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Abstract  

In response to strong growth in energy intensive wastewater treatment, public agencies and industry began to  

explore and implement measures to ensure achievement of the targets indicated in the 2020 Climate and  

Energy Package. However, in the absence of fundamental and globally recognized approach evaluating  

wastewater treatment plant (WWTP) energy performance, these policies could be economically wasteful.  

This paper gives an overview of the literature of WWTP energy-use performance and of the state of the art  

methods for energy benchmarking. The literature review revealed three main benchmarking approaches:  

normalization, statistical techniques and programming techniques, and advantages and disadvantages were  

identified for each one. While these methods can be used for comparison, the diagnosis of the energy  

performance remains an unsolved issue. Besides, a large dataset of WWTP energy consumption data,  

together with the methods for synthesizing the information, are presented and discussed. It was found that no  

single key performance indicators (KPIs) used to characterize the energy performance could be used  

universally. The assessment of a large data sample provided some evidence about the effect of the plant size,  

dilution factor and flowrate. The technology choice, plant layout and country of location were seen as  

important elements that contributed to the large variability observed.    

Keywords:  

Wastewater treatment; energy efficiency; benchmarking; KPI; OLS; DEA  

Highlights   

- A review of WWTP energy-use and benchmarking systems is performed  

- Energy data from more than 600 WWTPs were inventoried  

- Energy KPIs found are often not representative of the overall energy consumption  

- Benchmarking method selection is linked to data availability and purpose of study  

- Further research is required on the field of energy efficiency at WWTPs  
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1. Introduction  

The proper treatment and sanitation of wastewater is crucial for protecting public health and environment. To  

achieve these important goals, water and wastewater systems are relevant energy consumers, demanding not  

only a large amount of energy onsite, such as electricity used for pumping and aeration, but also offsite for  

producing and transporting building materials and chemicals for treatment. Data from Germany [1] as well  

from Italy [2] show that electricity demand for wastewater treatment accounts for about 1% of total  

consumption of the country, which may be a good estimation for other European countries. In Spain, some  

studies suggest that domestic and industrial water cycles account for 2-3% of total electric energy  

consumption and considering water management and agricultural demand, could reach 4-5% [3]. In the  

United States, it has been estimated that roughly 4% of the electricity demand is employed for potabilization  

and distribution of water as well as collection and treatment of wastewater, by public and private  

stakeholders [4].  

As the number of WWTPs increases worldwide and the effluent quality requirements become more  

demanding, the issue of energy efficiency has been attracting increasing attention from an environmental and  

economic point of view [5]. Water agencies and wastewater treatment plant operators show a growing  

interest in the use of tools and methodologies to save energy, such as benchmarking and energy audit  

procedures [2,6,7]. Energy audit is the general term used for a systematic procedure to obtain adequate  

knowledge of the energy consumption profile of an industrial plant. One of the aims of an energy audit is the  

determination of energy baseline regarding the reference consumption of individual devices and installation.  

By a careful analysis of energy data it is possible to identify the best opportunities for improvement. From a  

regulatory perspective, companies with more than 250 employees and with annual trading volume greater  

than € 50 million or whose annual balance sheet exceeds € 43 million are obliged to perform energy audit  

every four years from December 2015, as established by EU Directive 2012/27/EU [8]. Water utilities often  

fulfil these criteria.  

Several reviews have been published on energy benchmarking methodologies in various fields, most of them  

dealing with energy efficiency of building. Chan [9] analysed the mathematical methods employed for  

benchmarking the use of energy in buildings, comprehensively discussing the advantage of each method. Li  
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et al. [10] focused on the revision of tool for benchmarking building energy consumption, including black  

box methods, grey box methods and white box methods. Zhao and Magoulès [11] reviewed work related to  

the modelling and prediction of building energy consumption, including engineering, statistical and artificial  

intelligence methods. Pérez-Lombard et al. [12] examined concepts such as benchmarking tool, energy  

ratings and energy labelling within the framework of building energy certification schemes. Some general  

findings made in previous works in the building sector can also be useful to the wastewater industry.  

However, due to the complexity of WWTPs, additional case-specific considerations have to be done.   

To the best of our knowledge, there currently exists no standard approach to evaluate a WWTP energy  

performance. Moreover, no document is available providing a complete and comprehensive review of  

benchmarking methodologies applied in the field of wastewater treatment. In this paper, we describe the  

challenges inherent to energy benchmarking in WWTP. The goal of this study is to perform a critical review  

of relevant papers published on the topic that can help practitioners, plant managers and operators or  

researchers select the most appropriate methods for each case. By assessing the literature of WWTPs energy- 

use performance and the benchmarking systems, this paper represents a first step in the development of a  

systematic methodology for evaluation and improvement of energy performance in WWTPs operation. Such  

a methodology is the main objective of the ENERWATER coordinated support action, a three-year activity  

within the Horizon 2020 programme with 9 partners from 4 European countries (the reader is referred to  

www.enerwater.eu for further information).   

The present contribution intends to address the following specific questions related to monitoring and  

diagnosis of energy consumption in WWTPs: i) which are the sources of information, ii) what kind of energy  

data are reported in the literature, iii) how are energy data reported in the literature and, iv) what type of  

methodologies are used for the assessment of energy efficiency in WWTPs. An energy audit requires a  

clearly stated and accepted methodology beyond common knowledge. Therefore, one of the goals of this  

manuscript is establish generally accepted principles and good practices that must be included in a standard  

energy performance auditing.  

This paper is structured as follows. First, section 2 presents major features of research available in the  

literature. The methodology applied for the literature review carried out is explained and how data were  

http://www.enerwater.eu/
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collected, treated and classified is also discussed. Then in section 3.1, energy key performance indicators  

(KPIs) reported in the literature are presented and critically assessed, pointing out the limits to their validity.  

A comparison of various benchmarking methodologies employed for energy efficiency assessment in  

WWTPs is presented in section 3.2. Section 3.3 looks at energy datasets, together with the methods for  

synthesizing the information; energy data are there discussed, describing the availability of data in open  

literature and allowing to draw conclusions on the main factors affecting the energy consumption in  

WWTPs. Differences in scale, treatment technology, and operating conditions were evaluated by  

benchmarking the electric power consumption. Section 3.4 reports some technology-based examples for  

improving energy efficiency in WWTPs. Finally, an overlook of energy management tools is presented and a  

hint for the future developments is discussed in section 3.5. Section 4 offers concluding observations.  

2.  Methods  

2.1. Literature review  

A thorough review of the literature on WWTP energy-use performance and related benchmarking methods  

was carried out using different combinations of the following keywords: ‘wastewater’, ‘WWTP’, ‘energy’,  

‘energy consumption’, ‘energy performance’, ‘energy efficiency assessment’, ‘energy benchmarking’, ‘life  

cycle assessment’, and ‘LCA’, in web search engines. Peer-reviewed journal articles were the primary source  

in relation to the methods used for benchmarking. Information on WWTPs energy consumption published in  

peer-reviewed journals is limited while a considerable number of references have been found in other non- 

peer-reviewed publications, such as research books, on-line publications/articles, and technical reports.  

Furthermore, energy data from regional water agencies (in particular from Germany and Spain) collected by  

private communications were also included in the analysis.   

2.2. Data collection and sample  

A thorough search was carried out to identify available sources and databases offering energy data of  

WWTPs.  Energy consumption was gathered together with data related to the operation, influent and effluent  

characteristics, namely: population equivalent (PE) load basis, both the designed value and the actually  

served value; flow rate (design and average); influent and effluent wastewater characteristics, i.e. chemical  
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oxygen demand (COD), biochemical oxygen demand (BOD), total suspended solids (TSS), total nitrogen  

(TN) and total phosphorus (TP). The energy consumption of major pieces of equipment, such as blowers,  

mixers, pumps, aeration systems and filters was found in a number of cases. Additionally, more general data  

on energy consumed by the buildings for lighting and heating were also reported.  

A total of 601 WWTPs were inventoried for the evaluation of the energy consumption. However, some  

plants were omitted from the analysis due to important data gaps (i.e. whenever influent and effluent  

wastewater characteristics or plant treatment technology were unavailable). Additionally, most of the  

Canadian plants were not included in the analysis due to extremely diluted influent wastewater (COD < 50  

mg/L) in order to avoid misleading conclusions. The final sample consisted of 388 WWTPs, which  

represents the treatment of about 15.7 million PE corresponding a total electric energy consumption of 1.72  

GWh/day and distributed as follow: 2.62 million PE (16.6%) in North America, 3.22 million PE (20%) in  

Asia and the remaining 9.86 million PE (62.8%) in Europe (see section 2 of supplementary material for the  

dataset used for the analysis).  

2.3. Data treatment  

According to the literature review and the level of detail of the data collected, three energy key performance  

indices (KPI) were defined, referred to volume of treated wastewater, PE and kg of COD removed:  

KPI 1 = 
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟
  [𝑘𝑊ℎ/𝑚3]                                                          (Eq. 1)  

KPI 2 = 
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝐸
  [𝑘𝑊ℎ/𝑃𝐸 𝑦𝑒𝑎𝑟]                                                     (Eq. 2)   

KPI 3 = 
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

 𝐶𝑂𝐷 𝑙𝑜𝑎𝑑 𝑟𝑒𝑚𝑜𝑣𝑒𝑑
     [𝑘𝑊ℎ/𝑘𝑔 𝐶𝑂𝐷𝑟𝑒𝑚𝑜𝑣𝑒𝑑]                                      (Eq. 3)   

It should be noted that the definitions and equivalences of PE can differ between countries. In this study 12  

gN/PE·d was taken as an equivalence (following Directive 91/271/EEC [13]). When N values were not  

available, PE calculation was done on BOD or COD basis, considering 60 gBOD/PE·d or 120 gCOD/PE·d.  

