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ABSTRACT 

ASSESSMENT AND OPTIMIZATION OF ENVIRONMENTAL 
SYSTEMS USING DATA ANALYSIS AND SIMULATION 

Milad Ebrahimi 

April 12, 2018 
 

For most environmental systems, specifically wastewater treatment plants and aquifers, a 

significant number of performance data variables are attained on a time series basis. Due 

to the interconnectedness of the variables, it is often difficult to assess over-arching 

trends and quantify temporal operational performance. The objective of this research 

study was to provide an effective means for comprehensive temporal evaluation of 

environmental systems. The proposed methodology used several multivariate data 

analyses and statistical techniques to present an assessment framework for the water 

quality monitoring programs as well as optimization of treatment plants and aquifer 

systems. 

The developed procedure considered the combination of statistical and data analysis 

algorithms including correlation techniques, factor analysis and principal component 

analysis, and multivariate stepwise regression analysis. Those methodologies were used 

to develop a series of independent indexes to quantify the composition of wastewater and 

groundwater.
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Also, by developing a stepwise data analysis approach, a baseline was introduced to 

discover the key operational parameters which significantly affect the performance of 

environmental systems. Moreover, a comprehensive approach was introduced to develop 

numerical models for forecasting key operational and quality parameters which can be 

used for future simulation and scenario analysis practices. The developed methodology 

and frameworks were successfully applied to four case studies which include three 

wastewater treatment plants and an aquifer system. 

In the first case study, the aforementioned approach was applied to the Floyds Fork water 

quality treatment center in Louisville, KY. The objective of this case study was to 

establish simple and reliable predictive models to correlate target variables with specific 

measured parameters. The study presented a multivariate statistical and data analyses of 

the wastewater physicochemical parameters to provide a baseline for temporal 

assessment of the treatment plant. Fifteen quality and quantity parameters were analyzed 

using data recorded from 2010 to 2016. To determine the overall quality condition of raw 

and treated wastewater, a Wastewater Quality Index (WWQI) was developed. To identify 

treatment process performance, the interdependencies between the variables were 

determined by using Principal Component Analysis (PCA). The five extracted 

components adequately represented the organic, nutrient, oxygen demanding, and ion 

activity loadings of influent and effluent streams. The study also utilized the model to 

predict quality parameters such as Biological Oxygen Demand (BOD), Total Phosphorus 

(TP), and WWQI. High accuracies ranging from 71% to 97% were achieved for fitting 

the models with the training dataset and relative prediction percentage errors less than 9% 

were achieved for the testing dataset. The presented techniques and procedures in this 
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case study provide an assessment framework for the wastewater treatment monitoring 

programs. 

The second case study focused on assessing methane production of a novel combined 

system for treatment of high strength organic wastewater. The studied pilot plant 

comprised Rotating Biological Contactor (RBC) process under anaerobic condition, in 

conjunction with Moving Bed Biofilm Reactor (MBBR) as the combining aerobic 

process. Various operational parameters were tested to maximize the Chemical Oxygen 

Demand (COD) removal performance and methane gas production from treating high 

strength synthetic wastewater. The identified optimal parameters included hydraulic 

retention time, organic loading rate, and disk rotational speed; equal to 5 days, 7 rpm, and 

2 kg COD/m3/d, respectively. Under these conditions, the combined system achieved 

high removal efficiency (98% from influent COD of 10,000 mg/L) with additional 

benefit of methane production (116.60 L/d from a 46-liter AnRBC reactor). The obtained 

results from conducting this case study confirmed the effectiveness of integrated hybrid 

system in achieving both high removal efficiency and methane production. Thus, this 

system was recommended for treating high strength organic wastewater. 

The third case study focused on assessing the feasibility of using a contact stabilization 

process for secondary treatment of refinery wastewater through a step by step analysis. 

the studied pilot plant comprised contact-stabilization activated sludge process in 

conjunction with clarification reactor. Various operational parameters were tested to 

minimize excessive sludge production and maximize system removal performance from 

treating petroleum refinery wastewater. The mixed liquor dissolved oxygen (DO) and the 

rate of activated return sludge (RS) were selected as key operational parameters. The 
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results indicated that the system had an optimum performance under applied aeration of 

3.7 mg oxygen per liter of mixed liquor and 46% return sludge. This operational 

combination resulted in COD removal efficiency of 78% with daily biomass production 

of 1.42 kg/day. Considering the results from this case study, the contact stabilization 

activated sludge process was suggested as an effective alternative for secondary treatment 

of wastewater from petroleum refineries. 

The last case study combined probabilistic and deterministic approaches for assessing 

aquifer’s water quality. The probabilistic approach used multivariate statistical analysis to 

classify the groundwater’s physiochemical characteristics. Building upon the obtained 

results, the deterministic approach used hydrochemistry analyses for a more 

comprehensive assessment of groundwater suitability for different applications. For this 

purpose, a large geologic basin, under arid weather conditions, was evaluated. The 

ultimate objective was to identify: 1) groundwater classification scheme, 2) processes 

governing the groundwater chemistry, 3) hydrochemical characteristics of groundwater, 

and 4) suitability of the groundwater for drinking and agricultural purposes. 

Considering the results from multivariate statistical analysis, chloride salts dissolution 

was identified within the aquifer. Further application of the deterministic approach 

revealed degradation of groundwater quality throughout the basin, possibly due to the 

saltwater intrusion. By developing the water quality index and a multi-hazard risk 

assessment methodology, the suitability of groundwater for human consumption and 

irrigation purposes were assessed. The combined consideration of deterministic and 

probabilistic approaches provided an effective means for comprehensive evaluation of 

groundwater quality across different aquifers or within one. 
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The presented procedures and methodologies in this research study provide 

environmental analysts and governmental decision makers with a comprehensive tool to 

evaluate current and future quality conditions within any given wastewater treatment 

plants and/or aquifer systems.  
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CHAPTER ONE. INTRODUCTION 
 

1.1.  Statement of the Issue 
 

As populations expand and urbanization increases, the associated water demands from 

both domestic and industrial applications put significant pressures on natural water 

resources.  This sustained water demand and associate release of municipal and industrial 

sewage can negatively affect aquifers and other receive waterbodies. Wastewater, 

however, is not static in quality, and its characteristics change with respect to time of day, 

season, operation, and other factors. As a result, understanding the temporal qualitative 

and quantitative dynamics of both wastewater and groundwater systems is critical for 

protecting the natural water resources as well as establishing sustainable management 

practices. 

 

1.2. Importance of the Issue 
 

Each year, wastewater treatment plants process billions of gallons of sanitary and/or 

combined stormwater flow. In this case, identifying the dynamics of wastewater’s 

constituents and their range are critical for establishing cost-effective treatment systems. 

Understanding the temporal performance and optimization of wastewater treatment plants 

is also crucial considering the ever-increasing energy costs and strict pollutant removal 
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regulations. Aquifer systems are also subjected to tremendous quality deterioration due to 

overexploitation. Understanding the long-term temporal fluctuations of groundwater 

quality within the basins is vital. In this case, comprehensive interpreting of the 

groundwater chemistry processes and integrated methodologies for temporal 

investigating the groundwater suitability for drinking and agriculture purposes are 

crucial. As a result, providing an effective means for comprehensive temporal evaluation 

and optimization of wastewater and aquifer systems is essential. 

 

1.3. Current Practices and Challenges 
 

Optimization and performance assessment of wastewater and groundwater systems have 

always been a challenge. In both cases, the main challenge is to develop appropriate 

indexing variables to better describe and evaluate the effectiveness of systems. However, 

due to the regional characteristics of both systems and the natural temporal variation, it is 

difficult to establish standardized one-to-one relationships that can characterize flows 

throughout all anticipated conditions. 

Conducting routine water quality monitoring programs, experimental sampling 

campaigns, and geo-physicochemical analysis of the samples by using the traditional 

graphical methods, diagrams, and pre-established standard guidelines are the general 

approaches for evaluating the overall performance of environmental systems. However, 

appropriate temporal assessment of wastewater and aquifer systems is difficult due to the 

abundant chemical, physical, and microbiological parameters that should be considered. 

In both cases, the system’s characteristics not only have a unique composition, but the 
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organic, inorganic and nutrient loadings, and also the operational parameters vary in 

terms of time, place and source. Even if all necessary data are collected, it is still 

challenging and often difficult to assess over-arching trends, quantify operational 

performance, and make the optimal decision due to the complex interrelationships of the 

parameters. Thus, there is a need to develop a series of multidisciplinary approaches that 

can be used to effectively manage water quality monitoring programs while reducing the 

number of quality parameters which must be routinely measured. 

 

1.4. Objective of the Research 
 

The objective of this research study is to provide a scientific basis for a robust control 

system on the performance of wastewater and aquifer systems and also to recommend a 

more accurate method of environmental management. Multivariate data analysis and 

simulation techniques could be used for better understanding of the processes and also for 

quality evaluating and optimizing the systems. Thus, the intent of this research is to 

develop a robust overarching methodology based on data analysis, statistical techniques, 

and simulation that will provide for a comprehensive assessment and optimization of 

environmental infrastructure systems, specifically, wastewater treatment plants and 

aquifer systems. 

The intent of applying the multivariate data analysis and statistical algorithms is to 1) 

identify the temporal characteristics of each monitored water quality parameter, 2) define 

the statistical interrelationships between different parameters, 3) develop wastewater 

and/or groundwater quality indexes to quantitatively define the water quality, and 4) 
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develop multivariate statistical forecasting techniques to numerically express the 

significant quality parameters based on the measured historical process data base. Also, 

stepwise procedures were developed to better identify and optimize the key operational 

parameters for sustainable management of environmental systems. 

 

1.5. Research Approach 
 

Multivariate data analysis techniques provide a mechanism to better quantify 

environmental systems by establishing relationships between interrelated data. This 

strategy has been widely applied in the water field, like sewage management, surface and 

ground water quality, and wastewater treatment management during recent years. 

In the field of wastewater systems, this research study focused on quality evaluation and 

optimization of the treatment plants. The intent is to transform the laboratory results into 

practical information for decision makers, assess the wastewater’s make-up, performance 

assessment, and finally optimization of the treatment plants. Multivariate statistical 

techniques were used for comprehensive identification of the dynamics of wastewater's 

constituents to establish the preferred treatment processes. The most appropriate 

operating configurations resulting in a sustainable setup for the full-scale plants were 

identified using step-by-step data analysis. Various empirical models were developed to 

numerically express and estimate the significant properties of the influent and effluent of 

the treatment plants. Finally, the treatment processes were optimized by considering 

higher pollutant removal efficiency, lower operational costs, and less negative 

environmental impacts. The aforementioned methodology was successfully applied to 
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three different municipal and industrial wastewater treatment systems. For all cases, 

achieving higher removal efficiency, lower sludge production, and increased bio-gas 

generation was the main objective. 

In the field of aquifer systems, this research study focused on evaluating the groundwater 

quality deterioration due to over-withdrawal rates and saltwater intrusion. The intent was 

to control the recharge and discharge cycles for basins located in arid climate conditions. 

A robust methodology, based on multivariate statistical techniques, was developed for 

assessing the aquifer’s quality condition. The proposed method combined the 

probabilistic and deterministic approaches. Application of GIS based and graphical 

methods in conjunction with the multivariate statistical algorithms provided a 

classification scheme for comparing the overall groundwater quality conditions across the 

basins. Also, the suitability of groundwater for drinking and agriculture was determined 

and categorized by developing a step-by-step data analysis algorithm. The 

aforementioned methodology was successfully applied to two basins located in arid 

regions. For all cases, the initial intent was to provide a groundwater classification 

scheme based on human consumption and/or irrigation purposes, identify the processes 

governing the groundwater chemistry, detect the hydro-geochemical characteristics of 

groundwater, score the combined influences of individual quality variables on the overall 

groundwater quality for drinking purposes, and complete a multi-hazard risk assessment 

of the groundwater quality for agricultural activities. 

The ultimate objective of conducting those case studies was to provide a rigorous 

procedure to draw meaningful results of the overall performance of wastewater and 

groundwater systems by inclusive consideration of the obtained voluminous data from 
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the routine monitoring programs. The described methodologies in this research study 

enable environmental analysts and governmental decision makers to accurately identify 

the quality of different current and/or future wastewater and or groundwater systems. 

 

1.6. Structure of the Dissertation 
 

The remainder of this research study has seven chapters. Chapters 2 represents the 

proposed methodology based on multivariate data analysis and statistical techniques for 

assessing the performance of environmental systems considering the results from the 

routine water quality monitoring programs. Chapters 3, 4, and 5 present applications of 

data analysis techniques for the assessment and optimization of three municipal and 

industrial wastewater treatment systems. Chapters 6 presents application of multivariate 

data analysis for long-term qualitative and quantitative appraisal of an aquifer located 

within arid climate conditions. Finally, chapter 7 provides a summary of all conducted 

case studies and presents some recommendations regarding further research potentials in 

the field of environmental system assessment. 

Chapter 2 introduces the developed methodology for temporal performance assessment of 

environmental systems. The introduced multidisciplinary approach comprised combined 

consideration of data analysis, statistical algorithms, and numerical techniques. By using 

the multivariate data analyses and statistical techniques, a robust overarching 

methodology was developed for: 

• Evaluating water quality composition 
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• Transforming the laboratory results into practical information 

• Performance assessment of system process 

• Identification of preferred process 

The proposed methodology in this chapter attempted to discover appropriate indexing 

variables to better describe temporal characteristics of environmental systems. Those 

indexing variables provide practical information for Development, Upgrading, and 

Optimization of wastewater treatment plants and aquifer systems. The resultant 

information assists governmental decision makers and environmental analysts for: 

• Assessing over-arching trends of routinely measured quality parameters 

• Quantifying operational performance of current and future systems 

• Sustainable system development 

By combined considerations of Descriptive statistics, Pearson Product Moment 

Correlation Analysis, Principal Component analysis, Cluster Analysis, and Multivariate 

Regression Analysis this chapter produced a procedure for comprehensive assessment of 

any given wastewater treatment plant and aquifer system in order to: 

• Identify temporal characteristics of each monitored parameter, 

• Define statistical interrelationships between different parameters, 

• Monitor the performance of environmental systems, 

• Asses the temporal and spatial changes of water quality by introducing water 

quality index, 
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• Determine the important relationships among the monitored parameters through 

descriptive data analysis, 

• Discovering a finite set of uncorrelated factors by using Principal Component 

Analysis technique to effectively describe the characteristics of influent loads and 

system’s performance, 

• Establishing the numerical expressions, using multivariate statistical models, for 

predicting the significant properties of the influent and effluent loads 

Chapter 3 presents wastewater quality evaluation procedures, based on multivariate 

statistical techniques, for providing an assessment framework for the wastewater 

treatment monitoring programs. To develop the procedures, the study objectively 

evaluated the performance of the Floyds Fork wastewater treatment plant near Louisville 

Kentucky during 2010 and 2016. 

This chapter focused on evaluating the wastewater’s make-up, and temporal performance 

assessment of the systems. By using the multivariate data analyses and statistical 

techniques, a robust overarching methodology was developed for monitoring the 

performance of full-scale wastewater treatment plants, assessing the temporal and spatial 

changes of water quality by introducing wastewater quality index, discovering the 

important relationships among the monitored parameters through descriptive data 

analysis, and establishing the numerical expressions for predicting the significant 

properties of the influent and effluent of the treatment plants. 

Performing the descriptive statistical analysis on 9200 measured quality and quantity 

samples for 2010 to 2016 discovered interesting understandings for the wastewater load 

and the treatment effectiveness. Those can be summarized as following: 
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• Trends for influent BOD, TSS, N and P concentrations moved similarly for the 

entire period of study 

• While, DO concentration moved in the opposite direction for similar period 

• It can be inferred that while the availability of free oxygen within the influent load 

increased, contaminants level of incoming wastewater dropped 

• This process was identified to be directly related to variation of inflow rate 

• As a result: As inflow rate increased, availability of dissolved oxygen improved, 

and pollutants concentration decreased 

• Regarding the treatment effectiveness: Variation of RAS affects effluent TSS and 

BOD concentrations 

• Increase of RAS caused a raise of effluent TSS and decrease of effluent BOD for 

the entire period of study 

• As a result, it can be inferred that availability of active microorganisms 

throughout the system significantly affects process performance  

Analyzing monitoring program data comprised a complex matrix of physicochemical 

parameters which individually could not provide reliable temporal evaluation of whole 

system. Thus, Wastewater Quality Index (WWQI) was developed to summarize large 

amounts of monitored parameters into a simple term. As a result, it was concluded that: 

• Influent WWQI changed between 45 and 60, which indicated Water quality 

would be threatening to a receiving water 

• Effluent WWQI changed between between 96 and 100 which indicated Stream 

could be released to receiving waters with little threat of impairment 
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• Finally, it was concluded that treatment process improved wastewater quality by 

more than 51 percent 

To more comprehensively describe the overall characteristics of influent and effluent 

wastewater, the Principal Component Analysis (PCA) was applied. That technique 

converted a large number of original variables into a set of uncorrelated components. 

Derived components represented information of the whole dataset with minimal loss of 

original information. As a result, five components were extracted from fifteen 

parameters. The derived components include: 

• PC1 which represented the Influent organic load 

• PC2 which represented the Flow and Recycled rates 

• PC3 which represented the Ion activity 

• PC4 which represented the Effluent oxygen demand 

• PC5 which represented the Nutrient removal efficiency 

Investigating the fluctuation of derived components within the study period indicated 

that: 

• Positive scores for PC1 were observed for samples with negative scores on PC2 

that means: More polluted incoming wastewater during seasons with lower flow 

rates 

• Peak PC1 positive scores observed from 2013 that means: Overall increase of 

influent pollutant level from 2013 

• PC5 fluctuations were considerably higher that means: Non-uniform nutrient 

removal performance over the study period 
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• Combined consideration of PC1 and PC5 indicated that more polluted influent led 

to less nutrient removal performance of the system 

• Overall positive scores for PC4 for recent years indicated Less oxygen content 

and high oxygen demand of effluent wastewater 

To provide a comprehensive data-basis for future studies on simulation and optimization 

of environmental systems, the multivariate statistical modeling was applied. As a result, 

six numerical forecasting models were developed for influent and effluent phosphorus, 

BOD, and WWQI, considering training dataset of 2010 - 2015 and validating dataset 

of 2016. The model preparation involved three steps including: 

Step 1: Pearson product moment correlation analysis: 

• Identifying predictor variables for each model 

• Variables with correlation significance level of 0.01 were considered as predictors 

Step 2: Stepwise Multivariate Regression Analysis: 

• Multiple complex-terms of predictors and their interactions were considered 

• Stepwise backward model generation were used with threshold p-value of 0.05 

• Least statistically significant predictors with largest p-value were iteratively 

removed in each step 

Step 3: ANOVA Test: 

• To confirm and detect the optimum model from various developed models for 

each target parameter 

• Admit/reject the null hypothesis of the p-values < alpha = 0.05 
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Chapter 4 presents performance assessment of a novel combined system for treatment of 

high strength organic industrial wastewater. The proposed system comprised Rotating 

Biological Contactor (RBC) process under anaerobic condition, in conjunction with 

Moving Bed Biofilm Reactor (MBBR) as the combining aerobic process. The objective 

of this chapter is to identify the specific operational parameters which affect the 

performance of the proposed combined system. A robust systematic data analysis was 

developed to optimize the performance of treatment plant by considering achieved 

maximum bio-gas removal production and pollutant removal efficiency. 

Various operational parameters were tested to maximize the Chemical Oxygen Demand 

(COD) removal performance and methane gas production from treating high strength 

synthetic wastewater. The identified optimal parameters included hydraulic retention 

time, organic loading rate, and disk rotational speed; equal to 5 days, 7 rpm, and 2 kg 

COD/m3/d, respectively. Under these conditions the combined system achieved high 

removal efficiency (98% from influent COD of 10,000 mg/L) with additional benefit of 

methane production (116.60 L/d from a 46-liter AnRBC reactor). Also, analysis of 

kinetic models on experimental results from AnRBC stage indicated the suitability of 

Stover Kincannon model with prediction accuracy of 93%. The results confirmed the 

effectiveness of integrated AnRBC system in achieving both high removal efficiency and 

methane production. Thus, this system was recommended for treating high strength 

organic wastewater. 
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Chapter 5 presents feasibility assessment of using a biological treatment approach for 

treatment of refinery wastewater through a step by step data analysis. Excessive sludge 

production is cost prohibitive and a major concern in biological treatment of petroleum 

refinery wastewater. Thus, the intent of this chapter is to identify operational conditions 

for treatment systems that result in low sludge production of the system, while 

maintaining its high removal performance. The mixed liquor dissolved oxygen (DO) and 

the rate of activated return sludge (RS) were selected as operational parameters governing 

the optimum performance of the system. A total number of 32 individual experiments 

were conducted on a pilot plant under four different aeration phases (DO) and eight RS 

percentages. The analyses investigated the biokinetic coefficients, observed removal 

efficiencies, and the amount of produced sludge to identify suitable operational 

conditions. The results indicated that the system had an optimum performance under 

applied aeration of 3.7 mg oxygen per liter of mixed liquor and 46% return sludge. This 

operational combination resulted in COD removal efficiency of 78% with daily biomass 

production of 1.42 kg/day. 

Chapter 6 explores using deterministic and probabilistic approaches for evaluating the 

quality of groundwater resources. To present this multidisciplinary approach, the study 

objectively investigated the groundwater quality condition of a basin, called Shiraz, 

located in an arid region, and subjected to quality deterioration due to saltwater intrusion. 

The incorporated method combined the multivariate statistical analysis and 

hydrochemistry analyses for classifying the groundwater’s physiochemical characteristics 

and also for comprehensive evaluating of groundwater quality based on different 
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applications. Considering the results from correlation and principal component analyses, 

along with hierarchical Q-mode cluster analysis, chloride salts dissolution was identified 

within the aquifer. Further application of the deterministic approach revealed degradation 

of groundwater quality throughout the basin, possibly due to the saltwater intrusion. By 

developing the water quality index and a multi-hazard risk assessment methodology, the 

suitability of groundwater for human consumption and irrigation purposes were assessed. 

The obtained results were compared with two other studies, conducted on aquifers under 

similar arid climate conditions. This comparison indicated that quality of groundwater 

resources within arid regions are prone to degradation from salinization. The combined 

consideration of deterministic and probabilistic approaches provided an effective means 

for comprehensive evaluation of groundwater quality across different aquifers or within 

one. 

Chapter 7 provides a comprehensive summary of applying the proposed methodology for 

optimization and temporal performance assessment of four case studies, described in 

previous chapters. Also, some recommendations for conducting similar studies for 

optimization and performance assessment of other environmental infrastructures are 

proposed.
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CHAPTER TWO. METHODOLOGY 
 

2.1. Introduction 

To protect natural water resources and establish sustainable management practices, it is 

essential to have an accurate understanding of temporal performance of environmental 

systems. Thus, wastewater treatment plants and aquifer systems are consistently under 

development, upgrading, and optimization. However, optimization and temporal 

performance assessment of these systems have been always a challenge for the 

governmental decision makers as well as environmental analysts.  

For each environmental system, the physicochemical properties of the influent streams 

are unique and dependent on factors such as the origin of discharge, type of sewer system 

infrastructure (combined or separate), development level of the area, climate condition, 

and groundwater levels. Thus, in all cases, the influent load not only has a unique 

composition, but the organic, inorganic and nutrient loadings vary in terms of time, place 

and source (Ebrahimi et al. 2017). As a result, appropriately characterizing influent load 

is difficult due to the abundant chemical, physical, and microbiological parameters that 

should be considered (Bryant 1995). The significant challenge here is to develop 

appropriate indexing variables to better describe temporal characteristics of system.  
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Developing indexing variables for existing wastewater treatment plants provides practical 

information of temporal characteristics of key operational parameters. These 

understandings serve as a baseline for performing temporal optimization. Indexing 

variables can also deliver a comprehensive understanding of the dynamic nature of 

wastewater composition, which is significantly valuable for future treatment plant’s 

planning and design practices. Moreover, in the case of aquifer systems, the 

aforementioned indexing variables provide meticulous information of groundwater 

chemistry processes which facilitate identification of groundwater suitability for different 

purposes. 

