80 research outputs found

    On distributed mobile edge computing

    Get PDF
    Mobile Cloud Computing (MCC) has been proposed to offload the workloads of mobile applications from mobile devices to the cloud in order to not only reduce energy consumption of mobile devices but also accelerate the execution of mobile applications. Owing to the long End-to-End (E2E) delay between mobile devices and the cloud, offloading the workloads of many interactive mobile applications to the cloud may not be suitable. That is, these mobile applications require a huge amount of computing resources to process their workloads as well as a low E2E delay between mobile devices and computing resources, which cannot be satisfied by the current MCC technology. In order to reduce the E2E delay, a novel cloudlet network architecture is proposed to bring the computing and storage resources from the remote cloud to the mobile edge. In the cloudlet network, each mobile user is associated with a specific Avatar (i.e., a dedicated Virtual Machine (VM) providing computing and storage resources to its mobile user) in the nearby cloudlet via its associated Base Station (BS). Thus, mobile users can offload their workloads to their Avatars with low E2E delay (i.e., one wireless hop). However, mobile users may roam among BSs in the mobile network, and so the E2E delay between mobile users and their Avatars may become worse if the Avatars remain in their original cloudlets. Thus, Avatar handoff is proposed to migrate an Avatar from one cloudlet into another to reduce the E2E delay between the Avatar and its mobile user. The LatEncy aware Avatar handDoff (LEAD) algorithm is designed to determine the location of each mobile user\u27s Avatar in each time slot in order to minimize the average E2E delay among all the mobile users and their Avatars. The performance of LEAD is demonstrated via extensive simulations. The cloudlet network architecture not only facilitates mobile users in offloading their computational tasks but also empowers Internet of Things (IoT). Popular IoT resources are proposed to be cached in nearby brokers, which are considered as application layer middleware nodes hosted by cloudlets in the cloudlet network, to reduce the energy consumption of servers. In addition, an Energy Aware and latency guaranteed dynamic reSourcE caching (EASE) strategy is proposed to enable each broker to cache suitable popular resources such that the energy consumption from the servers is minimized and the average delay of delivering the contents of the resources to the corresponding clients is guaranteed. The performance of EASE is demonstrated via extensive simulations. The future work comprises two parts. First, caching popular IoT resources in nearby brokers may incur unbalanced traffic loads among brokers, thus increasing the average delay of delivering the contents of the resources. Thus, how to balance the traffic loads among brokers to speed up IoT content delivery process requires further investigation. Second, drone assisted mobile access network architecture will be briefly investigated to accelerate communications between mobile users and their Avatars

    MIFaaS: A Mobile-IoT-Federation-as-a-Service Model for dynamic cooperation of IoT Cloud Providers

    Get PDF
    In the Internet of Things (IoT) arena, a constant evolution is observed towards the deployment of integrated environments, wherein heterogeneous devices pool their capacities to match wide-ranging user requirements. Solutions for efficient and synergistic cooperation among objects are, therefore, required. This paper suggests a novel paradigm to support dynamic cooperation among private/public local clouds of IoT devices. Differently from . device-oriented approaches typical of Mobile Cloud Computing, the proposed paradigm envisages an . IoT Cloud Provider (ICP)-oriented cooperation, which allows all devices belonging to the same private/public owner to participate in the federation process. Expected result from dynamic federations among ICPs is a remarkable increase in the amount of service requests being satisfied. Different from the Fog Computing vision, the network edge provides only management support and supervision to the proposed Mobile-IoT-Federation-as-a-Service (MIFaaS), thus reducing the deployment cost of peripheral micro data centers. The paper proposes a coalition formation game to account for the interest of rational cooperative ICPs in their own payoff. A proof-of-concept performance evaluation confirms that obtained coalition structures not only guarantee the satisfaction of the players' requirements according to their utility function, but also these introduce significant benefits for the cooperating ICPs in terms of number of tasks being successfully assigned

    Multilayer Architecture Model for Mobile Cloud Computing Paradigm

    Get PDF
    Mobile Cloud Computing is one of today's more disruptive paradigms of computation due to its effects on the performance of mobile computing and the development of Internet of Things. It is able to enhance the capabilities of devices by outsourcing the workload to external computing platforms deployed along the network, such as cloud servers, cloudlets, or other edge platforms. The research described in this work presents a computational model of a multilayer architecture for increasing the performance of devices using the Mobile Cloud Computing paradigm. The main novelty of this work lies in defining a comprehensive model where all the available computing platforms along the network layers are involved to perform the outsourcing of the application workload. This proposal provides a generalization of the Mobile Cloud Computing paradigm which allows handling the complexity of scheduling tasks in such complex scenarios. The behaviour of the model and its ability of generalization of the paradigm are exemplified through simulations. The results show higher flexibility for making offloading decisions.This work was supported by the Spanish Research Agency (AEI) and the European Regional Development Fund (ERDF), under Project CloudDriver4Industry TIN2017-89266-R, and by the Conselleria de Educación, Investigación, Cultura y Deporte, of the Community of Valencia, Spain, within the program of support for research under Project AICO/2017/134