In the case of North American plants, the conversion was done considering 80 gBOD/PE·d or 160  

gCOD/PE·d for load-based PE or 400 L/PE·d for wastewater volume-based PE [14].  
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From the analysis of the collected data presented in section 3.3 two WWTP operational indices were defined:  

i) dilution factor (DF), and ii) load factor (LF), and calculated as follow:  

DF = 
𝑑𝑎𝑖𝑙𝑦 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒

𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝐸
     [𝐿/𝑃𝐸 · 𝑑]                                                              (Eq. 4)  

LF = 
𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝐸

 𝑑𝑒𝑠𝑖𝑔𝑛 𝑃𝐸
 100   [%]                                                                                             (Eq. 5)  

DF is mainly function of the sewer network design, age and materials; parasite water negatively affects  

treatment performance by dilution and hydraulic overloading. LF represents the capacity utilization of the  

plant compared to the design capacity, showing then if a plant is under or over-designed.   

Given the high variability of the sampled values, the mean was found as an unsuitable indicator as it is  

particularly influenced by extreme values. It was therefore considered more useful to take as reference a  

more robust indicator such as the median. To represent graphically the data variability, collected energy data  

are presented by the use of box plots. There, a box is used to indicate the positions of the upper and lower  

quartiles; the interior of this box indicates the interquartile range, which is the area between the upper and  

lower quartiles and consists of 50% of the distribution. Finally, the crossbar intersecting the box represents  

the median of the dataset.  

2.4. Data classification  

Dataset was classified according to five different WWTP class sizes as defined in [15]: PE < 2 k; 2 k < PE <  

10 k; 10 k < PE < 50 k; 50 k < PE < 100 k; PE > 100 k, where k stands for 1000. In addition, datasets were  

further classified based on a country scale and secondary treatment technology. As a large number of  

configurations are described, different types of secondary treatment (i.e. Ludzack-Ettinger, modified  

Ludzack-Ettinger (MLE), Bardenpho, anaerobic-oxic (A/O) or anaerobic-anoxic-oxic (A2/O)) have been  

grouped under the general treatment technology category biological nutrient removal (BNR). Likewise, all  

the combinations of membrane filtration process with a suspended activated sludge bioreactor have been  

clustered under the category membrane bioreactor (MBR). Other treatment technologies under study are  

aerated ponds (AP), biodiscs (BD), conventional activated sludge (CAS), extended aeration (EA), oxidation  

ditch (OD), sequential batch reactor (SBR), and trickling filter (TF). Finally, unspecified secondary  
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treatment (UST) category was assigned when no detailed information about the secondary treatment  

technology, although present, was reported.  

3.  Results and discussion  

3.1. Description of key performance indicators found and critical discussion  

about their validity   

Common definition and measure of energy efficiency is the ratio of energy use input (e.g. electricity  

consumption) to energy service output (a certain service that a WWTP provides, e.g. the amount of  

wastewater treated or pollutions removed). Traditionally, energy consumption in WWTPs has been reported  

as referred to the volume of treated wastewater (kWh/m3) [16,17] or unit of population equivalent (kWh/PE)  

on annual basis [18,19]. As a result, the energy consumed (due to aeration, mixing, pumping, sludge  

treatment, etc.) was considered to be proportional to the flow of wastewater treated or the pollution load  

coming into the WWTP. Although these approaches are very simple and can easily provide calculated  

energy consumption indicators, they have significant limitations when it comes to energy benchmark  

exercises and standardisation methodologies. By comparing the energy consumption in kWh/m3 or kWh/PE  

it is assumed that pollutant concentrations in the influent (solids, organic matter, nitrogen and phosphorus)  

do not vary significantly between WWTPs or that effluent qualities are also similar, hence restricting the  

application of these approaches. Studies reporting the WWTP energy consumption in kWh/m3 often result in  

values that are influenced by the degree of dilution of the wastewater. For example, plants treating  

wastewater from combined sewer overflows often show higher energy efficiency, which is caused by the  

higher dilution of the pollutants in the influent [20,21]. Calculation of energy efficiency based on the  

pollutant load entering WWTPs (i.e. kWh/PE) provides a greater accuracy, but in this case N should be  

favoured as a basis to calculate PE load instead of BOD and COD [22]. In the case of combined sewer  

systems, inert COD can be carried to the WWTP by rainwater showing a higher load than the real one.  

Moreover, as most nitrogen is present in wastewater as soluble ammonium, it is less prone to sedimentation  

in the sewer system than organic matter.   
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A sensible approach is to report the energy consumption in WWTPs per unit of pollutant removed, i.e. TSS,  

BOD, COD, N and/or P removed, depending on the object of the study and plant treatment scheme. Several  

authors have used kWh/kg TSSremoved, kWh/kg BODremoved  and kWh/kg CODremoved [20,21,23], kWh/kg  

Nremoved in the case of nitrogen removal processes on annual basis [24] or a combination of these indicators  

where both organic matter and nutrients (N, P) are merged and converted in terms of a reference unit such as  

PO4
3- equivalent [25]. The advantage of reporting the energy consumption per unit of pollutant removed  

relies in the fact that the removal of organic matter and nutrients are major contributors of energy  

consumption in WWTPs. In this case, a KPI that may include all the main pollutants (i.e. TSS, COD, N and  

P) in a single variable should be preferred. This concept was first proposed in 1996 by Vanrolleghem [26]  

and then refined by others authors (see [27] and [18] as examples) for the evaluation of general cost  

performance of WWTPs. In this method, the overall pollution removal of a WWTP (in kg pollution units) is  

calculated by a weighted sum of the compounds that have a major influence on the quality of the receiving  

water body. A list of possible weights  for the calculation of the overall pollution removed by the plant is  

reported in Table S.1 of the supplementary material.   

It should be noted that WWTPs perform different functions, i.e. removing of COD, removing of N and/or P,  

energy and material recovery, producing an effluent free of pathogens. Although current legislation in  

Europe only requires the reduction of N and P for the treated effluents returned to sensitive areas [25], the  

objectives of a WWTP are expected to become broader in the future and include, e.g. the removal of micro-  

and nanopollutants [28] or the production of reusable water [29]. Even more, it becomes obvious that general  

energy consumption KPI (i.e. kWh/m3or kWh/kg CODremoved) has little value, as it does not provide a  

suitable overview of the different WWTPs currently in operation. There is a clear need to establish suitable  

KPIs within the WWTP that allow a comparable, realistic and universal form of reporting the energy data.  

The choice of the proper KPI should be related to the function of the WWTP. A list of most common KPI  

and recommendations for their use is reported in table 1.  
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Table 1. Comparison of most used KPIs. Legend: ✓✓ = universally suitable, ✓= not universally 

suitable, ✗ = not suitable. 

KPI Overall Preliminary 

treatment 

Primary 

treatment 

Secondary 

treatment 

Tertiary 

treatment 

Sludge 

treatment 

Comments 

kWh/m3  ✗ ✓✓ ✗ ✗ ✓ ✗ Does not take into 

account influent 

dilution; Does not 

represent the removal 

of pollutants 

kWh/PE year ✗ ✗ ✗ ✗ ✗ ✗ Does not represent the 

removal of pollutants 

kWh/kg CODremoved ✓ ✗ ✓ ✓ ✗ ✗ Limited to plants with 

same function 

kWh/kg TSSremoved ✗ ✗ ✓✓ ✗ ✗ ✓✓ Limited to primary 

and/or sludge treatment 

kWh/kg Nremoved ✓ ✗ ✗ ✓ ✗ ✗ Limited to WWTPs 

where N removal is 

implemented 

kWh/kg TPUsremoved ✓✓ ✗ ✗ ✓✓ ✓✓ ✗ Allow the comparison 

of WWTPs regardless 

of treatment intensity 

  

3.2. Energy benchmark approaches  

Energy efficiency has been summarised with the idea of “doing more using less” [30]. A widely favoured  

approach in assessing potentials for efficiency improvement is to establish benchmarks for efficient  

operation. Energy benchmarking is defined as the continuous and systematic process of comparison of the  

energy efficiency against a reference performance, thereby identifying the most efficient units and best  

practise.  A comparison can then be carried out between the less efficient units against both the reference and  

the best practice for any given indicator [31]. The benchmarking results can help wastewater utilities and  

operators determine how well each plant in the benchmarking study is performing. It also highlights the  

worst and the best energy users, revealing which WWTPs would achieve the greatest energy savings from  

implementing energy conservation measures.  

There exists wide range of methods to measure the relative efficiency of plant in relation to a sample (Fig.  

1). The simplest methods consist on pairwise comparisons by selecting a KPI (hence index methods) and  

normalizing the performance with respect to the reference or best available one [16-19,21,32]. They provide  

easily understandable results but they rely on having a large sample of plants to provide a sound benchmark.  
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Several partial indicators may be needed to compare plants with different layouts. Frontier analysis relies on  

the definition of a contour (a frontier) that describes an average or a best performance for a given set of  

inputs (i.e. operational and design data). Within frontier analysis, statistical techniques can be used to  

describe and infer the performance of a population by analysing a subset (a sample) [33,34]. Programming  

methods will use an optimisation based on the gathered data to define an optimal contour, which can be  

subsequently used for comparison [35-39]. The choice of the benchmarking techniques used by individual  

utilities depends partly on the data available and purpose of the benchmarking exercises and can have impact  

on the determination of efficiency score. An illustration of the variety of techniques used for this purpose is  

given in Table 2.  

  

Figure 1. Benchmarking approaches. (Arrow direction means increasing level of complexity). [We  

suggest 1.5 column width]  

Table 2. Summary of WWTP energy benchmark studies. Note: OLS = ordinary least squares; DEA = 

Data Envelopment Analysis; LCA = Life Cycle Assessment. 

