect of stator and rotor inductances on the modes of the open-loop DFIG at
zero slip

ass = Lss/Lm, arr = Lrr/Lm, Lm = 4 pu, L′s = Lm(ass − 1/arr)

ass arr L′s λHF λMF and/or λNO λLF

1.01 1.130 +0.5 −3.16±j314.1 −3.33±j30.2, −3.10 −0.41±j3.17
1.01 1.003 +0.05 −32.8±j310.7 −17.5±j88.8, −35.3 −0.50±j3.35
1.01 0.991 +0.005 −563.3±j171.3 +3.11±j186.3, −244.2 −0.51±j3.38
1.01 0.989 −0.005 +695.5±j110.6 +54.9±j196.3, −142.4 −0.51±j3.38
1.01 0.978 −0.05 +30.2±j310.6 +36.4, +107.8, −73.7 −0.53±j3.40
1.01 0.881 −0.5 +3.13±j314.1 +3.99, +26.8, −25.9 −0.65±j3.63

0.99 1.156 +0.5 −3.16±j314.1 −3.28±j30.2, −2.97 −0.40±j3.17
0.99 1.023 +0.05 −32.9±j310.8 −16.8±j88.9, −34.0 −0.49±j3.36
0.99 1.011 +0.005 −519.1±j182.1 +2.65±j184.6, −253.3 −0.50±j3.38
0.99 1.009 −0.005 +651.7±j110.9 +58.0±j194.7, −143.6 −0.50±j3.38
0.99 0.998 −0.05 +30.2±j310.7 +34.9, +106.9, −74.2 −0.52±j3.40
0.99 0.897 −0.5 +3.13±j314.1 +3.84, +26.7, −26.0 −0.64±j3.63

The parameters Lm = (3/2)Lsr, Lss and Lrr were defined in (2.44), (2.50), (2.51) as:

Lm = 1.5µ0NsNr
rl

g

π

4

Lss = 1.5µ0N
2
s

rl

g

π

4
+ Lls

Lrr = 1.5µ0N
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r

rl

g

π

4
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Hence, the parameters ass = Lss/Lm and arr = Lrr/Lm depend on the design of the

stator and rotor coils. In the simplest case where stator and rotor coils have same effective

number of turns (Ns = Nr), one can conclude that the open-loop DFIG is stable if leakage

inductances are positive (Lls, Llr > 0). If the design is such that L′s < 0.01, stabilizing

control must be added for stable operation.

The larger sensitivity of the eigenvalues with respect to L′s when its magnitude is

smaller can be explained from the differential equations of iqs and ids in (2.101) and

(2.102):

L′s
ωelB

d

dt
iqs = −R1iqs + ωsL

′
sids +

ωre
′
qs

ωs

− e′ds

ωsTr

− vqs + Kmrrvqr

L′s
ωelB

d

dt
ids = −ωsL

′
siqs −R1ids +

e′qs

ωsTr

+
ωre

′
ds

ωs

− vds + Kmrrvdr
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The parameter L′s must be different from zero in order for iqs and ids to be state vari-

ables (if L′s = 0, the variable iqs and ids are algebraic variables i.e. there is no sta-

tor transients). When L′s 6= 0, the first two diagonal entries of the state matrix are

Asys(1, 1) = Asys(2, 2) = −R1ωel/L
′
s. The diagonal elements of the state matrix are

the centers of the Gershgorin disks which contain the eigenvalues of the matrix (see Ap-

pendix 2 for explanations on Gershgorin theorem). Hence for positive L′s, the centers of

the first two Gershgorin disks, are in the left half plane. For negative L′s, the disk cen-

ters are in the right half plane. As L′s is in the denominator, the displacement in the disk

centers and hence the sensitivity of the eigenvalue location with respect to L′s is larger for

small amplitude of L′s.

In the above discussion, the effect of varying the ratios ass and arr for a given value

of mutual inductance Lm was examined. Table 4.6 shows the effect of varying Lm with

constant ratio ass = 1.01 and arr = 1.015. The eigenvalues in which electrical state

Table 4.6: Effect of mutual inductance on the modes of the open-loop DFIG at zero slip

Lm in [pu], ass = 1.01, arr = 1.015, L′s = Lm(ass − 1/arr)

Lm L′s λHF λMF λNO λLF±
10 0.2483 −6.38±j314.02 −5.14±j41.37 −6.96 −0.468±j3.27
8 0.1986 −7.99±j313.95 −5.97±j45.91 −8.70 −0.476±j3.29
6 0.1490 −10.69±j313.78 −7.33±j52.58 −11.61 −0.483±j3.31
4 0.0993 −16.16±j313.30 −9.99±j63.80 −17.44 −0.491±j3.33
2 0.0497 −33.06±j310.70 −17.36±j89.07 −35.12 −0.499±j3.36
1 0.0248 −70.11±j300.16 −28.20±j125.03 −71.86 −0.504±j3.37

variables participate (λHF , λMF , λNO) are mostly affected. For all modes, when Lm

decreases, the real part magnitude increases while the imaginary part magnitude changes

also but to a lesser extent. Since Lm is inversely related to the airgap length, this means

that for larger airgap machine (smaller Lm), time constants decrease and damping ratios

increase.

These observations can be seen in Fig. 4.7 which shows the active power response

of the open-loop DFIG to a 100 ms-50% voltage drop with Lm = 10 and 1 pu. The

duration of oscillations is shorter for Lm = 1 pu, though the overshoots have much larger

magnitude.



4.4 Sensitivity to machine parameters 141

Figure 4.7: Open-loop DFIG response to 50% voltage drop during 100 ms with Lm = 1
and 10 pu. Thin light line / thick dark line = stator transients included / neglected.

4.4.2 Resistances

Varying the stator and rotor resistance while keeping all other parameters constant causes

noticeable displacement in eigenvalues and change in participation factors. For the dis-

cussion, the ratio of the rotor to stator resistance is defined as ar = Rr/Rs. Table 4.7

shows the eigenvalues of the open-loop DFIG at zero slip for different values of stator

resistance Rs with ar > 1 and < 1.

Table 4.7: Effect of stator and rotor resistance on the modes of the open-loop DFIG at
zero slip

Rs in [pu], ar = Rr/Rs (Lm = 4 pu, ass = 1.01, arr = 1.015)
Rs ar Eigenvalues

0.0001 1.1 −0.32±j314.2 −2.14±j63.79 −0.25±j3.37 −0.35
0.005 1.1 −16.16±j313.3 −9.99±j63.80 −0.49±j3.33 −17.44
0.05 1.1 −202.1±j156.3 −112.6±j156.2 −2.46±j2.50 −32.84
0.1 1.1 −614.4±j150.7 −39.88±j162.8 −9.60±j3.90 −2.00

0.0001 0.9 −0.32±j314.2 −2.11±j63.79 −0.25±j3.37 −0.28
0.005 0.9 −16.16±j313.5 −8.46±j63.93 −0.45±j3.34 −14.26
0.05 0.9 −182.4±j222.2 −94.02±j90.93 −2.01±j2.79 −47.29
0.1 0.9 −546.8±j170.0 −42.45±j143.5 −3.48, −4.29, −17.51

For the tested range of parameters, the system is stable. For larger resistance values,

the real part magnitude of complex conjugate modes tends to be larger (i.e. oscillating

modes are further away from the imaginary axis when resistances are larger). Hence more
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resistive machines have oscillatory dynamics with smaller time constants. For very resis-

tive machines (Rs ≥ 0.1), the real mode is the dominant mode (closest to the imaginary

axis) and the system is referred to as over-damped.

Participation factors are also affected by resistance values. For more resistive ma-

chines, the electrical and mechanical dynamics are decoupled, as shown in Table 4.8,

where for Rs = 0.1, λHF1 and λHF2 are electrical modes (significant participation from

electrical states only), λLF and λNO are mechanical modes.

Fig. 4.8 shows the response of the open-loop DFIG to a 50% voltage drop during 100

ms with Rs = 0.1 and 0.0001 pu. The eigenvalues properties are shown in Table 4.8. As

explained above, oscillations are damped out very rapidly when Rs is large.

Table 4.8: Participation factors of open-loop DFIG at zero slip for different resistances

Rs = 0.1 pu (ar = 1.1, Lm = 4 pu, aLss = 1.01, aLrr = 1.015)

λ = σ ± jω fosc ζ iqs ids e′qs e′ds ωr θtw ωt

λMF1 −614.36± j150.67 23.98 .971 .40 .39 .11 .10 .00 .00 .00 E
λMF2 −39.88± j162.77 25.91 .238 .10 .10 .38 .40 .02 .00 .00 E
λLF −9.60± j3.90 0.62 .927 .00 .00 .00 .03 .47 .47 .03 M
λNO −2.00 0 1 .00 .00 .00 .00 .12 .22 .66 M

Rs = 0.0001 pu (ar = 1.1, Lm = 4 pu, aLss = 1.01, aLrr = 1.015)

λ = σ ± jω fosc ζ iqs ids e′qs e′ds ωr θtw ωt

λHF −0.32± j314.16 50.00 .001 .50 .48 .00 .02 .00 .00 .00 E
λMF −2.14± j63.79 10.15 .034 .02 .00 .00 .48 .47 .01 .00 EM
λLF −0.25± j3.378 0.54 .075 .00 .00 .00 .01 .00 .49 .50 M
λNO −0.35 0 1 .00 .00 .99 .00 .00 .00 .00 E
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Figure 4.8: Open-loop DFIG response to 50% voltage drop during 100 ms with Rs = 0.1
and 0.0001 pu. Thin light / thich dark line = stator transients included / neglected.

4.4.3 Mechanical parameters

Table 4.9 shows the effect of varying inertias and stiffness on the open-loop DFIG eigen-

values. As expected, heavier machines (large Ht and Hg) present oscillations with lower

frequencies, and drive trains that are stiffer (smaller gearbox ratio i.e. larger k) have

oscillations with higher frequencies.

Table 4.9: Effect of drive train parameters on the modes of the open-loop DFIG at zero
slip

Ht in [s], Hg = 0.1Ht, k = 0.3 pu/el.rad

Ht λHF λMF (fosc [Hz], ζ) λLF (fosc [Hz], ζ) λNO

12 −15.92± j313.3 −8.90± j36.14 (5.75, .239) −0.33± j1.92 (0.31, .168) −17.44
8 −15.98± j313.3 −9.17± j44.70 (7.11, .201) −0.37± j2.36 (0.37, .155) −17.44
4 −16.16± j313.3 −9.99± j63.80 (10.2, .155) −0.49± j3.33 (0.53, .146) −17.44
2 −16.53± j313.3 −11.59± j90.61 (14.4, .123) −0.74± j4.71 (0.75, .155) −17.44
1 −17.39± j313.2 −14.68± j128.3 (20.4, .114) −1.23± j6.62 (1.05, .182) −17.44

k in [pu/el.rad], Ht = 4 s, Hg = 0.1Ht

k λHF λMF (fosc [Hz], ζ) λLF (fosc [Hz], ζ) λNO

30 −16.20± j313.3 −3.72± j129.0 (20.5, .029) −6.72± j15.5 (2.47, .398) −17.42
3 −16.16± j313.3 −8.27± j71.66 (11.4, .115) −2.21± j9.28 (1.48, .231) −17.43
.3 −16.16± j313.3 −9.99± j63.80 (10.2, .155) −0.49± j3.33 (0.53, .146) −17.44

.03 −16.16± j313.3 −10.20± j63.00 (10.0, .160) −0.28± j1.04 (0.17, .260) −17.44
.003 −16.16± j313.3 −10.22± j62.91 (10.0 .160) −0.26± j0.22 (0.04, .758) −17.44
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For the tested range of parameters, the machine dynamics remain stable. The elec-

trical modes (high frequency and non-oscillating modes) are not significantly sensitive to

mechanical parameters.

Participation factors are not significantly changed, except for very low inertia and high

stiffness. For lower inertia, the medium frequency mode is more of an electrical nature.

For higher stiffness, the low frequency mode becomes an electromechanical mode.

4.5 Sensitivity to grid strength

In the above discussion the stator voltage is assumed constant, i.e. the external grid is

infinitely strong. If however the DFIG is connected to the infinite bus through a finite

reactance, the terminal voltage is not constant and becomes an algebraic variable.

Fig. 4.9 shows the effect of the external series reactance Xt + Xe (transformer and

line series reactance) and series resistance Re on the eigenvalues of the open-loop DFIG

at zero slip. Considering the scaling of the axes, the stator mode (iqs-ids mode) is the

most sensitive to Xe and Re (largest change in eigenvalue location). For the other modes,

the sensitivity with respect to Re is larger at small values of Xe. The observations of the

root-loci can be summarized as follows.

• High frequency mode (= stator electrical mode): The effect of Xe and Re are in

opposite direction. Larger values of resistance Re push the mode into the left half

plane. Hence for more resistive external network, the high frequency electrical dy-

namics decay faster. Larger values of Xe push the mode into the right half plane.

Hence for more inductive external network, closed-loop control or series compen-

sation are required to reduce the effective value of Xe. The destabilizing effect

Xe is also encountered in synchronous machines where the synchronizing torque

decreases when Xe increases [127].

• Medium frequency mode (= rotor electro-mechanical mode, at zero slip): For non-

zero line resistance (Re > 0), when Xe is small the damping ratio is decreased

for increasing Xe; when Xe is large the damping ratio is increased for increasing

Xe. For a given value of Xe, larger Re makes the damping ratio smaller. This is
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Figure 4.9: Root loci of open-loop DFIG at zero slip for different values of Xe and Re

(Xt = 0.005 pu = transfo reactance, DR = damping ratio).

also encountered in synchronous machines where external line resistance introduce

negative, though negligible, damping in certain condition [127]. Generally, the

external resistance through which a synchronous machine is connected to the grid

offers positive damping. However, a synchronous machine with no damper winding

in a hydro power station may introduce negative damping when delivering light load

over a long distance line having relatively higher resistance to reactance ratio [128].

