38 research outputs found

    Steganalytic Methods for 3D Objects

    Get PDF
    This PhD thesis provides new research results in the area of using 3D features for steganalysis. The research study presented in the thesis proposes new sets of 3D features, greatly extending the previously proposed features. The proposed steganlytic feature set includes features representing the vertex normal, curvature ratio, Gaussian curvature, the edge and vertex position of the 3D objects in the spherical coordinate system. Through a second contribution, this thesis presents a 3D wavelet multiresolution analysis-based steganalytic method. The proposed method extracts the 3D steganalytic features from meshes of different resolutions. The third contribution proposes a robustness and relevance-based feature selection method for solving the cover-source mismatch problem in 3D steganalysis. This method selects those 3D features that are robust to the variation of the cover source, while preserving the relevance of such features to the class label. All the proposed methods are applied for identifying stego-meshes produced by several steganographic algorithms

    Steganalysis of 3D objects using statistics of local feature sets

    Get PDF
    3D steganalysis aims to identify subtle invisible changes produced in graphical objects through digital watermarking or steganography. Sets of statistical representations of 3D features, extracted from both cover and stego 3D mesh objects, are used as inputs into machine learning classifiers in order to decide whether any information was hidden in the given graphical object. The features proposed in this paper include those representing the local object curvature, vertex normals, the local geometry representation in the spherical coordinate system. The effectiveness of these features is tested in various combinations with other features used for 3D steganalysis. The relevance of each feature for 3D steganalysis is assessed using the Pearson correlation coefficient. Six different 3D watermarking and steganographic methods are used for creating the stego-objects used in the evaluation study

    A steganalytic algorithm for 3D polygonal meshes

    Get PDF
    We propose a steganalytic algorithm for watermarks embedded by Cho et al.'s mean-based algorithm [1]. The main observation is that while in a clean model the means of Cho et al.'s normalized histogram bins are expected to follow a Gaussian distribution, in a marked model their distribution will be bimodal. The proposed algorithm estimates the number of bins through an exhaustive search and then the presence of a watermark is decided by a tailor made normality test. We also propose a modification of Cho et al.'s algorithm which is more resistant to the steganalytic attack and offers an improved robustness/capacity trade-off

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    Adaptive 3D Mesh Steganography Based on Feature-Preserving Distortion

    Full text link
    3D mesh steganographic algorithms based on geometric modification are vulnerable to 3D steganalyzers. In this paper, we propose a highly adaptive 3D mesh steganography based on feature-preserving distortion (FPD), which guarantees high embedding capacity while effectively resisting 3D steganalysis. Specifically, we first transform vertex coordinates into integers and derive bitplanes from them to construct the embedding domain. To better measure the mesh distortion caused by message embedding, we propose FPD based on the most effective sub-features of the state-of-the-art steganalytic feature set. By improving and minimizing FPD, we can efficiently calculate the optimal vertex-changing distribution and simultaneously preserve mesh features, such as steganalytic and geometric features, to a certain extent. By virtue of the optimal distribution, we adopt the Q-layered syndrome trellis coding (STC) for practical message embedding. However, when Q varies, calculating bit modification probability (BMP) in each layer of Q-layered will be cumbersome. Hence, we contrapuntally design a universal and automatic BMP calculation approach. Extensive experimental results demonstrate that the proposed algorithm outperforms most state-of-the-art 3D mesh steganographic algorithms in terms of resisting 3D steganalysis.Comment: IEEE TVCG major revisio

    3D Steganalysis Using the Extended Local Feature Set

    Get PDF

    Steganalysis of meshes based on 3D wavelet multiresolution analysis

    Get PDF
    3D steganalysis aims to find the information hidden in 3D models and graphical objects. It is assumed that the information was hidden by 3D steganography or watermarking algorithms. A new set of 3D steganalysis features, derived by using multiresolution 3D wavelet analysis, is proposed in this research study. 3D wavelets relate a given mesh representation with its lower and higher graph resolutions by means of a set of Wavelet Coefficient Vectors (WCVs). The 3D steganalysis features are derived from transformations between a given mesh and its corresponding higher and lower resolutions. They correspond to geometric measures such as ratios and angles between various geometric measures. These features are shown to significantly increase the steganalysis accuracy when detecting watermarks which have been embedded by 3D wavelet-based watermarking algorithms. The proposed features, when used in combination with a previously proposed feature set, is shown to provide the best results in detecting the hidden information embedded by other information hiding algorithms

    Spatio-temporal rich model-based video steganalysis on cross sections of motion vector planes.

    Get PDF
    A rich model-based motion vector (MV) steganalysis benefiting from both temporal and spatial correlations of MVs is proposed in this paper. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this paper. First, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring MVs for longer distances. Therefore, temporal MV dependency alongside the spatial dependency is utilized for rigorous MV steganalysis. Second, unlike the filters previously used, which were heuristically designed against a specific MV steganography, a diverse set of many filters, which can capture aberrations introduced by various MV steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in the previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent MV steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in MV steganalysis field, including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.Engineering and Physical Sciences Research Council through the CSIT 2 Project under Grant EP/N508664/1
    corecore