
Scheduling of Fog Networks with Optimized
Knapsack by Symbiotic Organisms Search

Dadmehr Rahbari, Mohsen Nickray
Department of Computer Engineering and Information Technology, university of Qom

Qom, Iran

d.rahbari@stu.qom.ac.ir, m.nickray@qom.ac.ir

Abstract—Internet of things as a concept uses wireless sensor
networks that have limitations in power, storage, and delay
when processing and sending data to the cloud. Fog computing
as an extension of cloud services to the edge of the network
reduces latency and traffic, so it is very useful in healthcare,
wearables, intelligent transportation systems and smart cities.
Scheduling is the NP-hard issues in fog computing. Edge devices
due to proximity to sensors and clouds are capable of processing
power and are beneficial for resource management algorithms.
We present a knapsack-based scheduling optimized by symbiotic
organisms search that is simulated in iFogsim as a standard
simulator for fog computing. The results show improvements
in the energy consumption by 18%, total network usage by
1.17%, execution cost by 15%, and sensor lifetime by 5% in
our scheduling method are better than the FCFS (First Come
First Served) and knapsack algorithms.

I. INTRODUCTION

In today’s world, many communication devices have built-
in wireless sensors, with a large number of them distributed in
a wide range and are still rising. Wireless sensor networks
collect data on medical care systems, transportation, smart
cities and more. These networks require real-time processing
and decision-making as the infrastructure for the IoT (Internet
of Things). In a cloud-based system, collected data should be
transmitted to the cloud over a period of time and cost, and
processed there. In fact, processing in the cloud has a lot of
delays and bottlenecks for a large amount of data collected by
end devices and sensors [1]. High delays in applications such
as medical care, in very sensitive cases can cause a patient’s
death or cause a collision in the transportation system.

Fog computing places at the middle level between cloud and
sensor nodes, so that data collection, processing, and storage
can be done locally and only when the data is required to be
transmitted to the cloud. The processing of the fog, due to the
proximity of the sensors to the edge of the network, makes
processing faster and also reduces network traffic. The fog
computing with a large number of nodes has lower energy
consumption than centralized cloud computing systems [2]. The
fog computing architecture has a hierarchical arrangement of
sensor nodes, edge devices, and cloud. Sensors are located in
the lower geographic location at the bottom of the architecture
and send the collected data to the up-level by gateway [3]. The
actuators at the bottom of the fog architecture control the
environment or change it. Operations performed in the fog
include sensing and sending data, processing in the fog device,
dividing an application into several modules, and allocating
resources to them for execution. Applications are used to collect
and store data in micro data centers as well as future

analyzes and processes.

In iFogsim as an extension of Cloudsim, the application
modules are defined as nodes and the connection between them
as the edge in the fog network topology. Therefore, different
applications of the fog network have different topologies. The
client applications on the fog network can run as Cloudlet in
virtual machines (VM) and provide flexibility, mobility,
scalability, and elasticity [4]. Cloudlets in fog devices can do a
variety of calculations, filter data to remove unnecessary items,
and also assign a label to the data. So the tasks of the Cloudlets
are executed in the VM. The VMs provide the resources to the
applications by creating a multiple and shared status of the
hardware. An optimal policy for allocating VMs will increase
the productivity of resources inside the data center [5].

The scheduling process of programs in a distributed environ-
ment involves assigning resources to tasks in a specified order.
Each VM is cost-effective, so configuring VMs for tasks is a
challenge [6]. Performance measurements include processor
efficiency, power consumption, runtime, and security. One of
the solutions to this problem is the knapsack. Knapsack is an
optimization problem in two ways, which includes the arbitrary
and 0-1 [7]. Symbiotic organisms search (SOS) [8] is used to
optimize the knapsack, we use it to reduce the time delay in
optimal allocation of VMs in the fog network. Our scheduling
strategy as KnapSOS is simulated in the fog network with two
case studies. Our proposed simulation test is based on the
collection of data related to the tracking of objects and humans,
the transmission of data to the edge of the network, processing
and sending them to the cloud. The simulation results are
compared with the knapsack and FCFS algorithm. Our key
contributions in this work are following:

In the following of the paper, Section II summarizes the related
works with scheduling methods in cloud and fog networks.
Fog network with two case studies as tracking applications
is presented in Section III. In Section IV, we exactly explain
the KnapSOS approach for scheduling. Details of the test and
results are presented in Section V. The conclusion of this work
is in Section VI.