Negative damping situation is also found when a machine is supplying a large local

load partly and the other part is coming from the system [129]. The phenomenon of

inadequate damping torque was initially referred to as hunting, and was observed

for underloaded synchronous generators connected to the grid through long lines

[127].
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• Low frequency mode (= turbine mechanical mode): Considering the scaling of

the axes, this mode is relatively less sensitive to external line parameters. This

can be expected since it is an eigenvalue related mainly to turbine and drive train

mechanical dynamics while Xe and Re are electrical network parameters.

• Non-oscillating mode (= rotor electrical mode, at zero slip): This real eigenvalue is

closer to the imaginary axis when Xe is larger. Hence for more inductive external

network, the rotor electrical dynamics of the open-loop DFIG are slower. For the

tested range of system parameters this mode remains in the left half plane.

Fig. 4.10 shows the effect of the external line shunt susceptance (line charging) Be.

The effect is not significant. This shows that DFIG dynamics are more sensitive to the

line series impedance than shunt admittance.

Finally, grid strength does not affect significantly the participation factors. This is

shown in Table 4.10 where the participation factors are given for a weak grid and can

be compared with those of the base case (infinitely strong grid) in Table 4.2. As a result

although frequency and damping ratio change, the stator mode remains decoupled from

the other modes in both cases of strong and weak grids.

Table 4.10: Eigenvalues of open-loop DFIG at zero slip connected to a weak grid

Xt + Xe = 0.5, Re = 0.2, Be = 0.2 [pu on machine base]

Eigenvalues iqs ids e′qs e′ds ωr θtw ωt

λHF +158.39± j853.92 .50 .49 .00 .01 .00 .00 .00
λMF −12.02± j62.33 .00 .01 .00 .48 .49 .01 .00
λLF −0.52± j3.34 .00 .00 .00 .02 .00 .48 .49
λNO −2.26 .00 .00 .97 .01 .00 .00 .01

4.6 Summary

Results of the open-loop analysis give a description of the system oscillatory dynamics in

terms of range of oscillation frequencies, damping ratios, and time constants.

When the rotor voltage is constant (zero for the SCIG and non-zero for the DFIG),

the typical small-signal behaviour of the machine is stable and consists of a superposition
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Figure 4.10: Root loci of open-loop DFIG at zero slip for different values of Xe and Be

(Xt = 0.005 pu = transfo reactance).

of three types of oscillations: fast, medium and slow. The fast oscillations (∼50 Hz)

are associated with stator electrical dynamics. The medium oscillations (5∼25 Hz) are

due to rotor electrical and/or mechanical dynamics. The slow oscillations (0.1∼5 Hz) are

contributed by the shaft and turbine dynamics. Oscillations are damped faster when the

rotor speed is subsynchronous, resistances are higher and inductances smaller.

In extreme situations where the machine is very resistive or where the leakage in-

ductances are not positive, the oscillation frequencies may not be categorised as above

and the induction generator may be unstable. At large negative slip (supersynchronous

speed) with depressed voltage condition or when the external network is very inductive,

the machine is unstable and closed-loop controls are required. For the open-loop DFIG

and SCIG to be stable, the parameter L′s must be larger than 0.01.
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The sensitivity analysis to operating point shows that from a modal behaviour point of

view (eigenvalues location and participation factors), the SCIG is similar to the open-loop

DFIG at zero slip. The reason being that small-signal dynamics are mainly determined by

rotor speed and terminal voltage rather than levels of active and reactive power.
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Chapter 5

Analysis: Closed-loop behaviour

In this chapter, the closed-loop system is studied. One objective is to propose a tuning

method for generic PI-controllers in the rotor-side converter and blade-pitch controller.

The proposed control design consists essentially of two parts. In the first part, the RSC

controllers are tuned for subrated conditions (when output power is less than rated level).

In the second part, the pitch controller is tuned (with the RSC gains obtained in part one)

for rated conditions (when the output power is more than or equal to the rated level). In

this work, the d-axis control loop of the rotor side converter controls the reactive power.

Modal analysis is used to derive analytical expressions which impose limits on the

proportional gains of the RSC for stable operation. The robustness with respect to oper-

ating point, machine parameters and grid strength is verified.

A detailed explanation of the pitching activation and deactivation procedure is also

given.

The effect of the controllers on the system dynamical behaviour are identified by com-

paring the small-signal properties of the closed-loop DFIG to those of the open-loop case.

5.1 Closed-loop DFIG eigenvalues

To facilitate the discussion, the typical eigenvalues of a closed-loop DFIG with properly

tuned controls are first presented and compared with those of the open-loop case. The

tuning method of the rotor-side converter PI controllers is discussed in detail subsequently.

Table 5.1 shows the variables and functions of the DAE for the closed-loop DFIG.

Unlike in Table 4.1, the rotor voltages vqr and vdr are now algebraic variables that are
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determined by the controllers of the RSC. As described in Chapter 2, the dynamics of the

controllers are represented by the state variables Φiq, Φid, ΦTe, ΦQs.

Table 5.1: DAE variables and functions for the closed-loop DFIG

f(x, z, u) (2.135)-(2.141), (2.144), (2.145), (2.147), (2.148)
g(x, z, u) (2.154)-(2.155), (2.146), (2.149)

x [iqs ids e′qs e′ds ωr θtw ωt Φiq Φid ΦTe ΦQs]’
z [vqs γV s vqr vdr]’

u = u0 [vw β]’=[vw0 β0]’

Table 5.2 shows the typical eigenvalues of a well tuned closed-loop DFIG. Details

on the determination of the control parameters are given in the next subsections. The

following eigenvalues can be distinguished:

• Stator modes (λiqs , λids
)

• Rotor flux mode (λe′qse′ds
)

• Generator mechanical mode (λωrθtw)

• Turbine mechanical mode (λωt)

• Controller modes (λΦiq
, λΦid

, λΦTe
, λΦV s

)

Table 5.2: Eigenvalues of the DFIG with closed controls

q-axis gains: KTe = −1.5, TTe = 0.025, Kiq = −1.0, Tiq = 0.0025
d-axis gains: KQs = +1.0, TQs = 0.050, Kid = −0.5, Tid = 0.0050

λ = σ±jω f [Hz] ζ τ [s] Dominant states
−7452.2 0 1 0.00013 iqs

−2942.3 0 1 0.00034 ids

−8.64±j309.6 49.27 0.028 0.116 e′qs e′ds

−2.79±j11.16 1.78 0.243 0.358 ωr θtw

−0.189 0 1 5.29 ωt

−422.3 0 1 0.0024 Φiq

−223.1 0 1 0.0045 Φid

−23.38 0 1 0.043 ΦTe

−9.94 0 1 0.101 ΦQs

operating point: vqs = 1 pu, ωr = 0.955 pu

The stator modes are real and have large magnitude. The location of the stator eigen-

values depend on machine parameters, operating point and indeed control parameters. As

explained later, they are either far in the LHP or far in the RHP. The control parameters
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can be chosen so that the stator modes are placed at some desired location. Limit values

for the controller proportional gains can be determined to ensure that the stator modes are

in the LHP (see next subsection). It is noted that large magnitudes for the stator eigenval-

ues are not a problem (the problem is a positive sign as it means instability). In fact, large

negative real part is desirable since in such case the eigenvalue can be considered to be at

−∞ (relatively to the other eigenvalues) so that stator transients can be neglected i.e. so

that stator variables can be approximated as algebraic variables instead of state variables

(differential variables).

The rotor-flux mode is a high-frequency oscillating mode (40∼55 Hz). It is sensitive

to the model order (neglecting stator transients changes the location of this mode) and

controller parameters. If the controllers are not tuned properly, this mode is in the RHP.

Limit values for the proportional gains can also be determined to ensure that the rotor

flux is stable (see next subsection). It is seen that the high frequency mode (∼50 Hz)

is due to the rotor electrical dynamics. This is in contrast with the familiar result for

the synchronous generator, squirrel-cage induction generator and open-loop DFIG where

the 50 Hz mode is associated with stator dynamics. For the closed-loop DFIG, neglecting

stator transients does not remove the 50 Hz mode, though it increases slightly its damping.

The generator mechanical mode is an oscillating mode with frequency around 1∼2

Hz. As shown below, this mode is not significantly sensitive to the DFIG model order,

which means that a simplified model without the electrical transients (stator and rotor)

exhibits correctly this mode. This mode is a well damped mode for a wide range of

control parameters and operating points.

The turbine mechanical mode is a real eigenvalue in subrated condition (when pitch

control is inactive). The location of this mode is mainly determined by the rotor speed

and the torque control parameters. In rated condition (when pitch control is activated),

the turbine speed dynamics interact with those of the blade pitch angle and give rise to a

very low frequency mode whose damping depends on the pitch control parameters (see

subsection 5.5).

The controller modes may be real or highly damped complex-conjugates depending

on the control parameters. They may also be coupled with the generator or drive train
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dynamics depending on the control parameters.

From the above observations, the closed-loop system differs from the open-loop con-

figuration in several aspects. Apart from introducing controller modes and changing the

coupling of the machine dynamics (no electro-mechanical mode for the closed-loop sys-

tem), an important consequence of the converter controllers is that stator dynamics are

associated with large real eigenvalues while the 50 Hz mode is associated with rotor elec-

trical dynamics. As rotor electrical dynamics are not significantly coupled with the other

dynamics, both stator and rotor electrical dynamics should be neglected if the point of

interest is in low frequency oscillations as for power system stability studies (neglecting

stator transients only does not remove the 50 Hz oscillations).

5.2 Tuning issues of rotor-side converter

For each PI controller in Fig. 2.12 (page 89), the parameters K and T (proportional gains

and integral times) have to be selected for stability and desired performance. Root-loci

plots show that stability of the closed-loop DFIG is mainly decided by the proportional

gains (P-gains), while the integral times (I-times) influence mainly the speed of integral

action. In this section, the particular issues relating to stability are examined, hence the

discussion focusses on the P-gains. The effect of the I-times is reviewed in the next

section.

Below, three DFIG models are considered:

• Full-order model (FOM)

• 5th order model (5thOM): stator transients neglected

• 3rd order model (3rdOM): stator and rotor electrical transients neglected

In the full-order model, all electrical dynamics (stator and rotor) change with a finite

speed, and the DFIG has seven state variables (iqs, ids, e′qs, e′ds, ωr, θtw, ωt). In the 5th

order model, the stator variables are considered as algebraic, in other words they are

assumed to change instantaneously; the DFIG has five state variables (e′qs, e′ds, ωr, θtw,

ωt). In the 3rd order model, all electrical variables are considered as algebraic, and the

DFIG has three state variables representing the mechanical dynamics (ωr, θtw, ωt). Since

there are four controller states (Φiq, Φid, ΦTe, ΦQs), the model order of the closed-loop
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DFIG (number of DFIG states + number of controller states) is 11, 9 and 7 for the FOM,

5thOM and 3rdOM respectively.

5.2.1 Inappropriate tuning with simplified DFIG model

One particularity of the DFIG is that when tuning the controllers with the 5th or 3rdOM,

one may obtain a set of PI-gains giving stable results for the reduced order models, but

unstable for the full order model. This is shown in Table 5.3 where the gains were obtained

by plotting the root-loci of the 5thOM and choosing the values for obtaining all the modes

in the LHP.

Table 5.3: Example of inadequate PI-gains and corresponding eigenvalues

P gains: Kiq= 0.25, KTe= 2.5, Kid= 5, KQs= 10
I times: Tiq= 0.005, TTe= 0.05, Tid= 0.0025, TQs= 0.025

λ for FOM λ for 5thOM λ for 3rdOM Domin. states
−919.7 — — iqs

+1709.7 — — ids

+2.23±j312.4 −7.12± j286.5 — e′qs e′ds

(ζ= −0.007) (ζ= 0.025)
(f= 49.72) (f= 45.60)

−2.74± j10.89 −2.74± j10.89 −2.74± j10.89 ωr θtw

(ζ= 0.244) (ζ= 0.244) (ζ= 0.244)
(f= 1.73) (f= 1.73) (f= 1.73)

−0.19 −0.19 −0.19 ωt

−265.4 −228.9 −200.4 Φiq

−398.9 −399.9 −400.0 Φid

−33.53 −33.41 −33.74 ΦTe

−36.32 −36.33 −36.32 ΦQs

operating point: vqs = 1, ωr = 0.955

In Table 5.3, the DFIG is stable if stator or both stator and rotor electrical transients

are neglected (5th and 3rdOM). However, the DFIG is unstable if both stator and rotor

electrical transients are considered (FOM) in which case there are two eigenvalues in the

RHP. In other words, if stator variables change instantaneously, the DFIG is stable; if

however, stator dynamics have a small but non-zero time constant (which is more likely

to be the case in the real system), the DFIG is unstable. This is undesirable as stability is

sensitive to model order and only guaranteed in the ideal case where stator or both stator
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and rotor electrical variables change instantaneously.

The problem is due to the fast acting converter controls which make the electrical

dynamics (stator and rotor) very sensitive to the controller gains. Hence, it suggests that

PI-tuning should be done with the FOM. Simplifying the model should be done after

ensuring stability of both stator and rotor electrical transients.

In the following, three aspects of the DFIG behaviour are examined to explain why the

control parameters of Table 5.3 are not suitable. The first aspect relates to the relationship

between inputs and outputs in the steady-state and indicates what sign the P-gains should

have. The second aspect relates to the location of the stator modes and indicates limit

values (maximum or minimum) of the P-gains. The third aspect relates to the location of

the rotor electrical mode and indicates suitable range for the magnitude of the P-gains.

5.2.2 Steady-state behaviour: Sign of the P-gains

Steady-state charateristics of the DFIG were obtained in Chapter 3 where Fig. 3.13 (page

117) and 3.16 (page 119) showed the steady-state values of the controller inputs and

outputs of the q-axis (Te, iqr, vqr) and d-axis (Qs, idr, vdr) over the rotor slip range ±0.5.

