646 research outputs found

    Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement

    Get PDF
    In response to strong growth in energy intensive wastewater treatment, public agencies and industry began to explore and implement measures to ensure achievement of the targets indicated in the 2020 Climate and Energy Package. However, in the absence of fundamental and globally recognized approach evaluating wastewater treatment plant (WWTP) energy performance, these policies could be economically wasteful. This paper gives an overview of the literature of WWTP energy-use performance and of the state of the art methods for energy benchmarking. The literature review revealed three main benchmarking approaches: normalization, statistical techniques and programming techniques, and advantages and disadvantages were identified for each one. While these methods can be used for comparison, the diagnosis of the energy performance remains an unsolved issue. Besides, a large dataset of WWTP energy consumption data, together with the methods for synthesizing the information, are presented and discussed. It was found that no single key performance indicators (KPIs) used to characterize the energy performance could be used universally. The assessment of a large data sample provided some evidence about the effect of the plant size, dilution factor and flowrate. The technology choice, plant layout and country of location were seen as important elements that contributed to the large variability observed

    Water quality indicator interval prediction in wastewater treatment process based on the improved BES-LSSVM algorithm

    Get PDF
    This paper proposes a novel interval prediction method for effluent water quality indicators (including biochemical oxygen demand (BOD) and ammonia nitrogen (NH3-N)), which are key performance indices in the water quality monitoring and control of a wastewater treatment plant. Firstly, the effluent data regarding BOD/NH3-N and their necessary auxiliary variables are collected. After some basic data pre-processing techniques, the key indicators with high correlation degrees of BOD and NH3-N are analyzed and selected based on a gray correlation analysis algorithm. Next, an improved IBES-LSSVM algorithm is designed to predict the BOD/NH3-N effluent data of a wastewater treatment plant. This algorithm relies on an improved bald eagle search (IBES) optimization algorithm that is used to find the optimal parameters of least squares support vector machine (LSSVM). Then, an interval estimation method is used to analyze the uncertainty of the optimized LSSVM model. Finally, the experimental results demonstrate that the proposed approach can obtain high prediction accuracy, with reduced computational time and an easy calculation process, in predicting effluent water quality parameters compared with other existing algorithms.Peer ReviewedPostprint (published version

    The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool

    Get PDF
    Background: Amplicon sequencing methods targeting the 16S rRNA gene have been used extensively to investigate microbial community composition and dynamics in anaerobic digestion. These methods successfully characterize amplicons but do not distinguish micro-organisms that are actually responsible for the process. In this research, the archaeal and bacterial community of 48 full-scale anaerobic digestion plants were evaluated on DNA (total community) and RNA (active community) level via 16S rRNA (gene) amplicon sequencing. Results: A significantly higher diversity on DNA compared with the RNA level was observed for archaea, but not for bacteria. Beta diversity analysis showed a significant difference in community composition between the DNA and RNA of both bacteria and archaea. This related with 25.5 and 42.3% of total OTUs for bacteria and archaea, respectively, that showed a significant difference in their DNA and RNA profiles. Similar operational parameters affected the bacterial and archaeal community, yet the differentiating effect between DNA and RNA was much stronger for archaea. Co-occurrence networks and functional prediction profiling confirmed the clear differentiation between DNA and RNA profiles. Conclusions: In conclusion, a clear difference in active (RNA) and total (DNA) community profiles was observed, implying the need for a combined approach to estimate community stability in anaerobic digestion

    Assessment and optimization of environmental systems using data analysis and simulation.