II. RELATED WORK

Scheduling is the optimal use of CPU time and proper
allocation of resources to programs. The main task of the
scheduler is to decide which process to run in the next step by
having a set of applicable processes. The scheduling objectives
include cost, makespan, workload maximization, VM utiliza-

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201344828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tion, energy consumption, reliability awareness and security
awareness. The Optimization strategies are heuristics, meta-
heuristics [7], [9] and other methods as following. Resource
models include VM leasing model, single or multiple VM type,
single or multiple provider, intermediate data sharing model,
data transfer and storage cost awareness, static, dynamic,
subscription and time unit VM pricing model and VM pro-
visioning delay [9], [10]. Scheduling strategies have different
parameters and algorithms. We categorized these methods
into traditional, heuristic, and meta-heuristic according to the
following:

In scheduling of multilevel deadline-constrained scientific
workflows, each provider offers a few heterogeneous VMs and
a global storage service for data sharing [11]. One of the
scheduling methods is earliest finish time, in which cost and
makespan objectives are optimized. In [12],the authors
analyzed commercial infrastructure as a cloud service. They
used Pareto front as a tool of the decision support for the trade-
off of appropriate solutions and proved that by increasing the
makespan of 5% they could reduce the scheduling cost by half.
In another way, task scheduling with fault-tolerant considered
by bidding strategy for spot VMs and latest time to on-demand
instances. The bidding starts at near spot price and increases
during runtime, so that prices are close to demanding. The
problem of this method is to reduce efficiency by using the
cheapest spot VM [13]. In [14], the authors presented a real-
time workflow scheduler based on hardware failures. Their
algorithm is include shifting of the start time of the task without
any change in its status and sub-set, resource scaling up for
increasing capability of the VM processing or VM creation for
adapting with the new task, and shrinking of processing
capacity if the resource is idle for a certain period of time.

In [15], the authors studied the impact of quality of service on
three scheduling method in fog network. These meth-ods
include the concurrent, FCFS, and delay-priority. In the
concurrent way, the arrival applications are allocated to a
cloudlet regardless of usage capacity. In the FCFS method, the
applications run in the order of entry, and if the processing
power of the data center is less than the program request, then
that program is placed in the scheduler queue. In delay-priority
strategies, the applications scheduled based on lower delay. The
researcher used iFogsim library with two games based on EEG
signals as VSOT (video surveillance/object tracking
application) and EEGTBG (EEG tractor beam game) and run
those three expressed scheduling methods. The results show
that greater delay and the number of modules per device of the
concurrent method than FCFS and delay-priority. In the final
comparison, the number of modules per device for delay
priority method is approximately equal to all methods.

In the heuristic model, the solution of problem found by a
number of rules. The classic heuristics include the first fit, best
fit, and worst fit, so that the cloud and fog providers can run
applications and tasks in large-scale and offloading states [9] by
those methods. In [16], the tasks are scheduled with a heuristic
algorithm, such that the objective function includes the
makespan and the cost of executing the tasks. Results show
increased efficiency and lower mandatory cost. In [17] a
coalitional game based on cluster formation (CGBCF) proposed
for radio access networks in the fog, which used cost by
fetching contents missed in the cache, also it optimized the
throughput of the network with a distributed user scheduling