Considering the q-axis variables in Fig. 3.16, for lower electrical torque (Te1 > Te2 >

Te3), the rotor q-axis current is higher (iqr1 < iqr2 < iqr3). This means that the process

gain from iqr to Te is negative and hence a negative proportional gain KTe should be

used because when the torque is too low (positive error) the reference current should be

decreased so that the torque eventually increases. Similarly, for higher rotor q-axis current

(iqr1 < iqr2 < iqr3), the rotor q-axis voltage is lower (vqr1 > vqr2 > vqr3). Hence the

proportional gain Kiq should also be negative. A similar exercise for the d-axis indicates

that KQs should be positive and Kid negative.

In Fig. 3.13 and 3.16, the direct or reverse relationship between controller input and

output holds over the whole slip range. Hence the conclusions regarding the sign of the

P-gains hold for both sub- and supersynchronous speed.
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5.2.3 Stator modes location: Limit value of the P-gains

The location of the stator modes can be evaluated analytically by applying Gershgorin

theorem [130] on the state matrix of the closed-loop grid connected DFIG. Gershgorin

theorem states that the eigenvalues of a matrix A are located in the union of the disks

in the complex plane which have as centre the diagonal elements of A and as radius

the sum of the off-diagonal elements (either row-wise or column-wise) [130]. Hence if

all diagonal elements have negative real part, all disks are centered in the LHP and the

eigenvalues are more likely to be in the LHP.

For the closed-loop DFIG full order model, the diagonal elements of the state matrix

corresponding to the differential equations of the stator states (iqs and ids) are:

a11 =
ωel

L′
s

(−R1+KmrrKiq(Kmrr−KTe

e′qs0

ωs

)−
[
∂vqs

∂iqs

]

0

)

a22 =
ωel

L′
s

(−R1+KmrrKid(Kmrr−KV s

[
∂vqs

∂ids

]

0

)−
[
∂vds

∂ids

]

0

)

where ∂vqs/∂iqs, ∂vqs/∂ids and ∂vds/∂ids depend on the external network. Obtaining

an analytical expression for these terms is not readily feasible. In a first step they can

be ignored, which is the same as assuming constant terminal voltage (i.e. the DFIG is

connected to an infinitely strong system). The effect of non-constant terminal voltage can

be checked subsequently with numerical computation of the eigenvalues and time domain

simulations. Hence:

a11 ≈ ωel

L′s
(−R1 + K2

mrrKiq −KmrrKiqKTe

e′qs0

ωs

) (5.1)

a22 ≈ ωel

L′s
(−R1 + K2

mrrKid + KmrrKidKQsvqs0) (5.2)

It is seen that a11 and a22 depend on the operating point (vqs0, e′qs0), the machine parame-

ters (R1, Kmrr, L′s), and the P-gains (Kiq, Kid, KTe, KQs). The dynamics of the DFIG

are such that the stator eigenvalues are relatively closer to a11 and a22 than to the other

diagonal elements of the state matrix. In Gershgorin framework, this is because a trans-

formation can be applied to the state matrix so that the disks centered at a11 and a22 are

disconnected from the remaining disks (see Appendix 7.2).

In other words, one can obtain a set of P-gains for some desired location of a11 and

a22, i.e. one can place the stator modes in some desired region of the left half plane around
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a11 and a22 by choosing the P-gains appropriately. E.g. for the q-axis stator mode to be

in the LHP around −T1 where T1 is real positive, i.e. for the condition a11 ≤ −T1 to be

satisfied, the threshold value (minimum or maximum) of the proportional gain KTe can

be obtained using (5.1) as:

if Kiq > 0 and e′qs0 > 0 → KTe ≥ KTe,th

if Kiq > 0 and e′qs0 < 0 → KTe ≤ KTe,th

if Kiq < 0 and e′qs0 > 0 → KTe ≤ KTe,th

if Kiq < 0 and e′qs0 < 0 → KTe ≥ KTe,th

(5.3)

where KTe,th =
ωs

e′qs0

(
1

KiqKmrr

(
L′sT1

ωel

−R1) + Kmrr) (5.4)

Similarly, for the d-axis stator mode to be in the LHP around−T2 where T2 is real positive,

i.e. for the condition a22 ≤ −T2 to be satisfied, one can obtain the threshold value of the

proportional gain KQs using (5.2) as:

if Kid > 0 → KQs ≤ KQs,th

if Kid < 0 → KQs ≥ KQs,th

(5.5)

where KQs,th =
1

vqs0

(
1

KidKmrr

(
L′sT2

ωel

+ R1)−Kmrr) (5.6)

Equations (5.3)-(5.6) give restrictions on the outer loop P-gains for some T1 and T2 as

function of inner loop P-gains and operating point. As the integral time of the current

controllers is in the order of milliseconds [93], a consistent choice for T1 and T2 is T1 =

T2 = 10000 which gives a time constant for the stator modes in the order of 1/10000 = 0.1

ms i.e. ten times faster than the current controller integral action (stator transients should

be faster so that they can be neglected).

Fig. 5.1 and 5.2 show the constraints on KTe and KQs for positive and negative Kiq

and Kid and for three operating points. The shaded areas show the values of propor-

tional gains that satisfy (5.3)-(5.6). It is seen that for stable stator modes, the q-axis gains

must have same sign, while the d-axis gains must have opposite sign. These conclusions

hold for the different speed and voltage conditions. From the steady state analysis (see

Subsection 3.3.2, 3.3.3), the correct combination is:

• Kiq < 0, KTe < 0 for the q-axis, and

• Kid < 0, KQs > 0 for the d-axis.
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Figure 5.1: Max/min values of KTe as function of Kiq for T1 = 10000. Continuous:
vqs=1, ωr=0.7; dotted: vqs=0.5, ωr=0.7; dash-dotted: vqs=1, ωr=1.1. Shaded area = values
that satisfy (5.3).

Figure 5.2: Max/min values of KQs as function of Kid for T2 = 10000. Continuous:
vqs=1, ωr=0.7; dotted: vqs=0.5, ωr=0.7; dash-dotted: vqs=1, ωr=1.1. Shaded area = values
that satisfy (5.5).

5.2.4 Rotor electrical mode location: Magnitude of the P-gains

Fig. 5.3 shows the root-loci of the rotor electrical mode for three sets of d-axis gains with

negative q-axis gains varied over some range. It is seen that neglecting stator transients

increases the sensitivity of the rotor electrical mode with respect to the P-gains (larger

eigenvalue displacement), and more importantly, the stability of the system is mainly

dependent on the d-axis gains, with smaller |Kid|, |KQs| being required for stable rotor

electrical dynamics (mode in the LHP).

The effect of model simplification depends on the control parameters. For larger d-

axis gain magnitudes (set III), the 5thOM (simplified model where stator transients are

neglected) gives more conservative location for the rotor electrical mode (more into the

right half plane) with respect to the FOM (stator transients represented). For smaller

d-axis gain magnitudes (set I), the opposite is true.

In addition, for the 5thOM, lower |KTe| (start of arrows) is better as it places the

modes more into the LHP. Hence, the range of P-gains that give good location of the rotor
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Figure 5.3: Root-loci of rotor electrical mode for FOM and 5thOM. Parameters varied
are: d-axis gains (I, II, III); q-axis gains: KTe=−1∼−20 (arrows), Kiq=−0.5,−1,−2,−10
(a, b, c, d). Operating point: Vs=1, Ptot=0.5, ωr=0.955.

electrical mode can be determined as e.g.:

• d-axis gains: Kid = −0.5∼−1, KQs = +0.5∼+1

• q-axis gains: Kiq = −0.5∼−2, KTe = −0.5∼−2

The choice of the P-gains within these ranges is discussed in the next section.

It is noted from Fig. 5.1 and 5.2 that for |Kiq|, |Kid|= 0.5∼1, the values |KTe|= 1∼2

and |KQs| ≈ 1 do not satisfy (5.3)-(5.6). The curves in Fig. 5.1 and 5.2 were obtained for

T1 = T2 = 10000 (stator modes about 10 times faster than 1 ms). For a reduced value

of T1 and T2 e.g. 3000 (stator modes about three times faster than 1 ms) the above lower

magnitudes of KTe and KQs are acceptable. This points out a trade-off between the time

constants of the stator and rotor electrical dynamics. Using small magnitudes of P-gains

is required for stable and fast decaying rotor electrical dynamics, however it makes the

stator dynamics slower relative to the current controller. As stator modes are far in the

LHP, it is more important to consider the location of the rotor electrical mode and hence

select limited magnitude for the P-gains.
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5.3 Proposed tuning procedure

From the issues discussed previously, the first steps of the DFIG PI-tuning procedure can

be summarized as:

• 1) Determine the sign of the P-gains with steady state characteristics.

• 2) Obtain limit values of the P-gains for some desired region of the stator modes

with (5.3)-(5.6).

• 3) Obtain ranges of the P-gains for stable rotor electrical mode with root-loci (pos-

sible trade off with step 2).

The present and following sections discuss the final steps:

• 4) Fine tune the P-gains and I-times to avoid oscillatory dq-coupling with eigen-

value and participation factors computation.

• 5) Check robustness to operating point and machine parameters with root-loci plots.

• 6) Check robustness to large disturbances with non-linear time-domain simulations.

The typical value of the integral times is in the order of 1 ms for the current controllers

and 10 ms for the outer power/torque controllers [93]. Hence Tiq and Tid may be chosen

within the range of e.g. 1∼5 ms and TTe and TQs within the range of e.g. 10∼50 ms. The

final choice of the PI-gains within the specified ranges is made with the following two

considerations.

In cascaded control, stability is improved when the inner loop is faster than the outer

loop [92]. Hence the gain magnitude of the inner loop controller should be smaller [92],

i.e. |Kiq|, |Kid| < |KTe|, |KQs|.
In addition, different gain magnitudes should be used in the d- and q-axis to avoid

oscillatory coupling between d- and q-axis dynamics. This is shown in Table 5.4 for

negative q-axis gains. Using |Kiq| = |Kid|, |KTe| = |KQs| (set (i)) gives dq-coupling for

both stator and current controller dynamics. Using |Kiq| 6= |Kid|, |KTe| 6= |KQs| (set (ii))

separates the dq-dynamics in two real modes. Using different I-times (set (iii)) separates
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Table 5.4: Oscillatory coupling between d- and q-axis dynamics

P-gains: (i) Kiq = −0.5, KTe = −1.0, Kid = −0.5, KQs = +1
(ii), (iii) Kiq = −1.0, KTe = −1.5, Kid = −0.5, KQs = +1

I-times: (i), (ii) Tiq = 0.0025, TTe = 0.025, Tid = 0.0025, TQs = 0.025
(iii) Tiq = 0.0025, TTe = 0.025, Tid = 0.0050, TQs = 0.050

λ for (i) λ for (ii) λ for (iii) Dom. states

−2686.9±j80.0 −7452.2 −7452.2 iqs

−2671.3 −2942.3 ids

−3.79± j308.8 −4.16± j309.2 −8.64± j309.6 e′qs e′ds

−2.77± j11.22 −2.79± j11.16 −2.79± j11.16 ωr θtw

−0.19 −0.19 −0.19 ωt

−480.14±j11.49 −423.6 −422.3 Φiq

−491.9 −223.1 Φid

−19.26 −23.38 −23.38 ΦTe

−19.85 −19.87 −9.94 ΦQs

operating point: |Vs|=1, ωr=0.955

the controller modes further so that oscillatory dq-coupling may be avoided for changing

operating conditions.

At this stage, a set of PI-gains satisfying the conditions of steps 1) to 4) of the proposed

tuning procedure can be obtained. An example is given in Table 5.5. The effect of the

integral times is shown in Table 5.6. The following observations can be made.

In Table 5.5, it is seen that simplifying the DFIG model influences significantly the

electrical modes only (iqs, ids, e′qs-e′ds). For power system studies where the focus is in

frequencies below 10 Hz, the 3rdOM whereby both stator and rotor electrical dynamics

are neglected, can be used as it preserves correctly the dynamics of interest. However,

as discussed above, an appropriate set of PI-gains giving stable results for the full order

model must be determined in the first place.

It is also seen that the high frequency mode (∼50 Hz) is due to the rotor electrical

dynamics. As seen from the dominant participation factors, this mode is associated with

the dynamics of the transient voltage e′qs and e′ds which are a function of the rotor flux

(equations (2.97) and (2.98) on page 85). In other words, the high frequency mode is due

to the dynamics of the rotor flux which is determined by the interaction of the stator and

rotor current flowing through the machine mutual inductance Lm and rotor inductance
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Table 5.5: Example of Adequate PI-Gains and Corresponding Eigenvalues

P-gains: Kiq= −1, KTe= −1.5, Kid= −0.5, KQs= +1
I-times: Tiq= 0.0025, TTe= 0.025, Tid= 0.005, TQs= 0.05

λ for FOM λ for 5thOM λ for 3rdOM Domin. states
−7452.2 — — iqs

−2942.3 — — ids

−8.64±j309.6 −14.46± j300.0 — e′qs e′ds

(ζ= 0.028) (ζ= 0.048)
(f= 49.27) (f= 47.75)

−2.79± j11.16 −2.79± j11.16 −2.79± j11.16 ωr θtw

(ζ= 0.243) (ζ= 0.243) (ζ= 0.243)
(f= 1.78) (f= 1.78) (f= 1.78)

−0.19 −0.19 −0.19 ωt

−422.3 −403.4 −399.5 Φiq

−223.1 −216.8 −198.8 Φid

−23.38 −23.42 −23.39 ΦTe

−9.94 −9.94 −9.94 ΦQs

operating point: |Vs|=1, ωr=0.955

Table 5.6: Effect of Integral Times on DFIG Modes

P-gains: Kiq = −1, KTe = −1.5, Kid = −0.5, KQs = +1
I-times: (i) Tiq = .0025, TTe = .025, Tid = .005, TQs = .05

(ii) Tiq = .0050, TTe = .050, Tid = .010, TQs = .10
(iii) Tiq = .0250, TTe = .250, Tid = .050, TQs = .50

λ for (i) λ for (ii) λ for (iii) Dom. states
−7452.2 −7681.2 −7855.3 iqs

−2942.3 −3059.7 −3147.5 ids

−8.64± j309.6 −11.15± j311.8 −12.11± j314.7 e′qs e′ds

−2.79± j11.16 −2.70± j11.22 −2.53± j11.08 ωr θtw

−0.19 −0.19 −0.19 ωt

−422.3 −205.5 −40.70 Φiq

−223.1 −105.5 −20.11 Φid

−23.38 −11.57 −2.31 ΦTe

−9.94 −4.97 −0.99 ΦQs

operating point: |Vs|=1, ωr=0.955

Lrr (definitions on pages 75, 76, 79). This is in contrast with the familiar result for

the synchronous generator, squirrel-cage induction generator and open-loop DFIG where

the 50 Hz mode is associated with stator dynamics. For the closed-loop DFIG, neglecting

stator transients does not remove the 50 Hz mode, though it increases slightly its damping.
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In Table 5.6, the controller modes (Φiq, Φid, ΦTe, ΦQs) are most affected. For I-times

twice/ten times bigger the magnitude of the controller modes are about twice/ten times

smaller i.e. the speed of the integrator action is twice/ten times slower. The other modes

are not significantly changed (relatively to their magnitude). Hence, integral times do not

affect stability.

