
 1

Abstract—Deaf people want to communicate remotely

with sign language. Sign language requires sufficient

video quality to be intelligible. Internet-based real-time

video tools do not provide that quality. Our approach is

to use asynchronous transmission to maintain video

quality. Unfortunately, this entails a corresponding

increase in latency. To reduce latency as much as

possible, we sought to adapt a synchronous video codec

to an asynchronous video application. First we compared

several video codecs with subjective and objective

metrics. This paper describes the process by which we

chose x264 and integrated it into a Deaf telephony video

application, and experimented to configure x264

optimally for the asynchronous environment.

SATNAC Classification: Innovation and Regulatory –

Telecommunications Developments and Inventions

Keywords: H.264, x264, asynchronous, latency, Deaf

telephony, Quality of Service, video

I. INTRODUCTION

Deaf people have access to information and

communication technology (ICT) even though they are

limited by their deafness to non-audio ICT. The MobileASL

project provided the Deaf people with real time sign

language communication over cellular telephones using the

most popular and newest video codec—H.264 [1]. The

H.264/AVC standard was first published in 2003 and was

built on previous standards like MPEG-2 and MPEG-4 [11].

H.264 offered better compression, transmission and storage

of video. In comparison to other sophisticated codecs like

DivX and XviD, H.264 has been adopted for much

synchronous communication, including IPTV, due to its low

bit rate transmission.

In most cases, synchronous video based on these codes is

not good enough for intelligible real-time sign language

communication. This paper describes a project with the goal

to improve Deaf video communication by adapting

synchronous codecs for an asynchronous exchange of video

where quality of the sign language video is improved at the

expense of some additional delay. The intention is to

minimise that delay as much as possible while retaining as

much video quality as possible to support sign language.

Thus, this paper explains how to find the most likely codec

candidate to adapt for asynchronous Deaf video telephony.

The paper is organized as follows. Section II provides

some background on the project. Section III provides a

survey of related work. Section IV states the motivation of

the approach in terms of project goals. The implementation

process is described in section V. The experimental process

of testing, data collection and analysis is presented in

section VI. Finally, conclusions and future work are

discussed in sections VII and VIII, respectively.

II. BACKGROUND

For several years, we have worked with the Deaf

Community of Cape Town (DCCT), a Deaf NGO situated in

Newlands, Cape Town. The Deaf would like to

communicate with their own language—sign language. Sign

language video consists of detailed movements associated

with facial expression, mouth shape and figure spelling from

the point of perceptual view [9]. Hence, it demands much

better quality than that offered by tools like Skype and

Camfrog.

Deaf users currently use these tools at DCCT, but they

complain about the size of video pictures, blurring of fast-

speed motion, and jerkiness of some sequences.

Synchronous video communication routinely consumes

fifteen to thirty frames per second in order to provide a

decent frame rate with minimal delay. This is adequate for

hearing users but Deaf users are more concerned with

picture quality than with delay since a tiny visual gesture

may be the key to understanding an entire sequence.

Therefore asynchronous communication offers a way to

improve quality.

We piloted asynchronous video telephony for the Deaf in

2006 [7]. It was a peer-to-peer asynchronous video

communication tool implemented in Java Media Framework

(JMF). We used the JPEG codec supported by JMF. The

quality of the video was deemed (by users) to be acceptable,

but the delay also increased. That delay was unavoidable

due to the recording and playing processes but was

somewhat controllable by the users. The only real

opportunities to decrease delay were to speed up the video

compression and transmission.

III. RELATED WORK

Video codecs have worked in two ways: temporal and

spatial compression. Both schemes achieved “lossy”

compression; meaning redundant or unnoticeable (to the

viewer) information was discarded. In addition, all

discarded information was non-retrievable.