algorithm. Another method for vehicular cloud scheduling is a
dynamic algorithm [18] by queue’s length and response time
parameters. Markov single server system scheduled tasks and
modeled by stochastic Petri net. The simulation software of
their work was OpenStack. In [19], parallel Real-time tasks
in the heterogeneous network are scheduled by the heuristic
method. The steps of algorithms include frequency selection,
thread allocation, and Nonlinear programming also, objective
parameters are based on the energy of the executive threads.
In meta-heuristics model, general algorithms are designed to
solve optimization problems [6]. Particle swarm optimization
(PSO) is a used method for resource provisioning and schedul-
ing that considers features such as the elastic provisioning and
heterogeneity of unlimited compute resources as well as VM
performance variation. In [20], bee’s life algorithm (BLA) is
proposed for the job scheduling problem in the fog network.
Ant colony optimization (ACO) is a heuristic method for
mobile cloud computing [21] that requires specific resources.
This method executes offloaded Tasks in fog devices by delay,
complete time, and energy consumption objectives.

In [22], the researchers have proposed the knapsack for task
scheduling of parallel video transferring in the cloud, based on
minimum complete time (MCT). They used the max min
algorithm by estimating the maximum powerful computers and
mapping to a number of segments and then scheduled segments
by MCT algorithm. The results show that the max min algo-
rithm is better than MCT in the execution time and the number
of segments. The authors in [23], found the optimal orders of
running tasks based on deadline and minimum cost by using of
knapsack with dynamic programming. They considered small
capacities of sub problems and obtained the best values of
parameters include deadline in unpredictable tasks, the network
congestion and the inaccurate task size. The different
scheduling problem solved in [24] by optimized knapsack.
They managed the smart grid using knapsack problem and
consider the start timing objective. They used ACO to find the
best solution, as they performed a mapping between multiple
knapsacks and load scheduling. In [25], a resource scheduling
in cloud solved by the combination of the knapsack and genetic
algorithm (GA) with the fitness function include utilization of
CPU, network throughput, and input/output rate of the disk.
They decreased the energy consumption of physical machine
and the number of migration than standard methods.

A variety of studies have been done on cloud in Cloudsim li-
brary. Some fog computing projects are simulated in Cloudsim
[27] or different programming languages. iFogsim as an exten-
sion of Cloudsim is very suitable for fog computing simulation.
Also, many of the meta-heuristic scheduling algorithms are
very timely, so we use an optimized knapsack algorithm by
SOS for fast execution and best results.

III. APPLICATIONS AND SYSTEM MODELS

Fog computing runs applications in fog devices between
end devices and cloud. We use this paradigm with the benefits
of cloud and edge for distributed data and low latency. IoT
sensors are located in the lower layer of the architecture, which
are responsible for receiving and transmitting data through
the gateways to the higher layer, and also the actuators in
the lowest level, are responsible for system controls. In fact,
fog computing provides filtering and analysis of data by
edge devices. Each application of fog network has a different

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 279 ----------------------------------------------------------------------------



topology. The iFogsim simulator has a graphical user interface
(GUI) module for designing custom and ready topologies [1].
Sensors, actuators, fog, cloud, and link elements can be added
to the topology via this GUI. We create a case study with
the new topology for healthcare environment and use a case
study in iFogsim. These topologies can be read and executed
by other modules in the simulator.

Fig. 1. Fog network topology

A. Case study 1: intelligent surveillance through distributed
camera networks

This case is based on a distributed system of monitoring
cameras in areas of healthcare, transportation, security, and
manufacturing [1]. The application model for this case in-
cludes five functions.Object and motion detection in raw video
streams by the camera. Object tracker for calculation of an
optimal PTZ configuration. PTZ configuration is for adjusting
the physical camera and serving as the actuator. User Interface,
for sending a fraction of the tracked object to the user’s device.
The physical topology of case study III-A as DCNSGame is
shown in Fig. 1. In this architecture, all cases in the dotted
box are fog devices, Mi is module i and mi is mobile i.

B. Case study 2: elderly human’s activity detection

We present a novel application for elderly human’s activity
detection (EAHD) in the smart homes. The aging population
have special health issues. The goals of such systems include
monitoring and prediction of special health, daily activities,
anomalous situations [26]. In order to identify the breakdown
events, we simulate the gyroscope sensor for angular velocity
and orientation detection and also accelerometer sensor for
ambulatory activity. As EAHD process in the first step, data
received from the sensors, in the second step, tracker unit
recognizes the human activity or break down and in the third
step, the result checks by controller unit and show the message
in display monitor. The simulation of this application in fog
network topology is based on Fig. 1.