5.4 Robustness verification

The above analysis describes the dynamics around a particular operating point for some

machine parameters and small disturbances. In this section, the effect of changing para-

meters and conditions on the eigenvalues of the closed-loop DFIG is examined.

5.4.1 Robustness to operating point

Table 5.7 shows the DFIG eigenvalues with the gains of Table 5.5 for different rotor

speeds. It is seen that for the wide range of operating conditions considered, the dynamical

characteristics of the system are preserved.

Table 5.7: Effect of rotor speed on the closed-loop DFIG Modes

Control parameters of Table 5.5 are used

ωr λiqs λids
λe′qse′ds

(ζ, f ) λωrθtw (ζ, f ) λωt

0.7 −7436.1 −2961.3 −6.49±j311.3 (.021,49.55) −2.62±j11.17 (.228,1.78) −0.138
0.8 −7444.4 −2953.5 −7.34±j310.7 (.024,49.44) −2.69±j11.16 (.234,1.78) −0.158
0.9 −7450.3 −2946.1 −8.18±j310.0 (.026,49.33) −2.75±j11.16 (.240,1.78) −0.178
1.0 −7453.7 −2939.4 −9.02±j309.3 (.029,49.23) −2.16±j11.18 (.190,1.78) −0.066
1.1 −7451.7 −2933.3 −9.86±j308.6 (.032,49.12) −2.16±j11.18 (.190,1.78) −0.072
1.2 −7443.6 −2928.2 −10.7±j308.0 (.035,49.02) −2.16±j11.18 (.190,1.78) −0.079

ωr λΦiq λΦid
λΦTe

λΦQs

0.7 −420.8 −220.4 −23.51 −9.95
0.8 −421.4 −221.4 −23.46 −9.94
0.9 −422.0 −222.5 −23.41 −9.94
1.0 −422.5 −223.6 −23.95 −9.93
1.1 −423.0 −224.9 −23.96 −9.93
1.2 −423.4 −226.2 −23.97 −9.93

For different rotor speeds, the only noticeable variation is in the mechanical turbine
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mode, which is closer to the imaginary axis for synchronous and super-synchronous speed

but remains stable. This means that for ωr ≥ 1 the rotational speed takes longer to reach

a new steady state value.

Table 5.8 and 5.9 show the effect of the terminal voltage and reactive power level

on the closed-loop DFIG modes. Again, the dynamical characteristics of the system are

preserved over the wide range of tested conditions.

Table 5.8: Effect of terminal voltage on closed-loop DFIG modes

Control parameters of Table 5.5 are used

Vs λiqs λids
λe′qse′ds

(ζ, f ) λωrθtw (ζ, f ) λωt

1.1 −7920.5 −3099.9 −8.23±j309.8 (.027,49.30) −2.79±j11.15 (.243,1.77) −0.189
1.0 −7452.2 −2942.3 −8.64±j309.6 (.028,49.27) −2.79±j11.16 (.243,1.78) −0.189
0.9 −6982.4 −2784.5 −9.10±j309.4 (.029,49.25) −2.79±j11.17 (.242,1.78) −0.189

0.75 −6271.2 −2547.6 −9.90±j309.2 (.032,49.21) −2.78±j11.20 (.241,1.78) −0.189
0.5 −5002.7 −2154.4 −11.8±j310.1 (.038,49.36) −2.75±j11.27 (.237,1.79) −0.191

Vs λΦiq λΦid
λΦTe

λΦQs

1.1 −421.1 −221.9 −24.30 −10.41
1.0 −422.3 −223.1 −23.38 −9.94
0.9 −423.8 −224.5 −22.35 −9.42
0.75 −426.6 −227.0 −20.53 −8.54
0.5 −434.7 −232.6 −16.41 −6.70

Table 5.9: Effect of reactive power level on the closed-loop DFIG modes

Control parameters of Table 5.5 are used

Qs λiqs λids
λe′qse′ds

(ζ, f ) λωrθtw (ζ, f ) λωt

−0.5 −7453.2 −2852.3 −9.26±j309.4 (.030,49.23) −2.79±j11.16 (.243,1.77) −0.189
−0.25 −7452.8 −2883.7 −9.03±j309.4 (.030,49.25) −2.79±j11.16 (.243,1.77) −0.189

0 −7452.4 −2915.4 −8.82±j309.5 (.029,49.26) −2.79±j11.16 (.243,1.78) −0.189
+0.25 −7452.1 −2947.5 −8.61±j309.6 (.028,49.28) −2.79±j11.16 (.243,1.78) −0.189
+0.5 −7451.8 −2979.7 −8.40±j309.7 (.027,49.29) −2.79±j11.16 (.243,1.78) −0.189

Qs λΦiq λΦid
λΦTe

λΦQs

−0.5 −422.2 −224.1 −23.38 −9.64
−0.25 −422.3 −223.8 −23.38 −9.75

0 −422.3 −223.4 −23.38 −9.85
+0.25 −422.3 −223.1 −23.38 −9.95
+0.5 −422.4 −222.8 −23.38 −10.05
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For different terminal voltage levels, the major variation is in the stator modes. Al-

though for depressed voltage their magnitude is reduced, they remain far in the LHP and

far from the current controller modes (i.e. they remain sufficiently faster).

For different reactive power outputs, all eigenvalues are virtually unchanged. For

a given terminal voltage, network parameters (series inductance and line charging) in-

fluence mainly the power factor of the DFIG. Hence, grid strength does not affect the

small-signal behaviour of the DFIG with reactive power control in the d-axis.

From the above observations, using fixed PI-gains in the rotor side converter is ac-

ceptable over the normal range of operating slip, terminal voltage and power factor in

subrated regime. In rated regime, the mechanical modes and controller modes are differ-

ent due to the pitching mechanism. The pitch controller has to be tuned appropriately to

ensure stability. This topic is discussed in the next section.

5.4.2 Robustness to machine parameters

Table 5.10 and 5.11 give the closed-loop DFIG eigenvalues with the gains of Table 5.5

for different machine inductances and resistances.

Table 5.10: Effect of inductances on the closed-loop DFIG modes

Control parameters of Table 5.5 are used; Lss=1.01Lm; Lrr=1.005Lss

Lm λiqs λids
λe′qse′ds

(ζ, f ) λωrθtw (ζ, f ) λωt

8 −3471.1 −1320.6 −9.24±j309.2 (.030,49.22) −2.79±j11.16 (.243,1.78) −0.189
6 −4804.5 −1866.7 −8.90±j309.3 (.029,49.22) −2.79±j11.16 (.243,1.78) −0.189
4 −7452.2 −2942.3 −8.64±j309.6 (.028,49.27) −2.79±j11.16 (.243,1.78) −0.189
2 −15364.4 −6144.7 −8.72±j311.0 (.028,49.49) −2.79±j11.16 (.243,1.78) −0.189
1 −31170.0 −12535.3 −9.51±j313.9 (.030,49.96) −2.79±j11.16 (.243,1.78) −0.190

Lm λΦiq λΦid
λΦTe

λΦQs

8 −452.7 −248.3 −23.38 −9.98
6 −436.5 −234.3 −23.38 −9.97
4 −422.3 −223.1 −23.38 −9.94
2 −409.8 −213.8 −23.38 −9.84
1 −404.0 −209.6 −23.39 −9.66

It is seen that for the wide range of values considered, the dynamical characteristics of

the system are preserved. The electrical modes are sensitive to the variation of inductances
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Table 5.11: Effect of resistances on the closed-loop DFIG modes

Control parameters of Table 5.5 are used; Rr=1.1Rs

Rs λiqs λids
λe′qse′ds

(ζ, f ) λωrθtw (ζ, f ) λωt

.0001 −7405.4 −2907.0 −9.13±j309.9 (.029,49.32) −2.79±j11.16 (.243,1.78) −0.189
.001 −7414.0 −2913.7 −9.02±j309.9 (.029,49.32) −2.79±j11.16 (.243,1.78) −0.189
.01 −7499.9 −2978.1 −8.18±j309.2 (.026,49.22) −2.79±j11.16 (.243,1.78) −0.189
.05 −7876.7 −3263.4 −4.66±j306.7 (.015,48.81) −2.79±j11.15 (.243,1.77) −0.189
.1 −8339.5 −3615.3 −1.07±j303.5 (.004,48.30) −2.79±j11.15 (.243,1.77) −0.189

Rs λΦiq λΦid
λΦTe

λΦQs

.0001 −424.2 −225.2 −23.33 −9.93
.001 −423.9 −224.8 −23.34 −9.93
.01 −420.5 −221.1 −23.44 −9.94
.05 −406.4 −206.2 −23.86 −9.97
.1 −390.9 −190.9 −24.33 −10.01

and resistances. For high inductances, the magnitude of the stator modes are reduced but

they remain far from the current controller modes in the LHP. For different resistances,

the DFIG modes are virtually unchanged when resistances are small. In very resistive

machine, the 50 Hz mode (rotor flux mode) has a lower damping ratio. Retuning of the

controllers may be required to keep the damping ratio at an acceptable levels.

Table 5.12 gives the closed-loop DFIG modes for different inertias. The mechanical

modes are sensitive to the variation of inertias. For heavier machines, the mechanical

dynamics are slower (smaller real part magnitude) as expected but remain stable.

5.4.3 Robustness to disturbance severity

Fig. 5.4 and 5.5 show the time domain response to a network disturbance (0.5 pu voltage

drop at the infinite bus during 100 ms) and wind speed variations (random disturbances

with increasing and decreasing mean values).

The responses were obtained by simulating the non-linear DFIG model (2.135)-

(2.149) in Simulink using the variable step solver ode23s. Results for both 5thOM and

3rdOM are shown. A zoomed view of the active power and rotor speed under network

disturbance is given in Fig. 5.6, where the FOM response is also shown.

It is seen that linear analysis gives a good description of the DFIG dynamical behav-
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Table 5.12: Effect of inertias on the closed-loop DFIG modes

Control parameters of Table 5.5 are used; Hg=0.1Ht

Ht λiqs λids
λe′qse′ds

(ζ, f ) λωrθtw (ζ, f ) λωt

12 −7453.1 −2942.3 −8.64±j309.6 (.028,49.27) −0.93±j6.53 (.141,1.04) −0.063
8 −7452.9 −2942.3 −8.64± j309.6 (.028,49.27) −1.40±j7.97 (.173,1.27) −0.094
6 −7452.7 −2942.3 −8.64± j309.6 (.028,49.27) −1.86±j9.17 (.199,1.46) −0.126
3 −7451.7 −2942.3 −8.64± j309.6 (.028,49.27) −3.72±j12.8 (.279,2.04) −0.252
1 −7447.8 −2942.3 −8.64± j309.6 (.028,49.27) −11.1±j21.0 (.468,3.34) −0.764

Ht λΦiq λΦid
λΦTe

λΦQs

12 −421.9 −223.1 −23.78 −9.94
8 −422.0 −223.1 −23.68 −9.94
6 −422.1 −223.1 −23.58 −9.94
3 −422.6 −223.1 −23.19 −9.94
1 −424.4 −223.1 −21.68 −9.94

iour. The 50 Hz and 1.75 Hz modes are most visible under network disturbance on the

electrical and mechanical variables respectively. For the different types of disturbance

and initial conditions, the system is stable, the stability is not model order dependent, and

the high frequency oscillations are damped out very quickly. Hence for power system

studies where fast electrical transients are not of interest, the 3rdOM can be used.
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Figure 5.4: DFIG response to network disturbance (0.5 pu voltage drop at infinite bus)
with the control parameters of Table 5.5 and constant wind speed.

5.5 Pitch control tuning

In the previous section, PI-gains of the rotor-side converter controllers were obtained for

suitable performance in subrated condition when pitch control is inactive (Table 5.5). In

the following, the pitch controller is tuned for operation in rated condition when the pitch

control is active.

5.5.1 Choosing PI-gains

For the generic control scheme described in Section 2.5, the control parameters of the

pitch controller are Kωr and Tωr where Kωr is the proportional gain and Tωr is the in-
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Figure 5.5: DFIG response to random wind speed variation with the control parameters
of Table 5.5 and constant infinite bus voltage.

tegral time (Kωr/Tωr is the integral gain) of the speed controller. In subrated condition,

desired pole location can be specified and the rotor-side converter control parameters are

determined accordingly. In rated conditions, Kωr and Tωr are tuned for the chosen set of

RSC PI-gains. When selecting the pitch control parameters, there is a trade-off between

minimizing blade pitching actions versus minimizing active power output variations as

shown below.

Before discussing how Kωr and Tωr are chosen, the typical eigenvalues of a well-

tuned DFIG in rated regime are described and compared to those of the subrated case.