Temporal compression dealt with related information that

appeared in different frames and was not necessarily rebuilt

for continuity to human eyes, such as background relative to

foreground. In such cases, the compression algorithm

compared the first frame, known as a key frame, with the

Adapting x264 to Asynchronous Video Telephony

for the Deaf

Zhenyu Ma and William D. Tucker

University of the Western Cape, Computer Science Department

Private Bag X17, Bellville 7535 South Africa

Phone: +27 21 959 3010 Fax: +27 21 959 1274 Email: {zma, btucker}@uwc.ac.za

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of the Western Cape Research Repository

https://core.ac.uk/display/62633464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

next. The changed information was kept and a large portion

of the file was deleted. If the scene changed, the algorithm

tagged another key frame for the new scene and continued

the process until the last frame was reached.

Spatial compression used a different approach to delete

information that was common to the entire file or an entire

sequence within the file. The algorithm also looked for

redundant information, but it defined an area in terms of

coordinates instead of indicating each pixel in the area. This

approach originated from image processing where the

encoders only considered the data that was contained within

a single picture and bore no relationship to other frames in a

sequence.

A. DivX and XviD

Modern video codecs require flexibility, efficiency and

robustness [5]. Both DivX and XviD, based on the MPEG-4

standard, met these demands. They originated from

OpenDivX, and then broke into two branches until DivX

became commercial software (www.divx.org). XviD

remained an open source effort (www.xvid.org).

The DivX codec implemented lossy MPEG-4 Advanced

Simple Profile (ASP), where quality was balanced against

file size. DivX has proven quite popular, with releases for

Windows, Linux and Mac. Recently, DivX also released

DivX Web Player that provided 720 pixels HD playbacks

live inside major web browsers.

While DivX has long been renowned for its excellent

video quality, its counterpart equivalent XviD offers even

more advanced quality. Founded in 2001, early XviD

implemented MPEG-4 Simple Profile (SP) de/encoding.

XviD 1.0 introduced MPEG-4 ASP compression including

advanced coding tools like B-frames, quarter-pixel motion

compensation and so forth. In later versions, additional

features included MPEG-4 advanced video coding, high

profile and dramatic compression performance advances.

B. H.264 and x264

The latest well-known standard was H.264, developed by

the Joint Video Team (JVT) [5] and its full name was

MPEG-4 AVC, Advanced Video Coding defined in MPEG-

4 Part 10 [2]. With a high compression ratio, flexibility and

extensibility, many applications have adopted the H.264

standard. In comparison to previous standards, H.264’s

compression achieved over two times than that of MPEG-2

and almost double than that of MPEG-4 [16]. Meanwhile,

the penalty was increased CPU power and the amount of

time required.

H.264 employed techniques inherited from previous

standards, such as basic video coding functions, motion

estimations, motion compensations, transformation and

quantisation. The basic structure of H.264 was motion-

compensated transform, based on a block coding approach

that divided a frame into macro blocks (MB). Additional

features were variable block-size motion compensation with

the block size as small as 4x4 pixels[11], more complex

intra-frame compression, multiple reference frames, B-

frame as reference and enhanced entropy coding methods—

Context-Adaptive Variable-Length Coding (CAVLC) and

Context-Adaptive Binary Arithmetic Coding (CABAC).

x264 was an open source encoder of H.264. In other

words, H.264 was the standard while x264 was a product

that implemented H.264. x264 has been used in many

popular applications such as ffdshow, ffmpeg and

MEncoder. According to a recent study at Moscow State

University (MSU), x264 showed better quality than several

commercial H264/AVC encoders [11]. Other results proved

that the x264 codec yielded significantly better subjective

quality than other widespread codecs such as DivX, XviD

and WMV [14]. x264’s high performance is ascribed to its

flexibility in rate control, motion estimation (ME), MB

mode decision, quantisation and frame type decision

algorithms.

C. MobileASL Project

 MobileASL, a Deaf telephony project, employed x264

as a video encoder on a cell phone to give the Deaf people

access to real-time mobile communication in their preferred

language [1]. The proposed outcome of the MobileASL

project was to maintain the intelligibility of sign language

communication while maximally compressing the video

sequence for stringent rate constraints and effectively

simplifying the compression algorithm enough to reduce

power consumption [2].