C. Cloud concepts in fog

At the highest level of the fog computing architecture, there
is a cloud. iFogsim uses the Cloudsim classes like Cloudlet,

VM, data center, broker and so on [27] for communication with
the cloud. The VM class, model a virtual machine interface
by the host component. A host can simultaneously manage
multiple virtual machines and allocate cores according to
predetermined policies, in a time or spatial subscription. Each
component of the virtual machine has access to the component
that stores the characteristics of the virtual machine, such
as memory, processor, storage space, and internal virtual
machine timing policy that is derived from the VMScheduling
abstract component. Cloudlet is for cloud modeling services
generally featured in data centers have been implemented.
Cloudsim shows the complexity of an application in terms of
its computational requirements. Each program component has
a preset command length. Each component of the program,
in addition to its command length, also has the amount of
data transmission that must be considered for the successful
hosting of the program. The data center as a cloud hardware
unit has a set of policies for allocating bandwidth, memory,
storage devices to hosts, and VMs. The broker as an interface
in the cloud carries out the task of mediating between users
and service providers that require users based on the quality
of their services.

IV. PROPOSED APPROACH

The scheduling is NP-hard problem and those have high
execution time. So, we propose a fast method for VM al-
location to applications. The default resource scheduler in
simulator equally divides a fog device’s resources among all
active application modules. In fact, by running of simulation
and after a process as Algorithm 2, each application creates
N modules as {M1, M2, M3, . . . , Mn}. Our proposed
algorithm, schedule these modules for VM allocation. We
change the original application scheduling policy by changing
the updateAllocatedMips method in FogDevice class [1] with
symbiotic organisms search based on knapsack algorithm and
called it by KnapSOS.

A. Symbiotic Organisms Search

SOS algorithm is based on the two-paired relation of
organisms, which can be found in the whole ecosystem by
performing three steps. In the first phase, mutualism, two
organisms together, both benefit. In the second phase, commen-
salism, one of the organisms benefits, and the another organism
does not benefit or harm. In the third phase, parasitic, one of
the organisms benefits, and another does not benefit [8]. We
consider each VM as an organism in the ecosystem. According
to Algorithm 1, there is three phase in SOS as the following.
Mutualism phase include 1: random selection of an organism,
2: calculate the mutual relationship vector (MV) and benefit

factor (BF), MV = (Xi+Xj)
2 , 3: (BF1,BF2) are random

numbers either 1 or 2, 4: update organism Xi and Xj based
on their mutual relationship, 5: Xinew = Xi + rand(0, 1) ∗
(Xbest−MV ∗BF1) , Xjnew = Xj+rand(0, 1)∗(Xbest−
MV ∗ BF2), 6: calculate the fitness value of the updated
organisms. If the updated organisms fitter than the previous
then accept them.
Commensalism phase include 1: random selection of an or-
ganism Xj , 2: update organism Xi with the assist of organism
Xj , 3: calculate fitness value of the new organism, 4: if the
updated organism fitter than the previous the accept it.

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 280 ----------------------------------------------------------------------------



Parasitism phase include 1: random selection of an organism
Xj , 2: create a parasite (PV) from organism Xi, 3: calculate
fitness value of the new organism, 4: if PV fitter than organism
Xj then replaces organism Xj with PV.

Algorithm 1 KnapSOS scheduling
Initializing of VM scheduler.
Calculate Fitness by utilization of CPU and VM bandwidth.
Build the knapsack items
Start SOS:
Initialize ecosystem and maximum iteration
for i = 1 to MaximumIteration do

for each organism in the ecosystem do
Mutualism phase
Commensalism phase
Parasitism phase
Update the best organism

end for
end for

In EAHD Algorithm 2, the fog broker and application are
created and for each camera and area create a fog device. The
applications add to fog broker with the creation of fog devices.
The modules of applications create in fog devices and related
with together based on EAHD model. The next step is module
mapping and the start of iFogsim with scheduling of modules
for VM allocation by KnapSOS Algorithm 1.