The general approach for providing the aforementioned fundamental information is 

conducting routine water quality monitoring programs, and analyzing sampling results 

using traditional graphical methods, diagrams, and standard guidelines. However, even if 

all necessary data are collected, it is still challenging for the operators to make decision 

due to the complex interrelationships of the parameters. Also, due to the regional 

characteristics of the influent loads and the natural temporal variation, it is difficult to: 

• Establish standardized one-to-one relationships that can characterize flows 

throughout all anticipated conditions, 

• Assess over-arching trends 

• Quantify operational performance 

• Make the optimal decision 

As a result, there is a need to utilize a series of multidisciplinary methods to effectively 

manage monitoring programs in order to: 
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• Reduce number of routinely measured parameters 

• Control quality of sampling efforts and measurements 

• Optimize temporal performance of systems 

The objective of this research study is to apply multivariate data analysis techniques and 

statistical algorithms to calculate improved spatial and temporal relationships to better 

understand the process. Multivariate statistical techniques provide a mechanism to 

quantify water quality and system processes by establishing relationships between 

interrelated data (Aguado and Rosen 2008). This strategy has been widely applied in the 

water field during recent years (Avella et al. 2011; Bayo and López-Castellanos 2016; 

Costa et al. 2009; Durmusoglu and Yilmaz 2006; Goode et al. 2007; Platikanov et al. 

2014; Sun et al. 2016; Tomita et al. 2002). In the field of Sewage management, Singh et 

al. (2005) applied the principal component analysis (PCA) and partial least analysis 

(PLS) to derive information on seasonal influence and compositional differences in 

sewage generated by domestic and industrial waste. In the field of surface water quality, 

Zhang et al. (2010) performed the PCA method for determining the contribution level of 

nutrients, heavy metals, natural and organic compounds on the spatial and temporal 

quality variation of a local river. Regarding the wastewater treatment management, Ouali 

et al. (2009) applied the correlation and PCA methods for designing a network for 

monitoring the performance level of a treatment plant. Also, there are some recent studies 

on developing models for estimating the concentration of major effluent quality 

parameters of treatment plants using the statistical methods (Platikanov et al. 2014; 

Wallace et al. 2016). 
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Most of the aforementioned studies used one specific algorithm or technique to provide 

useful understandings of the system. However, there is limited study concentrating on 

combined consideration of multivariate statistical, simulation, and data analyses for 

temporal performance assessment and optimization of environmental systems. Thus, this 

research study focuses on developing a series of multidisciplinary procedures by using 

Multivariate Data Analysis, Statistical Algorithms, and Simulation Techniques to 

perform the following specific tasks: 

• Evaluate the water quality make-up 

• Transform the laboratory results into practical information 

• Performance assessment of treatment process 

• Identify of preferred treatment process 

The proposed methodology considered to be a comprehensive combination of statistical 

techniques and data analysis algorithms including: 

• Descriptive data analysis of monitored parameters in terms of central 

tendency, dispersion, and distribution 

• Identification of temporal characteristics of each monitored parameter 

• Developing Water Quality Index to quantitatively define influent and effluent 

quality and categorize flow conditions over the time 

• Defining statistical interrelationships between different parameters by 

developing Pearson product moment correlation analysis 
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• Developing principal component analysis for historical dataset to introduce a 

finite set of uncorrelated variables to represent overall characteristic of 

system 

• Evaluate temporal variation of influent and effluent organic loading, ion 

activities, oxygen demanding, and nutrient loading  

• Determining interrelationship level between measured data using Correlation 

Analysis 

• Developing numerical predictive models to numerically forecast significant 

operational and quality parameters using multivariate statistical and complex 

regression analyses 

The above procedures are applied to three wastewater treatment systems and an aquifer to 

evaluate and optimize the temporal performance of systems. The established framework 

and methodologies provide environmental analysts and governmental decision makers 

with a comprehensive tool to evaluate and optimize current and future quality conditions 

within any given environmental systems. 

2.2. Descriptive Data Analysis of Monitored Parameters 
 

Studying the temporal fluctuation of the routine monitored quality and quantity 

parameters can provide interesting insights. In this research study, descriptive statistics 

were used to identify the characteristics of each measured parameter in terms of central 

tendency, dispersion, and distribution. Central tendency provides the location of the 

distribution for each parameter including the mean, median and mode. Dispersion 

measures the spread in the data set including the standard deviation, coefficient of 
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variation, range, minimum and maximum. Distribution estimates using skewness and 

kurtosis to describe time series distribution’s symmetry and shape. 

Investigating the quality parameter’s fluctuations can provide fundamental information 

regarding the characteristics of influent and effluent loads as well as system’s 

effectiveness in treating the pollutants. However, there is a complex interrelationship 

within the water quality variables. Thus, it is difficult to utilize one parameter or one set 

of parameters to appropriately characterize the overall system’s performance. Moreover, 

interpreting the variable’s variation without a clear understanding of the processes would 

not lead to a comprehensive assessment of the system efficiency. As a result, this 

research study attempted to develop a series of uncorrelated indexes and components to 

effectively investigate and describe the composition of the system’s influent and effluent 

loads as well as temporal performance of the processes. 

 

2.3. Water Quality Index Development 
 

Analyzing monitoring program data comprise a complex matrix of physicochemical 

parameters which individually cannot provide reliable temporal evaluation. Thus, it is 

difficult to use a single parameter to characterize water quality and comprehensively 

assess system efficiency. Hence, Water Quality Index (WQI) is an efficient mechanism to 

express the overall condition of water by cumulative consideration of all monitored 

quality indices. In other words, WQI is a dimensionless number that cumulatively 

describes the quality of an aggregated set of measured chemicals, physicals, and 
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microbiological parameters (Bordalo et al. 2006). In this research study, WQI was 

developed separately for wastewater and groundwater streams. 

2.3.1. Wastewater Quality Index 
 

To assess the quality of wastewater, Wastewater Quality Index (WWQI) was developed 

to enable interpretation of monitoring data by ranking the wastewater quality on a rating 

scale from zero to 100 based on the measured parameters and established water quality 

standards (Bharti and Katyal 2011). The higher values tend to indicate that wastewater 

effluents are meeting design objectives and the plant is operating efficiently. As such, 

influent streams to wastewater treatment plants generally have low WWQI values as they 

would be harmful to surrounding waterbodies if released untreated. After treatment, the 

wastewater streams should have relatively high WWQI values indicating they can be 

released to surrounding water bodies. Using the WWQI as an indicator variable is 

beneficial for decision makers as it enables them to rapidly identify the quality of 

different wastewater streams and also compare different treatment processes (Asadi et al. 

2007). 

Considering the aforementioned objective, the WWQI was developed using analytics 

introduced by the Canadian Council of Ministers of Environment, CCME method 

(CCME 2001; Lumb et al. 2006). The CCME WWQI was calculated based on the 

combination of three factors, that consider the number, frequency, and amount of 

variables whose objectives are not met based on the quality limitations, (refer to 

Equations 1-6) (De Rosemond et al. 2009; Hurley et al. 2012). The water quality was 

then ranked in different categories as described in Table 2-1 (Khan et al. 2004). 
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𝐹𝐹1 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 𝑝𝑝𝑓𝑓𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝 
𝑝𝑝𝑜𝑜𝑝𝑝𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑓𝑓𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝

 × 100 (1) 

𝐹𝐹2 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 
𝑝𝑝𝑜𝑜𝑝𝑝𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝

 × 100 (2) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑝𝑝𝑓𝑓𝑜𝑜𝑛𝑛𝑖𝑖 =
𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝 𝑣𝑣𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑖𝑖

𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑜𝑜𝑛𝑛𝑖𝑖
− 1 (3) 

𝑛𝑛𝑛𝑛𝑝𝑝 =
∑ 𝑛𝑛𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑝𝑝𝑓𝑓𝑜𝑜𝑛𝑛𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝
 (4) 

𝐹𝐹3 =
𝑛𝑛𝑛𝑛𝑝𝑝

0.01 𝑛𝑛𝑛𝑛𝑝𝑝 + 0.01
 (5) 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 100 −
√𝐹𝐹12 + 𝐹𝐹22 + 𝐹𝐹32

1.732
 (6) 

where: 

F1 = percentage of measured parameters that do not meet their limit at least once during 

the time period  

F2 = percentage of individual tests that do not meet limitation 

F3 = amount by which failed test values do not meet their limitation 

Excursion = number of times by which an individual test is greater than the limitation 

nes = collective amount by which individual tests are out of compliance 

F3 = amount by which failed test values did not meet their objectives 

 

 



 

23 
 

 

 

Table 2-1. Wastewater Quality Category based on CCME WWQI 

Quality Range WWQI Water Category 

Excellent 95 – 100 Very close to natural or pristine levels 

Good 80 – 94 Rarely depart from natural or desirable levels 

Fair 65 – 79 Sometimes depart from natural or desirable 
levels 

Marginal 45 – 64 Often depart from natural or desirable levels 

Poor 0 – 44 Quality is almost always threatened or 
impaired 

 

2.3.2. Groundwater Quality Index 
 

To assess the quality of groundwater, the Groundwater Quality Index (GWQI) was 

introduced. The GWQI is a dimensionless number that cumulatively expresses the quality 

of an aggregated set of measured groundwater physiochemical parameters from different 

samples in a given area (Hallock 2002). The groundwater can be categorized into five 

classes based on the calculated WQI, as illustrated in Table 2-2 (Sahu and Sikdar 2008). 

The lesser values indicate that the quality of water is more adapted with the pre-

established standards proposed by the WHO. The established GWQI, as a variable 

indicator, enables decision makers to distinguish different groundwater sources based on 

their suitability for drinking purposes (Bordalo et al. 2006).  
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Table 2-2. Classification of Groundwater Quality based on the GWQI 

GWQI Description 

<50 Excellent 
50-100 Good 
100-200 Poor 
200-300 Very Poor 
>300 Unfit for Drinking 

 

The GWQI was calculated based on the method proposed by Yidana et al. (2010). All 

parameters (n) were assigned a weight (wi) on a scale of 1 to 5, based on their influence 

on drinking water quality and human health. The relative weight value (Wi) and the 

quality rating scale (qi) for each parameter were calculated using equations 7 and 8, in 

which Ci and Si are the measured concentration and the WHO standard for each 

parameter, respectively. Finally, the GWQI for an individual well was then expressed as 

the sum of the sub-index (SIi) of all parameters by using equations 8 and 10. 

Wi = wi
∑ win
i=1

                                                                                       (7) 

qi = Ci
Si

× 100                                                                                     (8) 

SIi = Wi × qi                                                                                     (9) 

GWQI = ∑ SIin
i=1                                                                                   (10) 
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2.4. Pearson Product Moment Correlation Analysis 
 

The Pearson product moment correlation analysis quantifies the linear relationship 

between two variables (Mackiewicz and Ratajczak 1993). The established correlation 

coefficient, ranging from negative one to positive one, is the magnitude of the 

interrelationship in the same direction (positive values) or in the opposite direction 

(negative values) (Khambete and Christian 2014). A strong positive or negative 

relationship is identified when the coefficient is closer to the absolute value of one. 

Coefficients closer to zero indicate a weak or nonexistent relationship between the two 

variables. The correlation analysis was applied to: 

1- Define statistical interrelationships between different measured quality and 

quantity parameters 

2- Identify variables with correlation significance level of 0.01 as a predictor 

variable for developing numerical predictive models which forecast significant 

operational and quality parameters based on historical dataset 

 

2.5. Principal Component Analysis 
 

Although the correlation analysis is a useful method to categorize the correlations 

between two variables, application results of such an analysis is limited for 

simultaneously evaluating the correlations among several variables (Rastogi and Sinha 

2011). Rather, principal component analysis (PCA) can be applied to investigate the 
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interrelationships between a large group of variables (Lebart et al. 1979). PCA is a 

valuable technique to convert a large number of original correlated variables into a finite 

set of uncorrelated variables. Through this dimension reduction process, the derived 

components represent the information of the whole dataset with minimal loss of original 

information (Alberto et al. 2001). Each of the obtained components capture as much of 

the variation which has not been explained by the former component as possible. This 

approach has been successfully applied to water and wastewater data in a variety of study 

areas (Lee et al. 2006; Lee and Vanrolleghem 2004).  

The PCA method is usually performed in five steps; 

1- Preparing the data matrix with original variables Xi 

2- Transforming matrix Xi into a standardized matrix Yi by using Eq. 11 

3- Calculating the covariance matrix R using Eq. 12 and 13 

4- Identifying the principal components which account for a large portion of the 

variation in the data set 

5- Calculating the score (Zi) of the principle components and the comprehensive 

score (Z) of each group of data set using Eq. 14 and 15 (Ouyang 2005). 

𝑌𝑌𝑖𝑖 =
𝑋𝑋𝑖𝑖 − 𝐸𝐸(𝑋𝑋𝑖𝑖)
�𝐷𝐷(𝑋𝑋𝑖𝑖)

 (11) 

|𝑅𝑅 − 𝜆𝜆𝑖𝑖𝐸𝐸| = 0 (12) 

𝐿𝐿𝑖𝑖 =
𝐵𝐵𝑖𝑖
�𝜆𝜆𝑖𝑖

 (13) 

𝑍𝑍𝑖𝑖 = 𝐿𝐿𝑖𝑖 × 𝑌𝑌𝑖𝑖 (14) 
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𝑍𝑍 = �𝑓𝑓𝑖𝑖 × 𝑍𝑍𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 (15) 

 

where, 

E(Xi) = average value of the original data 

D(Xi) = variance of Xi 

E = unit matrix 

Bi = component loading matrix value 

di = variance contribution 

λi = eigenvalues 

Li = corresponding eigenvector 

Using the statistical software, SPSS (Statistical Package for Social Science, version 13.0), 

PCA was carried out for all measured parameters. To account for the differing parameter 

scales, all variables were normalized to mean zero and unit variance. As a result, a finite 

principal factors were extracted based on Kaiser’s rule of eigenvalues greater than one 

(Chong and Jun 2005). Each derived component explained a specific variance percentage 

of all studied variables, which is referred to component loading. Components with higher 

loadings can better describe the characteristic of the total dataset (Bayo and López-

Castellanos 2016). To maximize the variation of loadings on each component, orthogonal 

factor rotation was generated using the Varimax method (Reimann et al. 2002). Finally, 

the component’s score was estimated based on the correlated values of the significant 
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factor loadings. Based upon these procedures, the derived components described 

significant portion of the total variability of the data set and represented the overall 

variation in water quality during the period of study. As a result, the dimension of the 

data set was significantly decreased from high number of measured variables to limited 

number of factors with a minimal percent loss of information. 

2.6. Statistical Modelling Approach 
 

To perform optimization of current systems as well as design of future systems, there is 

always a need for predicting significant operational and quality parameters. Although 

there are several theoretical models for predicting the water quality parameters, those are 

considerably complicated. For applying the theoretical modeling, there is a need for 

incorporating many bio-kinetic, hydrodynamic, diffusion, and detachment coefficients 

which are intrinsically dynamic and hard to accurately estimate (Goode et al. 2007). As 

an alternative, multivariate statistical techniques can be performed to develop predictive 

models for quality parameters based on the measured historical process data base. 

Considering the measured quality and quantity parameters as the training data, 

descriptive numerical models were developed to forecast key influent and effluent 

parameters. The developed models were then subjected to validation processes. 

The modeling approach was carried out by combining three statistical methods including 

correlation, multivariate regression, and ANOVA analyses. Firstly, the predictor 

variables for each model were identified based on the results from the established 

correlation analysis section. Among all variables which were determined to be correlated 
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with the target parameter, the variables with correlation significance level of 0.01 were 

considered as the predictor variables. 

Following the correlation analysis, the predictive models were developed for each target 

parameter using the stepwise multivariate regression analysis including multiple 

complex-terms of variables. Several combination sets of predictor variables in 

conjunction with their interactions were considered for model generation. By defining the 

threshold p-value of 0.05 and performing the backward method, all possible predictor 

variables were firstly considered for developing the model. Subsequently, the least 

statistically significant predictors with the largest p-value were iteratively removed in a 

stepwise manner until all the remaining variables in the model contained a significant 

predefined p-value. 

To confirm and detect the optimum model from various developed models for each target 

parameter, the final step attempted to conduct the ANOVA test to admit/reject the null 

hypothesis of the p-values < alpha = 0.05. 

2.7. Conclusion 
 

The methodologies described above can provide a scientific basis for a robust control 

system on the performance of environmental systems. Also, the methods presented by 

this research study can be used to effectively manage water quality monitoring programs, 

while reducing the number of quality parameters which must be routinely measured and 

also controlling the quality of sampling efforts and measurements. The presented 

methodologies in this research study provide the environmental analysts and 



 

30 
 

 

governmental decision makers with a comprehensive tool for evaluation of current and 

future quality conditions within any given environmental system. 

The proposed procedure can be summarized in the following steps: 

 

1- Calculate WQI for influent and effluent streams 

2- Categorize flow conditions over the time 

3- Evaluate systems effectiveness by comparing influent and effluent indexes 

4- Conduct the PCA for historical dataset 

5- Evaluate temporal variation of influent and effluent organic loading, ion activities, 

oxygen demanding, and nutrient loading 

6- Determine interrelationship level between measured data using Correlation 

Analysis 

7- Identify the most highly correlated variables with target parameter 

8- Develop predictive models for target parameters 

9- Verify accuracy of models in terms of fitting with training and testing data 

The developed multidisciplinary frameworks were applied for the temporal performance 

assessment and optimization of four different case studies including: 

1- A full scale municipal wastewater treatment plant located in Louisville, KY 

2- A laboratory scale pilot plant of a combined anaerobic-aerobic wastewater 

treatment system receiving high strength organic industrial sewage 



 

31 
 

 

3-    A laboratory scale pilot plant of a two-stage aerobic wastewater treatment 

system receiving petroleum refinery sewage 

4- An aquifer system located in a semi-arid region and at the vicinity of a Salt Lake 

For all case studies, the ultimate objective was to apply the above-mentioned developed 

methodologies on the results from the conducted water quality monitoring programs in 

order to: 

1- Comprehensively characterize the influent and effluent loads 

2- Identify the key operational parameters governing the effectiveness of process 

3- Temporal performance assessment of the system 

4- Optimization of the process 
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CHAPTER THREE. TEMPORAL PERFORMANCE 
ASSESSMENT OF WASTEWATER TREATMENT PLANTS 

BY USING MULTIVARIATE STATISTICAL ANALYSIS 
 

3.1. Introduction 
 

Each year, wastewater treatment plants process billions of gallons of sanitary and/or 

combined stormwater flow. For each treatment plant the physicochemical properties of 

the influent streams are unique and dependent on factors such as the origin of discharge, 

type of sewer system infrastructure (combined or separate), development level of the 

area, climate condition, and groundwater levels. Thus, in all cases, the wastewater stream 

not only has a unique composition, but the organic, inorganic and nutrient loadings vary 

in terms of time, place and source (Avella et al. 2011; Lefkir et al. 2015). 

Identifying the dynamics of wastewater’s constituents and their range are critical for 

establishing the preferred treatment system (Tchobanoglous and Burton 1991). Process 

designs must be optimized to effectively mitigate contaminants throughout all expected 

ranges and combinations of flow levels (Ebrahimi et al. 2016). This is especially 

important when effluent is directed towards a reuse project. Depending on the reuse 

objective, i.e. discharge to surface or groundwater bodies, irrigation purposes, or 

industrial reuse, the effluent should meet established quality limitations at all times. Thus, 

understanding the influent variability and its impact within the treatment process is 

essential to prevent the adverse health and environmental impacts of reused wastewater. 
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Appropriately characterizing wastewater streams and assessing wastewater treatment 

plant efficiencies is difficult due to the abundant chemical, physical, and microbiological 

parameters that should be considered (Bryant 1995). Even if all necessary wastewater 

data are collected, it is still challenging for the operators to make decision due to the 

complex interrelationships of the parameters (Timmerman et al. 2010). Thus, there is a 

need for developing appropriate indexing variables to better describe wastewater quality 

and evaluate treatment system’s efficiency (Boyacioglu 2007; Rosén and Lennox 2001). 

However, due to the regional characteristics of the wastewater stream and the natural 

temporal variation, it is difficult to establish standardized one-to-one relationships that 

can characterize flows throughout all anticipated conditions (Platikanov et al. 2014). 

Rather, multivariate statistical techniques could be used to provide better spatial and 

temporal relationships to facilitate better understanding of the process. 

Multivariate statistical techniques provide a mechanism to better quantify wastewater 

quality and treatment processes by establishing relationships between interrelated data 

(Aguado and Rosen 2008). This strategy has been widely applied in the water field 

during recent years (Avella et al. 2011; Bayo and López-Castellanos 2016; Costa et al. 

2009; Durmusoglu and Yilmaz 2006; Goode et al. 2007; Platikanov et al. 2014; Sun et al. 

2016; Tomita et al. 2002). In the field of Sewage management, Singh et al. (2005) 

applied the principal component analysis (PCA) and partial least analysis (PLS) to derive 

information on seasonal influence and compositional differences in sewage generated by 

domestic and industrial waste. In the field of surface water quality, Zhang et al. (2010) 

performed the PCA method for determining the contribution level of nutrients, heavy 

metals, natural and organic compounds on the spatial and temporal quality variation of a 
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local river. Regarding the wastewater treatment management, Ouali et al. (2009) applied 

the correlation and PCA methods for designing a network for monitoring the performance 

level of a treatment plant. Also, there are some recent studies on developing models for 

estimating the concentration of major effluent quality parameters of treatment plants 

using the statistical methods (Platikanov et al. 2014; Wallace et al. 2016). 

The objective of this study is to develop wastewater quality evaluation procedures for 

regional treatment facilities. To develop the procedures, the study objectively evaluated 

the performance of Floyds Fork Water Treatment Plant near Louisville Kentucky during 

2010 and 2016. Multivariate statistical methods were applied to 1) identify the temporal 

characteristics of each monitored parameter, 2) define the statistical interrelationships 

between different influent and effluent parameters, 3) develop Wastewater Quality Index 

(WWQI) to quantitatively define the wastewater quality, and 4) develop multivariate 

statistical forecasting techniques to numerically express the significant quality parameters 

based on the measured historical process data base. The procedures developed for the 

Floyd’s Fork case study should be applicable to other water/wastewater treatment 

systems. 

 

3.2. Materials and methods 
 

3.2.1. Description of the Floyds Fork Water Quality Treatment Center 
 

Located at 1100 Blue Heron Drive, Louisville, Kentucky 40225, the Floyds Fork Water 

Quality Treatment Center (WQTC) has been functional since 2000 and upgraded in 2013. 

The treatment plant services 15,490 residential connections and is designed to treat the 
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municipal wastewater with an average daily and maximum peak hour flow capacity of 

6.5 mgd and 24 mgd, respectively. The plant consists of preliminary, secondary, and 

tertiary treatment systems. Screenings and grit removal units were designed for 

preliminary treatment. For secondary treatment, the oxidation ditch process coupled with 

clarification units was designed to biologically remove organic and nutrient materials 

from the wastewater. To meet the established effluent phosphorus concentration 

limitation, chemical addition with sodium aluminate to the oxidation ditch mixed liquor 

was performed. Following clarification, the effluent flows to the cloth filters and 

ultraviolet radiation disinfection units for tertiary treatment. The final effluent is 

discharged to a stream.  

