R

UNIVERSITY
OF OULU

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Henna Kokkonen

EDGE INTELLIGENCE SIMULATOR: A
PLATFORM FOR SIMULATING INTELLIGENT
EDGE ORCHESTRATION SOLUTIONS

Master’s Thesis

Degree Programme in Computer Science and Engineering
October 2023

Kokkonen H. (2023) Edge Intelligence Simulator: A Platform for Simulating
Intelligent Edge Orchestration Solutions. University of Oulu, Degree Programme
in Computer Science and Engineering, 115 p.

ABSTRACT

To support the stringent requirements of the future intelligent and interactive
applications, intelligence needs to become an essential part of the resource
management in the edge environment. Developing intelligent orchestration
solutions is a challenging and arduous task, where the evaluation and comparison
of the proposed solution is a focal point. Simulation is commonly used to evaluate
and compare proposed solutions. However, there does not currently exist openly
available simulators that would have a specific focus on supporting the research
on intelligent edge orchestration methods.

This thesis presents a simulation platform called Edge Intelligence Simulator
(EISim), the purpose of which is to facilitate the research on intelligent edge
orchestration solutions. In its current form, the platform supports simulating
deep reinforcement learning based solutions and different orchestration control
topologies in scenarios related to task offloading and resource pricing on edge.
The platform also includes additional tools for creating simulation environments,
running simulations for agent training and evaluation, and plotting results.

This thesis gives a comprehensive overview of the state of the art in edge
and fog simulation, orchestration, offloading, and resource pricing, which
provides a basis for the design of EISim. The methods and tools that form the
foundation of the current EISim implementation are also presented, along with a
detailed description of the EISim architecture, default implementations, use, and
additional tools. Finally, EISim with its default implementations is validated and
evaluated through a large-scale simulation study with 24 simulation scenarios.

The results of the simulation study verify the end-to-end performance of EISim
and show its capability to produce sensible results. The results also illustrate
how EISim can help the researcher in controlling and monitoring the training
of intelligent agents, as well as in evaluating solutions against different control
topologies.

Keywords: simulation, edge computing, artificial intelligence, offloading,
resource pricing, reinforcement learning

Kokkonen H. (2023) Reunailysimulaattori: Alusta dlykkiiden reunalaskennan
orkestrointiratkaisujen simulointiin. Oulun yliopisto, Tietotekniikan tutkinto-
ohjelma, 115 s.

TIIVISTELMA

Alykkiiiden ratkaisujen tiytyy tulla olennaiseksi osaksi reunaympériston
resurssien hallinnointia, jotta tulevaisuuden vuorovaikutteisten ja dlykkéiden
sovellusten suoritusta voidaan tukea tasolla, joka tiayttid sovellusten tiukat
suoritusvaatimukset. Alykkiiden orkestrointiratkaisujen kehitys on vaativa ja
tyolds prosessi, jonka keskioon kuuluu olennaisesti menetelmien testaaminen
ja vertailu muita menetelmii vasten. Simulointia kiytetiin tyypillisesti
menetelmien arviointiin ja vertailuun, mutta tilli hetkelli ei ole avoimesti
saatavilla simulaattoreita, jotka eritoten keskittyisivit tukemaan ilykkiiden
reunaorkestrointiratkaisujen kehitysta.

Téssa opinniytetyossi esitelldiin simulaatioalusta nimeltiéin Edge Intelligence
Simulator (EISim; Reunailysimulaattori), jonka tarkoitus on helpottaa
dlykkididen reunaorkestrointiratkaisujen tutkimusta. Nykymuodossaan se
tukee vahvistusoppimispohjaisten ratkaisujen seki erityyppisten orkestroinnin
kontrollitopologioiden simulointia skenaarioissa, jotka liittyvit laskennan
siirtoon ja resurssien hinnoitteluun reunaympiristossi. Alustan mukana
tulee myos lisiatyokaluja, joita voi kiyttdd simulaatioympiristojen luomiseen,
simulaatioiden ajamiseen agenttien Kkoulutusta ja arviointia varten, seki
simulaatiotulosten visualisoimiseen.

Tdmid opinnaytetyo sisdltid kattavan Kkatsauksen reunaympériston
simuloinnin, reunaorkestroinnin, laskennan siirron ja resurssien hinnoittelun
nykytilaan Kkirjallisuudessa, miki tarjoaa kunnollisen lihtokohdan EISimin
toteutukselle. Opinnéytetyo esittelee menetelméit ja tyokalut, joihin EISimin
tamanhetkinen toteutus perustuu, seki antaa yksityiskohtaisen kuvauksen
EISimin arkkitehtuurista, oletustoteutuksista, kaytostd ja lisityokaluista.
EISimin validointia ja arviointia varten esitelliiin laaja simulaatiotutkimus, jossa
EISimin oletustoteutuksia simuloidaan 24 simulaatioskenaariossa.

Simulaatiotutkimuksen tulokset todentavat EISimin kokonaisvaltaisen
toimintakyvyn, seké osoittavat EISimin Kyvyn tuottaa jirkevii tuloksia. Tulokset
myos havainnollistavat, miten EISim voi auttaa tutkijoita dlykkédiden agenttien
koulutuksessa ja ratkaisujen arvioinnissa eri kontrollitopologioita vasten.

Avainsanat: simulaatio, reunalaskenta, tekoily, laskennan siirto, resurssien
hinnoittelu, vahvistusoppiminen

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMA
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION.....euuiiiiieeeee ettt eeeeeeaaaeaeaeaeaes 10
L1, Background............coeiiiiiiiiiiiiieee e 10
1.2, CONIIDULION .ttt e et e e e et et et et et 11
2. LITERATURE REVIEWo 14
2.1, DEMINITIONS. ..iiiiiiiiiie ettt e 14
2.1.1. General Terminologyccceeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeee 14
2.1.2. Control TOPOIOZIESccvvvuuuireeiiiiiiiiiiee et 15
2.2. The Simulation of Edge and Fog Environmentsc.ccccceeeeen. 17
2.2.1. Motivation for SImulation...............ceeeeiiiiiiiiiiiiiiiiiiiiiiiiie 17
2.2.2. Building Simulation Modelscccooeiiiiiiiiiiiiiiiiiiiineeeeee, 18
2.2.3. Edge and Fog SImulatorscccoeeeiiiiiiiiiiiiiiimiiiiiiiiiieenee 23
2.3, OTrCheStratioNevvvviiiiiiiiiiiiiiiii e e e e e e e e e e eeeeeeeeeeeeees 27
2.4. Offloading and PriCingccoeeeeiiiiiiiiiinieeeeiiiiiie e 31
2.4.1. Offloading to the EAZe.......cceevvviiiiiiiiieiiiiiiiiieeeeeeee e, 31
2.4.2. Resource Pricingooviiiiiiiiiiiiiiiiiiiiiiiiiiee e 33
2.4.3. Offloading with Pricing..............ccccciiiiiiiiiiiiiiiiiiie 35
3. METHODS AND TOOLSceiiiiieie e 47
3.1. Metropolitan Area Network Creationoceeevevevuiineeeeeeeiiiiiinneeeeeeennns 47
3.1.1. Access Point Placement, Topology Creation and Edge Server
PIacementcoouuuiiiiiiiiiiiiiie e 47
3.1.2. Edge Server Clustering and Cluster Head Selection 49
3.2. Reinforcement Learning.............uuuuveeeiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeceeeeeeee 51
3.2.1. Single-Agent Reinforcement Learning..................ccccceeeeennenen. 51
3.2.2. Multi-Agent Reinforcement Learning ... 53
3.2.3. Deep Deterministic Policy Gradient...............ccceeeeiiiiineiiiinnnene. 54
3.3, PUureBdgeSime......ccooiiiiiiiiiiiiiiie e 56
33010 TNPULS coeeiiiiiiiiiiieee e 57
3.3.2. ATCHITECTUTE .ot e e e e e e e e eeeeeeeee 58
3.3.3. Simulation WOorkfloweueiiiiiiiiiiii 59
4. EISIM IMPLEMENTATION AND EVALUATIONcouuiiiiiiiiiiiiieieeeeeenne. 62
4.1, ATCRITECTUIE oottt 62
4.2. Default Implementationsccceeeeeeieeeiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeees 66
4.2.1. Price DECISIONS ...ceeeeeeeeeeieiiiiieiiiiiiiiiiiiiiiieeeeeeeeeeeeee 67
4.2.2. Task Orchestration Decisionscccccceeeriiiiiiiiiiiiiiiiieiininenane. 69
4.3. Use and EXtensibilitycoeeeeiiiiiiiiiineiiiiiiiiee e 73
4.4, Additional TOOISccoeiiiiiiiiiiiieiii e 74
4.5, BEvalUationccoouuiiiiiiiiiiiiiiie e 75

A.5.1. SCENATIOS touininiie ittt e e s ee e 76

*®

4.5.2. Simulation ENVIrONMENTovnieniiniiiitieie e eeeeeeeee e e 76

4.5.3. Specifications and SEttiNgS.........cceeeeeeriiiiiiieeeereeiiiiiireeeeeeeriieennn. 78
RESULTS ...t 79
5.1. Hyperparameter TUNINE.uuuumimiiiiiiieee e 79
S5.20 TTAIMING ..vuieeeeeeiiitie ettt e e e e ettt e e e e e e ee e eeeeeeeeeaaaanes 80
5.30 EValUatioNooviiiiiiiiiiiiiiii e 82
5.4. Efficiency of EISIM.........coouuiiiiiiiiiiiiiiiiiee e 88
DISCUSSION ..ottt e e e 90
6.1. Significance and LIMItationS.........uuueeueiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 90
6.2. Future WOTKcooomiiiiiiiiii e 91
SUMMARY .. e e e e e e e e e e eeeees 94
REFERENCESooiitttie et 95

APPENDICEScooiiiiiiiiii e 109

FOREWORD

This thesis has been supported by the ECSEL JU FRACTAL (grant 877056), receiving
funding from the EU Horizon 2020 programme and Business Finland. I would like
to express my gratitude to the FRACTAL project for supporting this thesis, as well as
thank my supervisors Dr. Lauri Lovén and Doc. Susanna Pirttikangas for excellent
guidance.

Oulu, October 11th, 2023

Henna Kokkonen

LIST OF ABBREVIATIONS AND SYMBOLS

Al Artificial Intelligence

AP Access Point

API Application Programming Interface
BS Base Station

CRB Computing Resource Block
CSP Cloud Service Provider

DDPG Deep Deterministic Policy Gradient
DES Discrete Event Simulation
DNN Deep Neural Network

DQN Deep Q-Network

DRL Deep Reinforcement Learning
EISim Edge Intelligence Simulator
ESP Edge Service Provider

FIFO First In First Out

GUI Graphical User Interface

1D Independent and Identically Distributed
IoT Internet of Things

LAN Local Area Network

MAN Metropolitan Area Network
MARL Multi-Agent Reinforcement Learning
MAS Multi-Agent System

MDP Markov Decision Process

MEC Multi-access Edge Computing
MI Million Instruction

MIP Mixed Integer Programming
MIPS Million Instructions Per Second
ML Machine Learning

NUM Network Utility Maximization
oS Operating System

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RL Reinforcement Learning

RRB Radio Resource Block

RSU Road Side Unit

SLA Service Level Agreement

SLO Service Level Objective

TD Temporal Difference

TWST Tunable Weight Spanning Tree
VEC Vehicular Edge Computing

VM Virtual Machine

VNF Virtual Network Function

WAN Wide Area Network

o

DOUS QT we »

3
8

SRS
S

QL
Q
£
S

gzzgﬁ\g“hmkl\l\m
< <«

action space

action

mini-batch size

battery level of an edge device

set of edge servers in a cluster
confidence level

computational demand of a task
experience replay

task execution delay

maximum tolerable delay of a task
degree of an AP node

input data size of a task

output data size of a task

energy consumption

computational capacity of one CPU core
index set for AP nodes

actor objective function

number of edge server clusters

critic loss function

task queue length on an edge server
average task queue length in a cluster
mean of an evaluation metric

noise process

number of edge servers

number of links to add to TWST
number of APs

number of episodes

number of cores in CPU

permutation array

power consumption when CPU is idle
power consumption when CPU is at 100%
transmission power of an edge device
receiver power of an edge device
average location of AP nodes

location of an AP node

price

preferred price of an edge device

total number of MIs summed over a set of tasks
Q-function

reward function

reward

downlink transmission rate

uplink transmission rate

state space

State

sample standard deviation of an evaluation metric
transition probability function

*
ne—1
Va
Wy
We

<

~~ ;?.b, .

I N2

o~

[0}
o<’

~

93 XRTETE > T

upper critical value for Student’s t-distribution with n,
degrees of freedom

value function

importance weight for task execution delay

importance weight for energy consumption

importance weight for monetary cost

vector of binary offloading decision variables

TD target for critic

AP node index
edge server index
cluster index
time slot index

weight parameter for adding links to TWST
weight parameter for adding links to TWST
discount factor

energy cost coefficient

weight parameter for adding links to TWST
actor parameter vector

target actor parameter vector

critic parameter vector

target critic parameter vector

time slot length

weight parameter for TWST

arrival rate of tasks

deterministic policy function

exploration policy function

weight parameter for edge server placement
stochastic policy function

parameter for updating target networks

10

1. INTRODUCTION

1.1. Background

The future entails a myriad of novel, interactive and intelligent applications in areas
such as autonomous vehicles, smart city, healthcare and Industry 4.0 (see, e.g., [,
2, 3]). These applications have high, ever-growing requirements in terms of security,
reliability and performance. For example, applications can process highly sensitive
personal data which must not fall into the hands of unauthorized parties, intelligent
applications should ensure a certain level of accuracy in their forecasts, and many
applications have critical, ultra low latency requirements, the violation of which can
lead to dire repercussions.

Currently, the development of interactive and intelligent applications is heavily
dependent on cloud, the abundant computing and storage resources of which are
a necessity for the computationally intensive Artificial Intelligence (AI) methods.
However, cloud-native processing requires transmitting data and results between the
end users and the cloud, which naturally increases the latency and raises privacy
concerns. Further, the amount of data transmitted to the cloud can be enormous, which
overburdens the network and is far from an energy efficient solution. Hence, several
computing paradigms, such as edge and fog computing, Multi-access Edge Computing
(MEC) and cloudlet-based computing [4], have emerged to bring the computing and
storage resources from the cloud to the edge, closer to the end users. Even though these
paradigms have differences in their architectural considerations and driving forces,
they all have the same essence: placing and using computational resources between
the end user and the distant cloud in order to reduce latency and energy consumption,
as well as increase security and privacy by keeping the application data local.

Bringing the intelligent applications onto the edge resources between the end users
and the cloud is not a simple task. Traditional Al is inherently centralized and
resource consuming, while the edge is inherently distributed and limited in resources
compared to cloud. Further, the edge nodes are highly heterogeneous in terms of
their operating principles and capabilities, while the edge environment as a whole
is characterized by intermittent connectivity, distributed and non-IID (Independent
and Identically Distributed) data, as well as geographically distributed, opportunistic
computing resources [5]. Research on developing and adapting Al methods to the
edge environment has been coined as Al on Edge [6, 7], which is an active research
area with an ample amount of research [7, 8, 9, 10, 11]. However, in order to fully
realize the envisioned interactive and intelligent applications, the orchestration of the
edge resources must be intelligent as well.

The research on edge orchestration has been very dispersed as the studies usually
focus on the orchestration of only one aspect of the whole environment, such as
networks, containers or services [5, 12, 13, 14, 15]. Further, the orchestration
paradigms of these aspects, such as container orchestration, typically follow the
essence of traditional cloud orchestration, which uses centralized, best-effort and
reactive orchestration techniques [5]. However, the fulfillment of the stringent
requirements of the future applications requires that the orchestration enables adaptive,
context-aware and autonomous behavior on the edge. This requires distributed,
proactive and optimized orchestration solutions that are built upon distributed

11

intelligence. The research on developing and applying distributed Al methods for
performing orchestration functions has been coined as Al for Edge [6, 7], and it has not
received as much attention as Al on Edge in the context of edge intelligence research
[5].

The lack of a holistic view on edge orchestration has been a significant deficit in
terms of developing novel, distributed orchestration solutions. Only recently there
has been efforts to piece together different aspects on orchestration in order to create
a more holistic view. Kokkonen et al. [S] present an early vision for the future of
edge orchestration. The vision relies on a more encompassing view on resources
in the computing continuum that spans from the end devices all the way to the
distant cloud. The architecture of the computing continuum is envisioned as a Multi-
Agent System (MAS) consisting of autonomous, intelligent, and self-interested agents.
Agents manage resources in the computing continuum and aim to fulfill externally
set objectives on cost, quality and resource usage. Each agent has local autonomy
when it comes to deciding on when and how to conduct actions related to orchestration
functions.

The autonomous agents form a hierarchy where higher levels control lower levels by
setting their objectives and constraints. Each administrative domain (e.g., application
providers, infrastructure and platform providers) is represented by a stakeholder agent
at the highest level, under which other resource agents inside the same domain are
organized as clusters and further sub-clusters. Such a hierarchy enforces local decision
making and follows the idea of loose coupling [16, 17] with a minimal amount of
centralized control.

The vision states that through Al for Edge, that is, the development of intelligent
solutions for distributed, multi-domain and multi-tenant edge orchestration, the
edge environment will eventually evolve into a coherent, autonomous computing
continuum. The continuum will be able to orchestrate its limited resources in
a globally optimized manner while being aware of and ready to adapt to the
dynamic environment. Naturally, realizing such a vision of orchestration built upon
MAS paradigm, distributed Al, local autonomy and loose coupling is an extremely
challenging endeavor.

1.2. Contribution

The realization of the aforementioned vision brings forth multiple open research
questions. Some of the most important questions concern the optimal level of
autonomy in the system and the adaptation and application of Al methods in the
challenging computing continuum environment. Any proposed solution requires ways
to test and evaluate the method and compare it with other potential solutions.

Simulation is a commonly adopted way for evaluating proposed methods, as it
provides a controllable and cost-effective testing environment. However, there does not
currently exist openly available simulation platforms that would particularly support
research on intelligent edge orchestration methods.

This thesis presents a simulation platform called Edge Intelligence Simulator
(EISim), the purpose of which is to facilitate research on intelligent edge orchestration
solutions particularly in the context of the aforementioned vision. EISim is built on top

12

of an existing fog simulator called PureEdgeSim [18], extending it towards supporting
the easier testing and evaluation of intelligent orchestration methods.

Intelligent orchestration methods in this thesis particularly refer to (Deep)
Reinforcement Learning ((D)RL) based solutions. This is because reinforcement
based learning is seen as one key ingredient for intelligent computing continuum
orchestration in the vision [5], mainly due to its ability to learn from experience
decision-making policies that can adapt to complex systems and achieve long-term
optimization.

In its current form, EISim supports simulating scenarios related to task offloading
and resource pricing. Task offloading is supported, because it is the core function
of PureEdgeSim. Resource pricing, in turn, has a crucial role due to the multi-
domain nature of the computing continuum, which means that there are many different
stakeholders, such as end device owners, infrastructure owners and application
providers. The stakeholders offering their resources for the computational demand
of other stakeholders naturally want to profit from this exchange.

The focus of EISim is particularly on evaluating and comparing the performance
of orchestration solutions against different orchestration control topologies. This
is because the control topology of the orchestration solution closely relates to the
level of autonomy in the system, and the optimal level of autonomy is a central
research question in the aforementioned vision. Hence, to facilitate the research
on the optimal level of autonomy, EISim offers three default task orchestration
algorithm implementations that correspond to the three main control topologies,
namely decentralized, hybrid and centralized. It is important to note that in its current
form, EISim focuses on edge-based processing, meaning that tasks are either processed
locally by the edge devices that generate them, or offloaded to the edge servers. Default
implementations with wider focus are left for future work.

Decentralized control topology regards every edge device and server in the system
as a self-interested, autonomous agent. Each device agent aims to maximize its
own utility which takes into account task execution latency, energy consumption and
monetary cost of the execution on the edge platform. Each edge server agent aims to
optimize its resource usage and maximize its profit, with the high level objective of
maximizing the profit of the Edge Service Provider (ESP). In this control topology,
every server decides about the price for task execution on its resources, and devices
decide whether to offload their tasks and to which server.

In the hybrid control topology, edge servers are clustered into groups with assigned
cluster heads. A cluster head agent decides the price for task execution in the cluster,
and each device agent decides to which cluster it offloads the tasks. The cluster head
agent also decides how the incoming tasks are allocated on the cluster nodes.

In the centralized control topology, there is one central edge server agent that decides
the price for the task execution on the platform, as well as the allocation of all offloaded
tasks. Device agents only decide whether they offload or not.

The decentralized control topology has the most autonomous agents, as both servers
and devices are able to decide about the pricing and offloading targets independently.
The hybrid control topology introduces a level of control where cluster heads decide
independently for the price and task allocation inside their clusters. This reduces the
autonomy of other edge servers inside the clusters, as well as that of the devices as they
can no longer decide about the exact location for the execution of their tasks, although

13

they still have partial autonomy with regard to deciding the destination cluster. The
centralized control topology has the least amount of autonomy, as all edge servers hand
over the decision-making power to the central orchestrator, and devices lose almost
completely their say in where their tasks are executed.

For investigating resource pricing methods, EISim allows researchers to plug in
their own pricing algorithms for servers. The implemented default algorithm is Deep
Deterministic Policy Gradient (DDPG) [19], which is a state-of-the-art DRL algorithm
for continuous action spaces.

To further facilitate the research, EISim offers tools for environment setup, agent
training and result plotting. The environment setup tools consist of three tools that can
be used to automatically generate 1) Metropolitan Area Network (MAN) (including
Access Point (AP) placement, topology creation and edge server placement), 2) edge
server clusters for the hybrid control topology, and 3) edge server specification files that
are given as input to EISim. Agent training tools are a set of scripts that can be used
to run hyperparameter tuning, model training and model evaluation simulations for the
pricing agents. Finally, result plotting tools generate plots for analyzing the results of
the simulations for each phase (hyperparameter tuning, training and evaluation).

Overall, EISim adds into PureEdgeSim the capabilities to simulate intelligent,
DRL-based solutions and resource pricing, as well as pre-implemented algorithms
for the three main orchestration control topologies. EISim also offers a more
versatile application model, improves the extensibility of PureEdgeSim, and enables
the reproducibility of the simulation results. Further, the additional tools of EISim are
an exclusive feature, meaning that they do not exist in any form in PureEdgeSim.

EISim is validated and evaluated through a large-scale MEC simulation case study
that verifies the end-to-end performance of EISim in 24 simulation scenarios. The
fidelity of EISim is analyzed through the sensibility of the simulation results.

The rest of the thesis is organized as follows. Chapter 2 defines the key terms
used in this thesis, and provides an overview of the state of the art in edge and fog
simulation, orchestration, task offloading and resource pricing. Chapter 3 describes the
methods and tools used in the current EISim implementation. Chapter 4 describes the
implementation details of EISim and presents the evaluation scenarios used to validate
EISim. Chapter 5 presents and analyzes the evaluation results. Chapter 6 discusses the
significance, limitations and future development directions of EISim. Finally, Chapter
7 concludes the thesis.

14

2. LITERATURE REVIEW
2.1. Definitions

The meaning of many terms especially in the edge computing related literature can
be very ambiguous because some terms may be used interchangeably or differentiated
in meaning depending on the context. Further, there can be different notions of the
meaning of some general terms such as autonomy. The following sections define how
certain key terms are understood in the context of this thesis.

2.1.1. General Terminology

An agent is a sense-decide-act feedback loop. An agent uses sensors to perceive the
state of its environment, after which a decision-making process is deployed to find an
action that maximizes some externally set performance measure [20]. An agent then
acts upon the environment through actuators.

Autonomy is defined as in [5]: “Autonomy refers to an agent’s ability to make
decisions without any influence of external authority such as users, administrators
or other agents. While such decisions can be made by the agent on the behalf of
an external authority, that authority itself cannot influence a fully autonomous agent
making the decision.”

Fog computing refers to “a highly virtualized platform that provides compute,
storage, and networking services between end devices and traditional Cloud
Computing Data Centers, typically, but not exclusively located at the edge of network”,
as first defined by Cisco in 2012 [21]. The term has since received many alternative
definitions [22], but the driving force behind the definitions for fog computing is
typically the Internet of Things (IoT). In this thesis, fog computing is understood as a
hierarchical view on the computing, storage and networking resources between the end
devices and cloud, that is, it includes the immediate edge (lowest level in the hierarchy)
between end devices and cloud but also includes the resources deeper into the network
(higher levels) from the edge towards the cloud.

Edge computing does not have a standardized definition, it can be understood
differently based on the context. For example, edge computing may be regarded as
an all-encompassing term that includes paradigms such as fog computing, MEC and
cloudlet-based computing [23, 24], or it may be seen to be interchangeable with the
term fog computing [25], or it may be regarded as its own paradigm with its own focus
alongside fog computing, MEC, etc. [26]. In this thesis, edge computing is understood
to encompass any paradigm that specifically uses computing, storage and networking
resources on the lowest level (the edge) between end devices and cloud. The location
of this edge may vary based on the paradigm and use case. For example, in IoT, smart
phones can belong to the edge as they can act as the [oT gateways between controllers
/ sensors and cloud. On the other hand, in MEC, smart phones are mobile devices that
belong to the end device level, and the edge is located on the Radio Access Network
(RAN) edge, the resources of which serve the needs of mobile applications.

Computing continuum refers to the visionary view of the seamless integration
of the distributed resources available on all computing tiers (device, edge / fog,

15

cloud) in a way that the demanding and varying workflows of the future applications
can be efficiently supported [27, 28]. Hence, the term computing continuum can
also be regarded to encompass any distributed computing approach that deals with
heterogeneous and opportunistic resources [5].

A resource is defined in the same encompassing way as in [5]. A resource refers
to any type of communication, computation, or data related entity in the computing
continuum that may reside on any of a number of abstraction layers. These resource
layers include the following:

» fundamental resources (materials, energy, information, time, frequency, space)
* cyber-physical resources (sensors, actuators, connected devices)

* hardware resources (e.g., physical network interfaces, processing units and
storage units)

* Operating System (OS) resources (e.g., OS network interfaces and OS services)

* middleware resources (e.g., software-defined networking, middleware
Application Programming Interfaces (APIs) and container frameworks)

* application resources (e.g. Virtual Network Functions (VNFs), application APIs,
services, and application data)

e workflow resources (data flows, tasks, and data sets available for individual
application workflows)

Orchestration can be holistically defined as “the management of resources in the
computing continuum, from fundamental resources to workflow resources” [5] by
adopting the above encompassing definition for a resource.

Offloading is one orchestration function, where software code with related input
data and necessary system settings is transported to another node for processing [29].
The transportation is typically triggered by heavy workload or lack of resources on the
sending node. After the offloaded code has been executed, the results are sent back
to the offloading requester. Offloading can happen either horizontally (offloading to
neighbouring nodes on the same level) or vertically (offloading to edge / fog or cloud).

Simulation is defined as “the imitation of the operation of a real-world process or
system over time” [30]. It uses a model that represents the behavior and characteristic
of the system to generate an artificial history of the system. The artificial history is
then used to describe and analyze the behavior of the system. The main purpose of
simulation is to help in understanding, designing and improving real systems.

2.1.2. Control Topologies

Control topology refers to the degree of centralization in orchestration solutions. It can
be understood from two perspectives.

The first perspective considers the degree of centralization in the interaction or
coupling between decision-making agents [17, 31]. In this regard, control is centralized
if there is a leader-follower type of hierarchy where a strong central agent coordinates

16

the lower level agents and has a global view on the system. This naturally leads to
high decision making delays and exponential growth of the information needed to
control the system. On the other hand, control is regarded to be decentralized, if
each agent makes decisions with complete local autonomy without interacting with
other agents. Such decentralized control could be realized, if, for example, the
agents are geographically far apart. Finally, control is regarded to be distributed, if
the decision makers at least exchange information with their nearest neighbours. In
both decentralized and distributed control, there is no hierarchy of agents. In this
perspective, hybrid control can be regarded to be a combination of the central and
distributed control, where agents form a hierarchy with a weak central agent and nearly
autonomous lower-level agents. Hybrid control covers all other control types, as the
strength of the coupling between the agents determines the degree of centralization.

The second perspective considers the orchestration control, that is, what is the
degree of centralization in decision making [32, 33]. In this perspective, the control is
centralized if there is one central orchestrator agent in the system that has the decision-
making power over the resources in the system. On the other hand, control is called
decentralized if there are groups of nodes with assigned local leaders that have the
decision-making power over the resources in the group. Local leaders can coordinate
decision making and communicate with each other through peer-to-peer protocols.
Finally, control is called distributed if there is no central or leader nodes. In this
case, each node controls its own resources and can coordinate its decision making
and communicate with other nodes in any way. It is also good to note that there
might be discrepancies in the literature with regard to how the terms distributed and
decentralized are used. In some cases, distributed can be used to refer to the control
topology where there are groups of nodes with local leaders, whereas decentralized is
used to refer to the control topology with no leaders.

In this thesis, control topologies are divided into three main categories of centralized,
hybrid and decentralized. The definitions for these combine elements from the two
perspectives introduced above, but the emphasis in the categorization is on the level of
autonomy the control topology endows to the local system entities.

The control topology of an orchestration solution is centralized if the system has a
master-worker type of control hierarchy, where one central agent either 1) makes all
the decisions on behalf of the system entities, or 2) strongly coordinates the decision
making in the system. The first aspect considers the type of system models that only
have one agent that collects sensing information from other system entities to make
all the decisions related to the system resources. In such models, other system entities
are not agents as per the definition in Section 2.1.1. Hence, there is a complete lack of
local autonomy. The second aspect, in turn, considers system models where the other
system entities are also agents, but their decisions are heavily controlled by a central
agent. The heavy control can be realized, for example, in the form of an iterative
algorithm, where the central agent and the lower-level agents exchange and update
their decisions until the central agent determines that an equilibrium solution has been
reached. In such a case, other agents lack local autonomy as their final decisions are
dictated by the central agent.

In the decentralized control topology, the agents in the system do not form any type
of control hierarchy. In other words, the system model considers the system entities
as fully autonomous agents that have the final decision-making power over their local

17

resources. This definition does not limit the interaction patterns between the agents,
meaning that the agents can interact with other agents to coordinate the decisions in any
way. For example, the agents could deploy negotiation protocols to reach consensus
on optimal resource allocation.

The hybrid control topology covers any type of middle form between the centralized
and decentralized extremes. This means that the system model involves some type
of control hierarchy between the agents. In other words, there are some elements
of centralized control in the system, but there are also system entities that can make
their decisions in a nearly or fully autonomous manner. For example, hybrid control
topology 1is realized in a system with several central controllers. These controllers
decide for the system entities in their group, but the controllers themselves make their
decisions with local autonomy, possibly coordinating with other controllers through
negotiation protocols. As another example, hybrid control topology is also realized in
a system with one central agent that operates on a slower time-scale than the lower-
level agents and influences the decision making of the lower-level agents by setting
their goals and constraints. In this case, the lower-level agents are nearly autonomous,
because the higher-level agent does not dictate the decisions of the lower-level agents,
but rather intends to direct their decision making towards a global optimum.

2.2. The Simulation of Edge and Fog Environments
2.2.1. Motivation for Simulation

Any method developed for the orchestration of the edge or fog environment requires
evaluation. Ideally, solutions could be tested and evaluated in a real-life environment.
This would require either the use of commercial edge or fog computing platforms or
building a testbed. However, commercial edge or fog platforms are scarce. Further,
commercial platforms do not usually grant a full access to their infrastructure, nor
support research-originated heavy workflows that may disturb the other users of the
platform. Building an edge or fog testbed, in turn, is an expensive option which results
in a test environment that cannot be easily scaled. Hence, the best alternative for
performance evaluation is simulation, which allows to evaluate the performance of the
developed method in a repeatable and controllable manner.

Even in cases where a real-life environment is available for testing, it is usually
worthwhile to also use simulation for the development and evaluation of the method.
Simulation can bring significant cost and time savings, as the simulation environment
can be effortlessly modified into a completely new configuration, and simulations can
be run significantly faster than the wall-clock time. Further, because a real environment
is not as controllable as a simulation environment, it is a lot more difficult to investigate
in real environments why some phenomenon occurs in the system. In a simulated
environment, a microscopic examination of the system can be carried out to determine
the cause of the phenomenon [30]. Simulation models can also provide a better
understanding of the system variables and their relationships, which provides insight
into the importance and effect of different variables on the system performance.

18

2.2.2. Building Simulation Models

General Workflow

The general steps of a simulation study are shown in Figure 1. This workflow is
presented in accordance with the work of Banks et al. [34].

Any simulation project starts with properly stating and formulating the problem
underlying the study, which includes representing the problem in a way that others
can understand it. The next step is to set the objectives of the project. These objectives
indicate the questions to which the simulation project aims to answer. Along with
setting the objectives, the project plan should be set, which includes, for example,
describing the scenarios that are to be investigated, deciding the timetable of the
project, and specifying the hardware and software requirements.

After the project foundation has been set, the next step is to start the simulation
model building. This process starts off with the building of a conceptual model
that is an abstraction of the real system. A conceptual model is defined as “a
non-software specific description of the simulation model that is to be developed,
describing the objectives, inputs, outputs, content, assumptions and simplifications of
the model” [35]. The content of the simulation model is specified in terms of what
system components are modelled and to what level of detail, as well as how different
components are interconnected.