Reference Method  Year Sample and 

location 

Inputs Outputs Main Conclusions 
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[18]  Normalization  2000 5 WWTPs 

in North 

Europe 

Electricity 

consumption; 

Chemical 

consumption; 

Manpower 

Population 

served 

Energy costs account for 

about 25% of total net 

costs. Ranking highly 

dependent on the criteria 

used 

[32]  Normalization  2009 1856 

WWTPs in 

China 

Electricity 

consumption 

Influent 

flowrate; COD 

removed; Air 

provided for 

aeration  

Energy consumption in 

WWTPs decreased with 

the increase of scale and 

operation load rate. 

[17]  Normalization  2010 985 

WWTPs in 

Japan 

Electricity 

consumption 

Influent 

flowrate 

Energy intensity is 

assumed to be more 

related to scale of plants 

than wastewater treatment 

process.  

[16]  Normalization  2010 559 

WWTPs in 

China 

Electricity 

consumption 

Influent 

flowrate; Total 

Pollution Units 

removed; 

Influent pump 

unit; Air 

provided for 

aeration; 

amount of 

sludge treated.  

Energy benchmark is 

applicable and helpful for 

plants to recognize energy 

saving potential. All plants 

have a potential of energy 

saving, especially in 

aeration. 

[19]  Normalization  2013 24 WWTPs 

in Australia 

Electricity 

consumption 

Population 

served 

Main reason for higher 

specific energy 

consumption of plants in 

Australia is reuse 

infrastructure (reuse pump 

stations, ultraviolet (UV) 

disinfection, etc.) 

[21]  Normalization  2013 51 large 

WWTPs 

and 17 

rural 

WWTPs in 

Slovakia 

Electricity 

consumption; 

Electricity 

production 

from biogas 

Influent 

flowrate; kg of 

BOD removed 

Energy benchmarks are 

reported for plant class 

sizes. 

[20]  Normalization  2013 289 

WWTPs in 

Italy 

Electricity 

consumption 

Influent 

flowrate; 

Population 

served; COD 

removed 

Plant size and type of 

sewer system impact on 

energy efficiency. 

[6]  Normalization  2014 2 WWTPs 

in UK 

Electricity 

consumption 

Influent 

flowrate 

Benchmarking exercise 

was useful to identify the 

most energy-consuming 

assets and their respective 

limitations. 

[33]  OLS  2007 266 

WWTPs in 

USA 

Energy 

consumption 

(Electricity, 

Natural Gas, 

Fuel Oil, 

Propane) 

Design Daily 

Flow, Current 

Daily Flow, 

Average 

Influent and 

Effluent BOD, 

Fixed Film 

process 

(Yes/No), 

Treatment 

Nutrient 

Removal 

(Yes/No) 

The regression model 

predicts the average 

energy use for a specific 

set of characteristics. Only 

25% of the plants use less 

energy of the predicted 

energy consumption.  
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[34]  OLS  2012 35 WWTPs 

in Canada 

Energy 

consumption 

(Electricity, 

Natural Gas, 

Fuel Oil, 

Propane) 

Design Daily 

Flow, Current 

Daily Flow, 

Average 

Influent and 

Effluent BOD, 

Fixed Film 

process 

(Yes/No), 

Treatment 

Nutrient 

Removal 

(Yes/No) 

Energy Star method is a 

valid tool for benchmark 

energy efficiency even if 

is not a diagnostic tool. 

[38]  DEA  2011 99 WWTPs 

in Spain 

Total cost COD, N and P 

in the effluent; 

The results indicate that 

mean efficiencies are 

relatively high and 

uniform across the 

different technologies. 

Techno-economic 

efficiency is optimal for 

WWTPs operating with 

activated sludge in 

comparison with other 

technologies.  

[35]  DEA  2011 177 

WWTPs in 

Spain 

Electricity 

consumption; 

Staff; 

Chemicals; 

Maintenance; 

Waste 

management; 

Other 

TSS removed; 

COD removed 

Plant size, quantity of 

eliminated organic matter, 

and bioreactor aeration 

type are significant 

variables affecting energy 

efficiency of WWTPs. 

[39]  DEA  2012 45 WWTPs 

in Spain 

Total cost COD, N and P 

in the effluent; 

The most efficient and 

innovative facilities are 

identified as references. 

[37]  DEA  2014 8 WWTPs 

in the 

Middle 

East 

Electricity 

consumption; 

N. of 

engineers; N. 

of technicians; 

N. of workers 

BOD removal 

efficiency; SS 

removal 

efficiency 

The flexibility of DEA 

adds a sort of competitive 

advantage over other tools 

and techniques. 

[36]  DEA + LCA  2014 60 WWTPs 

in Spain 

Total cost SS, COD, N 

and P in the 

effluent; GHG 

The best functioning 

WWTPs to be used as 

references were identified, 

and the potential for GHG 

reductions were 

quantified. 

[40] DEA + LCA  2015 113 

WWTPs in 

Spain 

Electricity 

consumption; 

chemical 

consumption; 

sludge 

production 

Net 

environmental 

benefit 

Smaller WWTPs, which 

unlike large WWTPs, lack 

continuous monitoring, 

have a relevant potential 

for improving their 

environmental profile if 

they were to benefit from 

stricter supervision. 

3.2.1. Normalization approach  

The normalization approach consists in the evaluation of WWTPs energy efficiency based on normalized  

energy performance indicators and ratios. This approach is the most widely used by plant operators, water  



 14 

companies and agencies and all the other stakeholders, due to its simplicity in the implementation and  

interpretation. Energy-efficiency indicators are usually employed and obtained by simply normalizing the  

energy use based on a given level of output or activity (section 3.1). In order to perform a benchmark study  

between different WWTPs, the energy consumption has to be expressed based on certain guidelines and  

equal dimensions, i.e. the volume of wastewater treated, the unit per capita loading as PE or unit of pollutant  

removed. These partial measures are generally available, and provide the simplest way to perform a  

comparison. Researchers and practitioners often combine Partial KPIs to create an Overall KPI, generally  

using a weighted average of Partial KPIs. As a drawback, benchmark methods based on single KPI  

representing the whole energy consumption of a plant are too simplistic because they assume that the entire  

population of plants (e.g. with their different type, size, and location) is comparable with only one metric.  

Indeed, WWTPs feature complex processes composed by several subsystems (stages), i.e. preliminary,  

primary, secondary, tertiary and sludge treatment, each one with different function and as a result specific  

partial KPIs seem to be more appropriate to be used for treatment stage(s) with different function. As for  

instance, kWh/m3 does not represent necessarily the overall plant performance since, i.e., in the case of  

mixed sewer system this KPI is affected by dilution of the wastewater. However, it could be suitable, as KPI  

for hydraulic-based stages (e.g. preliminary treatment), which are designed using hydraulic loads and  

typically equipped with pumps, screens, sieving, scrappers, and filters, in which energy depends on the  

volume of the influent wastewater processed.  

The commonly used normalization approach based on one or more KPIs presents important drawbacks due  

to some implicit assumptions. First, when we compare a small plant with a large plant, we implicitly assume  

that we can scale linearly input and output, i.e. we assume constant returns to scale (CRS). A second  

limitation is that it typically involves only partial evaluations. One KPI may not fully reflect the purpose of  

the plant. We could have multiple inputs (i.e. electricity and chemicals consumption) and several outputs (i.e.  

volume of treated wastewater, amount of organic carbon removed and/or amount of pollutants removed  

based on the treatment intensity). To overcome these two limitations, practitioners usually restrict  

normalization approaches for the performance evaluation of WWTPs within similar size and/or  

characteristics.  
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3.2.2. Statistical approach  

The concept of statistical frontier analysis can be easily explained in terms of standard linear regression  

model, such as ordinary least squares (OLS). Given data on energy use (or any equivalent KPI) and using  

operational or design data as inputs (Y), the parameters 𝛼 and 𝛽 can be fit via a simple linear regression  

model.   

𝐸 = 𝛼 + 𝑌𝛽 + 𝜀𝑖                                                                                                              (Eq. 6)  

where E (N x 1) is the energy use of N plants, Y (N x m) represents the operational or design data and  (m x  

1) are slope coefficients for m different inputs and data on N plants, and 𝜀𝑖 is the error term that defines the 291 

relative inefficiency. OLS allows estimating the functional form (regression line), which represents the 292 

average efficiency level. Interpretation of results from an OLS can shows that all plants with ratings above 293 

the average can be considered inefficient while those with ratings below are efficient [9].  294 

An example of regression-based benchmarking tool is Energy Star method [33], which used the measured  

plant data of 257 facilities from throughout the USA to develop a regression model that can then be used to  

predict the annual energy consumption given plant characteristics. Benchmarking scores are calculated by  

comparing the utility’s actual energy use with the energy use predicted by OLS model. In order to develop  

the regression model in Energy Star method stepwise regression approach was employed to find the  

significant input variables. The parameters included in model are: (1) average influent flow rate; (2) influent  

BOD; (3) effluent BOD; (4) plant load factor; (5) whether the plant presents filtration; and/or (6) nutrient  

removal. A benchmark system is developed based on the distribution of residuals of the regression model.  

The residual is the difference between the actual and the predicted energy consumption. Thus, the residuals  

are treated as measures of inefficiency. Negative residual means that the plant uses less energy than similar  

plant with same characteristics. Moreover, the distribution of sample residuals from the regression model can  

be used to construct the corresponding benchmark table.  

By comparing this predicted energy usage with the actual energy use, the utility obtains a score. The  

benchmarking score represents a percentile: e.g. a 55 score means the utility is more efficient that 55% of the  

utilities with similar characteristics. The major criticisms of this approach are: i) a large dataset is necessary  

in order to obtain reliable results; ii) regression results are sensitive to the functional form, iii) that as all the 310 
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indicators are merged into a single one, it is possible to offset the inefficiency in one variable by another, e.g.  

high BOD removal can compensate not removing nutrients.   