3.2.2. Monitored Parameters and Analytical Methods 
 

To comprehensively analyze the composition of wastewater, a wide range of water 

quality indices should be taken into account (Nagels et al. 2001; Wanda et al. 2015). In 

the case of Floyds Fork WQTC, those indices were derived from the routine water quality 

monitoring program performed by Louisville MSD during 2010 and 2016. Collectively 

9180 samples were obtained from nine quality and quantity variables. The measured 

parameters include biochemical oxygen demand (BOD), total suspended solids (TSS), 

phosphorus (P), nitrogen (N), dissolved oxygen (DO), pH, mixed liquor volatile 

suspended solids (MLVSS) content in aeration tank, flow rate and the recycled activated 

sludge (RAS) rate. All analytical methods applied in the sampling and measurement 

program were in accordance with the standard methods for examination of water and 

wastewater (Apha 2012). 
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3.2.3. Descriptive Analysis of the Parameters 
 

Descriptive statistics were used to identify the characteristics of each measured parameter 

in terms of central tendency, dispersion, and distribution, see Table 3-1. Central tendency 

provides the location of the distribution for each parameter including the mean, median 

and mode. Dispersion measures the spread in the data set including the standard 

deviation, coefficient of variation, range, minimum and maximum. Distribution estimates 

using skewness and kurtosis are able to describe a time series distribution’s symmetry 

and shape. 
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Table 3-1. Descriptive Statistics of the Influent (i) and Effluent (e) Parameters 

Variable Unit Discharge 
Limit Mean Median Stan. 

Error 
Stan. 
Dev. Var. Kurtosis Skewness Range Min Max 

Flow 
Rate MGD  2.9 2.8 0.1 0.7 0.5 0.2 0.7 3.0 1.7 4.7 

Pi mg/L  5.6 5.6 0.2 1.4 2.1 0.9 0.6 7.8 2.3 10.0 
BODi mg/L  177.2 161.2 9.5 71.9 5174 5.1 1.6 448 40.2 488 
TSSi mg/L  361.2 351.8 15.4 115.9 13441 -0.3 -0.1 495 90 584 
Ni mg/L  18.3 16.9 0.6 4.5 19.9 5.3 1.5 28.5 9.3 37.8 
pHi -  7.4 7.3 0.0 0.2 0.1 0.8 0.8 1.0 7.0 8.0 
DOi mg/L  4.2 4.1 0.1 1.0 1.1 0.0 0.2 5.2 1.6 6.7 
Pe mg/L 0.5 0.3 0.3 0.0 0.1 0.0 -0.3 0.3 0.7 0.1 0.7 
BODe mg/L 6 2.3 2.0 0.1 0.6 0.4 3.1 2.0 2.3 2.0 4.3 
TSSe mg/L 30 2.3 2.1 0.1 0.6 0.4 3.6 1.6 3.5 1.3 4.7 
Ne mg/L 3 0.5 0.4 0.1 0.5 0.2 2.9 1.7 2.0 0.1 2.0 
pHe - 7 - 9 7.9 7.9 0.0 0.2 0.0 1.9 -0.3 1.2 7.2 8.4 
DOe mg/L 7 9.2 9.0 0.1 1.0 0.9 -0.6 0.7 3.4 8.0 11.3 
MLVS
S mg/L  2050 1989 32.8 247.5 61271 0.5 0.9 1040 1661 2701 

RAS MGD  1.2 1.1 0.1 0.4 0.1 -0.4 0.5 1.6 0.6 2.2 
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Studying the temporal fluctuation of the parameters can provide interesting insights. As 

observed in Figure 3-1, the trends for influent BOD, TSS, nitrogen and phosphorus 

parameters moved similarly, while DO concentration moved in the opposite direction. 

This opposing trend indicates that while the available amount of free oxygen increased, 

the contaminants level of the incoming wastewater dropped. This condition is directly 

related to the variation of inflow rate. As the stream flow increased, the availability of 

dissolved oxygen improved, and the pollutants concentration decreased consequently. For 

the effluent quality parameters, it was observed that the variation of recycled sludge 

through the treatment process had a considerable impact on the concentration of other 

quality parameters, especially TSS and BOD. Increasing the amount of RAS caused a 

raise of effluent TSS concentration and decrease in the amount of BOD level. Although, 

investigating the quality parameter’s fluctuations can provide some basic information, 

there is a complex interrelationship within the wastewater quality variables. It is thus 

difficult to utilize one parameter or one set of parameters to appropriately characterize the 

waste stream. Moreover, interpreting the variable’s variation without a clear 

understanding of the treatment processes would not lead to a comprehensive assessment 

of the treatment system efficiency. 
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Figure 3-1. Temporal Variation of Average Monthly Influent (top) and Effluent 
(bottom) Parameters 

 

3.2.4. Temporal Assessment of the Experimental Data 
 

The results of the wastewater monitoring program comprise a complex matrix of 

physicochemical parameters which individually cannot provide a reliable temporal 

evaluation of the wastewater quality or assessment of the treatment plant’s performance. 

To overcome this challenging issue, two approaches were implemented; 1) the 

Wastewater Quality Index (WWQI) was introduced to summarize large amounts of 

monitored parameters into one simple term, and 2) multivariate statistical analyses and 
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exploratory data analyses were applied to provide a comprehensive methodology to 

temporally assess wastewater characteristics. 

3.3. Results and Discussion 
 

3.3.1. Wastewater Quality Index (WWQI) 
 

The Wastewater Quality Index (WWQI) is an efficient mechanism to express the overall 

condition of wastewater by cumulative consideration of all monitored quality indices. In 

other words, WWQI is a unit-less number that cumulatively describes the quality of an 

aggregated set of measured chemical, physical, and microbiological parameters (Bordalo 

et al. 2006). The WWQI tries to easily enable interpretation of monitoring data by 

ranking the wastewater quality on a rating scale from zero to 100 based on the measured 

parameters and established water quality standards (Bharti and Katyal 2011). The higher 

values tend to indicate that wastewater effluents are meeting design objectives and the 

plant is operating efficiently. As such, influent streams to wastewater treatment plants 

generally have low WWQI values as they would be harmful to surrounding waterbodies 

if released untreated. After treatment, the wastewater streams should have relatively high 

WWQI values indicating they can be released to surrounding water bodies. Using the 

WWQI as an indicator variable is beneficial for decision makers as it enables them to 

rapidly identify the quality of different wastewater streams and also compare different 

treatment processes (Asadi et al. 2007). 

Considering the aforementioned objective, the WWQI was developed for the influent and 

effluent of Floyds Fork WQTC using analytics developed by the Canadian Council of 

Ministers of Environment, CCME method (CCME 2001; Lumb et al. 2006). The CCME 
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WWQI was calculated based on the combination of three factors, that consider the 

number, frequency, and amount of variables whose objectives are not met based on the 

quality limitations, (Equations 1-6) (De Rosemond et al. 2009; Hurley et al. 2012). The 

water quality was then ranked in different categories as described in Table 3-2 (Khan et 

al. 2004). 

𝐹𝐹1 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 𝑝𝑝𝑓𝑓𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝 
𝑝𝑝𝑜𝑜𝑝𝑝𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑓𝑓𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝

 × 100 (1) 

𝐹𝐹2 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 
𝑝𝑝𝑜𝑜𝑝𝑝𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝

 × 100 (2) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑝𝑝𝑓𝑓𝑜𝑜𝑛𝑛𝑖𝑖 =
𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝 𝑣𝑣𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑖𝑖

𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑜𝑜𝑛𝑛𝑖𝑖
− 1 (3) 

𝑛𝑛𝑛𝑛𝑝𝑝 =
∑ 𝑛𝑛𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑝𝑝𝑓𝑓𝑜𝑜𝑛𝑛𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝
 (4) 

𝐹𝐹3 =
𝑛𝑛𝑛𝑛𝑝𝑝

0.01 𝑛𝑛𝑛𝑛𝑝𝑝 + 0.01
 (5) 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 100 −
√𝐹𝐹12 + 𝐹𝐹22 + 𝐹𝐹32

1.732
 (6) 

where: 

F1 = percentage of measured parameters that do not meet their limit at least once during 

the time period  

F2 = percentage of individual tests that do not meet limitation 

F3 = amount by which failed test values do not meet their limitation 

Excursion = number of times by which an individual test is greater than the limitation 

nes = collective amount by which individual tests are out of compliance 
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F3 = amount by which failed test values did not meet their objectives 

 

Table 3-2. Wastewater Quality Category based on CCME WWQI 

Quality Range WWQI Water Category 

Excellent 95 – 100 Very close to natural or pristine levels 

Good 80 – 94 Rarely depart from natural or desirable levels 

Fair 65 – 79 Sometimes depart from natural or desirable levels 

Marginal 45 – 64 Often depart from natural or desirable levels 

Poor 0 – 44 Quality is almost always threatened or impaired 

 

For the Floyds Fork analysis, the WWQI was based on the DO, BOD, TSS, N, P, and pH 

concentrations of the incoming and outgoing wastewater. These parameters are the main 

organic/inorganic contaminant indicators characterizing the overall quality of wastewater 

(Tchobanoglous and Burton 1991). The WWQI variation for the influent and effluent 

wastewater during the study period did not show significant fluctuations, see Figure 3-2. 

As expected, the influent index quality value was between 45 and 60 indicating the water 

quality was frequently threatened or impaired and would be threatening or potentially 

damaging to a receiving water. After treatment, the effluent WWQI was consistently 

between 96 and 100 indicating that the stream could be released to receiving waters with 

little threat of impairment. The analysis showed that the treatment process average 

resulted in a 51 percent improvement of the wastewater quality. 
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Figure 3-2. Influent and Effluent WWQI Variation 
 

3.3.2. Multivariate Statistical Analysis Approach  
 

Statistical analytics is a powerful mathematical tool that can identify trends and 

correlations within complex data sets. For the Floyds Fork WQTC, the statistical analysis 

procedure was used to extract and organize information from the water quality 

monitoring program. The technique incorporated 1) correlation analyses to determine the 

extent specific parameters were statistically correlated; 2) principal component analyses 

(PCA) to analyze interrelationships among the variables and to quantify the significance 

of different variables in the dataset; and 3) multivariate regression analyses to develop 

models that can predict important quality parameters based on input conditions. 

3.3.2.1 Correlation Analysis 
 

The Pearson product moment correlation analysis quantifies the linear relationship 

between two variables (Mackiewicz and Ratajczak 1993). The established correlation 

coefficient, ranging from negative one to positive one, is the magnitude of the 

interrelationship in the same direction (positive values) or in the opposite direction 
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(negative values) (Khambete and Christian 2014). A strong positive or negative 

relationship is identified when the coefficient is closer to the absolute value of one. 

Coefficients closer to zero indicate a weak or nonexistent relationship between the two 

variables.  

The Pearson product moment correlation analysis was applied to each pair of influent and 

effluent variables within the Floyds Fork WQTC parameter dataset to identify potential 

bivariate associations, see Table 3-3. Based on this analysis, the influent WWQI was 

observed to be negatively correlated with influent phosphorus, BOD, TSS, and nitrogen 

concentrations. The effluent quality variables, phosphorus, BOD, TSS, and nitrogen were 

found to be highly correlated with the calculated values for effluent WWQI. Thus, it can 

be determined that out of six measured quality parameters for influent and effluent 

wastewater, four parameters were responsible for the variation of influent and effluent 

indexes. Additionally, influent phosphorus concentration was positively correlated with 

influent BOD, TSS, and nitrogen. Similarly, the influent BOD concentration was 

positively correlated with influent phosphorus, TSS, and nitrogen. Also, effluent 

phosphorus and BOD were positively correlated with the returned activated sludge (RAS) 

rate, influent BOD, TSS, and DO concentrations. It was concluded that the effluent 

WWQI is negatively correlated with effluent P, BOD, TSS, and N concentrations with 

high degree of significance. 
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Table 3-3. Wastewater Quality Category based on CCME WWQI 

  Flow 
Rate 

Pi BODi TSSi Ni pHi DOi Pe BODe TSSe Ne pHe DOe MLVSS RAS WWQIi WWQIe 

Flow 
Rate 

1.0                 

Pi -.3* 1.0                

BODi -.2 .7** 1.0               

TSSi -.2 .8** .8** 1.0              
Ni -.6** .6** .6** .3* 1.0             
pHi .0 .3 -.2 -.3 -.1 1.0            

DOi .2 -.1 .1 .1 -.2 -.3 1.0           

Pe .3 .1 .4* .5* -.2 -.2 .4** 1.0          

BODe .0 .2 .6** .3* .2 .1 .3** .1 1.0         
TSSe .0 -.2 -.2 -.3* -.1 .1 -.2 .0 -.2 1.0        
Ne .1 .1 .0 .2 -.3 -.2 .1 .2 -.1 -.1 1.0       

pHe .0 -.2 -.1 -.3 -.1 .8** -.3 -.2 .1 .0 -.1 1.0      

DOe .3 -.2 -.3 -.2 -.5** .2 .1 .2 -.2 .1 .3 .2 1.0     

MLVSS .0 .1 .1 .0 -.1 .2 .2 .1 .1 -.1 .3 .1 .2 1.0    

RAS .5** -.3 -.3* -.2 -.5** .2 .3* .5* .5* .0 .2 .1 .7** .5** 1.0   
WWQIi .3** -.8** -.8** -.8** -.5** -.3 .0 -.2 -.2 .2 -.1 .2 .2 -.1 .3** 1.0  
WWQIe -.2 .0 .0 -.1 .2 .1 -.2 -.7** -.3** -.3** -.4** .1 -.2 -.2 -.2 .1 1.0 
** Correlation is significant at 0.01 level 
* Correlation is significant at 0.05 level 
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3.3.2.2 Principal Component Analysis 
 

Although the correlation analysis is a useful method to categorize the correlations 

between two variables, application results of such an analysis is limited for 

simultaneously evaluating the correlations among several variables (Rastogi and Sinha 

2011). Rather, principal component analysis (PCA) can be applied to investigate the 

interrelationships between a large group of variables (Lebart et al. 1979). PCA is a 

valuable technique to convert a large number of original correlated variables into a finite 

set of uncorrelated variables. Through this dimension reduction process, the derived 

components represent the information of the whole dataset with minimal loss of original 

information (Alberto et al. 2001). Each of the obtained components capture as much of 

the variation which has not been explained by the former component as possible. This 

approach has been successfully applied to water and wastewater data in a variety of study 

areas (Lee et al. 2006; Lee and Vanrolleghem 2004).  

The PCA method is usually performed in five steps; 1) Preparing the data matrix with 

original variables Xi, 2) Transforming matrix Xi into a standardized matrix Yi by using 

Eq. 7, 3) Calculating the covariance matrix R using Eq. 8 and 9, 4) Identifying the 

principal components which account for a large portion of the variation in the data set, 

and 5) Calculating the score (Zi) of the principle components and the comprehensive 

score (Z) of each group of data set using Eq. 10 and 11 (Ouyang 2005). 

𝑌𝑌𝑖𝑖 =
𝑋𝑋𝑖𝑖 − 𝐸𝐸(𝑋𝑋𝑖𝑖)
�𝐷𝐷(𝑋𝑋𝑖𝑖)

 (7) 

|𝑅𝑅 − 𝜆𝜆𝑖𝑖𝐸𝐸| = 0 (8) 
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𝐿𝐿𝑖𝑖 =
𝐵𝐵𝑖𝑖
�𝜆𝜆𝑖𝑖

 (9) 

𝑍𝑍𝑖𝑖 = 𝐿𝐿𝑖𝑖 × 𝑌𝑌𝑖𝑖 (10) 

𝑍𝑍 = �𝑓𝑓𝑖𝑖 × 𝑍𝑍𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 (11) 

 

where, 

E(Xi) = average value of the original data 

D(Xi) = variance of Xi 

E = unit matrix 

Bi = component loading matrix value 

di = variance contribution 

λi = eigenvalues 

Li = corresponding eigenvector 

Using the statistical software, SPSS (Statistical Package for Social Science, version 13.0), 

PCA was carried out for all fifteen parameters, which included 612 replications. To 

account for the differing parameter scales, all variables were normalized to mean zero 

and unit variance. As a result, five principal factors were extracted based on Kaiser’s rule 

of eigenvalues greater than one (Chong and Jun 2005). Each derived component 

explained a specific variance percentage of all studied variables, which is referred to 

component loading. Components with higher loadings can better describe the 
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characteristic of the total dataset (Bayo and López-Castellanos 2016). To maximize the 

variation of loadings on each component, orthogonal factor rotation was generated using 

the Varimax method (Reimann et al. 2002). Finally, the component’s score was estimated 

based on the correlated values of the significant factor loadings. Based upon these 

procedures, the derived components described approximately 75.25% of the total 

variability of the data set and represented the overall variation in wastewater quality 

during the period of study, see Table 3-4. As a result, the dimension of the data set was 

decreased from 15 variables to five factors with only a minimal 24.75 percent loss of 

information. 

Table 3-4. Rotated Component Matrix with Factor Loadings (>0.4) a 

Attribute Principal Component 
PC1 PC2 PC3 PC4 PC5 

Flow Rate  0.54    
Pi 0.90     
BODi 0.89     
TSSi 0.84     
Ni 0.68     
pHi   0.91   
DOi -0.63     
Pe     0.61 
BODe    0.69  
TSSe     0.88 
Ne     0.61 
pHe   0.88   
DOe    -0.84  
MLVSS  0.66    
RAS  0.78    
Eigenvalue 4.12 2.86 1.86 1.43 1.02 
Initial Variance (Loading) 27.45 19.08 12.40 9.51 6.80 
Cumulative Variance 27.45 46.53 58.93 68.44 75.25 
a. Rotation converged in 13 iterations 
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The highest loading was attributed to PC1 which accounted for 27.45% of total dataset 

variance. This factor represented influent quality parameters loading and can provide a 

dominant pattern of the data set for better understanding the characteristics of the influent 

wastewater. The second component, accounting for 19.08% of initial data variance, 

contained significant loadings for the quantitative characteristics of wastewater including 

inflow and recycled rates. The third component could be labeled as the ion activity 

component because it highly represented the influent and effluent pH values. The forth 

component (PC4) was mainly considered for the oxygen demand characteristics of the 

treated wastewater. The last component (PC5) accounted for the effluent nutrient 

loadings including phosphorus, nitrogen and TSS. Thus, this factor can be respected as a 

measure of the treatment plant’s performance level. 

The component score (Z) of the governing principle components were calculated and 

analyzed for the entire study period to better understand the wastewater characteristics, 

see Figure 3-3. High fluctuated trend was observed for PC1, PC2, and PC5, 

corresponding to seasonal influent and effluent wastewater quality and quantity variation. 

The PC1 was initially related to the organic loading of the influent wastewater, while 

PC2 was mainly correlated to the quantity characteristics of wastewater. Positive scores 

for PC2 were mostly observed for samples collected during the late-autumn to mid-

spring, indicating higher inflow rate receiving by the treatment plant during those 

periods. Also, lower flow rates entered to the treatment plant from late-spring to mid-

autumn due to the negative observed scores of this component. Positive scores for PC1, 

which indicated more polluted influent wastewater, were mainly observed for the samples 

which have negative scores on PC2. It can be explained that by decreasing the scores for 
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PC2 the observed scores of PC1 increased, representing more polluted incoming 

wastewater during seasons with lower flow rates. Also, the overall PC1 negative and 

positive scores respectively observed during 2010 to 2013 and 2013 to 2015 indicated the 

overall increase of the influent pollutant level from the year of 2013. 

For PC5, which corresponds to the nutrient removal performance of the treatment plant, 

fluctuations were considerably high, and the effluent wastewater nutrient loading was 

significantly changed over the study period. This can be attributed to the ununiformed 

removal performance of the treatment plant. Positive PC5 scores, indicating higher 

effluent nutrient loadings, were mainly observed for 2013 to 2015 when most of the 

samples exhibited positive scores for PC1. Considering the opposite trend during the 

period of 2010 to 2013, it can be interpreted that increasing the influent pollutant levels 

significantly affected the nutrient removal performance of the treatment system. More 

positive scores for PC5 were observed during winter and spring seasons indicating lower 

achieved nutrient removal rates during those months. For PC4 which accounts for the 

effluent oxygen demand properties, uniform score changing was observed. High oxygen 

content and less oxygen demand for the effluent wastewater can be concluded due to 

positive observed scores for this component during the study period. 
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Figure 3-3. Temporal Variation of the Principal Components Scores 

 

3.3.2.3 Statistical Modelling Approach 
 

The purpose of developing forecasting models for the significant quality parameters is to 

provide comprehensive dataset for performing future studies on simulation and scenario 

analyses through desktop modeling by using simulator software packages. Although there 

are several theoretical models for predicting the wastewater quality parameters, those are 
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considerably complicated. For applying the theoretical modeling, there is a need for 

incorporating many bio-kinetic, hydrodynamic, diffusion, and detachment coefficients 

which are intrinsically dynamic and hard to accurately estimate (Goode et al. 2007). As 

an alternative, multivariate statistical techniques can be performed to develop predictive 

models for quality parameters based on the measured historical process data base. 

Considering the measured quality and quantity parameters during 2010 to 2015 as the 

training data, this section attempts to develop six descriptive numerical models to 

forecast influent and effluent phosphorus, BOD, and WWQI parameters. The developed 

models were then subjected to validation processes based on the results from the 

monitoring program conducted in the first ten months of 2016. 

The modeling approach was carried out by combining three statistical methods including 

correlation, multivariate regression, and ANOVA analyses. Firstly, the predictor 

variables for each model were identified based on the results from the established 

correlation analysis section (Table 3). Among all variables which were determined to be 

correlated with the target parameter, the variables with correlation significance level of 

0.05 were considered as the predictor variables. Following the correlation analysis, the 

predictive models were developed for each target parameter using the stepwise 

multivariate regression analysis including multiple complex-terms of variables. Several 

combination sets of predictor variables in conjunction with their interactions were 

considered for model generation. By defining the threshold p-value of 0.05 and 

performing the backward method, all possible predictor variables were firstly considered 

for developing the model. Subsequently, the least statistically significant predictors with 

the largest p-value were iteratively removed in a stepwise manner until all the remaining 
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variables in the model contained a significant predefined p-value. To confirm and detect 

the optimum model from various developed models for each target parameter, the final 

step attempted to conduct the ANOVA test to admit/reject the null hypothesis of the p-

values < alpha = 0.05. 

 

3.3.2.3.1. Predictive Model for Influent Parameters 
 
The numerical expression of influent Phosphorus, BOD, and WWQI was described once 

the correlations between the parameters were established. It was obtained that the influent 

phosphorus was significantly correlated with the BOD, TSS, and Nitrogen concentrations 

of the raw wastewater. Thus, these three variables were considered as the predictors for 

the influent phosphorus concentration. Also, it was perceived that the influent TSS, 

nitrogen and phosphorus were strongly correlated with the influent BOD concentration. 

As a result, those parameters were considered as predictor variables to develop model for 

influent BOD. Finally, to develop predictive models for the influent WWQI, phosphorus, 

BOD, nitrogen, and TSS were considered as the predictors due to their significant derived 

correlation coefficients. Once the predictor variables were established, the stepwise 

multivariate regression analysis, based on the backward elimination method, was 

performed to develop numerical forecasting equations for each target parameter. 

Considering numerous interactions between the established predictor variables, more than 

a hundred regression equations were constructed for each target parameter. Finally, the 

models which exhibited the most possible variance accounted for the total dataset were 

selected, and listed in the following Tables, as the nominees for the optimum model 

detection. 
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Considering seven developed models for estimating the influent phosphorus, it was found 

that the Model 7 was able to account for approximately 86% of the variability using only 

three predictors, see Table 3-5. The results from conducting the ANOVA test indicated 

that the achieved model was significant as the derived p-value is far less than 0.05. Also, 

the high calculated F value of 114.6, which is considerably greater than that from the 

other models, indicated that the selected model is effectively fitted with the original data 

set. 