Algorithm 2 EAHD with KnapSOS scheduling
1: Create fog broker and applications.
2: Add an application to fog broker.
3: for i = 0 to i ≤ numberofareas do
4: for i = 0 to i ≤ numberofcameras do
5: Create Fog device (Node name, MIPS, ram, upper
bandwidth, lower bandwidth, busy power, idle power).

6: end for
7: end for
8: Add modules(sensor data stream, activity tracker, con-
troller, display) to fog device.

9: Connecting the modules with edges.
10: Defining the input-output relationships and loops of

the application modules. SensorDataStream →
ActivityTracker → Controller → Display

11: Initializing a module mapping.
12: Submit applications.
13: Start iFogsim.
14: Call KnapSOS scheduling
15: for Each VM do
16: if input application module is running in current VM

then go to next VM.
17: else Allocate application module to VM.
18: end if
19: end for
20: Update energy consumption.
21: Stop iFogsim.
22: 18: Output result evaluation.

Fitness =
1

TUC +BW
. (1)

The KnapSOS uses 1 as fitness function to allocate the VM
to modules. In Formula (1), TUC is the total utilization of
CPU for allocated VM to application module and BW is the
bandwith of the application module. According to iFogsim,
the brokers, applications, fog devices, and needed relations are
created and then scheduler is called for resource allocation. In
pseudo code 2, all steps are defined to execute our algorithm
for each case study. The execution cost parameter is based on
Formula (2) as the following:

Cost = TC + CC ∗ LUUT ∗RPM ∗ LU ∗ TM. (2)

In Formula (2), TC is the execution cost, CC is the CloudSim
clock, LUUT is the last utilization update time, RPM is the
rate per MIPS, LU is the last utilization, and TM is the total
MIPS of the host. The total network usage is based on Formula
(3).

Networkusage =
(TL ∗ TS)
MST

. (3)

In Formula (3), TL and TS are the total latency and the
total size of tuple, and MST is the maximum simulation time.
Also, the energy consumption of simulator is calculated for
full topology of the network with Formula (4).

energy = CEC + (NT − LUUT ) ∗HLU. (4)

In Formula (4), CEC is the current energy consumption, NT
is the now time, LUUT is the last utilization update time
and HLU is the last utilization of host. The execution cost
parameter is calculated in ifogsim by FogDevice class as
Formula (4). We compare the proposed method with default
FCFS algorithm in the simulator and knapsack algorithm using
the above parameters. In order to place each component in the

Algorithm 3 Create application
1: Add all modules to the application (module name, ram
capacity).

2: Add all edges between modules for the application
(source, destination module name, tuple CPU length, and
direction).

3: Add tuple mapping (module name, input tuple type, output
tuple).

4: Add Loops of modules.

Algorithm 4 Create fog device
1: Createprocessor list.
2: Create hosts (Input, OS, VMs, cost, cost per storage).
3: Create storage list.
4: Set latency, upper and lower bandwith.
5: Mapping application to modules.

fog topology, a fog device is created as Algorithm 4. Tuples
are a communication unit between components in iFogsim that
are presented in a class. They are inherited from the Claudlet
class in Cloudsim [1]. Each fog device is a micro data center
with all the same features as the cloud data center with the
lower processors and hosts. The fog devices are close to sensor
nodes and cloud, so they can perform fast processing and local
storing of the received data. The applications in fog devices
have some modules are like cloudlet in the cloud.

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 281 ----------------------------------------------------------------------------



Fig. 2. Energy consumption of two case studies by FCFS, knapsack and
KnapSOS scheduling method

In Algorithm 2, to create the applications, modules or map
applications to modules in directed graph, the FogDevice class
is used. The input/output relationships are defined by tuples. In
the final step, some loops are defined for monitoring latency of
object trackers. Above steps show in Algorithm 3 and call in
Algorithm 2. After changing of updateAllocatedMips function
in FogDevice class, we run two case studies and analysis the
iFogsim outputs. The KnapSOS algorithm help us to decrease
the energy consumption and delay in fog computing.

