30,934 research outputs found

    Analysis of Dynamic Brain Imaging Data

    Get PDF
    Modern imaging techniques for probing brain function, including functional Magnetic Resonance Imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques of analysis and visualization of such imaging data, in order to separate the signal from the noise, as well as to characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: `noise' characterization and suppression, and `signal' characterization and visualization. An important general conclusion of our study is the utility of a frequency-based representation, with short, moving analysis windows to account for non-stationarity in the data. Of particular note are (a) the development of a decomposition technique (`space-frequency singular value decomposition') that is shown to be a useful means of characterizing the image data, and (b) the development of an algorithm, based on multitaper methods, for the removal of approximately periodic physiological artifacts arising from cardiac and respiratory sources.Comment: 40 pages; 26 figures with subparts including 3 figures as .gif files. Originally submitted to the neuro-sys archive which was never publicly announced (was 9804003

    Neuroelectronic interfacing with cultured multielectrode arrays toward a cultured probe

    Get PDF
    Efficient and selective electrical stimulation and recording of neural activity in peripheral, spinal, or central pathways requires multielectrode arrays at micrometer scale. ÂżCultured probeÂż devices are being developed, i.e., cell-cultured planar multielectrode arrays (MEAs). They may enhance efficiency and selectivity because neural cells have been grown over and around each electrode site as electrode-specific local networks. If, after implantation, collateral sprouts branch from a motor fiber (ventral horn area) and if they can be guided and contacted to each ÂżhostÂż network, a very selective and efficient interface will result. Four basic aspects of the design and development of a cultured probe, coated with rat cortical or dorsal root ganglion neurons, are described. First, the importance of optimization of the cell-electrode contact is presented. It turns out that impedance spectroscopy, and detailed modeling of the electrode-cell interface, is a very helpful technique, which shows whether a cell is covering an electrode and how strong the sealing is. Second, the dielectrophoretic trapping method directs cells efficiently to desired spots on the substrate, and cells remain viable after the treatment. The number of cells trapped is dependent on the electric field parameters and the occurrence of a secondary force, a fluid flow (as a result of field-induced heating). It was found that the viability of trapped cortical cells was not influenced by the electric field. Third, cells must adhere to the surface of the substrate and form networks, which are locally confined, to one electrode site. For that, chemical modification of the substrate and electrode areas with various coatings, such as polyethyleneimine (PEI) and fluorocarbon monolayers promotes or inhibits adhesion of cells. Finally, it is shown how PEI patterning, by a stamping technique, successfully guides outgrowth of collaterals from a neonatal rat lumbar spinal cord explant, after six days in cultur

    Optical measurement methods in thermogasdynamics

    Get PDF
    A review is presented of a number of optical methods of flow measurements. Consideration is given to such spectroscopic methods as emission and absorption techniques, electron beam-stimulated fluorescence, and light scattering - Rayleigh, Raman and Mie - methods. The following visualization methods are also discussed: shadow photography, schlieren photography, interferometry, holographic interferometry, laser anemometry, particle holography, and electron-excitation imaging. A large bibliography is presented and the work is copiously illustrated with figures and photographs

    Tracking dynamic interactions between structural and functional connectivity : a TMS/EEG-dMRI study

    Get PDF
    Transcranial magnetic stimulation (TMS) in combination with neuroimaging techniques allows to measure the effects of a direct perturbation of the brain. When coupled with high-density electroencephalography (TMS/hd-EEG), TMS pulses revealed electrophysiological signatures of different cortical modules in health and disease. However, the neural underpinnings of these signatures remain unclear. Here, by applying multimodal analyses of cortical response to TMS recordings and diffusion magnetic resonance imaging (dMRI) tractography, we investigated the relationship between functional and structural features of different cortical modules in a cohort of awake healthy volunteers. For each subject, we computed directed functional connectivity interactions between cortical areas from the source-reconstructed TMS/hd-EEG recordings and correlated them with the correspondent structural connectivity matrix extracted from dMRI tractography, in three different frequency bands (alpha, beta, gamma) and two sites of stimulation (left precuneus and left premotor). Each stimulated area appeared to mainly respond to TMS by being functionally elicited in specific frequency bands, that is, beta for precuneus and gamma for premotor. We also observed a temporary decrease in the whole-brain correlation between directed functional connectivity and structural connectivity after TMS in all frequency bands. Notably, when focusing on the stimulated areas only, we found that the structure-function correlation significantly increases over time in the premotor area controlateral to TMS. Our study points out the importance of taking into account the major role played by different cortical oscillations when investigating the mechanisms for integration and segregation of information in the human brain

    Controllability of structural brain networks.

    Get PDF
    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function

    Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity

    Full text link
    It has become widely accepted that the most dangerous cardiac arrhythmias are due to re- entrant waves, i.e., electrical wave(s) that re-circulate repeatedly throughout the tissue at a higher frequency than the waves produced by the heart's natural pacemaker (sinoatrial node). However, the complicated structure of cardiac tissue, as well as the complex ionic currents in the cell, has made it extremely difficult to pinpoint the detailed mechanisms of these life-threatening reentrant arrhythmias. A simplified ionic model of the cardiac action potential (AP), which can be fitted to a wide variety of experimentally and numerically obtained mesoscopic characteristics of cardiac tissue such as AP shape and restitution of AP duration and conduction velocity, is used to explain many different mechanisms of spiral wave breakup which in principle can occur in cardiac tissue. Some, but not all, of these mechanisms have been observed before using other models; therefore, the purpose of this paper is to demonstrate them using just one framework model and to explain the different parameter regimes or physiological properties necessary for each mechanism (such as high or low excitability, corresponding to normal or ischemic tissue, spiral tip trajectory types, and tissue structures such as rotational anisotropy and periodic boundary conditions). Each mechanism is compared with data from other ionic models or experiments to illustrate that they are not model-specific phenomena. The fact that many different breakup mechanisms exist has important implications for antiarrhythmic drug design and for comparisons of fibrillation experiments using different species, electromechanical uncoupling drugs, and initiation protocols.Comment: 128 pages, 42 figures (29 color, 13 b&w

    Reporting guidelines, review of methodological standards, and challenges toward harmonization in bone marrow adiposity research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society

    Get PDF
    The interest in bone marrow adiposity (BMA) has increased over the last decade due to its association with, and potential role, in a range of diseases (osteoporosis, diabetes, anorexia, cancer) as well as treatments (corticosteroid, radiation, chemotherapy, thiazolidinediones). However, to advance the field of BMA research, standardization of methods is desirable to increase comparability of study outcomes and foster collaboration. Therefore, at the 2017 annual BMA meeting, the International Bone Marrow Adiposity Society (BMAS) founded a working group to evaluate methodologies in BMA research. All BMAS members could volunteer to participate. The working group members, who are all active preclinical or clinical BMA researchers, searched the literature for articles investigating BMA and discussed the results during personal and telephone conferences. According to the consensus opinion, both based on the review of the literature and on expert opinion, we describe existing methodologies and discuss the challenges and future directions for (1) histomorphometry of bone marrow adipocytes, (2
    • …
    corecore