7,372 research outputs found

    FRB 121102: A Repeatedly Combed Neutron Star by a Nearby Low-luminosity Accreting Supermassive Black Hole

    Full text link
    The origin of fast radio bursts (FRBs) remains mysterious. Recently, the only repeating FRB source, FRB 121102, was reported to possess an extremely large and variable rotation measure (RM). The inferred magnetic field strength in the burst environment is comparable to that in the vicinity of the supermassive black hole Sagittarius A* of our Galaxy. Here, we show that all of the observational properties of FRB 121102 (including the high RM and its evolution, the high linear polarization degree, an invariant polarization angle across each burst and other properties previously known) can be interpreted within the cosmic comb model, which invokes a neutron star with typical spin and magnetic field parameters whose magnetosphere is repeatedly and marginally combed by a variable outflow from a nearby low-luminosity accreting supermassive black hole in the host galaxy. We propose three falsifiable predictions (periodic on/off states, and periodic/correlated variation of RM and polarization angle) of the model and discuss other FRBs within the context of the cosmic comb model as well as the challenges encountered by other repeating FRB models in light of the new observations

    Causal Consistency: Beyond Memory

    Get PDF
    In distributed systems where strong consistency is costly when not impossible, causal consistency provides a valuable abstraction to represent program executions as partial orders. In addition to the sequential program order of each computing entity, causal order also contains the semantic links between the events that affect the shared objects -- messages emission and reception in a communication channel , reads and writes on a shared register. Usual approaches based on semantic links are very difficult to adapt to other data types such as queues or counters because they require a specific analysis of causal dependencies for each data type. This paper presents a new approach to define causal consistency for any abstract data type based on sequential specifications. It explores, formalizes and studies the differences between three variations of causal consistency and highlights them in the light of PRAM, eventual consistency and sequential consistency: weak causal consistency, that captures the notion of causality preservation when focusing on convergence ; causal convergence that mixes weak causal consistency and convergence; and causal consistency, that coincides with causal memory when applied to shared memory.Comment: 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Mar 2016, Barcelone, Spai

    On the observability of T Tauri accretion shocks in the X-ray band

    Full text link
    Context. High resolution X-ray observations of classical T Tauri stars (CTTSs) show a soft X-ray excess due to high density plasma (n_e=10^11-10^13 cm^-3). This emission has been attributed to shock-heated accreting material impacting onto the stellar surface. Aims. We investigate the observability of the shock-heated accreting material in the X-ray band as a function of the accretion stream properties (velocity, density, and metal abundance) in the case of plasma-beta<<1 in the post-shock zone. Methods. We use a 1-D hydrodynamic model describing the impact of an accretion stream onto the chromosphere, including the effects of radiative cooling, gravity and thermal conduction. We explore the space of relevant parameters and synthesize from the model results the X-ray emission in the [0.5-8.0] keV band and in the resonance lines of O VII (21.60 Ang) and Ne IX (13.45 Ang), taking into account the absorption from the chromosphere. Results. The accretion stream properties influence the temperature and the stand-off height of the shocked slab and its sinking in the chromosphere, determining the observability of the shocked plasma. Our model predicts that X-ray observations preferentially detect emission from low density and high velocity shocked accretion streams due to the large absorption of dense post-shock plasma. In all the cases examined, the post-shock zone exhibits quasi-periodic oscillations due to thermal instabilities, but in the case of inhomogeneous streams and beta<<1, the shock oscillations are hardly detectable. Conclusions. We suggest that, if accretion streams are inhomogeneous, the selection effect introduced by the absorption on observable plasma components may explain the discrepancy between the accretion rate measured by optical and X-ray data as well as the different densities measured using different He-like triplets in the X-ray band.Comment: 12 pages, 7 figures. Accepted for publication on A&

    Head-Tail Clouds: Drops to Probe the Diffuse Galactic Halo

    Full text link
    A head-tail high-velocity cloud (HVC) is a neutral hydrogen halo cloud that appears to be interacting with the diffuse halo medium as evident by its compressed head trailed by a relatively diffuse tail. This paper presents a sample of 116 head-tail HVCs across the southern sky (d < 2 deg) from the HI Parkes All Sky Survey (HIPASS) HVC catalog, which has a spatial resolution of 15.5 arcmin (45 pc at 10 kpc) and a sensitivity of N_HI=2 x 10^(18) cm^(-2) (5 sigma). 35% of the HIPASS compact and semi-compact HVCs (CHVCs and :HVCs) can be classified as head-tail clouds from their morphology. The clouds have typical masses of 730 M_sun at 10 kpc (26,000 M_sun at 60 kpc) and the majority can be associated with larger HVC complexes given their spatial and kinematic proximity. This proximity, together with their similar properties to CHVCs and :HVCs without head-tail structure, indicate the head-tail clouds have short lifetimes, consistent with simulation predictions. Approximately half of the head-tail clouds can be associated with the Magellanic System, with the majority in the region of the Leading Arm with position angles pointing in the general direction of the movement of the Magellanic System. The abundance in the Leading Arm region is consistent with this feature being closer to the Galactic disk than the Magellanic Stream and moving through a denser halo medium. The head-tail clouds will feed the multi-phase halo medium rather than the Galactic disk directly and provide additional evidence for a diffuse Galactic halo medium extending to at least the distance of the Magellanic Clouds.Comment: MNRAS Accepted, 10 figures, 7 in colo

    Near Optimal Parallel Algorithms for Dynamic DFS in Undirected Graphs

    Full text link
    Depth first search (DFS) tree is a fundamental data structure for solving graph problems. The classical algorithm [SiComp74] for building a DFS tree requires O(m+n)O(m+n) time for a given graph GG having nn vertices and mm edges. Recently, Baswana et al. [SODA16] presented a simple algorithm for updating DFS tree of an undirected graph after an edge/vertex update in O~(n)\tilde{O}(n) time. However, their algorithm is strictly sequential. We present an algorithm achieving similar bounds, that can be adopted easily to the parallel environment. In the parallel model, a DFS tree can be computed from scratch using mm processors in expected O~(1)\tilde{O}(1) time [SiComp90] on an EREW PRAM, whereas the best deterministic algorithm takes O~(n)\tilde{O}(\sqrt{n}) time [SiComp90,JAlg93] on a CRCW PRAM. Our algorithm can be used to develop optimal (upto polylog n factors deterministic algorithms for maintaining fully dynamic DFS and fault tolerant DFS, of an undirected graph. 1- Parallel Fully Dynamic DFS: Given an arbitrary online sequence of vertex/edge updates, we can maintain a DFS tree of an undirected graph in O~(1)\tilde{O}(1) time per update using mm processors on an EREW PRAM. 2- Parallel Fault tolerant DFS: An undirected graph can be preprocessed to build a data structure of size O(m) such that for a set of kk updates (where kk is constant) in the graph, the updated DFS tree can be computed in O~(1)\tilde{O}(1) time using nn processors on an EREW PRAM. Moreover, our fully dynamic DFS algorithm provides, in a seamless manner, nearly optimal (upto polylog n factors) algorithms for maintaining a DFS tree in semi-streaming model and a restricted distributed model. These are the first parallel, semi-streaming and distributed algorithms for maintaining a DFS tree in the dynamic setting.Comment: Accepted to appear in SPAA'17, 32 Pages, 5 Figure
    corecore