Data collection should be done in parallel with the simulation model building.
This refers to collecting data of the behavior and characteristics of the real system.
In general, three types of data should be collected [35]. Some preliminary or
contextual data is needed in starting the model building process as it helps to develop
understanding of the system. The conceptual model itself sets requirements for the
type of data that should be collected in order to realize the conceptual model. Finally,
data from the real system is needed to validate the conceptual model.

The next step after conceptual modelling is model translation. This refers to building
an operational model that is a computer-based realization of the conceptual model. An
operational model can also be called a computer model.

Model verification is the process of ensuring that a conceptual model has been
transformed into an operational model with sufficient accuracy. Model validation, in
turn, is the process of ensuring that the simulation model represents the real system
with sufficient accuracy. ‘Sufficiency‘ is defined with respect to the purpose of the
model. Verification has a lot narrower scope than validation, as it focuses on the
implementation of the conceptual model as a computer program. Hence, it can be
seen as a subset of the wider problem of model validation [35]. Model validation and
verification are fundamental steps in a simulation project, as they determine the level
of confidence that can be placed on the simulation results.

In the experimental design step, the length of one simulation run, the number of
simulation runs, and the method of simulation initialization are decided for each
simulation scenario. How these factors are selected is important for obtaining accurate
results from the simulation model [35]. Experimental design typically also addresses
how different simulation scenarios are compared and how new simulation scenarios
are selected.

Problem formulation

v

Setting the objectives and
project plan

v
v v

Model building
(Conceptual model)

v

«| Model translation
| (Operational model)

v

Data collection <—

No Is the model
verified?
¢Yes
No Is the model No
validated?

¢Yes

Experimental design <

v

Simulation runs and
result analysis

v

Yes Yes
Need more

runs?

¢No

Documentation and
result reporting

A

Implementation

Figure 1. The general workflow of a simulation project. Adapted from [34].

20

After experimental design, simulation scenarios are run and results analyzed. Based
on the result analysis, it may be necessary to do more simulation runs to get more
accurate results. It may also be necessary to redesign the simulation experiments by,
for example, adding more simulation scenarios or changing the initialization method.

Finally, documentation is another crucial part of a simulation project. What needs
to be documented and how depends largely on the project, but, in general, there should
be three types of documentation [35]: project documentation, model documentation
and user documentation. Project documentation typically describes, for example, the
project specification, the model verification and validation performed, as well as the
experimental scenarios and their results. Model documentation typically includes
comments on the code, a description of the model structure, and a specification of
the model inputs and outputs and their formats. User documentation is meant for
those who want to use the simulation model. It should include a guide to running the
simulation model, as well as similar descriptions of the project and the model that are
included in the project and model documentation.

A simulation project results in some type of implementation in a real world.
Implementation can be understood to refer to something tangible, such as
implementing the changes proposed by the simulation model in the real system, or
handing the simulation model over to others to use. However, it can also be understood
from a more abstract perspective [35]. In this perspective, implementation is seen
as learning. In other words, one result of a simulation project is the improved
understanding of the real system, which is gained from the whole process of developing
and using the simulation model.

It is important to note that even though this section presents a simulation project
as a straightforward process of steps, this process is actually highly iterative. For
example, it is advisable to start with a very simple conceptual model that is gradually
improved. The need for modifications to this model can arise at any point of the project,
such as during model translation, validation or experimentation. As another example,
model verification should be tightly connected to the model translation, meaning that
the operational model should be coded and verified in small parts. Further, model
validation should be done throughout the project.

Validating Simulation Models

Model validation is vital for qualifying the utility of a simulation model. It aims to
determine how accurately the simulation model represents the real system and whether
the level of accuracy is sufficient for the purpose of the simulation model. Figure 1 is
a little misleading when it comes to the validation of a simulation model as it presents
validation as one step of a simulation project workflow. Validation, however, should
be intimately connected with the whole life-cycle of a simulation project. Figure 2
shows the process of model validation as a part of a simulation project life-cycle. The
validation process is presented in accordance with the work of Robinson [35].

Conceptual model validation determines whether the content, assumptions and
simplifications of the conceptual model are sufficiently accurate for the purpose of
the simulation model. There are no formal methods for validating a conceptual model
[35]. Hence, conceptual model validation typically relies on the knowledge and the
assessments of system experts.

21

Real world
(problem)
A A
« | :
S -
I
g .2
Solutions / ; Dallta !
understanding < validation ! > Conceptual model
< i x E
8 &
X ! 2.
SR : £,
o : I =
S : : i
v v \4
6/) Operational model

Figure 2. The process of validating a simulation model. Adapted from [35].

White-box validation determines whether the components of the operational model
represent the corresponding real world components with sufficient accuracy. This is
similar to verification, as both are micro-level checks of the model. However, white-
box validation compares the operational model to the real system, whereas verification
compares the operational model to the conceptual model. Verification can be done by
the modeller alone. White-box validation, on the other hand, requires the involvement
of system experts.

Black-box validation determines whether the overall simulation model represents
the real system with sufficient accuracy. It is a macro-level check of the model,
which is done by comparing the output of the simulation model with the output of the
real system under same conditions. Black-box validation could also be done against
another simulation model of the same or a similar real system.

Data validation determines whether the contextual data and the data collected for
the conceptual model realization and the model validation are sufficiently accurate.
This includes assessing the reliability of data sources and inspecting the data for any
inconsistencies and errors.

Experimentation validation determines whether the experimental procedures
provide results that are sufficiently accurate. This includes removing possible
initialization bias, determining appropriate simulation run-length and number of runs,
and using suitable methods for finding new simulation scenarios.

Finally, solution validation can only be done after the simulation project has reached
the implementation state. It compares the final model of some proposed solution to the
implemented solution and determines whether the model of the proposed solution is
sufficiently accurate. In practice, solution validation is rarely done because it can take
several years to implement findings from a simulation study [35].

22

Model validation is an arduous and time-consuming process. Often there is not
enough resources to conduct thorough model validation. Further, it is impossible to
prove that a simulation model is absolutely correct [35]. Hence, validation processes
do not generally try to prove that the model is correct, they try to prove that it is
incorrect. In this sense, the more tests are done in which it cannot be proved that the
simulation model is incorrect, the more confidence can be placed on the model. After
all, it is the level of confidence that can be placed on the model that determines whether
the simulation model can be used for decision making.

When it comes to validating simulation models of edge and fog environments, a
significant problem is the lack of actual real-life deployments [36]. In other words, no
comparable data from real deployments is readily available. Hence, the validation
of edge and fog simulation models is typically done by investigating the models
in scenarios that correspond to real-life use cases. The results of these scenarios
are compared against the expectations and intuitions of those who have detailed
understanding of the system. This is also the approach adopted in this thesis. Further,
as more testing over a variety of use cases increases the confidence on the model and
is crucial for validation, fog and edge simulators typically branch off from existing,
well-known cloud or edge / fog simulators (see Section 2.2.3). This is also why EISim
is built on top of an existing simulator.

Types of Simulation Models

In general, two types of simulation models can be recognized in the edge and fog
computing literature, namely static and dynamic models.

Static models are highly abstract, analytical models that focus on describing the
system using mathematical equations [37]. These models can focus on modelling the
system at some fixed time instant or over a time period, but they do not model the
change in the system state over time. In other words, they focus on analyzing the
system under static conditions, where typically the number and location of the nodes
does not change and many important characteristics of the system, such as the arrival
rate of tasks, the transmission time per packet, task size, the processing time per task,
or the resource utilization level of the servers, are treated as constant means that are
input into the model (see e.g., [38, 39, 40, 41]).

Due to their analytical nature, static models rely strongly on simplifying assumptions
that sometimes can be very invalid [37]. For example, it may be assumed that the
distribution of Virtual Machines (VMs) is uniform over the computing nodes [38]
or that all the tasks can be processed within a time frame [41]. However, static
models also have some benefits. They are fast to execute and provide precise output
in a sense that the response to the same input is always the same. They can be
beneficial in providing a high-level, overall view on the performance of the system
under different architectures, but they are not suitable for analyzing online decision-
making algorithms, where a decision in one instant of time can have long-term impacts
on the system performance.

Dynamic models are focused on modelling changes in the system state over time.
Such models are more suitable for analyzing online decision-making algorithms, and
they are also what is commonly known as ‘simulators’ [37]. There are two approaches
to modelling the progression of time in dynamic models, namely time-driven and

23

event-driven. In time-driven simulation, the system state changes at equal time
intervals during a simulation run. This is also known as continuous simulation because
it is used to simulate systems where the system state changes continuously over time
[35]. Event-driven simulation, in turn, is known as Discrete Event Simulation (DES).
In DES, the system state changes only at those discrete points in time at which events
occur [30]. In edge and fog environments, such events could be, for example, the
arrival of a task, the start of the task execution, and the end of the task execution.

Purely time-driven simulation can be very inefficient, as there can be several time
steps during which no change happens in the system. Determining an appropriate
time interval is also a challenge, because smaller intervals slow down the simulation,
whereas longer intervals compromise the accuracy [35]. In edge and fog computing,
event-driven simulation is the prevalent approach. For example, all the simulators in
Section 2.2.3 are based on DES. However, time-driven and event-driven approaches
are not mutually exclusive, they can be combined. For example, DES-based edge and
fog simulators can include an event that happens at fixed intervals and updates the
continuous state variables, such as the energy consumption and the location of the
devices (e.g., in PureEdgeSim [18]).

Dynamic models generally include randomness. For example, the arrival times and
lengths of the tasks and the mobility paths of the devices are often generated randomly.
Hence, the same inputs to the model generate different outputs, which means that
the simulation must be run several times under the same conditions and the results
aggregated in order to analyze the system.

2.2.3. Edge and Fog Simulators

A plethora of edge and fog simulators have been developed in the research community
[42, 43, 44, 45]. Because of the complexity of the edge and fog environments, it
is very difficult to develop a simulator that could simulate every factor affecting the
performance realistically. Hence, simulators rely on abstractions that simplify the
environment. To which degree different levels in the environment (e.g., networking,
OS, middleware or application level details and protocols) are abstracted out depends
on the intended use of the simulator.

The following gives a short comparison of different simulators that were considered
to serve as the basis of EISim. The simulators were selected based on two factors: 1)
the simulator is an edge or fog simulator, that is, it simulates processing on edge or fog
nodes, and 2) the software of the simulator is open source.

iFogSim is one of the most referenced simulators in the literature [46, 42]. It builds
upon a popular cloud simulator CloudSim [47], and is designed to simulate application
placement and scheduling in a fog environment, particularly in IoT use cases with
sense-process-actuate or stream processing application models. One application is
modelled as a directed acyclic graph, where the nodes are application components
and the edges correspond to data dependencies. The placement policy determines
how application components are placed on fog nodes, whereas the scheduling policy
determines how the resources of a fog node are divided among all the application
components that have been placed on the node. During simulation, [oT devices

24

generate tuples that are processed by the application components placed on the fog
nodes.

1iFogSim has several deficiencies. It can only simulate centralized application
placement policies, as the placement policy is run by a broker that has knowledge
of the whole fog environment and the resource availability of each fog node. Further,
it does not support simulating runtime load-balancing algorithms, does not have any
type of mobility model for the devices, nor simulates the possible failures of links and
nodes. It only supports tree topologies, meaning that communication between nodes
on the same level is not possible. The network model is also very simplistic, because
it assigns a fixed latency on each link and does not consider the effect of network load
on transmission delays.

Extensions to iFogSim that aim to address some of the deficiencies have been
developed. MyiFogSim [48] adds in mobility support through migration of VMs
and containers between cloudlets. It adds two customizable functions to iFogSim:
migration policy and migration strategy. Migration policy determines when a user’s
VM should be migrated considering the user’s speed, direction and geographical
location. Migration strategy determines where the user’s VM is migrated and how
the migration is performed.

MobFogSim [49] is a refined version of MyiFogSim. It allows more generalized VM
and container mobility simulations. The major difference with regard to MyiFogSim is
the addition of more realistic user mobility patterns: MobFogSim supports customized
user mobility patterns that can be given as input data. Besides adding in mobility
and migration support, neither MyiFogSim nor MobFogSim addresses any other
deficiencies in iFogSim.

1iFogSim2 [50] redefines many core components of 1FogSim, such as fog devices,
application modules, sensors and actuators, and adds in support for mobility,
application migration, dynamic cluster formation, and microservice orchestration.
It allows implementing customized migration policies, distributed cluster formation
algorithms, as well as microservice placement and scheduling methods. It supports
a more realistic mobility model, where customized mobility patterns can be read
from input files. Further, it allows implementing decentralized runtime load-balancing
algorithms, as the node that generates a service request uses the implemented
scheduling policy to decide where the request is routed. For finding which
microservices are placed on which nodes, 1iFogSim2 offers a service discovery
functionality, which stores the dynamic microservice to node mapping. However,
iFogSim2 does not provide a failure model nor a more realistic network model.

YAFS [51] simulates [oT applications in a fog environment. It adopts the application
model from iFogSim, describing the dependencies between application modules as
messages. The network topology is graph based, and YAFS has support for multiple
graph formats and can import topologies from CAIDA [52] and BRITE [53] tools.
YAFS offers three types of customizable policies: selection, placement and population.
Whenever a node generates a message, the selection policy decides the node to which
the message is sent for processing, as well as the route of the message through the
network. The placement policy decides the placement of the application modules on
the nodes. The population policy decides the placement of workload generators on
the nodes, the type of messages they generate, and the temporal distribution based on
which the messages are generated. All these policies are dynamic and application-

25

specific, that is, they can be invoked any time during the simulation and each
application has its own selection, placement and population policy. YAFS supports
modelling the failures of links and nodes, even though the possible recovery of a failed
node is not considered. However, YAFS does not offer any default implementations
for mobility models.

EdgeCloudSim [54] is another well-known simulator built on top of CloudSim. It
allows implementing a centralized edge orchestrator module that decides about the
scheduling of user tasks on edge servers or cloud. The user tasks are generated by
end devices according to a Poisson process. EdgeCloudSim offers some benefits over
iFogSim. It offers a mobility model for the end devices, and its network model is more
realistic as it takes into account the effect of network load on transmission delays.
However, there are many deficiencies. EdgeCloudSim offers only one simple default
mobility model. Further, EdgeCloudSim does not model the energy consumption of
the end devices and cloud datacenters, nor offers a failure model. EdgeCloudSim also
supports only a three-level edge computing environment, where all edge servers are a
single hop away from the end devices in a wireless environment, and a global cloud is
directly above the edge server tier.

PFogSim [55] has been built on top of EdgeCloudSim, extending its features as
follows: support for simulating multi-layered fog environments; mobility of fog nodes
can be simulated in addition to the end devices; dynamic networking support that
allows network routes to be updated in response to changes in the availability and
location of fog nodes; multi-hop network interconnection that allows nodes to connect
to each other over one or more network hops; and the separation of send and receive
paths, which allows separating input data generators and output data consumers.
PFogSim has been designed for evaluating service placement methods, and it offers
six predefined service placement methods. It assumes that each end device has a
corresponding application service instance, and during the simulation initialization,
the implemented service placement method assigns for each device a fog node that is
responsible for executing its service requests (i.e., hosts the service instance). During
simulation, whenever a device generates a task, it is routed through the network to the
assigned fog node.

PFogSim does not model the energy consumption of the system entities nor the
failure of links and nodes. The mobility model is very simplistic, as each mobile
device gets a randomly assigned direction and speed at the start of the simulation.
Further, PFogSim does not support implementing customized methods for runtime
load-balancing.

Sphere [56] simulates cloudlet computing environments where small clusters of
computing nodes are placed near data sources. The environment is modelled as
a directed weighted graph, where the nodes represent the clusters and workload
generators in the network, and the weight on an edge between two nodes represents the
availability of the network link. Workload is modelled as independent jobs, and one
job consists of multiple independent tasks. Sphere allows implementing and evaluating
scheduling strategies on two levels: edge infrastructure level and cluster level. Edge
infrastructure level orchestration is responsible for shutting down or powering on
clusters, and determining the best cluster for a job to be scheduled. Cluster level
orchestration, in turn, is responsible for shutting down or powering on machines inside
a cluster, as well as scheduling the incoming tasks on the machines.

26

As Sphere is directed towards evaluating infrastructures and scheduling strategies,
the possible control or data dependencies between the jobs are not modelled, nor the
details of the data sources (sensors and devices). In fact, one workload generator
in Sphere represents a geographic area where the workload patterns and users are
assumed to be similar. Consequently, there is no mobility model. Further, the failure
of a link or a machine is not modelled, nor is the possible runtime load-balancing by
migrating the tasks or jobs between machines or clusters.

FogNetSim++ [57] is a fog simulator built on top of OMNeT++ [58]. OMNeT++
is a network simulator that can simulate low-level networking details. Hence, out of
the simulators considered in this thesis, FogNetSim++ is the only one that simulates
packet- and protocol-level networking details. It can model network link properties
such as packet drop, bit error rate and retransmission, as well as simulate various
protocols, such as TCP, UDP, FTP, HTTP, MQTT, CoAP, and AMPQ. FogNetSim++
has been developed for simulating scenarios related to task execution on fog nodes
and publish / subscribe communication model. The environment in FogNetSim++
includes sensors, end devices, APs, routers, fog servers, a fog broker, and cloud. Fog
broker is a central orchestrator that manages handoffs due to mobility, registers and
manages publishers and subscribers, provides a communication link with the cloud
datacenter, manages the pricing of the resources, and schedules tasks on fog servers.
The scheduling policy of the broker can be customized. FogNetSim++ also offers
multiple default mobility models, but does not model the failure of the links or nodes,
nor any runtime load-balancing between the fog servers, such as migrating VMs.

PureEdgeSim [18] has been developed for simulating IoT applications in fog and
mist computing environments. It is the only fog simulator that also considers the mist
computing aspect, that is, it simulates task execution also on end devices and allows
an end device to offload its task to another end device for processing. Applications
are modelled as independent tasks generated by the end devices, and a customized
offloading policy that decides when, where and how the tasks are offloaded can be
implemented. The orchestration policy can be run by the cloud, fog nodes or end
devices, allowing varying levels of control for the offloading policy. PureEdgeSim
offers a more realistic network model for MAN and Wide Area Network (WAN)
transmissions, implements one default mobility model, and models node failures due to
running out of battery. PureEdgeSim also offers an extensive energy model, because in
addition to the energy consumption of computation, the energy consumption in Local
Area Network (LAN), MAN, and WAN is measured.

Table 1 gives an overview of the simulators that model applications as graphs where
the edges correspond to data or control dependencies. Table 2, in turn, summarizes
the simulators that model applications as independent tasks or jobs. The tables
state the programming language of the simulator, the main purpose of the simulator,
what orchestration policies can be customized and what are the main infrastructure
components in the simulator. Control lists what type of control topologies are included
in the simulator for the orchestration policies. Energy model indicates whether the
simulator measures the energy consumption of the edge / fog nodes or end devices.
Mobility model indicates whether the simulator offers a mobility model for the end
devices. It is further indicated whether the mobility model is simple or realistic. The
model is realistic if the simulator allows extracting mobility patterns from real data
sets, otherwise the model is simple. Network model indicates whether the network

27

links and transmissions on them are simulated. It is further indicated whether the
model is high-level or low-level, and whether the model is simplistic or not. The
model is low-level only if packet- and protocol-level details are simulated, otherwise
the model is high-level. The model is simplistic if the simulator ignores the effect
of network congestion on transmission delays. Failure model indicates whether the
failure of nodes or links is simulated. Finally, logs indicates whether the simulator
outputs a detailed log of the simulation events.

PureEdgeSim is chosen as the basis for EISim because it is the only simulator
that also simulates processing on end devices in addition to processing on fog nodes.
Hence, it is the only simulator that allows proper simulation of task offloading from the
end devices to the edge, in a sense that it allows to model a device as a rational agent
that can decide whether it executes a task locally or offloads it to the edge. Further,
PureEdgeSim has been the most active simulator in terms of development, it supports
extensibility well and facilitates the implementation of different control topologies for
the offloading function.

2.3. Orchestration

The research on edge orchestration is characterized by dispersion. Even though
the typical definition of orchestration includes the idea of automated management
(see e.g. [59, 13, 32]), the notions of what elements are included in the scope
of the management, as well as what functions belong to the management are wide
and varied. For example, Hong and Varghese [14] focus on the management of
fundamental, physical and virtual resources in edge and fog computing, dividing
different management algorithms into discovery, benchmarking, load-balancing, and
placement. On the other hand, Taleb et al. [12] focus on the management of
MEC services and VNFs, seeing that the management functionality includes resource
allocation, service placement, platform selection for a service request, and monitoring
MEC service deployments.

The research on edge orchestration has also suffered from sticking to the traditional
approach of the centralized cloud orchestration, which decouples the fundamental,
physical and virtual resources from the application and workflow level resources. As
the computing and storage resources in cloud are basically unlimited, it has been
possible to approach orchestration from the scope of an application. The Service
Level Objectives (SLOs) have characterized the needs of an application in terms of
resource usage, cost and quality [28]. Whenever a monitoring function recognizes that
the performance of an application has fallen below some threshold on some of the three
objective axes (resource usage, cost and quality), resource management functionality
is activated to elastically harness the cloud resources in a way that the SLOs are again
satisfied [28].

When coming down from the cloud towards the device level, the available resources
become more and more limited. The reactive and thresholded management methods
from cloud orchestration will not suffice in edge environment, not to mention the whole
computing continuum environment. The orchestration of edge and eventually the
whole computing continuum must be a lot more proactive and context-aware, which
will require distributed and intelligent orchestration methods.

28

[opOW JI0MIU [IAD[-MOT -
[opowt yJomiau onsidurs ‘[QA9[-YSIH sH
[OPOW YIOMISU [9AS[-YSIH

[opowr AJifrqour oNSIeY y

[opour Ayjiqour ofduurg ¢

juowuoIIAuL unndurod

pnojo ‘sopou 30y Surmnpoyos 303 ® ur suonyeorjdde
SOX SOx. 1A ON SOX ao ‘s10JeNjO8 pue SIOSUIS quowrade[d JofI Sunenuis uoyAd [1S] SAVA
pnopo ‘1ayoi1q Funsno
30J ‘S921A9p 9[IqOW pue ‘uoneagiu JUSUIUOIIAUD
3oj ‘s1o1emoe (sqIqour) ‘urpayos 3oj ® ur suonyeorjdde [0s]
ON ON sHSPA aSPA SOX. aon ‘SI0SUSS (S[IQOIN) Juowrade[d 1.0 Sunenuis BAR(quigSoqt
pnojo ‘1ey0I1q
30J ‘se01A9p o[IqOWw pue JUSWIUOIIAUD
305 ‘s1018MO€ (S[1qOUN) uoner3u 303 & ur suoneorjdde [6v]
ON ON suSPA A SR) ‘S10SUDS (IIQOIN) quowrade[d 10 Sunernuis eAef WISS0JqON
pnopo ‘1ayoIq
30J ‘se01A9p o[IqOW pue JUSWIUOIIAUD
305 ‘s1018MO€ (S[1qOUN) uonei3u 30j ® ur suoneordde [8+]
ON ON suSeA ¢SA SOx 9) ‘S10SU3s (J[IqOIN) Quawaoe[d LoJ Sunenuis BAR[wiIS3oJIAIN
pnopo JUSWIUOIIAUD
‘1oyj01q 30 ‘soo1A0p F0J 303 ® ur suonyeorjdde
ON ON GHSPA ON SOX o) ‘s10JeNjO8 pue SIOSUIS JuawIade[d 1.0 Sunernuis eaef [94] wrsSoqr
[Ppow [Ppouwt [Ppow [Ppouwt sjuduodwod san1od adengue]
sgo e YIOMPN AN[IqO]N AUy [01u0)) danjonasejuy d[qezIwo)sn)) asodang ‘oagq Joyenuis

sydei3 se suonesrjdde [opow jey) s1oje[nuirs 30j pue a3pe Jo Arewwung ‘| 9[qeL,

29

[OPOW SOMIU [9AJ[-MO'T
[epou srom3au onsIduIs ‘[A[-YSIH ¢y
[SPOW YI0MISU [9AS[-YSIH 4

[opowr ANIqour ouSI[eay

[opowr Anjiqour opduirg ¢

SIUSUIUOIIAUQD
Sunndwos jstu

pnojo ‘sapou 30j pue 305 ur suoneordde [81]

SOX SR 1A ¢SOK SOX A‘HD ‘SQOTAQP PU? (IIGOIN) Suipeoygjo 101 Sunenuis eARf wWISAZpHaIng
pnopo juowuoIIAue unndurod

‘I19Y01q ® pue sepou S0j Soj ® ur uonnoaxa [Ls]

ON ON 189K LY SOX o) ‘SQJTAQP PU? (S[IQOIN) Surnpayos yse) Sunenuig ++) ++WISIONSO]
jusuwuoIiAug Junnduwod
Ppnopo ‘s19[pnofo J9[PNO[J © UI UOTINIIXD

ON ON 1A ON SOx. HD ‘S10JRI0UQS PROPIOM urnpoyos MmopIom Sune[nuirg B[eOS [96] a1oydg

pnopo

‘sopou 30J (9[1qour) sowreuads Sunndwod 30y [ss]

SOX ON 1A EY ON) ‘SQOTAQP PU (S[IQOIN) JuawIade[d 9reos-o31e] JunenuIrg BAR[wrg3oqd
SOLIBUIOS

PNOJO ‘SIOAISS Sunndwoo a3pa [¥S]

SOX ON 1A ¢SOA ON o) 93pa ‘sJ1AP S[IqQOIN Surmpayos STeos-Trewrs Sune[nUIS BAB[WISPNO[DaSpH

[Ppowt [Ppowx [Ppowx Ppowt syjuduodwod sanpIjod ddengdue]
sgo ampe NIoMPN AN[IQOIA ASBuy [01uo0) aInjonseqyuy dqezruolsn)) asodang ‘oag Jojenuirs

sqol 10 syse) juopuadopur se suonedrdde [opow jey) sioe[nuis 30) pue a3pa Jo Arewwing g d[qe],

30

Holistic visions for the orchestration of the whole computing continuum
environment have only recently emerged [5, 28]. Kokkonen et al. [5] advocate for
a paradigm shift in edge orchestration, namely moving from the centralized paradigms
focused on specific domains towards an intelligent and distributed paradigm that takes
a more encompassing view on resources in the computing continuum. The more
encompassing view on resources is based on a principle that drops the ambiguous
convention of referring to the entities on hardware and OS levels as resources, and
entities on middleware and application levels as services. Rather, every entity in the
whole continuum is considered to be a resource, as per the definition in Section 2.1,
which allows to regard the orchestration simply as the management of resources in the
computing continuum. According to the definition in [5], the orchestration is divided
into a number of distinct functions, which are as follows:

* Monitoring, which tracks the state and capabilities of each resource, and
estimates their performance.

* Workflow management, which includes the aggregation, sharing, offloading and
caching of workflow resources (data and tasks).

* Discovery, which includes the registration and subsequent look-up of available
resources.

* Allocation, which includes the placement of resources, scheduling access to
them, as well as their migration, scaling and replication.

* Life-cycle management, which includes creating, deleting, starting, stopping,
and updating resources.

Further, these functions can be implemented in different ways, and the
implementation differences can be described by attributes such as security, fault
tolerance and control topology (decentralized, hybrid or centralized). The solutions
also aim to fulfill different objectives, which on a high-level can be categorized
into resources, cost and quality [28, 5]. The definition in [5] also accounts for the
multi-domain nature of the orchestration, as there may be many possible stakeholders
(e.g., end users, device owners, application providers, infrastructure providers or
edge operators) that set the objectives for the orchestration. The presence of many
stakeholders reveals the financial aspect of orchestration, which means that resource
pricing needs to be considered alongside resource management.

The vision in [5] emphasizes that the orchestration implementations should embrace
distributed intelligence, local autonomy and loose coupling. EISim aims to facilitate
research on those facets. In its current form, EISim focuses on one slice of the
orchestration, namely computational offloading with resource pricing. Hence, the
following section presents the current state of the art in offloading and resource pricing.
Regarding offloading, the focus in on vertical offloading from end devices to the edge,
because that use case is the starting point in EISim.

31

2.4. Offloading and Pricing
2.4.1. Offloading to the Edge

The core purpose behind any computational offloading approach that focuses on
offloading tasks from end devices to the edge is to reduce the task execution latency
and preserve the energy of the devices, which leads to increased Quality of Service
(QoS) and Quality of Experience (QoE) [60, 61, 62]. However, offloading approaches
differ widely based on the system model, optimization objectives, problem formulation
and solution methods.

Generally, offloading approaches consider the questions of what, when, where and
how to offload [61]. What to offload concerns the partitioning of an application into
tasks and determining what tasks can be offloaded. Usually studies on offloading omit
the details of application partitioning, and what to offload focuses on whether to offload
all application tasks (full offloading) or offload some of the tasks while executing the
rest locally (partial offloading). Further, the studies differ on whether they regard one
task as atomic or not, that is, whether one task can be further divided into offloadable
and non-offloadable parts. There are also differences regarding whether possible
control or data dependencies between application tasks are accounted for.

When to offload concerns the optimal timing of task offloading, which in time-
slotted system corresponds to selecting an optimal time slot for the offloading [61].
Studies often propose methods that decide about the offloading and resource allocation
for all tasks that have accumulated by the beginning of a new slot. Studies may also
assume that all the tasks in the system can be executed inside the slot length (see e.g.
[41]), so that the decision-making algorithm does not have to account for the resource
use of the tasks allocated in the previous slots.

Where to offload concerns the best location for task execution, which must be
decided based on the distribution of the available resources [61]. Finally, how to
offload concerns the optimization objectives of the task offloading, as well as the
solution methods deployed for finding the optimal partitioning, timing and placement
of tasks.

Offloading approaches typically aim to optimize some combination of execution
delay, energy consumption (at the end devices) and monetary cost of the execution.
These objectives are often conflicting. For example, minimizing energy consumption
of the end devices may be achieved by offloading tasks to the edge, which in turn incurs
higher delay and monetary cost. Hence, approaches usually aim to find appropriate
trade-offs between different objectives, the joint optimization of delay and energy
consumption being the most common multi-objective approach [60, 62].

Solution methods to offloading problems can be categorized on a high-level into
mathematical optimization algorithms, Al-based approaches, and control theory based
approaches [62]. Mathematical optimization algorithms, including strategies from
fields such as Mixed Integer Programming (MIP), heuristics, game theory and contract
theory, are the most commonly used solution methods, particularly MIP and heuristics
based methods [62]. However, mathematical optimization approaches are one-shot and
static by nature, meaning that they must be re-executed every time the environment
changes, and they do not learn anything about the dynamics of the environment.
Further, these approaches generally deploy iterative algorithms for finding optimal

32

or near-optimal solutions. Iterative algorithms are often executed in a centralized
manner, and they usually require information exchange between the entities in the
system at every iteration, which may lead to significant communication overhead in
the system. Iterative algorithms also require time to converge, which means that while
the algorithm searches for an optimal solution, the dynamic environment can change,
rendering the resulting offloading decision unoptimal.

Al-based solution methods aim to provide the intelligence and learning needed
for long-term optimization in highly dynamic systems. For example, supervised
Machine Learning (ML) methods could be used to support offloading decisions
through predicting dynamic network conditions, workload on the nodes, or users’
mobility patterns. Supervised ML has not yet been considerably used in the context
of task offloading to edge, but it has been used in, for example, resource allocation in
cloud computing and service placement in fog computing (see [62] and the references
therein). On the other hand, DRL has been used in some offloading studies to
directly learn offloading decisions through experience in the dynamic environment
(see e.g. [63, 64]). Generally, DRL can help in tackling the unsuitability of the
traditional optimization algorithms for real-time, long-term optimization, which makes
it a promising approach for decision making on edge.

Even though Al is a significant key factor in enabling context-aware, proactive and
real-time decision making on edge, Al-based offloading methods suffer from the same
issues as ML in general. The training of models is resource- and time-consuming,
particularly in the case of Deep Neural Networks (DNNs), which is problematic in the
resource-limited edge environment. Further, ensuring the accuracy of models in the
dynamic environment and adapting the models when data distributions shift are both
challenging issues.

Finally, control theory based offloading solutions are another approach to
enabling real-time decision making and long-term optimization in the dynamic edge
environment, but these methods also aim to guarantee properties such as system
stability and reachability. In offloading literature, this approach is the least used one
compared to mathematical optimization and Al-based solutions [62]. Most common
control theory approach in the context of task offloading is Lyapunov optimization,
which is used especially in energy optimization [62, 65, 66]. Lyapunov optimization
framework allows to minimize a time average while there are constraints on the time
averages of other system variables, such as task queue lengths. Typically, the time
average to be minimized is the average of the expected energy consumption of the
mobile users over time.

In Lyapunov optimization, the time-averaged constraints are formulated as virtual
queues. Taking a control action that minimizes the upper bound of a so-called drift-
plus-penalty expression in every time slot allows to minimize the objective while
satisfying the constraints [67]. Further, the control action can be taken solely based
on the information about the current system state, without having to know anything
about the future states. The main drawback in control theory based offloading is the
complexity of designing a control solution, particularly when the system model itself
is complex and when there are many system properties to be guaranteed [62].

Overall, the system models in computation offloading studies are wide and varied,
as the system details and main assumptions depend on the offloading use case (e.g.,
internet of vehicles, MEC, smart home, ultra-dense networks, green edge computing).