    Scheduling of fog networks with optimized knapsack by symbiotic organisms search

    Get PDF
    Internet of things as a concept uses wireless sensor networks that have limitations in power, storage, and delay when processing and sending data to the cloud. Fog computing as an extension of cloud services to the edge of the network reduces latency and traffic, so it is very useful in healthcare, wearables, intelligent transportation systems and smart cities. Scheduling is the NP-hard issues in fog computing. Edge devices due to proximity to sensors and clouds are capable of processing power and are beneficial for resource management algorithms. We present a knapsack-based scheduling optimized by symbiotic organisms search that is simulated in iFogsim as a standard simulator for fog computing. The results show improvements in the energy consumption by 18%, total network usage by 1.17%, execution cost by 15%, and sensor lifetime by 5% in our scheduling method are better than the FCFS (First Come First Served) and knapsack algorithms

    Edge Intelligence Simulator:a platform for simulating intelligent edge orchestration solutions

    Get PDF
    Abstract. To support the stringent requirements of the future intelligent and interactive applications, intelligence needs to become an essential part of the resource management in the edge environment. Developing intelligent orchestration solutions is a challenging and arduous task, where the evaluation and comparison of the proposed solution is a focal point. Simulation is commonly used to evaluate and compare proposed solutions. However, there does not currently exist openly available simulators that would have a specific focus on supporting the research on intelligent edge orchestration methods. This thesis presents a simulation platform called Edge Intelligence Simulator (EISim), the purpose of which is to facilitate the research on intelligent edge orchestration solutions. In its current form, the platform supports simulating deep reinforcement learning based solutions and different orchestration control topologies in scenarios related to task offloading and resource pricing on edge. The platform also includes additional tools for creating simulation environments, running simulations for agent training and evaluation, and plotting results. This thesis gives a comprehensive overview of the state of the art in edge and fog simulation, orchestration, offloading, and resource pricing, which provides a basis for the design of EISim. The methods and tools that form the foundation of the current EISim implementation are also presented, along with a detailed description of the EISim architecture, default implementations, use, and additional tools. Finally, EISim with its default implementations is validated and evaluated through a large-scale simulation study with 24 simulation scenarios. The results of the simulation study verify the end-to-end performance of EISim and show its capability to produce sensible results. The results also illustrate how EISim can help the researcher in controlling and monitoring the training of intelligent agents, as well as in evaluating solutions against different control topologies.Reunaälysimulaattori : alusta älykkäiden reunalaskennan orkestrointiratkaisujen simulointiin. Tiivistelmä. Älykkäiden ratkaisujen täytyy tulla olennaiseksi osaksi reunaympäristön resurssien hallinnointia, jotta tulevaisuuden vuorovaikutteisten ja älykkäiden sovellusten suoritusta voidaan tukea tasolla, joka täyttää sovellusten tiukat suoritusvaatimukset. Älykkäiden orkestrointiratkaisujen kehitys on vaativa ja työläs prosessi, jonka keskiöön kuuluu olennaisesti menetelmien testaaminen ja vertailu muita menetelmiä vasten. Simulointia käytetään tyypillisesti menetelmien arviointiin ja vertailuun, mutta tällä hetkellä ei ole avoimesti saatavilla simulaattoreita, jotka eritoten keskittyisivät tukemaan älykkäiden reunaorkestrointiratkaisujen kehitystä. Tässä opinnäytetyössä esitellään simulaatioalusta nimeltään Edge Intelligence Simulator (EISim; Reunaälysimulaattori), jonka tarkoitus on helpottaa älykkäiden reunaorkestrointiratkaisujen tutkimusta. Nykymuodossaan se tukee vahvistusoppimispohjaisten ratkaisujen sekä erityyppisten orkestroinnin kontrollitopologioiden simulointia skenaarioissa, jotka liittyvät laskennan siirtoon ja resurssien hinnoitteluun reunaympäristössä. Alustan mukana tulee myös lisätyökaluja, joita voi käyttää simulaatioympäristöjen luomiseen, simulaatioiden ajamiseen agenttien koulutusta ja arviointia varten, sekä simulaatiotulosten visualisoimiseen. Tämä opinnäytetyö sisältää kattavan katsauksen reunaympäristön simuloinnin, reunaorkestroinnin, laskennan siirron ja resurssien hinnoittelun nykytilaan kirjallisuudessa, mikä tarjoaa kunnollisen lähtökohdan EISimin toteutukselle. Opinnäytetyö esittelee menetelmät ja työkalut, joihin EISimin tämänhetkinen toteutus perustuu, sekä antaa yksityiskohtaisen kuvauksen EISimin arkkitehtuurista, oletustoteutuksista, käytöstä ja lisätyökaluista. EISimin validointia ja arviointia varten esitellään laaja simulaatiotutkimus, jossa EISimin oletustoteutuksia simuloidaan 24 simulaatioskenaariossa. Simulaatiotutkimuksen tulokset todentavat EISimin kokonaisvaltaisen toimintakyvyn, sekä osoittavat EISimin kyvyn tuottaa järkeviä tuloksia. Tulokset myös havainnollistavat, miten EISim voi auttaa tutkijoita älykkäiden agenttien koulutuksessa ja ratkaisujen arvioinnissa eri kontrollitopologioita vasten