Stochastic frontier analysis (SFA) is another statistic approach that estimates the efficient frontier and  

efficiency score of the firms but, unlike OLS, SFA considers deviation from the efficiency frontier as two  

distinct terms, since it separates error components from inefficiency components. SFA particularly requires  

separate assumptions on the distributions of the inefficiency and error components, potentially leading to  

more accurate measures of relative efficiency [9]. In SFA the error term 𝜀𝑖 is defined as follows:  

𝜀𝑖 =  𝑣𝑖 − 𝑢𝑖                                                                                                                      (Eq. 7)  

where the 𝑣𝑖represents the random errors, a priori assumed to be independent and identically distributed, and  

𝑢𝑖  represents the non-negative technical inefficiency components. The random error term allows to  

encompass random effect of measurement error in output, observation, statistical noise and effect of  

stochastic factors that are beyond the firm control, i.e. seasonality, weather, human factor. However, the  

estimation results are sensitive to distributional assumptions on the error terms, and the model requires large  

samples for robustness.  

3.2.3. Programming techniques  

The majority of the research conducted to date has analysed the efficiency of WWTPs using non-parametric  

models, such as data envelopment analysis (DEA) in one of its multiple variants. Basically, DEA is a  

mathematical programming technique that allows building an envelopment surface or efficient production  

frontier to assess the efficiency of a set of decision-making units (DMUs), i.e. WWTP in this case. Thus,  

those DMUs that establish the envelopment surface are considered efficient and those that do not rest on the  

surface are considered inefficient.  A unit is considered to be efficient if and only if i) it is not possible to  

improve its outputs while its inputs are fixed, and ii) it is not possible to do change its inputs without altering  

the resulting outputs.   

DEA can involve the imposition of differing scale assumptions. The return to scale concept (RTS) [41] refers  

to the rate by which output changes if all inputs are changed by the same factor. Let 𝛼  represent the  

proportional input increase and 𝛽 represent the resulting proportional increase of the single output. Constant  



 17 

returns to scale (CRS) prevail if 𝛽 = 𝛼, increasing returns to scale (IRS) prevail if 𝛽 > 𝛼, and decreasing  

returns to scale (DRS) prevail if 𝛽 < 𝛼. Due to the fact that energy consumption of WWTPs is affected by  

economies of scale, in particular energy efficiency increase with increasing plant size, IRS assumption need  

to be applied to DEA models [36,39] (see section 3.3.1 for further discussion on economy of scale in  

WWTPs). The DEA efficient frontier defines a convex space that requires a minimum number of data to be  

determined. For instance, Cooper’s rule [42], establishes that the number of DMUs analysed must be at least  

two times the product of the number of inputs and number of outputs defined.  

DEA offers major advantages over parametric models such as does not need to employ an assumption for the  

functional form of the frontier as the functional form may change when new DMUs are added to the sample  

set. Consequently, there is no danger of wrong model specification for the frontier. DEA allows the analysis  

of processes that involve various inputs generating multiple outputs at the same time, comparing each DMU  

with itself and the rest. In this context, DEA approach has recently attracted special interest for the task of  

assessing the technical and economic efficiency of WWTPs. For instance, Hernandez-Sancho and Sala- 

Garrido [43] applied DEA for the assessment of the technical and economic efficiency of a group of  

WWTPs, considering five inputs (costs for energy, labour, waste management, chemicals and others) and  

three outputs (the amount of TSS, COD and BOD removed). In other cases, outputs related to the  

environmental impact, as estimated by LCA, were analysed together with the economic performance [36,40]  

proving that the combined use of LCA + DEA can be a valuable method for the performance evaluation of  

WWTP from a broader perspective.  

However, there are also a number of disadvantages that must be taken into consideration. Since the analysis  

relies heavily on the initial choice of inputs and outputs, the efficiency score tend to be sensitive to the  

choice of input and output variables. Misspecification of variables can lead to wrong results, as consequence  

of less efficient firms defining the frontier [42]. Thus care needs to be taken to the selection of input and  

output. As for example, some authors [35,40] selected kWh/m3 as input for electricity use in their DEA  

matrices. The variables should, as far as possible, reflect the main aspects of resource-use in the activity  

concerned. On the contrary, as seen previously (see section 3.1), the KPI kWh/m3 does not represent  

necessarily the plant performance.   
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DEA measures global efficiency for each DMU. That is, it measures the maximum radial (proportional)  

reduction in all inputs that would raise the DMU efficiency to the level of the most efficient DMUs in the  

study set [44]. Hence, a shortcoming of this approach is that the DEA frontier does not necessarily coincide  

with Pareto optimal frontier [45]. However, taking into account that a WWTP is viewed as a multiple input  

and outputs unit, the shortcoming of DEA models is that they do not provide information on the efficiency of  

specific inputs, but rather only measures global efficiency. To solve this problem non-radial DEA have also  

been applied [35,46]. This approach puts aside the assumption of proportionate contraction in inputs or  

outputs and it allow the isolation of the specific inputs or outputs to act to increase the efficiency of the  

DMUs being studied [46]. Thus, this type of model provides an efficiency indicator for each of the variables  

in the process.  

Like the OLS, DEA relies on the assumption of deterministic energy efficiency scores, ignoring the fact that  

energy consumption has a significant stochastic component, affected by factors such as seasonality and  

weather. Because DEA is highly adaptive to data, efficiency estimates based on single measurements are  

very biased and unreliable if reported without estimating their error distributions. Literature shows that there  

are some stochastic extensions to DEA that can improve its robustness to data errors and outliers, i.e.  

stochastic DEA (SDEA) model [47]. This approach involves smart meter data set (repeated measurements,  

every 10 min in this case, of energy consumption). By using repeated measurements of energy consumption  

to estimate bias-corrected and confidence intervals for the efficient frontier the authors were able to estimate  

the uncertainties in the energy efficiency scores.  

3.2.4. Discussion and comparison of different approaches   

The above discussion on the different approaches has raised advantages and disadvantages to each, and a  

comparison of these is given in Table 3.  

Table 3. Comparison of various benchmarking approaches. Methods specifically applied for the 

evaluation of energy efficiency in the field of wastewater treatment are highlighted in blond. 

Benchmarking 

Approaches 

System Method Approach Model Key 

characteristics 

Pros Cons 
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Normalization  Public Non-

Frontier 

Deterministic - Based on 

relative simple 

performance 

indicators, and 

ratios of single 

input and 

output 

Relative 

inexpensive;  

Easy to 

implement and 

interpret 

It assume that the 

entire population of 

plants is comparable 

universally and with 

only one metric 

OLS Public Frontier Deterministic Parametric Estimates the 

average trend 

over the entire 

population, and 

then compare 

each plant with 

that overall 

trend.  

Computationally 

easy and 

straightforward; 

Suitable for 

public users 

Residuals are 

treated as measures 

of inefficiency, 

even if they actual 

reflect a 

combination of 

different factors; 

Sensitive to outliers; 

Difficult to 

implement on small 

samples 

SFA Public Frontier Stochastic Parametric Statistical 

approach that 

estimates a 

production 

frontier, and 

shifts this to 

reflect the 

efficiency of 

the most 

efficient firm 

to determine 

the frontier 

The impact of 

measurements 

errors and other 

random effects is 

taken into 

account 

Requires 

specification of a 

production frontier. 

Difficult to 

implement on small 

samples 

DEA Internal Frontier Deterministic Non-

Parametric 

Non-

parametric 

approach that 

calculates, 

rather than 

estimates, the 

frontier using 

programming 

techniques 

No assumption 

or specification 

of energy 

function is 

required;  

Can incorporate 

uncontrollable 

(or 

unpredictable) 

factors (e.g. 

environmental) 

Sensitive to choice 

of input and output 

variables;  

No allowance for 

stochastic factors 

and measurement 

errors 

SDEA Internal Frontier Stochastic Non-

Parametric 

Linear 

programming 

model, such 

DEA, but it 

extended to 

account for the 

influence of 

statistical noise 

Flexible and 

precise in the 

noise separation 

Large dataset need  

Requires a prior 

assumption to 

describe the 

stochastic variations 

Benchmarking approaches are fundamentally different from each other and therefore it is quite likely that  

they yield different results. Each approach can provide insights on aspects of WWTPs energy performance.  

The process of model specification and technique selection process depends on benchmarking objectives,  

data availability, and the user willingness to adopt specific assumptions for each type of model. Hence, the  

benchmarking user may need to draw upon professional consultants or specialists at research institutions  

before moving for more sophisticated models.  
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One of the main conclusions of this review is that each method is adapted to a particular goal, as all of them  

face their own drawbacks both on the theoretical and the practical side. This implies that the final efficiency  

estimates should not be interpreted as being definitive measures of inefficiency. By contrast, a range of  

efficiency scores may be developed and act as a signalling device rather than as a conclusive statement.  

One of the main problems for benchmarking techniques is that there are usually only a small number of  

observations available relative to the number of explanatory variables. Energy efficiency depend upon a  

large number of factors, including the geographical characteristics of its service territory, weather condition,  

the influent load characteristics, electricity price or others factors, such as the human factor. None of these  

factors could be fully described without using a multitude of variables.  