Table 5.13 gives an example of typical modes of the closed-loop DFIG with pitch control

activated. Compared to Table 5.5 where eigenvalues are given for the closed-loop DFIG
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Figure 5.6: Zoomed view of Fig. 5.4

in subrated conditions, pitch control dynamics only affect the turbine mechanical mode.

In rated regime, the turbine dynamics (ωt) interact with the pitching mechanism (β) and

speed controller dynamics (Φωr). In Table 5.13, turbine and pitch dynamics interaction

results in a pair of complex conjugate eigenvalues, while speed controller dynamics give

an additional real mode.

The particular coupling between turbine, pitching and speed control dynamics (ωt, β,

Φωr) changes according to operating point and control parameters, however the resulting

eigenvalues are always one pair of complex conjugate and one real mode. Table 5.14

shows the participation factors of the dominant states of the eigenvalues related to ωt, β

and Φωr for different operating points. The coupling between the state variables changes,

but overall the complex conjugate mode is more related to the turbine and pitch actuator

dynamics (larger participation factors of ωt and β) while the real mode is more related to

the speed controller dynamics (larger participation of Φωr). In the remainder of this text,

these two modes are referred to as turbine-pitch modes.

In Table 5.13 above, the eigenvalues are given for Kωr = −150 and Tωr = 3. The

following paragraphs explain how these values are chosen with root-loci plots and time-

domain simulations. It is noted that the proportional gain Kωr is negative. As explained

in Subsection 5.2.2, this is because the process gain from pitch angle to rotor speed is

reverse acting (speed decreases when pitch angle increases).

Fig. 5.7 shows the root-loci of the turbine-pitch modes for Kωr = −10∼−300 with
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Table 5.13: Example of closed-loop DFIG eigenvalues in rated regime

RSC q-axis gains: KTe = −1.5, TTe = 0.025, Kiq = −1.0, Tiq = 0.0025
RSC d-axis gains: KQs = +1.0, TQs = 0.050, Kid = −0.5, Tid = 0.0050
Pitch controller gains: Kωr = −150, Tωr = 3

FOM 5th OM 3rd OM Dominant
λ = σ ± jω λ = σ ± jω λ = σ ± jω states
−7443.2 — — iqs

−2928.2 — — ids

−10.7± j308.0 −16.2± j295.8 — e′qs e′ds

(f = 49.02 Hz) (f = 47.08 Hz)
(ζ = 0.035) (ζ = 0.055)

−2.16± j11.14 −2.16± j11.14 −2.16± j11.14 ωr θtw

(f = 1.77 Hz) (f = 1.77 Hz) (f = 1.77 Hz)
(ζ = 0.190) (ζ = 0.190) (ζ = 0.190)

−0.34±j0.73 −0.34±j0.73 −0.34±j0.73 ωt β (Φωr )
(f = 0.117 Hz) (f = 0.117 Hz) (f = 0.117 Hz)
(ζ = 0.423) (ζ = 0.423) (ζ = 0.423)

−423.4 −406.5 −399.6 Φiq

−226.2 −222.2 −199.3 Φid

−23.97 −24.03 −23.97 ΦTe

−9.93 −9.93 −9.93 ΦQs

−0.43 −0.43 −0.43 Φωr (ωt β)

operating point: vqs=1 pu, ωr=1.2 pu, Ptot=1 pu, vw=15 m/s, β=14.9◦

Table 5.14: Participation factors of the turbine-pitch modes for different operating points

Operating point Turb.-pitch modes Participation factors
vw Ptot β ωr λ = σ ± jω ωt Φωr β

13 1 4.7 1.2
−0.19±j0.42 .41 .33 .22

−0.67 .24 .25 .49

15 1 14.9 1.2
−0.34±j0.73 .41 .19 .35

−0.43 .22 .63 .13

17 1 21.1 1.2
−0.40±j1.03 .41 .14 .40

−0.37 .14 .80 .05

19 1.08 23.9 1.3
−0.43±j1.28 .42 .11 .43

−0.35 .10 .87 .02

vw [m/s], Ptot [pu], β [◦], ωr [pu]

Tωr = 0.5, 1, 2 and 3. For stable operation (all eigenvalues in the left half plane), the

speed controller integral time constant Tωr must be larger than the pitch actuator time

constant Tβ . Larger magnitudes for the proportional gain Kωr give slightly higher os-

cillation frequencies. To decide which range of Kωr and Tωr is more appropriate, time
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Tβ = 1 s = pitching actuator time constant
operating point: vw = 15 m/s, β = 14.9◦, ωr = 1.2 pu, Ptot = 1 pu

Figure 5.7: Root loci of turbine-pitch modes for different values of pitch control parame-
ters Kωr and Tωr .
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domain responses to wind speed disturbances have to be examined in order to assess the

magnitude and duration of power output deviations (see below).

Fig. 5.8 shows the root-loci of the turbine-pitch modes for different wind speeds and

corresponding pitch angles. Considering the scaling of the axes, the modes are moder-

ately, but not considerably, sensitive to the initial wind speed. In the following, results of

eigenvalue computations are only shown for for vw = 15 m/s. It can be expected that for

other initial wind speed conditions the eigenvalues will not be significantly different.

vw [m/s], ωr [pu], β [deg], pitch controller parameters: Tωr = 3 s, Tβ = 1 s

Figure 5.8: Root loci of turbine-pitch modes for different values of wind speed vw and
pitch angle β.
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Fig. 5.9 shows the response of the blade pitch angle and total active power output to a

wind speed step increase from vw = 15 to 16 m/s at t = 5 s (rated wind speed is 12 m/s),

for different proportional gain magnitudes. Larger |Kωr | values give shorter settling time

and less overshoot in active power response. However, as predicted by the eigenvalues

shown in Table 5.15, the associated oscillation frequency is higher and damping ratio

lower. This means that there are more pitching direction changes, which is undesirable

from a mechanical fatigue viewpoint. A value of |Kωr | = 150 gives good compromise.

Table 5.15: Turbine-pitch modes for different values of Kωr

Kωr Tωr Turb.-pitch modes f [Hz] ζ τ [s]
−50 3 −0.17±j0.30 0.048 0.498 5.74

−0.76 0 1 1.31
−150 3 −0.34±j0.73 0.117 0.423 2.91

−0.43 0 1 2.34
−300 3 −0.37±j1.78 0.187 0.303 2.67

−0.37 0 1 2.70

operating point: vqs=1 pu, ωr=1.2 pu, Ptot=1 pu, vw=15 m/s, β=14.9◦

Fig. 5.10 shows the response of the pitch angle and active power output to a wind

speed step increase from 15 to 16 m/s, for different integral time constants. For a given

|Kωr |, larger Tωr (i.e. smaller integral gain) gives higher damping ratio for the oscillations,

as predicted by the eigenvalues shown in Table 5.16. However too large Tωr gives a longer

rising time. This is due to the real mode coming closer to the imaginary axis. A value of

Tωr = 3 gives good compromise.

Table 5.16: Turbine-pitch modes for different values of Tωr

Kωr Tωr Turb.-pitch modes f [Hz] ζ τ [s]
−150 2 −0.23±j0.77 0.123 0.288 4.31

−0.65 0 1 1.54
−150 3 −0.34±j0.73 0.117 0.423 2.91

−0.43 0 1 2.34
−150 5 −0.44±j0.74 0.118 0.514 2.25

−0.22 0 1 4.46

operating point: vqs=1 pu, ωr=1.2 pu, Ptot=1 pu, vw=15 m/s, β=14.9◦
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Figure 5.9: Closed-loop DFIG response to wind speed step increase from vw = 15 to 16
m/s at t = 5 s for different values of Kωr .
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Figure 5.10: Closed-loop DFIG response to wind speed step increase from vw = 15 to 16
m/s at t = 5 s for different values of Tωr .
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In the above figures, time domain responses are observed for a step increase in wind

speed. Below, responses to randomly varying wind speeds are examined. It is seen that

the conclusions regarding the gains Kωr and Tωr are maintained.

Fig. 5.11 shows the DFIG response to randomly varying wind speed for different

values of proportional gain Kωr . Smaller magnitudes of the gain (Kωr = −50) gives less

Figure 5.11: Closed-loop DFIG response (with deadzone) to randomly varying wind
speed for different values of proportional gain Kωr .

pitching direction changes but larger active power and speed deviations. The opposite

happens for larger magnitudes of the gain (Kωr = −300). As for the step response,

Kωr = −150 gives a good compromise.

Fig. 5.12 shows the DFIG response to randomly varying wind speed for different

values of integral time constant Tωr . It is seen that Tωr = 3 gives a good compromise
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Figure 5.12: Closed-loop DFIG response (with deadzone) to randomly varying wind
speed for different values of integral time constant Tωr .

between speed of power recovery and limitation of power overshoot.

From the above analysis, Kωr = −150 and Tωr = 3 are appropriate pitch controller

parameters as they give good performance for different operating conditions and different

types of disturbances. Since the pitching mechanism influences mainly the mechanical

modes (Table 5.13) and negligibly the electrical modes, it can be expected that the result

of this section will not be significantly sensitive to the values of the RSC control gains.

5.5.2 Activation and deactivation conditions

For smooth operation, transition conditions between subrated and rated regimes (i.e. pitch

control activation and deactivation conditions) have to be specified appropriately. In the

following, the procedure used in this work is described.
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The conditions are formulated with two main objectives: 1) unnecessary pitching

direction changes (which wear the components) should be minimized, and 2) wind speed

measurements (which may not be accurate enough for on-line control purpose [55], p. 69)

should not be used. To comply with the first objective, a deadzone and ‘up-pitch angle’

limits (βdz and βup) are used; more explanations are given below. To comply with the

second objective, the transition decisions are formulated as function of the initial pitch

angle and rotor speed measurements (β and ωr).

The initial pitch angle can fall in one of the following three status:

• A) Pitch control is initially inactive (β = 0◦)

• B) Pitch control is initially active, around rated wind speed (0 < β ≤ βup)

• C) Pitch control is initially active, well above rated wind speed (β > βup)

Depending on the initial pitch angle status, the measurement of the rotor speed gives the

final transition decision. For the above status, the decisions are as follows:

• A) Activate pitching if rotor speed becomes larger than rated speed (ωr > ωrated)

• B) Deactivate pitching if rotor speed becomes lower than rated speed (ωr < ωrated)

• C) Maintain pitch active irrespective of the rotor speed

The parameter βup is the value of pitch angle above which the pitch control remains

active irrespective of the rotor speed. This condition is specified to avoid unnecessary

transition between on/off status of the pitch controller after a decrease in wind speed in

rated conditions.

Fig. 5.13 gives the DFIG response to a wind speed decrease (with random distur-

bances) in rated regime and high wind speed conditions (i.e. wind speed is well above its

rated value, which is 12 m/s in the case study). Without the condition on βup the pitch

controller is activated and deactivated successively as the rotor speed reaches its reference

value (which is the rated speed i.e. 1.2 pu in the case study). From a mechanical fatigue

viewpoint the large number of on/off switchings (and hence pitching direction changes)

is undesirable. In addition, since the wind speed remains quite high, the pitch controller

should not be deactivated. These problems can be solved by specifying the condition on

βup, which gives a smoothed pitch angle variation.

The trade-off between minimizing pitching actions and power deviation during tran-
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Figure 5.13: Closed-loop DFIG response to wind speed decrease in rated regime
with/without condition on βup.
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sients can also be observed in Fig. 5.13. With the condition on βup, the variation in power

output is more important. However for the rather severe disturbance (drop in wind speed

of about 2.5 m/s within 5 seconds) the associated power deviation is limited to about

−2.5%∼+0.5%, which is a reasonable performance. It is noted that active power out-

put and rotor speed have virtually the same behaviour as the torque is controlled (by the

rotor-side converter) to be constant in rated condition.

The value of βup has to be chosen according to the deadzone. Since the deadzone

is by definition the amount of pitch angle error that is ignored, βup has to be larger or

equal to the deadzone value (in other words, if the pitch control is active, the actual pitch

angle must be above or equal to the deadzone). In addition, βup should not be too large

either because it gives more transition between on/off status when the wind generator is

operating near rated wind speed. This is shown in Fig. 5.14 where it is seen that for the

different values of βup, active power output is not significantly different but more on/off

transitions are required for βup = 0.5◦. In the remainder of this work, βup is equal to the

deadzone, i.e. βup = βdz = 0.1◦

5.5.3 Coordination of torque control

To avoid unnecessary power shedding in rated condition when the rotor speed drops be-

low rated value (e.g. due to wind speed disturbances and corresponding transients), the

electrical torque control of the rotor side converter has to be coordinated with the pitch

control.

In Subsection 2.4.1, it was explained that the torque reference is obtained as Te,ref =

Te,ref (ωr) (Fig. 2.13). If no additional condition is specified, the torque reference is

smaller than the rated torque if the rotor speed is below rated value (Te,ref = Koptω
2
r <

Te,rated if ωr < ωr,rated). Hence in rated regime, if the rotor speed drops below ωr,rated,

the electrical torque reference (and hence output power) will be decreased accordingly.

To avoid the problem, it suffices to take into account the initial pitch angle value. If

the pitch angle is initially larger than a threshold value i.e. if β > βth,Teref , the electrical

torque reference is maintained at Te,ref = Te,rated regardless of the rotor speed. It is

noted that the threshold βth,Teref used in the RSC controller (to coordinate the reference
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Figure 5.14: Closed-loop DFIG response to varying wind speed around rated value with
βup = 0.1, 0.3, 0.5.
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electrical torque) is not the same as the limit βup used in the pitch controller (to determine

the initial pitch angle status).

When choosing the value of βth,Teref , there is a trade off between smooth deactivation

in low wind speed and smooth deactivation around rated wind speed. This is shown in

Fig. 5.15 and 5.16. In the former case, larger value of βth,Teref gives a less abrupt change

in output power. In the latter case, a smaller value gives smaller drops in output power. A

good compromise for both cases is to choose βth,Teref = 0.001◦.