V. EXPERIMENT AND RESULTS

The simulation environment for this research is iFogsim
library[1]. This Java language library has modules and classes
needed to simulate fog computing. The iFogsim package and
its classes are related to Cloudsim library. Our system for
execution is PC with properties include Intel Core i5 CPU 2.67
Giga Hertz, 3 gigabyte RAM, and OS as Microsoft windows
10 32-bit. To run the novel scheduling algorithm, we use two
case studies that presented in III-A,III-B and then compare
the results with it. Also, We run the simulation by FCFS as
an original scheduling method in the simulator, knapsack and
KnapSOS algorithms, for each of the two case studies. There
are 4 states of areas and mobile devices as (Area, Mobile) =
(1, 1), (1, 2), (2, 1), (2, 2). The initialization values of iFogsim
entities as following:

1: In application modules, MIPS is 1000, size in memory is
10 Megabyte, bandwidth is 1000 KBs, and ram capacity is 10.

2: In fog devices, storage capacity is 1 Gigabyte, bandwidth
is 10000 KBS, the cost of using processing in this resource is
3.0, the cost of using memory in this resource is 0.05, the cost
of using storage in this is 0.001.

3: In proxy server, the latency of connection between proxy
server and cloud is 100 ms.

4: In mobile devices, latency of connection between mobiles
and the parent fog device is 1 ms.

We run the simulation for 24 times as 4 states of (area, mobile)
and 3 methods include FCFS, Knapsack, and KnapSOS with 2
case study include DCNS and EAHD for each ot them. Our
comparison is based on best results of the same configuration for
case studies. In Fig. 2, we show the exact values of energy
consumption in two case studies, so that all values are reduced
by 13325117.71 value because it displays small values rather
than large real values. The simulation results show that
knapsack and KnapSOS methods obtain less energy
consumption than the FCFS scheduling policy. As Fig.

Fig. 3. Total network usage of two case studies by FCFS, knapsack and
KnapSOS scheduling method

Fig. 4. Comparison of execution cost in cloud of two case studies by FCFS,
knapsack and KnapSOS scheduling method

DCNS case study III-A reduced the energy consumption by
knapsack 14% and by KnapSOS 18%. This parameter for
EAHD by knapsack has 1% increase and 5% reduction by
KnapSOS. So the knapsack algorithm and KnapSOS are
suitable and optimal than original FCFS allocation policy for
VM allocation and scheduling in iFogsim simulator. In Fig.
3, we reduce all values from 2424.30 value as the average
of total network usage in DCNS game has increased by
knapsack 1.10% and by KnapSOS 1.17%. This parameter has
increased for EAHD by knapsack 1.09% and by KnapSOS
1.10%. The total network usage parameter by knapsack and
KnapSOS algorithm is more efficient than FCFS. As Fig. 4,
the simulation cost in DCNS is decreased by knapsack 5% and
KnapSOS 15%, also this parameter is decreased in EAHD by
knapsack 1% and KnapSOS by 11%. In Fig. 4, we show that
a few increase in execution cost but with the increase of area
and activity tracker, the cost is reduced. For better illustration,
all values in Fig. 4 are reduced by 7255.49 value. Comparing
of two methods in this work with FCFS algorithm shows that
our strategy has the lower energy consumption and execution
cost in the cloud for two case studies in the fog computing and
also our proposed algorithms increase the total network usage

TABLE I. COMPARISON OF CASE STUDIES.