    Get PDF
    For most environmental systems, specifically wastewater treatment plants and aquifers, a significant number of performance data variables are attained on a time series basis. Due to the interconnectedness of the variables, it is often difficult to assess over-arching trends and quantify temporal operational performance. The objective of this research study was to provide an effective means for comprehensive temporal evaluation of environmental systems. The proposed methodology used several multivariate data analyses and statistical techniques to present an assessment framework for the water quality monitoring programs as well as optimization of treatment plants and aquifer systems. The developed procedure considered the combination of statistical and data analysis algorithms including correlation techniques, factor analysis and principal component analysis, and multivariate stepwise regression analysis. Those methodologies were used to develop a series of independent indexes to quantify the composition of wastewater and groundwater. Also, by developing a stepwise data analysis approach, a baseline was introduced to discover the key operational parameters which significantly affect the performance of environmental systems. Moreover, a comprehensive approach was introduced to develop numerical models for forecasting key operational and quality parameters which can be used for future simulation and scenario analysis practices. The developed methodology and frameworks were successfully applied to four case studies which include three wastewater treatment plants and an aquifer system. In the first case study, the aforementioned approach was applied to the Floyds Fork water quality treatment center in Louisville, KY. The objective of this case study was to establish simple and reliable predictive models to correlate target variables with specific measured parameters. The study presented a multivariate statistical and data analyses of the wastewater physicochemical parameters to provide a baseline for temporal assessment of the treatment plant. Fifteen quality and quantity parameters were analyzed using data recorded from 2010 to 2016. To determine the overall quality condition of raw and treated wastewater, a Wastewater Quality Index (WWQI) was developed. To identify treatment process performance, the interdependencies between the variables were determined by using Principal Component Analysis (PCA). The five extracted components adequately represented the organic, nutrient, oxygen demanding, and ion activity loadings of influent and effluent streams. The study also utilized the model to predict quality parameters such as Biological Oxygen Demand (BOD), Total Phosphorus (TP), and WWQI. High accuracies ranging from 71% to 97% were achieved for fitting the models with the training dataset and relative prediction percentage errors less than 9% were achieved for the testing dataset. The presented techniques and procedures in this case study provide an assessment framework for the wastewater treatment monitoring programs. The second case study focused on assessing methane production of a novel combined system for treatment of high strength organic wastewater. The studied pilot plant comprised Rotating Biological Contactor (RBC) process under anaerobic condition, in conjunction with Moving Bed Biofilm Reactor (MBBR) as the combining aerobic process. Various operational parameters were tested to maximize the Chemical Oxygen Demand (COD) removal performance and methane gas production from treating high strength synthetic wastewater. The identified optimal parameters included hydraulic retention time, organic loading rate, and disk rotational speed; equal to 5 days, 7 rpm, and 2 kg COD/m3/d, respectively. Under these conditions, the combined system achieved high removal efficiency (98% from influent COD of 10,000 mg/L) with additional benefit of methane production (116.60 L/d from a 46-liter AnRBC reactor). The obtained results from conducting this case study confirmed the effectiveness of integrated hybrid system in achieving both high removal efficiency and methane production. Thus, this system was recommended for treating high strength organic wastewater. The third case study focused on assessing the feasibility of using a contact stabilization process for secondary treatment of refinery wastewater through a step by step analysis. the studied pilot plant comprised contact-stabilization activated sludge process in conjunction with clarification reactor. Various operational parameters were tested to minimize excessive sludge production and maximize system removal performance from treating petroleum refinery wastewater. The mixed liquor dissolved oxygen (DO) and the rate of activated return sludge (RS) were selected as key operational parameters. The results indicated that the system had an optimum performance under applied aeration of 3.7 mg oxygen per liter of mixed liquor and 46% return sludge. This operational combination resulted in COD removal efficiency of 78% with daily biomass production of 1.42 kg/day. Considering the results from this case study, the contact stabilization activated sludge process was suggested as an effective alternative for secondary treatment of wastewater from petroleum refineries. The last case study combined probabilistic and deterministic approaches for assessing aquifer’s water quality. The probabilistic approach used multivariate statistical analysis to classify the groundwater’s physiochemical characteristics. Building upon the obtained results, the deterministic approach used hydrochemistry analyses for a more comprehensive assessment of groundwater suitability for different applications. For this purpose, a large geologic basin, under arid weather conditions, was evaluated. The ultimate objective was to identify: 1) groundwater classification scheme, 2) processes governing the groundwater chemistry, 3) hydrochemical characteristics of groundwater, and 4) suitability of the groundwater for drinking and agricultural purposes. Considering the results from multivariate statistical analysis, chloride salts dissolution was identified within the aquifer. Further application of the deterministic approach revealed degradation of groundwater quality throughout the basin, possibly due to the saltwater intrusion. By developing the water quality index and a multi-hazard risk assessment methodology, the suitability of groundwater for human consumption and irrigation purposes were assessed. The combined consideration of deterministic and probabilistic approaches provided an effective means for comprehensive evaluation of groundwater quality across different aquifers or within one. The presented procedures and methodologies in this research study provide environmental analysts and governmental decision makers with a comprehensive tool to evaluate current and future quality conditions within any given wastewater treatment plants and/or aquifer systems