33

Each use case imposes its own assumptions and limitations, but some general
limitations in the current offloading related literature can be recognized. Mobility is
an essential part of the edge environment, but the studies usually either assume that
the devices are static or that the tasks can be executed in such a short time that the
mobility can be ignored [62, 60]. Another notable limitation concerns the scale of
the system. Many works either formulate the problem for one user and one server
(e.g., [68, 65, 69]), a group of users and one server (e.g., [63, 70, 71]), or formulate
the problem for a group of users and a group of servers, but conduct the experiments
with only a few users and servers (e.g., [64]). Further, several offloading studies rely on
full centralization, meaning that there is a central controller (e.g., an AP, a Base Station
(BS), or a fog broker) that makes the offloading and resource allocation decisions (e.g.,
[70, 72, 73]).

2.4.2. Resource Pricing

Resource pricing models especially for edge environment have not been
comprehensively studied or compared yet in the literature, but the importance of
developing pricing models for edge has been gaining more attention recently [74,
75, 76, 77, 78]. In cloud computing, the importance of resource pricing as a part
of resource management has been better recognized and researched [79]. Generally,
pricing mechanisms should ensure profits for different resource providers (e.g., service,
infrastructure and network providers), while also guaranteeing the QoS and QoE of the
users. Hence, effective pricing mechanisms optimize the resource utilization for the
providers in a profit maximizing way while also satisfying user demands as specified
in Service Level Agreements (SLASs).

Developing effective pricing mechanisms is naturally a challenging task in
multi-domain, dynamic and complex environments. Consequently, many different
approaches to resource pricing have been proposed, both in cloud and edge
environments. These approaches can be categorized into market-based pricing, game
theoretic and auction based pricing, and Network Utility Maximization (NUM) based
pricing [79]. In addition, pricing approaches can be differentiated based on whether the
pricing concerns only a single resource (e.g., CPU, memory, bandwidth), or a bundle
of resources, which is usually provisioned as a VM [74].

Market-based pricing techniques use economic and financial concepts to formalize
the resource pricing problem. A common approach is to model the resource demand
as a function of price, as well as model the varying and fixed costs of the provider.
Then, a price that maximizes the revenue is searched based on the model. However,
the deployed demand models are often very simplistic compared to real markets, and
these models often fail to account for market competition [79].

Game theoretic and auction based approaches model the participants in the resource
pricing as self-interested agents that aim to maximize their own utility. These
approaches are the most prevalent ones in edge environment [75]. Game theoretic
approaches can use either non-cooperative or cooperative games to model the resource
pricing and resource allocation problems. Currently the most common game model
deployed on edge is one-leader multi-follower Stackelberg game, where typically a
BS with an integrated edge server acts as a leader that decides on the resource price,

34

whereas mobile users act as followers that decide on the amount of resources they buy
based on the price given by the BS [75]. Game theoretic approaches usually consider
the pricing of one resource (most often CPU) [76, 80], but there are some approaches
the consider the pricing of multiple resources [81]. Further, game theoretic approaches
can consider uniform pricing, where every user pays the same unit price (e.g. [76]),
or differentiated pricing, where the unit price can be different for different users (e.g.
[80D).

On the other hand, auction based approaches propose bidding protocols, where
resource provider sells resources to buyers (users) through an auctioneer that often
is the seller itself. The resources that the users bid for are invariably different types
of VMs [77]. There exists a plethora of different types of auction models that can be
considered [77, 82]. Designing auction mechanisms is a complex task, because they
should fulfill many important properties, such as fairness, truthfulness and individual
rationality [77, 82]. Security is also a very important property, but many proposed
mechanisms do not address security problems, such as possible collusion between the
bidders and false-name bidding [79]. Further, auctions always rely on a centralized
entity (trusted auctioneer) to conduct the auction. For example, in [74], a central
auctioneer collects all the bids and resource requirements from the users, after which it
allocates the resources both on edge and cloud level and determines the user payments
based on the bids.

Game theoretic and auction based pricing approaches suffer from the same issues
as the mathematical optimization based offloading approaches (see Section 2.4.1).
They are one-shot and static by nature, without the ability to learn anything about the
dynamics of the environment. Iterative algorithms are also often deployed for finding
the equilibrium solutions. Hence, Al-based methods, such as DRL, could provide
the adaptivity, real-time decision making and long-term optimization also needed in
resource pricing. So far this aspect has not been widely studied in the context of
resource pricing on edge. Some studies do exist, but they mostly consider single agent
settings and algorithms, that is, there is only one centralized agent learning and making
pricing decisions in the environment. For example, Zhan et al. [83] propose DRL-
based pricing for federated learning settings, where a central aggregator located in the
cloud uses DRL to learn the price it offers to each mobile user in order to incentivize
them to participate in the model training. Chen et al. [84], in turn, consider an
offloading scenario where a single AP with an integrated edge server uses DRL to
learn and periodically update a unit price for computation.

Finally, NUM based pricing approach is used when the goal is to maximize the social
welfare (total utility) of the users in a network under capacity constraints. In other
words, each user wants to get a portion of some constrained resource (usually network
bandwidth), and the resource provider wants to allocate the resource in a way that the
total utility of the users and the profit of the provider is maximized. These techniques
often use differentiated pricing [79]. When the formulated NUM problem is convex,
it can be solved optimally in a distributed manner through dual decomposition [85],
meaning that the provider does not need to know the individual utility functions of the
users.

Overall, what resource pricing models and methods would be suitable for edge is
largely an open research question. Regardless, it is quite unanimous that dynamic
pricing is a key factor in maximizing the profits for resource providers, optimizing

35

the resource utilization, and creating competition between different providers [75, 77,
82]. However, it is good to note that even though a multitude of dynamic pricing
schemes has been proposed for cloud and edge, they have largely been only evaluated
in simulated settings. In practice, the predominant pricing model in cloud still is a
usage-based, static model [86].

2.4.3. Offloading with Pricing

The previous sections offered a general overview of the state of the art in offloading
and resource pricing literature. EISim focuses on the intersection of these fields.
Hence, this section gives an overview of the studies that are also in the intersection
of these fields. These studies propose task offloading solutions while also considering
the pricing of the resources. The focus is on studies that consider vertical offloading
schemes from end devices towards edge.

A summary of task offloading studies with resource pricing is given in Table 3. In
the table, system model refers to the system entities considered in the study. Task
model indicates how the tasks generated by the end devices are characterized in
the study. Optimization objectives state the optimization targets considered for the
different system entities in the study. Decision variables state what type of decisions
are considered in the system, and the system entity mentioned in the parenthesis is
the one to which the decision belongs. Note that this does not necessarily mean that
the system entity makes the corresponding decision completely autonomously in the
proposed solution, only that in the problem formulation of the study this decision
belongs to the system entity. Problem formulation refers to the general framework in
which the offloading problem is formulated, and solution method states the deployed
method for finding the optimal or near-optimal solution. Control refers to the level of
autonomous decision making in the proposed offloading solution, which can be either
centralized (C), hybrid (H) or decentralized (D). Pricing method states the resource
pricing approach used in the study. Result return ignored indicates whether the study
ignores the overhead (delay and energy consumption) associated with returning the
result of the task execution back to the user.

36

23pd 1x2u 2y1 UO paNuIUO))

(103e[Nn3a1) 1500

Surssoooid ‘onuaaax 10)B[N331
sisA[eue (10ye[Nn3ar) ‘(s1osn) JuowAed ‘pnoro a5pe
[eonjeWAYIRW UOTBZIWIXBIA sooud ‘rop1o urnpayos ‘51500 Ae[op pue S9[0Kd 0] PajoUU0D
ParRnUAIIP y3noay) Armn UOISSIUISURT) ‘SIoSn ASIoud uoIssmsuen)) dD ‘9ZIS ejep dV duo [¢6] 020T
SR “yse) 1ad Qo1 uonnjos rewndQ NIOMION 10§ saniiqeqoid Surpeoyjo 9500 Surssadoid [eoo ‘Q1el [RALLIY ‘$19SN [IQOIA DA TeRIX
(oneas) pnor [ze6l 0zoT
wojun uonezrupdo (s10sn) Jomod uoIssTIISuLI) (s10sn) Juowed 97Is eI ‘9)el ‘SIOAIQS 93P9 Jol1oueg
SOX “ysey 1od Qo1 wyIos[e 9ANeIA] ANd[qo-nnN ‘fnpqeqoid Surpeoyio ‘Kerop ‘A31oug [BALLIR UOSSIOJ ‘s198n J[IqOIN DAN pue uekjng
Suippiq JIoouonone
£q paurud)op wsTuRyOdUW uoneziurxeur (193uonone) (spnopo 93pa) 1500 $9[94d ‘spnojo a3pa [16] 610T
SOX “ysey 1od 2011 uonony 1gou1d 1opraoig syuowAed ‘uonedo[e Ysel, Suissoooid ‘onuoady D ‘ozIs BleQ ‘s108n A[IqOIN AN ‘Te 10 Suepy
(one1s) (101e10dO) 10ye13dO
wIoyrun so01nosa1 uonendwod ‘SIOAIOS
Q[okd NdD Sururea| pUE UONEIIUNWIIOD JO JUTRIISUOD 93po ‘s1oAl0S
12d 9oud pue wypLose JUSWIADIOJUINY sadejuaorad pajedol[e ‘syse) Ke[ap ‘s9[04d IB[NOIYIA [06]1 610C
SOX sdq 1od Qo11g paseq-NOd doog 10} UOIRUNSAP SUIPBOPIO Jorerodo oy Jojgold 4D ‘9zZIs vleq ‘s198n AIqOIN DdA ‘Te 19 nrg
PAISPISUOD oz1s
PorenURIIP BJEp UINJAI 10
pue wiojrun (19A13S) onel ‘eyep Jo JOAISS 93po
10q ‘9[o4d Qwed (19A19s) 2o1id ¢(s1o8N) onuoAdl {(s1asn) 1q | Jod SO[9AD ynm §g duo [68] 810C
ON NdD 1od 2oug Wy)LI0Z[e 9ANRIN] S1oqrayoels JUNOWE Byep PIPROPIO juowiked ‘Aefo@ 0D ‘9zIs vleq ‘s19sn AIqOIN AN nry pue nrrg
(one)s) pnopd
wIojrun uonezrundo (s10sn) Tomod Jrwusuen (s1osn) JuowAed 9z1s ejep ‘9)el ‘opou Foj ouo Junndwoo [88] 810C
A[renieq “yse) 1ad doug wyLoS[e 9ANRIA)] 2ANd3[qO-NNA ‘Kyqeqoid Surpeoyio ‘Kefop ‘AS1oug [BALLIE UOSSIO] ‘$19SN [IQOIA Soq ‘e NI
pnojo a8pe
(pnoro (pnoro eJep Jjo 0) P9)O2UU0D
wIojIun ‘9[okd owred 938pa) douid ¢(s19sn) $A[IAD 98p9) onuaaar {(s1osn) 1q | Jod SA[9AD Sg auo [£81810C
SOX NdD Iod vo11g WYILI0F[e 9ANRIN] Sroqrayoels NdD Jo unowe paseyoing juowiked ‘AS1oug 4D ‘ozIs vleQ ‘s198n AIqOIN AN ‘[e 10 wry]
paoust
wInjax poyjow uone[NULIOY saAnalqo
NSy Sunrg poy)ow uonnjos uR[qoIg SI[qBLIBA UOISIA(uopeziundQ [Ppow YSe], [9poul WISAS ased as) Apmgs

Surond 901nosar Yyim sarpnis Surpeopjo Ysey, “¢ dqel

37

23vnd 1x2u 2y1 UO paNuIUO))

Suroud 10§
wyLog[e paseq

JNO-UTW-MOJ-XeW

(spnopo

jurensuod

‘uoneoof[e 15pnq 338pa) soud gyD (sdV) (spnopo Aefop ‘9z1s ejep
wojrun 10} wiypLIos[e Qoud gy ‘(s1osn) sqy 93po ‘sdy) Aun wInNjaI ‘puBwIop Spnopo
‘qy pue paseq A1ooy) Sunuwrerdold pue sgyD 10J uonedo[[e WISAS {(s1osn) snjdins reuonendwod 93pa ‘sdv [L6] T20T
ON D Iod 201ug D OIWOUOI0IIIN 1939u] PIXIA 123pnq ‘UoISIOAP FUIPLOPIO 1a3pnq ‘A310u9 ‘Kefoq azZ1s Ble(q ‘S19SN 9[IQOIN DAN ‘e NIy
(19A195) doud (19A19S) ®JRD JO JOAIAS
PaIenuUAIRIp SurwwresSoxd owred {(s19sN) SGYD Jo Ioquunu onuoAdl {(s1asn) 1q | Jod S9[9Ad a3pe auo [96] T20T
SOX ‘gD Jod o011 o) orweuAq S1oqrayyoels QUNoOwWe BIEP POpLogiO juowiked ‘Aefo@ 0D ‘9zIs vleQ ‘s198N AIqOIN AN nJ pue nry
(so[o1yan) AS1oua
(NSY) sadAy opo1yeA ‘anuaAdy {(NSY)
10 $JOBIUOD ‘TOAISS 10] S9[o1YaA 0 JuswAed
oud {(10A195) NSY WO ‘ONUIAIY (19AIDS) 10je10do
$901n0sa1 NJdD paseydind NSY 01 yuswked ‘IOAIOS
uononpur owed ‘UOIINJX? yse) 10J oFesn ‘A310U9 ‘ONUAAIY jurensuod 33pa auo ‘NSY
wojiun ‘agesn plemyoeq uo Sroqayorls 0D ‘stesn 10j 9o1id (s1osn) {(sIosn) JOAIQS Kefap ‘sa[okd QUO “SA[IIYA [s6] 220t
SOX NdD 103 2do1g o) paseq sunpLIosS|y a3e)s-0a1y], IoAIas uo a3esn NJdD oyjuowiked ‘kefo@ NdD ‘ozIs vjeq ‘s198N AIQOIN DdA eIy
(19A135) (19A135)
SurwrwresSoxd uoneZIwIxew
ssefo oTwreuAp (s1esn) ONUOAJI (10A10s) soo11d ssefo SOSSE[O
QpIsur wojrun poylow [eonkjeue ‘(s1osn) owred Koud {(s1osn) UONOI[AS (19A13S) JOAIQS 93po Kyuoud
sse[o Ayuord y3nouiy) uonnjos aaneradood sse[o Ayuord ‘yySu9| QNUIAQI (S19SN) M Jvy duo s [1%] 20T
SR 10d 2o11g D wnuqimbyg -UON ouin Jurssaoord-axd [eoo7 juowAed ‘Kefop ‘AS1ous $91945 NdD ‘$19SN A[IQOIA DA ‘[e 30 ueng
o718
(10A108) s1oyowreTed BJEp UINJOI 10
PAIBNUAIYIP uonouny 9o11d ¢(s1asn) (19A13S) ornel ‘eyep Jo JOAIAS
qun Qwed I9AI3S uo 95esn NJD onuoAdI {(s1asn) 31q | Jod SO[9AD 93pa auo [¥6] 120C
ON owm 1od 9011 o) wy)LI0Z[e 9ANRIN] S1oqrayoels Unowe BIep PpapeogjO juowiked ‘Aefo@ 0D ‘9zIs vleq ‘s198n AIGOIN AN ‘Te 10 Suer
paoust
wInjax poyjow uone[NULIOY saAnalqo
NSy SupLyg [onuo) poy)ow uonnjos uR[qoIg SI[qBLIBA UOISIA(uopeziundQ [Ppow YSe], [9poul WISAS ased as) Apmgs

(ponunuod) Furord 90In0SAI YIIM SAIPN)S FUIPBOPJO S, ¢ J[qeL

38

23pd jxau Y3 U0 panunuo)

owres (s19p1aoid) onuaaax $9[945 NdD sdSD
uLojIun ‘9okd swyjode S1aqayorls (sxap1aoid) saoud ¢(s1asn) ‘(s1osn) JuswAed “9Z1S BIRP ‘9JRl ‘sdSH ‘Sg uo [92] 120C
SOX NdD rod so1g H JATRINN] Ion-oM], soniiqeqoxd Surpeoyio ‘AS10U0 ‘Ae[o(] [BALLIR UOSSIOJ ‘s108n AIQOIN AN ‘Te1eng
(SI9ATRS) wy)LIOJ e
paseq-0ddd Surureao| (SIOAIDS) ONUAAJX
wirojrun run {(s1osn) wyjLIo3[e JUSWIADIOJUIDY (S19A138) so11d (s1o8N) ‘A31ouy (s1osn) S9[0Kd SIOAIdS 93po [101] 1202
SOX ow) 1od ooug H paseq-NOd dooq uoneunsap SurpeoyiO juowked ‘ASoug gD ‘9z1s vleQq ‘s19SN J[IQOIN DA RUEEERUIN
(I9AIQS)
(19A138) wyjLIoJ e Sururea|
paoseq JUAIpeIS JUSWIADIOJUIOY
wIojrun Ko1104 ‘(SI0SN) doaq
‘Knqeqoad poylow [eonAeur ¢(s19sn) owre3 (19AIDS) ONUAARI S9[0Kd NdD IOAIAS 93p2
Surpeopjo y3noiy) uornnjos aaneradood (19A198) Qo11d ¢(s198N) ‘(s1osn) JuowAed 9Z1S eJep ‘9Jel PIM JV duo [+8] 120C
SOX 10J 93] 901AIAS H wnuqibyg -UON Aynqeqod Surpeoyyo ‘A310ua ‘Aefoq [BALLIE UOSSIOJ ‘s19SN J[IQOIN DAN ‘Te 319 uayD
JsT] @ouaIejord IOAIQS pue Sy
uo paseq wyLIoe 10J Suryojewr (19A135)
Sumyorewr Kuew-0)-ouo (10A108) JV Yoea QNUAAAI ¢(SJV)
‘poyrouwr [eanAeue ‘dV pue 0) PAIURI YD JO Junowy IoAJas 0} Juowked JUTRIISUOD IOAIOS
PaeNUAIIIP y3noiy) uonnjos s1osn 10J dwed {(sdV) saou{ (s1asn) ‘ONUIAQI {(SIISn) Keop ‘el a8pe Quo ‘sqy QWIOH loo1] 6102
SOX ‘gD Jod oo11g H wnuqibyg Sroqayorls paseyoind sgyD Jo Junowry juowiAed ‘Ao [BALLIR UOSSIOJ ‘s1osn pug JeWIS ‘[e 10 onn
(1ap1aoad)
uorssaxdxa Suruorsiaoid 19A19S 1opraoxd
Kyeuad-snyd-jyup 9o11d £($19SN) SUOI}OJ[AS (19p1ao1d) AS1oua BIRD JO QUO WOl
wIojIun ‘9[okd Jo punoq 1oddn uoneziundo QoBJIIUI YI0MIoU pue padds ‘OnuoAdl {(s1asn) 31q [1od s9[oKd SIOAIdS 93po [66] 810C
SR NdD teod aouyg H oY) Surzrwirur aoundeA NdD ‘UoISIdap SurpeoyjO juowked ‘ASoug NgD ‘9zIs vleq ‘$19SN A[IQOIA DA ‘T8 30 wry]
(SIoAIDS
a3p9) 1ea1as dnyoeq (SI9AIAS 93P9) J19AIAS
woiy paseyoind sqyD dnyoeq 0 JuswAed
JO IoqUINU *90TIJ $(SI[OTYQA) 500 Surssoooxd JUTEI}SUOD
SIOAISS 93P woly “ONUARI £(SI[OIYA) Ke[op ‘puewrop I9A13s dnyoeq
woyrun oweS paseyoind sgyy) Jo Jequnu SIOATSS 93pd reuoneindwod QUO ‘SIOAIAS [86] L10T
SR ‘D Iod do1g H WYLIOS e 9ANRIS)] S1aqayorls ‘uoneunsap SurpeoyjO 0) Juawked ‘Aefoq 9Z1S Bl 93pa ‘s9[oIyeA DdA ‘Ie 30 Sueyy
paoust
wInjax poyjow uone[NULIOY saAnalqo
NSy SupLyg [onuo) poy)ow uonnjos uR[qoIg SI[qBLIBA UOISIA(uopeziundQ [Ppow YSe], [9poul WISAS ased as) Apmgs
A@OSGEGOOV 3 Qﬁoﬁ& 92INOSAI YIIM SaIpnis wﬁﬂumoﬁto 3Se], "¢ QIqeL

39

(19A195) Sururea|
posiazadng ¢(1osn)

(19A13S)

ozZIS eJep
UINJI 10§ OTjer
JUTRI)SUOD

peopjo

PRIBnUAIRIP poylew [eonAjeur s1ojowrered uorouny ooud Keap ‘ejep jo 0] SOWO0 1SN
9run ySnoiy) uonnjos owesd ({(I9sn) IOAILS U0 a3esn NJD (1oA10s) onuaAdl 31q T 1od S9[9Ad MU B ‘JOAIOS [+011 220T
ON oun 1ad 2011g a wnuqrnbyg S1aqayorls qunowre BJep papeogjO ‘(Jesn) juowked ‘Kefo@ gD @ziseieq 298pe Asnq duQ DA ‘812 09§
SSB[(10AI9S) BIEp JOIIq [RERN b)
QpIsur wojrun uonezrwirxely sodud ssefo Ayuond ¢(s1asn) (10A198) Qxejom Jad s919kd NdD JOAIQS 93po Kyuoud
‘uonsaguod wyjose Amn uonooas sse[d Ayuorrd Teroos (s1esn) juowked “az1s ejep ‘el Qs Jv ouo oMm) PIM [eo1] T20T
SOX 10J 99J 9OIAIOS a [OIeas dANRIN] JI0OMION ‘fimiqeqoid SurpeoyyO ‘Ae[op ‘AS1oug [BALLIE UOSSIOJ ‘s198N A[IqOIN AN REEERG |
JUTEIISUOD
(Io[npayos) (IoTnpayos Kefop *so[okd I9[npayds st}
Sururea| UoISIo9p Juroue[eq-peo| ‘SIOAIOS) ONUAAI N JD ‘9ZIS BIep [eqO[3 ‘sIoAlos
wIoJIun ‘oo SWYILIOS[E JUSWIAIIOJUINY {(s19A19s) doud €10} {(s19sn) Juowked ‘fqeqoxd A3pa ‘sqv sndwreo [z01] T20T
SR NdD 1od 2oug H paseq-NOd doo@ {(s1osn) uorsioap SurpeogjO ‘A310u9 ‘Aerog [BALLIE YSB], ‘SIOSN QIQOJA ' U0 DN ‘e 30 Nk
paoust
wInjax poyjow uone[NULIOY saAnalqo
NSy SupLyg [onuo) poy)ow uonnjos uR[qoIg SI[qBLIBA UOISIA(uopeziundQ [Ppow YSe], [9poul WISAS ased as) Apmgs

(ponunuod) Furord 90In0SAI YIIM SAIPN)S FUIPBOPJO S, ¢ J[qeL

40

Orchestration Control Topologies in the Surveyed Studies

Control in the proposed offloading and pricing solutions is of utmost interest in the
context of this thesis. Hence, the main categorization axis used for the studies in
Table 3 is the control topology. The studies were categorized based on the definitions
for different types of control topologies in Section 2.1.2. Majority of the studies have
centralized control [87, 88, 89, 90, 91, 92, 93, 94, 41, 95, 96, 97]. These studies either
explicitly state that there is a central controller making all the decisions on behalf of
the system entities, or the proposed solution requires strong coordination with a central
controller or complete global view on the system.

The works that explicitly state the existence of a central entity that makes all the
decisions are the studies of [90, 91, 93, 95]. Liu et al. [90] propose a DRL-based
offloading solution for Vehicular Edge Computing (VEC), where a central operator
decides upon user request where the task is executed and how much computation
and communication resources are allocated to it. Li et al. [95] also consider a
VEC use case, where users can offload tasks to an edge server. The edge server
can supplement its computing resources by purchasing idle resources from vehicles
through a Road Side Unit (RSU) that uses a contract-based incentive mechanism to
recruit vehicles. They formulate the problem as a three-stage Stackelberg game, and
derive algorithms for finding the optimal solution to each stage through backward
induction. These algorithms are run by a central controller with global system view.
Wang et al. [91], in turn, consider a MEC system with multiple users and edge clouds,
where an auctioneer collects task information from users and then conducts an auction
where the providers bid for the tasks. The central auctioneer allocates the tasks and
determines the payments for the users. Finally, Yi et al. [93] consider a MEC system
with mobile users, one AP and one edge cloud, where a central network regulator is
employed to determine a long-term scheme for joint computation offloading and uplink
transmission scheduling. The goal is to maximize the social welfare of the system,
which refers to the joint utilities of the users and the regulator.

The works that have centralized control due to requiring strong coordination with
a central entity are the studies of [87, 89, 94]. These studies all consider a MEC
system with multiple users and one edge server. They formulate the offloading problem
as a Stackelberg game where the server first decides on the resource price after
which the users make their offloading decisions. Even though each study proposes
a distributed, iterative algorithm for finding the optimal or near-optimal solution, the
decision making is strongly controlled by the edge server. This is because finding
the final offloading solution requires that the users report their offloading decisions
to the server after every price update until the server terminates the process. Hence,
the decision making of the users is tightly coupled with the edge server, as the server
imposes heavy control over the final decisions of the users, limiting their autonomy.

The works that have centralized control due to requiring global system view are the
studies of [88, 92, 96, 97, 41]. These studies do not explicitly state the existence of
a central controller, but any practical consideration of the proposed solution requires
that there is some type of centralized entity with global system view.

Liu et al. [88] consider a fog computing scenario with multiple users and one fog
node. The users need to decide on their offloading probabilities and transmission
powers in a way that the average energy consumption, delay and monetary cost of

41

all users is minimized. They propose an iterative algorithm for finding the optimal
offloading probability and transmission power for every user at the same time, which
requires that a central entity with global information runs the proposed algorithm.
Sufyan and Banerjee [92] have a similar system model, problem formulation and
solution method to that in [88], but instead of offloading to one fog node they consider
offloading to several edge servers.

Liu and Fu [96] consider a MEC system with multiple users and one edge server.
They formulate the offloading problem as a Stackelberg game, where the server first
decides on the resource price for each user, after which the users decide how much
data they offload and how many Computing Resource Blocks (CRBs) they purchase
from the server. They propose a dynamic programming based algorithm that outputs
the optimal price, number of CRBs and offloaded data amount for each user at the
same time. The algorithm must be run by a central entity that has global knowledge
of the system; for example, it must know the private weight factors in the users’ utility
functions.

Liu et al. [97] consider a MEC system with multiple users, APs and edge clouds.
The users have a finite budget for buying CRBs from edge clouds and Radio Resource
Blocks (RRBs) from APs for task offloading. The users need to make their offloading
and budget allocation decisions in a way that their utility is maximized. On the other
hand, the APs decide on their RRB prices and the edge clouds decide on their CRB
prices in a way that the system utility is maximized. System utility refers to the
geometric mean of the user utilities, weighted by their budget allocation amount for
offloading. They propose an algorithm based on microeconomic theory for finding the
optimal budget allocation under fixed prices. Then they propose a max-flow-min-cut
based algorithm for finding the resource prices that lead to a market equilibrium, where
the resource supply meets the resource demand. The algorithm requires a central entity
that controls the system entities and their decisions.

Finally, Yuan et al. [41] consider a MEC system with one edge server that offers
priority classes for task execution. The users that want to offload tasks first decide
how long they locally pre-process the tasks before offloading, as well as decide the
priority class for their tasks. The server decides the priority class prices and schedules
the communication and computation resources among the users. They formulate the
decision making of the users as a non-cooperative game and derive the equilibrium
solution through mathematical analysis. For the server, based on the equilibrium
solution for the users, they formulate a revenue maximization problem that can be
solved with dynamic programming. However, the decisions of both the users and the
server requires global knowledge of the system, such as the total number of tasks in
the system, the distribution of tasks over the users, as well as the users’ private delay
and pricing cost sensitivity coefficients.

The works that have hybrid control topology are the studies of [98, 99, 100, 84,
101, 76, 102]. Zhang et al. [98] consider a VEC system where vehicles can offload
tasks to the edge servers on the side of a unidirecional road. There exists one backup
server in the system from which the edge servers can purchase CRBs in the case that
the demand from the vehicles exceeds the capacity of the server. The price of the
backup server is predetermined, while the interaction between the edge servers and the
vehicles is modelled as a Stackelberg game. In the game, the servers first decide on the
resource price and the number of CRBs purchased from the backup server, after which

42

the vehicles decide on the offloading destination and the number of CRBs purchased
from the destination server. They propose a distributed, iterative algorithm for finding
the optimal strategies for the edge servers. In the algorithm, each edge server is able
to decide with local autonomy, but the iterative updating of their strategies imposes
control over the decision making of the vehicles, as the vehicles cannot carry out their
offloading decisions until the algorithm converges.

Kim et al. [99] consider a time-slotted MEC system where there exists one
offloading service provider with several edge servers and multiple mobile users that
have subscribed to the offloading service. At the beginning of a slot, provider makes
decisions on pricing and server provisioning, after which each mobile user decides its
offloading policy, local CPU clock speed and network interface activation (Wi-Fi or
cellular). They use Lyapunov optimization to solve the problem, aiming to minimize
the energy and monetary costs of each side (provider and users) while guaranteeing
that all tasks are processed within a finite time. Users can do their decisions with
a simple thresholded method using only local information. Provider requires user-
side information for its decision making. However, it is assumed that the provider can
estimate most of the needed information through the information that users are required
to give when they subscribe to the service, and that some private information can be
estimated through pricing and observing user behavior for a few time slots. Hence, this
work has hybrid control topology, where one centralized controller (provider) makes
the decisions for all the edge servers, while the provider and users are able to decide
with local autonomy.

Guo et al. [100] consider a smart home scenario with end users, APs and one edge
server. The users send offloading requests to the APs that purchase CRBs from the
server and allocate them to the users. Each AP also charges the users for the CBRs. The
decision making between an AP and its users is formulated as a Stackelberg game, the
equilibrium solution of which is derived through mathematical analysis. The solution
for an AP requires global knowledge as the AP must know the users’ private utility
function weight factors. The resource price of the edge server is predetermined, and
the resource allocation between the server and APs, as well as an AP and its users is
done through one-to-many matching with preference lists. Hence, the APs function
as centralized controllers for the end users, while the APs and the server can do their
decisions with local autonomy.

Chen et al. [84] consider a MEC system with multiple users and one AP with an
integrated edge server. The server periodically decides a resource price, while each
user decides its offloading probability. They propose a DRL-based dynamic pricing
algorithm for the edge server. The algorithm allows the server to learn a pricing
strategy without any prior knowledge about users’ utility functions and task arrival
patterns. Note that the study focuses on evaluating the performance of the proposed
algorithm with respect to a centralized scheme with perfect system information, which
means that their interest is in verifying whether the DRL algorithm can converge to an
optimal solution. Hence, the user side decision making after the server’s price decision
is formulated as a non-cooperative game and solved optimally in a centralized manner.
Due to this centralization, the study is classified as having hybrid control, but it is good
to note that the proposed scheme has the potential and purpose to be decentralized in
practice with further development.

43

Shi et al. [101] consider a MEC system with mobile users and edge servers. The
servers periodically set a price for task execution, after which the users decide their
offloading destination (locally or at a chosen server). They propose a Deep Q-Network
(DQN) based algorithm that outputs the offloading destination for every user at the
same time, and a DDPG-based algorithm that outputs the pricing decision for every
server at the same time. The state space for the DQN-based algorithm requires global
knowledge of every user, and the state space for the DDPG-based algorithm requires
global knowledge of every server. Hence, running these algorithms requires that there
is a central entity making all the decisions for the users and another central entity
making all the decisions for the servers. Note that the study does not explicitly state
the existence of such central controllers, but given their problem formulation and
descriptions of the algorithms, the need for central decision making entities is evident.

Su et al. [76] consider a MEC scenario with multiple users, one BS and multiple
ESPs and Cloud Service Providers (CSPs). The ESPs deploy their edge servers (one
per ESP) at the BS, and each CSP owns a cloud datacenter connected to the BS via
backbone networks. The users decide their offloading strategy, while each provider
decides the price for task execution on its resources. The offloading problem is
formulated as a two-tier Stackelberg game, where a non-cooperative game between the
providers on resource pricing is followed by a non-cooperative game between the users
on offloading strategies. The proposed algorithms for finding the equilibrium solutions
can be executed in a distributed manner, but the system has elements of centralized
control. This is because the algorithm for finding the Nash equilibrium between the
users requires several rounds where the users broadcast their strategy profile to other
users through a BS, after which they update their strategy. This continues until the
strategies of all users are fixed. Also one update of provider pricing requires that each
provider adjusts its price twice, gets the strategy profile from all users, and then does
the final price update based on gradient ascent.

Finally, Lyu et al. [102] consider MEC on a campus, where each building has one
dedicated edge server and several APs. The servers are clustered into groups based
on load characteristics, and each group jointly trains an RL agent using a DQN-based
algorithm to periodically decide on the resource price for each server. Users make
an offloading decision based on the price set by the edge server and their own delay
requirements. Further, there is a global task scheduler that balances the load between
the edge server groups. Scheduler also uses a DQN-based algorithm to learn load-
balancing decisions. The users and edge server groups can make their decisions with
local autonomy, while the scheduler with a global system view controls the load on the
Servers.

Decentralized control topology is the rarest one in the studies. Only two studies have
it [103, 104].