Case study Algorithm Energy Network Usage Cost

DCNS
FCFS Medium Medium Medium

Knapsack Low Medium Low
KnapSOS Low Low Low

EAHD
FCFS High High High

Knapsack Medium High Medium
KnapSOS Low Medium Low

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 282 ----------------------------------------------------------------------------



than original method of iFogsim. The evolutionary algorithms
and meta-heuristic methods are good for objective optimization
but those have higher execution time than knapsack algorithm,
therefore, optimization of knapSOS algorithm is the better idea
for scheduling of fog computing. The comparison of two case
studies is shown in Table I. We show that the performance
of FCFS, knapsack and KnapSOS algorithms by three levels
as low, medium, and high values. For instance in DCNS case
study III-A, the energy and execution cost are reduced than
FCFS from medium to low and these parameters for EAHD
case study III-B are decreased from high to medium and low.

VI. CONCLUSIONS

Because the clouds are located far away from the sensors
and the data transmission has a lot of overhead and delay,
so fog computing has an acceptable architecture for sensor
applications. IoT applications as health care, vehicle, smart
home, and so on have delay limitation. Fog computing with
low latency and low traffic is the best framework for IoT
environment. We optimize the iFogsim packages by the pre-
sentation of two new scheduling algorithms in fog devices.
Our proposed methods are based on knapsack and KnapSOS
algorithm that are simulated by two tracker case studies
based on camera sensors with actuators. The results show
that the average of parameters include energy consumption
by knapsack 7% and KnapSOS 12%, total network usage by
knapsack 1.09% and KnapSOS 1.14%, and the lifetime of
sensors by 5% improve the original scheduling method in the
simulator. Therefore, our proposed algorithm as KnapSOS for
fog scheduling is better than the original FCFS algorithm and
knapsack in iFogsim. In our future work, we are doing research
the meta-heuristic algorithms for fog network scheduling with
security considerations in other case studies.

REFERENCES

[1] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in internet of things, edge and fog computing environments,” arXiv
preprint arXiv:1606.02007, 2016.

[2] M. Aazam, M. St-Hilaire, C.-H. Lung, and I. Lambadaris, “Pre-fog:
Iot trace based probabilistic resource estimation at fog,” in Consumer
Communications and Networking Conference (CCNC), 2016 13th IEEE
Annual. IEEE, 2016, pp. 12–17.

[3] A. M. Rahmani, T. N. Gia, B. Negash, A. Anzanpour, I. Azimi,
M. Jiang, and P. Liljeberg, “Exploiting smart e-health gateways at
the edge of healthcare internet-of-things: a fog computing approach,”
Future Generation Computer Systems, 2017.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Computing,
vol. 8, no. 4, 2009.

[5] P. Gupta and S. P. Ghrera, “Trust and deadline aware scheduling
algorithm for cloud infrastructure using ant colony optimization,” in
Innovation and Challenges in Cyber Security (ICICCS-INBUSH), 2016
International Conference on. IEEE, 2016, pp. 187–191.

[6] M. A. Rodriguez and R. Buyya, “Deadline based resource provi-
sioningand scheduling algorithm for scientific workflows on clouds,”
IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp. 222–235,
2014.

[7] J. Lv, X. Wang, M. Huang, H. Cheng, and F. Li, “Solving 0-1 knapsack
problem by greedy degree and expectation efficiency,” Applied Soft
Computing, vol. 41, pp. 94–103, 2016.

[8] M.-Y. Cheng and D. Prayogo, “Symbiotic organisms search: a new
metaheuristic optimization algorithm,” Computers & Structures, vol.
139, pp. 98–112, 2014.

[9] M. A. Rodriguez and R. Buyya, “A taxonomy and survey on scheduling
algorithms for scientific workflows in iaas cloud computing envi-
ronments,” Concurrency and Computation: Practice and Experience,
vol. 29, no. 8, 2017.

[10] M. E. Frincu, S. Genaud, and J. Gossa, “Comparing provisioning and
scheduling strategies for workflows on clouds,” in Parallel and Dis-
tributed Processing Symposium Workshops and PhD Forum (IPDPSW),
2013 IEEE 27th International. IEEE, 2013, pp. 2101–2110.