    Monitoring biological wastewater treatment processes: Recent advances in spectroscopy applications

    Get PDF
    Biological processes based on aerobic and anaerobic technologies have been continuously developed to wastewater treatment and are currently routinely employed to reduce the contaminants discharge levels in the environment. However, most methodologies commonly applied for monitoring key parameters are labor intensive, time-consuming and just provide a snapshot of the process. Thus, spectroscopy applications in biological processes are, nowadays, considered a rapid and effective alternative technology for real-time monitoring though still lacking implementation in full-scale plants. In this review, the application of spectroscopic techniques to aerobic and anaerobic systems is addressed focusing on UV--Vis, infrared, and fluorescence spectroscopy. Furthermore, chemometric techniques, valuable tools to extract the relevant data, are also referred. To that effect, a detailed analysis is performed for aerobic and anaerobic systems to summarize the findings that have been obtained since 2000. Future prospects for the application of spectroscopic techniques in biological wastewater treatment processes are further discussed.The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the ïŹnancial support to Daniela P. Mesquita and Cristina Quintelas through the postdoctoral Grants (SFRH/BPD/82558/2011 and SFRH/BPD/101338/2014) provided by FCT - Portugal.info:eu-repo/semantics/publishedVersio

    Alternatives for the management of pig slurry: Phosphorous recovery and biogas generation

    Full text link
    [EN] Pig slurry is highly polluted waste stream characterized by its high nutrients content and its high organic matter concentration. In this research, two alternatives in the management of this wastewater were studied. On the one hand, removal of nutrients from piggery wastewater by struvite precipitation was evaluated. Different molar ratios Mg+2/PO4-3, pH and temperatures were tested. On the other hand, an anaerobic treatment was performed with and without previous struvite crystallization and the methane production was analyzed. Results showed that the optimal experimental conditions to achieve the highest ammonium nitrogen and phosphate removal percentages (62.01% and 66.96%, respectively) were a molar concentration ratio (Mg+2/PO4-3) of 2.8, pH of 10 and temperature of 22 degrees C. In addition, images from FE-SEM microscopy demonstrated that the struvite morphology was orthorhombic. Concerning the anaerobic digestion, the chemical oxygen demand removal efficiencies were 59.87% and 52.25% for the treatment without previous struvite precipitation and with previous struvite precipitation, respectively. Furthermore, the maximum biogas potential was found when no previous struvite precipitation was carried out, with a biogas generation around 4 mLh(-1) and a percentage of methane in the biogas between 32.37 and 59.73%.The authors wish to gratefully acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness through the project PROVIP.ES (RTC-2014-2239-2).Lujan Facundo, MJ.; Iborra-Clar, MI.; Mendoza Roca, JA.; Also JesĂșs, M. (2019). Alternatives for the management of pig slurry: Phosphorous recovery and biogas generation. Journal of Water Process Engineering. 30:1-7. https://doi.org/10.1016/j.jwpe.2017.08.011S173

    Optimisation-based methodology for the design and operation of sustainable wastewater treatment facilities