Li et al. [103] consider a MEC system with multiple users and one AP with an
integrated edge server. There are two priority classes for the tasks in the system, one
for ordinary tasks and the other for high priority tasks. The users need to decide a
priority class for their offloaded tasks, as well as their offloading probability. The
offloading problem is formulated as a NUM problem, where the server decides on the
priority class prices based on the congestion the users cause to each other. The aim of
the server is to incentivize the users to make decisions that lead to the maximization
of the social welfare in the system. They propose an iterative search algorithm for

44

finding the socially optimal pricing. In the algorithm, the server first observes the
congestion level in the system through the average delay in each priority class, and
then calculates the expected task execution delay and price for each priority class. The
server broadcasts the prices and expected delays to the users, who can then change their
priority class and offloading frequency decisions. Note that the key difference between
this algorithm’s decentralized control topology and the centralized control topology in
the algorithms of [87, 89, 94] is the fact that in this algorithm, the server observes the
offloading decisions of the users through the congestion levels and aims to learn the
optimal pricing. On the other hand, in the distributed algorithms of [87, 89, 94], the
users must declare their decisions to the server after each price update until the server
terminates the process, and only after the termination the users can carry out the actual
task offloading.

Seo et al. [104] consider a MEC scenario where one edge server is already executing
tasks and a new user comes to offload. They formulate the offloading problem as a
Stackelberg game, where the server first decides the parameters for a pricing function
that gives the price per unit time depending on the amount of computational capacity
the user wants to purchase. Given this function, the user can then decide how much
computational capacity it purchases and how much task data it offloads. For the server,
they propose a supervised learning based approach, where the server uses historical
data to train a feedforward neural network to output optimal parameters. The input to
the network consists of the status of the edge server and the information the user is
required to give when it sends an initial offloading request. For the user, they derive an
optimal decision under the given parameters through mathematical analysis. Hence,
in their system model, each side is able to make its decision using locally available
information without any centralized control.

General Remarks

In general, the most common system model in the studies is a small system with only
one edge server. On the other hand, the works that do consider systems with several
edge servers strongly rely on centralized entities with global system view. There is a
lack of works that would consider practical offloading in large systems with multiple
edge servers, APs/BSs and users. Further, the works rarely consider the movement of
the users in the system and focus on solving the offloading problem in a system model
where the users are assumed to stay in a fixed place during the offloading.

The task models in the studies can be divided into two classes. In the first class,
one task is considered to be atomic in a way that it is either completely offloaded or
completely executed locally [98, 99, 100, 88, 91, 90, 92, 93, 103, 101, 76, 84, 97, 95,
102], whereas in the second class, one task can be divided into two parts for offloading
and local execution [87, 89, 94, 96, 41, 104]. The studies in the second class typically
assume that if the size of the user task is / bits, the user can arbitrarily cut this task
into two parts, so that I bits are offloaded and /1 — I bits are executed locally. Further,
these studies often also assume that the offloaded and local part can be executed in
parallel [89, 94, 96, 104]. Such assumptions of arbitrary cutting on a bit level and
independent execution are most likely unrealistic for practical implementation.

The task models can also be differentiated based on whether the study focuses on a
stream of task arrivals or on a situation where at some time instant a group of users has

45

a set of tasks they wish to offload. In the first case, the task arrival on a user device
is typically modelled as a Poisson process and the interest is in finding an optimal
offloading probability for each task [88, 92, 84, 76, 103]. Hence, these works focus
on optimizing a long-term offloading ratio. In the second case, each user in the group
typically has only one task and the interest is in finding an optimal offloading decision
and resource allocation for the tasks [98, 87, 89, 90, 91, 101, 94, 96, 97, 95, 102, 104].
Hence, these works focus more on optimizing instantaneous offloading.

All the studies in Table 3 consider independent tasks where one computational task
does not have any control or data dependencies on other tasks. A commonly recurring
task model includes determining the task size in bits, as well as an application-specific
processing density factor that defines how many CPU cycles are required to process
one bit of data. It is also important to note that a great majority of the works completely
ignore the delay and energy consumption in returning the task execution result back
to the user. This is typically justified by stating that the result is so minuscule in size
compared to the input data that it can be disregarded. However, when considering
some image and video processing applications and the future use cases of augmented
reality and virtual reality applications, this assumption does not always hold.

The studies deploy a variety of pricing approaches, but most commonly the pricing
of a single resource is considered, this resource being CPU. A particularly recurring
pricing scheme is to determine a unit price for the number of CPU cycles it takes to
execute a task. Uniform pricing, where the unit price is the same for all users, is more
prevalent than differentiated pricing, where the unit price can vary between users. Most
of the studies use a dynamic pricing approach, where the price is one decision variable
in the system. A couple of studies have a static pricing approach, where the resource
price is predetermined [88, 90, 92].

Stackelberg game is the most common way to formulate the offloading and pricing
problem in the studies. However, the proposed solution algorithms usually tightly
couple the decision making of the system entities, requiring strong coordination in
a centralized manner to reach an optimal solution before any actual offloading can
be carried out. Further, majority of the proposed solution methods in the studies are
one-shot in a way that they aim to optimize the system in one instant for a group
of users rather than aiming for long-term optimization. These methods do not carry
any knowledge of the system from a decision making period to another, and they
do not consider that decisions in one period would have impact on decisions and
system performance in future periods. Further, they must be re-executed every time
the dynamic variables in the environment, such as channel state or the set of users,
change. Some works, such as the DRL-based approaches in [90, 84, 101, 102] and
the Lyapunov optimization based approach in [99], aim for adaptation and long-term
optimization, but they mainly rely on centralization or consider a small-scale system.

It is also good to note that many proposed solutions for game models assume that the
resource provider knows the general form of the users’ utility function, even though
it may not know the values of the individual coefficients in the function. Hence, the
solution method may be built upon the fact that the provider knows what the users’
optimal strategies are given the provider’s decision. Naturally, such assumption limits
the applicability of the proposed scheme in practice.

Another significant deficit when it comes to the practical applicability of the
proposed schemes is related to the communication in the system. It is common for the

46

works to assume that the communication resources of an AP or a BS can be completely
divided among offloading users. This ignores the fact that in practical systems APs and
BSs should still carry out their original purpose, which is to route other type of traffic
in addition to the offloaded data.

Finally, all the studies evaluate their proposed method via simulation. However,
because majority of the studies focus on one-shot optimization, many simulation
models are static. In other words, the method is evaluated by running it under static
conditions at one instant in time. Many runs are conducted by varying the initial
conditions (inputs) of the model and the results from these runs are aggregated. This,
however, is not able to evaluate the performance of the method in the long run. Further,
the models are highly analytical, which is possible due to simplifications and the
small-scale of the considered system. Consequently, the long-term performance of
the proposed methods as a part of a large-scale, more realistic system remains an open
question.

47

3. METHODS AND TOOLS

3.1. Metropolitan Area Network Creation

The creation of MAN in EISim consists of AP placement, topology creation and server
placement. Further, for the hybrid control topology, servers must be clustered and
cluster heads must be selected.

3.1.1. Access Point Placement, Topology Creation and Edge Server Placement

The simulation environment is a rectangular area. APs are located into the area using
a hexagonal cell grid, which is a commonly used approximation of the cell shape in
literature [105]. Hexagonal cell grid is chosen, because it allows to fully cover the area
without any gaps between the cells while requiring fewer APs to do so compared to
other cell shapes [106].

A MAN topology must be created for the APs. However, it is difficult to find
public data of real-life MAN topologies. Hence, the topology creation is based on
assumptions of what properties the topology has. It is reasonable to assume that the
MAN topology fulfills small-world and scale-free properties, which are commonly
recurring features in real world networks [107]. For example, it is known that Internet
is a scale-free network [108]. A network is said to have a small-world property if the
pairs of nodes in the network have a short average path length. The average path length
is typically considered to be short if it increases only as the logarithm of the number of
vertices in the network [107]. In turn, a network is said to have a scale-free property
if the degree distribution in the network follows a power law, meaning that there are a
few nodes with a high degree while majority of the nodes have a low degree [107].

The works that simulate MAN topologies often use Barabési-Albert model to create
scale-free networks [109, 110, 111]. In the model, a network is grown by adding one
new node at a time. The added node is then connected to a predetermined number of
other nodes already in the network. The probability that the added node connects to
an already existing node depends on the degree of the already existing node. However,
this model has no spatial awareness, which means that it is not suitable for creating
a topology between nodes that have already been placed on physical locations. A
method for creating a topology for physically placed nodes should take into account
the distance between the nodes when creating the connections. Hence, in EISim, the
APs are connected using the Tunable Weight Spanning Tree (TWST) method proposed
in [112]. This method was chosen, because it is simple and efficient, and because it has
been developed based on actual data about power grids, which have also been observed
to exhibit small-world and scale-free properties.

TWST is a low-complexity method for creating a spanning tree between physically
placed nodes. The steps of TWST are shown in Algorithm 1. TWST starts by
calculating the average node location p € R? in the network. Then a random
permutation P of the nodes is created by sampling them without replacement. At
each sampling round, a node is sampled from the remaining nodes with a probability
proportional to the reciprocal of the Euclidean distance between the node and the
average node location. The distance is weighted by a tunable weight parameter . After

48

obtaining the permutation, the method connects each node to its nearest neighbour
among the nodes that appear before it in the permutation. The value of « affects the
small-world property of the created spanning tree: smaller x leads to shorter average
path length.

Algorithm 1. Tunable Weight Spanning Tree
Input : The total number of APs n4p, a set of AP locations (nodes)
{p: € R*}!4P a parameter k > 0
Output: A spanning tree with nyp — 1 links
1 Calculate the average node location p = ﬁ > i Di

2 Create an index set Z = {1,...,nap}

3 Initialize an empty array P of size nsp

4 fori=1,...,nyapdo

5 Sample a node j from Z with probability ||p; — p||~*
6 P(i)«j

7 | T+ T\{j}

s end

9 fori=2,... napdo

10 | Connect node P(7) to node P(j*) such that
n | j*=argmin;[|ppu — prg) |

12 end

EISim also implements a modified version of the link adding procedure presented
in the same study [112], which allows to create more complex and robust network
topologies. The procedure in [112] is simplified and generalized in EISim, because the
original procedure has details that are very specific to the features of the power grid
networks. The steps of the link adding procedure are shown in Algorithm 2. In the
algorithm, a node 7 is first sampled from the network with a probability proportional to
d;“, where d; is the degree of the node. Parameter « is a tunable weight that affects the
probability of choosing a low degree node: the larger the value of «, the more likely a
low degree node is chosen. Then, another node j is sampled from the remaining nodes
with a probability proportional to ||p; — p;||~?d], where ||p; — p;| is the Euclidean
distance between the nodes ¢ and j, and d; is the degree of the node j. /3 and 7 are
tunable weights that affect the small-world and scale-free properties of the resulting
network. If 3 is large compared to 7, new links are more likely to connect nearby
nodes, resulting in larger average path length and less nodes with very high degree. If
n is large compared to 3, new links are more likely to connect nodes to high degree
nodes regardless of their distance, resulting in shorter average path length and very
high degree nodes.

49

Algorithm 2. Adding links to TWST
Input : The number of links to add n,44, the total number of APs n 4p, a set
of AP locations (nodes) {p; € R? AP, parameters «, 3,17 > 0
Output: A network topology with n,qq + nap — 1 links
1 Calculate the degree d; for eachnode i, =1,...,nap
2 while rotal number of links < ngqq + nap — 1 do
3 Sample a node ¢ with probability oc d; *
4 | Sample a node j from all other nodes with probability o< ||p; — p;||~7d]
5 if a link between nodes 1 and j does not exist then
6
7
8

| Connect node i to node j
end
end

Finally, the edge servers are co-located with the APs in EISim. Such co-location is
commonly considered in the edge server placement literature, as it reduces the edge
server deployment and maintenance costs [113]. In EISim, the edge servers are placed
on the created network topology randomly. The probability of choosing an AP node ¢
to host an edge server is proportional to d;, where d; is the degree of the AP node. v is
a tunable weight parameter that affects the probability of choosing high degree nodes
as server locations. The higher the value of v, the more likely a high degree node is
chosen. It is reasonable to assume that edge servers are more likely to be placed on
central locations, hence the placement probability depends on a centrality measure.
Degree centrality is used due to it being a simple yet effective measure [114].

3.1.2. Edge Server Clustering and Cluster Head Selection

Different types of clustering problems arise in many application domains.
Consequently, a wide variety of clustering methods have been developed for different
purposes, each with their own set of advantages and disadvantages [115]. In EISim,
clustering is used to group edge servers based on proximity. This process is done
offline, meaning that the edge server clusters remain static during simulation.

Distance-based clustering methods are very popular due to their simplicity and ease
of implementation [115]. In general, distance-based methods can be divided into
flat and hierarchical methods [115]. Flat clustering methods divide the data objects
into a set of clusters in one shot with the use of prototype objects. These prototype
objects, such as the cluster means in K-Means, represent the clusters. The quality of
the clustering is improved iteratively with regard to some objective function. At the
beginning of each iteration, the data objects are assigned to their closest prototype
objects according to some distance function. Then, the prototype objects are adjusted
according to the data objects in the cluster. Flat methods generally require that the user
gives the number of clusters as input to the algorithm [116].

On the other hand, hierarchical clustering methods create a binary tree-based data
structure called the dendrogram [116], which represents the hierarchical clustering
result. The leaves of the tree form the base of the hierarchy (the lowest hierarchy level)
and correspond to singleton data objects. The root of the tree (the highest hierarchy

50

level) corresponds to the maximal cluster which contains all the data objects. The child
nodes at each level of the hierarchy correspond to a set of clusters. In other words, each
child node corresponds to a cluster that contains some subset of the data objects, and
these data objects can be determined by traversing the tree from the current node to
the leaves. The dendrogram can be cut at any level to obtain a corresponding set of
clusters.

There are two approaches to building the dendrogram [116]: top-down and bottom-
up. Top-down methods are also known as divisive methods that start with the maximal
cluster and keep dividing it recursively into two groups until each data object is a
cluster of its own or until some termination criterion is met. Bottom-up methods, in
turn, are also known as agglomerative methods that start with each data object as its
own cluster and combine two clusters at a time until the maximal cluster is formed.

In EISim, an agglomerative hierarchical clustering method is implemented for
grouping the edge servers. A hierarchical method is chosen over a flat method mainly
because it does not require determining the number of clusters beforehand. A bottom-
up approach is chosen over a top-down approach due to lower complexity, as top-down
approaches typically require a flat clustering method for splitting a cluster in two [115].

In agglomerative clustering, merging clusters is based on minimizing a linkage
criterion that determines the distance between two clusters. It is a function of the
pairwise distances between the data objects in the clusters. In EISim, the distance
between a pair of edge servers (data objects) is the length of the shortest path between
the servers in the created topology. Note that when calculating the shortest path, the
weight of an edge is the Euclidean distance between the vertices.

There are several different linkage criteria that can be used [116]. The EISim
implementation readily supports three, namely single, complete and average. The
single linkage uses the minimum of the distances between all data objects of the two
clusters as the criterion that is minimized in merging a pair of clusters. The complete
linkage, in turn, uses the maximum of the pairwise distances, while the average linkage
uses the average of the pairwise distances.

For obtaining the final clusters, a distance threshold must be specified. This refers
to a distance after which no more clusters are merged. Such threshold can be specified
by inspecting the dendrogram, which shows the distance at which each pair of clusters
was merged.

After the edge server clusters have been obtained, cluster heads must be selected. It
is reasonable to assume that a cluster head is a server that is somehow central in its
cluster. In EISim, betweenness centrality [107] is used as the measure of centrality.
Betweenness centrality of a node is the number of shortest paths (between other pairs
of nodes in the network) that pass through the node. The measure characterizes how
central a node is in terms of the information flow in the network [107]. Thus, it is a
sensible measure for finding a central server in a cluster. Consequently, the server with
the highest betweenness centrality is chosen as the cluster head in each edge server
cluster.

51

3.2. Reinforcement Learning

Reinforcement learning studies the online decision making of an interactive agent in
an uncertain environment. It has wide applicability to different types of problems
and the remarkable ability to develop agents that can learn through trial-and-error
without any type of exemplary supervision or complete models of the environment
[117]. RL agents have a particular focus on achieving long-term goals as they aim to
learn a mapping from the environment states to actions in a way that their expected
long-term return is maximized. Such features make RL one prominent approach
for developing intelligent orchestration methods in the highly dynamic and uncertain
computing continuum, where adaptivity and the consideration of the long-term effects
of actions are among the key requirements for orchestration methods [5].

3.2.1. Single-Agent Reinforcement Learning

A single-agent RL problem is generally formulated as a Markov Decision Process
(MDP) [117]. MDP is defined as a tuple (S,.A, T, R), where S is the state space, A is
the action space, T': S x A x § — [0, 1] is a stochastic transition probability function
(i.e., T'(s,a, s’) is the probability of transitioning from state s to state s’ after taking
action a), and R : § x A xS — R is areal-valued, possibly stochastic reward function.
R(s,a,s") gives the immediate reward when taking action « in state s and transitioning
into state s’.

An agent interacts with the environment in discrete time steps t = 0,1,2,.... At
each time step ¢, the agent observes the current state of the environment s;, uses it to
decide the next action a;, after which the environment transitions to state s;.; and the
agent receives a reward R(s;, a;, s;11). For selecting its actions, the agent follows a
policy 7 : § x A — |0, 1] that maps each state-action pair (s, a) to the probability of
selecting the action a in the state s. This probability is typically expressed as mw(als),
where the “I” in the middle is used to highlight the fact that the function 7 defines a
probability distribution over the actions for each state [117]. The goal of the agent
is to find an optimal policy that maximizes its expected return, which in this thesis is
defined as the expected sum of discounted rewards.

A policy can be evaluated with two types of value functions. The first type of
function is called a state value function V. : § — R, which is defined as the expected
sum of discounted rewards that is obtainable by starting from a state s at a time step ¢,
and then following the policy 7. It measures the value of a given state in terms of the
expected return, and is formally defined as

Vi(s) =E, [Z YT R(sq, iy Siv1)

1=t

5¢ = 8}, ey

where v € [0, 1) is a discount factor used to control how much the agent values
future rewards, and R(s;, a;, s;41) is the immediate reward at a time step ¢ > ¢. The
expectation is taken over the distribution of state-action-reward trajectories induced by
the policy 7 and the environment dynamics.

52

The second type of value function is a state-action value function @, : § x A —
R, which is defined as the expected sum of discounted rewards that is obtainable by
starting from a state s at a time step ¢, taking some action a and then following the
policy 7. It measures the value of an action in a given state in terms of the expected
return, and is formally defined as

Qr(s,a) =E, {Z Vi_tR(Si, i, Sit1)

1=t

Stzsaat:a:|7 (2)

where the expectation is taken over the distribution of state-action-reward
trajectories induced by the policy 7 and the environment dynamics.

The goal of the agent, which is to find an optimal policy 7* that maximizes the
expected sum of the discounted rewards, can be expressed as 7* = arg max,. Vi(s),
or equivalently 7* = argmax, Q.(s,a). Note that V, and (), are connected as
Vi(s) = >, m(als) - Qx(s,a). In literature, a variety of solution methods has been
proposed for finding optimal policies. These methods can be classified into value-
based, policy-based, and actor-critic methods [118].

Value-based methods focus on estimating the optimal state-action value function,
namely the Q-function in Equation (2). These methods do not explicitly model the
policy of an agent. Instead, the policy is greedily extracted from the approximated Q-
function, meaning that the action that maximizes the value of the estimated optimal Q-
function is chosen in each state. Consequently, these methods can handle only discrete,
low-dimensional action spaces, and the extracted policy is always deterministic.
Examples of value-based methods are Q-learning [119] and SARSA [120].

Policy-based methods focus on directly estimating a parameterized policy function
without explicitly estimating any type of value function. A central concept in
the policy-based methods is policy gradient, which is the gradient of the expected
cumulative return with regard to the parameters of the policy function. This gradient
is typically estimated by sampling trajectories with the current policy, as is done in
REINFORCE algorithm [121]. Then, using gradient ascent, the policy parameters can
be updated in the direction of the improvement to find the parameters that produce the
highest return. Policy gradient methods have better convergence properties than value-
based methods [117, 118]. Further, they have the great advantage of being able to
generate stochastic policies and handle continuous or high-dimensional action spaces.
However, policy gradient methods suffer from large variance in the gradient estimates
[118].

Actor-critic methods aim to combine the strong points of both value- and
policy-based methods. This means that these methods aim to learn concurrently
approximators for the policy function (actor) and a value function (critic) that usually
is the Q-function [117]. The actor typically outputs a probability distribution over the
action space, while the critic evaluates the current policy of the actor. The output of the
critic is used as a target for the actor’s gradient update. The critic itself adapts the value
estimates based on the feedback (rewards) from the environment. The main purpose of
the actor-critic methods is to preserve the benefits of the policy-based methods while
reducing the variance of the gradient estimates and improving the efficiency of the
learning. This is achieved through the addition of the critic, even though the lower

53

variance of the gradient estimates is traded for a larger bias at the start of learning
when the value estimates of the critic are far from accurate [118].

Currently, popular approximators for the value and policy functions are DNNs,
which leads to the field of DRL [122, 123]. The use of the DNNs as function
approximators has significant benefits in terms of representation learning and better
generalization across states [123], but their use also introduces a lot of problems. These
problems include the difficulty of providing theoretical guarantees about convergence,
the instability of learning, the lack of interpretability of the DNN’s inner workings, and
low sample efficiency [123, 124]. Nevertheless, the current state of the art algorithms
that have shown significant success in many real-life applications, such as games and
robotics, are actor-critic DRL algorithms [123].

3.2.2. Multi-Agent Reinforcement Learning

The computing continuum is inherently a multi-agent environment. The development
of RL methods for multi-agent environment requires combining game theory with
single-agent RL, which leads to Multi-Agent Reinforcement Learning (MARL).
Developing MARL algorithms is extremely challenging, because, from the viewpoint
of one agent, the presence of other learning agents with non-stationary policies
makes the environment non-stationary as well. This opponent-induced non-
stationarity violates the fundamental assumption of the Markov property (a stationary
environment) behind single-agent RL algorithms [125]. Other significant problems
include partial observability and scalability, as one agent cannot in realistic settings
observe the complete state of the environment nor try to model the whole joint action
space, the dimension of which grows exponentially with the number of agents [126].

A multitude of MARL algorithms has been proposed in the literature [125, 126].
However, in the current state of the art, the development of MARL algorithms has been
focused on the fully cooperative and fully competitive settings. In the fully cooperative
setting, all agents have the same objective, while in the fully competitive one there
is typically only two agents with opposing goals. More realistic settings, where each
agent has their own objective that can be arbitrarily aligned with the objectives of other
agents, are generally underexplored [5, 126]. Further, the current state of the art relies
heavily on centralization to mitigate the problems of partial observability and non-
stationary. For example, in the proposed MARL algorithms, the current state of the art
approach to learning is centralized training with decentralized execution [126, 127].
This means that the agents share information, such as observations and actions, during
training through a centralized entity. This information is typically used by a centralized
critic that guides the learning of the actors, which, in turn, use only locally available
information. During execution, all this extra information is discarded, and each agent
simply follows the learned policy.

In its current form, EISim implements DDPG algorithm, which is a single-agent
algorithm. This algorithm was chosen because it is a well-known, seminal algorithm
for continuous action spaces. Using a single-agent algorithm in a multi-agent setting
corresponds to ignoring the opponent-induced non-stationarity, which is also known
as independent learners setting [126]. This is the simplest way to use RL in multi-
agent settings, but naturally, as the assumptions behind single-agent algorithms are

54

violated, any convergence guarantees are lost [125]. This simple setting was chosen
as a starting point in EISim, because empirically, independent learners may be able
to achieve satisfiable performance [126]. Implementing more sophisticated methods,
both single-agent and multi-agent, is left for future work.

3.2.3. Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient [19] is a model-free off-policy actor-critic
algorithm that learns concurrently DNN approximators for a policy function (actor)
and a Q-function (critic). Model-free means that DDPG does not need a complete
model of the environment dynamics, namely of the transition and reward functions.
Off-policy means that the behavioral policy of the agent, which is used to choose
actions in the environment during learning, does not need to be the same as the target
policy of the agent, which is the optimal policy that the agent tries to learn.

The actor in DDPG can only output deterministic actions. Consequently, policy 7 is
replaced with a deterministic policy function y : S — A that maps each state s into an
action a. The policy function and the Q-function are parameterized with % and 69,
respectively. These correspond to the parameters of the DNNs.

Like generally in RL methods, the update of the critic in DDPG is based on
the fundamental Bellman equation [117], which decomposes the Q-function in
Equation (2) into a recursive form

Qﬂ'(sta at) = Est+1~T |:rt + ’yEaz+1N7T |:Q7F<St+17 at+1):|:| 5 (3)

where 7, = R(sy, a4, $441). To avoid the inner expectation and enable off-policy
learning, DDPG uses a deterministic policy, which means that Equation (3) can be
simplified as

Q(st,ar) = Eq, ot [Tt +YQ (8141, N(5t+1)):| . “4)

An approximation to the optimal Q-function is learned by minimizing a loss that
measures how close the critic comes to satisfying the Bellman equation in Equation (4).
This loss for the parameterized Q-function Q(s;, ay; GQ) is defined as

L(6%) = E{(Q(st,at;aQ) - ytﬂ, (5)

where
Y =71+ VQ(StHa M(8t+1§ 9#); GQ)- (6)

The loss function in Equation (5) is called mean square Bellman error, which is the
expected value of the Temporal Difference (TD) error [117]. Equation (6) defines
the TD target for the critic. TD target is an estimate of the true Q-value, and its
calculation requires an estimate of the optimal Q-value of the next state. In Q-learning,
this estimate for the next state is computed as the maximum over all the actions in

55

the discrete action space. However, in DDPG, the action space is continuous, which
means that finding the action that maximizes the Q-function would be an arduous task.
Hence, the actor network f(s;41; 0*) is used to approximate the action that maximizes
the Q-function in the next state s;1.

Equation (6) shows a clear problem in the critic update: the TD target y; depends on
the same parameters O€ that are being updated. To stabilize the training, DDPG uses
target networks that are time-delayed copies of the original actor and critic networks.
Consequently, in Equation (6), the parameters 89 of the target critic are used instead of
0. Further, in Equation (6), the optimal action for the next state s, is approximated
with f1(s,,1; "), where %' are the parameters of the target actor. DDPG uses a target
network also for the actor, because, according to the findings of the original authors
[19], it further stabilizes the training and prevents divergence.

The target parameters for the actor and the critic are updated by having them slowly
track the learned networks. That is, the target parameters for both networks are updated
with @' < 70 + (1 — 7)0’, where 7 < 1.

For optimizing the actor, the objective is simply to maximize the expected return. In
other words, the actor aims to find a deterministic policy s (s;; 6*) that maximizes the
Q-function Q(sy, as; @9). This objective is formulated as

J(6") = E [cxs, " 0Q>|azu<s;eu>} , @

where the expectation is taken over the state distribution induced by the behavioral
policy of the agent. The parameters of the actor are updated with gradient ascent under
the assumption that the Q-function is differentiable with regard to action. The policy
gradient used in the gradient ascent is approximated with

Vo J(04) ~ E[vacxs,a;e%:u(s)vms; e“>]. ®)

During learning, training samples, which refer to experience tuples in the form of
(state, action, reward, next state), are stored into an experience replay D with a limited
capacity. For updating the actor and critic networks, a training batch is randomly
sampled from D. The purpose of using experience replay is to break the temporal
correlation between the training samples, as well as increase sample efficiency and
reduce the variance in the gradients.

An agent should be able to explore different actions in the environment in order
to learn efficiently. In DDPG, exploration during training is enabled by adding noise
sampled from a noise process A into the actor policy. This gives agent an exploration
policy y/, which is defined as

p(s) = p(s;0") + N, 9)

where, in the context of this thesis, is a zero-mean Gaussian noise process.
Finally, the steps of the DDPG algorithm are summarized in Algorithm 3.

56

Algorithm 3. Deep Deterministic Policy Gradient

1 Initialize the actor and critic parameters 8" and 8%

2 Copy the initial actor and critic parameters to the target parameters 0 < 6",
09 «— 6°

3 Initialize the experience replay D

4 for each episode do

5 | Initialize the noise process N

6 Observe the initial state s;

7 for each step t do

8 Take action a; = pu(ss; 0*) + N according to the current policy and

exploration noise

9 Observe reward r; and new state s,

10 Store experience (s, a;, 1y, Sg41) in D

11 if time to update then

12 for each update do

13 Sample a random mini-batch of B experiences (s;, a;, 7, Sit1)

from D

14 Set y; = 7 + yQ(Siv1, 1(Siv1; 9“/); 6%)

15 Update the critic by minimizing the loss:

17

: L(69) = 5 Y~ Qs 069

18 Update the actor policy using the sampled policy gradient:
20

0 Vord (0%) % = 37 VuQ(s1,050%) ampio) V(s 0°)
21 Update the target networks:

23

N 09 < 769 + (1 - 1)8?

0" «— 70" + (1-— 7)0“'

24 end
25 end
26 end
27 end

3.3. PureEdgeSim

EISim is built on PureEdgeSim [18] (version 5.1.0). The following sections elaborate
on the architecture and use of PureEdgeSim, as these are also the base of EISim.

57

3.3.1. Inputs

For defining the infrastructure elements, application profiles and simulation
settings, PureEdgeSim takes five files as input: cloud.xml, edge_datacenters.xml,
edge_devices.xml, applications.xml, and simulation_parameters.properties.

In cloud.xml file, cloud datacenters are defined in terms of energy consumption,
memory, storage, CPU cores, and processing capacity per core in Million Instructions
Per Second (MIPS). Further, it must be specified for each cloud datacenter whether it
has a task orchestrator or not. Same information is needed to define edge datacenters
in edge_datacenters.xml file, but, in addition, the location must be defined for each
edge datacenter, as well as whether a datacenter is peripheral or not. The file must also
specify the MAN links between edge datacenters.

In edge_devices.xml file, the specifications for different edge device types are given.
For each type, the percentage of all devices that are of this type must be specified. The
other settings provide a way to define a wide variety of different types of edge devices.
Edge devices can be mobile or static, and they can be specified to be battery-powered
with a given battery capacity and initial battery level. The computing capabilities of
edge devices are also specified in terms of memory, storage, CPU cores, and processing
capacity per core in MIPS, but setting these to zero makes PureEdgeSim treat the
device type as sensor. The energy consumption must also be defined in terms of idle
consumption and maximum consumption when CPU is at 100%. Further, it must
be specified whether an edge device type generates tasks and whether it can act as
orchestrator for other edge devices. Finally, the LAN connectivity of an edge device
type must be given. PureEdgeSim supports three LAN connectivity types, namely
cellural, Wi-Fi and ethernet.

The applications.xml file is used to specify different application types according
to which tasks are generated. For each application type, the percentage of all task-
generating devices that have this type must be defined. For the task generation, a rate
that determines how many tasks are generated each minute, a delay constraint for the
tasks, a task length in Million Instructions (MIs), as well as the sizes of application
container, task input and task output must all be specified.

Finally, the simulation_parameters.properties file defines the main simulation
parameters for PureEdgeSim. These parameters can be roughly categorized into
general settings, simulation area settings, computing node settings, network settings,
and task orchestration settings.

General settings specify the length of the simulation in minutes, whether simulation
scenarios are run in parallel, whether real-time charts are shown and saved, and
whether logs are generated. They also determine whether registry is used for
downloading application containers, and whether to stop the simulation when the time
ends or wait for all the tasks to be processed.

Simulation area settings specify the length and width of the rectangular simulation
area in meters. Computing node settings specify the update interval for energy
consumption and mobility updates, the radius in which two devices can offload to each
other, as well as the coverage of an edge datacenter. Computing node settings also
determine the minimum and maximum number of edge devices in the environment,
and the step size for updating the edge device count between simulation runs.

58

Network settings specify the update interval for transfers in the network, as well as
the bandwidth, latency and energy consumption of WAN, MAN and each type of LAN
(ethernet, cellular, or Wi-Fi) links. There are also settings for enabling one shared
WAN link for edge devices, and for enabling a more realistic network model that
models data transfers in network links more realistically in terms of link congestion.

Finally, there are four task orchestration settings, namely enable_orchestrators,
deploy_orchestrator, orchestration_architectures, and orchestration_algorithms.
When orchestrators are enabled, tasks are sent to another computing node that
makes the offloading decision, otherwise each edge device makes its own offloading
decisions. If orchestrators are enabled, deploy_orchestrator defines the level on
which the orchestrators reside (cloud, edge or mist). Orchestration architectures
define which computing nodes can be considered as offloading destinations during
task orchestration. The options are CLOUD_ONLY, EDGE_ONLY, MIST_ONLY,
MIST_AND_CLOUD, EDGE_AND_CLOUD, MIST_AND_EDGE, and ALL. Finally,
orchestration algorithms define the names of the implemented task orchestration
algorithms that are used to make the offloading decisions. Note that several options
can be listed on both orchestration architectures and orchestration algorithms. All
possible combinations of architectures, algorithms and edge device counts form the
separate simulation scenarios inside PureEdgeSim.