Table 3-5. Model Summary for the Influent Phosphorus 

Model R R2 Adjusted R2 Std. Error 
of Estimate 

Sum of 
Squares df Mean 

Square F p-value 

1 a .937 .878 .855 .55 101.6 9 11.3 37.6 .000 
2 b .937 .878 .858 .54 101.6 8 12.7 43.2 .000 
3 c .937 .878 .861 .54 101.6 7 14.5 50.4 .000 
4 d .937 .877 .862 .53 101.5 6 16.9 59.5 .000 
5 e .936 .875 .863 .53 101.3 5 20.3 71.5 .000 
6 f .932 .869 .859 .54 100.6 4 25.1 86.3 .000 
7 g .931 .866 .859 .54 100.3 3 33.4 114.6 .000 
Predictors: BODiTSSi, Ni, TSSi, BODi, BODiNi, NiTSSi, TSSi

2, Ni
2, BODi

2 
Predictors: BODiTSSi, TSSi, BODi, BODiNi, NiTSSi, TSSi

2, Ni
2, BODi

2 
Predictors: BODiTSSi, TSSi, BODi, NiTSSi, TSSi

2, Ni
2, BODi

2 
Predictors: BODiTSSi, BODi, NiTSSi, TSSi

2, Ni
2, BODi

2 
Predictors: BODiTSSi, BODi, NiTSSi, TSSi

2, BODi
2 

Predictors: BODiTSSi, NiTSSi, TSSi
2, BODi

2 
Predictors: BODiTSSi, NiTSSi, TSSi

2 
Dependent Variable: Phosphorus 

 

Four models were nominated for estimating the influent BOD, see Table 3-6. Containing 

the least number of predictors, and with an accuracy of 81%, model 4 was considered as 

the best model based on the results of the ANOVA test. Compared to the other models, 

the designated model was found to be significant considering the derived p-value is less 
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than 0.05 and also to be more accurately fitted with the original dataset because of its 

larger F value of 41.1. 

Table 3-6. Model Summary for the Influent BOD 

Model R R2 Adjusted 
R2 

Std. Error 
of Estimate 

Sum of 
Squares df Mean 

Square F p-value 

1 a .916 .840 .809 31.44 243315.7 9 27035.1 27.3 .000 
2 b .916 .839 .813 31.13 243264.5 8 30408.1 31.4 .000 
3 c .913 .833 .809 31.45 241309.2 7 34472.7 34.8 .000 
4 d .912 .831 .811 31.26 240916.8 6 40152.8 41.1 .000 
Predictors: PiNi, TSSi, Ni, Pi, TSSi

2, NiTSSi, Pi
2, Ni

2, PiTSSi 
Predictors: PiNi, Ni, Pi, TSSi

2, NiTSSi, Pi
2, Ni

2, PiTSSi 
Predictors: Ni, Pi, TSSi

2, NiTSSi, Pi
2, Ni

2, PiTSSi 
Predictors: Ni, Pi, TSSi

2, NiTSSi, Ni
2, PiTSSi 

Dependent Variable: BOD 
 

To identify the optimum numerical expression for the influent WWQI, six different 

models were investigated, see Table 3-7. Model 6, containing eight predictor variables, 

provided an incredible 97% fit to the dataset. Performing the ANOVA test, it was 

obtained that this model was highly significant via comparison of the p-value to our 

threshold (0.05) and also contained the highest F value of 231.4. 

Table 3-7. Model Summary for the Influent WWQI 

Model R R2 Adjusted 
R2 

Std. Error 
of Estimate 

Sum of 
Squares df Mean 

Square F p-value 

1 a .988 .977 .970 .37 250.6 13 19.3 139.0 .000 
2 b .988 .977 .970 .37 250.6 12 20.9 154.1 .000 
3 c .988 .977 .971 .36 250.6 11 22.8 171.6 .000 
4 d .988 .977 .971 .36 250.5 10 25.1 191.4 .000 
5 e .988 .976 .971 .36 250.3 9 27.8 211.5 .000 
6 f .987 .975 .971 .37 250.0 8 31.2 231.4 .000 
Predictors: PiBODi, Ni, TSSi, Pi

2, TSSi
2, BODi, NiTSSi, Ni

2, Pi, BODi
2, BODiNi, BODiTSSi, PiTSSi 

Predictors: PiBODi, Ni, TSSi, Pi
2, TSSi

2, NiTSSi, Ni
2, Pi, BODi

2, BODiNi, BODiTSSi, PiTSSi 
Predictors: PiBODi, Ni, TSSi, Pi

2, TSSi
2, NiTSSi, Ni

2, Pi, BODi
2, BODiNi, BODiTSSi 

Predictors: PiBODi, Ni, TSSi, Pi
2, TSSi

2, NiTSSi, Ni
2, Pi, BODi

2, BODiNi 
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Predictors: PiBODi, Ni, TSSi, TSSi
2, NiTSSi, Ni

2, Pi, BODi
2, BODiNi 

Predictors: PiBODi, Ni, TSSi, TSSi
2, NiTSSi, Ni

2, BODi
2, BODiNi 

Dependent Variable: WWQIi 
 

 

3.3.2.3.2. Predictive Model for Effluent Parameters 
 

Considering the same strategy applied for developing the predictive models for influent 

target parameters, this section attempts to determine optimum numerical expressions for 

forecasting the effluent phosphorus, BOD, and WWQI contents. To recognize the 

predictors participating in model development, those variables which were previously 

identified as to be correlated with the target parameter with the significance of greater 

than 95% were selected. To prepare the list of nominee models for the prime model 

detection, the multiple complex stepwise regression was performed based on the 

backward elimination method. More than one hundred models were constructed for each 

list of the nominated models and those which exhibited the highest possible variance with 

the training dataset were presented in the following tables. Finally, to select the preferred 

model for each target parameter, the ANOVA test were performed. 

The effluent phosphorus was significantly correlated with the influent TSS, BOD, and 

DO concentrations as well as RAS. Thus, the mentioned variables in conjunction with 

their interactions were considered for model developments. Out of over hundred 

developed models, eight models with the accuracy level ranging from 63% to 69% were 

considered, see Table 3-8. The results of applying the ANOVA test indicated that model 

7 exhibited the highest adjusted accuracy level of 69% with the training dataset and 

provided nearly the best fit to the original data set compared to the other models. 

Although model 7 contained one more predictor compared to model 8, the selected model 
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was found to be significant with the p-value of 0.000, and also presented the same highest 

F value of 5.7, which was observed for the model 8 as well. 

 

Table 3-8. Model Summary for the Effluent Phosphorus 

Model R R2 Adjusted R2 Std. Error 
of Estimate 

Sum of 
Squares df Mean 

Square F p-value 

1 a .851 .724 .632 .098 .84 23 .037 3.8 .000 
2 b .851 .724 .646 .097 .84 22 .038 4.1 .000 
3 c .851 .724 .659 .095 .84 21 .040 4.4 .000 
4 d .850 .723 .668 .094 .84 20 .042 4.7 .000 
5 e .849 .720 .677 .094 .83 19 .044 5.0 .000 
6 f .847 .717 .683 .093 .83 18 .046 5.3 .000 
7 g .845 .715 .690 .092 .83 17 .049 5.7 .000 
8 h .835 .697 .676 .094 .81 16 .051 5.7 .000 
Predictors: BODi×RAS3, BODi

3×TSSi
3, DOi

2, TSSi
2, BODi

2×DOi
5, RAS4×TSSi

4, RAS, DOi
6, 

BODi×RAS, TSSi×RAS, TSSi
4×RAS, RAS4, BODi

4, BODi
3×RAS2, BODi

2, BODi
2×DOi

2, 
BODi×DOi, TSSi

2×RAS2, BODi
3×DOi

5, TSSi
4, RAS2, BODi×TSSi, DOi

4 
Predictors: BODi×RAS3, BODi

3×TSSi
3, DOi

2, TSSi
2, BODi

2×DOi
5, RAS4×TSSi

4, RAS, DOi
6, 

BODi×RAS, TSSi×RAS, TSSi
4×RAS, RAS4, BODi

4, BODi
3×RAS2, BODi

2, BODi
2×DOi

2, 
BODi×DOi, TSSi

2×RAS2, TSSi
4, RAS2, BODi×TSSi, DOi

4 
Predictors: BODi×RAS3, BODi

3×TSSi
3, DOi

2, BODi
2×DOi

5, RAS4×TSSi
4, RAS, DOi

6, 
BODi×RAS, TSSi×RAS, TSSi

4×RAS, RAS4, BODi
4, BODi

3×RAS2, BODi
2, BODi

2×DOi
2, 

BODi×DOi, TSSi
2×RAS2, TSSi

4, RAS2, BODi×TSSi, DOi
4 

Predictors: BODi×RAS3, BODi
3×TSSi

3, DOi
2, BODi

2×DOi
5, RAS4×TSSi

4, RAS, DOi
6, TSSi×RAS, 

TSSi
4×RAS, RAS4, BODi

4, BODi
3×RAS2, BODi

2, BODi
2×DOi

2, BODi×DOi, TSSi
2×RAS2, TSSi

4, 
RAS2, BODi×TSSi, DOi

4 
Predictors: BODi×RAS3, BODi

3×TSSi
3, DOi

2, BODi
2×DOi

5, RAS, DOi
6, TSSi×RAS, TSSi

4×RAS, 
RAS4, BODi

4, BODi
3×RAS2, BODi

2, BODi
2×DOi

2, BODi×DOi, TSSi
2×RAS2, TSSi

4, RAS2, 
BODi×TSSi, DOi

4 
Predictors: BODi×RAS3, BODi

3×TSSi
3, DOi

2, BODi
2×DOi

5, RAS, DOi
6, TSSi×RAS, TSSi

4×RAS, 
RAS4, BODi

3×RAS2, BODi
2, BODi

2×DOi
2, BODi×DOi, TSSi

2×RAS2, TSSi
4, RAS2, BODi×TSSi, 

DOi
4 

Predictors: BODi×RAS3, DOi
2, BODi

2×DOi
5, RAS, DOi

6, TSSi×RAS, TSSi
4×RAS, RAS4, 

BODi
3×RAS2, BODi

2, BODi
2×DOi

2, BODi×DOi, TSSi
2×RAS2, TSSi

4, RAS2, BODi×TSSi, DOi
4 

Predictors: BODi×RAS3, DOi2, BODi2×DOi5, RAS, DOi6, TSSi×RAS, TSSi4×RAS, 
BODi3×RAS2, BODi2, BODi2×DOi2, BODi×DOi, TSSi2×RAS2, TSSi4, RAS2, BODi×TSSi, 
DOi4 
Dependent Variable: Pe 
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The correlation analysis indicated that effluent BOD was significantly correlated with 

influent BOD, TSS, and DO content as well as the RAS. Thus, these variables in 

conjunction with their interactions were considered for numerical expression 

development. The best predictive model which was achieved from conducting the 

backward multivariate regression analysis had the accuracy of 77%, see Table 3-9. The 

selected model has an F value of 15.4 and p-value of less than alpha based on the results 

of ANOVA test. 
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Table 3-9. Model Summary for the Effluent BOD 

Model R R2 Adjusted 
R2 

Std. Error 
of Estimate 

Sum of 
Squares df Mean 

Square F p-value 

1 a .906 .820 .728 .26 11.3 19 .59 8.9 .000 
2 b .906 .820 .735 .25 11.3 18 .63 9.6 .000 
3 c .906 .820 .742 .25 11.3 17 .66 10.5 .000 
4 d .912 .831 .745 .25 11.4 19 .60 9.6 .000 
5 e .912 .831 .751 .25 11.4 18 .63 10.4 .000 
6 f .912 .831 .757 .24 11.4 17 .67 11.3 .000 
7 g .911 .830 .761 .24 11.4 16 .71 12.2 .000 
8 h .910 .829 .766 .24 11.4 15 .76 13.2 .000 
9 i .909 .827 .769 .24 11.4 14 .81 14.3 .000 
10 j .907 .824 .770 .24 11.3 13 .87 15.4 .000 
Predictors: DOi, TSSi, BODi

3×TSSi
3, BODi

2×DOi
5, RAS×TSSi

3, DOi
6, BODi

2×RAS, BODi×TSSi, 
DOi

2×TSSi, BODi
3, BODi×DOi, BODi

3×RAS2, DOi
3, TSSi

2×RAS, BODi
3×DOi

2, BODi
3×DOi

5, 
BODi

4×RAS2, BODi
2, BODi

2×TSSi
2

 

Predictors: DOi, TSSi, BODi
3×TSSi

3, BODi
2×DOi

5, RAS×TSSi
3, DOi

6, BODi
2×RAS, BODi×TSSi, 

DOi
2×TSSi, BODi

3, BODi
3×RAS2, DOi

3, TSSi
2×RAS, BODi

3×DOi
2, BODi

3×DOi
5, BODi

4×RAS2, 
BODi

2, BODi
2×TSSi

2
 

Predictors: DOi, TSSi, BODi
3×TSSi

3, BODi
2×DOi

5, DOi
6, BODi

2×RAS, BODi×TSSi, DOi
2×TSSi, 

BODi
3, BODi

3×RAS2, DOi
3, TSSi

2×RAS, BODi
3×DOi

2, BODi
3×DOi

5, BODi
4×RAS2, BODi

2, 
BODi

2×TSSi
2

 

Predictors: BODi
4×RAS2, DOi, TSSi

2×RAS, TSSi, DOi
6, BODi

2×DOi
5, BODi

2, BODi
3×TSSi

3, 
DOi

2×TSSi, BODi
2×RAS, RAS×TSSi

3, BODi×DOi, DOi
3, BODi

3×RAS2, BODi
2×DOi

2, 
BODi×TSSi, BODi

3×DOi
4, DOi

3×BODi, BODi
2×TSSi

2  

Predictors: BODi
4×RAS2, DOi, TSSi

2×RAS, TSSi, DOi
6, BODi

2×DOi
5, BODi

2, BODi
3×TSSi

3, 
DOi

2×TSSi, BODi
2×RAS, RAS×TSSi

3, BODi×DOi, DOi
3, BODi

2×DOi
2, BODi×TSSi, BODi

3×DOi
4, 

DOi
3×BODi, BODi

2×TSSi
2  

Predictors: BODi
4×RAS2, DOi, TSSi

2×RAS, TSSi, DOi
6, BODi

2×DOi
5, BODi

2, BODi
3×TSSi

3, 
DOi

2×TSSi, BODi
2×RAS, BODi×DOi, DOi

3, BODi
2×DOi

2, BODi×TSSi, BODi
3×DOi

4, DOi
3×BODi, 

BODi
2×TSSi

2 

Predictors: BODi
4×RAS2, DOi, TSSi

2×RAS, TSSi, DOi
6, BODi

2×DOi
5, BODi

2, BODi
3×TSSi

3, 
DOi

2×TSSi, BODi
2×RAS, DOi

3, BODi
2×DOi

2, BODi×TSSi, BODi
3×DOi

4, DOi
3×BODi, 

BODi
2×TSSi

2 

Predictors: BODi
4×RAS2, TSSi

2×RAS, TSSi, DOi
6, BODi

2×DOi
5, BODi

2, BODi
3×TSSi

3, 
DOi

2×TSSi, BODi
2×RAS, DOi

3, BODi
2×DOi

2, BODi×TSSi, BODi
3×DOi

4, DOi
3×BODi, 

BODi
2×TSSi

2 

Predictors: BODi
4×RAS2, TSSi

2×RAS, TSSi, DOi
6, BODi

2×DOi
5, BODi

2, BODi
3×TSSi

3, 
DOi

2×TSSi, DOi
3, BODi

2×DOi
2, BODi×TSSi, BODi

3×DOi
4, DOi

3×BODi, BODi
2×TSSi

2 

Predictors: BODi
4×RAS2, TSSi

2×RAS, TSSi, DOi
6, BODi

2×DOi
5, BODi

2, BODi
3×TSSi

3, 
DOi

2×TSSi, DOi
3, BODi

2×DOi
2, BODi×TSSi, BODi

3×DOi
4, BODi

2×TSSi
2 

Dependent Variable: BODe
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The effluent phosphorus, nitrogen, and TSS were found to be significantly correlated 

with effluent WWQI. Conducting the backward regression analysis, considering different 

combinations of the predictors and their interactions, ten models were nominated for 

expressing the target parameter, see Table 3-10. Model 10, containing the least number of 

predictors, provided 69% accuracy. Performing the ANOVA test, it was attained that the 

model was significant regarding the p-value, using the selected threshold of 0.05, and 

also contained the highest F value of 25.6. 

Table 3-10. Model Summary for the Effluent WWQI 

Model R R2 Adjusted 
R2 

Std. Error 
of Estimate 

Sum of 
Squares df Mean 

Square F p-value 

1 a .869 .755 .674 .59 44.9 14 3.2 9.3 .000 
2 b .868 .753 .679 .58 44.8 13 3.4 10.1 .000 
3 c .867 .751 .683 .58 44.7 12 3.7 11.1 .000 
4 d .863 .745 .682 .58 44.3 11 4.0 11.9 .000 
5 e .860 .739 .682 .58 43.9 10 4.4 13.0 .000 
6 f .857 .734 .683 .58 43.7 9 4.8 14.4 .000 
7 g .856 .733 .688 .57 43.6 8 5.4 16.4 .000 
8 h .853 .727 .688 .57 43.2 7 6.2 18.6 .000 
9 i .849 .721 .687 .58 42.9 6 7.1 21.5 .000 
10 j .845 .715 .687 .58 42.5 5 8.5 25.6 .000 
Predictors: TSSe

2×Ne, Pe
3, TSSe

3, Ne
2×Pe, Pe, TSSe

2×Pe, Ne, Pe
2×Ne, TSSe

2, Ne
2×TSSe, Pe×Ne, Pe

2, 
Ne×TSSe, Pe×TSSe 

Predictors: TSSe
2×Ne, Pe

3, TSSe
3, Pe, TSSe

2×Pe, Ne, Pe
2×Ne, TSSe

2, Ne
2×TSSe, Pe×Ne, Pe

2, Ne×TSSe, 
Pe×TSSe 
Predictors: TSSe

2×Ne, TSSe
3, Pe, TSSe

2×Pe, Ne, Pe
2×Ne, TSSe

2, Ne
2×TSSe, Pe×Ne, Pe

2, Ne×TSSe, 
Pe×TSSe 

Predictors: TSSe
3, Pe, TSSe

2×Pe, Ne, Pe
2×Ne, TSSe

2, Ne
2×TSSe, Pe×Ne, Pe

2, Ne×TSSe, Pe×TSSe 

Predictors: TSSe
3, Pe, TSSe

2×Pe, Ne, TSSe
2, Ne

2×TSSe, Pe×Ne, Pe
2, Ne×TSSe, Pe×TSSe 

Predictors: Pe, TSSe
2×Pe, Ne, TSSe

2, Ne
2×TSSe, Pe×Ne, Pe

2, Ne×TSSe, Pe×TSSe 

Predictors: Pe, Ne, TSSe
2, Ne

2×TSSe, Pe×Ne, Pe
2, Ne×TSSe, Pe×TSSe 

Predictors: Pe, Ne, Ne
2×TSSe, Pe×Ne, Pe

2, Ne×TSSe, Pe×TSSe 

Predictors: Pe, Ne, Ne
2×TSSe, Pe

2, Ne×TSSe, Pe×TSSe 

Predictors: Pe, Ne, Pe
2, Ne×TSSe, Pe×TSSe 

Dependent Variable: WWQIe 
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3.3.2.3.3. Model Quality Appraising and Verification 
 

All six derived numerical expressions for the selected influent and effluent quality 

parameters in previous sections were studied for quality identification see Table 3-11. 

The approach was performed in two separate steps. The first step, was evaluating the 

accuracy level of the developed models in term of fitting with the training data for 2010 

and 2015 monitoring program years. The next step was to validate the predictive 

capability of each selected model based on the results from the data monitoring program 

for 2016. The approach consisted of comparing the predicted values versus the measured 

values both for training and testing datasets see Figures 3-4 and 3-5. The coefficient of 

determination (R2), the root mean squared error (RMSE), and the percentage relative 

prediction errors of concentrations (%Rel. error) were used for numerically assessing the 

quality of each model, Eq. 12 and 13. These statistics represented the degree to which the 

models fit the measured concentrations of training data and how accurately they were 

able to estimate the testing data. 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 = �∑ 𝑅𝑅𝑆𝑆𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑓𝑓 𝑅𝑅𝑛𝑛𝑝𝑝𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (12) 

𝑅𝑅𝑛𝑛𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑣𝑣𝑛𝑛 𝐸𝐸𝑛𝑛𝑛𝑛𝑜𝑜𝑛𝑛% = ��
𝑅𝑅𝑆𝑆𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑓𝑓 𝑅𝑅𝑛𝑛𝑝𝑝𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑓𝑓𝑖𝑖

𝑦𝑦𝑖𝑖2
× 100

𝑛𝑛

𝑖𝑖=1

 (13) 

where 

Squared Residual = (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)2 

𝑦𝑦𝑖𝑖 = values of measured parameter 
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𝑦𝑦𝑖𝑖 = values of predicted parameter 

n = number of samples 

Table 3-11. Statistical Predictive Models for the Wastewater Quality Parameters 

Numerical Expression 
R2 % RMSE % Rel. error 
Train 
data 

Train 
data 

Test 
data 

Train 
data 

Test 
data 

𝑊𝑊𝑛𝑛𝑜𝑜𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝 𝑃𝑃ℎ𝑜𝑜𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑛𝑛𝑛𝑛𝑝𝑝 𝑅𝑅𝑜𝑜𝑓𝑓𝑛𝑛𝑓𝑓
= 2.71 + 8.5 × 10−6 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖2 + 3.9
× 10−4 𝑁𝑁𝑖𝑖 × 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 − 1.4
× 10−5 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖 × 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 

87 0.52 1.79 0.89 2.88 

𝑊𝑊𝑛𝑛𝑜𝑜𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝 𝐵𝐵𝐵𝐵𝐷𝐷 𝑅𝑅𝑜𝑜𝑓𝑓𝑛𝑛𝑓𝑓
= 126.95 + 45.93 𝑃𝑃𝑖𝑖 − 20.9 𝑁𝑁𝑖𝑖
+ 0.42 𝑁𝑁𝑖𝑖2 + 0.001 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖2 − 0.16 𝑃𝑃𝑖𝑖
× 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 + 0.03 𝑁𝑁𝑖𝑖 × 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 

83 29.26 85.36 1.53 3.21 

𝑊𝑊𝑛𝑛𝑜𝑜𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑅𝑅𝑜𝑜𝑓𝑓𝑛𝑛𝑓𝑓
= 68.84− 0.057 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 − 0.814 𝑁𝑁𝑖𝑖
+ 4.5 × 10−5 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖2 + 3.5
× 10−5 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖2 + 0.011 𝑁𝑁𝑖𝑖2
− 0.001 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖 × 𝑁𝑁𝑖𝑖 + 0.002 𝑁𝑁𝑖𝑖
× 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 − 0.002 𝑃𝑃𝑖𝑖 × 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖 

97 0.34 1.56 0.07 0.33 

𝐸𝐸𝑜𝑜𝑜𝑜𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝 𝑃𝑃ℎ𝑜𝑜𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑛𝑛𝑛𝑛𝑝𝑝 𝑅𝑅𝑜𝑜𝑓𝑓𝑛𝑛𝑓𝑓
= 1.274− 2.2 𝑅𝑅𝑅𝑅𝑅𝑅 + 2.3
× 10−5 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖2 − 4.3 × 10−5 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖
× 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 − 0.134 𝐷𝐷𝐵𝐵𝑖𝑖2 − 1.09 𝑅𝑅𝑅𝑅𝑅𝑅2
+ 0.004 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖 × 𝐷𝐷𝐵𝐵𝑖𝑖 + 0.002 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖
× 𝑅𝑅𝑅𝑅𝑅𝑅 + 8.2 × 10−8 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖3 × 𝑅𝑅𝑅𝑅𝑅𝑅2
+ 4.5 × 10−11 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖4 + 0.006 𝐷𝐷𝐵𝐵𝑖𝑖4
+ 0.085 𝑅𝑅𝑅𝑅𝑅𝑅4 − 2.4
× 10−6 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖2 × 𝐷𝐷𝐵𝐵𝑖𝑖2 + 4.3
× 10−6 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖2 × 𝑅𝑅𝑅𝑅𝑅𝑅2 − 3.6
× 10−11 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖4 × 𝑅𝑅𝑅𝑅𝑅𝑅 + 3.5
× 10−9 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖2 × 𝐷𝐷𝐵𝐵𝑖𝑖5 − 9
× 10−5 𝐷𝐷𝐵𝐵𝑖𝑖6 − 0.004 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖 × 𝑅𝑅𝑅𝑅𝑅𝑅3 

71 0.32 0.27 9.01 8.34 
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𝐸𝐸𝑜𝑜𝑜𝑜𝑓𝑓𝑛𝑛𝑛𝑛𝑝𝑝 𝐵𝐵𝐵𝐵𝐷𝐷 𝑅𝑅𝑜𝑜𝑓𝑓𝑛𝑛𝑓𝑓
= −0.174 + 0.023 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 + 1.3
× 10−4 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖2 − 2 × 10−4 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖
× 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 + 6.8 × 10−10 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖2 × 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖2
− 1.3 × 10−15 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖3 × 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖3
+ 0.015 𝐷𝐷𝐵𝐵𝑖𝑖3 + 6.2 × 10−6 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖2

× 𝑅𝑅𝑅𝑅𝑅𝑅 + 2.1 × 10−6 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖2 × 𝐷𝐷𝐵𝐵𝑖𝑖2
− 3.5 × 10−4 𝐷𝐷𝐵𝐵𝑖𝑖2 × 𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 + 1.7
× 10−8 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖2 × 𝐷𝐷𝐵𝐵𝑖𝑖5 − 2.7
× 10−10 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖3 × 𝐷𝐷𝐵𝐵𝑖𝑖4 − 5.6
× 10−5 𝐷𝐷𝐵𝐵𝑖𝑖6 − 3.7 × 10−10 𝐵𝐵𝐵𝐵𝐷𝐷𝑖𝑖4
× 𝑅𝑅𝑅𝑅𝑅𝑅2 

82 0.21 0.86 0.88 2.84 

𝐸𝐸𝑜𝑜𝑜𝑜𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑅𝑅𝑜𝑜𝑓𝑓𝑛𝑛𝑓𝑓
= 99.7 + 9 𝑃𝑃𝑒𝑒 − 3.16 𝑁𝑁𝑒𝑒 − 13.25 𝑃𝑃𝑒𝑒2
− 2.1 𝑃𝑃𝑒𝑒 × 𝑇𝑇𝑅𝑅𝑅𝑅𝑒𝑒 + 1.23 𝑁𝑁𝑒𝑒 × 𝑇𝑇𝑅𝑅𝑅𝑅𝑒𝑒 

71 0.55 0.46 0.06 0.05 

 

 

The results confirmed strong accuracy, ranging from 71% to 97%, of the developed 

models in term of fitting with the training dataset. Also, all models showed minimum 

relative prediction errors for the training and testing dataset. The highest relative error of 

8.34% was observed for the effluent phosphorus model in term of fitting with the testing 

dataset. Considering the residual values of this model ranging from -0.67 to 0.34, the 

obtained relative error is significantly negligible compared to the similar modeling efforts 

reported in literature (Kolluri et al. 2015; Platikanov et al. 2014). 
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Figure 3-4. Verification of Predictive Models with Training Dataset (2010 – 2015) 

 

 

 

Figure 3-5. Validation of the Predictive Models with Testing Dataset (2016) 
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3.4. Conclusions 
 

This study used statistical techniques to identify the inherent structure of the wastewater 

physicochemical characteristics from a treatment plant in Louisville, Kentucky. These 

multivariate data analysis efforts involved monitoring the performance of a full-scale 

wastewater treatment plant, assessing the temporal and spatial changes of water quality 

by introducing wastewater quality index (WWQI), discovering the important 

relationships among the monitored parameters through descriptive data analysis, and 

establishing the numerical expressions for predicting some significant quality parameters. 