    Mobility-aware mechanisms for fog node discovery and selection

    Get PDF
    The recent development of delay-sensitive applications has led to the emergence of the fog computing paradigm. Within this paradigm, computation nodes present at the edge of the network can act as fog nodes (FNs) capable of processing users' tasks, thus resulting in latency reductions compared to the existing cloud-based execution model. In order to realize the full potential of fog computing, new research questions have arised, mainly due to the dynamic and heterogeneous fog computing context. This thesis focuses on the following questions in particular: How can a user detect the presence of a nearby FN? How should a user on the move adapt its FN discovery strategy, according to its changing context? How should an FN be selected , in the case of user mobility and FN mobility? These questions will be addressed throughout the different contributions of this thesis. The first contribution consists in proposing a discovery solution allowing a user to become aware of the existence of a nearby FN. Using our solution, the FN advertizes its presence using custom WiFi beacons, which will be detected by the user via a scan process. An implementation of this approach has been developed and its evaluation results have shown that it results in a non-negligible energy consumption given its use of WiFi. This has led to our second contribution, which aims at improving the WiFi scan performed in our discovery approach, especially in the case of user mobility. At a first stage, this improvement consisted in embedding information about the topology of the FNs in the beacons the user receives from previous FNs. We have shown that by adapting the scan behavior based on this information, considerable energy savings can be achieved, while guaranteeing a high discovery rate. However, as this approach is associated with a restrictive FN topology structure, we proposed a different alternative, at a second stage. This alternative leverages the history of cellular context information as an indicator allowing the user to infer whether an FN may be present in its current location. If so, the scan will be enabled. Otherwise, it is disabled. The simulation results comparing different classification algorithms have shown that a sequence-based model, such as a hidden-Markov model is able to effectively predict the FN presence in the current user location. While the previous approaches have focused on a sparse FN deployment, our third contribution considers a high density of FNs. Consequently, as there are multiple nearby FNs that can process the user's tasks, it is important to derive a suitable FN selection strategy. This strategy should consider the time-varying set of FNs caused by the user's mobility. Besides, it should minimize the number of switches from one FN to another, in order to maintain a good quality of service. With these considerations in mind, we have shown that an adaptive greedy approach, that selects an FN having a good-enough delay estimate, achieves the best results. Finally, unlike the previous contribution, where the focus has been on FN selection when the user is mobile, our final contribution deals with mobile vehicular FNs (VFNs). Given the mobility of such VFNs, it is important to make the most of their resources, since they are only available for a short time at a given area. So, we propose that, in order to select an appropriate VFN for a given task, a reference roadside unit (RSU) responsible for task assignment can use advice from a neighbor RSU. This advice consists in the VFN that will result in the lowest delay for the current task, based on the experience of the neighbor RSU. The results have shown that, using the provided advice, the reference RSU can observe significant delay reductions. All in all, the proposed contributions have addressed various problems that may arise in a fog computing context and the obtained results can be used to guide the development of the building blocks of future fog computing solutions.El recent desenvolupament d'aplicacions IoT ha comportat l'aparició del paradigma de fog computing. Dins d'aquest paradigma, els nodes de càlcul presents a la vora de la xarxa poden actuar com a “fog nodes'' (FN) capaços de processar les tasques dels usuaris, produint així reduccions de latència en comparació amb el model d'execució basat en núvol. Per assolir tot el potencial del fog computing, han sorgit noves qüestions de recerca, principalment a causa del context dinàmic i heterogeni de fog computing. Aquesta tesi se centra especialment en les qüestions