    Get PDF
    The treatment of municipal and industrial wastewaters in conventional wastewater treatment plants (WWTPs) requires a significant amount of energy in order to meet ever more stringent discharge regulations. However, the wastewater treatment industry is undergoing a paradigm shift from a focus on waste-stream treatment and contaminant removal to a proactive interest in energy and resource recovery facilities, driven by both economic and environmental incentives. The main objective of this thesis is the development of a decision-making tool in order to identify improvement opportunities in existing WWTPs and to develop new concepts of sustainable wastewater treatment/recovery facilities. The first part of the thesis presents the application of a model-based methodology based on systematic optimisation for improved understanding of the tight interplay between effluent quality, energy use, and fugitive emissions in existing WWTPs. Plant-wide models are developed and calibrated in an objective to predict the performance of two conventional activated sludge plants owned and operated by Sydney Water, Australia. In the first plant, a simulation-based approach is applied to quantify the effect of key operating variables on the effluent quality, energy use, and fugitive emissions. The results show potential for reduced consumption of energy (up to 10-20%) through operational changes only, without compromising effluent quality. It is also found that nitrate (and hence total nitrogen) discharge could be signficantly reduced from its current level with a small increase in energy consumption. These results are also compared to an upgraded plant with reverse osmosis in terms of energy consumption and greenhouse gas emissions. In the second plant, a systematic model-based optimisation approach is applied to investigate the effect of key discharge constraints on the net power consumption. The results show a potential for reduction of energy (20-25%), without compromising the current effluent quality. The nitrate discharge could be reduced from its current level to less than 15 mg/L with no increase in net power consumption and could be further reduced to <5 mg/L subject to a 18% increase in net power consumption upon the addition of an external carbon source. This improved understanding of the relationship between nutrient removal and energy use for these two plants will feed into discussions with environmental regulators regarding nutrient discharge licensing.The second part of the thesis deals with the application of a systematic, model-based methodology for the development of wastewater treatment/resource recovery systems that are both economically and environmentally sustainable. With the array of available treatment and recovery options growing steadily, a superstructure modeling approach based on rigorous mathematical optimisation provides a natural approach for tackling these problems. The development of reliable, yet simple, performance and cost models is a key issue with this approach in order to allow for a reliable solution based on global optimisation. it is argued that commercial wastewater simulators can be used to derive such models. The superstructure modeling framework is also able to account for wastewater and sludge treatment in an integrated system and to incorporate LCA with multi-objective optimisation to identify the inherent trade-off between multiple economic and environmental objectives. This approach is illustrated with two case studies of resource recovery from industrial and municipal wastewaters. The results establish that the proposed methodology is computationally tractable, thereby supporting its application as a decision support system for selection of promising wastewater treatment/resource recovery systems whose development is worth pursuing. Our analysis also suggests that accounting for LCA considerations early on in the design process may lead to dramatic changes in the configuration of future wastewater treatment/recovery facilities.Open Acces

    Pathways to Water Sector Decarbonization, Carbon Capture and Utilization

    Get PDF
    The water sector is in the middle of a paradigm shift from focusing on treatment and meeting discharge permit limits to integrated operation that also enables a circular water economy via water reuse, resource recovery, and system level planning and operation. While the sector has gone through different stages of such revolution, from improving energy efficiency to recovering renewable energy and resources, when it comes to the next step of achieving carbon neutrality or negative emission, it falls behind other infrastructure sectors such as energy and transportation. The water sector carries tremendous potential to decarbonize, from technological advancements, to operational optimization, to policy and behavioural changes. This book aims to fill an important gap for different stakeholders to gain knowledge and skills in this area and equip the water community to further decarbonize the industry and build a carbon-free society and economy. The book goes beyond technology overviews, rather it aims to provide a system level blueprint for decarbonization. It can be a reference book and textbook for graduate students, researchers, practitioners, consultants and policy makers, and it will provide practical guidance for stakeholders to analyse and implement decarbonization measures in their professions