Developing the WWQI it was observed that almost all monitored effluent streams 

successfully met the established discharge standards, so that the calculated indices were 

in the range of 96.03 and 100. By the means of PCA, five components were extracted 

which accounted for 75.25% of the total dataset variance. The first two components, with 

cumulative loading of 46.53%, explained the raw wastewater quality and quantity 

circulation within the treatment plant. Also, considering six consecutive years’ dataset, 

six predictive models were developed for the influent and effluent phosphorus, BOD, and 

WWQI. All the established models showed high levels of statistical significance in 

addition to admissible accuracy in terms of fitting with the training data parameters, with 

81.8% average accuracy, and validating with the testing dataset, with average relative 

prediction error of 2.9%. 
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3.5. Recommendation 
 

The methodology described in this paper can provide a scientific basis for a robust 

control system on the performance of any treatment plant and also provide a more 

accurate method of environmental management. The methods described in this paper can 

be used to effectively manage water quality monitoring programs while reducing the 

number of quality parameters which must be routinely measured and also controlling the 

quality of sampling efforts and measurements. The proposed procedure can be 

summarized in the following seven steps: 

• Considering the regional discharge standards and the results of the wastewater 

monitoring program, calculate the WWQI for influent and effluent streams using Eqs. 1 

through 6. 

• Categorize the overall flow conditions over the time using Table 3-1 and then, 

evaluate the treatment process effectiveness by comparing the calculated influent and 

effluent indexes. 

• Conduct the principal component analysis for all measured quality and quantity 

variables using Eqs. 7 through 10. 

• Evaluate the overall variation of influent and effluent organic loading, ion 

activities, oxygen demanding, and nutrient loading characteristics considering the 

fluctuation of calculated components’ scores using Eq. 11. 
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• Determine the interrelationship level between the measured data by conducting 

Pearson product correlation analysis. Identify the most highly correlated variables with 

initial indices like BOD, COD, phosphorus, nitrogen, WWQI, etc. 

• Using a multivariate regression technique, develop predictive models for initial 

parameters considering the highly-correlated variables as the predictors. 

• Verify the accuracy of produced models in terms of fitting with the training and 

testing data by using Eqs. 12 and 13. 
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CHAPTER FOUR. AN INTEGRATED APPROACH TO 
TREATMENT OF HIGH STRENGTH ORGANIC 

WASTEWATER BY USING ANAEROBIC ROTATING 
BIOLOGICAL CONTACTOR 

 

4.1. Introduction 
 

Each year, a large amount of high strength industrial wastewater is discharged into 

surface waters, which negatively affects ecosystems and human lives. Controlling these 

high strength wastewaters and mitigating their adverse environmental impacts have been 

challenging. Thus, developing innovative and cost-effective treatment systems is 

essential, especially considering the ever-increasing energy costs and strict pollutant 

removal regulations (Ebrahimi et al. 2016; Mirbagheri et al. 2014). 

Depending on type of the industry, wastewater streams are divided into two major 

categories; inorganic and organic. The organic industrial wastewaters, which are the 

subject of this study, are produced by industries such as breweries, cheese production, 

textile factories, and tanneries. These industries use organic substances for chemical 

reactions. Organic streams contain high amounts of hydrocarbons, solvents, nutrients, 

toxins, and other organic compounds (Javadi et al. 2016), and are generally treated 

through either aerobic or anaerobic biological systems. 

Aerobic systems are suitable for treatment of low strength organic wastewaters (COD 

concentrations less than 1000 mg/L) (Chan et al. 2009). Activated sludge processes are 
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the common approach for treating this type of effluents. However, sludge settleability is a 

prevalent problem, which limits the effectiveness of such processes (Zinatizadeh and 

Ghaytooli 2015). Thus, there is a need to overdesign the aeration and sedimentation units 

to overcome this issue, which can be cost prohibitive. The moving bed bio reactor 

(MBBR) process combines the superiorities of both the activated sludge system and 

biofilm reactor by embodying floating carriers, which provide large surface areas for 

microorganism’s establishment (Zinatizadeh and Ghaytooli 2015). Some significant 

advantages of MBBR systems include: small reactor volume, high solid retention times 

for slow growing organisms, and ease of upgrading the existing facilities (Khan et al. 

2011). Several studies have assessed using MBBR process for treating low organic 

wastewater. Martín-Pascual et al. (2012) observed COD reduction efficiencies of 60% 

under retention time of 15 hours, while Zinatizadeh and Ghaytooli (2015) reported up to 

88% COD removal efficiency under retention time of 12 hours. Chu et al. (2011) used 

synthetic wastewater for a MBBR system and observed (total organic carbon) TOC 

removal performance ranging from 72% - 90% under retention times of 14 – 40 hours. 

For higher organic content wastewaters, the anaerobic systems are usually recommended 

(Chan et al. 2009). The conventional anaerobic techniques include, fluidized bed reactor, 

up-flow anaerobic sludge blanket, biofilm reactor, and anaerobic membrane bioreactor 

(Kheradmand et al. 2010). The anaerobic rotating biological contactor (AnRBC), 

introduced by Tait and Friedman (1980), can achieve high removal efficiencies and 

methane production rates. By grouping suspended and attached growth mechanisms of 

microorganism, the AnRBC offers associated benefits of combining RBC process under 

anaerobic operational condition.  
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Previous studies have indicated that AnRBC process leads to satisfactory treatment of 

high organic content streams (Laquidara et al. 1986; Lu et al. 1995; Lv et al. 2011; 

Noyola et al. 1988; Patel and Madamwar 1997; Teixeira et al. 2010; Yeh et al. 1997). A 

comparative lab-scale study (Abubakkar et al. 2015) was performed on a conventional 

anaerobic digester and a single stage AnRBC. Lower hydrogen partial pressure, greater 

diversity of hydrogenotrophic methanogens, and less effluent COD concentrations were 

concluded for the AnRBC system compared to the conventional digester. Various 

operational parameters such as rotational speed and organic and hydraulic loading rates 

can affect the overall performance of AnRBC systems (Cortez et al. 2008). Yang et.al 

(2007) investigated the effect of disks rotational speed on organic carbon removal of a 

system for treating acetic acid synthetic wastewater. The high removal efficiency of 98% 

was reached under rotational speed of 30 rpm for an organic loading rate of 2.69 

kg/m3/d. Another study performed on a pilot plant, reported up to 80% COD removal 

efficiencies under volumetric loading rate of 2 kg/m3/d for treating winery wastewater 

(Arnaud 2009). Additional benefits of AnRBC processes include high biomass 

concentration, low hydraulic retention time, small energy consumption, reduction in 

sludge production, and high methane production (Teixeira and Oliveira 2000; Hassard et 

al. 2015). As an example, implementation of an AnRBC reactor within a small-scale 

combined heat and power system was found to be economically justified due to revenues 

from biogas production (Renda et al. 2016). 

When dealing with wastewaters containing high degrees of organic carbons, using 

anaerobic treatment alone may not always result in effluents that comply with common 

discharge regulations. This shortcoming is generally attributed to insufficient 
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microorganisms’ growth rates and poor settling rates of anaerobic processes (Heijnen et 

al. 1991). Combining anaerobic systems with post treatment aerobic processes is 

recommended for improving the overall organic matter removal (Cervantes et al. 2006; 

Cortez et al. 2011; Hassard et al. 2015). Thus, treatment plants are commonly equipped 

with hybrid systems, consisting of an anaerobic reactor followed by an aerobic process, 

for treating high strength organic wastewaters (Moletta 2005).  

Various combinations of aerobic and anaerobic systems have been studied for treating 

high organic wastewaters (Ahn et al. 2007; Abeling and Seyfried 1992; Zhou et al. 2006). 

However, a few have assessed the feasibility of using AnRBC as the main anaerobic 

reactor within a combined treatment system. Watanabe et al. (1988) investigated the 

effect of retention times on performance of AnRBC reactor combined with (dissolved air 

flotation) DAF unit, for treating alcoholic distillery wastewater. The removal efficiencies 

up to 90% were achieved under retention time of two hours and influent TOC of 2500 

mg/L. Also, Lo and Liao (1986) reported total COD removal efficiency up to 98% by 

grouping AnRBC with sequencing batch reactor for dairy manure treatment.  

A combined system that utilizes AnRBC and MBBR processes is an innovative 

alternative for treatment of high strength organic wastewater, commonly generated from 

industries such as chlorophenolic manufacturing, synthetic textile production, and cheese 

production. Several operational parameters can affect the performance of the proposed 

combined system. This study investigates specific parameters, including hydraulic 

retention time (HRT), organic loading rate (OLR), and disk rotational speed, through a 

robust systematic analysis. Additionally, another objective is to determine biokinetic 

coefficients for the AnRBC process from common predictive models. The findings from 
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this research can support selection of operational parameters for large-scale AnRBC 

systems. Also, the results may be used for designing AnRBC-based combined treatment 

systems for treating high organic industrial streams. 

 

4.2. Materials and methods 
 

4.2.1. Combined System Design 
 

This study was conducted on a combined anaerobic-aerobic biological pilot plant under 

continuous flow condition. The experimental studies were conducted at the 

environmental engineering laboratory of the K.N.Toosi University of Technology, 

Tehran, Iran. The treatment process involved three distinct zones: AnRBC, MBBR, and 

settling tank. Initially, by using a peristaltic pump, the wastewater flowed to the AnRBC 

reactor. During the start-up, the sludge from the anaerobic digester of a municipal 

wastewater treatment plant was added into the reactor, to develop a biofilm consisting of 

both acidogenic and methanogenic bacteria. Once equilibrium condition was reached, the 

effluent of anaerobic reactor was fed into the MBBR bioreactor, where the residual 

organic compound was degraded through further aeration and contact with the biofilms 

media. Finally, the effluent from the aerobic reactor passed through the settling tank. 

The AnRBC stage consisted of four fully immersed bio-disks and was constructed of 

Plexiglas acrylic sheets. A layer of polyurethane foam (PUF) was attached to both sides 

of each bio-disk. Having high porosity and specific surface area, the PUF serves as an 

appropriate media to facilitate both microorganism’s growth and organic matter 

biodegradation (Yang et al. 2007). The disks were connected through a stainless-steel 
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shaft, which was supported at both ends and rotated parallel to the direction of flow. The 

reactor was fully covered by Plexiglas acrylic sheets and sealed to provide anaerobic 

conditions. The produced biogas samples were collected from the top of the reactor. To 

ensure appropriate condition for the activity and growth of mesophilic bacteria, the 

reactor temperature was kept at 34oC. The water level inside the tank was controlled by a 

dynamic head tube resembling a vented inverted siphon on the effluent line. Detailed 

dimensions and specifications describing the anaerobic reactor are included in Table 4-1.  

Table 4-1. Description of AnRBC Reactor 

Component Value 

Effective volume (L) 46.5 

Number of discs 4 

Thickness of PUF-discs (cm) 4 

Diameter of discs (cm) 25 

Spacing between discs (cm) 2 

Total surface area of discs (m2) 0.393 

Disk submergence (%) 100 

 

The MBBR reactor consisted of a 12-liter tank fabricated from Plexiglas acrylic sheets. 

The bioreactor was packed with carrier Kaldnes-2 with a volume fraction of 50%. The 

carrier was made of high density polyethylene which provided a specific biofilm growth 

area of 370 m2/m3. Air diffusers were installed at the bottom of the reactor for aeration to 

ensure the movement and circulation of biofilm support carriers. The dissolved oxygen 

(DO) level inside the reactor was adjusted by using a gas flow meter to control the 

airflow. The MBBR bioreactor was operated under room temperature of 25 ± 2°C.  
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The cone-shaped settling tank had a working volume of 10 liters and a surface area of 

740 cm2. This stage worked to separate the mixture of new cells and old cells (sludge) 

from the receiving stream. The remaining suspended biomass were settled out and 

removed subsequently. 

 

4.2.2. Synthetic Wastewater 
 

The synthetic wastewater was prepared from tap water with added glucose (1400 mg/L), 

meat extract (350 mg/L), di-potassium hydrogen phosphate (470 mg/L), ferric chloride 

(75 mg/L), ammonium chloride (250 mg/ L), magnesium chloride hexahydrate (100 

mg/L), and potassium dihydrogen phosphate (75 mg/L), to simulate the desirable level of 

organic strength. The concentration of each chemical ingredient was proportionally 

adjusted to achieve the target COD concentration in the influent. The general 

characteristics of the influent wastewater are presented in Table 4-2. 

 

Table 4-2. Chemical characteristics of the influent wastewater 

Parameter Value 

Chemical Oxygen Demand (COD) 3500 (mg/L) – 20000 (mg/L) 

Total Dissolved Solids (TDS) 267 (mg/L) - 1941 (mg/L) 

Nitrogen (N) 25 (mg/L) – 100 (mg/L) 

Phosphorus (P) 14 (mg/L) – 57 (mg/L) 

pH 7.1 – 8.2 
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4.2.3. Process Description 
 

To investigate and identify the most effective operational conditions for the combined 

anaerobic-aerobic system, ten different experiments were conducted. The individual 

experiments used varied operational parameters, including HRT, disks rotational speed, 

and OLR for the anaerobic reactor. These operational parameters are known to 

significantly influence the overall removal efficiency and methane production of the 

reactor. For the aerobic bioreactor, HRT and OLR were used to test the reactor’s 

performance. Table 4-3 presents the applied operational conditions. All the quality 

parameters were measured in accordance with the analytical procedures in the Standard 

Methods for the Examination of Water and Wastewater (APHA 2012). 

 

Table 4-3. Applied operational conditions for AnRBC and MBBR reactors 

Parameter AnRBC MBBR 

HRT (day) 1 - 4 0.875 – 3 

Disks Rotational Speed (rpm) 5 - 10 - 

OLR (kg COD/m3/d) 1.17 – 6.67 0.66 – 5.17 

SLR (kg COD/m2/d) 0.14 – 0.83 - 

Influent COD Concentration (mg/L) 3500 - 20000 1581 – 10336 

 

During the start-up, the anaerobic reactor was inoculated with acclimatized sludge and 

operated in batch mode for a week. The mixed liquor was removed after seven days and 

the reactor was refilled with the synthesized substrate. Then, the combined system 

continuously operated throughout the study. Steady-state condition was assumed for each 
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individual experience, once the effluent COD concentrations and methane production 

rates varied by less than ±5% within period of one week as the mean cell residence time. 

Following the establishment of steady-state conditions, each individual experiment was 

conducted for a duration of four days. Sampling was carried out during the total duration 

of each experiment. The collected samples were tested for COD concentration and 

methane rate, and their mean values were used in the analysis. 

 

4.2.4. Anaerobic Biokinetic Coefficients 
 

Biokinetic coefficients are usually used in process modeling to control and optimize the 

performance of the treatment processes. Biokinetic coefficients especially have 

significant importance in industrial anaerobic reactor designs. Thus, the results of kinetic 

analyses obtained from experimental studies, can be used for estimating treatment 

efficiencies of full-scale reactors under the same operational conditions. Additionally, 

modeling efforts can serve as an optimization tool to accomplish the best design and 

operation for full-scale AnRBC systems. Different kinetic models have been developed 

for substrate removal in continuously operated anaerobic bioprocess systems. The 

modified Stover-Kincannon and Grau second order models are the two most widely used 

mathematical models for describing the kinetic constants, as well as the organic matter 

removal. Thus, they were selected for this study. 
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4.2.4.1. The modified Stover-Kincannon model 
 

Considering the monomolecular kinetics of biodisks, the Stover–Kincannon model 

estimates the consumption rate of substrate as a function of substrate loading rate at 

steady state (Padilla-Gasca and López 2010; Stover and Kincannon 1982). This model 

proposes that the influent organic loading rate highly affects the rate of substrate removal. 

The original model for the rotating biological reactor is: 

dS
dt

=
Q(S0 − Se)

V
=

Umax(QS0
A )

KB + (QS0
A )

                                                    (1) 

where: 

dS/dt = substrate removal rate [mg/L/d] 

Q = flow rate [L/day] 

V = reactor liquid volume [L] 

So = influent substrate concentrations [mg/L] 

Se = effluent substrate concentrations [mg/L]  

A = total disc surface area on which biomass concentration is immobilized [m2] 

Umax = maximum substrate removal rate [mg/L/d] 

KB = saturation value constant [mg/L/day] 

The suspended biomass concentration is assumed to be negligible compared with that of 

the attached biomass. A simple modification of the original Stover Kincannon model is 



 

78 
 

 

the introduction of total organic loading rate, Lo = QSo/V, instead of QSo/A (Yu et al. 

1998). Further linearization of Equation (1) gives the following relationship: 

dS
dt

=
HRT

(S0 − Se)
=

KB

Umax
×

HRT
S0

+
1

Umax
                                                       (2) 

The equation can then be solved for either the effluent substrate concentration or the 

required volume of the reactor by substituting kinetic constants as follows: 

Se = S0 −
UmaxS0

KB + � S0
HRT�

                                                                          (3) 

V =
QS0

�UmaxS0
S0 − Se

� − KB

                                                                                   (4) 

 
4.2.4.2. Grau second-order substrate removal model 
 

The general equation of the Grau kinetic model (Grau et al. 1975) is: 

−
dS
dt

= KS × X × �
S

S0
�
2

                                                               (5) 

Integration and then linearization of the equation yield to: 

S0 × HRT
S0 − Se

= HRT −
S0

KS × X
                                                          (6) 

Since the second term at the right side of equation 6 is a constant, the following equation 

may be derived: 

S0 × HRT
S0 − Se

= a + b × HRT                                                            (7) 
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The term (S0-S)/S0 expresses the substrate removal efficiency and is symbolized as E. 

The terms “a” and “b” are constant coefficients. Thus, the equation can be written as: 

HRT
E

= a + b × HRT                                                                   (8) 

 

4.3. Result and discussion 
 

4.3.1. Anaerobic Reactor 
 

To investigate the effectiveness of key operational conditions, the experiments were 

conducted in three different steps: retention time testing, rotational speed testing, and 

organic load testing. In the first step, different HRTs were applied under fixed rotational 

speed and OLR. In the next step, considering the established HRT from the previous step, 

the effect of disk rotational speed on the reactor performance was investigated. The third 

step evaluated the maximum operating capacity of the AnRBC reactor through a stepwise 

increase of OLR under established conditions from pervious steps. Maximum COD 

removal efficiency and methane production were considered as main criteria to identify 

the most appropriate operational conditions in all three steps. 

4.3.1.1. Effect of Hydraulic Retention Time (AnRBC) 
 

The effect of four different applied HRTs (1, 2, 3, and 4 days) on the performance of 

AnRBC reactor was investigated, see Fig. 4-1. For all HRTs, the feeding strength and 

rotational speed were kept constant at 7000 mg COD/L and 5 rpm, respectively. The 

applied surface loading rate (SLR) for the conducted experiments was in the range of 

0.21 to 0.83 kg COD/m2/d.  The COD reduction, which characterized the reactor’s 
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biodegradation efficiency, was found to be approximately 42% at HRT of 1 day. The 

removal efficiency reached 72% at HRT of 3 days. Increasing the contact time between 

substrate and microorganism under a suitable HRT can increase the quantity of 

methanogens immobilized on the polyurethane foam media and subsequently higher 

removal efficiency (Chan et al. 2009). Further increase of HRT to 4 days resulted in 

negligible (~2.5%) improvement of removal performance. 

The methane production was 27.41 L/d at 1-day HRT and increased with HRT. 

Maximum methane production, 63.09 L/d, was obtained when the reactor was operated 

under HRT of 3 days. Further increase of HRT decreased the rate of produced methane. 

However, an increase in methane gas production was expected due to the increase of 

removal efficiency. This decline is possibly due to unfavorable laboratory conditions, 

such as leaks within the gas collection setup. 

 

Figure 4-1. The effect of HRT on COD removal efficiency and produced methane in 
the anaerobic reactor 
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4.3.1.2. Effect of Disk Rotational Speed (AnRBC) 
 

Following the previous step, the effect of applied rotational speed on reactor’s 

performance was evaluated by fixing HRT and feeding strength at 3 days and 7000 mg 

COD/L, respectively, which is corresponded to the SLR of 0.28 kg COD/m2/d, see Fig. 

4-2. The disk rotational speed, which is a measure for hydraulic conditions, influences the 

biofilm activity and subsequently, overall performance of the system (Banerjee 1997). 

Different rotational speeds used in this step included 5, 7, and 10 rpm. Increasing the 

rotational speed from 5 rpm to 7 rpm resulted in improvement of reactor’s efficiency. 