The MobileASL project focused on a Region of Interest

(RoI) encoding process that contributed to a low bit rate for

real-time transmission. This kind of encoding made for a

differential resolution within the frame; that is, high

resolution for the RoI parts and low resolution for non-RoI

parts. The research utilised an eye tracker to collect eye

movements of Deaf people watching sign language videos.

Over 95% of the gaze points fell within the signer’s face

region, specifically on or near the lower part of the face [7].

It turned out that subtle changes in facial expression

substantially changed the meaning of a hand gesture. For

example, a gaze in a particular direction indicated different

pronouns and raising one’s eyebrows indicated a question.

D. Quality of Service

Subjective quality measurement has been adopted for

Quality of Service (QoS) evaluation. Mean Opinion Score

(MOS) was one of the subjective methods, and defined a

scaled opinion of controlled playback of spoken material [4].

This approach also worked for video. The MSU team used

subjective video quality measurements to help obtain user

opinions, including Stimulus Comparison Adjectival

Categorical Judgement (SCACJ) from ITU-R, Double

Stimulus Continuous Quality Scale (DSCQSII) from ITU-R,

and Subjective Assessment of Multimedia Video Quality

(SAMVIQ) from the European Broadcast Union (EBU).

Traditionally, objective quality measurements were

performed by Mean Square Error (MSE) metrics: Signal to

Noise Ratio (SNR) and Peak Signal to Noise Ratio (PSNR).

PSNR was widely used to evaluate quality because of its

simplicity, not because it took into account properties of the

human visual system (HVS) [10]. In addition, Structural

Similarity Index (SSIM) [11] and Video Quality Metric

(VQM) [17] were other video quality evaluation methods.

SSIM index was a combined value reflecting three

components—luminance similarity, contrast similarity and

structural similarity. This measurement was based on

exploiting structural distortion instead of the error, and gave

a correlation to the subjective impressions because the

human vision system was highly attentive to structural

 3

information from the viewing field and not the errors. VQM

was based on Discrete Cosine Transforms (DCT) video

quality evaluation, corresponding to human perception.

Results from [17] showed that VQM had a high correlation

with subjective video quality assessment.

IV. MOTIVATION

Asynchronous video was a promising opportunity to

increase subjective and objective quality for sign language

telecommunication, with the obvious detrimental factor of

an increase in latency. We wanted to learn if Deaf people

considered this approach better than the synchronous video

tools available to them on the Internet. Thus, asynchronous

video quality needed to be evaluated, with respect to both

video compression and the resulting latency.

We worked with several key DCCT members that had

significant experience with SMS, Instant Messaging and

Internet video conferencing. Overall, they preferred to

communicate in their native tongue, sign language. They

found Internet video difficult in many of the same ways

hearing people found early voice over IP (VoIP) systems

difficult: distorted words and variable delays that interfered

with the natural conversation rhythm.

Preliminary asynchronous video experiments at DCCT

taught us that asynchronous video communication must alter

from information delivery to information interchange. That

meant asynchronous communication needed to take more

synchronous aspects into consideration, including user

interface issues as well as reducing latency. This project

addressed both of those issues. We redesigned the user

interface and experimented with synchronous video codecs

in an asynchronous exchange environment. We emphasised

the latter in order to spend less time computing the

compression algorithm and aimed for a small resultant file

to spend less time on transmission. The next section

describes the experimental implementation and the results

are discussed in section VI.

V. IMPLEMENTATION

The implementation aims were to minimise latency and

maximise video quality. To this end, we built a tool to

compare several video encoders: x264, XviD and DivX. The

playback process employed the ffdshow package to decode

a compressed video file and play it to the user. Therefore,

there were no comparisons performed at playback, only for

encoding. We employed both subjective and objective

measurements with Deaf users and automated tools,

respectively. The overall flow of the application developed

to carry out the experiments is shown in Figure 1.