3.3.2. Architecture

The layered, modular architecture of PureEdgeSim is shown in Figure 3. The modules
of PureEdgeSim can be organized into three layers. The lowest layer is the simulation
core, which consists of modules that create, manage and monitor the simulation
environment. Simulation Manager is a central module that initializes the simulation
environment, starts and ends the simulation, as well as schedules and handles the main
simulation events. It also works as a link between all other modules. Simulation
Engine module is responsible for running the simulation by managing the event queue.
Logger records simulation events and calculates the performance metrics at the end of
a simulation run. Simulation Visualizer module is responsible for creating real-time
charts of the simulation map, task success rate, and CPU and network utilization.
Scenario Manager parses the input files and encapsulates all simulation scenarios.
Finally, Datacenter Manager module is responsible for creating all the computing
nodes and network links.

The middle layer consists of modules that are responsible for modelling different
aspects of the infrastructure. Network Model handles all network related events. It
manages the data transfers in the network and allocates the bandwidth of each link by
taking into account the current network load. Mobility Model handles the location and
movement of edge devices. CPU and Memory Utilization Model handles the resource
allocation of a computing node when it receives and executes a task. Finally, Energy
Model handles the energy consumption of computing nodes and network links.

The highest layer consists of modules that handle the creation and management of
workflow resources, specifically tasks. Application Model encapsulates the application
profiles according to which the tasks are generated. Task Orchestration module

59

Application Model
Workflow Task Orchestration

Task Generation

CPU and Memory

Utilization Model Energy Model

Infrastructure Mobility Model

Network Model

Simulation Manager | | Scenario Manager

Input File Parsing

Simulation Engine

Simulation
Core Datacenter Manager
Logger Computing Node
Generation
Simulation Vizualizer Topology Creation

Figure 3. The architecture of PureEdgeSim.

implements the task orchestration algorithms used by orchestrators to decide on
offloading.

PureEdgeSim offers a default implementation for each module. Many
implementations, namely those of simulation manager, topology creator, network
model, mobility model, CPU and memory utilization model, task generator, and task
orchestrator, can be easily extended.

3.3.3. Simulation Workflow

The inner workflow of PureEdgeSim after a simulation has been launched is shown
in Figure 4. An instance of the Simulation class has been created. It uses the
scenario manager module to parse the input files and create a list of simulation
scenarios. Then, depending on the simulation settings, it either creates one instance
of the SimulationThread class that sequentially runs all the simulation scenarios, or
creates several instances, each of which is responsible for running a given subset of the
simulation scenarios. After this, the startSimulation method of the SimulationThread
is called.

The SimulationThread object first creates instances of the SimulationEngine and
SimulationManager classes. It also creates instances of the NetworkModel and
Orchestrator classes, as well as uses the datacenter manager to create the computing
nodes and network links. All of these inherit from the SimEntity class, which is the
main class for any entity that can create and handle events during simulation. It is

60

:Simulation
T Parses input
1 files and Creates
creates a list :NetworkModel
........ of scenarios :Orchestrator,
computing nodes
ff?[eft?i) and network links,
which all are
:SimulationThread SimEntities

L startSimulation())

i Loop [For each simulation scenario] B

' <<create>> /

A <<create>> :SimulationEngine ,"

:SimulationManager

; <<create>> S i /

; <<create>> i : :SimEntity

E :TaskGenerator : ; .

' generate() ' : ' ;

: <—————TaskList————D : ! i

H H Initializes ' '

: —setTaskList()—#l\—bm simulation : :

E : ; visualizer ; :

: ~—startSimulation()—/" : i

5 : : , start() > :

; : : : Loop [For each SimEntity] :
E i i E —startlnternal()—>|j

1=
Loop [EventQueue ! emptly]

J

; ' ' : —processEvent()—bD

i : : : M [For each SimEntity] :
E : : ' —onSimuIationEnd()—»D

Figure 4. The workflow of PureEdgeSim simulation.

important to note that also the SimulationManager class inherits from the SimEntity
class, which means that an instance of the SimulationManager class is also a simulation
entity.

After the simulation entities have been created, the SimulationThread object creates
an instance of the TaskGenerator class, which creates and returns a list that contains
all the tasks to be generated during the simulation run. This task list is given to
the SimulationManager object, as it is responsible for scheduling the task generation
events. After this, the startSimulation method of the SimulationManager object is
called. Then, the simulation manager initializes the simulation visualizer, after which
it calls the start method of the simulation engine.

The SimulationEngine object first calls the startInternal method for each SimEntity
object. This method is used to schedule initial simulation events. Then the simulation
engine inspects the event queue and finds the earliest event. It advances the simulation

61

clock to the time of the event and processes all the events that happen at the same time.
Events are processed by calling the processEvent method of the SimEntity object to
which the event has been scheduled. Then the engine finds the next event, advances the
clock and processes all the events happening at the same time. This is continued until
the event queue is empty, or until the simulation manager terminates the simulation.
After this, the onSimulationEnd method is called for each SimEntity object. This
method can be used to do something when the simulation ends. For example, the
state of a simulation object could be saved.

62

4. EISIM IMPLEMENTATION AND EVALUATION

Like PureEdgeSim, EISim also allows the user to simulate a wide variety of scenarios
and deployments. However, EISim has a specific focus on evaluating and comparing
the performance of intelligent orchestration solutions against different orchestration
control topologies. For this, EISim extends and modifies the core modules of
PureEdgeSim, as well as adds new features and modules to PureEdgeSim. The
following sections explain the architecture, default implementations and use of EISim,
specify the changes made with regard to PureEdgeSim, and present the additional tools
that come with EISim. Finally, the simulation case study that is used to evaluate and
validate EISim is introduced.

4.1. Architecture

The architecture of EISim and the changes made with respect to PureEdgeSim are
shown in Figure 5. EISim retains the core architecture of PureEdgeSim. The major
changes are the addition of the agent model and clustering modules, and the completely
new implementations of the task orchestration and application model modules. To
support the new additions and new implementations, other modules had to be extended
and modified. The following sections elaborate on the changes.

Clustering

The Clustering module is responsible for handling edge server clusters. EISim makes
it possible to offer cluster information as a part of the edge datacenter specification
in the edge_datacenters.xml setting file. For each edge datacenter, cluster information
consists of a non-negative integer that specifies the cluster to which the server belongs,
and a boolean value that indicates whether the server is the head of the cluster.

Implementing the clustering module required changes to the input file parsing,
computing node generation, and computing node implementation. During simulation,
each edge server is aware of its cluster members, but the cluster members remain static
by default.

Task Orchestration

EISim implements three default orchestration algorithms that correspond to three
main orchestration control topologies. The used algorithm is specified in the
simulation_parameters.properties file by setting the value of orchestration_algorithms
to be one of the following: CENTRALIZED, HYBRID, or DECENTRALIZED. 1t is
important to note that only one of these algorithms can be given as input to EISim
at a time, because each of them makes different assumptions about the edge server
clustering. The decentralized orchestration algorithm assumes that each edge server
forms a cluster on its own. The centralized orchestration algorithm, in turn, assumes
that all edge servers belong to the same cluster with one assigned cluster head. The
cluster head functions as a central orchestrator. Finally, the hybrid orchestration

63

Application Model
Workflow Task Orchestration

Task Generation

CPU and Memory
Utilization Mode! Energy Model
Infrastructure Mobility Model Agent Model
= Network Model Clustering

]
= Scenario Manager

Simulation Manager

E Input File Parsing

Simulation Eng]ne MEEEEEEEEEEEEEEEEEEEEE
simulation :Illllllllllllllllllll
= Datacenter Manager

core EE NN NN NN EEEEEEE

EIIIIIIII_IOIgI??:'IIIIIIIE E CompUting NOde E
Generation :
Simulation Vizualizer | : | Topology Creation

Figure 5. The architecture of EISim. Compared to Figure 3, thick solid line indicates
either that the module is a completely new addition to PureEdgeSim, or that the
implementation of the module has been completely changed. Thick dashed line
indicates that the implementation of the module has been extended for the needs of
EISim.

algorithm is intended for any type of grouping that resides between the decentralized
and centralized extremes.

Each control topology has its own default orchestration workflow, as shown in
Figure 6. Figure 6a shows the workflow of the decentralized control topology.
Whenever a task is generated, the edge device orchestrates the task by deciding whether
to offload and to which server. To make its decision, it uses information from the edge
servers, which includes the prices set by the servers. The workflow of the hybrid
control topology, as seen in Figure 6b, introduces a two-phase orchestration, where the
edge device first decides whether it offloads and to which cluster. If the device decides
to offload, the task is sent to the cluster head, which in turn allocates the task inside the
cluster. Finally, in the workflow of the centralized control topology seen in Figure 6c,
the device first sends an offloading request to the central orchestrator, which chooses
the server for executing the task. The choice is returned to the device along with other
necessary information. Then, the device makes the final decision whether it offloads
or not.

Implementing the two-phase orchestration of the hybrid control topology required
the most changes to the default simulation manager, network model and task model. It
is also important to note that the default implementation of the centralized control

An edge device
generates a task

The device
orchestrates the task

4

Yes Executed

locally?

+No

The task is sent to the
chosen server

\7

L3> The task is executed

An edge device
generates a task

The device
orchestrates the task

Yes

4

Executed

locally?

+No

The task is sent to the
chosen cluster head

v

The cluster head
orchestrates the task
inside the cluster

4

Executed by

Yes

the head?

+No

The task is sent to the
chosen cluster server

v

4

Offloaded?

Yes
v

Results are sent back
to the device

>

The task is executed

(_

v

Offloaded?

Yes
v

Results are sent back
to the device

Task finished

(a) Decentralized

Task finished

(b) Hybrid

64

An edge device
generates a task

The device sends an
offloading request to
the central
orchestrator

v

The central
orchestrator decides
the server and returns
the choice to the user

\7

The device decides
whether it offloads the
task

Yes

v

Executed

locally?

+No

The task is sent to the
chosen server

\7

>

The task is executed

4

Offloaded?

Yes
\ 4

Results are sent back
to the device

Task finished

(c) Centralized

Figure 6. The default task orchestration workflows of each control topology.

65

topology does not simulate the sending of the offloading request and its response
through the network due to the minuscule sizes of such requests and responses.

More detailed explanations of the default decision making of both sides (edge
devices and cluster heads) for each control topology are provided in Section 4.2.

Agent Model

The Agent Model module is responsible for handling the training, decision making and
monitoring of agents. In the current form of EISim, an agent refers to a pricing agent.
In each control topology, cluster heads function as pricing agents that decide a price
for task execution on the resources in their cluster. For these agents, the system time
is divided into slots and a new price decision is made at the beginning of a slot. The
default slot length is five seconds.

EISim offers a DDPG-based default implementation for a pricing agent, but the
users can easily plug in their own implementations. The hyperparameters for pricing
agents are given as command-line arguments when starting the simulation. Note that
every agent shares the same hyperparameters. More detailed explanations about the
possible hyperparameters and the default state space, action space and reward function
definitions for each control topology are provided in Section 4.2.

Each pricing agent in the simulation environment logs its state, price and profit for
each slot, as well as calculates the cumulative profit over the simulation run. Further,
each pricing agent saves its state at the end of a simulation run, and loads the state at
the start of a next one. EISim creates agent- and scenario-specific folders for logging
and saving the agent state.

Implementing the agent model required adding completely new packages and classes
to PureEdgeSim, including argument parser, pricing agent and price logger related
implementations. Further, the computing node implementation had to be modified to
account for the existence of a pricing agent.

Application Model

EISim changes the application model of PureEdgeSim into a more versatile one. The
original PureEdgeSim implementation assigns deterministic task generation rates, task
lengths and sizes for each application type. This means that every device that has the
same application type generates identical tasks that have exactly the same input, output
and container sizes, as well as the same task length in MIs. To generate more realistic
tasks that also conform to often used task models in the literature (see Section 2.4.3),
EISim takes an approach where, for each application type, task generation rates, task
lengths and sizes are stochastic with specified expected values.

In EISim, task generation rate refers to the rate of a Poisson process, meaning that it
gives the expected number of task arrivals during a time unit. This is a commonly used
way to model task arrival in the literature (see, e.g., [76, 84, 88, 92, 100]). The task
input and container sizes, in turn, are drawn uniformly from a specified range. This
is another often used method to model task heterogeneity in the literature (see, e.g.,
[89, 92, 93, 94, 104]). Finally, the output size is determined as a ratio of the task’s
input size, which is a typical way to model the result size in the few works that do not
ignore the return of the task results [89, 94, 104]. This ratio is also drawn uniformly

66

from a specified range. Note that setting the minimum and maximum values of the
range to the same value simplifies to the deterministic input, output and container sizes
of PureEdgeSim.

In PureEdgeSim, and consequently in EISim, container size is used when registry
is enabled for downloading containers. Container size is also used in the default CPU
and memory utilization model to specify how much RAM and storage a task uses on a
computing node. Input size (also called request size), in turn, is used when sending a
task through the network. In the cases where registry is not used, it may be desirable
to set the values of a task’s container size and request size equal. This is supported
in EISim, as setting the minimum and maximum values of the container size to zero
makes EISim use the randomly drawn request size also as a container size.

The task length in MIs is drawn from an exponential distribution, which has been
used to model task durations in the literature [128]. Hence, for each application type,
the given value of task length is interpreted as the expected value of the exponential
distribution. Finally, EISim also allows specifying one latency constraint for an
application type, which is the same for all the tasks. It can be understood as a desirable
maximum execution time for a given application type.

Implementing the new application model required completely new implementations
of the application, task generator, and application file parser classes.

Improvements

EISim also modifies the core modules of PureEdgeSim to introduce a set of
improvements over the original implementation. These improvements include the
creation of edge nodes that only function as APs, the reproducibility of the simulation
results, as well as better extensibility of the simulator.

APs are specified alongside edge datacenters in the edge_datacenters.xml setting
file. Each datacenter element in the file must have a name attribute that contains ‘dc*
if the node is an edge datacenter, and ‘ap‘ if the node is an AP. These AP nodes do
not have any computational capabilities, and they cannot be a part of the edge server
clustering. They only route traffic as a part of the MAN. The MAN links between APs
and edge datacenters are defined in the same file.

EISim uses a seed generator that seeds all the random number generators used in the
simulation. The user of the simulator can provide a seed for the seed generator through
command-line arguments. This allows reproducing the results of a simulation run.

Finally, EISim improves the extensibility of the simulator by allowing users to plug
in their own implementation of the computing node generator. This is a new addition
to the set of the extensible modules in PureEdgeSim (see Section 3.3.2).

4.2. Default Implementations

For each control topology, EISim implements default decision-making algorithms for
price and offloading decisions. These default implementations aim to embrace realism,
that is, the algorithms are designed so that they could be potentially deployed under a
more practical setting in a large-scale, highly dynamical system.

67

The default implementations come with a set of assumptions about the environment.
First of all, they assume that each edge device that generates tasks is its own
orchestrator, meaning that it makes the final decision about whether to offload or
execute locally. Second, the only potential task execution locations besides the edge
device itself are edge servers. Third, all the edge servers are assumed to belong to the
same ESP. Finally, all the edge servers are assumed to be homogeneous in terms of
capacity.

The assumption of homogeneous capacity is justifiable in the simple simulation
environment, where edge devices are first located uniformly at random, after which,
in case the default mobility model is used, they may move according to randomly
drawn mobility and pause durations. Hence, by default, the simulation area does not
exhibit distinct areas with different population densities, the existence of which would
create a need for placing higher capacity servers to denser areas [113]. Further, such
assumption of homogeneity has also been used in edge server placement related works
(see, e.g., [109, 129, 130, 131]).

4.2.1. Price Decisions

In each control topology, the edge platform functions as a time-slotted system, where at
the beginning of each slot, the pricing agents decide a price for the task execution. The
chosen default pricing scheme is uniform pricing for a task’s computational demand,
which is the most common pricing method in the existing literature (see Table 3).
Consequently, a pricing agent sets a price per MI.

The goal of each pricing agent is to maximize the expected long-term profit. Profit
is defined as the revenue obtained from the offloading devices minus the processing
costs. By default, the processing costs only include the fixed and varying energy costs.

The pricing agents are trained using the DDPG algorithm (see Section 3.2.3 and
Algorithm 3). The default structures for the critic and actor networks are as follows.
Critic is a feedforward, fully connected network with two hidden layers, each of which
has 64 units and ReLU activation. The final activation before output is linear. Actor
has the same structure as critic, but the final activation before output is tanh. Both
networks are randomly initialized.

As the decision making in the environment is a continuous task without any terminal
states, simulation runs can be considered as pseudo-episodes over which the pricing
agents can be trained and evaluated. Agents save their state at the end of a simulation
run (episode), and load the state at the beginning of a new one. The agent state in the
default DDPG implementation consists of the actor and critic networks, their target
counterparts, experience replay, and the state of the noise process.

The number of training steps in an episode depends on the price update interval ¢
and the total length of the simulation. The updating of the models is started when the
size of the experience replay |D| is larger than the mini-batch size B.

There are several hyperparameters that are used to control the training process: the
size of the experience replay |D|, the size of a mini-batch B, discount factor +, actor
and critic learning rates, 7 for updating the actor and critic target networks, the number
of model updates done at the beginning of a new slot, and the parameters for the noise
process. Further, EISim allows specifying a number of random decision steps that are

68

done by each pricing agent at the beginning of an episode to improve exploration. A
random decision step is a step during which an agent chooses its action uniformly at
random. The values for all of these are given as command-line arguments to EISim.
The default values can be seen in Appendix 1 Table 7.

The action space definition is the same for every pricing agent regardless of the
control topology. The action space is continuous, consisting of a single real-valued
variable between zero and one that corresponds to the price p; for a slot ¢£. In other

words, A 2 [0, 1]. The definitions of the state space and reward function depend on
the control topology.

In the decentralized control topology, each of the edge servers makes a price decision
independently. For one edge server, the state s; € S at the beginning of a slot ¢ is
defined as (I;, \;_1). Here, [; is the length of the task queue at the beginning of the
slot ¢, and \;_; is the average arrival rate of the tasks in the previous slot ¢ — 1 (total
number of the arrived tasks divided by the slot length ¢). The immediate reward for a
server is given as

MI

R(Stapta 3t+1) = thiWI - Ce (ngidle + (Pma:c - Pidle)ﬂi_f>a (10)

where p; is the price per MI, QM is the total number of Mls summed over all
the tasks that were offloaded to the server in slot ¢, (. is an energy cost coefficient
that defines a cost per joule (J), ¢ is the slot length in seconds (s), Pjg. is the power
consumption of the server in Watts (W) when the CPU is idle, P, is the power
consumption (W) of the server when the CPU is at 100%, n¢ is the number of cores in
the server, and f is the computational capacity of one core (MIPS).

In Equation (10), p;Q™! is the revenue from the offloading devices, (.t Pig. is the

fixed energy cost in a slot, and (.(Pyu: — Pidle)% is the varying energy cost that
takes into account the excess energy consumption in task processing. The fixed energy
cost measures the baseline, load-independent energy cost of the edge server during a
slot. The idea of the varying energy cost is to capture the dynamic, load-dependent
energy cost. The varying cost calculates how long it takes from the server to process
all the arrived tasks with its total computational capacity and multiplies this value with
the excess energy consumption.

In the hybrid control topology, each of the cluster heads makes a price decision
independently. Now the state for a cluster head is defined as (17, \;_1). Here, [}"Y
is the average queue length in the cluster at the beginning of a slot ¢, and \;_; is the
average arrival rate of the tasks in the previous slot ¢ — 1 (total number of the tasks
arrived in the cluster divided by the slot length). The reward function for a cluster head
is defined as

MI
R(Stapta St-l-l) = Pt 1{\4] - C€<|C‘ : Lljidle + ’C| : (Pma:r - Ijidle) |C‘ -tncf>
MI (11)

where QM7 is now the total number of MlIs summed over all the tasks that were
offloaded to the cluster in slot ¢, and C is the set of the edge servers in the cluster.

69

Compared to the reward function in the decentralized control topology (Equation (10)),
the fixed energy cost now takes into account the baseline energy consumption of all
the edge servers in the cluster. The varying energy cost, in turn, calculates how long it
takes to process all the arrived tasks with the cluster’s total computational capacity and
multiplies this value with the total excess energy consumption of the cluster.

In the centralized control topology, where the central orchestrator is the only pricing
agent in the environment, all the servers form one cluster. Hence, the state space and
reward function are defined as in the hybrid control topology.

The immediate reward values given by Equation (10) and Equation (11) can have
very large magnitudes. Consequently, the training targets of the critic network have a
large output scale, which may cause instability in learning [132]. It has been observed
that scaling the rewards with a constant factor may improve the performance of DDPG
in some environments [133]. The default implementation of EISim also scales the
immediate rewards with a factor of le-3 in the decentralized control topology, and
with a factor of le-4 in the hybrid and centralized control topologies. These factors
can be changed by modifying or extending the default implementation.

4.2.2. Task Orchestration Decisions

Each edge device makes offloading decisions independently based on the information
provided by the edge platform. For practical considerations, it can be assumed that the
environment has a repository (distributed or centralized), where the devices can fetch
information about the edge servers, such as the current prices, estimates of queuing
time, computational capacities, IP addresses and locations, to support their decisions
about offloading destinations. However, such repository is not simulated.

The default implementation of EISim allows each edge device to be connected to
only one AP at a time. Further, as EISim considers each task to be independent and
atomic, for practical considerations, it can be assumed that the edge device handles
the partition of the application into adequate sized tasks, as well as handles the
dependencies between tasks.

After an offloaded task has been executed, the results are sent directly back to the
edge device. Note that if the device moves to the coverage area of another AP during
offloading, the default implementation of EISim does not fail the task. Instead, the task
result is rerouted through the MAN to the new location.

Formally, a task is defined as a tuple (c,din, dout; Dimaz)> Where c is the
computational demand of the task in Mls, d;, is the length of the input data in bits
(can contain software code in addition to input files/parameters), d,,; is the length of
the output data in bits, and D, is the maximum tolerable delay of the task in seconds.
EISim sets the task as failed due to delay if the task processing time exceeds D, -

The current default implementation of EISim formulates the offloading decision
problem for each task as a one-shot optimization problem without considering the
future effects of the task offloading decisions. The decision of an edge device is based
on an utility that takes into account the task execution delay, energy consumption and
resource price.

The following sections elaborate the edge devices’ decision making and utility for
each of the control topologies. Further, it is also explained how the cluster heads

70

orchestrate tasks inside the clusters in the hybrid control topology, and how the central
orchestrator decides the server for executing a task in the centralized control topology.
For the discussions that follow, it is assumed that there are NV edge servers in total, and
the edge servers are grouped into K clusters in the hybrid control topology. Further, it
is assumed that the computing nodes (edge devices and edge servers) use the default
CPU utilization model of EISim, which uses First In First Out (FIFO) scheduling and
assigns one task to be completely executed by one CPU core.

Decentralized

In the decentralized topology, a device’s decision variables form an NV 41 length vector
x indicating the offloading destination (local node + N servers); that is, the decision
variable z; € {0,1} Vj = 0,..., N and }_;x; = 1. The device’s utility is defined
in terms of minimizing the cost of task execution. The cost consists of the execution
delay, energy consumption and execution price. Formally, the optimization problem of
the edge device can be defined as

min T; + We—=2L + w,—2— (12)
=[zo,. 790N]Z ! maz Be pppref)
st. x; €{0,1}Vj=0,...,N (13)
> a=1 (14)
J
E; < B, (15)

Here, D; is the task execution delay (s), £ is the energy consumption of the device
(J), and p; is the current price per MI. The values of these depend on the offloading
destination, indicated by z;. It is good to note that the price per MI for local node py is
zero. wy, w,. and w,, are device-specific, normalized weights (i.e., wq + we + w, = 1),
which indicate the importance of each factor (delay, energy consumption, price) for
the edge device. EISim generates these weights for each device at the start of the
simulation. The possible weight values lie on a triangle formed by the points (1,0,0),
(0,1,0) and (0,0,1) inside a unit cube, and the weights are generated by sampling a
point randomly from the triangle.

Doz, Be and pp,..r are used to normalize the values of D;, E; and p;, as well as
make each quantity of the cost dimensionless. D, is the maximum tolerable delay of
the task (s), B, is the battery level of the edge device (J), and p,,..; quantifies how much
the edge device prefers to pay per MI. The default implementation uses pp,..; = 0.01
for every edge device.

The constraint in Equation (13) ensures that each decision variable is binary. The
second constraint in Equation (14) ensures that only one offloading destination is
selected. Finally, the constraint in Equation (15) ensures that the energy consumption
does not exceed available energy.

The problem in Equation (12) is an integer programming problem, which in general
is NP-hard [134]. However, due to the constraint in Equation (14), the feasible solution

71

set has N + 1 elements. Consequently, the edge device can solve the problem in linear
time (O(NV)) by calculating the cost wy DZJ; -+ weg—i + Wy 5 if for each z; and setting
x; = 1 for the destination j with the lowest cost.

Calculating the task execution delay D;. When xy = 1, the offloading destination
is the local node itself. The local task execution delay Dy is the sum of the processing
delay and the queuing delay at the local node. The processing delay is calculated as
f—co, where fj is the processing capacity of one core in MIPS. The queuing delay is
approximated by summing the task lengths of all the tasks currently in the queue and
dividing the sum with the total processing capacity of the edge device, which is n fo,

ng being the number of cores in the device’s CPU. Denoting the sum of task lengths as
MI
é” I Dy is calculated as Dy = < + Qo

fo ngfo

When z; = 1 forsome j € {1,...,]OV }, the offloading destination is the edge server
J. The task delay D; at the edge server j consists of a communication delay and an
execution delay. The communication delay is the sum of transmission and propagation
delays. The transmission delay from the edge device to an AP is ‘fj%, where " is the
uplink transmission rate for the device. The transmission delay of the task result from
an AP to the device is %, where % is the downlink transmission rate for the device.
For calculating the propagation delay, the default implementation simply sums the link
latencies of the shortest path between the edge device and the server j.

For practical considerations, the edge device could obtain uplink and downlink
transmission rates, for example, by measurement or as a result of a separate
communication optimization problem, where the interference and the noise power are
measured and the transmission power adaptively updated based on the measurements
(see, e.g., the power control scheme in [135]). The propagation delay could be
approximated based on the Euclidean distance between the edge device and the edge
server, and a conversion factor that estimates the latency per distance unit. However,
EISim does not simulate any schemes for obtaining estimates of the rates and the
propagation delay, it uses the given input values for link bandwidths and latencies
directly.

The execution delay on a server j is the sum of the processing and queuing delays.
The processing delay is calculated as % The queuing delay is approximated based on
a simple heuristic. Whenever an edge server 7 handles the price update event, it also
calculates an estimate of the queuing time with ?ﬁ:, where Q;” T'is the total number
of MIs summed over all the tasks currently in the queue of the server j, and n¢f is
the total processing capacity of the server 7 (same for all 7). EISim uses this estimate
as the queuing delay. The idea here is to mimic the practical situation where such
estimate would be announced to the edge devices alongside the price. It gives a crude
approximation of the queuing time, but can be considered to be an indication of the
queuing delay in the case where the slot length ¢ is short.

Calculating the energy consumption E;. The local energy consumption E consists
of the energy that the edge device spends on the task execution. This is calculated as
Ey = Pmax#fo. The idea here is to calculate the time it would take from the device
to process the task if the whole processing capacity was used, and then multiply the
time with the maximum power consumption of the CPU. This can also be interpreted
as assuming that the power consumption of one core is Pg—é” when it is processing a

task.

72

The energy consumption £; when the device offloads the task to an edge server j is
the same for all j. It consists of the energy the device spends on sending and receiving
data. If F; is the device’s transmission power (W) and P, is the device’s receiver power
(W), the total energy consumption is calculated as £; = Pt% + P,,%.

Hybrid

In the hybrid control topology, a device’s decision variables form a K + 1 length
vector x indicating the offloading destination (local node + K clusters). That is,
the decision variable x;, € {0,1} Vk = 0,...,K and), #;, = 1. The device’s
optimization problem is formulated equivalently to Equation (12), but now there are
K + 1 components in x instead of N + 1. The problem is also solved in the same way
by iterating over all K + 1 options, calculating the cost w, D Le 4 wy
each k and setting x;, = 1 for the destination cluster £ with the lowest cost

The energy consumption £, Vk = 0,..., K and the local task execution delay
Dy are calculated exactly as explained for the decentralized control topology, because
their values depend only on the device’s local information. The task execution delay
Dy, at the cluster k is the sum of the communication and execution delays. The
communication delay is the sum of the transmission and propagation delays, which
are calculated as explained for the decentralized topology. The calculation of the
propagation delay only takes into account the communication distance between the
edge device and the head of the cluster k. The delays inside the cluster are ignored,
because the clusters have been formed based on proximity.

The execution delay inside the cluster is the sum of the processing and queuing
delays. The processing delay is calculated in the same way as in the decentralized
topology. The queuing delay is again approximated with a simple heuristic. Whenever
the head of the cluster £ handles the price update event, it calculates an estimate of the

p'rf

queuing time with C k‘MI 7> where QM7 is the total number of MIs summed over all the
queues and tasks in the cluster k&, and Cy, is the set of the servers in the cluster k. The
idea here is to calculate how long it takes from one server inside the cluster to clear
its task queue, and then use the average of these times as an estimate of the queuing
time to the edge devices. Once again, this is a crude approximation, but it provides an
indication of the congestion level inside the cluster, given that the slot length ¢ is short.

When an offloaded task arrives at a cluster head, the head must decide how the task
is allocated inside the cluster. The default implementation allocates the incoming tasks
based on a bottom-up strategy [128], meaning that a task is allocated to the server with
the lowest workload. The workload is measured in terms of the task queue length.

Centralized

In the centralized control topology, a device’s decision variables form a vector x of
length two indicating the offloading destination (local node or the edge platform). As
previously, z; € {0,1} VI = 0,1 and Ez :L‘l = 1. The ofﬂoading decision reduces
to setting x; = 1 (offload to edge) if wg5-— -+ We Bl + w,
otherwise o = 1 (process locally).

For practical considerations, the edge device can calculate D, Fy, and F, based on
the local information. For calculating D, the device can estimate the transmission time

< w
p’lf_ d

’

D

73

of the task and the latency to the AP. Then the device can send an offloading request to
the central orchestrator, informing it about the task characteristics and the device’s
location. The central orchestrator can calculate the task processing time, estimate
propagation delays inside the MAN, and collect queue delay information from the
edge servers. Using the information about processing time and delays, it chooses the
server with lowest estimated delay. Then it informs the device about the chosen server,
estimated delay, and the price p;, after which the device can decide whether it offloads
to the given server or not. The device can directly send the task to the chosen edge
server and get the result from it.

As EISim does not simulate the sending and receiving of the offloading requests
and responses, the actual default implementation calculates the value of D; for each
edge server j in the same way as explained for the decentralized control topology,
and chooses the location that has the lowest estimated cost. The main implementation
differences with regard to the decentralized control topology are the use of only one
price set by the central orchestrator, and a new event for every edge server that makes
them record their queue delay estimate at the beginning of every price slot. The idea
here is to mimic the fact that the central orchestrator would collect status information
from the edge servers only at the beginning of each price slot in order to reduce
overhead, and then use this information when it decides task execution locations during
the slot.

4.3. Use and Extensibility

EISim is available on GitHub!. It is built on Java SE Platform and uses Maven?
as a build automation tool. Running simulations with EISim requires five input
files: cloud.xml, edge_datacenters.xml, edge_devices.xml, applications.xml, and
simulation_parameters.properties. The definitions in cloud.xml, edge_devices.xml,
and simulation_parameters.properties have the same content as in PureEdgeSim (see
Section 3.3.1). However, it is important to note that using the default implementation of
EISim as is expects that the value of enable_orchestrators in the simulation parameters
file is set as false, and the only value for orchestration_architectures is EDGE_ONLY.
This is due to the assumptions made in the default implementation (see Section 4.2).
The definitions in edge_datacenters.xml and applications.xml have been modified as
explained in Section 4.1.

EISim uses command-line arguments to facilitate the setting of the training
hyperparameters. Command-line arguments are also used to provide the folder that
contains the input files to EISim, as well as to specify an output folder for saving
the simulation results, and a model folder for saving the states of the pricing agents.
By default, EISim runs in evaluation mode, meaning that the pricing agents in the
environment expect to find trained models in the provided model folder. To run the
simulation in training mode, it must be turned on with a flag option. All possible
options with their descriptions and default values for the current implementation of
EISim can be seen in Appendix 1 Table 7.

'https://github.com/hennas/EISim
https://maven.apache.org/

https://github.com/hennas/EISim
https://maven.apache.org/

74

For implementing the deep learning abilities of the pricing agents, EISim uses
Deeplearning4j library?, which is one of the very few deep learning libraries available
for Java. By default, EISim uses the native CPU backend for executing the DNN
related computations. This can be easily changed to CUDA GPU backend by changing
the value of the nd4j.backend property in the Maven project’s pom.xml file to nd4j-
cuda-X-platform, where X is the CUDA version. The currently used version of
Deeplearning4j (1.0.0-M2.1) supports CUDA versions 11.4 and 11.6.

The Main class of EISim is the entry point to the simulator. It parses the command-
line arguments and creates the EISim simulation object. The users can modify or
replace this class in order to add in their custom implementations. The extensibility
is high, as the EISim simulation object offers eight methods that can be used to
set a custom implementation class for mobility model, network model, orchestrator,
simulation manager, topology creator, computing node generator, computing node,
and task generator. Further, a custom task class can be set through the task generator
class, and a custom pricing agent class can be set through the computing node class.
EISim contains an abstract class for each customizable part of the simulator, and every
provided custom class must inherit from the corresponding abstract class.