This can be attributed to better flow mixing and higher contact ratio between substrate 

and microorganism (Yang et al. 2007). Approximately 76% COD removal was achieved 

at rotational speed of 7 rpm. However, further increase of rotational speed to 10 rpm 

decreased the treatment performance, which is attributed to increase of the fluid shear 

stress over the mass transfer (Yang et al. 2007).  

Maximum methane production of 71.28 L/d was observed under rotational speed of 7 

rpm. Generally, increasing the rotational speed can improve the mixing quality level. On 

the other hand, over speeding may lead to desquamation of the biofilm layer from the 

media (Yang et al. 2007). 
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Figure 4-2. The effect of disk rotational speed on COD removal efficiency and 
produced methane in the anaerobic reactor 

 

4.3.1.3. Effect of Organic Loading Rate (AnRBC) 
 

Subsequent experiments worked to ascertain the effect of OLR on performance capacity 

of the AnRBC reactor. Five different rates were applied at HRT of 3 days and rotational 

speed of 7 rpm, see Fig. 4-3. The loading rates included 1.17, 2.33, 3.33, 5, and 6.67 kg 

COD/m3/d based on 3500, 7000, 10000, 15000, and 20000 mg/L influent COD 

concentrations, respectively. For all conducted experiments, the SLR fell in the range of 

0.14 to 0.79 kg COD/m2/d. Initially, by increasing OLR and subsequently available 

biodegradable organic matter, the removal efficiency increased and reached its maximum 

value. Further increase of OLR decreased the removal efficiency. The observed decline 

may be attributed to organic overloading and unbalanced reactions in the reactor (Metcalf 

and Eddy 2003). The maximum removal performance of 81% was observed under OLR 
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of 3.33 kg COD/m3/d, which was the resultant of well-developed bacteria biofilm in the 

reactor. 

 

Figure 4-3. The effect of OLR on COD removal efficiency and produced methane in 
the anaerobic reactor 

 

The rate of produced methane increased from approximately 20.97 L/d to 116.60 L/d by 

increasing OLR from 1.17 kg COD/m3/d to 3.33 kg COD/m3/d. The methane production 

declined following the decrease of COD removal rate at higher OLRs. Thus, it can be 

inferred that under higher loading rates, the methanogenic activity was unable to proceed 

to completion. 
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4.3.1.4. Biokinetic Coefficients 
 

The modified Stover–Kincannon model was applied to the experimental results obtained 

from the AnRBC bioreactor. The maximum utilization rate (Umax) and saturation value 

constant (KB) were derived from the intercept and slope of the straight line from equation 

3, see Fig. 4-4. Umax and KB were determined as 7.77 g/L/d and 8.57 g/L/d with 

coefficient of determination of 0.93. The model suggested that the higher maximum 

utilization rates increase the reactor efficiency (Pandian et al. 2011). 

 

Figure 4-4. Determination of kinetic constants for modified Stover-Kicannon model 

 

As for the Grau second-order substrate removal model, the kinetic coefficient values, a 

and b, were obtained from the intercept and slope of the straight line from the equation 8, 

see Fig. 4-5. The calculated values for constants a and b were equal to 1.23 L/d and 1.01, 

respectively, with coefficient of determination of 0.99. 
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Figure 4-5. Determination of kinetic constants for Grau second-order substrate 
removal model 

 

4.3.1.4.1. Prediction and validation 
 

To evaluate the validity of biokinetic coefficients, which were obtained from developing 

the modified Stover–Kincannon and the Grau second-order substrate removal models, the 

predicting capability of each model was investigated. The approach was performed by 

comparing the experimental effluent COD values with the predicted values resulted from 

the two developed models, see Fig. 4-6.  The coefficient of determination (R2), the root 

mean squared error (RMSE), and the percentage relative prediction error (%Rel. error), 

were used to assess the quality of each model, see Table 4-4. These statistics represented 

the fitness of the models and their accuracy for estimation of COD concentrations. 
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Figure 4-6. The experimental and predicted COD concentrations from Stover-
Kincannon and Grau second-order models 

 

 

Table 4-4. Comparison of Stover-Kincannon and Grau second-order models 

Referenced 
Method Numerical Expression Adjusted 

R2 % RMSE % Rel. 
Error 

Stover-Kincannon Se = S0 −
7.77 × S0

8.57 + ( S0
HRT)

 93 680.5 1.6 

Grau second-order Se = S0 −
S0  × HRT

1.23 + 1.01 ×  HRT
 86 1504.6 3.5 

 

The results confirmed higher fitness (Adjusted R2 = 93%) of predicted values from the 

modified Stover–Kincannon model with the testing dataset, compared to those of the 

Grau second-order model. Also, this model showed lower relative prediction error of 

1.6% compared to that from the Grau second-order model. Since the Stover-Kincannon 
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model exhibited higher predicting capability, the obtained biokinetic coefficients from 

this model are recommended for design of AnRBC processes. 

 

4.3.2. Aerobic bioreactor 
 

Although high organic removal efficiencies were obtained from the anaerobic reactor, the 

effluent would still require further treatment before final discharge. Thus, for each 

individual experiment, the effluent from the anaerobic reactor were fed to the MBBR 

reactor. The experiments in MBBR stage examined the effects of HRT and OLR to 

evaluate the maximum performance of the combined system. 

 

4.3.2.1. Effect of Hydraulic Retention Time (MBBR) 
 

To evaluate the effect of HRT, five different rates (0.875, 1, 1.5, 2, and 3 days) were 

applied to the MBBR reactor, see Fig. 4-7. In all experiments the influent COD 

concentrations ranged from 1732 to 1975 mg/L. Increasing HRT from 21 hours to 48 

hours led to significant raise of removal efficiencies (35% to 88.5%). Further increase of 

HRT did not result in any further improvements of removal efficiency. Overall, the 

results indicated that HRT of 2 days is the most suitable retention time for the aerobic 

reactor and led to highest performance of the combined system. 
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Figure 4-7. The effect of HRT on COD removal efficiency in the aerobic reactor 

 

4.3.2.2. Effect of Organic Loading Rate (MBBR) 
 

The aerobic reactor was tested for five different OLRs under constant HRT of 2 days, see 

Fig. 4-8. The removal efficiency was improved by increasing OLR from 1.16 kg 

COD/m3/d to 2.82 kg COD/m3/d, which corresponded to 2328 mg/L and 5650 mg/L 

influent COD concentrations, respectively. The maximum removal efficiency of 94% was 

achieved at OLR of 2.82 kg COD/m3/d. Further increase of OLR declined the removal 

performance. 
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Figure 4-8. The effect of OLR on COD removal efficiency in the aerobic reactor 

 

4.3.3. Combined System 
 

A synopsis of the conducted experiments under different operational conditions for 

anaerobic reactor, aerobic reactor, and the combined system, is presented in Table 4-5. 

The highest performance of the combined system was achieved under HRT of 5 days, 

disk rotational speed of 7 rpm, and OLR of 2 kg COD/m3/d. Under these recommended 

conditions, the combined system achieved the highest removal efficiency of 97.85%. 

Additionally, the identified optimized operational conditions led to maximum methane 

production rate of 116.60 L/d, which corresponds to methane yield of 0.309 L CH4/g 

COD. 
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Table 4-5. Performance of the system under optimal operational conditions 

 

Operational Condition Performance 

HRT 
(day) 

Disks Rotational 
Speed (rpm) 

OLR  
(kg COD/m3/d) 

SLR  
(kg COD/m2/d) 

Removal 
Efficiency 
(%) 

Produced 
Methane 
(L/d) 

AnRBC 
Reactor 3 7 3.33 0.39 81.5 116.60 

MBBR 
Reactor  2 - 2.82 - 94 - 

Combined 
System 5 7 2 0.39 97.85 116.60 

 

Fig. 4-9 presents the boxplots of the observed COD concentrations for all conducted 

experiments. To investigate if the achieved COD reduction by using the combined system 

was statistically significant, a paired t-test with a criterion of 95% confidence level was 

conducted. The results indicated significant difference of COD contents between AnRBC 

and MBBR effluents (p-value = 0.006 < 0.05). This confirms that under all operational 

conditions, using the combined system led to higher removal rates compared to 

individual AnRBC reactor. The proposed conditions (Table 4-5) achieved the lowest 

level of COD content to approximately 200 mg/L, see Fig. 4-10. 
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Figure 4-9. COD concentrations from all conducted experiments. The box illustrates 
the 25th percentile, median, and 75th percentile. The top and bottom whiskers 

represent the highest and lowest values 

 

 

Figure 4-10. COD concentrations under selected optimal operational conditions 
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4.4. Conclusion 
 

This chapter examined the novel application of a combined system for treatment of high 

strength industrial wastewater. By conducting individual experiments and through a 

stepwise analysis, the preffered operational conditions were identified, which led to 

overall COD removal efficiency of 97.85% and methane gas production of 116.60 L/day. 

Additionally, analysis of anaerobic biokinetic coefficients showed that using the Stover-

Kincannon model had higher prediction accuracy over Grau second-order model. 

Therefore, the Stover-Kincannon model is suggested for designing and estimating the 

performance of full size AnRBC reactors. 

Finally, it was concluded that using the proposed combined system is highly preferable 

compared to individual AnRBC. The resultant novel integrated system can provide both 

maximum removal efficiency and methane production potential. Thus, this system is 

recommended for treatment of high strength industrial wastewater. 
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CHAPTER FIVE. AN OPTIMIZED BIOLOGICAL 
APPROACH FOR TREATMENT OF PETROLEUM 

REFINERY WASTEWATER 
 

5.1. Introduction 
 

Petrochemical industries and petroleum refineries generate significant amounts of 

wastewater as crude oil is refined. This wastewater contains a complex set of oxygen-

demanding materials and priority pollutants which, if untreated, would be released into 

the natural environment (Tyagi et al. 1993). Common wastewater pre-treatment methods 

employed by the industry include coagulation flocculation, adsorption, membrane, and 

chemical oxidation (Diya'uddeen et al. 2011). Generally, it is challenging to remove 

small suspended oil particles and dissolved elements by sole use of physical or chemical 

technologies. In this case, the processes that rely on the ability of microorganisms to use 

wastewater components for their metabolisms are found to be more cost-effective and 

sustainable compared to physical and chemical oxidation processes (Vendramel et al. 

2015). 

The activated sludge biological processes are often employed to remove pollutants from 

the waste stream as a secondary treatment stage. (Shokrollahzadeh et al. 2008). 

Biological treatment of oily wastewater can be cost-effective, environmental friendly, and 

more compatible with existing plant facilities compared to other techniques (Fakhru’l-

Razi et al. 2009). However, these systems are typically associated with numerous 
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operational challenges, including poor sludge settling properties, extra-cellular polymers 

generation, biological inhibition, prolonged sludge retention time, and extensive period of 

acclimation or start-up (Singh and Desai 1987; Tyagi et al. 1993).  

Excess sludge production, which is a byproduct of biological processes, raises a serious 

issue during the wastewater treatment. Treatment and disposal of considerably high 

produced sludge from the biological processes may even account for almost 60% of total 

associated costs and energy demand of the treatment plants (Wei et al. 2003). Thus, the 

optimal design of biological treatment systems is essential to reduce the treatment costs 

of refinery wastewater. A significant number of previous researchers have worked to 

assess the improvements in pollutant removal efficiency for treatment of petrochemical 

as well as other industrial wastewater (El-Naas et al. 2014; Gasim et al. 2014; Lu et al. 

2013; Mardani et al. 2011; Mirbagheri et al. 2014; Saranya et al. 2014; Vasquez Sarria et 

al. 2011; Vendramel et al. 2015). However, very few have sought an optimal condition 

for both maximizing the process removal efficiency and minimizing the amount of 

produced sludge and with considering a limited range of operational conditions 

(Mirbagheri et al. 2014; Vasquez Sarria et al. 2011). 

To overcome the aforementioned shortcoming of previous research projects, this study 

identifies the conditions that lead to optimal performance of contact stabilization systems 

treating petroleum refinery wastewater. Specifically, the study focuses on conditions that 

maximize the removal performance and minimize sludge production of the system. To 

achieve this objective, a series of experiments were conducted on a pilot plant. The 

system was tested under a wide range of operational conditions and the results were 
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studied through a systematic analysis. The findings from this work serve as a guide for 

secondary treatment of wastewater from petroleum refineries. 

 

5.2. Material and methods 
 

5.2.1. Contact-Stabilization Process  
 

The development of contact-stabilization process was based on the idea of increasing the 

capacity and improving the performance of activated sludge biological wastewater 

treatment systems (Al-Mutairi et al. 2003). In this method the raw wastewater is aerated 

and mixed with the bacteria, which is in contact with dissolved and insoluble organic 

matters, in the contact basin. During this bio-oxidation process, the dissolved organic 

matters are used by bacterial cells and the insoluble organic matters are adsorbed to 

external skin cells (Metcalf et al. 1979). Some of the biological solid matters is settled in 

the secondary settling basin and subsequently wasted, while the remaining is returned to 

the stabilization basin for further bio-regeneration and stabilizing the organic matters 

received from the contact basin. It has been ascertained that competition between floc-

forming and filamentous microorganism is strongly affected by the organic concentration 

during mixing of influent and return activated sludge (Hao et al. 1996). Thus, through the 

optimization of return sludge to the contact tank, the high adsorption capacity of activated 

sludge is fully utilized and the volume of daily excess production from the system is 

decreased. 
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5.2.2. Pilot Plant Description 
 

A pilot-scale biological treatment plant was constructed and examined at the laboratory 

department of the Tehran petroleum refinery, Tehran, Iran. The treatment process 

involved three distinct zones: contact, stabilization, and settling tanks, see Figure 5-1. 

Detailed dimensions and volumes describing the pilot plant are presented in Table 5-1. 

 

 

Figure 5-1. The Process of the Contact Stabilization Pilot Plant 

 

 

Table 5-1. Description of Pilot Plant 

Unit Length × Width × Height (cm) Total Volume (L) Effective Volume (L) 

Contact tank 40 × 60 × 200 480 456 

Stabilization tank 100 × 60 × 200 1200 1140 

Settling tank 150 × 100 × 130 1950 1755 
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To prevent short-circuiting and turbulent flow in the basins, 50 cm × 60 cm partition 

sheets were installed at the inlet and outlet of the contact and stabilization tanks. An 

equalization basin, equipped with a diffuser and an air flotation unit, was installed up 

gradient of the pilot plant. Stone air diffusers were fixed at 10 cm above the bottom of the 

reactors. The air flow in the reactor ensured a mixing intensity, which simulated the 

mixing characteristic in an activated sludge process. The sludge was recycled from the 

settler and then returned into the stabilization tank by using a 3500 L/hr pump. The pilot 

plant’s operation (start and termination) was controlled by programming a logic control. 

A steady-state condition was assumed, when fairly constant biomass growth and 

permeate chemical oxygen demand (COD) were attained. 

 

5.2.3. Wastewater 
 

The feed wastewater for the pilot plant was obtained from the biological stage influent of 

Tehran’s petroleum refinery treatment plant. The general characteristics of the influent 

wastewater are presented in Table 5-2. 

 

Table 5-2. Influent Chemical Characteristics 

Parameter Value 

Biological Oxygen Demand (BOD)  229 (mg/L) – 261 (mg/L) 

Chemical Oxygen Demand (COD) 377 (mg/L) – 422 (mg/L) 

Mixed Liquor Suspended Solids (MLSS) 1865 (mg/L) – 2389 (mg/L) 

Mixed Liquor Volatile Suspended Solids (MLVSS) 1462 (mg/L) – 1986 (mg/L) 

pH 7.1 – 7.9 
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5.2.4. Operational Conditions 
 

To achieve optimum treatment performance, a variety of operational parameters need to 

be adjusted. In this study, the mixed liquor dissolved oxygen (DO) and the percentage of 

return sludge (RS) from the settling tank to the stabilization tank, were selected as key 

operational parameters affecting the total sludge production and overall removal 

efficiency of the system. The dissolved oxygen in the contact tank affects the physical, 

chemical and biological potential synergic functions of microorganisms in the mixed 

liquor to adsorb pollutants (Liu et al. 2009). The return sludge parameter impacts the 

growth rate of organisms from the stabilization tank to maintain a specific level of food 

to microorganism ratio in the contact tank (Greene and DeLorenzo 2005). Thus, it was 

hypothesized that minimum sludge production and maximum performance efficiency of 

the system would be achieved by changing the return sludge rate and oxygen supply of 

the aeration basin. 

The pilot plant was operated for a period of six months. The operation was conducted at 

fixed inflow rate of 700 L/hr and under different DO concentrations and RS percentage 

values. In start-up, the system was maintained at a constant hydraulic retention time 

(HRT) of 0.65 hr and 5.43 hr for contact and stabilization tanks, respectively. Each 

individual experiment was conducted for four days and a minimum time of one week was 

selected for the mean cell residence time (MCRT) between subsequent test series, to 

ensure steady state conditions. The experiments were conducted under four different 

aeration phases and eight different RS percentages (n=32), see Table 5-3. 
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Table 5-3. Characterization of Applied Operational Condition for 32 Defined 
Experiments 

Phase Dissolved Oxygen (mg O2/L) Return Sludge (%) Hydraulic Retention Time 
(hour) 

1 0.52 

30, 50, 70, 100, 120, 
140, 160, and 180% 

5.43, 3.26, 2.33, 1.63, 1.36, 
1.16, 1.02, and 0.90 

2 1.94 

3 3.70 

4 5.20 

 

 

5.2.5. Sampling and Laboratory Testing 
 

Samples were collected two times per day from the influent wastewater, reactor, and 

effluent flow. The collected samples were analyzed for various physical and chemical 

parameters in accordance with the Standard Methods for the Examination of Water and 

Wastewater (Way 2012). The temperature was kept between 18OC and 24OC during the 

operation and sampling periods. 

 

5.3. Results and discussion 
 
The data collected during operation of the pilot plant were assessed in a variety of 

capacities to identify optimal performance operations with respect to maximizing the 

removal efficiency and minimizing sludge production of the system. First, the biokinetic 

coefficients for the four experimental phases were examined and compared to established 

acceptable ranges. Second, the aeration phase associated with optimal removal 

efficiencies was identified. And third, suitable RS percentages were determined by 
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examining both the removal efficiencies and the amount of produced sludge in the 

selected aeration phase. 

Concentrations of selected parameters were measured for each individual experiment in 

all phases of the study. The results of these measurements for the pilot plant’s effluent 

and the mixed liquor are presented in Tables 5-4 and 5-5, respectively. 

 

Table 5-4. Effluent Parameters from the Contact Stabilization Pilot Plant 

Phase BOD5 (mg/l) COD (mg/l) pH 
1 117 - 138 180 - 201 

7.1 – 7.8 
2 65 - 100 102 – 145 
3 62 - 95 82 - 112 
4 56 - 75 78 - 89 

 

 

Table 5-5. Mixed Liquor Characteristics in the Contact and the Stabilization Tanks 

Phase SRT (days) 
Contact Tank Stabilization Tank 

MLSS (mg/l) MLVSS (mg/l) MLSS (mg/l) MLVSS 
(mg/l) 

1 3.29 – 6.25 5187 - 10221 4335 - 9097 8344 - 14901 7214 - 13045 
2 4.1 – 8.75 5262 - 11816 4341 - 9080 9142 - 15515 8024 - 13050 
3 6.46 – 9.18 4229 - 11844 3167 - 10365 7249 - 17369 5872 - 15011 
4 8.2 – 15.13 5001 - 14385 3813 - 12597 8777 - 19895 7018 - 18711 
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5.3.1. Biokinetic Coefficients 
 

The Monod model is commonly used to quantify utilization of the growth limiting 

substrate against microorganisms’ growth in activated sludge processes (Equations 1 and 

2). The biokinetic coefficients within this model explore the specific relationships 

between biomass yield and biomass lost. The common ranges of these coefficients in an 

activated sludge system are presented in Table 5-6 (Al-Malack 2006). 

1/SRT = YU – Kd = Y(S0 – S)/(θX) - Kd                                       (1) 

(θX)/(S0 – S) = Ks/(KS) + 1/k = 1/U                                               (2) 

where: 

SRT = Solid Retention Time, [Day] 

Y = Maximum cell yield, [mg VSS/mg COD] 

U = Substrate utilization rate, [mg COD/mg VSS.day] 

Kd = Endogenous decay coefficient, [day -1] 

S = Effluent substrate concentration, [mg COD/L] 

S0 = Influent substrate concentration, [mg COD/L]  

θ = Hydraulic retention time, [day] 

X = Biomass concentration, [mg VSS/L] 

k= Maximum rate of substrate utilization per unit mass of microorganisms [day -1] 

Ks = Half velocity constant [mg COD/L] 
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Table 5-6. Typical Values of Biokinetic Coefficients for Activated Sludge Systems 

Biokinetic Coefficient Typical Range 

Y (mg VSS/mg COD) 0.2 - 0.5  

Kd (1/day) 0.03 - 0.07  

k (1/day) 2 - 8  

Ks (mg COD/L) 40 - 120  

 

The biokinetic coefficients for each experimental phase are shown in figures 5-2 and 5-3, 

and summarized in Table 5-7. The Y parameter represents the biomass yield, which 

indicates how biomass is produced against the utilized substrate. This parameter, which 

plays a major role during the design of a treatment facility, provides an estimate of the 

sludge produced through the treatment process (Metcalf et al. 1979). The higher values of 

Y indicate higher sludge productions and therefore, require an increase in size of the 

sludge handling facility. It was observed that after increasing aeration, the parameter Y 

decreased. The estimated values of Y coefficient were out of the typical range for phases 

one and two (DO concentrations of 0.52 mg/L and 1.94 mg/L). Inspection of Figure 4-2 

also shows that parameter Y for phases three and four (DO concentrations of 3.7 mg/L 

and 5.2 mg/L) was within the acceptable range. This indicates that by applying more 

aeration, less sludge is produced. 
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Figure 5-2. Determination of Parameters Y and Kd 

 

 

Figure 5-3. Determination of Parameters Ks and k 
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Table 5-7. Derived Biokinetic Coefficients for Each Phase 

Biokinetic Coefficient Phase 1 Phase 2 Phase 3 Phase 4 

Y (mg VSS/mg COD) 0.853 0.682 0.582 0.452 

Kd (1/day) 0.012 0.056 0.063 0.034 

k (1/day) 0.332 0.387 0.607 0.767 

Ks (mg COD/L) 130.394 61.312 101.171 243.564 

 

The parameter Kd indicates the biomass lost to endogenous respiration per unit of 

biomass per unit time. Kd is used for evaluation of net sludge production and thus, is 

another key factor for effective design of a treatment facility. Higher values of Kd reduce 

the net sludge production during the microbiological treatment process. Although the 

effect of this parameter on sludge production is smaller compared to parameter Y, it can 

be used to fine tune the size of the sludge handling facility, resulting in economic 

benefits. The estimated value of Kd at phase four was out of the typical range. The 

highest value of this coefficient was recorded at phase three, indicating less net sludge 

production under this aeration condition. 

Parameter k affects the total volume of the reactor: the greater the value of k, the smaller 

the size of the reactor. None of the estimated k values were in the typical range, however 

it was observed that by increasing the aeration the values of this parameter increased. 

Ks, also referred to as half velocity constant, is the maximum growth limiting substrate 

concentration measured at saturated condition. Higher values of Ks indicate that the 

maximum specific yield of bacteria occurs at higher substrate concentrations. Unlike 

parameters Y and K, Ks has no direct application in the design process of a treatment 
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facility. It has a theoretical application to estimate the changes in specific growth rate of 

bacteria due to changes of growth limiting concentration substrate. Values of Ks for 

phases one and four (DO concentrations of 0.52 and 5.2 mg/L) were out of the typical 

range defined in Table 6. Although the values from the other two phases were well within 

the typical range, higher specific yield of bacteria were observed in phase three compared 

to that from phase two. 

The discussed results for all four aeration phases indicated that biokinetic coefficients 

from phase three better fell within the established typical ranges compared to those from 

other phases. Thus, it can be inferred that application of 3.7 mg/L dissolved oxygen can 

result in admissible biokinetic coefficients and low sludge production during the 

treatment process. 