Figure 1: Overview of the asynchronous video telephony

tool for the Deaf shows the key stages involved with the

compression and transmission of asynchronous video.

The application was built with the Microsoft Visual C++

environment with the DShow API enabled. Simple presence

and File Transfer Protocol (FTP) services were used. The

application aimed to provide simple and easy interfaces for

the Deaf user. There were three layers to the application:

user interactive layer, video manipulation layer and

transmission control layer. These layers are described in the

following subsections.

A. User interactive layer

The user interactive layer concerned the user interface. A

user sent a connection request to another user, and a

connection was established once the remote user accepted

the request. Then the users could exchange sign language

videos. Figure 2 shows the main window of this system.

The main window of the application provides notification to

the users by flicking the message box and the small coloured

icon in the system icon tray. Event-driven message appears

inside the message box to response the users to notify the

arrival of new video file with flicking both the message box

content and the small icon in the system icon tray. The

buttons were quite simple: capture allowed the user to start

recording sign language, transmit sent the message, play

displayed a newly received video, and replay permitted to

view the latest previous video again. A message box

provided messages and hints to help the user.

Figure 2: Main window of the asynchronous video

application with presence service.

B. Video manipulation layer

The video manipulation layer dealt with video capture,

compression and playback processes. These processes were

hidden from the user; only the message box told the user

what was going on at any given moment. The compression

process only ran after the capture process terminated. This

avoided compressing unwanted video files if the user

wanted to recapture the video and overwrite one that was

not satisfactory.

The process to get a synchronous codec to work in

asynchronous mode was complicated. For example, x264

involved open source code, x264vfw API and x264vfw.dll

library. x264vfw API used the libx264.lib that was

generated by compiling x264 source code. Then, having

compiled x264vfw, x264vfw.dll was generated and could be

used for video communication. Without that specific library,

 4

the application would not work, throwing a “No preferred

codec found!” error.

C. Transmission layer

The transmission layer consisted of the transmission

protocol, FTP, and the orchestration of user notification

messages. The application was intended for a wireless

network environment and FTP was deemed acceptable. The

main purpose of the application was to compare various

codecs in order to determine which one would be best suited

for asynchronous video telephony for Deaf people.

VI. TESTING, DATA COLLECTION AND ANALYSIS

The first step in choosing a codec was to compare codecs

in a controlled manner. We compared DivX, XviD and x264

codecs. After choosing the most appropriate codec, the task

remained to adapt it into the asynchronous video application

and optimise its performance. During the experimental

phase, we captured a raw video as a reference. The video

file had 640,198,656 bytes, was 112 seconds long, and 2819

frames. All comparisons were based on this reference video.

The playback rate was fixed to 25.17 fps, and the

compression rate varied depending on the compression

algorithm. From a practical point of view, CPU utilization

constrained compression time and the transmission process

quite a bit. Therefore, comparison candidate files and

corresponding log files were created with the CPU as idle as

possible.

A. Different codecs comparison tests

Three codecs, DivX, XviD and x264, were plugged into a

simple video testing tool and corresponding data was

recorded into log files. The performance of each codec was

evaluated subjectively with MOS provided by users and

objectively with the MSU video quality measurement tools.

The user sample for the subjective inter-codec evaluation

was 17 Deaf participants. The experimentation required a

sign language interpreter whose role was to explain the

procedure and relate user opinions back to the researcher.

The participant was shown a series of videos, each

constructed with a different codec as well as the reference

uncompressed reference video. Each participant was asked

two questions for each video: one about blurring and the

other about understanding the content. The participant did

not know which video was which, and gave a scaled mark

for each question. The results are shown in Figure 3. Deaf

people considered XviD and x264 to be quite similar. They

definitely thought that DivX video was worse than the other

two. Overall, XviD appeared slightly stronger than x264.

Figure 3: MOS results on codec comparison with regard

to blurring and understanding video content.