Normalization approach combines partial metrics and provides information time trends and patterns across  

WWTPs. Statistical techniques such as regression analysis results in an equation that is linear in explanatory  

variables which can be easily interpreted; each of the regression coefficients indicates the variation of the  

dependent variable (most often energy consumption) with respect to each explanatory variables, all other  

variables remaining constant. Furthermore, regression analysis is relatively simple to carry out and its  

conclusions are rather robust to experimental noise and outliers. DEA is very well adapted to determining the  

efficiency of a plant with respect to different inputs and outputs, as it is the case of WWTPs. It must be noted  

though that DEA efficiency scores are dependent on the input variables selected, potentially leading to  

different conclusions if the inputs are chosen on a different basis. As a consequence, the selection of input  

variables needs to be checked by other techniques, including linear regression. Finally, SDEA combines the  

flexible structure of non-parametric model but it is extended to account for the influence of statistical noise.  

The problem however is that the estimation task become bigger, the data need larger (repeated energy  

consumption measurement are necessary) and still cannot be avoided a series of strong assumptions about  

the distributions of the noise terms [48].  

Regarding the end-user of the benchmarking system, methods can be well suited to common public (‘user  

friendly methods’) or rather aimed at internal benchmarking. For DEA, testing a new item requires solving  

the model again for the whole set of observations, with potential changes in the established ranking.  

Therefore, DEA based tools are aimed at internal benchmarking for companies, regulatory agencies, etc. On  

the other hand, new observations can be benchmarked directly with the benchmarking table generated by  
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OLS and normalization approaches. In effect, it is not necessary to solve the model to obtain the  

benchmarking score. These methods then become suitable for public users.  

3.3. Analysis of collected energy data   

Table 4 shows an overview of the consulted studies used in this article for collection of WWTPs energy data.  

The sources provide very heterogeneous data: from highly detailed to a generic overview of the energy  

consumption. As shown in Fig. 2, in most of the studies analysed (about 90%), WWTP energy consumption  

is reported as the average overall consumption (aggregated data), and stated as total electricity consumption  

(in kWh) or referred to the volume of treated wastewater (kWh/m3); less frequently aggregated energy data  

are reported referred to the amount of COD and BOD eliminated or to plant load entering the plant (PE).  

Those data are usually collected from the energy bills and based on annual or daily average. Less frequently  

they are results of actual electric energy metering [6,49]. Disaggregated published data (i.e. energy  

consumption of each of the process and sections of a WWTP) are considerably scarcer in the literature.  

Those data are always reported as kWh or kWh/m3, and will be reported and discussed separately bellow  

(section 3.3.2).  

Table 4. Overview of the reviewed studies (see section 2 of the supplementary material for the dataset  

used for the analysis).  

Reference Type of energy 

data 

 Year Country N. of case 

studies 

Type of technologya Type of study Source 

[50] Aggregated   1995 Canada 93 AP; BD; CAS Energy 

benchmarking 

Technical 

report 

[51]  Aggregated  2009 France 31 BNR Energy 

benchmarking 

Technical 

report 

[17]  Aggregated  2010 Japan 4 CAS Energy 

benchmarking 

Research 

article 

[16]  Aggregated  2010 China 3 BNR; SBR Energy 

benchmarking 

Research 

article 

[25]  Aggregated  2011 Spain 24 BNR; CAS; OD; 

UST 

LCA study Research 

article 

[34]  Aggregated  2012 Canada 7 CAS; TF Energy 

benchmarking 

Research 

article 

[52]  Aggregated  2013 Spain 1 BNR LCA study Research 

article 

[53]  Aggregated  2013 Spain 7 BNR; MBR LCA study Book 
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[54] Aggregated  2015 Germany 63 BNR; SBR; UST Energy 

benchmarking 

German 

regional 

agency 

[55] Aggregated  2015 Spain 79 AP; BD; BNR; CAS; 

EA; MBR; OD; UST 

Energy 

benchmarking 

Spanish 

regional 

agency 

[56]  Aggregated/ 

Disaggregated 

 1998 USA 6 UST Energy audit Technical 

report 

[57]  Aggregated/ 

Disaggregated 

 2004 Spain 1 BNR LCA study Research 

article 

[58]  Aggregated/ 

Disaggregated 

 2007 Italy 1 MBR Energy audit Research 

article 

[59]  Aggregated/ 

Disaggregated 

 2008 Spain 13 EA; BNR LCA study Research 

article 

[20]  Aggregated/ 

Disaggregated 

 2013 Italy 5 CAS Energy audit Book 

[6]  Aggregated/ 

Disaggregated 

 2015 UK 2 OD Energy 

benchmarking 

Research 

article 

[60]  Disaggregated  1973 USA 9 CAS; TF Energy audit Technical 

report 

[50]  Disaggregated  1995 Canada 24 AP; BD; CAS Energy 

benchmarking 

Technical 

report 

[61]  Disaggregated  2008 USA 7 BNR; CAS Energy audit Technical 

report 

[49]  Disaggregated  2009 USA 1 CAS Energy audit Technical 

report 

[62]  Disaggregated  2013 USA 7 CAS; MBR; SBR; 

TF 

Energy audit Book 

a AP – Aerated pond; BD – Biodiscs; BNR – Biological nutrient removal; CAS – Conventional activated sludge; EA – Extended  
aeration; MBR – Membrane bioreactor; OD – Oxidation ditch; SBR – Sequencing batch reactor; UST - unspecified secondary  
treatment; TF – Trickling filter.  
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Figure 2. Statistics frequencies of how energy data are reported in the literature. [We suggest 1  
column width]  

Energy data are reported in literature for two main reasons. On the one hand, energy data are usually  

reported as part of energy benchmarking exercises and, although more rarely, in detailed energy analysis  

such as energy audits [56,60]. On the other hand, it is not uncommon to find energy data reported as part of  

broader analysis such as LCA studies of WWTP, where energy consumption is normally provided as part of  

the inventory and then transformed and discussed in terms of potential impacts [25,63].  

Regarding the sources where energy data are available, the majority of case studies were found on technical  

reports and book as part of benchmark study or energy audit. Research articles were found to be a primary  

source in the case of LCA studies. Furthermore, energy data from regional water agencies (in particular from  

Germany and Spain) collected by private communications were also included in the analysis.   

3.3.1. Energy consumption respect to scale, type of treatment and country  

In this section the collected and processed data on overall (aggregated) WWTP energy consumption is  

presented. As discussed previously, the analysis is carried out using energy per COD removed as KPI. In  
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order to elucidate the influence of individual variables on the energy performance, Fig. 3 reports the data  

variability as described in section 2.4 classified by class size (3.A), technology (3.B) and country (3.C).   

  

Figure 3. Total WWTPs energy consumption per: (A) class size, (B) type of treatment and (C) country.  

Note: numbers above the bars are sample size and average. Samples whose N < 5 are not shown, this is  

the reason why total sample sizes differ among Fig. 3.A, 3.B and 3.C. MBR = Membrane Bio-Reactor;  

EA = Extended Aeration; BNR = Biologic Nutrient Removal; UST = Unspecified Secondary  

Treatment; AP = Aerobic Pond; CAS = Conventional Activated Sludge. [We suggest 2 columns width]  

Energy consumption respect to scale. According to figure 3.A, it can be seen that the energy consumption  

decreases when increasing the population equivalent. Considering median values, specific energy  

consumptions of 3.01, 1.54, 1.02, 0.82 and 0.69 kWh/kg CODremoved were obtained moving up from the class  

size PE < 2 k to the class size PE > 100 k, respectively. According to the literature, large plants (more than  

100,000 PE) are normally more energy efficient [17,43,64]. This can be due to: i) exploiting economies of  

scale, by using large and generally more efficient equipment, in particular larger pumps and compressors; ii)  

ensuring that the process operates at more stable conditions, which is reflected on a more regular operation  

of electromechanical equipment and avoiding energy-intensive transitional periods; iii) providing the  

automation for the treatment process (for example, regulation of the oxygen levels by controlling the  

operation of the aeration pumps); iv) more and especially better trained staff operating large plants, which is  

seldom the case for small WWTPs. However, in contrast with these results, some authors reported that  

smaller plants can, in principle, operate as energy efficiently as larger plants [65], or with diverse energy  

efficiencies [59].  Thus, to provide more reliable statements on this subject, additional research is required.  
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Energy consumption respect to type of treatment. The type of treatment has impact on the energy  

consumption of WWTPs. In Fig. 3.B a general overview of the energy consumption is reported for the  

sample analysed and different technology. According to the box plot graph, plants that carry out CAS and  

AP process showed the slowest energy consumption, while as expected MBR system are characterized by  

the highest energy consumption, being 2.3 times that of BNR system. MBR systems, due to intensive  

membrane aeration rates required to manage the fouling and clogging, are well known higher energy  

consuming process, being its energy consumption up to three times higher when compared with CAS  

systems combined with advanced treatment techniques such as tertiary filtration [66,67]. However, reporting  

energy in term of kg of CODremoved does not take into account the additional complexity of BNR systems to  

remove N and/or P (i.e. higher volume of mixed liquor to be mixed and/or to be recirculated and higher air to  

be supplied), thus it is plausible expect higher energy consumption compared with AP and CAS system (that  

are characterized by a lower intensity of treatment.   

Fig. 4 combines scale effect and technology (in particular CAS, BNR and AP, due to a lack of data for the  

other treatment technologies). The same tendency reported for the whole sample, i.e. the bigger the plant  

capacity the lower the energy consumption is also visible for these individual treatments. It is possible to  

observe that AP system is in general the lowest energy consumption treatment option (being the most  

efficient one in 3 out of the 5 plant size class) and that CAS process appears to be the worst alternative in  

terms of energy use (being the less efficient one in 4 out of the 5 plant size class). On the contrary BNR  

systems shows alternating results among the different size class that could be due to the fact that BNR  

category includes different configuration such as LE, MLE, Bardenpho, A/O or A2/O, hence WWTPs with  

different functions. However, apparently the possibility of BNR system to implement more efficient  

equipment, better performing automation and regulation compared to CAS system it allows to perform better  

despite its higher treatment intensity.   
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Figure 4. Specific energy consumption per type of treatment and plant size class. Note: numbers above  

the bars are sample size and average. [We suggest 2 columns width]  

Energy consumption respect to country. As seen in the previous section the type of treatment used  

influences energy consumption. Therefore, it is reasonable to expect differences between different countries,  

where for economic and/or environmental reasons a particular type of treatment might prevail. With the  

exception of France and Canadian WWTPs, which turned out to have a particular high-energy consumption  

(3.33 and 1.65 kWh/kg CODremoved, respectively), similar values were found among countries (Fig. 3.C).  