 

5.3.2. Optimum Aeration Phase 
 

Different applied aeration phases resulted in different COD removal efficiencies of the 

system, see figure 5-4. The least removal efficiencies were achieved under phase one, 

which is attributed to a lack of oxygen that reduces the microorganisms’ activities and 

subsequently the removal of organic matters. By increasing the amount of dissolved 

oxygen in higher phases, the overall efficiency of the system increased. Increasing the 

oxygen concentration in the liquid mixture leads to a deep diffusion of oxygen, which 

subsequently causes an enlargement of the aerobic volume inside the floc. As a result, the 

hydrolyzed microorganisms in the floc degraded and efficiency improved (Abbassi et al. 

2000). 
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Figure 5-4. COD Removal Efficiency of Pilot Plant at Different Operational Phases 

 

 

As Figure 5-4 indicates, the system efficiency improved by increasing the DO 

concentrations. Unlike phases one and two, which resulted in low system’s efficiencies, 

phases three and four led to high (>75%) removal efficiencies. The average observed 

efficiencies were 77% and 79% for phases three and four, respectively. Figure 5-5 

compares the boxplots of achieved removal efficiencies for each aeration phase and 

confirms the negligible difference between phases three and four. 
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Figure 5-5. The COD Removal Efficiency for All Phases. The box illustrates the 25th 
percentile, median, and 75th percentile. The top and bottom whiskers represent the 

highest and lowest values 

 

To make a final selection between phases three and four, a statistical “one-way analysis 

of variance” (ANOVA) test was used. The ANOVA test determined whether the 

observed differences in the mean removal of organic matter was statistically significant 

(p-value<0.005) or not. Prior to using the ANOVA, all data groups were tested and 

confirmed for normality distribution assumption. The results from the ANOVA tests for 

each two consecutive aeration phases are presented in Table 5-8. Significant (p-

value<0.005) differences of COD removals were observed between phases one and two, 

and phases two and three. However, the ANOVA did not show any significant 

improvement in COD removal efficiency between phases three and four. Considering 
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these results, phase three (DO = 3.7 mg/L) is recommended as optimum aeration 

condition, which confirms the previous findings from biokinetic analysis. 

 

Table 5-8. Statistical Analysis of Observed COD Removal Efficiencies for All 
Aeration Phases 

Aeration Phase 
COD Removal % ANOVA Results 

Mean + St.dv. Median Median 
Difference 

Mean 
Difference 

Adjuste
d R2 % p-value 

Phase 1 (n=8) 52.44 + 1.41 51.82     
Phase 2 (n=8) 69.60 + 3.53 69.21     
Phase 3 (n=8) 76.90 + 2.69 77.18     
Phase 4 (n=8) 78.65 + 1.18 78.60     
Between Phases 1 & 2   17.39 17.16 92.10 0.000 
Between Phases 2 & 3   7.97 7.3 60.70 0.000 
Between Phases 3 & 4   1.42 1.75 16.93 0.113 

 

 

5.3.3. Return Activated Sludge 
 

Once the optimum biological treatment aeration condition was identified (phase three), 

the process was further refined to determine suitable ranges of RS percentages. To 

achieve this objective, the effects of this operational parameter on COD removal 

efficiency, as well as daily biomass (sludge) production (Px), were assessed and 

analyzed.   

Inspection of Figure 5-4 indicates that for all aeration phases, maximum removal 

efficiency is achieved at the lowest RS percentage. This might be due to the high aeration 

period to the recycled solids and a high MLVSS concentration in the stabilization basin, 

which led to endogenous metabolism of microorganisms (Metcalf et al. 1979). Once the 
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external substrate is completely depleted and the bacteria, which are a food source for 

higher organisms, are consumed the total amount of biomass decreases. This results in a 

transfer of food to a higher trophic level and increases the system’s removal efficiency. 

By increasing the RS percentage (30% - 100%), the removal efficiency decreased due to 

the reduction of aeration time for recycled sludge and depletion in the concentration of 

active organisms. Further increasing of RS percentage (100% to 180%) led to the rise of 

active organisms’ population in the contact tank, and subsequently a slight improvement 

of system’s removal efficiency. 

At an optimal return sludge rate, most of the MLVSS concentration in the contact tank is 

utilized and as a result, the amount of produced sludge reaches its minimum value. In 

other words, considerable reductions of sludge production can be achieved by 

maximizing the energy used for maintenance requirements of microorganisms, rather 

than for their cellular synthesis (Low and Chase 1999).  

The amount of produced biomass for all return sludge percentages in phase three were 

investigated, see Figure 5-6. The Px values in this phase decreased by increase of the RS 

and ranged between 1.32 and 1.48 kg/day. Also, it was observed that the amount of 

produced sludge was minimized at RS value of 100%. Further increase of this ratio, 

which leads to subsequent growth of system’s energy demand, showed insignificant 

decrease of biomass. It can thus be inferred that using a RS% in the range of 100% to 

180% is not suitable since the decrease in the produced sludge and the increase of 

system’s performance are negligible and has no economic justification.  
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Figure 5-6. Variation of Daily Sludge Production at Phase Three 

 

Within RS percentages ranging from 30% to 100%, the removal performance and the 

amount of produced sludge show a direct relationship with each other, see Figure 4-7. By 

increasing the RS% in phase three, lower removal efficiencies (unfavorable) and lower 

sludge production (favorable) were achieved. Depending on the desired treatment 

objectives, all RS percentages in this range (30% - 100%) can be acceptable. If the intent 

is to achieve the highest removal efficiency, then 30% return sludge is the optimal 

operational condition. Similarly, if the goal is to minimize sludge production, an RS% of 

100% is the optimal operational condition.  

Using a RS percentage that ensured both the high removal performance and low sludge 

production was an alternative scenario. It is suggested to use the RS% that corresponded 

to the approximate averages of removal efficiencies and produced sludge values in Figure 

5-7, which were 78% and 1.42 kg/day, respectively. The equations of the observed 
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trendlines between removal efficiency and RS% for phase three (Figure 4-4), and 

between Px and RS% (Figure 4-6), were solved to obtain the associated RS%. The results 

indicated that a RS% approximately equal to 46% would satisfy both equations, see Table 

5-9. 

 
Figure 5-7. The Relationship between Removal Efficiency and Sludge Production 

for    30% < RS < 100%, in Phase Three 

 

 

 

Table 5-9. Determining Optimum RS Value 

Derived Trendline Equation Y X (Solved) 

Y = -1E-05X 3 + 0.0044X 2 - 0.5436X + 94.647 COD Removal % = 78 
RS% ~ 46 

Y = -1E-07X 3 + 5E-05X 2 - 0.0071X + 1.6536 Px = 1.42 kg/day 
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Considering common treatment process objectives, three suitable operational conditions 

are summarized in Table 5-10. The first two solutions optimize the removal efficiency 

and sludge production, respectively. The third solution, however, works to satisfy both 

the high removal efficiency and low produced sludge of the system. This solution uses 

aeration phase three (DO = 3.7 mg/L) with RS of 46%. Under these operational 

conditions, the COD removal efficiency and the amount of daily produced sludge will be 

equal to 78% and 1.42 kg/day, respectively. 

 

Table 5-10. Selected Operational Conditions for System’s Optimum Performance 

Parameter Solution One  Solution Two  Solution Three 
(recommended) 

DO (mg/L) 3.70 3.70 3.70 

RS (%) 30 100 46 

HRT Contact (hr) 0.65 0.65 0.65 

HRT Stabilization (hr) 5.43 1.63 3.54 

COD Removal Efficiency (%) 82 74 78 

Px (kg/day) 1.48 1.34 1.42 
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5.4. Conclusion 
 

A step by step analysis was performed to optimize the performance of a contact 

stabilization process for secondary treatment of petroleum refinery wastewater. The 

results of the biokinetic coefficients analysis indicated that aeration phase three (DO 

concentration of 3.7 mg/L) was more suitable compared to other three phases, since it 

resulted in coefficients that better fit the normal range compared to those from other 

phases. The ANOVA tests showed that removal efficiencies significantly (p-value < 

0.05) improved with the increase of DO concentration in the contact tank from phase one 

to phase three. However, the ANOVA indicated that the improvement in system’s 

efficiency in phase four compared to phase three was not statistically significant (p-value 

> 0.05). Due to the results from biokinetic analysis and ANOVA tests, phase three was 

selected as the recommended aeration phase. 

The RS values equal to 30% and 100% led to maximum removal efficiency and 

minimum sludge production, respectively. However, optimizing both removal efficiency 

and sludge production led to a recommended solution of a 46% RS. This operational 

condition (RS = 46% and DO = 3.7 mg/L) resulted in both high COD removal (78%) and 

low produced sludge (1.42 kg/day) in the system. While these selected conditions do not 

ensure maximum removal performance or the minimum sludge production, they achieved 

concurrent occurrences of these two criteria and thus, an optimum performance of the 

system. Considering the results from this study, the contact stabilization activated sludge 

process is suggested as an effective alternative for secondary treatment of wastewater 

from petroleum refineries. 
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CHAPTER SIX. QUALITY APPRAISAL OF 
GROUNDWATER IN ARID REGIONS BY USING 

DETERMINISTIC AND PROBABILISTIC APPROACHES   
 

6.1. Introduction 
 

As populations expand and urbanization increases, the associated water demands put 

significant pressures on natural water resources. Groundwater, as a common source for 

residential, agricultural, and industrial demands, has been subjected to tremendous 

deterioration, especially in arid regions. To provide a sustainable source, understanding 

the temporal and spatial fluctuation of water quality is essential considering climate 

changes and local environmental pressures. Thus, for arid regions with low rainfall rates 

and limited groundwater resources, a robust groundwater quality investigation is crucial 

to promulgate regulations for better environmental management and human health 

protection. 

For arid regions, many studies have worked to understand the groundwater chemistry 

processes and establish procedures necessary for water quality assessments (Iranmanesh 

et al. 2014; Kim et al. 2005; Meng and Maynard 2001; Moya et al. 2015; Niu et al. 2017; 

Vasanthavigar et al. 2010). In general, these studies are either deterministic or 

probabilistic in their origin. For the deterministic approach, a geochemical analysis of 

groundwater samples within the aquifer is conducted by using traditional graphical 

methods and diagrams such as Piper, Wilcox, or US Salinity Laboratory Staff plot 
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(Ebrahimi et al. 2016; Herczeg et al. 2001; Jamshidzadeh and Mirbagheri 2011; Yidana 

and Yidana 2010; Zaidi et al. 2016). These studies evaluated the suitability of samples for 

drinking and irrigation purposes by comparing groundwater physicochemical parameters 

with pre-established quality standards and indicators. For the probabilistic approach, 

statistical algorithms such as correlation, clustering, factor analysis, and measurement 

uncertainty, are used to provide a classification scheme for categorizing the 

physiochemical properties of aquifer and to identify the anthropogenic sources of 

contamination governing the groundwater quality deteriorations (Belkhiri et al. 2011; 

Güler et al. 2002; Machiwal and Jha 2015; Rastogi and Sinha 2011; Wątor et al. 2016).  

Both types of studies have presented significant information regarding the aquifer’s 

quality condition. The deterministic approach delivers results pertaining to individual 

sampling wells. However, it is challenging to compare the overall groundwater quality 

conditions across several basins or for temporal analyses, by using this approach alone. 

The probabilistic approach, while strong for comparison purposes, does not provide 

meticulous results based on individual quality indicators, especially for waters under 

severe adverse environmental impacts. The combination of statistical methods in 

conjunction with the traditional water quality assessment techniques, can provide a 

rigorous procedure to draw meaningful results of the overall groundwater quality for the 

investigated basins.  

The objective of this study is to utilize a methodology that combines the probabilistic and 

deterministic approaches for assessing aquifer’s quality condition. For this purpose, a 300 

km2 basin under arid weather conditions, was selected as the case study. The intent of 

this work was to identify: 1) groundwater classification scheme, 2) processes governing 
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the groundwater chemistry, 3) hydrochemical characteristics of groundwater, and 4) 

suitability of the groundwater for drinking and agricultural purposes. 

 

6.2. Material and Methods 
 

6.2.1. Methodology 
 

The proposed methodology first uses the probabilistic approach to classify wells based on 

physicochemical properties of groundwater. Then based upon the obtained results, the 

deterministic approach is applied for comprehensive assessment of groundwater quality 

for different applications.  

For the probabilistic approach, the multivariate statistical techniques were applied. To 

determine if the specific parameters were statistically correlated, the Pearson product 

moment correlation analysis was performed (Cohen et al. 2013). To classify sampling 

wells into finite statistically distinct hydrochemical groups based on their similarities, the 

cluster analysis (CA) was used (Kaufman and Rousseeuw 2009). To simultaneously 

evaluate the correlations among several variables and to reduce the total data set 

dimension, the principal component analysis (PCA) was conducted (Mackiewicz and 

Ratajczak 1993). 

By concurrent use of probabilistic and deterministic approaches, the processes 

responsible for groundwater quality deterioration were evaluated. The deterministic 

approach included traditional groundwater classification techniques. To investigate the 

suitability of groundwater for drinking, the standards by the World Health Organization 
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(WHO) were exercised. Additionally, the water quality index (WQI) was developed to 

score the combined influences of individual quality variables on the overall groundwater 

quality for human consumption. Finally, to assess the suitability of groundwater for 

agricultural activities, a hazard-based study of groundwater mineral compounds was 

conducted. 

 

6.2.2. The Study Area 
 

The 300 km2 Shiraz basin lies in south-west Iran and is surrounded on the north and 

north-west by mountains. On the south, the basin is located at the vicinity of the 250-km2 

Maharloo Salt Lake, which has dominant water salinity compositions of sodium-chloride-

magnesium and sodium-sulfate, see Fig. 6-1. The superficial plain of the study area 

ranges from 1400 m to 3100 m above mean sea level. The geological formation of the 

plain is characterized by shales and gypsiferous marls near the ground surface and with 

sandstone and conglomerate at depth. Based on 50-year recorded data, the average annual 

temperature for this plain is 18.2˚C and the mean annual precipitation is 338 mm. The 

106-mm minimum and 578-mm maximum annual recorded precipitations occurred in 

1983 and 1995, respectively.  
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Figure 6-1. Study area 

 

6.2.3. Groundwater Sampling Results 
 

The conducted groundwater quality monitoring program in the Shiraz basin included a 

total of 310 samples collected from 23 wells during 2014. To determine the 

physicochemical parameters, all collected samples were tested per the standard methods 

(Apha 2012). The statistical summary of different quality parameters and major ions is 

presented in Table 6-1. All parameters were found to be non-normally distributed based 

on the calculated significance level less than 0.05. 
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Table 6-1. Descriptive statistics of the groundwater physicochemical parameters 

Parameter Unit Mean Median Min Max St. Dev. 

pH - 7.6 7.4 6.9 9.8 0.7 
TDS mg/L 2324.1 1395.0 412.0 11800.0 2525.6 
EC µS/cm 3125.6 2064.0 596.0 10107 2660.7 
TH mg CaCO3 /L 1302.2 962.5 182.5 4950.0 1197.7 
Ca mg/L 228.3 183.6 40.8 688.5 172.2 
Na mg/L 304.5 132.9 21.8 3408.5 694 
K mg/L 7.0 3.9 1.0 41.6 9.4 
Mg mg/L 180.5 112.4 20.0 808.0 211.5 
CO3 mg/L 2.9 0.0a 0.0a 28.5 6.9 
HCO3 mg/L 424.4 396.6 131.2 732.2 185.4 
SO4 mg/L 648.9 366.0 18.3 2945.7 747.7 
Cl mg/L 657.0 257.0 61.2 6859.6 1410.9 

          a below detection limit  

 

6.3. Analysis and Discussion 

 
6.3.1. Multivariate Statistical Analysis 
 

For probabilistic assessment of the groundwater, a multivariate statistical procedure was 

employed. The proposed approach, which includes correlation, cluster, and principal 

component analyses, is a controlling mathematical method for categorizing and 

interpreting large datasets in environmental monitoring programs (Liu et al. 2003). The 

numerical analyses performed in this section were conducted by using the statistical 

software SPSS (Statistical Package for Social Science, version 13.0). Within all analyses, 

variables were normalized to mean zero and unit variance to prevent misclassifications 

arising from different parameter scales. 
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6.3.1.1. Correlation Analysis 
 

Correlation analysis is a technique to measure the relationship between chosen variables. 

The established coefficient, ranging from negative one to positive one, is the degree of 

the dependency in the same direction (positive values) or in the opposite direction 

(negative values) (Cohen et al. 2013). The Pearson product-moment correlation analysis, 

was applied to each pair of Shiraz groundwater quality parameters, see Table 6-2. As 

expected, a significant positive correlation was observed between total dissolved solids 

(TDS) and electrical conductivity (EC), which indicates that same underlying process has 

influenced both parameters. Also, TDS content exhibited high correlations with total 

hardness (TH), Ca, K, Mg, SO4, and Cl, which identify as the main elements contributing 

to groundwater salinity. The TH value exhibited considerable positive correlations with 

Ca, Na, K, Mg, Cl and SO4. It can be interpreted that the groundwater hardness is mainly 

due to saline compounds resulted from those elements (Udayalaxmi et al. 2010). Na and 

Cl possessed a considerable high positive correlation which suggests the dissolution of 

chloride salts within the study area (Belkhiri et al. 2011). High correlations between Cl 

and Ca, Na, K, and Mg refer to the dissolution of evaporites. Also, the observed high 

correlation between Cl and SO4 indicates the impact of agricultural activities on the 

groundwater vulnerability (Dhanasekarapandian et al. 2016). 
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Table 6-2. Correlation matrix between the groundwater physicochemical 
parameters. Numbers in bold indicate significant statistical correlation at 0.05 level 

  pH TDS EC TH Ca Na K Mg CO3 HCO3 SO4 Cl 

pH 1.00                       

TDS -0.07 1.00                     

EC -0.06 0.99 1.00                   

TH -0.21 0.97 0.96 1.00                 

Ca -0.30 0.90 0.90 0.95 1.00               

Na 0.41 0.67 0.68 0.46 0.36 1.00             

K -0.15 0.96 0.95 0.98 0.89 0.50 1.00           

Mg -0.15 0.96 0.95 0.98 0.86 0.50 0.99 1.00         

CO3 0.92 -0.10 -0.09 -0.23 -0.29 0.35 -0.15 -0.18 1.00       

HCO3 -0.63 0.21 0.20 0.34 0.42 -0.31 0.26 0.27 -0.57 1.00     

SO4 -0.15 0.94 0.93 0.96 0.94 0.47 0.94 0.92 -0.17 0.16 1.00   
Cl 0.20 0.87 0.87 0.74 0.59 0.89 0.78 0.80 0.15 -0.02 0.67 1.00 

 

6.3.1.2. Cluster Analysis 
 

CA is a technique for classifying samples into a set of finite groups based on their 

specific similarities. The derived groups represent the overall correspondence of variables 

in the dataset, (Massart et al. 1983). There are two types of clustering: R-mode and Q-

mode methods (Caliński and Harabasz 1974). The Q-mode method works to group 

similar samples, each containing the same number of variables. Whereas the R-mode 

method works to reduce the total number of variables by categorizing them into a smaller 

number. For the purpose of this study, the Q-mode hierarchical cluster analysis was 

performed to identify statistically distinct hydrochemical groups of sampling wells. To 

formulate the clustering approach, the Ward’s algorithmic method was carried out (Ward 

Jr 1963). This method is based on the analysis of variance to split different clusters. To 
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measure the distance between clusters, the Euclidean distance method was employed 

(Davis and Sampson 1986). This approach organizes the dataset and represents the results 

with a dendrogram. As a result, four clusters (A, B, C, and D) were distinguished for the 

Shiraz aquifer, see Fig. 6-2. Cluster A, comprising 27% of sampling wells, mostly 

covered the center parts of the basin, adjacent to the urban areas. Cluster B included 23% 

of the wells and encompassed the northwest regions of the basin. Cluster C contained 

23% of the sampling wells and expanded on the southeast areas of the basin, nearby the 

Salt Lake. Cluster D consisted of 27% of the samples and mostly covered the mid-south 

of the study area. 
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Figure 6-2. Hierarchical dendrogram cluster map for the sampling wells 
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6.3.1.3. Principal Component Analysis 
 

To investigate the interrelationships among large groups of variables, the PCA can be 

applied (Jolliffe 2002). This technique identifies variables that are correlated with each 

other, and converts them into a limited number of uncorrelated components. The resultant 

components present a specific variance percentage of all studied variables with minimal 

information loss (Alberto et al. 2001). The overall characteristic of the dataset can be 

sufficiently described by considering the components with high variance percentages 

(loadings) (Bayo and López-Castellanos 2016). This approach can be formulated in five 

separate steps, as comprehensively described in literature (Ebrahimi et al. 2017).  

For the Shiraz aquifer, the PCA was applied on the 12 physicochemical parameters to 

extract the principal components corresponding to different sources of variation. The 

Kaiser’s rule of eigenvalues-greater-than-one and Varimax normalization method for 

orthogonal factor rotation, were used for this procedure (Kaiser 1974). As a result, two 

components were generated, which cumulatively accounted for 88.8% of initial dataset 

variance. Thus, with a minimal information loss of 11.2%, the 12 groundwater 

physicochemical parameters were reduced into two components, see Table 6-3.  

The first component, accounting for 64.4% of the variance, contained absolute loading 

for TDS, EC, TH, cationic ions, SO4, and Cl. This component can be considered as an 

indicator for natural weathering of the minerals (Belkhiri et al. 2011). The second 

component, which accounted for 24.4% of the total variance, comprised significant 

loadings for pH, CO3, and HCO3. This component can be labeled as an indicator for 

natural processes and water-rock interactions (Belkhiri et al. 2011). The orthogonal 
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rotation plots of the samples on the two principal factors, represented reasonable 

separations along the axes; see Fig. 6-3. High separation of data points from cluster C, 

indicates that hydrochemical variations of the samples within this cluster were greater 

than those from the other clusters. This can be attributed to the effect of the Salt Lake, 

located at the vicinity of cluster C. Also, the highest positive loadings of PC1, which 

contains high positive scores on the salinity related constituents, were observed for 

cluster C.  

In conclusion, by considering the results from correlation and principal component 

analyses, along with hierarchical Q-mode cluster analysis, chloride salts dissolution was 

identified within the aquifer. More specifically, the areas adjacent to the Salt Lake were 

found to be potentially susceptible to groundwater salinization. 

Table 6-3. Rotated component matrix with factor loadings (>0.4) a 

Attribute 
Principal Component 

PC1 PC2 

pH  0.93 
EC 1.00  TDS 1.00  Ca 0.89  Na 0.67 0.58 
K 0.97  Mg 0.96  CO3  0.90 
HCO3  -0.78 
SO4 0.94  Cl 0.87  TH 0.97  Eigenvalue 7.77 2.88 
Initial Variance percentage (Loading) 64.37 24.39 
Cumulative Variance percentage 64.37 88.76 
a. Rotation converged in 8 iterations 
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Figure 6-3. PCA scores from samples from different clusters 
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6.3.2. Groundwater Quality Assessment 
 

The obtained results from the probabilistic approach in previous section were used as the 

basis for the deterministic assessment of the groundwater. This combined approach 

evaluates the groundwater’s hydrochemical characteristics throughout the study area. 

Additionally, groundwater suitability potential for drinking and irrigation purposes was 

comprehensively weighed by developing a water quality index and a multi-hazard risk 

assessment. 