    Pathways to Water Sector Decarbonization, Carbon Capture and Utilization

    Get PDF
    The water sector is in the middle of a paradigm shift from focusing on treatment and meeting discharge permit limits to integrated operation that also enables a circular water economy via water reuse, resource recovery, and system level planning and operation. While the sector has gone through different stages of such revolution, from improving energy efficiency to recovering renewable energy and resources, when it comes to the next step of achieving carbon neutrality or negative emission, it falls behind other infrastructure sectors such as energy and transportation. The water sector carries tremendous potential to decarbonize, from technological advancements, to operational optimization, to policy and behavioural changes. This book aims to fill an important gap for different stakeholders to gain knowledge and skills in this area and equip the water community to further decarbonize the industry and build a carbon-free society and economy. The book goes beyond technology overviews, rather it aims to provide a system level blueprint for decarbonization. It can be a reference book and textbook for graduate students, researchers, practitioners, consultants and policy makers, and it will provide practical guidance for stakeholders to analyse and implement decarbonization measures in their professions

    Investigating the true limits of anaerobic treatment of wastewater at low temperature using a cold-adapted inoculum

    Get PDF
    PhD ThesisAnaerobic batch reactors were inoculated with cold-adapted biomass (seed) to treat the organic material (COD) of domestic wastewater at 4, 8 & 15oC. The substrate was pre-UV sterilized to preclude competition between the cells thriving in the seed and the autochthonous, originated from wastewater cells. The performance in terms of organic removal showed that the specific cold-adapted inoculum efficiently treats anaerobically raw domestic wastewater at all temperatures based on the UWWTD (Urban Waste Water Treatment Directive) (91/271/EEC). The observed methanogenic taxa were Methanomicrobiales, Methanosaetaceae, and Methanosarcina during the whole experimentation. Methanomicrobiales were predominant at lower temperatures (4, 8oC) followed by Methanosaetaceae; at 15oC there was no distinct difference amongst them. Longer enrichment showed that further investigation may be required to clearly point the predominance between methanogens. Specific cellular activity was calculated (via qPCR, FISH) to enable scale-up & design simulation. The specific methanogenesis values showed that the activities at low temperatures are at least similar to those of typical mesophiles using a conservative cellular weighing reference to convert the cells to VSS. Higher specific activities were observed after acclimation of the cells at 4oC compared to 15oC regardless of the operational temperature (4 or 15oC). Acclimation at 4oC also resulted in a formation of a community that can be hardly disturbed from the competition of the wastewater cells when the seed:substrate ratio is low. This was not evident after acclimation at 15oC and it manifests that anaerobic treatment start-up at 4oC results in a sturdy and highly active methanogenic community. The CODRAW:CH4 conversion at 4oC was approximately 50% and reached up to 80% of the theoretically expected for sterile and non-sterile wastewater feed respectively. It is likely that the conversion was boosted from the synergy of the indigenous bacterial communities from wastewater and the cells originated from the seed. Enzymes (lipases) assays showed that the wastewater-originated group of cells (bacteria) contributed to the hydrolysis of insoluble organic material (lipids) and led to richer formation of intermediates that were subsequently utilized by the methanogenic populations of the seed. Limited lipid hydrolysis accounted for the organic material that remained insoluble. The lipases assays demonstrated that on equal temperatures (37oC) the specific activity of the enzymes secreted from the cells at low temperature (4oC) is higher than those secreted from cells at 15oC. This proves that the formation of a sturdier and of higher wastewater treatment performance community is likely when this is developed at low temperatures. The assay also demonstrated that a 4-degree temperature increase (from 4-8oC) is adequate to trigger the lipid:CH4 bio-conversion. Thus, for a complete anaerobic wastewater treatment using the specific inoculum, the temperature limit lies in-between 4oC and 8oC. A scale up designation based on the differentiation of the specific methanogenic activity according to temperature shouted that this limit lies at 5oC. For operation at lower temperature (5oC
    • 

    corecore