The objective evaluation ran the three codecs through a

battery of tests in the automated MSU suite, namely PSNR,

SSIM and VQM. x264 emerged as the stronger candidate

and supports the positive regard from the Deaf users. Figure

4 shows the objective evaluation results.

Compression

Ratio Comparison

X264vfw

XviD

DivX

Figure 4: Compression ratio comparison pie and other

comparison metrics between DivX, XviD and x264

computed with the MSU video quality measurement tools. A

video file encoded in x264 appeared to have a higher

compression ratio with fairly similar PSNR values.

B. x264 internal comparison tests

The inter-codec comparison tests indicated that x264 was

a worthwhile candidate to adapt into the asynchronous video

telephony tool. The next step was to figure out how to

configure x264 to achieve the best performance in its

adapted asynchronous usage. x264 was based on

conventional block-based motion-compensated video coding,

and supported a number of configuration parameters that are

summarised in Table 1. These parameters and their

characteristics helped improve coding efficiency and retain

reliable quality [16].

Table 1 x264 parameters and their characteristics

Parameters Characteristics

Integer Motion

Estimation (ME)

dia: diamond search with radius1

hex: hexagonal search with radius 2

umh: uneven multi-hexagon search

Chroma: enabled or disabled

reference frame up to 16 reference frames for motion

compensation

B-frame multiple B-frames with adaptive or

non-adaptive decisions

direct Motion

Vector (MV)

prediction modes

spatial, temporal and auto

Entropy coding CAVLC: luminance and chrominance

residual encoding

CABAC: dynamically chooses

probability module for encoding,

depending on current content and

previous encoded content

In-the-loop

deblocking filtering

Enabled or disabled

Intra-codec comparison tests were performed with x264 by

varying the parameters laid out in Table 1. We continued to

use the MSU video quality measurement tests for PSNR,

SSIM index and the VQM value. We also built some tests of

our own, including compression ratio (CR), compression

time (CT), transmission time (TT) and delay time (DT). The

test comparisons concentrated on the increment and

decrement percentages of the all of these metrics. During the

 5

intra-codec testing phase, the optimisations were also

adapted into the asynchronous video application, which

meant that the application code was adjusted accordingly.

Motion Estimation (ME) played a significant role in the

encoding process. It divided the moving picture into several

MBs or blocks and searched each MB or block to find the

corresponding position in the adjacent frame, and then

calculated the relative spatial offset from the difference.

That offset was the Motion Vector (MV). The ME method

to find the MV was the search method and affected the

encoding efficiency. Figure 5 shows the comparison of

different search methods (dia, umh and hex). The dia search

method made x264 more efficient. Then, disabling the

chroma during ME decreased delay time 6.463% without

degrading video quality with respect to the comparison

metrics.

-10

-8

-6

-4

-2

0

2

4

6

8

CR CT TT DT PSNR SSIM VQM

Comparison Contents

D
e
c
/I

n
c
(%

)

hex
umh
dia

Figure 5: ME methods comparison between dia, umh and

hex.

The reference frame test sought an optimal number of

reference frames. In earlier standards, the number was

typically one, or in the case of conventional B-frame, two.

x264 allowed up to 16 reference frames to be used. That

could lead to modest improvements in bit rate and quality.

In most cases, it was not necessary to use so many reference

frames. Figure 6 shows the results of the reference frame

test. We took one reference frame as a baseline, the solid

blue line in the x-axis. The more reference frames are

chosen, the greater the compression ratio is, the smaller the

file size is, and the less time transmission takes. However,

the compression process is complex and takes longer to

calculate the residues from different reference frames. In

this case, we chose two reference frames for sake of saving

latency.

-10.0000

-5.0000

0.0000

5.0000

10.0000

15.0000

20.0000

CR CT TT DT PSNR SSIM VQM

Comparison contents

D
e
c
/I
n
c
 (
%

)

1-frame

2-frame

3-frame

Figure 6: Number of reference frames comparison between

one to three references.

The B-frame test considered the number of B-frames.