4.4. Additional Tools

EISim facilitates the research by offering additional tools for environment setup, agent
training and result plotting. Even though the simulator itself uses Java programming
language, the additional tools for the environment setup and result plotting are made
with Python programming language. This is due to Python’s simplified syntax and
ease of use. Jupyter notebooks* are used as an interactive environment for running the
Python codes.

Environment Setup

Environment setup consists of three Jupyter notebooks. The first notebook creates the
MAN by using the methods explained in Section 3.1.1. The second notebook creates
the edge server clusters and assigns the cluster heads by using the methods explained
in Section 3.1.2. The final notebook uses the MAN and cluster information saved by
the previous notebooks to automatically create the edge_datacenters.xml setting file.

The creation of the edge_datacenters.xml setting file requires providing the
specifications for the edge datacenters. As it is assumed in the current form of EISim
that there is only one ESP in the area and that all the edge servers are homogeneous,
only one edge server specification needs to be provided. This specification is used for
all the edge datacenters in the resulting file.

Agent Training

EISim offers a set of bash scripts that can be used as templates for running simulations
for hyperparameter tuning, training and evaluation of the pricing agents.

Shttps://deeplearning4.konduit.ai/
‘https://jupyter.org/

https://deeplearning4j.konduit.ai/
https://jupyter.org/

75

By default, the hyperparameter tuning scripts do a grid search over actor and critic
learning rates, testing in total nine combinations. For each combination, the models are
trained for 10 rounds with different seeds, after which they are evaluated for five rounds
with different seeds. The training scripts, in turn, train the model for 100 rounds with
different seeds, plotting the training progress every 20th round. Finally, the evaluation
scripts run five evaluation rounds with the trained models, using different seeds.

Result Plotting

EISim provides Python codes for plotting the results of each phase of the simulations.
For hyperparameter tuning, there is a Jupyter notebook file that can be used to plot two
figures for each simulation scenario. The first figure depicts the average cumulative
return (total profit) of the whole edge platform and its confidence interval for each
hyperparameter combination. The total profit of the edge platform is the sum of
the cumulative returns of the pricing agents. The second figure depicts the same
metrics, average cumulative return and its confidence interval, for each pricing agent
and each hyperparameter combination. The averages are calculated over the evaluation
episodes.

For training, EISim provides a Python file that can be used to observe the training
progress of the pricing agents. For each simulation scenario, it plots the cumulative
return of the whole edge platform and the cumulative return of each pricing agent
against the training episodes. It also plots the average price of each agent against the
training episodes. The training bash scripts use this file to create the plots every 20th
training round.

Finally, there is a Jupyter notebook file that can be used to create plots for comparing
the final performance of the system after several evaluation episodes have been run
with the final trained models. The main axis of comparison in the plots is the three
different control topologies. Averages and confidence intervals of several metrics
related to the task execution times, task failures, network usage, CPU usage, energy
consumption and total profit are plotted.

Confidence intervals in plots are calculated with m =+ ¢7 -z where m is the

ne—1 Ve’
mean of the metric, s,, is the sample standard deviation, n, is the number of evaluation
episodes, and ¢;, _, is the upper % critical value for Student’s t-distribution with

ne—1 degrees of freedom. C'is the confidence level, which can be given as an argument
to the plotting function by the user. By default, C' = 0.95.

4.5. Evaluation

To verify the end-to-end performance of EISim and to demonstrate the capabilities of
EISim particularly with regard to training agents and evaluating orchestration solutions
against control topologies, a simulation case study was conducted. The study focused
on a large-scale MEC scenario, where mobile users, such as laptops, smartphones and
tablets, move in a city area and generate independent tasks. All three control topologies
with their associated default pricing and offloading decision-making implementations
were simulated on this area. The following sections explain the simulation scenarios,
environment and settings used in the simulation study.

76

4.5.1. Scenarios

For each control topology, eight scenarios are simulated, totalling in 24 simulation
scenarios. One whole scenario consists of the control topology, edge server count, and
user count. For the edge server count, two options are considered. In the first option,
the ESP has located 20 high-capacity servers in the city area. In the second option,
the ESP has located 100 low-capacity servers in the city area. The interest in choosing
these two options is to compare the performance of different control topologies in
contrary situations, where there is either only a small number of high-capacity servers
or a large number of low-capacity servers. To mimic a large-scale system, the number
of mobile users is varied from 1000 to 4000 with a step size of 1000.

In every scenario, the AP locations and MAN topology are the same. Further, every
mobile user has the same application type that generates computationally intensive
tasks with a relatively strict latency constraint and varying input and output data sizes.
This application type was chosen because it is the most relevant in terms of the future
applications, as it has been envisioned that there will be computationally demanding
intelligent applications with strict latency requirements. Further, this type aims to
capture the most suitable application type for offloading, which is an application that
generates computationally demanding tasks with moderately small data sizes [60].

4.5.2. Simulation Environment

The simulation environment is a square area with a side length of 1100 meters. The
MAN was created on this area using the environment setup tools of EISim. The AP
coverage for placing the APs was set to 45 meters, which resulted in the placement
of 247 APs to the area. A tree-topology was created for the APs using the TWST
algorithm. The TWST weight parameter x was set to 0.5. For co-locating the 20 high-
capacity servers with the APs, the value of the parameter v was set to 5. For placing
the 100 low-capacity servers, the parameter v was set to 3.

For finding the edge server clusters for the hybrid control topology, all of the
supported linkage criteria (single, complete and average) were tested in both edge
server scenarios. The distance thresholds were determined based on the dendrogram
plots. The final clusters for the 20 high-capacity edge servers were obtained by using
the average linkage and a distance threshold of 470, resulting in ' = 8. The final
clusters for the 100 low-capacity servers, in turn, were obtained with the complete
linkage and a distance threshold of 500, resulting in K = 19.

The resulting AP placement and MAN topology can be seen in Figure 7. Figure 7a
shows the edge server placement and clustering result for the 20 high-capacity edge
servers. Figure 7b, in turn, shows the edge server placement and clustering result for
the 100 low-capacity servers. Even though the created environment is idealized, it can
be seen to correspond to a dense deployment of APs in a city centre area.

It is important to note that in the centralized control topology, where all the servers
can be seen to form one cluster, the central orchestrator was chosen in the same way
as the cluster heads in the hybrid control topology. In both edge server placement
scenarios, the edge server in the middle of the area (see Figure 7) was chosen as the
central orchestrator.

<)

)

g
v

1000 -

800 H

600 H

Length (meters)

400 -

&

W
S

200 4

X

()

0 200

600 800 1000

Width (meters)

400

(a) 20 edge servers

)

0™
V; 5

1000

Length (meters)

800 A

600 -

)
%Y,

)

400 -

I <
¥,

200 A

)

(

i
%)

0 200

600 800 1000

Width (meters)

400

(b) 100 edge servers

- oHOVADOSOOR+-OHNOVADO -

77

AP

Edge Server + AP, cluster 1
Edge Server + AP, cluster 2
Edge Server + AP, cluster 3
Edge Server + AP, cluster 4
Edge Server + AP, cluster 5
Edge Server + AP, cluster 6
Edge Server + AP, cluster 7
Edge Server + AP, cluster 8
Cluster Head

AP

Edge Server + AP, cluster 1
Edge Server + AP, cluster 2
Edge Server + AP, cluster 3
Edge Server + AP, cluster 4

Edge Server + AP,
Edge Server + AP,
Edge Server + AP,
Edge Server + AP,
Edge Server + AP,
Edge Server + AP,
Edge Server + AP,
Edge Server + AP,
Edge Server + AP,
Edge Server + AP,

cluster 5
cluster 6
cluster 7
cluster 8
cluster 9
cluster 10
cluster 11
cluster 12
cluster 13
cluster 14

Edge Server + AP, cluster 15
Edge Server + AP, cluster 16
Edge Server + AP, cluster 17
Edge Server + AP, cluster 18
Edge Server + AP, cluster 19
Cluster Head

Figure 7. AP locations, MAN topology and edge server placement in the simulation
environment. The edge server clusters and cluster heads for the hybrid control topology
are also shown.

78

4.5.3. Specifications and Settings

The edge_datacenters.xml file. The specifications of the edge servers for the high-
capacity and low-capacity server scenarios are shown in Appendix 2 Table 8. Note
that the specifications are done so that the total MIPS, RAM and storage of all the
servers are the same in both scenarios. Here the interest is in examining performance
differences when the total capacity in the system is the same, but it is more distributed
in the low-capacity server scenario. It is also good to note that the values of the energy
consumption rates were derived based on examining the specifications and power
consumption measurement results of actual servers, such as Lenovo ThinkSystem
SE350.

The edge_devices.xml file. Four edge device types are specified for the simulation
scenarios, three of which are mobile. The specifications can be seen in Appendix
3 Table 9. Note that the types can be seen to correspond to a higher capacity
smartphone, a lower capacity smartphone, a tablet, and a laptop, respectively. All
edge device types use Wi-Fi connectivity and are battery-powered. The battery
capacities and energy consumption rates were derived based on the measured values
used in PureEdgeSim evaluation [18], and by examining the specifications and power
consumption measurement results of different real devices.

The applications.xml file. The specification of the used application type is shown in
Appendix 4 Table 10. Each edge device generates one task per time unit on average.
The tasks are computationally demanding on average with a strict latency constraint.
The input data size is randomly drawn from a range that varies from small to moderate
data size. The minimum and maximum values of the range were derived based on the
data sizes commonly used in the evaluation of task offloading solutions (see the studies
in Table 3).

The simulation_parameters.properties file. The values of the simulation parameters
that were the same for all simulation scenarios are shown in Appendix 5 Table 11. The
length of one simulation run (episode) is one hour. As the default slot length is five
seconds, there are 720 price updates (training steps) during one episode. It is also good
to note that the values of link bandwidths, latencies and energy consumption rates are
largely based on the default values of PureEdgeSim, which, in turn, are based on LEAF
[37].

79

5. RESULTS

5.1. Hyperparameter Tuning

For each of the 24 simulation scenarios, hyperparameter tuning was done to find the
best values for the actor and critic learning rates. Other hyperparameters were set
to their default values (see Appendix 1 Table 7). One example of the result plots
generated by EISim is shown in Figure 8. It shows the hyperparameter tuning results
for the hybrid control topology with 100 servers and 2000 mobile users. The upper plot
in Figure 8 shows the average cumulative return of the whole edge platform for each
tested hyperparameter combination. The thick black line on top of a bar shows the
95% confidence interval of the average over five evaluation episodes. The lower plot
shows the average cumulative return of each pricing agent for each hyperparameter
combination. The shaded area shows the 95% confidence interval.

Hyperparameter tuning results for scenario: HYBRID_EDGE_ONLY_2000

150.0M Average cumulative return for the whole edge platform over 5 evaluation episodes

125.0M

100.0M
75.0M
50.0M
25.0M 4

Actor Ir: 5e-3 Actor Ir: 5e-3 Actor Ir: 5e-3 Actor Ir: 1e-3 Actor Ir: 1e-3 Actor Ir: 1e-3 Actor Ir: 5e-4 Actor Ir: 5e-4 Actor Ir: 5e-4
Critic Ir: 5e-3 Critic Ir: 1e-3 Critic Ir: 5e-4 Critic Ir: 5e-3 Critic Ir: 1e-3 Critic Ir: 5e-4 Critic Ir: 5e-3 Critic Ir: 1e-3 Critic Ir: 5e-4

o

Average cumulative return per agent over 5 evaluation episodes

50.0M

40.0M

30.0M

20.0M

10.0M

0

T T T T T T T T T
Actor Ir: 5e-3 Actor Ir: 5e-3 Actor Ir: 5e-3 Actor Ir: 1e-3 Actor Ir: 1e-3 Actor Ir: 1e-3 Actor Ir: 5e-4 Actor Ir: Se-4 Actor Ir: 5e-4
CriticIr: 5e-3 Critic Ir: 1e-3 Critic Ir: 5e-4 Critic Ir: 5e-3 Critic Ir: 1e-3 Critic Ir: 5e-4 Critic Ir: 5e-3 Critic Ir: 1e-3 Critic Ir: 5e-4

—&— dc3 —8— dcs —&— dc9 o dcl2 — dclb —&— dcl8 —&— dc20 —&— dc24 &= dc30 = dck8
*+— dcd —o— dcb —a— dcll —o— dcl3 -— dclb o dcl? —o— dc2l —o— dc26 —a— dc38

Figure 8. An example of a hyperparameter tuning result plot. Results are shown for
the hybrid control topology scenario with 100 edge servers and 2000 mobile users.

In Figure 8, the higher impact of the critic learning rate on the performance is
evident. The highest tested learning rate for the critic produces the lowest performance
overall and per agent regardless of the value of the actor learning rate. Based on
this, the lowest tested learning rate of 5e-4 was chosen for the critic. For the actor
learning rate, the highest tested value in combination with the critic learning rate of
Se-4 produces the highest overall average. However, this result also has the highest
degree of uncertainty, as the confidence interval is the widest. Further, when observing
the performance of single agents, the high result is based on the good performance of
only two agents that are way above the others in the environment. Hence, when taking

80

into account both the overall performance and the performance per agent, the actor
learning rate of 5e-4 was chosen.

The example above demonstrates well how the result plots generated by EISim can
be used for selecting the best hyperparameter values. Similar analyses were also done
for the other scenarios in the simulation study. In the end, the learning rate of Se-4 was
chosen for both actor and critic training in all scenarios.

5.2. Training

Every simulation scenario was trained for 100 episodes. To improve exploration,
agents chose their action uniformly at random for 500 steps during the first four
training episodes, after which only the first price decision was made at random. An
example of the training progress plots generated by EISim is shown in Figure 9. It
shows the training progress for the decentralized control topology with 20 servers and
2000 mobile users. The highest plot in Figure 9 shows the total cumulative return
per training episode. The thick red line is the simple moving average of the total
cumulative return calculated with a window of size 10. The middle plot shows the
cumulative return of each agent per training episode. The lowest plot shows the average
price of each agent per training episode.

It is evident in Figure 9 that the presence of multiple independent learners in the
environment makes it difficult for a single agent to learn an optimal policy due to the
inference caused by the other agents. This is a realistic result, as in addition to the
reward itself being stochastic, the other agents bring a new source of stochasticity with
their evolving policies and action exploration, making it difficult for a single agent to
learn the effect of its actions. Further, the agents learn based on the experience saved
in the experience replay, but the non-stationarity caused by the other agents means that
the dynamics that generated the experience no longer represent the current dynamics
for the learners. In other words, the experience can become obsolete very quickly.

Figure 9 shows an interesting strategy for agent ‘dc4°. It learns very quickly to keep
a price level that is way above the average prices of other agents. With this strategy
it can occasionally gain a very high return in an episode, as seen in the middle plot.
This agent is located at (215, 823) on the simulation map (see Figure 7a). It only has
one very close competitor in its area, namely ‘dc14° located at (349, 667). The agent
‘dc14° keeps a much lower price level. The examination of its training logs shows that
from time to time the exploration noise makes it set the price to zero, which heavily
floods the server.

When taking into account the application profile of the edge devices and the default
offloading decision-making logic with the randomly generated importance weights, it
is clear that some devices may value low latency much more than low price. These
devices may occasionally generate very long tasks, and in case they are in the area of
‘dc4* while ‘dcl14‘ is flooded, they may accept its high price in exchange for low-
latency execution. This is a perfect example of the destructive effect of the non-
stationarity, as the reason why ‘dc4‘ thinks that its policy is feasible is a consequence
of the exploration noise of ‘dc14°‘. The examination of the evaluation logs shows that
the agent ‘dc4‘ indeed keeps a very high price level constantly, while the agent ‘dc14°
using its learned strategy without any exploration noise keeps a significantly lower

81

Training progress for scenario: DECENTRALIZED_EDGE_ONLY_2000

Total cumulative return per training episode for the whole edge platform

100.0M
80.0M A
60.0M 4
40.0M
20.0M +
FAN
0 T T T T T T
0 20 40 60 80 100
Training episode
Cumulative return per training episode for each agent
8.0M 4
6.0M 4
4.0M 1
2.0M
o4
0 20 40 60 80 100
Training episode
—— dcl —— dc3 —— dcd dc?7 dc9 — decll — dcl3 —— dclb dcl7 dcl9
- dc2 — dcd —— dcb — dc8 ~— dcl0 dcl2 — dcl4 — dcl6 — dcl8 — dc20
6 Average price per training episode for each agent
0.8
0.0 1
0.4 1
0.2 4
0.0 T
0 20 40 60 80 100
Training episode
— dcl — dc3 — dc5 - dc? dc9 — dell — dcl3 — dcl5 - dcl7 dcl9
- dc2 — dcd — dcb — dcB —— dcl0 dcl2 — dcl4 — dcl6 — dcl8 — dc20

Figure 9. An example of a training plot. The training progress is shown for the
decentralized control topology scenario with 20 edge servers and 2000 mobile users.

price level. Consequently, no edge device offloads to ‘dc4‘ during evaluation, as the
potential offloaders nearby prefer the low price of ‘dc14°.

The training progress plots of other multi-agent scenarios are similar to Figure 9.
In Figure 10, an example of the training progress for the centralized control topology
with 20 servers and 2000 mobile users is shown. Here it can be seen that the central
orchestrator very quickly learns to price at a very high level. This is most likely due
to similar reasons why the agent ‘dc4‘ learns to price high in Figure 9. In other
words, some devices with long tasks accept the high price in exchange for the low-
latency execution, which generates high profits for the orchestrator. Similar training
progress also happens in other centralized scenarios. It is beneficial for the central
orchestrator to keep the price as high as possible, as there are no other competitors in
the environment. It is also good to note that the default reward function only takes
into account the profit, meaning that the orchestrator is not incentivized to optimize
the resource utilization on the platform.

82

Training progress for scenario: CENTRALIZED_EDGE_ONLY_2000

Total cumulative return per training episode for the whole edge platform

240.0M 4
220.0M q
200.0M 1
180.0M §
160.0M q
140.0M q

120.0M q

Training episode

Cumulative return per training episode for each agent

240.0M 4

= WP e

Training episode
— dcl

Average price per training episode for each agent
WW

o

0.6

1.0

0.4+

0.24

003 20 40 60 80 100
Training episode
— decl
Figure 10. An example of a training plot. The training progress is shown for the

centralized control topology scenario with 20 edge servers and 2000 mobile users.

The examples in this section show that the plots generated by EISim provide good
insight into the training progress of the agents. Researchers can use the feedback
provided by the plots to develop training methods for the agents. For example, based
on the analysis of Figure 9, it is clear that the training of the agents in the multi-agent
setting requires testing and developing interference avoidance techniques.

5.3. Evaluation

EISim readily plots multiple metrics that can be used to compare the performance
across different control topologies after the agents in the environment have been
trained. These metrics are listed in Table 4. Note that the raw logs of EISim include
many more metrics, such as cloud related metrics. Additional metrics can be added to
the plotted metrics by the user.

83

Table 4. Evaluation metrics plotted by EISim

Group Metrics

Task Tasks offloaded to edge (%)
processing Tasks failed due to delay (%)
Tasks successfully executed on edge servers (%)
Tasks successfully executed on edge devices (%)
Average execution delay per task (s)
Average waiting time per task (s)

CPU Average CPU usage on edge servers (%)
utilization Average CPU usage on edge devices (%)
Energy Average energy consumption per edge server (Wh)

consumption Average energy consumption per edge device (Wh)
Dead devices count
Average remaining power per edge device (%)

Network Network usage (s)
LAN usage (s)
MAN usage (s)
Average network usage per offloaded task (s)
Total network traffic (MB)
Average bandwidth per task (Mbps)

Profit Total cumulative return for the whole edge platform

EISim generates grouped bar plots for each main scenario and each metric. The
main scenario in the conducted simulation study refers to the two server options (20
high-capacity servers or 100 low-capacity servers). In one plot, each control topology
has its own element, namely a bar group, and the x-axis values correspond to different
edge device counts. The y-axis value for a control topology and edge device count
combination is the average of the evaluation metric over the evaluation episodes. The
confidence interval of this average is also plotted as a thick line on top of the bar. For
the plots shown in this thesis, the confidence level is 95%.

Next, plots for some of the evaluation metrics in Table 4 are shown and analyzed.
It is exemplified how the plots generated by EISim can be used to compare different
control topologies across scenarios. Further, it is shown that EISim is able to output
sensible and consistent results.

Figure 11 shows the percentage of tasks offloaded to the edge servers for the 20 high-
capacity servers (Figure 11a) and the 100 low-capacity servers (Figure 11b). Here it
can be seen that in all scenarios, the edge devices offload the least amount of tasks in
the centralized control topology due to the high price set by the central orchestrator.
In both hybrid and decentralized control topologies, increasing the number of edge
devices decreases the percentage of offloaded tasks. This is most likely explained
by the pricing strategies of the agents. The examination of the price logs shows that
many agents in the environment learn to price a little higher when the edge device

84

count is higher, which also reduces the willingness of the edge devices to offload. It
is also interesting to note that for the majority of the scenarios, the percentage of tasks
offloaded is around the same regardless of the number of the edge servers.

Percentage of tasks offloaded to edge Percentage of tasks offloaded to edge
(20 servers) (100 servers)
25.0% 25.0%
20.0% 20.0%
15.0% 15.0%
10.0% 10.0%
5.0% 5.0%
0.0% 0.0%
1000 2000 3000 4000 1000 2000 3000 4000
Device count Device count
BN CENTRALIZED mmm HYBRID WS DECENTRALIZED B CENTRALIZED W HYBRID B DECENTRALIZED
(a) 20 servers (b) 100 servers

Figure 11. Evaluation plots for the percentage of tasks offloaded to edge.

Figure 12 shows the percentage of the offloaded tasks successfully executed on the
edge servers. A task was executed successfully if the latency constraint was satisfied.
Here it is good to note that the used constraint is very strict relative to the average task
length. In both scenarios with 20 servers (Figure 12a) and 100 servers (Figure 12b),
the success rate in the centralized control topology is the highest due to the low number
of tasks offloaded. Note that the success rate of the centralized topology is lower in the
100-server scenario, which is in line with the lower computational capacity of a single
server in the 100-server case. When there are 20 high-capacity servers, hybrid control
topology is able to achieve success rates closer to the success rate of the centralized
control topology than when there are 100 low-capacity servers. The reduction in the
success rate is most likely due to the lower capacity of a single server and the bigger
cluster size in the 100-server case.

Percentage of tasks succesfully executed on edge servers Percentage of tasks succesfully executed on edge servers
(20 servers) (100 servers)

80.0% 80.0%

60.0% 60.0%
40.0% 40.0%

20.0% 20.0%

0.0% 0.0%

1000 2000 3000 4000 1000 2000 3000 4000
Device count Device count
N CENTRALIZED [HYBRID I DECENTRALIZED N CENTRALIZED [HYBRID N DECENTRALIZED
(a) 20 servers (b) 100 servers

Figure 12. Evaluation plots for the percentage of tasks successfully executed on edge
SEervers.

Figure 13 shows the percentage of the local tasks successfully executed on the edge
devices. Here the benefit of the offloading for the edge devices can be seen, as the

85

success rate of the edge devices increases in the hybrid and decentralized control
topologies, where more tasks are offloaded when compared to the centralized control
topology. This is because devices are more likely to offload lengthy tasks, leaving them
with the shorter ones. Further, it is good to note that the increase in the success rate for
every scenario is in line with the percentage of offloaded tasks (see Figure 11).
Percentage of tasks succesfully executed on devices Percentage of tasks succesfully executed on devices

(20 servers) (100 servers)
80.0% 80.0% 3

60.0% 60.0%

40.0%

40.0%

20.0% 20.0%

0.0% 0.0%

1000 2000 3000 4000 1000 2000 3000 4000
Device count Device count
I CENTRALIZED m HYBRID N DECENTRALIZED BN CENTRALIZED W HYBRID BN DECENTRALIZED
(a) 20 servers (b) 100 servers

Figure 13. Evaluation plots for the percentage of tasks successfully executed on edge
devices.

Figure 14 shows the average execution delay per task. Note that this metric only
takes into account the time a task spent on CPU. Further, it is calculated over all the
tasks executed during the simulation, that is, it takes into account both the executions
on the edge devices and edge servers. Here it can be seen that reduction in the average
execution time is in line with the percentage of offloaded tasks (see Figure 11). In
other words, the more tasks are offloaded, the lower the average time spent on CPU, as
expected due to the higher computational capacity of the edge servers. Further, when
the servers have a higher capacity (Figure 14a), the average execution delay is a little
lower than when the servers have a lower capacity (Figure 14b), as expected.

Average execution delay per task Average execution delay per task
(20 servers) (100 servers)

o
IS

=
w
o
w

Seconds

Seconds
=]
N

o
[N}

=4
-
o
—

0.0 0.0

1000 2000 3000 4000 ' 1000 2000 3000 4000
Device count Device count
N CENTRALIZED [HYBRID I DECENTRALIZED N CENTRALIZED [HYBRID I DECENTRALIZED
(a) 20 servers (b) 100 servers

Figure 14. Evaluation plots for the average execution delay (time on CPU) per task.

Figure 15 shows the average CPU utilization on edge servers. When comparing the
average CPU usage level in different control topologies inside one edge server count

86

and edge device count combination, it can be seen that it is in line with the percentage
of offloaded tasks (see Figure 11). In other words, the more tasks are offloaded,
the higher the CPU usage level on edge servers, as expected. When comparing the
average CPU usage level across different device counts, it is important to note that
even though proportionally the edge devices offload less tasks when the total number
of edge devices is higher, the actual number of offloaded tasks can be higher. This is
reflected in the higher average CPU usage level when the number of devices increases.

Average CPU usage on edge servers Average CPU usage on edge servers

(20 servers) (100 servers)
20.0% 20.0%
15.0% 15.0%
10.0% 10.0%
5.0% 5.0%
0.0% 0.0%

1000 2000 3000 4000 1000 2000 3000 4000
Device count Device count
BN CENTRALIZED mmm HYBRID BB DECENTRALIZED BN CENTRALIZED W@ HYBRID BB DECENTRALIZED
(a) 20 servers (b) 100 servers

Figure 15. Evaluation plots for the average CPU utilization on edge.

Figure 16 shows the average energy consumption per edge server. Here it can be
seen for both edge server counts that the average energy consumption in the centralized
control topology corresponds almost exactly to the idle consumption rate of an edge
server, as expected due to the low number of offloaded tasks. The increased number
of offloaded tasks is reflected in the average energy consumption for other control
topologies.

Average energy consumption per edge server Average energy consumption per edge server
(20 servers) (100 servers)

120

100

80

Wh

60

40

20

1000 2000 3000 4000 1000 2000 3000 4000
Device count Device count
I CENTRALIZED [HYBRID N DECENTRALIZED I CENTRALIZED [HYBRID BN DECENTRALIZED
(a) 20 servers (b) 100 servers

Figure 16. Evaluation plots for the average energy consumption per edge server.

Figure 17 shows the average network usage per offloaded task. The effect of the
network congestion on the average can be seen for both edge server counts. As the
edge devices do not offload many tasks in the centralized control topology, the average
network time per offloaded task is the lowest. Further, the average for the centralized

87

control topology is lower in the 100-server case (Figure 17b) than in the 20-server case
(Figure 17a). This is most likely because the deployment of edge servers is denser in
the 100-server case, meaning that the central orchestrator is able to allocate an edge
server that is geographically closer to the offloading device than in the 20-server case.
In the hybrid and decentralized control topologies, having a denser deployment of
edge servers does not cause a similar reduction in the average network time as in the
centralized control topology. Particularly in the decentralized control topology, having
more servers can increase the average network time. This may reflect the fact that
in the 100-server case, a device has more options for offloading in its vicinity, each
option with its own price, meaning that the device may choose a server that is not
geographically closest to it due to a lower price in a server further away. This increases
the distance a task must travel in the network and the congestion in the MAN links.

Average network usage per offloaded task Average network usage per offloaded task
(20 servers) (100 servers)

0.035 0.035

0.030 0.030
» 0.025 , 0.025
§ 0.020 § 0.020
o 9

¥ 0.015 ¥ 0.015
0.010 0.010

0.005 0.005

0.000 0.000

1000 2000 3000 4000 1000 2000 3000 4000
Device count Device count
m CENTRALIZED HYBRID N DECENTRALIZED N CENTRALIZED I HYBRID N DECENTRALIZED
(a) 20 servers (b) 100 servers

Figure 17. Evaluation plots for the average network usage per offloaded task.

Figure 18 shows the total cumulative return for the ESP. The centralized control
topology always achieves the highest profit due to the high price set by the central
orchestrator. However, the more there are devices in the environment, the more
uncertain the profit of the ESP becomes, as reflected in the increased confidence
interval for the average. It is also interesting to note that the more there are devices,
the closer the profit from the hybrid and decentralized control topologies gets to the
centralized one in terms of confidence. In the 100-server case (Figure 18b) with 4000
devices, the confidence intervals of all three control topologies overlap, indicating
that the hybrid and decentralized control topologies are able to generate more stable
profit close to the profit in the centralized control topology with a better resource
utilization on the edge platform (see Figure 15). Additionally, the fact that the hybrid
and decentralized control topologies consistently achieve around the same amount of
profit inside one edge server count and edge device count combination is an interesting
subject for further research.

Another interesting fact is that in the 20-server case (Figure 18a), the profit in every
scenario is higher than in the 100-server case. This is most likely due to the lower
capacity of a single server in the 100-server case. In other words, edge devices are not
willing to pay as much as in the 20-server case, because the benefit of the lower task
execution time is not as great as when a server has a higher capacity.

88

Cumulative return for the whole edge platform Cumulative return for the whole edge platform
(20 servers) (100 servers)

400.0M 400.0M

300.0M 300.0M

200.0M 200.0M

100.0M 100.0M

1000 2000 3000 4000 1000 2000 3000 4000

Device count Device count
BN CENTRALIZED HYBRID B DECENTRALIZED I CENTRALIZED HYBRID W DECENTRALIZED
(a) 20 servers (b) 100 servers

Figure 18. Evaluation plots for the total cumulative return.

5.4. Efficiency of EISim

The time complexity of EISim mainly depends on how many events are generated
during a simulation run and how complex the event handling procedures are. The
total number of events depends on multiple factors, such as the run-length of the
simulation, the number of agents in the simulation environment, the total number of
generated tasks, and the lengths of the price, network and mobility update intervals.
The complexity of the orchestration logic and agent training also heavily affects the
time complexity of EISim.

To provide insight into the time complexity of EISim, Table 5 reports the average
time of a single simulation run for each control topology and edge server count
combination. The average times are reported separately for the training and evaluation
modes. For the training mode, the average time and its 95% confidence interval are
calculated based on 100 simulation runs. For the evaluation mode, the average and the
confidence interval are calculated based on 5 simulation runs. It is important to note in
the reported values that one simulation run executed all four scenarios with different
edge device counts (1000, 2000, 3000, 4000) in parallel. Based on the application
profile used in the simulation study, the average number of tasks generated by each
number of edge devices during a one-hour simulation run is 3.6 million, 7.2 million,
10.8 million, and 14.4 million, respectively.

For the comparison of the simulation times, it is important to note that two different
machines were used to run the simulations. All the simulations for the hybrid control
topology, as well as the simulations with 100 servers for the decentralized control
topology were run on a Nokia AirFrame Rackmount server with two Intel Xeon ES5-
2680 v4 @ 2.40 GHz CPUs and 128 GB of RAM. More specifically, the simulations
were run inside a Docker Ubuntu container with no resource constraints. All the
simulations for the centralized control topology, as well as the simulations with 20
servers for the decentralized control topology were run on a desktop computer with
Intel Core 17-7800X @ 3.50 GHz CPU and 128 GB of RAM. The native CPU backend
was used in Deeplearning4j Java library to execute the DNN related computations.

Another important thing to note is that the machines were running simulation rounds
for different scenarios at the same time, which also affects the simulation times.

89

Table 5. Average simulation times and 95% confidence intervals
Training Evaluation

20 servers 100 servers 20 servers 100 servers

Centralized 7min 11 s 7 min 10 s 4 min 38 s 4 min 36 s
+4s +5s +4s +3s

Hybrid I5min4s 21 min46s 4 min 57 s Smin 10 s
+ 135 +40s +17s +12s

Decentralized 11min56s 65min8s 4 min 20 s 6 min 21 s
+4s + 16 +6s +4s

The training and evaluation rounds of the centralized control topology for both edge
server counts were run simultaneously. Same for the training and evaluation of the
hybrid control topology. On the other hand, the training and evaluation rounds of
the decentralized control topology with 20 servers were mostly run standalone on the
machine. Same for the decentralized control topology with 100 servers.

In Table 5, it can be seen that the training of the agents has a significant impact on
the average run time. The more there are agents in the environment, the longer it takes
to run one training round. On the other hand, having more agents does not significantly
prolong the length of an evaluation round.

As for the memory complexity of EISim, the memory usage during one simulation
run depends heavily on the number of agents in the simulation environment. Running
one training round for the centralized control topology used around 15 to 20 GB of
RAM. Note that one training round again includes running four scenarios with different
edge device counts in parallel. On the other extreme, running one training round for
the decentralized control topology with 100 agents used around 30 to 35 GB of RAM.

90

6. DISCUSSION

6.1. Significance and Limitations

The main significance of EISim stems from the fact that, to the best of the
author’s knowledge, it is the first openly available simulator that specifically
supports the simulation of intelligent, DRL-based orchestration solutions and different
orchestration control topologies. The default implementations for different control
topologies provide a good and sensible starting point for research. A user can also
easily modify these implementations due the high extensibility of EISim. Further, the
user can simulate different pricing strategies, that is, how the cluster heads make the
price decisions. The default implementation once again provides an excellent starting
point that sets up the foundation for simulating DRL-based solutions. The user can
easily modify the existing implementation or plug in a completely new, custom pricing
implementation.