Considering the median values, Spanish, German and Italian samples showed to be the most efficient  

countries of the sample analysed, with an energy consumption of 0.97, 0.95 and 0.85 kWh/kg CODremoved,  

respectively. USA sample, as opposite to the rest of the countries, showed a very low variability due to the  

smaller sample composed by medium-big size plants and reports a median value of 1.31 kWh/kg CODremoved.  

Aside form treatment technology and scale, other factors, such as electric energy price, are likely to  

influence WWTP energy consumption among the various countries. Higher prices could provide stronger  

incentives for energy efficiency measures. For example electricity in France is especially cheap for industry  

(0.079 €/kWh in France instead of 0.120 €/kWh in Spain, 0.130 €/kWh in Germany or 0.178 €/kWh in Italy  

[68]. A number of barriers can inhibit proactive energy management to address energy efficiency issues at  

WWTPs. Some of them are deeply rooted in the governance of the sector, referred to as institutional and  

regulatory issues: politicizing of water and wastewater tariffs, low electricity prices can influence energy  

efficiency at WWTPs. The reader is referred to [69] for a list of main barriers to improving energy efficiency  

in water and wastewater utilities and commonly observed barrier removal actions. In addition to this, Rieger  
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and Olson pointed out that the human factor is often neglected when looking at WWTPs performance [70]  

and in this sense they argue that the lack of or the existence of misleading incentives for plant stakeholders  

involved (which include the public, federal agencies, state or provincial agencies, local political, plant  

managers, chief operators and operators) can considerably influence plant performances.   

Fig. 5 summarises energy consumption of WWTPs, grouped by country and secondary treatment type of  

technology plotted against plant size (stated in terms of PE).   

  

Figure 5. WWTPs specific energy consumption per country and type of treatment (bubbles size by  

sample size). Note: CN = China; CA = Canada; FR = France; DE = Germany; IT = Italy; JP = Japan;  

ES = Spain; UK = United Kingdom; US = United States of America. (Colours stand for the type of  

treatment; the reader is referred to the web version of this article). [We suggest 1.5 column width]  

A correlation between specific energy consumption and plant size has been found. Increasing the capacity of  

the system, its specific energy consumption decreases according to the power law shown in the figure. For a  

given amount of PE served, a plant located above the regression line performs worse than its peers (and vice- 

versa). Two main observations can be made: i) there is no clear trend based on technology and location  
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classification, rather there is a certain heterogeneity; ii) there are some countries that in general, regardless of  

the technology used, show better (Spain and Germany) or worse (France) energy efficiency compared to the  

expected one, which may be due to several factors such as the influent load, the effluent regulations or other  

plant operational conditions. In effect Spanish and German samples show a very low dilution factor (data not  

shown), which make them more energy efficient regardless of their type of treatment. On the contrary French  

WWTPs are characterized by excessive energy consumption. The influence of operational conditions is also  

the reason why contrasting results within the different type of treatment were found in the various countries,  

i.e. CAS systems (represented in green in the figure) result to be efficient in the case of Spain and the  

opposite in Canada.   

3.3.2. Impact of operational conditions on energy consumption  

Possible correlations between energy consumption and plant characteristics have been investigated and  

correlations with dilution and load factors (Eq. 4 and 5) have been identified and described here (Fig. 6).  

Other plant characteristics, such as sewer system design (mixed rather than separated), possible presence of  

tertiary treatment (UV or ozone disinfection and tertiary filtration) and sludge treatment layouts, have not  

been investigated due to the lack of data.  
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Figure 6. Variation of specific energy consumption with (A) influent wastewater dilution factor and  

(B) plant load factor. Note: Scale of x- and y-axis decreases with increasing plant class size. [We  

suggest 1.5 column width]  

In case of combined sewer systems, the influent wastewater may be subjected to dilution due to infiltration  

of rainwater. From the analysis of the data it is clear that the specific consumption achieving wide high  
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values in systems with a high degree of dilution of the wastewater. How it can be observed in Fig. 6.A  

energy consumption increases when increasing the dilution factor.  

WWTP influents are characterised by several sources of variability in flowrate and loadings, with diurnal,  

weekly and seasonal patterns. Therefore, large design margins are needed, resulting in oversized WWTP  

[71] that can turn into inefficiencies from the energy point of view, as a result of the installation of  

equipment with greater power than required (Fig. 6.B). Specific energy consumption can be correlated with  

the load factor (Fig. 6B): plants receiving lower loads compared to design values present a significantly  

worse energy performance (not including the obvious excess in capital cost due to oversizing), energy  

consumption decreases when approaching the optimal value of 100% (as already reported by other authors  

[20,72]) and keeps decreasing for overloaded plants. It should be noted that in severely undersized plants  

malfunctions are likely to take place, leading to effluent quality deterioration and non-compliance with  

effluent requirements.   

As a conclusion, WWTPs that receive wastewater diluted are more energy-intensive. However, if specific  

energy consumption is reported per volume of wastewater treated, the opposite results are achieved (Fig. 7)  

and so this KPI does not represent necessarily the plant performance. Due to the need to make reference to  

precautionary conditions at the design stage, a certain oversizing of the plants is necessary. However, an  

excessive oversizing of the plant involves an increase in specific energy consumption. Moreover, the impact  

of influent dilution and plant load factor on energy consumption decrease increasing the size of the plant  

(Fig. 6.A and 6.B). This can explains the greater variability of specific energy consumption of small plants  

compared to bigger one.  
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Figure 7. Variation of energy consumption for different influent wastewater dilution factors. [We  

suggest 1 column width]  

3.3.3. Energy consumption per plant section   

WWTPs are complex processes composed by several subsystems (stages) (i.e. preliminary, primary,  

secondary, tertiary, sludge treatment), each one with different function.  Each of these stages presents a very  

different energy consumption rate as summarised in the data presented in this section.  

Table 5 shows a list of electromechanic equipment that can be present in a common WWTP divided per  

plant section and class size. Not all the WWTPs present the same plant sections, depending on the layout,  

plant size and treatment intensity required. As the literature review has shown that disaggregated energy data  

are always reported as kWh/m3 (see Fig. 2), in this section energy data will be discussed using this KPI.  

The energy consumption, in general, achieves wide ranges for the various sections of the plant, since each  

system install different types of equipment, even if they belong to the same compartments of treatment.  

However, there are typical behaviours, such as for example the increased consumption is due to aeration of  

the activated sludge or the minimum energy consumption related to the pre-treatment and primary  

treatments. So, it is generally assumed that for medium to large plants, the treatment sections characterized  

by higher energy consumption are biological oxidation, lifts (pumping and sludge recirculation) and  

generally mechanical dewatering of sludge and/or aerobic sludge digestion if present.  
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Table 5. Disaggregated energy data reported in the literature (stated as kWh/m3). Sources of  

disaggregated data are listed in Table 4.   

Size classification PE < 2 k 2 k < PE < 10 k 10 k < PE < 50 k 50 k < PE < 100 k PE > 100 k 

Number of plants 3 6 18 13 36 

Average flow rate (m3/d) 102 1303 4966 18713 188464 

PRELIMINARY TREATMENT 
 

Influent pumping 
 

2.2∙10-2 3.9∙10-2 4.2∙10-2 4.1∙10-2 

Micro screening 
  

0.023 
 

4.2∙10-3 

Screening 1.3∙10-2 3.8∙10-3 1.4∙10-3 1.0∙10-4 2.9∙10-5 

Comminutors 
  

3.9∙10-3 
  

Degritting   1.1∙10-5 6.6∙10-3 5.4∙10-3 2.7∙10-3 

PRIMARY - TREATMENT  
 

Primary settling   7.1∙10-3 4.8∙10-3 4.3∙10-3 

SECONDARY TREATMENT  

Trickling filter 
  

8.0∙10-2 0.14 0.18 

Mixer anoxic 
 

5.3∙10-2 6.8∙10-2 7.0∙10-2 0.16 

Mixed liquor recirculation 
 

1.0∙10-2 
 

4.7∙10-2 
 

Blowers oxidation 0.8 0.21 0.18 0.22 0.19 

Mixer aerobic oxidation     2.0∙10-3 

Final settling 
 

1.2∙10-2 5.5∙10-3 7.1∙10-3 8.4∙10-3 

Sludge recirculation 0.23 7.9∙10-2 2.9∙10-2 1.1∙10-2 7.9∙10-3 

Bio-filtration 
  

7.1∙10-2 6.9∙10-2 5.5∙10-3 

Membrane Bio-Reactor 
  

0.63 0.72 0.38 

Sequential Bio-Reactor     0.22 0.29 0.15 

TERTIARY TREATMENT  
 

Chemicals 
  

1.1∙10-2 1.5∙10-2 9.0∙10-3 

Chlorine disinfection 
  

2.0∙10-4 2.7∙10-4 8.8∙10-4 

Pump tertiary filtration 
  

2.9∙10-2 5.9∙10-2 1.4∙10-2 

Tertiary filtration 
  

2.7∙10-2 1.3∙10-2 7.4∙10-3 

Ultra-Violet lamps     4.5∙10-2 6.2∙10-2 0.11 

SLUDGE TREATMENT  
 

Sludge primary settler 
  

1.7∙10-4 
 

1.8∙10-4 

Excess sludge pumping 
 

1.6∙10-2 4.5∙10-3 
 

7.3∙10-4 

Gravity thickening 9.2∙10-3 3.7∙10-3 2.7∙10-3 2.1∙10-3 1.9∙10-3 

Centrifuge thickening 
  

1.6∙10-2 1.5∙10-2 1.8∙10-2 

Floating thickening 
  

1.4∙10-2 
 

3.5∙10-2 
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Mixer aerobic stabilization 
 