Figure 7 shows the results of the comparison test. Having

two B-frames showed a sharp curve on the graph. The

adaptive B-frame decision algorithm had a strong tendency

to avoid B-frames during fades. From this test, disabling

adaptive B-frame favourably reduced delay time 1.86% and

increased PSNR 0.0112%, SSIM 0.0103% and VQM

0.406% because only one B-frame was used. If adaptive B-

frame decision-making were enabled, fast movement areas

of the video suffered.

-20

-15

-10

-5

0

5

10

15

20

CR CT TT DT PSNR SSIM VQM

Comparison Contents

D
e

c
/I
n
c

(%
)

B-frame:0 B-frame:1 B-frame:2 B-frame:3

Figure 7: Comparison on B-frame numbers: none, 1, 2 and

3.

In order to find out the better mode to direct MV searching,

the MV test compared several modes: spatial, temporal and

auto. As mentioned earlier, the default MV was calculated

from relative spatial offsets. Figure 8 shows that the auto

mode performed well to direct MV prediction. Obviously,

the auto mode might be spatial or temporal depending on the

complexity of the contents in the current frame (or field).

The auto algorithm decided the mode for error concealment

accordingly.

-35.0000

-30.0000

-25.0000

-20.0000

-15.0000

-10.0000

-5.0000

0.0000

5.0000

10.0000

15.0000

20.0000

CR CT TT DT PSNR SSIM VQM

Comparison contents

D
e
c
/I

n
c
(%

)

spatial

auto

temporal

Figure 8: Comparison between the modes that direct MV

prediction.

The CAVLC and CABAC tests indicated that CABAC

was more complex but more efficient than CAVLC.

Compression under CABAC comprised an 8% increment of

delay for 0.018dB improvement of PSNR in comparison to

CAVLC. Since CABAC was a lossless algorithm to

compress syntax elements into probabilities in a given

context, it needed to take more time in the compression

process.

An in-the-loop deblocking filter prevented the blocking of

artefacts incurred from spatial motion vector prediction that

were common to other DCT-based image compression

techniques. The compression speed penalty had a heavy

impact on latency.

Unfortunately, x264 did not contain all of the features that

H.264 has, such as Switching I-frame (SI) and Switching P-

frame (SP) slices, Flexible Macroblock Ordering (FMO),

Arbitrary Slice Ordering (ASO), Redundant Slices (RS) and

Data Partitioning (DP) and so on. However, from the

characteristics x264 provides so far, the project saw some

great changes in latency and quality after adapting x264 into

asynchronous use for Deaf telephony.

VII. CONCLUSION

We chose x264 to provide low latency and high quality for

asynchronous video telephony. The adaptation process

configured x264 with: diamond search motion estimation

without chrominance; two reference frames; one B-frame

 6

without self-adaptiveness; automatic motion vector mode;

CAVLC entropy coding; and some other minor factors.

This configuration of x264 provided fast compression, fast

transmission and high quality playback with less complex

calculations. Thus, x264 enabled this project to move

toward providing better quality asynchronous video

communication for the Deaf.

VIII. FUTURE WORK

Research on asynchronous Deaf video telephony must

continue. Synchronous communication is more attractive to

end users despite its difficulties. If the end user would not

notice the delay, asynchronous technology could become

widely accepted for Deaf communication. Simulating a

synchronous environment with asynchronous technology is

the next step and will involve more codec optimisation to

reduce bit rate, decrease compression time and increase the

compression ratio so as to enable such services to run on

mobile devices.

ACKNOWLEDGMENTS

The authors thank the staff and members of Deaf

Community of Cape Town (DCCT) for their participation in

the project. We also thank Telkom, Cisco and THRIP for

financial support via the Telkom Centre of Excellence (CoE)

programme.

REFERENCES

[1] A. Cavender, R.E. Ladner, and E.A. Riskin,

"MobileASL: intelligibility of sign language video as

constrained by mobile phone technology," 8th

International ACM SIGACCESS Conference on

Computers and Accessibility, Portland, Oregon, USA,

2006, pp. 71-78.