In its current form, EISim can provide answers to multiple significant research
questions. It can be used to investigate what type of pricing strategies would be the
most beneficial for different types of control topologies. It can also be used to provide
insights into what type of pricing models would be suitable for the edge environment,
which is an important, open research question (see Section 2.4.2). EISim can also be
used to study the advantages and disadvantages of different types of control topologies
in varying edge deployments and use cases. Further, it can be used to study emergent
phenomena, such as whether the DRL-based pricing agents learn to collude, meaning
that they learn to price above the competitive level without explicitly communicating
with each other. Such tacit collusion between RL-based pricing agents has been a
recent subject of concern in some studies [136, 137].

The simulation study done in this thesis shows that EISim can provide excellent
feedback for choosing hyperparameters (see Section 5.1), for investigating the learning
behavior of agents and developing training methods (see Section 5.2), and for
comparing the performance of different control topologies (see Section 5.3). The
comparison of the control topologies can also bring forth new, interesting research
directions. For example, the hybrid and decentralized control topologies show similar
performance for different metrics and different scenarios in Section 5.3. Whether such
similarity emerges in different use cases and under different training methods is an
interesting subject for future research.

The simulation study also shows that EISim can be used to simulate large-scale
scenarios, as at most the environment had 100 learning agents and 4000 mobile
devices. Existing works on offloading and resource pricing typically experiment in
small environments. For example, Shi et al. experimented with only four edge servers
and six mobile users in their DRL-based solution [101], while Chen et al. experimented
with one edge server and from 20 to 40 users in their DRL-based solution [84]. Further,
EISim enables evaluating the long-term performance of methods as a part of a large-
scale, more realistic and more dynamic system, which is not often done for proposed
offloading and pricing solutions (see Section 2.4.3 and the works in Table 3).

The additional tools in EISim also greatly facilitate research efforts. The
environment setup tools provide a quick way to create varying environments. The
bash scripts provide good templates for running simulations with EISim. Finally, the

91

result plotting tools generate informative plots for result analysis, as exemplified in
Chapter 5.

The main limitations of EISim concern the scope of the simulator and the
assumptions made in the default implementations. The current scope of EISim is
limited to simulating task offloading with independent tasks and resource pricing.
In addition, there is only one pre-implemented DRL algorithm, and the agent model
focuses on pricing agents.

The default implementations readily support scenarios where the task processing is
done at the edge servers or the edge devices, and the tasks are vertically offloaded
from the device level. The servers are also assumed to belong to the same ESP and
have the same capacity. Further, the current implementation for the hybrid control
topology supports only flat hierarchies with static clusters, which corresponds to the
more traditional approach to orchestration control in edge orchestration literature (see
Section 2.1.2).

Finally, the use of EISim requires that the user has a certain level of proficiency in
both Java and Python programming, which can be perceived as a limitation.

6.2. Future Work

EISim has a multitude of potential future development directions. These are
summarized in Table 6, which lists possible development directions for both parts of
EISim, namely the simulator itself and the additional tools. Table 6 categorizes the
development directions based on the development target. The target depicts a feature
that is improved as a result of the development.

For improving the scope of the simulator, adding support for other orchestration
functions besides offloading and pricing is important. There also needs to be simulation
and result analysis support for other types of agents besides pricing agents, such as for
RL agents that decide about offloading. To develop the hybrid control topology more
towards the vision in [5], there must be a better, ready support for multi-level, loosely
coupled hierarchies and dynamic clusters. Further, there must be support for modelling
multiple service providers in the environment.

Expanding the scope and set of the default implementations is also important for
having a better, ready support for simulating varying use cases with EISim. For
example, there should be default implementations, where the cloud is also taken into
account as a possible offloading destination. There could also be more sophisticated
default implementations, where long-term optimization is also considered in the edge
device side decision making. Besides RL, this could mean, for example, a Lyapunov
optimization based method, where a device makes sure that the average money spent
over time stays below some predetermined value. Finally, expanding the set of pre-
implemented DRL algorithms is also important for facilitating research efforts with
EISim.

For improving the simulation model, it needs to be investigated whether it is
beneficial to have a more detailed simulation model. For example, currently the
communication model of LAN is simplified. The distance of an edge device from
an AP does not affect the link quality, nor does the number of users simultaneously
connected to the same AP. The rates of the downlink and uplink are also set to be

92

Table 6. Possible future development directions for EISim

Target Development Directions

Simulator Scope Support for a wider set of orchestration functions
Support for a wider variety of agents
Support for multi-level hierarchies and dynamic
clusters
Support for multiple service providers
Default implementations with wider focus
More ready implementations for different DRL
algorithms

Modelling Investigating whether it is worth to have a more
detailed simulation model, e.g., for networking
Modelling virtualized resources
More dynamic model, e.g., simulating the time of

the day
Efficiency Parallelizing agent model updates
Validation Building real testbeds for data collection

Wider simulations over a variety of use cases

Additional Scope Implementing more methods for MAN creation
tools and clustering
Designing new result plots

Ease of use Creating a GUI

the same. The extent to which the realism of the LAN communication model should
be increased needs to be examined. Further, to support other orchestration functions
such as migration, there needs to be a more detailed model for virtualized resources,
such as VMs and containers. However, when it comes to complicating the simulation
model, it is important to note that generally increasing the model complexity beyond a
certain point does not significantly alter the simulation results, but it does increase the
time complexity of the simulation [35]. Finally, improving the simulation model into
a more dynamic one, where, for example, the time of the day could by simulated by
modelling changes in the task arrival rates and the dynamic arrivals and departures of
edge devices, is another interesting development direction.

The training of agents has a significant impact on the average simulation time,
as seen in Section 5.4 and Table 5. Currently, the updating of the models is tied
to an update event, which is handled for each agent sequentially. Parallelizing the
model updates of the agents is an important development direction for improving the
efficiency of EISim.

Further validation of EISim is a necessity for increasing the confidence on the
simulator. Hence, future work should also look into building real testbeds for collecting
comparable data that could be used to validate EISim. Further validation should also
be done by testing EISim over a wider variety of use cases.

93

For improving the scope of the additional tools, future work could look into
implementing more methods for MAN creation and clustering. Currently there is one
pre-implemented way for AP placement, topology creation, edge server placement, and
edge server clustering. These already provide a way for creating varying environments
due to the randomness in the methods, but to further facilitate the research in different
use cases, there should be a wider set of possible methods that could be used. For
example, the current method for the AP placement locates the APs evenly on an area.
Future work could look into methods that could create environments where the density
of the APs on the area varies.

For the result plotting tools, new informative plots could be designed. For example,
it could be investigated whether there is an efficient way to visualize the distributions of
the prices, profits and state variables for the pricing agents over simulation runs. New
types of plots for convergence and training stability analysis should also be designed.
This includes investigating efficient ways to visualize the actor and critic losses and
other related metrics for multiple agents.

Finally, to improve the ease of use for the additional tools, a Graphical User
Interface (GUI) could be designed and implemented for the environment setup and
result plotting tools.

94

7. SUMMARY

A simulation platform called Edge Intelligence Simulator (EISim) was presented in
this thesis. First, definitions for a set of key terms used in this thesis were given.
Next, an encompassing overview of the state of the art in edge and fog simulation,
orchestration, offloading, and resource pricing was given, providing a proper basis for
the work on EISim. Then, a set of methods and tools that form the foundation of
the current EISim implementation was presented. This was followed by a detailed
description of the architecture, default implementations and use of EISim along with
its additional tools for environment setup, agent training, and result plotting.

Next, the thesis reported the details of the simulation case study that was used to
validate EISim and demonstrate its capabilities with regard to training agents and
evaluating orchestration solutions against control topologies. The study focused on
a large-scale MEC scenario, where mobile users move in a city area and generate
independent tasks. All three control topologies (centralized, hybrid and decentralized)
with their associated default pricing and offloading decision-making implementations
were simulated on this area.

The results of the simulation study verified the end-to-end performance of EISim and
showed its capability to produce sensible and consistent results. It was exemplified how
the plots generated by EISim can aid in choosing the best hyperparameters, examining
the training progress of agents, and comparing the performance of different control
topologies.

EISim is developed towards supporting the easier testing and evaluation of
intelligent, DRL-based orchestration methods against different orchestration control
topologies. In its current form, EISim supports simulating scenarios related to task
offloading and resource pricing. The thesis gave a comprehensive overview of the
potential future development directions of EISim that it should follow in order to
fully live up to its name. The most significant ones include adding support for
other orchestration functions, multiple service providers and multi-level hierarchies,
expanding the scope of the default implementations, and expanding the set of the pre-
implemented DRL algorithms.

EISim is, to the best of the author’s knowledge, the first openly available simulator
that has a specific support for simulating intelligent orchestration solutions and
orchestration control topologies. EISim makes it possible to evaluate the long-term
performance of different solutions as a part of a large-scale, more realistic and more
dynamic system, and the default implementations provide a solid foundation for further
research. Even though the current scope of EISim is limited, it can provide answers
to multiple important, open research questions, such as what type of pricing strategies
would be the most efficient for different types of control topologies or how different
types of control topologies perform in varying edge deployments and use cases.

(1]

(2]

(3]

(4]

[5]

(6]

[71]

[8]

[9]

[10]

95

8. REFERENCES

Gilchrist A. (2016) Industry 4.0. Apress Berkeley, CA. DOI: http://dx.
doi.org/10.1007/978-1-4842-2047-4.

Qadri Y.A., Nauman A., Zikria Y.B., Vasilakos A.V. & Kim S.W. (2020) The
future of healthcare internet of things: A survey of emerging technologies. IEEE
Communications Surveys & Tutorials 22(2), pp. 1121-1167. DOI: http://
dx.doi.org/10.1109/COMST.2020.2973314.

Levinson J., Askeland J., Becker J., Dolson J., Held D., Kammel S., Kolter J.Z.,
Langer D., Pink O., Pratt V., Sokolsky M., Stanek G., Stavens D., Teichman
A., Werling M. & Thrun S. (2011) Towards fully autonomous driving: Systems
and algorithms. In: 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-
Baden, Germany, pp. 163-168. DOI: http://dx.doi.org/10.1109/
IVS.2011.5940562.

Ren J., Zhang D., He S., Zhang Y. & Li T. (2020) A survey on end-edge-cloud
orchestrated network computing paradigms: Transparent computing, mobile
edge computing, fog computing, and cloudlet. ACM Computing Surveys 52(6),
pp. 1-36. DOI: http://dx.doi.org/10.1145/3362031.

Kokkonen H., Lovén L., Motlagh N.H., Partala J., Gonzilez-Gil A., Sola
E., Angulo I., Liyanage M., Leppidnen T., Nguyen T., Pujol V.C., Kostakos
P, Bennis M., Tarkoma S., Dustdar S., Pirttikangas S. & Riekki J. (2022),
Autonomy and intelligence in the computing continuum: Challenges, enablers,
and future directions for orchestration. arXiv:2205.01423. DOI: http://dx.
doi.org/10.48550/ARXIV.2205.01423.

Lovén L., Leppdnen T., Peltonen E., Partala J., Harjula E., Porambage P.,
Ylianttila M. & Riekki J. (2019) EdgeAl: A vision for distributed, edge-native
artificial intelligence in future 6G networks. In: The Ist 6G Wireless Summit,
Levi, Finland, pp. 1-2.

Deng S., Zhao H., Fang W., Yin J., Dustdar S. & Zomaya A.Y. (2020) Edge
intelligence: The confluence of edge computing and artificial intelligence. IEEE
Internet of Things Journal 7(8), pp. 7457-7469. DOI: http://dx.doi.
org/10.1109/JI0T.2020.2984887.

Xu D, Li T, Li Y, Su X., Tarkoma S., Jiang T., Crowcroft J. & Hui P.
(2021) Edge intelligence: Empowering intelligence to the edge of network.
Proceedings of the IEEE 109(11), pp. 1778-1837. DOI: http://dx.doi.
org/10.1109/JPROC.2021.3119950.

Park J., Samarakoon S., Bennis M. & Debbah M. (2019) Wireless network
intelligence at the edge. Proceedings of the IEEE 107(11), pp. 2204-2239. DOI:
http://dx.doi.org/10.1109/JPROC.2019.2941458.

Park J., Samarakoon S., Elgabli A., Kim J.,, Bennis M., Kim S.L. &
Debbah M. (2021) Communication-efficient and distributed learning over

http://dx.doi.org/10.1007/978-1-4842-2047-4
http://dx.doi.org/10.1007/978-1-4842-2047-4
http://dx.doi.org/10.1109/COMST.2020.2973314
http://dx.doi.org/10.1109/COMST.2020.2973314
http://dx.doi.org/10.1109/IVS.2011.5940562
http://dx.doi.org/10.1109/IVS.2011.5940562
http://dx.doi.org/10.1145/3362031
http://dx.doi.org/10.48550/ARXIV.2205.01423
http://dx.doi.org/10.48550/ARXIV.2205.01423
http://dx.doi.org/10.1109/JIOT.2020.2984887
http://dx.doi.org/10.1109/JIOT.2020.2984887
http://dx.doi.org/10.1109/JPROC.2021.3119950
http://dx.doi.org/10.1109/JPROC.2021.3119950
http://dx.doi.org/10.1109/JPROC.2019.2941458

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

96

wireless networks: Principles and applications. Proceedings of the IEEE
109(5), pp. 796-819. DOI: http://dx.doi.org/10.1109/JPROC.
2021.3055679.

Zhou Z., Chen X., Li E., Zeng L., Luo K. & Zhang J. (2019) Edge intelligence:
Paving the last mile of artificial intelligence with edge computing. Proceedings
of the IEEE 107(8), pp. 1738-1762. DOI: http://dx.doi.org/10.
1109/JPROC.2019.2918951.

Taleb T., Samdanis K., Mada B., Flinck H., Dutta S. & Sabella D. (2017)
On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration. IEEE Communications Surveys &
Tutorials 19(3), pp. 1657-1681. DOI: http://dx.doi.org/10.1109/
COMST.2017.2705720.

Saraiva de Sousa N.F., Lachos Perez D.A., Rosa R.V., Santos M.A. & Esteve
Rothenberg C. (2019) Network service orchestration: A survey. Computer
Communications 142-143, pp. 69-94. DOI: http://dx.doi.org/10.
1016/j.comcom.2019.04.008.

Hong C.H. & Varghese B. (2019) Resource management in fog/edge computing:
A survey on architectures, infrastructure, and algorithms. ACM Computing
Surveys 52(5). DOI: http://dx.doi.org/10.1145/3326066.

Zhong Z., Xu M., Rodriguez M. A., Xu C. & Buyya R. (2022) Machine learning-
based orchestration of containers: A taxonomy and future directions. ACM
Computing Surveys 54(10s). DOI: http://dx.doi.org/10.1145/
3510415.

Riekki J. & Madmmeld A. (2021) Research and education towards smart and
sustainable world. IEEE Access 9, pp. 53156-53177. DOI: http://dx.
doi.org/10.1109/ACCESS.2021.3069902.

Mimmeld A. & Riekki J. (2021) Subsidiarity and weak coupling in
wireless networks. In: 2021 Joint European Conference on Networks
and Communications 6G Summit (EuCNC/6G Summit), Porto, Portugal,
pp- 598-603. DOI: http://dx.doi.org/10.1109/EuCNC/
6GSummit51104.2021.9482591.

Mechalikh C., Taktak H. & Moussa F. (2021) PureEdgeSim: A simulation
framework for performance evaluation of cloud, edge and mist computing
environments. Computer Science and Information Systems 18(1), pp. 43-66.
DOI: http://dx.doi.org/10.2298/CSIS200301042M.

Lillicrap T.P.,, Hunt J.J., Pritzel A., Heess N., Erez T., Tassa Y., Silver D.
& Wierstra D. (2019), Continuous control with deep reinforcement learning.
arXiv:1509.02971. DOI: https://doi.org/10.48550/arXiv.15009.
02971.

Russell S. & Norvig P. (2016) Artificial intelligence: A modern approach.
Prentice Hall series in artificial intelligence, Pearson, Boston, 3rd global ed.

http://dx.doi.org/10.1109/JPROC.2021.3055679
http://dx.doi.org/10.1109/JPROC.2021.3055679
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1109/COMST.2017.2705720
http://dx.doi.org/10.1109/COMST.2017.2705720
http://dx.doi.org/10.1016/j.comcom.2019.04.008
http://dx.doi.org/10.1016/j.comcom.2019.04.008
http://dx.doi.org/10.1145/3326066
http://dx.doi.org/10.1145/3510415
http://dx.doi.org/10.1145/3510415
http://dx.doi.org/10.1109/ACCESS.2021.3069902
http://dx.doi.org/10.1109/ACCESS.2021.3069902
http://dx.doi.org/10.1109/EuCNC/6GSummit51104.2021.9482591
http://dx.doi.org/10.1109/EuCNC/6GSummit51104.2021.9482591
http://dx.doi.org/10.2298/CSIS200301042M
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

97

Bonomi F., Milito R., Zhu J. & Addepalli S. (2012) Fog computing and its
role in the internet of things. In: Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing (MCC *12), Association for Computing
Machinery, New York, NY, USA, pp. 13-16. DOIL: http://dx.doi.org/
10.1145/2342509.2342513.

Atlam H., Walters R. & Wills G. (2018) Fog computing and the internet of
things: A review. Big Data and Cognitive Computing 2(2). DOIL: http://
dx.doi.org/10.3390/bdcc2020010.

Khan W.Z., Ahmed E., Hakak S., Yaqoob I. & Ahmed A. (2019) Edge
computing: A survey. Future Generation Computer Systems 97, pp. 219-235.
DOI: http://dx.doi.org/10.1016/7j.future.2019.02.050.

Wang X., Han Y., Leung V.C.M., Niyato D., Yan X. & Chen X. (2020)
Convergence of edge computing and deep learning: A comprehensive survey.
IEEE Communications Surveys & Tutorials 22(2), pp. 869-904. DOI: http:
//dx.doi.org/10.1109/COMST.2020.2970550.

Shi W., Cao J., Zhang Q., Li Y. & Xu L. (2016) Edge computing: Vision and
challenges. IEEE Internet of Things Journal 3(5), pp. 637-646. DOI: http:
//dx.doi.org/10.1109/JI0T.2016.2579198.

Naha R.K., Garg S., Georgakopoulos D., Jayaraman P.P., Gao L., Xiang Y. &
Ranjan R. (2018) Fog computing: Survey of trends, architectures, requirements,
and research directions. IEEE Access 6, pp. 47980—-48009. DOI: http://dx.
doi.org/10.1109/ACCESS.2018.2866491.

Balouek-Thomert D., Renart E.G., Zamani A.R., Simonet A. & Parashar M.
(2019) Towards a computing continuum: Enabling edge-to-cloud integration
for data-driven workflows. The International Journal of High Performance
Computing Applications 33(6), pp. 1159-1174. DOIL: http://dx.doi.
org/10.1177/1094342019877383

Dustdar S., Casamajor Pujol V. & Donta P.K. (2022) On distributed computing
continuum systems. IEEE Transactions on Knowledge and Data Engineering
35(4). DOI: http://dx.doi.org/10.1109/TKDE.2022.3142856.

Huang D. & Wu H. (2018) Chapter 1 - Mobile cloud computing taxonomy. In:
D. Huang & H. Wu (eds.) Mobile Cloud Computing, Morgan Kaufmann, pp. 5—
29. DOI: http://dx.doi.org/10.1016/B978-0-12-809641-3.
00002-8.

Banks J. (2000) Introduction to simulation. In: 2000 Winter Simulation
Conference Proceedings (Cat. No.OOCH37165), Orlando, FL, USA, pp. 9-16.
DOI: http://dx.doi.org/10.1109/WSC.2000.899690.

Miammeld A. & Riekki J. (2022) New network architectures will be weakly
coupled. IEEE Future Networks Tech Focus Issue 14.

http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.3390/bdcc2020010
http://dx.doi.org/10.3390/bdcc2020010
http://dx.doi.org/10.1016/j.future.2019.02.050
http://dx.doi.org/10.1109/COMST.2020.2970550
http://dx.doi.org/10.1109/COMST.2020.2970550
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/ACCESS.2018.2866491
http://dx.doi.org/10.1109/ACCESS.2018.2866491
http://dx.doi.org/10.1177/1094342019877383
http://dx.doi.org/10.1177/1094342019877383
http://dx.doi.org/10.1109/TKDE.2022.3142856
http://dx.doi.org/10.1016/B978-0-12-809641-3.00002-8
http://dx.doi.org/10.1016/B978-0-12-809641-3.00002-8
http://dx.doi.org/10.1109/WSC.2000.899690

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

98

Costa B., Bachiega J., de Carvalho L.R. & Araujo A.P.F. (2022) Orchestration
in fog computing: A comprehensive survey. ACM Computing Surveys 55(2),
pp- 1-34. DOI: http://dx.doi.org/10.1145/3486221.

Masip X., Marin E., Garcia J. & Sanchez S. (2020) Collaborative mechanism
for hybrid fog-cloud scenarios. In: Y. Yang, J. Huang, T. Zhang & J. Weinman
(eds.) Fog and Fogonomics, John Wiley & Sons, pp. 7-60. DOI: http://dx.
doi.org/10.1002/9781119501121.ch2.

Banks J., Carson J.S., Nelson B.L. & Nicol D.M. (2001) Discrete event system
simulation. Prentice Hall, 3rd ed.

Robinson S. (2004) Simulation: The practice of model development and use.
John Wiley.

Svorobej S., Takako Endo P., Bendechache M., Filelis-Papadopoulos C.,
Giannoutakis K.M., Gravvanis G.A., Tzovaras D., Byrne J. & Lynn T. (2019)
Simulating fog and edge computing scenarios: An overview and research
challenges. Future Internet 11(3). DOI: http://dx.doi.org/10.3390/
£111030055.

Wiesner P. & Thamsen L. (2021), LEAF: Simulating large energy-aware fog
computing environments. arXiv:2103.01170. DOI: http://dx.doi.org/
10.48550/ARXIV.2103.01170.

Ahvar E., Orgerie A.C. & Lebre A. (2022) Estimating energy consumption
of cloud, fog, and edge computing infrastructures. IEEE Transactions on
Sustainable Computing 7(2), pp. 277-288. DOI: http://dx.doi.org/
10.1109/TSUSC.2019.2905900.

Jalali F., Hinton K., Ayre R., Alpcan T. & Tucker R.S. (2016) Fog computing
may help to save energy in cloud computing. IEEE Journal on Selected Areas in
Communications 34(5), pp. 1728-1739. DOI: http://dx.doi.org/10.
1109/JSAC.2016.2545559.

Meng X., Wang W. & Zhang Z. (2017) Delay-constrained hybrid computation
offloading with cloud and fog computing. IEEE Access 5, pp. 21355-21367.
DOI: http://dx.doi.org/10.1109/ACCESS.2017.2748140.

Yuan Y., Yi C., Chen B., Shi Y. & Cai J. (2022) A computation offloading game
for jointly managing local pre-processing time-length and priority selection in
edge computing. IEEE Transactions on Vehicular Technology 71(9), pp. 9868—
9883.DOI: http://dx.doi.org/10.1109/TVT.2022.3177432.

Gill M. & Singh D. (2021) A comprehensive study of simulation frameworks
and research directions in fog computing. Computer Science Review 40. DOI:
http://dx.doi.org/10.1016/j.cosrev.2021.100391.

Margariti S., Dimakopoulos V. & Tsoumanis G. (2020) Modeling and
simulation tools for fog computing-a comprehensive survey from a cost

http://dx.doi.org/10.1145/3486221
http://dx.doi.org/10.1002/9781119501121.ch2
http://dx.doi.org/10.1002/9781119501121.ch2
http://dx.doi.org/10.3390/fi11030055
http://dx.doi.org/10.3390/fi11030055
http://dx.doi.org/10.48550/ARXIV.2103.01170
http://dx.doi.org/10.48550/ARXIV.2103.01170
http://dx.doi.org/10.1109/TSUSC.2019.2905900
http://dx.doi.org/10.1109/TSUSC.2019.2905900
http://dx.doi.org/10.1109/JSAC.2016.2545559
http://dx.doi.org/10.1109/JSAC.2016.2545559
http://dx.doi.org/10.1109/ACCESS.2017.2748140
http://dx.doi.org/10.1109/TVT.2022.3177432
http://dx.doi.org/10.1016/j.cosrev.2021.100391

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

99

perspective. Future Internet 12(5). DOI: http://dx.doi.org/10.3390/
£1i120500809.

Kunde C. & Mann Z.A. (2020) Comparison of simulators for fog computing.
In: Proceedings of the 35th Annual ACM Symposium on Applied Computing,
Association for Computing Machinery, New York, NY, USA, pp. 1792 — 1795.
DOI: http://dx.doi.org/10.1145/3341105.3375771.

Aral A. & Maio V. (2020) Simulators and emulators for edge computing.
In: J. Taheri & S. Deng (eds.) Edge Computing: Models, technologies
and applications, pp. 291-311. DOI: http://dx.doi.org/10.1049/
PBPCO33E_chl4.

Gupta H., Dastjerdi A.V., Ghosh S.K. & Buyya R. (2017) iFogSim: A toolkit
for modeling and simulation of resource management techniques in the internet
of things, edge and fog computing environments. Software: Practice and
Experience 47(9), pp. 1275-1296. DOI: https://doi.org/10.1002/
spe.25009.

Calheiros R.N., Ranjan R., Beloglazov A., De Rose C.A.F. & Buyya R.
(2011) CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Software:
Practice and Experience 41(1), pp. 23-50. DOL: http://dx.doi.org/10.
1002/spe.995.

Lopes M.M., Higashino W.A., Capretz M.A. & Bittencourt L.F. (2017)
MyiFogSim: A simulator for virtual machine migration in fog computing. In:
Companion Proceedings of The 10th International Conference on Utility and
Cloud Computing (UCC *17 Companion), Austin, Texas, USA, pp. 47-52. DOI:
http://dx.doi.org/10.1145/3147234.3148101.

Puliafito C., Gongalves D.M., Lopes M.M., Martins L.L., Madeira E., Mingozzi
E., Rana O. & Bittencourt L.F. (2020) MobFogSim: Simulation of mobility and
migration for fog computing. Simulation Modelling Practice and Theory 101.
DOI: http://dx.doi.org/10.1016/7j.simpat.2019.102062.

Mahmud R., Pallewatta S., Goudarzi M. & Buyya R. (2022) iFogSim2:
An extended iFogSim simulator for mobility, clustering, and microservice
management in edge and fog computing environments. Journal of Systems and
Software 190. DOI: http://dx.doi.org/10.1016/7.3ss.2022.
111351.

Lera L., Guerrero C. & Juiz C. (2019) YAFS: A simulator for iot scenarios in fog
computing. IEEE Access 7, pp. 91745-91758. DOL: http://dx.doi.org/
10.1109/ACCESS.2019.2927895.

Center for Applied Internet Data Analysis (2023), Macroscopic internet
topology data kit (ITDK). URL: https://www.caida.org/catalog/
datasets/internet-topology—-data-kit/, Accessed 27 September
2023.

http://dx.doi.org/10.3390/fi12050089
http://dx.doi.org/10.3390/fi12050089
http://dx.doi.org/10.1145/3341105.3375771
http://dx.doi.org/10.1049/PBPC033E_ch14
http://dx.doi.org/10.1049/PBPC033E_ch14
https://doi.org/10.1002/spe.2509
https://doi.org/10.1002/spe.2509
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1145/3147234.3148101
http://dx.doi.org/10.1016/j.simpat.2019.102062
http://dx.doi.org/10.1016/j.jss.2022.111351
http://dx.doi.org/10.1016/j.jss.2022.111351
http://dx.doi.org/10.1109/ACCESS.2019.2927895
http://dx.doi.org/10.1109/ACCESS.2019.2927895
https://www.caida.org/catalog/datasets/internet-topology-data-kit/
https://www.caida.org/catalog/datasets/internet-topology-data-kit/

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

100

Medina A., Lakhina A., Matta I. & Byers J. (2001) BRITE: An approach
to universal topology generation. In: MASCOTS 2001, Proceedings Ninth
International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, Cincinnati, OH, USA, pp. 346-353. DOI:
http://dx.doi.org/10.1109/MASCOT.2001.948886.

Sonmez C., Ozgovde A. & Ersoy C. (2018) EdgeCloudSim: An environment for
performance evaluation of edge computing systems. Transactions on Emerging
Telecommunications Technologies 29(11). DOI: http://dx.doi.org/
10.1002/ett.3493.

Shaik S., Hall J., Johnson C., Wang Q., Sharp R. & Baskiyar S. (2022)
PFogSim: A simulator for evaluation of mobile and hierarchical fog computing.
Sustainable Computing: Informatics and Systems 35. DOIL: http://dx.
doi.org/10.1016/7j.suscom.2022.100736.

Ferndndez-Cerero D., Fernandez-Montes A., Ortega F.J., Jakébik A. & Widlak
A. (2020) Sphere: Simulator of edge infrastructures for the optimization of
performance and resources energy consumption. Simulation Modelling Practice
and Theory 101. DOI: http://dx.doi.org/10.1016/7.simpat.
2019.1019¢66.

Qayyum T., Malik A.W., Khan Khattak M.A., Khalid O. & Khan S.U. (2018)
FogNetSim++: A toolkit for modeling and simulation of distributed fog
environment. IEEE Access 6, pp. 63570-63583. DOI: http://dx.doi.
org/10.1109/ACCESS.2018.2877696.

Varga A. & Hornig R. (2008) An overview of the OMNeT++ simulation
environment. In: Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems &
Workshops (Simutools *08), ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), Brussels, BEL, pp. 1-10.

Guerzoni R., Vaishnavi 1., Perez Caparros D., Galis A., Tusa F., Monti P,
Sganbelluri A., Biczék G., Sonkoly B., Toka L., Ramos A., Melidn J., Dugeon
O., Cugini F,, Martini B., Iovanna P., Giuliani G., Figueiredo R., Contreras-
Murillo L.M., Bernardos C.J., Santana C. & Szabo R. (2017) Analysis of end-
to-end multi-domain management and orchestration frameworks for software
defined infrastructures: An architectural survey. Transactions on Emerging
Telecommunications Technologies 28(4). DOI: http://dx.doi.org/10.
1002/ett.3103.

Mach P. & Becvar Z. (2017) Mobile edge computing: A survey on architecture
and computation offloading. IEEE Communications Surveys & Tutorials 19(3),
pp. 1628-1656. DOI: http://dx.doi.org/10.1109/COMST.2017.
2682318.

Jiang C., Cheng X., Gao H., Zhou X. & Wan J. (2019) Toward computation
offloading in edge computing: A survey. IEEE Access 7, pp. 131543-131558.
DOI: http://dx.doi.org/10.1109/ACCESS.2019.2938660.

http://dx.doi.org/10.1109/MASCOT.2001.948886
http://dx.doi.org/10.1002/ett.3493
http://dx.doi.org/10.1002/ett.3493
http://dx.doi.org/10.1016/j.suscom.2022.100736
http://dx.doi.org/10.1016/j.suscom.2022.100736
http://dx.doi.org/10.1016/j.simpat.2019.101966
http://dx.doi.org/10.1016/j.simpat.2019.101966
http://dx.doi.org/10.1109/ACCESS.2018.2877696
http://dx.doi.org/10.1109/ACCESS.2018.2877696
http://dx.doi.org/10.1002/ett.3103
http://dx.doi.org/10.1002/ett.3103
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/ACCESS.2019.2938660

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

101

Saeik F., Avgeris M., Spatharakis D., Santi N., Dechouniotis D., Violos
J., Leivadeas A., Athanasopoulos N., Mitton N. & Papavassiliou S. (2021)
Task offloading in edge and cloud computing: A survey on mathematical,
artificial intelligence and control theory solutions. Computer Networks 195.
DOI: http://dx.doi.org/10.1016/j.comnet.2021.108177.

Huang L., Bi S. & Zhang Y.J.A. (2020) Deep reinforcement learning for online
computation offloading in wireless powered mobile-edge computing networks.
IEEE Transactions on Mobile Computing 19(11), pp. 2581-2593. DOI: http:
//dx.doi.org/10.1109/TMC.2019.2928811.

Zhao R., Wang X., Xia J. & Fan L. (2020) Deep reinforcement learning
based mobile edge computing for intelligent internet of things. Physical
Communication 43. DOI: http://dx.doi.org/10.1016/7j.phycom.
2020.101184.

Han D., Chen W. & Fang Y. (2020) Joint channel and queue aware scheduling
for latency sensitive mobile edge computing with power constraints. IEEE
Transactions on Wireless Communications 19(6), pp. 3938-3951. DOI: http:
//dx.doi.org/10.1109/TWC.2020.2979136.

Liu C.E,, Bennis M., Debbah M. & Poor H.V. (2019) Dynamic task offloading
and resource allocation for ultra-reliable low-latency edge computing. IEEE
Transactions on Communications 67(6), pp. 4132-4150. DOI: http://dx.
doi.org/10.1109/TCOMM.2019.2898573.

Pu L., Chen X., Xu J. & Fu X. (2016) D2d fogging: An energy-efficient
and incentive-aware task offloading framework via network-assisted d2d
collaboration. IEEE Journal on Selected Areas in Communications 34(12),
pp- 3887-3901. DOI: http://dx.doi.org/10.1109/JSAC.2016.
2624118.