2.6∙10-2 
   

Blowers aerobic stabilization 0.53 4.5∙10-2 0.17 0.15 2.4∙10-2 

Anaerobic stabilization 
   

2.9∙10-2 3.2∙10-2 

Motor gas recirculation 
  

1.9∙10-2 
 

3.1∙10-3 

Heating sludge 
  

3.5∙10-3 
 

2.4∙10-3 

Vacuum filter 
  

1.5∙10-2 
 

9.8∙10-3 

Incineration 
  

1.2∙10-2 
 

0.7∙10-3 

Centrifuge dew 
 

1.8∙10-2 2.0∙10-2 2.3∙10-2 2.7∙10-2 

Belt filter press 
   

1.2∙10-2 1.0∙10-3 

Screw press     4.0∙10-3 4.8∙10-3 4.9∙10-3 

Fermentation   3.0∙10-2 9.5∙10-3 1.6∙10-4 

Preliminary treatment. The steps most commonly used in the pretreatment of wastewater are 1) the pumping  

of wastewater, 2) screening, 3) grit removal and 4) comminutors (grinding residues screenings). Generally,  

apart from pumping, these various steps are responsible for only a small portion of the total electric energy  

consumption of WWTPs. The electrical energy consumed for pumping the wastewater to sewage  

infrastructure depends on the structure and location of the sewer system. Consumption of between 2.2∙10-2  

and 4.2∙10-2 kWh/m3 were found, which represents, depending on the size of the plant and intensity of the  

treatment, between 5 and 18% of the total electricity use. The energy consumption associated with the  

screening step is mainly attributable to the gates cleaning phase. According to the data collected, this  

processing step has an electrical expenditure of between 2.9∙10-5 and 1.3∙10-2 kWh/m3, with an inversely  

proportional relation to the hydraulic flow. In general, such an energy intake represents less than 1% of the  

total power consumption. Several grit removal techniques are used in sewage treatment plants. Generally  

aerated or not-aerated processes can be found. This processing step may be between 1.3 and 2.7% of  

electricity consumption.   

Primary treatment. The primary treatment is, in most cases, a simple separation step in circular settling  

tanks equipped with mechanized scrapers. The primary settling stage requires about 4.3∙10-5 -7.1∙10-5  

kWh/m3, which is obviously a very small portion of the overall energy use.   

Secondary treatment. The secondary treatment is responsible for a significant proportion of the amount of  

electrical energy consumption. However, the required amount of electricity can vary for different types of  
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treatment. The most energy consuming process is the aeration system. Generally, the consumption for  

aeration is between 0.18 and 0.8 kWh/m3. Aeration is an essential process in the majority of WWTPs and  

accounts for the largest fraction of plant energy costs, ranging from 45 to 75 % of the plant energy  

expenditure [73]. Because of the high-energy use associated with aeration, energy savings can be gained by  

designing and operating aeration system to match, as closely as possible, the actual oxygen demands of the  

process. The most important process parameter to affect aeration efficiency is the mean cell retention time  

(MCRT) [74]. MCRT is directly related to the biomass concentration, and dictates oxygen requirements.  

Aeration efficiency and alpha factor (ratio of process-water to clean-water mass transfer) are higher at higher  

MCRTs. Literature studies [75,76] showed that the oxygen transfer efficiency is directly proportional to  

MCRT, inversely proportional to air flow rate per diffuser, and directly proportional to geometry parameters  

(diffuser submergence, number and surface area of diffusers).   

The separation of the sludge produced is usually carried out by a gravity-settling step in decanters equipped  

with mechanized scrapers. As with the primary settling, a small amount of energy is associated with this  

process, between 8.4∙10-3 and 1.2∙10-2 kWh/m3 or 0.5 to 1.5% of the overall electricity consumption,  

depending to plant size. Secondary sludge recirculation pumping results in an energy consumption of about  

4.7∙10-2 to 1.0∙10-2 kWh/m3. This energy consumption is between 1.5 and 3.5% of the electricity consumed in  

the whole plant. Another energy consuming process is mixing, in particular for anoxic reactors, ranging  

between 5.3∙10-2 and 0.12 kWh/m3. As the energy required for mixing increases superlinearly with the size of  

the tank, the contribution of mixing to the overall energy consumption can become comparable to other  

aerated processes for large plants [77].   

Tertiary treatment. Tertiary treatments increase not only effluent quality but also energy consumption. The  

values depend on the particular technology, going from 4.5∙10-2-0.11 kWh/m3 for UV disinfection, or 9.0∙10- 

3-1.5∙10-2 kWh/m3 for mechanic equipment required for the dosage of chemicals (aluminium or iron salts,  

chlorinated reagents, etc.), to 7.4∙10-3-2.7∙10-3 kWh/m3 for tertiary filtration.  

Sludge treatment. The energy consumed at different stages of treatment and final disposal of sludge may  

represent a major fraction of the overall electricity balance for a plant. Aerobic sludge stabilization is the  

most energy consuming sludge treatment process, since its energy demand is comparable to aeration system  

in the water line. Anaerobic digestion is more energy efficient options as, though its feasibility is often  
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linked to the plant’s size, the energy production may significantly improve the WWTP performance with  

respect to energy costs and self-sufficiency. Depending on the wastewater characteristics and on the removal  

efficiencies, 7.4∙10-2 - 0.15 kWh/m3  (production) are reported in the literature [72], and may ensure or even  

exceed the plant requirements [78]. Finally, a significant portion of energy consumption is normally  

accounted for sludge dewatering, where mechanical centrifugation was found to be the most energy  

demanding process (1.8∙10-2-2.7∙10-2 kWh/m3).  

3.4. Examples of energy efficiency improvements  

Energy saving measures available for implementation are reported here, focusing on the most energy  

consuming stages, i.e. pumping, aeration and sludge line. These actions can range from operating conditions  

upgrade to the implementation of new processes.   

Process optimization can substantially increase energy efficiency with very low investments and short  

payback times. As an illustration, considerable savings in energy have been achieved by reducing the  

number of active mixers in the biological treatment based on a retrofit of the designed plant [79]. Or, savings  

up to 10-15% of the total consumption were achieved at Hoensbroek WWTP (Netherlands) only by  

regulating MLSS concentration based on activated sludge temperature [80].   

Energy conservation measures for pumping are conventional and do not represent an area of recent  

technology innovation. However, they are still extremely important to reducing and optimizing energy use at  

WWTPs. Simple savings are possible where the pumping operational set up has been changed from the  

design condition. Together with applying variable frequency drives and adopting energy-efficient pumps,  

gains of between 5 and 30% of electricity for influent pumping may be realised [81].   

Because of high-energy use associated with aeration, energy savings can be gained by operating aeration  

systems to match, as closely as possible the oxygen demands. DO control has been common practice in  

process control for many decades. As an example, savings of 26% of air flowrate were reported at Käppala  

WWTP (Sweden) after the installation of online DO control [82]. More advanced DO set-point control  

(based on on-line influent measurements and process data) resulted in total energy savings of around 19%  

[83] and 15% [84]. As a counterpart, the application of measuring and control systems requires greater  

knowledge and effort on the part of operators, such as maintenance and monitoring of online sensors. The  
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lack of a systematic maintenance and monitoring of sensors can lead, in fact, to drive the process further  

away from the optimum state [85]. The introduction of direct-drive, high-speed, turbo blowers to the  

wastewater market have been of great interest with respect to potential energy savings. Investigations  

conducted at various WWTPs suggest that replacing conventional blower with turbo blowers can easily  

result in a reduction of energy power in excess of 30-35% [86]. A demonstration test conducted at Franklin  

WWTP in New Hampshire (USA) has shown that projected energy savings could be as much as 35% [87].  

Recent advances in membrane materials have led to ultra-fine bubble diffusers by which energy savings  

between 10 and 20% have been reported in comparison with traditional ceramic and elastomeric membrane  

diffusers configurations [88]. Technological advances are also progressing in the area of diffuser cleaning.  

Larson [89] documented the development of a new online monitoring device to help predict when diffuser  

air systems require cleaning. The energy efficiency improvement due to the prototype analyser installation  

has been estimated in 15%.   

With regard to the sludge line, the side-stream treatment of nutrient rich reject water deriving from  

dewatering of digested sludge can lead to consistent energy savings. Within the last decade several partial  

nitritation/anammox technologies have been developed and successfully implemented in full scale, e.g.  

sequencing batch reactors, granular reactors, and moving bed biofilm reactors. The energy demand of side- 

stream treatment systems ranged from as low as 0.8 kWh/kg Nremoved to around 2 kWh/kg Nremoved [24].  

Similar values of 1.2 kWh/kg Nremoved have been reported previously by Wett et al. [90]. Compared to a  

conventional nitro/denitro side-stream treatment with an energy demand of approximately 4.0 kWh/kg  

Nremoved [24], the savings of partial nitritation/anammox processes are at least 50%, and depend largely on  

aeration system. Finally, current research trend is focusing on the pretreatment of sewage sludge, such as  

thermal pre-treatments or ultrasounds, to be implemented in an anaerobic digester with the aim to produce an  

increase in the biogas recovery. Ultrasounds applied in full-scale plants can increase the biogas production  

compensating the extra energy expenditure [91]. Thermal hydrolysis also presents high potential to be fully  

integrated in WWTP with a complete energy recovery and self-sufficiency [92].   