[2] J.W. Chen, C.Y. Kao and Y.L. Lin, "Introduction to

H.264 Advanced Video Coding". 2006 Conference on

Asia South Pacific design automation, New York, NY,

USA, 2006, pp. 736-741.

[3] F.M. Ciaramello and S.S. Hemami, “Complexity

constrained rate-distortion optimization of sign

language video using an objective intelligibility

metric,” Proceedings of SPIE Vol. 6822, Visual

Communication and Image Processing 2008, San Jose,

CA, January 2008.

[4] ITU, “Mean Opinion Score (MOS) terminology”,

P.800.1 (03/2001), 2003.

[5] Y.V. Ivanov and C.J. Bleakley, “Dynamic Complexity

Scaling fo rReal-Time H.264/AVC video Encoding,”

MM’07, Augsburg, Bavaria, Germany, September 23-

28, 2007, pp. 962-970.

[6] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T

VCEG, “Draft ITU-T Recommendation and Final Draft

International Standard of Joint Video Specification

(ITU-T Rec. H264/ISO/IEC 14496-10 AVC)”,

Document JVT-G050d35.doc, 7
th

 Meeting: Pattaya,

Thailand, March 2003.

[7] G. Lu, “Communication and Computing for Distributed

Multimedia Systems”, Artech House, Inc., Norwood,

MA, 1996, pp. 63-90.

[8] Z. Ma and W.D. Tucker, “Asynchronous Video

Telephony for the Deaf,” South African

Telecommunications Networks & Applications

Conference, Mauritius, 9-13 September 2007.

[9] L. J. Muir and I.E.G. Richardson, “Perception of sign

language and its applications to visual communications

for deaf people,” Journal of Deaf Studies and Deaf

Education, volume 10, 2005, pp. 390-401.

[10] O. Nemcic, M. Vranje and S. Rimac-Drlje,

“Comparison of H.264/AVC and MPEG-4 Part 2

Coded Video”, 49
th

 International Symposium ELMAR-

2007 focused on Mobile Multimedia, Zadar, Croatia,

12-14 September 2007, pp. 41-44.

[11] I. Richardson, “An Overview of H.264 Advanced Video

Coding,” Vcodex White Paper, March 2007.

[12] G.J. Sullivan, P. Topiwala, and A. Luthra, “The

H264/AVC advanced video coding standard: Overview

and introduction to the fidelity arrange extensions,”

SPIE conference on Digital Image Processing, August

2004.

[13] D. Vatolin, O. Petrov, A. Parshin and A. Titarenko,

“MPEG-4 AVC/H.264 video codec comparison,”

Computer Science Department, Moscow State

University, Graphics and Media Lab, December 2005.

[14] D. Vatolin, O. Petrov, A. Parshin and A. Titarenko,

“MSU Subjective Comparison of Modern Video

Codecs,” Computer Science Department, Moscow State

University Graphics and Media Lab, January 2006.

[15] Z. Wang, L. Lu, and A.C. Bovic, “Video quality

assessment using structural distortion measurement,”

Signal Processing: Image Communication special issue

on Objective video quality metrics, vol. 19, no.2, pp.

121-132, February 2004.

[16] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra,

“Overview of the H.264/AVC Video Coding Standard,”

in IEEE transactions on Circuits and Systems for Video

Technology, vol. 13, no. 7, 2003, 560-576.

[17] F. Xiao, “DCT-based video quality evaluation”, student

final project Digital Video Processing (EE392J), 2000.

AUTHORS

Zhenyu Ma is a Masters student with the Broadband

Applications Network Group (BANG) in the Department of

Computer Science at the University of the Western Cape

(UWC). He is currently working on a video relay service for

the Deaf.

William D. Tucker is a senior lecturer of Computer

Science at UWC. He leads BANG research. His PhD on

communication abstractions is near completion at the

University of Cape Town.