següents: Com pot un usuari detectar la presència d'un FN? Com hauria d’adaptar un usuari en moviment la seva estratègia de descobriment de FN, segons el seu context? Com s’ha de seleccionar un FN, en el cas de la mobilitat dels usuaris i la mobilitat FN? Aquestes preguntes s’abordaran al llarg de les diferents aportacions d’aquesta tesi. La primera contribució consisteix a proposar una solució de descobriment que permeti a l'usuari detectar l’existència d’un FN proper. Mitjançant la nostra solució, un FN anuncia la seva presència mitjançant beacons Wi-Fi personalitzats, que seran detectats per l'usuari mitjançant un procés d’exploració. S'ha desenvolupat una implementació d'aquest enfocament i els seus resultats d’avaluació han demostrat que resulta en un consum d'energia menyspreable donat el seu ús del Wi-Fi. Això ha suposat la nostra segona contribució, que té com a objectiu millorar l’exploració Wi-Fi, especialment en el cas de la mobilitat dels usuaris. En una primera fase, aquesta millora va consistir a incorporar informació sobre la topologia dels FN en les beacons que rep l'usuari dels FN anteriors. Hem demostrat que mitjançant l'adaptació del comportament d'escaneig basat en aquesta informació es pot aconseguir un estalvi considerable d’energia, alhora que es garanteix un índex elevat de descobriment. Tanmateix, com aquest enfocament s'associa a una estructura de topologia FN restrictiva, vam proposar una alternativa diferent, en una segona etapa. Aquesta alternativa aprofita la història de la informació del context cel·lular com a indicador que permet a l'usuari deduir si un FN pot estar present en la seva ubicació. En cas afirmatiu, l'exploració estarà habilitada. Els resultats de la simulació comparant diferents algoritmes de classificació han demostrat que un model basat en seqüències, com un model HMM, és capaç de predir eficaçment la presència de FNs a la ubicació actual de l'usuari. Si bé els enfocaments anteriors s’han centrat en un desplegament escàs de FNs, la nostra tercera contribució considera una alta densitat d'FNs. En conseqüència, com que hi ha múltiples FNs propers que poden processar les tasques de l'usuari, és important derivar una estratègia de selecció de FN adequada. Aquesta estratègia hauria de tenir en compte el conjunt variable de temps causat per la mobilitat de l'usuari. A més, hauria de minimitzar el nombre de canvis d'un FN a un altre, per mantenir una bona qualitat del servei. Tenint en compte aquestes consideracions, hem demostrat que un enfocament codiciós adaptatiu, que selecciona un FN amb una estimació de retard suficient, aconsegueix els millors resultats. Finalment, a diferència de l'aportació anterior, on l'atenció s'ha fixat en la selecció d'FN quan l'usuari és mòbil, la nostra contribució final tracta sobre les FNs per a vehicles mòbils (VFNs). Tenint en compte la mobilitat d’aquests VFNs, és important aprofitar al màxim els seus recursos, ja que només estan disponibles per a un temps curt. Així doncs, proposem que, per seleccionar un VFN adequat per a una tasca, una unitat RSU responsable de l'assignació de tasques pot utilitzar consells d'un RSU veí. Aquest consell consisteix en escollir el VFN que suposarà el menor retard de la tasca actual, en funció de l’experiència del RSU veí. Els resultats han demostrat que ..

    Mobile Live Video Streaming Optimization via Crowdsourcing Brokerage

    Get PDF
    Nowadays, people can enjoy a rich real-time sensing cognition of what they are interested in anytime and anywhere by leveraging powerful mobile devices such as smartphones. As a key support for the propagation of these richer live media contents, cellular-based access technologies play a vital role to provide reliable and ubiquitous Internet access to mobile devices. However, these limited wireless network channel conditions vary and fluctuate depending on weather, building shields, congestion, etc., which degrade the quality of live video streaming dramatically. To address this challenge, we propose to use crowdsourcing brokerage in future networks which can improve each mobile user's bandwidth condition and reduce the fluctuation of network condition. Further, to serve mobile users better in this crowdsourcing style, we study the brokerage scheduling problem which aims at maximizing the user's QoE (quality of experience) satisfaction degree cost-effectively. Both offline and online algorithms are proposed to solve this problem. The results of extensive evaluations demonstrate that by leveraging crowdsourcing technique, our solution can cost-effectively guarantee a higher quality view experience
    corecore