Figure 5.15: Deactivation of pitch control with final wind speed below rated value for
βth,Teref = 0.01, 0.001, 0.0001.
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Figure 5.16: Deactivation of pitch control with final wind speed around rated value for
βth,Teref = 0.01, 0.001, 0.0001.
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As a summary Fig. 5.17 and 5.18 show the flow charts for the pitch transition condi-

tions and the reference torque coordination.

Figure 5.17: Activation and deactivation conditions for the pitch controller.

Figure 5.18: Coordinated objective of the electrical torque controller.
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5.6 Summary

When tuning the RSC controllers, stator transients should be considered and model sim-

plification for stability studies should be done only once a set of appropriate control gains

has been obtained. The reason is that when neglecting stator transients, one may find

PI-gains giving stable result for simplified DFIG models, but unstable for the full order

model (where stator and rotor electrical transients are represented) which reflects more

realistic situations.

To address the issue, a tuning procedure of the RSC can be formulated to ensure

stable stator and rotor electrical dynamics. Firstly, the physics of the system (steady-

state gains) are examined to determine the correct sign of the controller gains for a given

definition of positive rotor current. Secondly, analytical expressions can be derived using

Gershgorin theorem to obtain limit values of the gains so that stator modes are placed at

some desired location. Thirdly, root-loci are observed to determine the allowed magnitude

of the controller gains for stable rotor electrical dynamics. Additional criteria on the PI-

gains to avoid oscillatory coupling between d- and q-axis dynamics can also be identified.

For properly tuned control parameters, the dynamical performance of the closed-loop

DFIG are preserved over a wide range of machine parameters and operating points.

For the pitch control tuning, there is a stability criterion that requires the speed con-

troller time constant to be larger than the actuators time constant (Tωr > Tβ). Eigenvalue

computations and time-domain responses can be used to determine the final values of

pitch control gains. The exercise consists essentially in weighting trade offs between

smoother power output and less pitching activities.

Finally, two important practical issues in DFIG control are the transition between

subrated and rated regimes, and the coordination of the RSC and pitch controllers. A suit-

able procedure for pitching activation and deactivation must be in place to ensure smooth

operation and avoid unnecessary on/off transitions due to disturbances. A suitable coor-

dination of the electrical torque reference must be in place to avoid unnecessary power

output drops in rated conditions due to disturbances.
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Chapter 6

Analysis: Multi-machine power system

The previous chapters discussed the behaviour, stability, and control of the DFIG. Small-

signal analysis was performed on a single-machine infinite bus system and the eigenvalues

of the DFIG were observed. In this chapter, the interest is in examining how replacing

synchronous generators by doubly-fed induction generators influences the oscillatory sta-

bility of a power system. The interest is now in the low frequency oscillations of the

synchronous generators. In particular, the discussion focuses on the eigenvalue corre-

sponding to the inter-area mode (IAM). The IAM is the eigenvalue that relates to the

speed-angle oscillation of the generators in an area against those in another area.

Fig. 6.1 [49] shows the considered study system. It is the two-area power system

model proposed in [131] to study the small-signal stability of power systems with re-

motely connected synchronous machines. The long lines between bus 5, 8 and 6 divide

the system in two areas. Within each area, generators are grouped together and modelled

by two equivalent machines.

To observe the effect of the generation mix on the oscillatory stability of the power

system, two scenarios are considered. In the first scenario, all generators are synchronous

machines. In the second scenario, the SG at bus 2 in Area I is replaced by a DFIG with

terminal reactive power control. For each of these two cases, the effect of the following

factors on the IAM is observed:

(a) the power generation sharing among the generators,

(b) the amount of active power transferred in the inter-tie lines.

The results show that with a DFIG at bus 2 instead of an SG can both improve or deterio-
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Figure 6.1: Two-area power system model

rate the IAM damping ratio depending on the operating point.

To facilitate the analysis, the small-signal properties (eigenvalues and participation

factors) of the study system is first discussed for a base case.

6.1 Small-signal properties of the study system

Table 6.2 to 6.5 show the complex eigenvalues (oscillating modes) of the study system

in Fig. 6.1 for the base case loadflow solution given in Table 6.1. In Table 6.2 the syn-

chronous machines are equipped with DC1A self-excited excitation systems (slow with

low gain). In Table 6.3 the synchronous machines are equipped with DC1A separately-

excited excitation systems (slow with low gain). In Table 6.4 the synchronous machines

are equipped with DC2A type excitation systems (slow with high gain). In Table 6.5 the

synchronous machines are equipped with ST1A type excitation systems (static and fast).

In the present work, there is no load compensation and no supplementary power system

stabiliser control loop. Parameters of the SGs and excitation systems are given in Ap-

pendix 3. In each table, the eigenvalues are given for the case where all four generators

are synchronous machines, and for the case where the generator at bus 2 is replaced by

a DFIG. The DFIG has the same MW and MVAr output as Gen 2 and hence the system

voltage profile, MW and MVAr outputs of the remaining SGs remain unaltered. For each

load, the model used is the constant power model since the interest here is to compare

study results where the same load model is used.

When all generators are synchronous machines the low frequency dynamics consist of
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speed-angle and exciter-field oscillations. These oscillations can be classified into intra-

area modes (oscillations within Area I and II) and inter-area modes (oscillations between

Area I and II).

Table 6.1: Base case loadflow solution

Bus nb Vmag Vang Pgen Qgen Pload Qload

1 1.0100 -0.0103 490 38 0 0
2 1.0100 -0.1177 210 10 0 -35
3 1.0100 0 492 39 0 0
4 1.0100 -0.1020 230 12 0 -35
5 0.9913 -0.2501 0 0 700 35
6 0.9910 -0.2427 0 0 700 35
7 1.0070 -0.0827 0 0 0 0
8 1.0008 -0.2475 0 0 0 0
9 1.0100 -0.0103 0 0 0 0

10 0.9985 -0.1802 0 0 0 0
11 0.9983 -0.1705 0 0 0 0

Vmag [pu], Vang [rad], P [MVA], Q [MVA]

Replacing an SG by a DFIG changes the dynamics of the area where the generation

mix is modified (the DFIG adds a mechanical mode contributed by its mechanical vari-

ables, and the intra-area SG oscillations are removed since there is just one equivalent SG

left), but the low-frequency dynamic properties of the overall system are essentially un-

changed. They are still composed of speed-angle and exciter-field oscillations within and

between areas. In particular, the inter-area speed-angle mode whose frequency and damp-

ing ratio are slightly modified is still contributed by the synchronous generators only. The

latter observation means effectively that the change in the IAM location is more related

to the removal of the SG at bus 2 (removal of its synchronous inertia and damping torque

contribution) rather than to the addition of the DFIG.

In other words, in multi-machine studies where the focus is on the impact of the gener-

ation mix (synchronous and non-synchronous) on the oscillating stability, the conclusions

are more related to removal of synchronous dynamics rather than to the introduction of

asynchronous dynamics. This underlines the fact that low frequency speed-angle oscilla-

tions are inherent to synchronous machines.

Fig. 6.2 shows the change in inter-area speed-angle oscillating mode for the 4 types

of SG excitation systems. For the considered operating point, removal of an SG (and
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replacement by a DFIG) leads to virtually unchanged damping ratio and slightly higher

frequency. The higher frequency can be explained by the removal of synchronous inertia

i.e. the equivalent generator in Area I is lighter and hence the resulting oscillation fre-

quency is higher. The negligible change in damping can be explained by the small change

in damping torque of the equivalent generator. In the following, it is shown that the mag-

nitude and direction of the change depend on the type of SG excitation system and the

operating point.

Figure 6.2: Base case inter-area mode damping ratio and frequency
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Table 6.2: Base case complex modes: SG with DC1A self exciter

Study system with 4 SG

Oscillating modes in Area I

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.64± j5.72 .112 0.91 Speed-angle ωr1, δ1, ωr2, δ2

−0.30± j0.37 .633 0.06 Exciter-field E′
q1, Rf1, E′

q2, Rf2

−5.52± j0.89 .987 0.14 Exciter-field E′
d1, Efd1, E′

d2, Efd2

Oscillating modes in Area II

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.62± j5.82 .107 0.93 Speed-angle ωr3, δ3, ωr4, δ4

−0.29± j0.36 .629 0.06 Exciter-field E′
q3, Rf3, E′

q4, Rf4

−5.58± j0.89 .987 0.14 Exciter-field E′
d3, Efd3, E′

d4, Efd4

Inter-area oscillating modes

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.21± j4.08 .050 0.65 Speed-angle ωr1, δ1, ωr3, δ3

−0.55± j0.56 .706 0.09 Exciter-field E′
q1, Rf1, E′

q3, Rf3

−1.40± j0.49 .945 0.08 Exciter-field E′
q1, Rf1, E′

q3, Rf3

−4.53± j0.77 .986 0.12 Exciter-field E′
d1, Efd1, E′

d3, Efd3

Study system with 1 DFIG and 3 SG

Oscillating modes in Area I

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−2.75± j11.16 .240 1.78 DIFG mech. mode ωr2, θtw2

Oscillating modes in Area II

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.61± j5.80 .105 0.92 SG speed-angle ωr3, δ3, ωr4, δ4

−0.29± j0.37 .625 0.06 SG exciter-field E′
q3, Rf3, E′

q4, Rf4

−5.57± j0.90 .987 0.14 SG exciter-field E′
d3, Efd3, E′

d4, Efd4

Inter-area oscillating modes

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.22± j4.23 .051 0.67 SG speed-angle ωr1, δ1, ωr3, δ3

−0.53± j0.55 .696 0.09 SG exciter-field E′
q1, Rf1, E′

q3, Rf3

−1.73± j0.96 .875 0.15 SG exciter-field E′
q1, Rf1, E′

q3, Rf3

−4.60± j0.78 .986 0.12 SG exciter-field E′
d1, Efd1, E′

d3, Efd3
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Table 6.3: Base case complex modes: SG with DC1A separate exciter

Study system with 4 SG

Oscillating modes in Area I

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.65± j5.71 .114 0.91 Speed-angle ωr1, δ1, ωr2, δ2

−5.28± j7.93 .554 1.26 Exciter-field Efd1, VR1, Efd2, VR2

−0.41± j0.49 .642 0.08 Exciter-field E′
q1, Rf1, E′

q2, Rf2

Oscillating modes in Area II

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.63± j5.80 .108 0.92 Speed-angle ωr3, δ3, ωr4, δ4

−5.29± j7.93 .555 1.26 Exciter-field Efd3, VR3, Efd4, VR4

−0.41± j0.48 .649 0.08 Exciter-field E′
q3, Rf3, E′

q4, Rf4

Inter-area oscillating modes

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.21± j4.06 .051 0.65 Speed-angle ωr1, δ1, ωr3, δ3

−0.41± j1.07 .356 0.17 Exciter-field E′
q1, Rf1, E′

q3, Rf3

−0.42± j0.78 .471 0.12 Exciter-field E′
q1, Rf1, E′

q3, Rf3

−5.18± j7.81 .553 1.24 Exciter-field Efd1, VR1, Efd3, VR3

−5.24± j7.88 .554 1.25 Exciter-field Efd1, VR1, Efd3, VR3

Study system with 1 DFIG and 3 SG

Oscillating modes in Area I

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−2.75± j11.16 .240 1.78 DIFG mech. mode ωr2, θtw2

Oscillating modes in Area II

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.62± j5.79 .107 0.92 SG speed-angle ωr3, δ3, ωr4, δ4

−5.29± j7.93 .555 1.26 SG exciter-field Efd3, VR3, Efd4, VR4

−0.41± j0.49 .645 0.08 SG exciter-field E′
q3, Rf3, E′

q4, Rf4

Inter-area oscillating modes

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.22± j4.21 .053 0.67 SG speed-angle ωr1, δ1, ωr3, δ3

−0.40± j1.10 .342 0.18 SG exciter-field E′
q1, Rf1, E′

q3, Rf3

−0.42± j0.77 .477 0.12 SG exciter-field E′
q1, Rf1, E′

q3, Rf3

−5.18± j7.80 .553 1.24 SG exciter-field Efd1, VR1, Efd3, VR3

−5.24± j7.88 .554 1.25 SG exciter-field Efd1, VR1, Efd3, VR3
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Table 6.4: Base case complex modes: SG with DC2A exciter

Study system with 4 SG

Oscillating modes in Area I

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.67± j5.71 .116 0.91 Speed-angle ωr1, δ1, ωr2, δ2

−0.23± j0.49 .418 0.08 Exciter-field E′
q1, Rf1, E′

q2, Rf2

−51.04± j30.74 .857 4.89 Exciter-field Efd1, VR1, Efd2, VR2

Oscillating modes in Area II

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.65± j5.81 .111 0.92 Speed-angle ωr3, δ3, ωr4, δ4

−0.22± j0.48 .420 0.08 Exciter-field E′
q3, Rf3, E′

q4, Rf4

−51.04± j30.74 .857 4.89 Exciter-field Efd3, VR3, Efd4, VR4

Inter-area oscillating modes

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.22± j4.07 .054 0.65 Speed-angle ωr1, δ1, ωr3, δ3

−0.40± j1.04 .359 0.16 Exciter-field E′
q1, Rf1, E′

q3, Rf3

−0.30± j0.77 .366 0.12 Exciter-field E′
q1, Rf1, E′

q3, Rf3

−50.79± j30.31 .859 4.82 Exciter-field Efd1, VR1, Efd3, VR3

−50.24± j30.55 .858 4.86 Exciter-field Efd1, VR1, Efd3, VR3

Study system with 1 DFIG and 3 SG

Oscillating modes in Area I

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−2.75± j11.16 .240 1.78 DIFG mech. mode ωr2, θtw2

Oscillating modes in Area II

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.64± j5.79 .110 0.92 SG speed-angle ωr3, δ3, ωr4, δ4