Yu S., Wang X. & Langar R. (2017) Computation offloading for mobile edge
computing: A deep learning approach. In: 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC),
Montreal, QC, Canada, pp. 1-6. DOI: http://dx.doi.org/10.1109/
PIMRC.2017.8292514.

Mao Y., Zhang J. & Letaief K.B. (2016) Dynamic computation offloading
for mobile-edge computing with energy harvesting devices. IEEE Journal on
Selected Areas in Communications 34(12), pp. 3590-3605. DOI: http://
dx.doi.org/10.1109/JSAC.2016.2611964.

Yang B., Cao X., Bassey J., Li X., Kroecker T. & Qian L. (2019)
Computation offloading in multi-access edge computing networks: A multi-
task learning approach. In: ICC 2019 - 2019 IEEE International Conference on
Communications (ICC), Shanghai, China, pp. 1-6. DOI: http://dx.doi.
org/10.1109/ICC.2019.8761212

http://dx.doi.org/10.1016/j.comnet.2021.108177
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1016/j.phycom.2020.101184
http://dx.doi.org/10.1016/j.phycom.2020.101184
http://dx.doi.org/10.1109/TWC.2020.2979136
http://dx.doi.org/10.1109/TWC.2020.2979136
http://dx.doi.org/10.1109/TCOMM.2019.2898573
http://dx.doi.org/10.1109/TCOMM.2019.2898573
http://dx.doi.org/10.1109/JSAC.2016.2624118
http://dx.doi.org/10.1109/JSAC.2016.2624118
http://dx.doi.org/10.1109/PIMRC.2017.8292514
http://dx.doi.org/10.1109/PIMRC.2017.8292514
http://dx.doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.1109/ICC.2019.8761212
http://dx.doi.org/10.1109/ICC.2019.8761212

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

102

Guo H. & Liu J. (2018) Collaborative computation offloading for multiaccess
edge computing over fiber—wireless networks. IEEE Transactions on Vehicular
Technology 67(5), pp. 4514-4526. DOI: http://dx.doi.org/10.
1109/TVT.2018.2790421.

Wang Z., Zhao Z., Min G., Huang X., Ni Q. & Wang R. (2018) User mobility
aware task assignment for mobile edge computing. Future Generation Computer
Systems 85, pp. 1-8. DOI: http://dx.doi.org/10.1016/7.future.
2018.02.014.

Hussein M.K. & Mousa M.H. (2020) Efficient task offloading for iot-based
applications in fog computing using ant colony optimization. IEEE Access
8, pp. 37191-37201. DOI: http://dx.doi.org/10.1109/ACCESS.
2020.2975741.

Bahreini T., Badri H. & Grosu D. (2022) Mechanisms for resource allocation
and pricing in mobile edge computing systems. IEEE Transactions on Parallel
and Distributed Systems 33(3), pp. 667-682. DOI: http://dx.doi.org/
10.1109/TPDS.2021.3099731.

Huang X., Zhang B. & Li C. (2022) Incentive mechanisms for mobile edge
computing: Present and future directions. IEEE Network 36(6), pp. 199-205.
DOI: http://dx.doi.org/10.1109/MNET.107.2100652.

Su Y, Fan W, Liu Y. & Wu F (2021) Game-based distributed
pricing and task offloading in multi-cloud and multi-edge environments.
Computer Networks 200. DOI: http://dx.doi.org/10.1016/7.
comnet.2021.108523.

Sharghivand N., Derakhshan F. & Siasi N. (2021) A comprehensive survey on
auction mechanism design for cloud/edge resource management and pricing.
IEEE Access 9, pp. 126502-126529. DOI: http://dx.doi.org/10.
1109/ACCESS.2021.3110914.

Baek B., Lee J., Peng Y. & Park S. (2020) Three dynamic pricing schemes
for resource allocation of edge computing for iot environment. IEEE Internet
of Things Journal 7(5), pp. 4292-4303. DOI: http://dx.doi.org/10.
1109/JI0T.2020.2966627.

Luong N.C., Wang P, Niyato D., Wen Y. & Han Z. (2017) Resource
management in cloud networking using economic analysis and pricing models:
A survey. IEEE Communications Surveys & Tutorials 19(2), pp. 954-1001.
DOI: http://dx.doi.org/10.1109/COMST.2017.2647981.

Xiong Z., Feng S., Wang W., Niyato D., Wang P. & Han Z. (2019) Cloud/fog
computing resource management and pricing for blockchain networks. IEEE
Internet of Things Journal 6(3), pp. 4585-4600. DOI: http://dx.doi.
org/10.1109/JI0T.2018.2871706.

http://dx.doi.org/10.1109/TVT.2018.2790421
http://dx.doi.org/10.1109/TVT.2018.2790421
http://dx.doi.org/10.1016/j.future.2018.02.014
http://dx.doi.org/10.1016/j.future.2018.02.014
http://dx.doi.org/10.1109/ACCESS.2020.2975741
http://dx.doi.org/10.1109/ACCESS.2020.2975741
http://dx.doi.org/10.1109/TPDS.2021.3099731
http://dx.doi.org/10.1109/TPDS.2021.3099731
http://dx.doi.org/10.1109/MNET.107.2100652
http://dx.doi.org/10.1016/j.comnet.2021.108523
http://dx.doi.org/10.1016/j.comnet.2021.108523
http://dx.doi.org/10.1109/ACCESS.2021.3110914
http://dx.doi.org/10.1109/ACCESS.2021.3110914
http://dx.doi.org/10.1109/JIOT.2020.2966627
http://dx.doi.org/10.1109/JIOT.2020.2966627
http://dx.doi.org/10.1109/COMST.2017.2647981
http://dx.doi.org/10.1109/JIOT.2018.2871706
http://dx.doi.org/10.1109/JIOT.2018.2871706

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

103

Chen Y., Li Z., Yang B., Nai K. & Li K. (2020) A Stackelberg game approach
to multiple resources allocation and pricing in mobile edge computing. Future
Generation Computer Systems 108, pp. 273-287. DOIL: http://dx.doi.
org/10.1016/7j.future.2020.02.045.

Kumar D., Baranwal G. & Vidyarthi D.P. (2022) A survey on auction based
approaches for resource allocation and pricing in emerging edge technologies.
Journal of Grid Computing 20(1). DOI: http://dx.doi.org/10.1007/
s10723-021-09593-9.

Zhan Y. & Zhang J. (2020) An incentive mechanism design for efficient edge
learning by deep reinforcement learning approach. In: IEEE INFOCOM 2020 -
IEEE Conference on Computer Communications, Toronto, ON, Canada, pp.
2489-2498. DOI: http://dx.doi.org/10.1109/INFOCOM41043.
2020.9155268.

Chen S., Li L., Chen Z. & Li S. (2021) Dynamic pricing for smart
mobile edge computing: A reinforcement learning approach. IEEE Wireless
Communications Letters 10(4), pp. 700-704. DOI: http://dx.doi.org/
10.1109/LWC.2020.3039863.

Palomar D. & Chiang M. (2006) A tutorial on decomposition methods
for network utility maximization. IEEE Journal on Selected Areas in
Communications 24(8), pp. 1439-1451. DOI: http://dx.doi.org/10.
1109/JSAC.2006.879350.

Jennings B. & Stadler R. (2015) Resource management in clouds: Survey and
research challenges. Journal of Network and Systems Management 23(3), pp.
567-619. DOI: http://dx.doi.org/10.1007/s10922-014-9307~
7.

Kim S.H., Park S., Chen M. & Youn C.H. (2018) An optimal pricing scheme
for the energy-efficient mobile edge computation offloading with OFDMA.
IEEE Communications Letters 22(9), pp. 1922-1925. DOI: http://dx.
doi.org/10.1109/LCOMM.2018.2849401.

Liu L., Chang Z., Guo X., Mao S. & Ristaniemi T. (2018) Multiobjective
optimization for computation offloading in fog computing. IEEE Internet of
Things Journal 5(1), pp. 283-294. DOI: http://dx.doi.org/10.1109/
JIOT.2017.2780236.

Liu M. & Liu Y. (2018) Price-based distributed offloading for mobile-
edge computing with computation capacity constraints. IEEE Wireless
Communications Letters 7(3), pp. 420—423. DOI: http://dx.doi.org/
10.1109/LWC.2017.2780128.

Liu Y., Yu H., Xie S. & Zhang Y. (2019) Deep reinforcement learning for
offloading and resource allocation in vehicle edge computing and networks.
IEEE Transactions on Vehicular Technology 68(11), pp. 11158-11168. DOI:
http://dx.doi.org/10.1109/TVT.2019.2935450.

http://dx.doi.org/10.1016/j.future.2020.02.045
http://dx.doi.org/10.1016/j.future.2020.02.045
http://dx.doi.org/10.1007/s10723-021-09593-9
http://dx.doi.org/10.1007/s10723-021-09593-9
http://dx.doi.org/10.1109/INFOCOM41043.2020.9155268
http://dx.doi.org/10.1109/INFOCOM41043.2020.9155268
http://dx.doi.org/10.1109/LWC.2020.3039863
http://dx.doi.org/10.1109/LWC.2020.3039863
http://dx.doi.org/10.1109/JSAC.2006.879350
http://dx.doi.org/10.1109/JSAC.2006.879350
http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1109/LCOMM.2018.2849401
http://dx.doi.org/10.1109/LCOMM.2018.2849401
http://dx.doi.org/10.1109/JIOT.2017.2780236
http://dx.doi.org/10.1109/JIOT.2017.2780236
http://dx.doi.org/10.1109/LWC.2017.2780128
http://dx.doi.org/10.1109/LWC.2017.2780128
http://dx.doi.org/10.1109/TVT.2019.2935450

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

104

Wang Q., Guo S., Wang Y. & Yang Y. (2019) Incentive mechanism for edge
cloud profit maximization in mobile edge computing. In: ICC 2019 - 2019 IEEE
International Conference on Communications (ICC), Shanghai, China, pp. 1-6.
DOI: http://dx.doi.org/10.1109/ICC.2019.8761241.

Sufyan F. & Banerjee A. (2020) Computation offloading for distributed
mobile edge computing network: A multiobjective approach. IEEE Access
&, pp. 149915-149930. DOI: http://dx.doi.org/10.1109/ACCESS.
2020.3016046.

Y1 C,, Cai J. & Su Z. (2020) A multi-user mobile computation offloading
and transmission scheduling mechanism for delay-sensitive applications. IEEE
Transactions on Mobile Computing 19(1), pp. 29-43. DOI: http://dx.
doi.org/10.1109/TMC.2019.2891736.

Liang B., Fan R., Hu H., Zhang Y., Zhang N. & Anpalagan A. (2021) Nonlinear
pricing based distributed offloading in multi-user mobile edge computing. IEEE
Transactions on Vehicular Technology 70(1), pp. 1077-1082. DOI: http://
dx.doi.org/10.1109/TVT.2020.3045473.

Li Y., Yang B., Wu H., Han Q., Chen C. & Guan X. (2022) Joint offloading
decision and resource allocation for vehicular fog-edge computing networks:
A contract-Stackelberg approach. IEEE Internet of Things Journal 9(17),
pp- 15969-15982. DOI: http://dx.doi.org/10.1109/JI0T.2022.
31509565.

LiuZ. & FuJ. (2022) Resource pricing and offloading decisions in mobile edge
computing based on the Stackelberg game. The Journal of Supercomputing
78(6), pp. 7805-7824. DOI: http://dx.doi.org/10.1007/s11227~
021-04246-w.

Liu J., Guo S., Liu K. & Feng L. (2022) Resource provision and allocation
based on microeconomic theory in mobile edge computing. IEEE Transactions
on Services Computing 15(3), pp. 1512-1525. DOI: http://dx.doi.org/
10.1109/TSC.2020.3000050.

Zhang K., Mao Y., Leng S., Maharjan S. & Zhang Y. (2017) Optimal delay
constrained offloading for vehicular edge computing networks. In: 2017 IEEE
International Conference on Communications (ICC), Paris, France, pp. 1-6.
DOI: http://dx.doi.org/10.1109/ICC.2017.7997360.

Kim Y., Kwak J. & Chong S. (2018) Dual-side optimization for cost-
delay tradeoff in mobile edge computing. IEEE Transactions on Vehicular
Technology 67(2), pp. 1765-1781. DOI: http://dx.doi.org/10.
1109/TVT.2017.2762423.

Guo S., Hu X., Dong G., Li W. & Qiu X. (2019) Mobile edge computing
resource allocation: A joint Stackelberg game and matching strategy.
International Journal of Distributed Sensor Networks 15(7). DOI: http://
dx.doi.org/10.1177/1550147719861556.

http://dx.doi.org/10.1109/ICC.2019.8761241
http://dx.doi.org/10.1109/ACCESS.2020.3016046
http://dx.doi.org/10.1109/ACCESS.2020.3016046
http://dx.doi.org/10.1109/TMC.2019.2891736
http://dx.doi.org/10.1109/TMC.2019.2891736
http://dx.doi.org/10.1109/TVT.2020.3045473
http://dx.doi.org/10.1109/TVT.2020.3045473
http://dx.doi.org/10.1109/JIOT.2022.3150955
http://dx.doi.org/10.1109/JIOT.2022.3150955
http://dx.doi.org/10.1007/s11227-021-04246-w
http://dx.doi.org/10.1007/s11227-021-04246-w
http://dx.doi.org/10.1109/TSC.2020.3000050
http://dx.doi.org/10.1109/TSC.2020.3000050
http://dx.doi.org/10.1109/ICC.2017.7997360
http://dx.doi.org/10.1109/TVT.2017.2762423
http://dx.doi.org/10.1109/TVT.2017.2762423
http://dx.doi.org/10.1177/1550147719861556
http://dx.doi.org/10.1177/1550147719861556

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

105

Shi B., Chen F. & Tang X. (2021) Deep reinforcement learning based task
offloading strategy under dynamic pricing in edge computing. In: H. Hacid,
0. Kao, M. Mecella, N. Moha & H.y. Paik (eds.) Service-Oriented Computing,
Springer, Cham, pp. 578-594. DOI: http://dx.doi.org/10.1007/
978-3-030-91431-8_36.

Lyu F, Cai X., Wu F, Lu H., Duan S. & Ren J. (2022) Dynamic pricing
scheme for edge computing services: A two-layer reinforcement learning
approach. In: 2022 IEEE/ACM 30th International Symposium on Quality of
Service (IWQoS), Oslo, Norway, pp. 1-10. DOI: http://dx.doi.org/
10.1109/IWQ0S54832.2022.98128609.

Li L., Siew M., Chen Z. & Quek T.Q. (2021) Optimal pricing for job
offloading in the mec system with two priority classes. IEEE Transactions on
Vehicular Technology 70(8), pp. 8080-8091. DOI: http://dx.doi.org/
10.1109/TVT.2021.3090935.

Seo H., Oh H., Choi J.K. & Park S. (2022) Differential pricing-based task
offloading for delay-sensitive iot applications in mobile edge computing system.
IEEE Internet of Things Journal 9(19), pp. 19116-19131. DOI: http://dx.
doi.org/10.1109/JI0T.2022.3163820.

Baltzis K.B. (2011) Hexagonal vs circular cell shape: A comparative analysis
and evaluation of the two popular modeling approximations. In: A. Melikov
(ed.) Cellular Networks - Positioning, Performance Analysis, Reliability,
InTech, pp. 103-122. DOI: http://dx.doi.org/10.5772/14851.

MacDonald V.H. (1979) Advanced mobile phone service: The cellular concept.
Bell System Technical Journal 58(1), pp. 15-41. DOL: http://dx.doi.
org/10.1002/73.1538-7305.1979.tb02209.x.

Newman M.E.J. (2010) Networks: An Introduction. Oxford University Press,
Oxford, New York.

Albert R., Jeong H. & Barabasi A.L. (1999) Diameter of the world-wide web.
Nature 401, pp. 130-131. DOI: http://dx.doi.org/10.1038/43601.

Jia M., Cao J. & Liang W. (2017) Optimal cloudlet placement and user to
cloudlet allocation in wireless metropolitan area networks. IEEE Transactions
on Cloud Computing 5(4), pp. 725-737. DOI: http://dx.doi.org/10.
1109/TCC.2015.2449834.

Meng J., Shi W., Tan H. & Li X. (2017) Cloudlet placement and minimum-
delay routing in cloudlet computing. In: 2017 3rd International Conference on
Big Data Computing and Communications (BIGCOM), Chengdu, China, pp.
297-304. DOI: http://dx.doi.org/10.1109/BIGCOM.2017.58.

Yao H., Bai C., Xiong M., Zeng D. & Fu Z. (2017) Heterogeneous cloudlet
deployment and user-cloudlet association toward cost effective fog computing.
Concurrency and Computation: Practice and Experience 29(16). DOI: http:
//dx.doi.org/10.1002/cpe.3975.

http://dx.doi.org/10.1007/978-3-030-91431-8_36
http://dx.doi.org/10.1007/978-3-030-91431-8_36
http://dx.doi.org/10.1109/IWQoS54832.2022.9812869
http://dx.doi.org/10.1109/IWQoS54832.2022.9812869
http://dx.doi.org/10.1109/TVT.2021.3090935
http://dx.doi.org/10.1109/TVT.2021.3090935
http://dx.doi.org/10.1109/JIOT.2022.3163820
http://dx.doi.org/10.1109/JIOT.2022.3163820
http://dx.doi.org/10.5772/14851
http://dx.doi.org/10.1002/j.1538-7305.1979.tb02209.x
http://dx.doi.org/10.1002/j.1538-7305.1979.tb02209.x
http://dx.doi.org/10.1038/43601
http://dx.doi.org/10.1109/TCC.2015.2449834
http://dx.doi.org/10.1109/TCC.2015.2449834
http://dx.doi.org/10.1109/BIGCOM.2017.58
http://dx.doi.org/10.1002/cpe.3975
http://dx.doi.org/10.1002/cpe.3975

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

106

Soltan S. & Zussman G. (2016) Generation of synthetic spatially embedded
power grid networks. In: 2016 IEEE Power and Energy Society General
Meeting (PESGM), Boston, MA, USA, pp. 1-5. DOIL: http://dx.doi.
org/10.1109/PESGM.2016.7741383

Léhderanta T., Leppédnen T., Ruha L., Lovén L., Harjula E., Ylianttila M., Riekki
J. & Sillanpidd M.J. (2021) Edge computing server placement with capacitated
location allocation. Journal of Parallel and Distributed Computing 153, pp. 130—
149. DOI: http://dx.doi.org/10.1016/73.jpdc.2021.03.007.

Golbeck J. (2013) Chapter 3 - Network structure and measures. In: J. Golbeck
(ed.) Analyzing the Social Web, Morgan Kaufmann, Boston, pp. 25-44. DOI:
http://dx.doi.org/10.1016/B978-0-12-405531-5.00003-1.

Aggarwal C.C. (2014) An introduction to cluster analysis. In: C.C. Aggarwal
& C.K. Reddy (eds.) Data Clustering: Algorithms and Applications,
Chapman and Hall/CRC, pp. 1-28. DOI: http://dx.doi.org/10.
1201/9781315373515-1.

Reddy C. & Vinzamuri B. (2014) A survey of partitional and hierarchical
clustering algorithms. In: C.C. Aggarwal & C.K. Reddy (eds.) Data Clustering:
Algorithms and Applications, Chapman and Hall/CRC, pp. 87-110. DOI:
http://dx.doi.org/10.1201/9781315373515-4.

Sutton R.S. & Barto A.G. (2018) Reinforcement learning: An introduction. MIT
Press, Cambridge, MA, 2nd ed.

Grondman 1., Busoniu L., Lopes G.A.D. & Babuska R. (2012) A survey of
actor-critic reinforcement learning: Standard and natural policy gradients. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 42(6), pp. 1291-1307. DOIL: http://dx.doi.org/10.1109/
TSMCC.2012.2218595.

Watkins C. & Dayan P. (1992) Q-learning. Machine Learning 8, pp. 279-292.
DOI: http://dx.doi.org/10.1007/BF00992698.

Rummery G. & Niranjan M. (1994), On-line g-learning using connectionist
systems. Technical Report CUED/F-INFENG/TR 166.

Williams R.J. (1992) Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning 8, pp. 229-256. DOI:
http://dx.doi.org/10.1007/BF00992696.

Wang X., Wang S., Liang X., Zhao D., Huang J., Xu X., Dai B. & Miao Q.
(2022) Deep reinforcement learning: A survey. IEEE Transactions on Neural
Networks and Learning Systems (Early access), pp. 1-15. DOL: http://dx.
doi.org/10.1109/TNNLS.2022.3207346.

Li Y. (2018), Deep reinforcement learning: An overview. arXiv:1701.07274.
DOI: http://dx.doi.org/10.48550/ARXIV.1701.07274.

http://dx.doi.org/10.1109/PESGM.2016.7741383
http://dx.doi.org/10.1109/PESGM.2016.7741383
http://dx.doi.org/10.1016/j.jpdc.2021.03.007
http://dx.doi.org/10.1016/B978-0-12-405531-5.00003-1
http://dx.doi.org/10.1201/9781315373515-1
http://dx.doi.org/10.1201/9781315373515-1
http://dx.doi.org/10.1201/9781315373515-4
http://dx.doi.org/10.1109/TSMCC.2012.2218595
http://dx.doi.org/10.1109/TSMCC.2012.2218595
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1109/TNNLS.2022.3207346
http://dx.doi.org/10.1109/TNNLS.2022.3207346
http://dx.doi.org/10.48550/ARXIV.1701.07274

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

107

Hernandez-Leal P., Kartal B. & Taylor M.E. (2019) A survey and critique
of multiagent deep reinforcement learning. Autonomous Agents and Multi-
Agent Systems 33(6), pp. 750-797. DOI: http://dx.doi.org/10.
1007/s10458-019-09421-1.

Hernandez-Leal P., Kaisers M., Baarslag T. & de Cote E.M. (2019),
A survey of learning in multiagent environments: Dealing with non-
stationarity. arXiv:1707.09183. DOI: http://dx.doi.org/10.48550/
ARXIV.1707.09183.

Zhang K., Yang Z. & Basar T. (2021) Multi-agent reinforcement learning: A
selective overview of theories and algorithms. In: K.G. Vamvoudakis, Y. Wan,
FL. Lewis & D. Cansever (eds.) Handbook of Reinforcement Learning and
Control, Springer, Cham, pp. 321-384. DOI: http://dx.doi.org/10.
1007/978-3-030-60990-0_12.

Gronauer S. & Diepold K. (2022) Multi-agent deep reinforcement learning: A
survey. Artificial Intelligence Review 55(2), pp. 895-943. DOI: http://dx.
doi.org/10.1007/s10462-021-09996-w.

Lovén L., Peltonen E., Ruha L., Harjula E. & Pirttikangas S. (2022) A dark and
stormy night: Reallocation storms in edge computing. EURASIP Journal on
Wireless Communications and Networking 2022(1). DOI: http://dx.doi.
0org/10.1186/s13638-022-02170~y.

Li B, Wang K., Xue D. & Pei Y. (2018) K-means based edge
server deployment algorithm for edge computing environments. In: 2018
IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &
Trusted Computing, Scalable Computing & Communications, Cloud &
Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China,
pp. 1169-1174. DOI: http://dx.doi.org/10.1109/SmartWorld.
2018.00203.

Guo Y., Wang S., Zhou A., XuJ.,, Yuan J. & Hsu C.H. (2020) User allocation-
aware edge cloud placement in mobile edge computing. Software: Practice and
Experience 50(5), pp. 489-502. DOI: http://dx.doi.org/10.1002/
spe.2685.

Wang S., Zhao Y., Xu J., Yuan J. & Hsu C.H. (2019) Edge server placement in
mobile edge computing. Journal of Parallel and Distributed Computing 127,
pp. 160-168. DOI: http://dx.doi.org/10.1016/7.Jjpdc.2018.
06.008.

LeCun Y.A., Bottou L., Orr G.B. & Miiller K.R. (2012) Efficient backprop. In:
G. Montavon, G.B. Orr & K.R. Miiller (eds.) Neural Networks: Tricks of the
Trade, Springer, Berlin, Heidelberg, pp. 9-48. DOIL: http://dx.doi.org/
10.1007/978-3-642-35289-8_3.

http://dx.doi.org/10.1007/s10458-019-09421-1
http://dx.doi.org/10.1007/s10458-019-09421-1
http://dx.doi.org/10.48550/ARXIV.1707.09183
http://dx.doi.org/10.48550/ARXIV.1707.09183
http://dx.doi.org/10.1007/978-3-030-60990-0_12
http://dx.doi.org/10.1007/978-3-030-60990-0_12
http://dx.doi.org/10.1007/s10462-021-09996-w
http://dx.doi.org/10.1007/s10462-021-09996-w
http://dx.doi.org/10.1186/s13638-022-02170-y
http://dx.doi.org/10.1186/s13638-022-02170-y
http://dx.doi.org/10.1109/SmartWorld.2018.00203
http://dx.doi.org/10.1109/SmartWorld.2018.00203
http://dx.doi.org/10.1002/spe.2685
http://dx.doi.org/10.1002/spe.2685
http://dx.doi.org/10.1016/j.jpdc.2018.06.008
http://dx.doi.org/10.1016/j.jpdc.2018.06.008
http://dx.doi.org/10.1007/978-3-642-35289-8_3
http://dx.doi.org/10.1007/978-3-642-35289-8_3

[133]

[134]

[135]

[136]

[137]

108

Henderson P., Islam R., Bachman P., Pineau J., Precup D. & Meger D. (2018)
Deep reinforcement learning that matters. Proceedings of the AAAI Conference
on Artificial Intelligence 32(1). DOI: http://dx.doi.org/10.1609/
aaai.v3211.11694.

Papadimitriou C.H. (1981) On the complexity of integer programming. Journal
of the ACM 28(4), pp. 765-768. DOIL: http://dx.doi.org/10.1145/
322276.322287.

Xiao M., Shroff N. & Chong E. (2003) A utility-based power-control scheme
in wireless cellular systems. IEEE/ACM Transactions on Networking 11(2), pp.
210-221.DOI: http://dx.doi.org/10.1109/TNET.2003.810314.

Calvano E., Calzolari G., Denicolo V. & Pastorello S. (2020) Artificial
intelligence, algorithmic pricing, and collusion. American Economic Review
110(10), pp. 3267-3297. DOI: http://dx.doi.org/10.1257/aer.
20190623.

Beneke F. & Mackenrodt M.O. (2018) Artificial intelligence and collusion. IIC -
International Review of Intellectual Property and Competition Law 50, pp. 109—
134. DOI: http://dx.doi.org/10.1007/s40319-018-00773-x.

http://dx.doi.org/10.1609/aaai.v32i1.11694
http://dx.doi.org/10.1609/aaai.v32i1.11694
http://dx.doi.org/10.1145/322276.322287
http://dx.doi.org/10.1145/322276.322287
http://dx.doi.org/10.1109/TNET.2003.810314
http://dx.doi.org/10.1257/aer.20190623
http://dx.doi.org/10.1257/aer.20190623
http://dx.doi.org/10.1007/s40319-018-00773-x

Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5

109

9. APPENDICES

EISim command-line arguments

Edge server specifications for EISim evaluation
Edge device specifications for EISim evaluation
Application specification for EISim evaluation
Simulation settings for EISim evaluation

Appendix 1. EISim command-line arguments 110
Table 7. Command-line arguments available in EISim
Option Long Required Description Default
Option
1 input Yes Path to the folder that contains the -
setting files
0 output Yes Path to the folder where the -
simulation results are saved
m model- Yes Path to the folder where the agent -
folder models are saved
S seed No A random seed for the simulation -
T train No A flag for turning on the training -
mode
R random- No Determines how many times at 0
steps the beginning of a simulation each
pricing agent decides the price
randomly
r replay- No The length of the experience 2000
size replay
b batch-size No The size of a mini-batch for 128
training
d discount- No The reward discount factor 0.99
factor
a actorlr No The learning rate for actor 0.001
network
c criticlr No The learning rate for critic 0.001
network
t tau No The parameter used for updating 0.005
the actor and critic target
networks
u updates No Determines how many times 1
models are updated at the
beginning of a new slot
N noisesd No The standard deviation for a 0.5
zero-mean Gaussian noise process
D noise- No The rate at which noise in action le-6
decay selection is decayed during

training

Appendix 2. Edge server specifications for EISim evaluation 111

Table 8. Edge server specifications used in EISim evaluation

20 high-capacity servers

100 low-capacity servers

Idle consumption (W)
Max consumption (W)
Cores

MIPS per core

RAM (MB)

Storage (MB)

105

185

15

20,000
80,000
1,280,000

45

95

6
10,000
16,000
256,000

Appendix 3. Edge device specifications for EISim evaluation 112

Table 9. Mobile device specifications used in EISim evaluation

Device Device Device Device
type 1 type 2 type 3 type 4
Percentage 30 40 20 10
Speed (m/s) 1.1 1.1 0.6 0
Min pause duration (s) 60 60 180 0
Max pause duration (s) 300 300 600 0
Min mobility duration (s) | 60 60 60 0
Max mobility duration (s) | 300 300 300 0
Battery capacity (Wh) 19.25 154 259 56.5
Idle consumption (W) 0.9 0.6 1.1 1.7
Max consumption (W) 6.2 5.5 6.5 23.6
Cores 6 4 4 6
MIPS per core 6,000 4,000 3,000 7,000
RAM (MB) 6,000 4,000 2,000 8,000
Storage (MB) 128,000 64,000 32,000 256,000

Appendix 4. Application specification for EISim evaluation 113

Table 10. Application specification used in EISim evaluation

Parameter Value

Poisson rate 1

Latency (s) 0.5

Request size (kB) U(100, 1000)

Container size (kB) | Equal to request size
Result size (kB) U(0.2, 0.8) * request size

Task length (MlIs)

exp(2000)

Appendix 5. Simulation settings for EISim evaluation

Table 11. Simulation parameters used in EISim evaluation

114

Parameter Meaning Value
simulation_time Simulation time in minutes 60 (1
hour)
parallel_simulation Whether to run simulation scenarios in parallel true
update_interval Mobility and energy consumption update 1
interval for the computing nodes in seconds
display_real _ Whether to display charts false
time_charts
length Length of the simulation area in meters 1100
width Width of the simulation area in meters 1100
edge_devices_range The radius in which two devices, or a device 48
and an edge datacenter, can offload to each
other in meters
edge_datacenters_ Coverage in meters 48
coverage
enable_registry Whether the device will download the false
application from a registry after receiving the
offloaded task
enable_orchestrators When enabled, tasks will be sent to a another false
device/server to make the offloading decisions,
otherwise each device makes its own
offloading decisions
wait_for_all_tasks Whether to stop the simulation when the time true
ends or wait for all the tasks to get executed
batch_size For scheduling tasks in batches to reduce the 100
event queue size
min_number_ Minimum number of edge devices 1000
of_edge_devices
max_number_ Maximum number of edge devices 4000
of_edge_devices
edge_device_ Step size for the edge device count 1000
counter_size
realistic_network__ Whether to simulate transfers in network links false
model more realistically
network_update_ Transfer update interval for network links in 1

interval

seconds

Continued on the next page

Appendix 5. Simulation settings for EISim evaluation 115

Table 11. Simulation parameters used in EISim evaluation (continued)

Parameter Meaning Value

man_bandwidth MAN link bandwidth in megabits per seconds 1000
(Mbps)

man_latency MAN link latency in seconds 0.005

man_nanojoules_ MAN link energy consumption per transferred 0

per_bit bit

wifi_bandwidth Wi-Fi bandwidth in Mbps 1300

wifi_device_ Edge device energy consumption per 283.17

transmission__ transmitted bit

nanojoules_per_bit

wifi_device_ Edge device energy consumption per received 137.01
reception_ bit
nanojoules_per_bit

wifi_access_ point_ AP energy consumption per transmitted bit 23.8
transmission__
nanojoules_per_bit

wifi_access_ point_ AP energy consumption per received bit 23.8
reception_
nanojoules_per_bit

wifi_latency Wi-Fi link latency in seconds 0.0025

orchestration__ Defines which nodes can be considered as EDGE_
architectures offloading destinations in orchestration ONLY

	Introduction
	Background
	Contribution

	Literature Review
	Definitions
	General Terminology
	Control Topologies

	The Simulation of Edge and Fog Environments
	Motivation for Simulation
	Building Simulation Models
	Edge and Fog Simulators

	Orchestration
	Offloading and Pricing
	Offloading to the Edge
	Resource Pricing
	Offloading with Pricing

	Methods and Tools
	Metropolitan Area Network Creation
	Access Point Placement, Topology Creation and Edge Server Placement
	Edge Server Clustering and Cluster Head Selection

	Reinforcement Learning
	Single-agent Reinforcement Learning
	Multi-agent Reinforcement Learning
	Deep Deterministic Policy Gradient

	PureEdgeSim
	Inputs
	Architecture
	Simulation Workflow

	EISim Implementation and Evaluation
	Architecture
	Default Implementations
	Price Decisions
	Task Orchestration Decisions

	Use and Extensibility
	Additional Tools
	Evaluation
	Scenarios
	Simulation Environment
	Specifications and Settings

	Results
	Hyperparameter Tuning
	Training
	Evaluation
	Efficiency of EISim

	Discussion
	Significance and Limitations
	Future Work

	Summary
	REFERENCES
	Appendices