Concluding, overall energy savings result from operational optimization and technology improvements of  

between 5 and 30% seem reasonable. Area with most potential is aeration systems. Examples include on line  
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aeration control, energy-efficient bubble aerators and updating of sludge line with separate side-stream of  

rejected water from anaerobic digestion.  

3.5. Energy management tools  

For WWTPs that have not embarked on a systematic program to manage energy use, initial steps can be  

taken to organize and gradually ramp up energy management programs, starting with internal energy data  

collection, reporting and analysis and implementing small/low cost energy conservation measures. Learning  

from peer WWTPs that have established successful energy management practices it is also important.  

However, in order to address broader issues and scale up results, wastewater utilities can take advantage of  

the following energy management actions: i) conduction of a more comprehensive energy audits, ii) further  

strengthening data collection and analysis via automated systems for energy use and monitoring and data  

acquisition, analysis and reporting and, iii) looking outside the utility for technical expertise by involving an  

energy service company (ESCo).  

3.5.1. Energy management systems and energy audits  

An effective energy efficiency program needs to adopt a structured approach in energy management. The  

international standard ISO 50001 for enterprise Energy Management Systems [93] offers useful guidance for  

good energy management by specifying requirements for establishing, implementing, maintaining and  

improving an energy management system, whose purpose is to enable an organization to follow a systematic  

approach in achieving continual improvement of energy performance, including energy efficiency, energy  

use and consumption. The procedure lays on the Plan-Do-Check-Act iterative process, a circular evolving  

process that focuses on continual improvement over time and that enables utilities to establish and prioritize  

energy conservation targets (Plan), implement specific practices to meet these targets (Do), monitor and  

measure energy performance improvements and cost savings (Check), and periodically review progress and  

make adjustments to energy programs (Act). On this approach is based the Energy Management Guidebook  

for Water and Wastewater Utilities of US Environmental Protection Agency (USEPA) [94], which describes  

a systematic approach to reducing energy consumption and energy cost. To do so, the KPI kWh/gallon is  
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suggested to measure progress towards established energy efficiency targets. The guide also includes  

information on energy auditing and how to use the Energy Star Benchmarking Tool (see section 3.2.2).   

The energy audit is an essential step in energy management efforts. Energy audit helps the facility target the  

most inefficient aspects of its operations. Simple energy audits, which are necessary for gaining a basic  

understanding of a WWTP energy use and are fairly inexpensive, generally involve a walk-through of  

facilities (handheld measuring devices may be used) and a quick desk analysis of available energy use and  

costs data. While walk-through audits lack a detailed analysis of potential energy efficiency measures, they  

are useful to implement relatively simple and immediately affordable recommendations, such as change in  

operation timing, and upgrades to lighting, heating and air conditioning, and pumping equipment. The plant  

operators themselves can usually complete this type of audits during a working day. Detailed process audits  

require a more in depth conversation between the facility and professional auditors experienced in  

wastewater systems. This type of audit often involve equipment field tests, inventorying equipment energy  

performance data, creating energy profiles for equipment and systems, discussing potential energy  

conservation measures. Detailed process audits provide comprehensive information on the payback periods  

associated with the recommended measures.  

As energy audit normally uses KPI to evaluate the process efficiency, proper measurement and treatment of  

operation data is essential to ensure the soundness of the audit conclusions. For instance, composite samples  

are often used to determine the pollutant loading over a given period of time. The simplest form is time- 

related composites, which are characterized by sub samples of equal volume taken at specific time intervals  

(e.g. sub samples every hour). If a more accurate loading estimation is needed, flow proportional sampling  

can be used [95]. This method consists in taking a number of samples proportional to the flowrate thereby  

leading to a better estimate of the total loading over a period of time.  

3.5.2. Energy monitoring and targeting system  

Various methodologies have been used to estimate energy consumption in WWTPs, including utilization of  

the equipment specification (power and usage time), power loggers and modelling. In Europe, however,  

estimation of energy consumption based on instantaneous power and operating time is still widely used [2,7].  

In order to improve the energy efficiency of WWTPs, an energy monitoring and targeting (M&T) system can  
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be implemented. An M&T system is a hardware and software system used to track and manage energy  

consumption. It may include a set of sub-meters, a connection to the main utility meter, controls for certain  

systems, and a program to display energy consumption and adjust certain parameters. It is scalable and can  

be tailored to a single or multiple facilities, providing a good starting point for WWTPs to begin a structured  

and data based energy management process [69]. Energy M&T is likely to gain acceptance and use among  

WWTPs where energy cost is a major management concern and there is already a corporate effort underway  

to optimize energy use. Energy M&T may also serve as a useful engagement platform to introduce energy  

management practices to WWTPs. These systems vary considerably in their complexity and capability. For  

example, supervisory control and data acquisition (SCADA) systems become more widely adopted at  

WWTPs, to help utilities reduce energy costs and save money, being reported as a very cost-effective tool  

with payback period of 2-4 years [94]. SCADA system can be designed to measure a multitude of equipment  

operating conditions and parameters, such as flowrate and water quality parameters, and respond to changes  

in those parameters either by alerting operators or by modifying system operation through automations.  

Finally, SCADA systems, being able to provide constant, real-time data on processes and equipment energy  

consumption, can compute KPIs and thus serve as online benchmarking tool letting WWTP operators  

understand which processes to focus on for energy conservative measurements..  

3.5.3. Energy savings performance contracts  

Although implementing actions to improve the energy efficiency can be economically sound in the long  

term, a number of drawbacks prevent their universal application, in particular that the payback time can be  

too long for some stakeholders. Specialized intervention or trained technicians may be needed, as public  

bodies increasingly require the need of energy audits and efficiency actions. Specialized companies in  

energy efficiency actions, ESCo (Energy Service Company), have expanded radically with the aim of  

reducing energy costs and accompany the client through the efficiency process of the water and wastewater  

utilities taking upon himself the risk and relieving the client from any organizational effort and investment  

[97]. Full ESCo services may include financing for the energy efficiency upgrades, disencumbering the host  

facility from the burden of securing upfront capital. The use of energy savings performance contracts  

(ESPCs) in water company is fairly common in North America, where the energy service industry is mature  
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and business contracts are well enforced [69]. In the United States, for example, after an ESCo is selected to  

perform investment grade energy audits, a water utility will arrange its own financing through loans from  

revolving funds or municipal bonds. Funds can include partial government grants and some bonds have tax  

exemption status. The water utility will contract the ESCo to implement projects on a performance basis,  

often with guaranteed savings. If energy savings from the projects are not fully realized, the ESCo payments  

can be reduced.  

4. Conclusion  

This paper reviews municipal WWTPs energy-use and benchmarking techniques and provides an overview  

of the main approaches available. Recommendations and challenges are highlighted on how to conduct  

energy analysis of WWTPs. It is concluded that benchmarking methods must be chosen depending on the  

purpose and extent of the analysis, as their range of validity and applicability is different:   

 Normalisation approaches, based on single KPIs, can be suitable for similar conditions, similar  

WWTPs or similar technologies/processes but not for overall assessment of complex plants in  

different environments, e.g. climate;  

 Regression-based techniques such as OLS can control the effect of other variables (flowrate, size,  

loading) and extend the range of validity. Provided that a representative set of samples was available  

when building the regression line, the resulting equation can be used in benchmarking by external  

users;  

 DEA can be used to reconcile multiple inputs and outputs in the benchmark assessment. As a  

consequence, the results depend greatly on the proper selection of input and output variables. DEA  

would be rather restricted to internal benchmarking procedures, as the inclusion of a new sample  

lying in the efficient frontier would change the obtained model.   

In any case, the various benchmarking methods applied so far are mainly diagnostic tools that fail at  

prescribing any improvement strategy to make inefficient WWTPs efficient. Such strategies must be studied  

and implemented by managers through a better understanding of the plant operations. The results of the on- 

going ENERWATER project are expected to contribute to the development of a methodology able not only  
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to quantify WWTPs energy efficiency but also to identify energy inefficiencies in order to help wastewater  

utilities to comply with requirements of the EU Energy Efficiency Directive.  

The assessment of a representative data sample has provided some evidence about the variables that have a  

largest effect on energy consumption: plant size, dilution factor and flowrate. The technology choice, plant  

layout and country of location were seen as important elements that contributed to the large variability  

observed. The large dispersion of the results shows that there is considerable room for improving the  

efficiency of WWTP operation, which will require, not only the reviewed techniques for benchmarking but  

also diagnosis. To achieve this aim, detailed monitoring of the WWTP operation is crucial and is expected to  

be more frequently carried out in the upcoming years.   

Further actions to spread efforts for energy efficiency at WWTPs could need external specialists assistance,  

by: i) further strengthening data collection and analysis via automated systems for energy use monitoring and  

data acquisition, and customized analysis and reporting; ii) conducting a more comprehensive energy  

assessment and developing standard procedures and checklists; iii) looking outside the utility for technical  

expertise lacking in-house, such as twinning with other better-performing utilities, contracting with ESCo,  

and accessing national associations.  
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AP aerated ponds  1087 
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CAS conventional activated sludge  1091 
COD chemical oxygen demand  1092 
CRS constant returns to scale  1093 
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EA extended aeration  1098 
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OLS ordinary least squares 1110 
PE population equivalent  1111 
RTS return to scale 1112 
SBR sequential batch reactor  1113 
SCADA supervisory control and data acquisition  1114 
SDEA stochastic DEA 1115 
SFA stochastic frontier analysis  1116 
TF trickling filter  1117 
TN total nitrogen  1118 
TP total phosphorus  1119 
TSS total suspended solids  1120 
UST unspecified secondary treatment 1121 
UV ultraviolet 1122 
WWTP wastewater treatment plant 1123 