−0.22± j0.49 .414 0.08 SG exciter-field E′
q3, Rf3, E′

q4, Rf4

−51.04± j30.75 .857 4.89 SG exciter-field Efd3, VR3, Efd4, VR4

Inter-area oscillating modes

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.23± j4.22 .055 0.67 SG speed-angle ωr1, δ1, ωr3, δ3

−0.40± j1.06 .355 0.17 SG exciter-field E′
q1, Rf1, E′

q3, Rf3

−0.30± j0.75 .366 0.12 SG exciter-field E′
q1, Rf1, E′

q3, Rf3

−50.78± j30.30 .859 4.82 SG exciter-field Efd1, VR1, Efd3, VR3

−50.94± j30.57 .858 4.86 SG exciter-field Efd1, VR1, Efd3, VR3
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Table 6.5: Base case complex modes: SG with ST1A static exciter

Study system with 4 SG

Oscillating modes in Area I

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.71± j5.74 .123 0.91 Speed-angle ωr1, δ1, ωr2, δ2

−0.47± j0.63 .597 0.10 Exciter-field E′
q1, VR1, E′

q2, VR2

Oscillating modes in Area II

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.69± j5.83 .118 0.93 Speed-angle ωr3, δ3, ωr4, δ4

−0.45± j0.62 .592 0.10 Exciter-field E′
q3, VR3, E′

q4, VR4

Inter-area oscillating modes

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.25± j4.09 .062 0.65 Speed-angle ωr1, δ1, ωr3, δ3

−0.81± j0.85 .689 0.14 Exciter-field E′
q1, VR1, E′

q3, VR3

−1.33± j0.92 .824 0.15 Exciter-field E′
q1, VR1, E′

q3, VR3

Study system with 1 DFIG and 3 SG

Oscillating modes in Area I

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−2.75± j11.16 .240 1.78 DIFG mech. mode ωr2, θtw2

Oscillating modes in Area II

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.68± j5.82 .116 0.93 SG speed-angle ωr3, δ3, ωr4, δ4

−0.46± j0.62 .591 0.10 SG exciter-field E′
q3, VR3, E′

q4, VR4

Inter-area oscillating modes

λ = σ ± jω ζ fosc [Hz] Name Dominant states
−0.26± j4.24 .062 0.67 Speed-angle ωr1, δ1, ωr3, δ3

−0.79± j0.85 .682 0.13 Exciter-field E′
q1, VR1, E′

q3, VR3

−1.41± j0.92 .837 0.15 Exciter-field E′
q1, VR1, E′

q3, VR3
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6.2 Impact of power generation dispatch

Fig. 6.3 and 6.4 show how the oscillation frequency and damping ratio of the IAM are

affected by the generation dispatch in area I between generators at bus 1 and 2 supplying a

constant level of loads at bus 5 and 6. Table 6.6 and 6.7 give the active power generation,

load and transfer values for each case.

When the power transferred between the areas is low (Table 6.6 and Fig. 6.3), removal

of the SG at bus 2 (and replacement by a DFIG) gives less or more damping depending

on the generation sharing within Area I. For lower contribution of Generator 2 (Case

1) the damping ratio is deteriorated. For larger contribution of Generation 2 (Case 5)

the damping ratio is improved. From the participation factor analysis in the previous

section it was established that the IAM is characterised by the synchronous machines

on the system. Hence the deterioration or improvement is explained by the difference

between the equivalent synchronous machine in Area I (equivalent single synchronous

machine that would give the same dynamical behaviour seen from bus 5) before and after

replacement of the generator at bus 2. Before replacement, the equivalent synchronous

machine of area I is made of both SG1 and SG2, after replacement it is made of SG1 only.

For lower contribution of Generator 2 (Case 1), the equivalent SG of Area I operates

closer to its limits after replacement of the generator at bus 2. For higher contribution

of Generator 2 (Case 5), the equivalent SG of Area I operates closer to its limits before

replacement of the generator at bus 2. As the damping torque is diminished for machines

operating close to their limits, the damping ratio is deteriorated for Case 1 and improved

for Case 5 as the SG is being replaced by a DFIG.

When the power transferred between the areas is high (Table 6.7 and Fig. 6.4), the

same qualitative observations and explanations can be made.

The sensitivity of IAM to the operating point is greater when the SG are equipped with

static fast exciters. Again this is explained by the sensitivity of the resulting equivalent

SG of Area I which is greater when ST1A-type exciters are used as the resulting damping

torque is more sensitive to the operating point due to the higher forcing capability (larger

gain) and faster response (smaller time constant).
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Table 6.6: Active power generation, load and transfer for Fig. 6.3

Generation Load Transfer
Case Area I = Gen1 + Gen2 Area II = Gen3 + Gen4 Total = Load5 + Load6 II to I

1 700 = 630 + 70 726 = 496 + 230 1400 = 700 + 700 15
2 700 = 560 + 140 724 = 494 + 230 1400 = 700 + 700 13
3 700 = 490 + 210 722 = 492 + 230 1400 = 700 + 700 11
4 700 = 420 + 280 720 = 490 + 230 1400 = 700 + 700 9
5 700 = 350 + 350 719 = 489 + 230 1400 = 700 + 700 8

Figure 6.3: Effect of power generation sharing with low power transfer
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Table 6.7: Active power generation, load and transfer for Fig. 6.4

Generation Load Transfer
Case Area I = Gen1 + Gen2 Area II = Gen3 + Gen4 Total = Load5 + Load6 I to II

1 900 = 810 + 90 533 = 363 + 170 1400 = 700 + 700 175
2 900 = 720 + 180 530 = 360 + 170 1400 = 700 + 700 179
3 900 = 630 + 270 526 = 356 + 170 1400 = 700 + 700 182
4 900 = 540 + 360 524 = 354 + 170 1400 = 700 + 700 185
5 900 = 450 + 450 522 = 352 + 170 1400 = 700 + 700 187

Figure 6.4: Effect of power generation sharing with high power transfer
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The fact that the IAM damping ratio improves with the generation share of the DFIG

has also been observed in [74]. It is noted that in Fig. 6.3 and 6.4, the total load of the

system is the same. The only difference is in the amount of power transferred between the

areas. The fact that the IAM sensitiveness to power generation sharing does not change

qualitatively for different level of inter-tie power flows has also been observed in [100].

6.3 Impact of power transfer

Fig. 6.5 and 6.6 show how the oscillation frequency and damping ratio of the IAM are

affected by the level of intertie power transfer. Table 6.8 and 6.9 give the active power

generation, load and transfer values for each case.

The results confirm the observation made in the previous section. For lower generation

share of Generator 2 (Table 6.8 and Fig. 6.5), the damping ratio is deteriorated regardless

of the level of power transfer. This is explained by the fact that the equivalent SG in Area

I is operating closer to its limit after replacement of the generator at bus 2, reducing the

damping torque. For higher generation share of Generator 2 (Table 6.9 and Fig. 6.6),

the damping ratio is improved regardless of the level of power transfer. The reason being

that the equivalent SG in Area I is operating closer to its limit before replacement of the

generator at bus 2. The larger sensitivity for SG with ST1A-type exciters can also be

observed.

The studies in Table 6.8/Fig. 6.5 and Table 6.9/Fib. 6.6 show the effect of inter-

area power flow on the damping ratio for low and high power generation sharing of Gen2,

whereby outputs of Gen 1 and Gen 2 are simultaneously changed. Table 6.10/Fig. 6.7 and

Table 6.11/Fig. 6.8 show the effect of inter-area power flow with constant output of either

Gen 1 or Gen 2. Again it is seen that improvement or deterioration of the damping factor

is mainly determined by power dispatch between Gen 1 and Gen 2. In Table 6.10/Fig. 6.7

the power sharing of Gen 2 is low in all cases and the damping ratio is deteriorated when

replacing synchronous generation by non-synchronous generation. In Table 6.11/Fig. 6.8

the power sharing of Gen 2 is sufficiently high in case 1 and 2 to give a favorable change

in damping ratio. It is also seen that in Table 6.11/Fig. 6.8 the damping ratio is on overall

higher than in Table 6.10/Fig. 6.7 because the generators in Area I are operating at a lower
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capacity factor i.e. their operating point is less close to their limits.
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Table 6.8: Active power generation, load and transfer for Fig. 6.5

Generation Load Transfer
Case Area I = Gen1 + Gen2 Area II = Gen3 + Gen4 Total = Load5 + Load6 I to II

1 700 = 560 + 140 724 = 494 + 230 1400 = 700 + 700 -13
2 750 = 600 + 150 674 = 454 + 220 1400 = 700 + 700 36
3 800 = 640 + 160 625 = 415 + 210 1400 = 700 + 700 83
4 850 = 680 + 170 577 = 377 + 200 1400 = 700 + 700 131
5 900 = 720 + 180 529 = 339 + 190 1400 = 700 + 700 179

Figure 6.5: Effect of power transfer with low sharing of Gen2
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Table 6.9: Active power generation, load and transfer for Fig. 6.6

Generation Load Transfer
Case Area I = Gen1 + Gen2 Area II = Gen3 + Gen4 Total = Load5 + Load6 I to II

1 700 = 350 + 350 719 = 489 + 230 1400 = 700 + 700 -8
2 750 = 375 + 375 669 = 449 + 220 1400 = 700 + 700 41
3 800 = 400 + 400 619 = 409 + 210 1400 = 700 + 700 90
4 850 = 425 + 425 570 = 370 + 200 1400 = 700 + 700 138
5 900 = 450 + 450 521 = 331 + 190 1400 = 700 + 700 187

Figure 6.6: Effect of power transfer with high sharing of Gen2
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Table 6.10: Active power generation, load and transfer for Fig. 6.7

Generation Load Transfer
Case Area I = Gen1 + Gen2 Area II = Gen3 + Gen4 Total = Load5 + Load6 I to II

1 700 = 600 + 100 722 = 322 + 400 1400 = 700 + 700 -14
2 750 = 600 + 150 672 = 347 + 325 1400 = 700 + 700 36
3 800 = 600 + 200 623 = 373 + 250 1400 = 700 + 700 85
4 850 = 600 + 250 575 = 400 + 175 1400 = 700 + 700 134
5 900 = 600 + 300 527 = 427 + 100 1400 = 700 + 700 183

Figure 6.7: Effect of power transfer with constant Gen1 output
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Table 6.11: Active power generation, load and transfer for Fig. 6.8

Generation Load Transfer
Case Area I = Gen1 + Gen2 Area II = Gen3 + Gen4 Total = Load5 + Load6 I to II

1 700 = 400 + 300 716 = 316 + 400 1400 = 700 + 700 -9
2 750 = 450 + 300 668 = 343 + 325 1400 = 700 + 700 39
3 800 = 500 + 300 620 = 370 + 250 1400 = 700 + 700 87
4 850 = 550 + 300 573 = 398 + 175 1400 = 700 + 700 135
5 900 = 600 + 300 527 = 427 + 100 1400 = 700 + 700 183

Figure 6.8: Effect of power transfer with constant Gen2 output
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6.4 Summary

In this chapter, the effect of replacing an SG by a DFIG on the inter-area mode of a simple

power system has been investigated.

Participation factor analysis confirmed that the inter-area mode is contributed by the

state variables of the synchronous machines only. Hence, the change in damping is more

to do with the removal of the synchronous machines than with the introduction of the

DFIG.

Different test cases showed that the damping ratio is either improved or deteriorated

depending on the operating point of the area-equivalent SG before and after replacing one

of the SG within that area by a DFIG. The change in dynamics can be explained in terms

of change in damping torque of the area-equivalent SG before and after replacement. If

the area-equivalent SG is operated closer to its limits after replacement, the damping ratio

will be less.
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Chapter 7

Conclusion and future work

7.1 Conclusion

In this work, the dynamical behaviour of the DFIG has been analysed. Eigenvalue analysis

was chosen as the study method to obtain an analytical interpretation of observations

reported in the literature from experimental studies and time domain simulations studies.

The first part of the thesis reviewed in detail the modelling of the DFIG components

relevant for the power system dynamics. The second part presented the analysis of the

DFIG behaviour. Four contexts were considered:

• Steady-state behaviour

• Open-loop behaviour

• Closed-loop behaviour

• Interaction with sychronous machines

The results of the analysis provided insight regarding the modelling adequacy of the

DFIG, the control tuning of the controllers and its impact on the oscillatory stability of

the power system.

The effects of the closed-loop controls on the modelling adequacy were investigated

by comparing the eigenvalues of the SCIG and DFIG. From the observations it was con-

cluded that for the SCIG which operates at very small positive slip, a simplified electro-

mechanical model whereby stator dynamics are neglected was adequate. For the closed-

loop controlled DFIG, the controllers effectively separate the mechanical frequencies
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from electrical ones and there is no electro-mechanical mode. As opposed to the open-

loop control case, the oscillatory properties of the DFIG with closed-loop controls are not

significantly sensitive to the rotor speed. From the eigenvalue analysis, stator transients

are associated with real eigenvalues far away from the imaginary axis in the left half

plane, whereas the high frequency electrical mode is associated with the rotor electrical

transients. As a result the model of the DFIG with closed-loop controls can be further

simplified by neglecting both stator and rotor electrical transients. The response of the

simplified DFIG model is thus determined by the dynamics of the controllers and me-

chanical parts. For power system stability studies where the interest is in lower frequency

oscillations this was shown to be adequate.

Speed variability is possible due to the ac-dc-ac converter in the rotor circuit required

to produce rotor voltage at slip frequency. Using a back-to-back converter allows bidirec-

tional power flows and hence operation at both sub- and supersynchronous speed. For-

mulating the control algorithm of the converters in a synchronously rotating frame allows

decoupled control of the generator speed (or active power) and terminal voltage (or reac-

tive power). When tuning the RSC controllers, stator transients should be considered and

model simplification for stability studies should be done only once a set of appropriate

control gains has been obtained. The reason was shown be the fact that when neglecting

stator transients, it is possible to find PI-gains giving stable result for simplified DFIG

models, but unstable for the full order model (where stator and rotor electrical transients

are represented) which reflects more realistic situations. To address the issue, a tuning

procedure of the RSC was formulated to ensure stable stator and rotor electrical dynam-

ics.