[11] M. Malawski, K. Figiela, M. Bubak, E. Deelman, and J. Nabrzyski,
“Scheduling multilevel deadline-constrained scientific workflows on
clouds based on cost optimization,” Scientific Programming, vol. 2015,
p. 5, 2015.

[12] J. J. Durillo and R. Prodan, “Multi-objective workflow scheduling in
amazon ec2,” Cluster computing, vol. 17, no. 2, pp. 169–189, 2014.

[13] D. Poola, K. Ramamohanarao, and R. Buyya, “Fault-tolerant workflow
scheduling using spot instances on clouds,” Procedia Computer Science,
vol. 29, pp. 523–533, 2014.

[14] X. Zhu, J. Wang, H. Guo, D. Zhu, L. T. Yang, and L. Liu, “Fault-tolerant
scheduling for real-time scientific workflows with elastic resource
provisioning in virtualized clouds,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 12, pp. 3501–3517, 2016.

[15] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and
M. Parashar, “Mobility-aware application scheduling in fog computing,”
IEEE Cloud Computing, vol. 4, no. 2, pp. 26–35, 2017.

[16] X.-Q. Pham and E.-N. Huh, “Towards task scheduling in a cloud-fog
computing system,” in Network Operations and Management Sympo-
sium (APNOMS), 2016 18th Asia-Pacific. IEEE, 2016, pp. 1–4.

[17] Y. Sun, T. Dang, and J. Zhou, “User scheduling and cluster formation
in fog computing based radio access networks,” in Ubiquitous Wireless
Broadband (ICUWB), 2016 IEEE International Conference on. IEEE,
2016, pp. 1–4.

[18] X. Chen and L. Wang, “Exploring fog computing-based adaptive ve-
hicular data scheduling policies through a compositional formal method
pepa,” IEEE Communications Letters, vol. 21, no. 4, pp. 745–748, 2017.

[19] H.-E. Zahaf, A. E. H. Benyamina, R. Olejnik, and G. Lipari, “Energy-
efficient scheduling for moldable real-time tasks on heterogeneous
computing platforms,” Journal of Systems Architecture, vol. 74, pp. 46–
60, 2017.

[20] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job scheduling
optimization based on bees swarm,” Enterprise Information Systems,
pp. 1–25, 2017.

[21] T. Wang, X. Wei, C. Tang, and J. Fan, “Efficient multi-tasks scheduling
algorithm in mobile cloud computing with time constraints,” Peer-to-
Peer Networking and Applications, pp. 1–15, 2017.

[22] F. Lao, X. Zhang, and Z. Guo, “Parallelizing video transcoding using
map-reduce-based cloud computing,” in Circuits and Systems (ISCAS),
2012 IEEE International Symposium on. IEEE, 2012, pp. 2905–2908.

[23] M. A. Rodriguez and R. Buyya, “A responsive knapsack-based algo-
rithm for resource provisioning and scheduling of scientific workflows
in clouds,” in Parallel Processing (ICPP), 2015 44th International
Conference on. IEEE, 2015, pp. 839–848.

[24] S. Rahim, S. A. Khan, N. Javaid, N. Shaheen, Z. Iqbal, and G. Rehman,
“Towards multiple knapsack problem approach for home energy man-
agement in smart grid,” in Network-Based Information Systems (NBiS),
2015 18th International Conference on. IEEE, 2015, pp. 48–52.

[25] S. Chen, J. Wu, and Z. Lu, “A cloud computing resource scheduling
policy based on genetic algorithm with multiple fitness,” in Computer
and Information Technology (CIT), 2012 IEEE 12th International
Conference on. IEEE, 2012, pp. 177–184.

[26] Q. Ni, A. B. Garcı́a Hernando, and I. P. de la Cruz, “The elderly’s
independent living in smart homes: A characterization of activities
and sensing infrastructure survey to facilitate services development,”
Sensors, vol. 15, no. 5, pp. 11 312–11 362, 2015.

[27] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and experience, vol. 41, no. 1, pp. 23–50,
2011.

______________________________________________________PROCEEDING OF THE 21ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 283 ----------------------------------------------------------------------------