The effect of replacing SGs by DFIGs on the oscillatory stability of the power system,

was investigated by observing the low frequency mode of the synchronous machines in a

generic two area power system model. The results showed that the oscillatory dynamics

of the power system depend significantly on the operating point of the SGs. Using a

DFIG instead of an SG may improve or deteriorate the inter-area mode damping ratio

depending on the operating point of the equivalent SG before and after replacement. If

the area-equivalent SG is operated closer to its limits after replacement, the damping ratio
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will be reduced. In addition participation factor analysis confirmed that the inter-area

mode is contributed by the state variables of the synchronous machines only. Hence,

the change in the IAM location is more related to the removal of the SG (removal of its

synchronous inertia, damping and synchronizing torque contribution) rather than to the

addition of the DFIG.

7.2 Future work

The following points are identified as potential future work based on the results of the

present thesis:

• Analysis of the dynamical behaviour of a multi-DFIG wind farm: The interests

would be to identify the dynamics that determine the overall behaviour at the com-

mon point of coupling, the effect of unequal wind speed distribution on the mechan-

ical and electrical power variation within the wind farm, the cases in which these

dynamics would be relevant (e.g. voltage control, power extraction optimisation)

and when they would need to be controlled.

• Control design with advanced control algorithm: In this thesis linear PI-controllers

were assumed and simulation results showed satisfactory response. One could in-

vestigate how non-linear control algorithm improve the behaviour of the DFIG and

whether the increase in complexity leads to much improved behaviour.

• Laboratory or field validation: this would be more relevant for testing complex

control algorithm to show the feasibility and validate the benefit with respect to

simpler alternatives.

• Control design with additional objectives e.g. to take into account the effects of

intra-wind farm phenomena, PSS functionality, Q/V-droop feature.

Further analysis of power system oscillatory stability was not mentioned as it was shown

that for such studies the dynamics of the DFIG are not essential, i.e. in such studies

the focus would be on the SGs instead. Other areas of power system stability such as
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voltage stability requiring fault-ride through capabilities from the DFIG and fault studies

are indeed very topical. In such studies, the focus would be on the control design.
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Appendix 1: DFIG parameters

System base values:
fB base frequency = 50 [Hz]
ωel electrical base speed = 2πfB [rad/s]
SBwt wind turbine base power = 5 [MVA]

Initial condition for loadflow (in [pu] on machine base):
Bus 1 (DFIG) = PV bus V1 = 1 or 0.9, P1 = 0.34 or 0.9
Bus 3 = infinite bus V3 = 0.98 or 0.88, θ3 = 0

Line 1-2 = transfo X = 0.05
Line 2-3 = line R = .0075, X = .03, ych = .0145833

DFIG parameters ([pu] on machine base):
ωs synchronous speed = 1 [pu]
Lm mutual inductance = 4 [pu]
Lss stator inductance = 1.01 Lm

Lrr rotor inductance = 1.005 Lss

Rs stator resistance = 0.005 [pu]
Rr rotor resistance = 1.1 Rs

R1 = Rs + R2

R2 = K2
mrrRr

Kmrr = Lm/Lrr

L′s = Lss − LmKmrr

Tr = Lrr/Rr

Ht turbine inertia = 4 [s]
Hg generator inertia = 0.1Ht

ksh drive train shaft stiffness = 0.3 [pu/el.rad]
csh drive train damping coefficient = 0.01 [pu.s/el.rad]

Turbine variables:
λ = (ωt[rad/s] R[m]) / (vw[m/s]) = tip speed ratio
β blade pitch angle [deg], = 0 deg in subrated conditions
vw wind speed [m/s]

Turbine parameters:



7.2 Future work 209

Prated turbine rated power = 5 [MW]
vwrated rated wind speed = 15 [m/s]
Cp(λ, β) performance coefficient

= c1

(
c2

λ+c8β
− c2c9

β3+1
− c3β − c4β

c5 − c6

)
...

... exp
(

−c7
λ+c8β

+ c7c9
β3+1

)
+ c10λ

c1 = 0.5176, c2 = 116, c3 = 0.4, c4 = c5 = 0, c6 = 5,
c7 = 21, c8 = 0.08, c9 = 0.035, c10 = 0.0068, see [108]

Cpmax maximum value of Cp when β is 0 deg, = 0.48
λopt tip speed ratio when Cp is Cpmax, = 8.10
R blade length [m]

=
√

Prated[W]/(0.5ρπCpmaxv3
wrated) = 40.05 [m]

ρ air density = 1.225 [kg/m3]

The rated rotor speed is chosen as the synchronous speed, hence:
npp generator pole pairs number = 2
ωrrated generator rated speed (mechanical) [rad/s] = ωel/npp

ωtrated turbine rated speed [rad/s] = vwratedλopt/R
ngb gearbox ratio = ωrrated/ωtrated = 51.78
TmB turbine base torque = ngbPrated/ωrrated

Kopt = 0.5ρπR5Cpmaxω
3
trated / (λ3

optPrated)
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Appendix 2: Gershgorin Theorem

Gershgorin theorem states that the eigenvalues of a complex matrix A will be located in

the regions of the complex plane defined by a set of disks [130]. The disks have as center

the diagonal elements of A and as radius the sum of the magnitude of the off-diagonal

elements in a same row (or same column). If the disks form two disconnected sets, the

number of eigenvalues in each set is the number of disks in the set. As an example, the

following 2x2 matrix is considered:

A =

(
a11 a12

a21 a22

)
(7.1)

The eigenvalues of A are in the union of the disks Drow1 (center a11, radius |a12|) and

Drow2 (center a22, radius |a21|), or equivalently in the union of the disks Dcol1 (center a11,

radius |a21|) and Dcol2 (center a22, radius |a12|). If A is transformed to B = T−1AT ,

where

T =




√∣∣∣a21

a22

∣∣∣ 0

0 1


 , B =




a11 a12

√∣∣∣a21

a12

∣∣∣

a21

√∣∣∣a12

a21

∣∣∣ a22




the eigenvalues are the same and the Gershgorin disks are identical row-wise and column-

wise (same radius): D1 has center a11 and radius
√
|a12a21|, D2 has center a22 and radius

√
|a21a12|. If the distance between the disks centers is sufficiently large, i.e. if |a11 −

a22| > 2
√
|a12a21|, D1 and D2 are disconnected. If in addition a11 is large and negative,

D1 is completely in the LHP as illustrated in Fig. 7.1.

For the closed-loop DFIG full-order model the elements in the first two rows of Ac

(corresponding to the differential equations of iqs and ids) have larger magnitudes than

the elements of the remaining rows (due to the factor ωel/L
′
s where L′s = L2

ss − L2
m/Lrr

is very small). This means that the Gershgorin disk centers a11 and a22 (corresponding
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Figure 7.1: Gershgorin disks of the 2x2 matrix B = T−1AT

to the rows and columns of iqs and ids) are far from the remaining centers. They can be

in the LHP or RHP depending on the control parameters. By imposing a11 < −T1 and

a22 < −T2 (i.e. by imposing the disk centers to be far in the LHP), a transformation T can

be found so that the Gershgorin disks of B = T−1AT is made of two disconnected sets,

one of which contains a11 and a22 and is completely in the LHP. This ensures that stator

dynamics are stable. The other set of disks is closer to the imaginary axis and covers

partially the RHP. The corresponding eigenvalues are the mechanical modes of the DFIG

which are stable and hence in the LHP.
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Appendix 3: Two-area power system
parameters

System base values:
fB base frequency = 50 [Hz]
ωel electrical base speed = 2πfB [rad/s]
SBsys system base power = 100 [MVA]
SBgen1 base power of generator at bus 1 = 1000 [MVA]
SBgen2 base power of generator at bus 1 = 500 [MVA]
SBgen3 base power of generator at bus 1 = 1000 [MVA]
SBgen4 base power of generator at bus 1 = 500 [MVA]

Transformer parameters in [pu] on machine base:
Line 1-7 = transfo X = 0.15
Line 3-11 = transfo X = 0.15
Line 2-9 = transfo X = 0.15
Line 4-10 = transfo X = 0.15

Line parameters in [pu] on system base:
Line 7-9 = line R = .0025, X = .02, ych = .04375
Line 10-11 = line R = .0025, X = .02, ych = .04375
Line 9-5 = line R = .001, X = .01, ych = .0175
Line 6-10 = line R = .001, X = .01, ych = .0175
Line 5-8 = line R = .011, X = .11, ych = .1925
Line 5-8 = line R = .011, X = .11, ych = .1925
Line 5-8 = line R = .011, X = .11, ych = .1925
Line 8-6 = line R = .011, X = .11, ych = .1925
Line 8-6 = line R = .011, X = .11, ych = .1925
Line 8-6 = line R = .011, X = .11, ych = .1925
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SG parameters in [pu] on machine base [49]:
Rs 0
Xd 1.8
X ′

d 0.3
Xq 1.7
X ′

q 0.55
T ′

do 8
T ′

qo 0.4
H 6.5

SG exciter in [pu] on machine base:

KE TE asat bsat KA TA KF TF TB TC

DC1A self [49] * 0.36 .0056 1.075 20 0.055 0.125 1.8 - -
DC1A sep [121] 1 0.314 .0039 1.555 20 0.2 0.063 0.35 - -
DC2A [132] 1 1.33 .0373 1.1435 300 0.01 0.1 0.675 - -
ST1A [132] - - - - 200 - - - 10 1

1. DC-Exciters

DC-exciters are nowadays rarely employed. In Great Britain, the last one was decom-

missioned in the early 70s. In the US and the rest of the world, a large number were still

in use in the early 90s [132]. DC-exciters are classified into three categories according to

the type of regulator they use [132]:

• DC1A: continuous regulation with mechanical and rotating amplifiers (self or sep-

arate).

• DC2A: continuous regulation with solid-state amplifiers (most advanced)

• DC3A: discontinuous regulation (most archaic)

The oldest DC-exciters had non-continuous regulators (DC3A). Then with the devel-

opment of mechanical and rotating amplifier equipment, continuous regulators appeared

(DC1A). Finally, solid-state devices allowed a third generation of DC exciters with larger

regulator limits (DC2A). A typical model of DC-excitation system with automatic voltage

regulator is shown in Fig. 7.2 [132]. The main components are:

• Exciter: rotating DC-machine with iron saturation (KE , TE , SE)
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• Regulator: amplifies the voltage error signal (KA, TA)

• Exciter system stabiliser: seldom used when transient gain reduction is used [133]

(KF , TF )

• Transient gain reductor: normally the lead time constant (TC) is smaller than the

lag time constant (TB) so that the effect is to reduce high frequency gain [133];

otherwise TB and TC represent equivalent time constants inherent to the voltage

regulator [132]

• Transducer: senses the terminal voltage (TR)

Figure 7.2: Slow exciter: DC-type exciter model

The output of the system is the field voltage Efd. The inputs are the terminal voltage

Vt, the PSS signal VS if applicable, and the reference set point Vref . The system in Fig.

7.2 has 5 states variables:

Efd = DC-machine state

VR = regulator state

Rf = (KF /TF )Efd−VF = exciter system stabiliser state referred to as rate feedback

xTGR = ∆Vo − (TC/TB)∆Vi = transient gain reductor state

VC = voltage transducer and/or load compensator (not shown) state

The corresponding differential equations are:
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dEfd/dt = (1/TE)(−Efd + KE(VR − Vx))

dVR/dt = (1/TA)(−VR + KA∆Vo)

dRf/dt = −Rf/TF + (KF /T 2
F )Efd

dxTRG/dt = −xTRG/TB + (1/TB)(1− TC/TB)∆Vi

dVC/dt = (1/TR)(−VC + Vt)

In steady-state, VF and VS (outputs of the exciter system stabiliser and PSS respec-

tively) are zero. The TGR time constants TB, TC are usually small enough to be ne-

glected [132]. The exciter gain is KE = 1 when the exciter system is separately excited.

For self-excited excitation system, KE is computed so that VR = 0; however if KE is

given, a fixed shunt field rheostat is assumed and KE should not be recomputed [132].

Self-excited exciters are more common [49]. In the present work, the delays of the volt-

age transducer are considered as negligible, there is no load compensation, and no PSS.

2. Static exciters

In static-type exciters, the excitation voltage (and sometimes current) is rectified by

controlled or non-controlled rectifiers. Static-type exciters are classified into three cate-

gories according to the type of rectifier they use [132]:

• ST1A: potential-source controlled rectifier

• ST2A: compound-source (V and I) rectifier

• ST3A: potential or compound-source rectifier with voltage control loop (field volt-

age control linearises exciter control and makes output independent of system dis-

turbances)

Fig. 7.3 shows a typical model of fast excitation systems with transient gain reduction

(TGR) [132]. The main components are:

• Automatic voltage regulator (KA, TA)

• Filter for transient gain reduction (TC , TB)
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• Filter for transient gain increase (TC1, TB1) - more rarely employed

• Transducer for terminal voltage measurement and/or compensation (TR)

• Transient feedback stabilizer (KF , TF ) - seldom used when TGR is used

• Field current limiter (KLR) - optional

Figure 7.3: Fast exciter: Static-type exciter model

In static excitation systems, the excitation power comes from the generator terminal

or auxiliaries through transformers and regulated by rectifiers. The maximum excitation

voltage (Efd,max) depends directly on the generator terminal voltage and also on the field

current. When limits are modelled, the positive limit can be represented as a linear func-

tion of Ifd. For the negative limit, the Ifd term would not be included. The exciter time

constant TA is very small, so that exciter stabilizer may not be needed. Usually, TGR is

used in either forward path (TC , TB) or feedback path (KF , TF ). For most systems, the

way the firing angle is derived results in a linear input output relationship for the voltage

regulator (KA). Static-type exciters have very high forcing capability with high ceiling

voltage. An additional field current limiter may be required to protect the exciter and

generator rotor.
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