 

6.3.2.1. Chemical Composition Assessment 
 

Hydrogeochemical studies evaluate the processes responsible for groundwater quality 

vulnerability. Four different classification methods were selected to recognize 

hydrochemical types of groundwater. Each method was applied separately on the 

previously identified clusters within the Shiraz basin. To determine the groundwater ionic 

order, the average abundances of anion and cation concentrations were compared. To 

categorize the hydrochemical facies of water samples, the Domenico classification was 

considered (Domenico 1972). To graphically present the composition of major ions and 

relationships between the dissolved constituents, the Piper trilinear diagram was used 

(Piper 1944). Finally, to assess the chemical categories of groundwater samples, the 

Chadha diagram was analysed (Chadha 1999). Each of the aformentioned methods has 

been previously reviewed in detail by Ebrahimi et al. (2016). 
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The average ionic abundancy of each individual well was calculated and then averaged 

for each cluster. For cluster A, the cationic and anionic compositions were found to be 

dominated by Ca and HCO3, respectively, see Fig. 6-4. The dominant ionic variation 

within cluster B was determined as Na-Cl. Thus, the overall groundwater composition at 

west and center regions of the basin was characterized as Na-Ca-Cl-HCO3. The samples 

from cluster C which depicted the Mg-SO4 type water, showed the highest ion 

concentration abundances. Cluster D presented lower concentration fluctuations 

compared to cluster C, however it was also found to have the same dominant water type. 

Almost all magnesium related saline compounds may exist within the samples from 

cluster D. 

 

 

Figure 6-4. Average abundances of ions 
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Using the Domenico classification, the groundwater cationic facies in most parts of the 

study area were determined as Ca-Na, see Table 6-4. The Chloride-Sulfate-Bicarbonate 

was found as the major anionic facies of the groundwater throughout the basin. However, 

some wells within clusters A and C contained HCO3-Cl-SO4 and Cl-SO4 type anionic 

hydrochemicals, respectively. 

 

Table 6-4. Domenico Classification of groundwater hydrochemical facies 

 

Percentage of Constituents Cluster 

Ca+Mg Na+K HCO3+CO3 Cl+SO4 A B C D 

Cation Facies     

Calcium-Magnesium 
(Ca-Mg) 90-100 0-10 

 

17% Nil Nil Nil 

Calcium-Sodium 
(Ca-Na) 50-90 10-50 83% 60% 80% 100

% 
Sodium-Calcium 
(Na-Ca) 10-50 50-90 Nil 40% 20% Nil 

Sodium-Potassium 
(Na-K) 0-10 90-100 Nil Nil Nil Nil 

Anion Facies     

Bicarbonate 
(HCO3) 

 

90-100 0-10 Nil Nil Nil Nil 

Bicarbonate-Chloride-
Sulfate 
(HCO3-Cl-SO4) 

50-90 10-50 50% 20% Nil Nil 

Chloride-Sulfate-
Bicarbonate 
(Cl-SO4-HCO3) 

10-50 50-90 50% 80% 40% 100
% 

Chloride-Sulfate 
(Cl-SO4) 

0-10 90-100 Nil Nil 60% Nil 
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Considering the Piper diagram, most of the sampling wells were characterized as Ca-Cl 

type water, see Fig. 6-5 and Table 6-5. However, Ca-Mg-Cl type water were found for 

33% and 60% of the samples from clusters A and B, respectively. 

 

 

Figure 6-5. The Piper diagram of the samples 
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Table 6-5. Hydrochemical classification of groundwater based on the Piper diagram 

Subdivision Facies 
Cluster 

A B C D 

(1) CaHCO3 Nil Nil Nil Nil 

(2) Na-Cl Nil 20% Nil Nil 

(3) Mixed Ca-Na-HCO3 Nil Nil Nil Nil 

(4) Mixed Ca-Mg-Cl 33% 60% Nil Nil 

(5) Ca-Cl 67% 20% 100% 100% 
(6) NaHCO3 Nil Nil Nil Nil 

 

Considering the Chadha diagram, the Ca-Mg-Cl type water was observed for all the 

clusters, see Fig. 6-6 and Table 6-6. 50% of the samples for cluster A and 20% from 

cluster B fell under Ca-Mg-HCO3 subdivision. Also, Na-Cl type water was confirmed for 

40% and 20% of the samples within clusters B and C, respectively. In addition, it was 

concluded that for the groundwater constitutes in the Shiraz basin, alkaline earths 

exceeded alkali metals and strong acidic anions exceeded weak acidic anions.  

In conclusion, from the aforementioned classification techniques, the overall groundwater 

chemical composition was found to mainly comprise chloride-based saline compounds. 
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Figure 6-6. Chadha’s hydrochemical classification diagram 

 

 

Table 6-6. Hydrochemical classification of groundwater based on Chadha diagram 

Subdivision Classification 
Cluster 

A B C D 

(1) Alkaline earths exceed alkali metals Nil Nil Nil Nil 

(2) Alkali metals exceed alkaline earths Nil Nil Nil Nil 

(3) Weak acidic anions exceed strong acidic anions Nil Nil Nil Nil 

(4) Strong acidic anions exceed weak acidic anions Nil Nil Nil Nil 

(5) Ca-Mg-HCO3 50% 20% Nil Nil 

(6) Ca-Mg-Cl 50% 40% 80% 100% 

(7) Na-Cl Nil 40% 20% Nil 

(8) Na-HCO3 Nil Nil Nil Nil 
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6.3.2.2. Drinking Water Quality Assessment 
 

To investigate the suitability of groundwater for human consumption, major water quality 

constituents should be inspected for their compliance with pre-established standards. For 

the Shiraz basin the standards defined by the World Health Organization (WHO 2011) 

was used, see Table 6-7. Also, to identify the sources of contamination, as well as the 

contaminant transport pattern across the study area, the spatial distributions of water 

quality parameters were studied using GIS-based variograms, see Fig. 6-7. 

 

Table 6-7. Assessment of groundwater drinking suitability based on the WHO 
standard 

Parameter WHO Standard Samples Range 

% samples exceeded the limit 

Cluster 

A B C D 

pH 6.5 - 8.5 6.9 - 9.8 Nil 20% 20% Nil 

EC (µS/cm) 1500 596 - 10107 83% 20% 100% 100% 
TDS (mg/L) 1000 412 - 6885 83% 20% 100% 100% 
TH (mg/L) 500 182.5 - 4950 100% 20% 100% 100% 
Cl (mg/L) 250 61.1 – 1648.4 17% 20% 80% 67% 
Na (mg/L) 200 21.8 – 740.2 Nil Nil 40% 50% 
SO4 (mg/L) 250 18.2 – 2945.7 50% 80% 40% 83% 
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Figure 6-7. Spatial distribution of quality parameters within the study area. (a) pH, 
(b) TDS, (c) EC, (d) TH, (e) Cl, (f) Na, (g) SO4, and (h) WQI 
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Analysis of the results from Table 6-7 revealed high non-compliancy with the standard 

limits within clusters C and D. Most of the observed pH values fell within the 

recommended range. From the taste aspect, the WHO restricts the consumption of water 

with a TDS content higher than 1000 mg/L. Also, high TDS concentrations may result in 

scale formations in household appliances and water pipes. The majority of the studied 

samples exhibited TDS values greater than the recommended limit. Same results were 

observed for EC content. EC values greater than 3000 µS/cm indicate enrichment of salts 

in the groundwater, which were observed for clusters C and D, see Fig. 6-7(c). 

The WHO has specified a maximum allowable limit of 500 mg/L for TH in drinking 

water. Almost all samples showed TH values higher than 300 mg/L. Thus, they can be 

classified as hard water type, which has corrosion potential for distribution systems. The 

WHO has proposed 250 mg Cl/L, as the taste threshold. The groundwater of mid-south 

and southeast regions, contained Cl values higher than the recommended limit. High 

observed Cl concentrations within those areas confirm the previous assumption of 

groundwater salinization. As for the sodium value, same results were interpreted. High 

SO4 concentrations, mainly observed in center and southeast parts of the basin, see Fig. 

6-7(g), can cause a laxative effect in water consumers. 
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6.3.2.3. Groundwater Quality Index 
 

The WQI is a dimensionless number that cumulatively expresses the quality of an 

aggregated set of measured physiochemical parameters from different samples in a given 

area (Hallock 2002). The lesser values indicate that the quality of water is more adapted 

with the pre-established standards proposed by the WHO. The established WQI, as a 

variable indicator, enables decision makers to distinguish different groundwater sources 

based on their suitability for drinking purposes (Bordalo et al. 2006). 

For all sampling wells within the Shiraz basin, the WQI was calculated based on the 

method proposed by Yidana et al. (2010). All parameters (n) were assigned a weight (wi) 

on a scale of 1 to 5, based on their influence on drinking water quality and human health, 

see Table 6-8. The relative weight value (Wi) and the quality rating scale (qi) for each 

parameter were calculated using equations 1 and 2, in which Ci and Si are the measured 

concentration and the WHO standard for each parameter, respectively. Finally, the WQI 

for an individual well was then expressed as the sum of the sub-index (SIi) of all 

parameters by using equations 3 and 4. 

Wi = wi
∑ win
i=1

                                                                                       (1) 

qi = Ci
Si

× 100                                                                                     (2) 

SIi = Wi × qi                                                                                     (3) 

WQI = ∑ SIin
i=1                                                                                   (4) 
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Table 6-8. Relative weight of groundwater quality parameters 

Parameter Assigned weight (wi) Relative weight (Wi) 

pH 2 0.08 

TDS (mg/L) 5 0.2 

TH (mg/L) 5 0.2 

Ca (mg/L) 2 0.08 

Na (mg/L) 3 0.12 

SO4 (mg/L) 4 0.16 

Cl (mg/L) 4 0.16 

 ∑wi = 25 ∑Wi = 1 

 

 

The groundwater can be categorized into five classes based on the calculated WQI, see 

Table 6-9 (Sahu and Sikdar 2008). For the Shiraz basin, the computed indexes ranged 

from 80 to 661, with an average value of 251, see Fig 6-7(h). It can be interpreted that for 

the clusters A and B, located further from the Salt Lake, none of the samples exhibited 

unfit quality for drinking. While all samples from the cluster C, and 83% of the sampling 

wells from the cluster D, were determined to have water with very poor to unpotable 

quality. For the wells located at the vicinity of the Salt Lake, the water quality was 

significantly degraded. However, for those located at the north or west parts of the basin, 

the suitability of groundwater remained in acceptable conditions. 
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Table 6-9. Classification of groundwater drinking suitability based on the WQI 

WQI Description 
Cluster 

A B C D 

<50 Excellent Nil Nil Nil Nil 

50-100 Good Nil 40% Nil Nil 

100-200 Poor 83% 40% Nil 17% 

200-300 Very Poor 17% 20% 40% 50% 

>300 Unfit for Drinking Nil Nil 60% 33% 

 

 

6.3.2.4. Agricultural Water Quality Assessment 
 

The most important factor affecting the suitability of groundwater for agricultural 

applications is the salinity level (Todd and Larry 2005). The presence of saline 

compounds in irrigation water can highly corrode the soil structure and its vegetation 

capability. To have an overall assessment regarding the suitability of the groundwater for 

agricultural activities in the Shiraz aquifer, the Wilcox diagram (Wilcox 1948) was used, 

which consideres the combined effect of sodium percentage and electrical conductivity 

values, see Fig. 6-8. Most of the sampling wells from clusters A and B were categorized 

as good to permissible water types. All samples from cluster C were found to be 

unsuitable for irrigational activities. While, most of the samples from the cluster D were 

classified as doubtful water. Thus, it can be concluded that the irrigation quality of 

groundwater within the Shiraz basin was partially degraded. 
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Figure 6-8. Chadha’s hydrochemical classification diagram 
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6.3.2.5. Multi-Hazard Risk Assessment 
 

The mineral compounds have an essential role on the groundwater’s agricultural 

applicability potential. Hazardous levels of different quality indicators, including salinity, 

sodium, alkalinity, lime deposition, bicarbonate, and chloride, can prohibit cultivation of 

crops sensitive to saline water. Also, it may even lead to further adverse impacts, such as 

lower rates of soil permeability, plugging of irrigation systems, and foliar burns 

(Ebrahimi et al. 2016). Thus, it is necessary to further investigate the effects of mentioned 

indicators. As a result, a methodical approach was developed to evaluate the hazard 

potentials associated with high levels of various quality indicators. For the Shiraz basin, 

the proposed multi-hazard risk assessment was applied, see Table 6-10. 
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Table 6-10. Irrigation based multi-hazard risk assessment 

 Parameter Range Hazard Potential Cluster 
A 

Cluster 
B 

Cluster 
C 

Cluster 
D 

Salt 

EC ˂ 0.25 TDS ˂ 160 Very Low Nil  Nil Nil Nil  
0.25 - 0.75 160 - 480 Low Nil 20% Nil Nil 
0.75 - 2.0 480 - 1280 Medium 50% 60% Nil 17% 
2.0 - 3.0 1280 - 1920 Mid-High 50% 20% Nil 67% 
˃ 3.0 ˃ 1920 High Nil Nil 100% 16% 

Sodium 
(based on 
sodium 
percentage) 

Na% < 20 Very Low 67% 20% 60% 67% 
20 – 40 Low 33% Nil 20% 33% 
40 – 60 Medium Nil 60% 20% Nil 
60 – 80 Mid-High Nil 20% Nil Nil 
> 80 High Nil Nil Nil Nil 

Sodium 
bicarbonate  

RSC ˂ 0 Low 100% 100% 100% 100% 
0 - 1.0 Medium Nil Nil Nil Nil 
1.0 - 2.5 High Nil Nil Nil Nil 
˃ 2.5 Very High Nil Nil Nil Nil 

Alkalinity 

SAR < 10 Low 100% 100% 100% 100% 
10 – 18 Medium Nil Nil Nil Nil 
18 – 26 Mid-High Nil Nil Nil Nil 
> 26 High Nil Nil Nil Nil 

Chloride  
  

Cl ˂ 70 Low Nil Nil Nil 16% 
70 - 140 Medium Nil 20% Nil Nil 
140 - 350 Mid-High 100% 80% 40% 50% 
˃ 350 High Nil Nil 60% 34% 

Bicarbonate  
HCO3 ˂ 1.5 Low Nil Nil Nil Nil 
1.5 - 7.5 Medium 33% 100% 60% 33% 
˃ 7.5 High 67% Nil 40% 67% 

Lime 
Deposition 

mg Lime/L ˂ 2 Low Nil Nil Nil Nil 
2.0 - 3.0 Medium Nil Nil Nil Nil 
3.0 - 4.0 Mid-High Nil 60% 40% Nil 
˃ 4 High 100% 40% 60% 100% 

 

 

 

 



 

142 
 

 

All samples from cluster C, located at the vicinity of the Salt Lake, were classified as 

high saline water and not suitable for irrigation. This confirmed the obtained results from 

analyzing the Wilcox diagram. Also, medium to medium-high salinity was observed in 

other parts of the basin. These water types are not suitable for sensitive plants to saline 

compounds. Considering the sodium percentage (Na%), most of the samples were 

identified to have very low to low sodium hazards. While, samples from cluster B fell 

under the range of medium to medium-high hazard classes. High levels of sodium in 

irrigation water can limit soil’s permeability (Raju 2007). 

Using the residual sodium carbonate (RSC) content, identified low sodium hazard for all 

sampling wells. Thus, monitoring the infiltration rates and soil’s pH level would not be 

necessary (Hopkins et al. 2007). Analyzing the sodium absorption ratio (SAR), all 

samples were categorized as low alkalinity hazard classes. Considering the Cl content, 

majority of the sampling wells were classified as medium-high chloride hazard. Irrigation 

with these water types can result in foliar burns on crops. Also, high chloride hazard 

classes were determined for 60% and 34% of the samples from clusters C and D, 

respectively. Thus, the assumption of groundwater salinization within those regions of 

the study area can be confirmed. Irrigation with high-chloride water, can lead to 

significant negative impacts on agricultural products.  

Finally, potential of plugging in irrigation systems was evaluated by using the lime 

deposition index. Almost all samples showed medium-high to high lime deposition 

hazard risks. The irrigation limit of 0.5 cm/hr is suggested for these water sources, 

provided that low evaporation rates exist (Hopkins et al. 2007). 
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6.3.3. Comparison with Previous Studies 
 

To further present the practicality of the proposed methodology, the overall dynamic of 

the groundwater quality in the Shiraz basin was compared with two previously studied 

basins with similar aquifers and lithology of rocks, and under similar climate conditions. 

The groundwater quality conditions of the Kashan basin located at central Iran 

(Baghvand et al. 2010; Jamshidzadeh and Mirbagheri 2011), and the Damghan basin 

located at north-east of Iran (Ebrahimi et al. 2016), were re-analyzed based on the 

performed methodology in this study, see Table 6-11. First, the chemical composition of 

each basin was investigated by using the Piper diagram. Then, the suitability of 

groundwater for drinking purposes was determined based on the developed WQI. Finally, 

the suitability of groundwater for agricultural applications was assessed by considering 

the Wilcox classification. 

According to the Piper cataloging, most of the groundwater samples within the Shiraz 

and Damghan basins exhibited the Ca-Cl and Mixed Ca-Mg-Cl type hydrochemical 

facies. While, for the Kashan aquifer, the Na-Cl type water was found to be dominant. It 

can be inferred that chloride type saline compounds largely contributed to the 

groundwater chemical composition in all studied cases. 

By developing the WQI, similar drinking water quality was observed for the Shiraz and 

Damghan basins. Within both aquifers, approximately 25% of the samples were found to 

be unfit for drinking. However, the groundwater quality within the Kashan basin were 

determined to be significantly degraded compared to those from the other two basins. 

More than half of the groundwater resources from the Kashan basin did not meet the 
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quality limitations and were categorized as unpotable water. One of the benefits of using 

WQI method is the ease of comparing the overall drinking quality of groundwater across 

several basins, which was presented here. Based on the Wilcox classification, the 

groundwater within the Shiraz basin was determined to be more suitable for irrigation 

compared to those of the other two basins. Similar to the WQI results, the Kashan basin 

was found to be the most degraded basin and approximately 70% of its samples were 

determined as unsuitable for agricultural applications.   

The overall obtained groundwater quality results agree with the identified hydrochemical 

facies. Although groundwater types from all the basins were affected by the Cl 

compounds, the one with dominant Na-Cl type (Kashan basin) were found to be the most 

degraded, possibly due to extreme saltwater intrusion into this aquifer as reported by 

Jamshidzadeh et al. (2011). 
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Table 6-11. Overall groundwater quality assessment for three different basins 

Evaluation step Classification Shiraz 
basin 

Damghan 
basin 

Kashan 
basin 

Hydrochemical Facies: 
Piper 

CaHCO3 Nil Nil Nil 
Na-Cl Nil 33% 71% 
Mixed Ca-Na-
HCO3 

Nil Nil 29% 

Mixed Ca-Mg-Cl 27% 40% Nil 
Ca-Cl 73% 27% Nil 
NaHCO3 Nil Nil Nil 

Drinking based 
assessment: WQI 

Excellent Nil Nil Nil 
Good 9% Nil Nil 
Poor 36% 46% 10% 
Very Poor 32% 27% 33% 
Unsuitable 23% 27% 57% 

Agriculture based 
assessment: Wilcox 

Excellent 4% Nil Nil 
Good 33% Nil 9% 
Permissible 9% 33% 5% 
Doubtful 27% 27% 19% 
Unsuitable 27% 40% 67% 

 
6.4. Summary and Conclusions 
 

This study demonstrated the effectiveness of combined consideration of deterministic and 

probabilistic approaches for a robust groundwater quality evaluation. Application of the 

probabilistic approach, which included multivariate statistical analysis, provided a 

classification scheme for categorizing the physiochemical properties of aquifer. Further 

application of the deterministic approach, which was built upon the obtained results from 

the conducted probabilistic analysis, led to comprehensive evaluation of the groundwater 

quality. The developed multi-hazard-based procedure was found to be an inclusive tool 

for irrigation groundwater risk assessment. Additionally, the water quality index proved 

to be an effective method for assessing the overall drinking quality of groundwater. By 

using a consistent criterion, this methodology was found to be specifically suitable for 
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comparing the overall groundwater quality conditions across different aquifers or for a 

temporal assessment within one.  

Application of the proposed methodology on a basin with arid climate, identified chloride 

based saline compounds throughout the aquifer. The results indicated that less than a 

third of sampling wells contained potable water and only half of the study area comprised 

suitable groundwater for irrigation. Finally, the overall groundwater quality condition of 

this case study was compared with those from two other basins located in similar arid 

regions. It was concluded that the studied groundwater resources were prone to quality 

degradations, possibly due to salinization. The presented methodology in this study 

provides the environmental analysts and governmental decision makers with a 

comprehensive tool for evaluation of current and future quality conditions within any 

given aquifer. 
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CHAPTER SEVEN. SUMMARY AND 
RECOMMENDATION 

 

The main focus of this research study was to develop an analysis methodology for water 

related infrastructure systems that would balance the long-term needs of society while 

protecting environmental resources. For this line of research, many studies and analyses 

were conducted on wastewater treatment plants and aquifer systems. 

In the field of wastewater systems, this study demonstrated procedures and methods to 

incorporate the temporal variability of data in the effluent evaluation and optimization 

assessments. Primarily, the research focused on evaluating the wastewater’s make-up, 

transforming the laboratory results into practical information for decision makers, and 

temporal performance assessment of the systems. By using multivariate data analyses and 

statistical techniques, a robust overarching methodology was developed for monitoring 

the performance of full-scale wastewater treatment plants, assessing the temporal and 

spatial changes of water quality by introducing wastewater quality index, discovering the 

important relationships among the monitored parameters through descriptive data 

analysis, and establishing the numerical expressions for predicting the significant 

properties of the influent and effluent of the treatment plants. The proposed methodology 

was successfully applied on the “Floyds Fork Water Quality Center” in Louisville, KY. 

The proposed procedure can be summarized in the following seven steps: 
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1. Developing the wastewater quality index (WWQI) for influent and effluent 

streams considering the regional discharge standards and the results of the 

wastewater monitoring programs. 

2. Categorizing the overall flow conditions over the time and, evaluating the 

treatment process effectiveness by comparing the calculated influent and effluent 

indexes. 

3. Conducting the principal component analysis for all measured quality and 

quantity variables. 

4. Evaluating the overall variation of influent and effluent organic loadings, ion 

activities, oxygen demanding, and nutrient loading characteristics considering the 

fluctuation of calculated components’ scores. 

5. Determining the interrelationship level between the measured data by conducting 

Pearson product correlation analysis. Consequently, identifying the most highly 

correlated variables with initial indices like BOD, COD, phosphorus, nitrogen, 

WWQI, etc. 

6. Developing predictive models, using a multivariate regression technique, for 

initial parameters considering the highly-correlated variables as the predictors. 

7. Verifying the accuracy of produced models in terms of fitting with the training 

and testing data. 

The information learned from the temporal performance assessment of treatment plants 

was extended to other industrial wastewater treatment systems. The main objective of 

conducting such studies was to optimize the wastewater treatment processes to obtain 

higher efficiency, lower operational costs, and less negative environmental impacts. 
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Thus, to identify the most appropriate operating configurations resulting in a sustainable 

setup for the full-scale plants, the studies were continued for conducting a systematic big-

data analysis on the obtained results from full-scale or laboratory-scale plants. Achieving 

higher removal efficiency, lower sludge production, and increased bio-gas generation was 

the main objective for all cases.  

Specifically, the study first examined the novel application of a combined system for 

treatment of high strength industrial wastewater. By conducting individual experiments 

and through a stepwise data analysis, the optimal operational conditions were identified, 

which led to maximum overall COD concentration reduction as well as high methane gas 

production rates. As a result, the examined hybrid system was recommended for the 

treatment of high strength industrial wastewater. 

In another case study, a step by step analysis was performed to optimize the performance 

of a contact stabilization process for secondary treatment of petroleum refinery 

wastewater. The focus of this study was to identify the optimal operational conditions, in 

terms of applied aeration rates and recycling sludge flows, which can ensure the 

concurrent occurrences of maximum pollutant removal performance and minimum 

sludge production. Considering the results from this study, the contact stabilization 

activated sludge process was suggested as an effective alternative for secondary treatment 

of wastewater generated from petroleum refineries. 

In the field of aquifer systems, the study demonstrated a procedure for evaluating 

groundwater quality deterioration due to excessive withdrawal rates and saltwater 

intrusion. The main objective was to present a baseline for temporal control on the 

recharge and discharge cycles for basins located in arid areas. To provide true temporal 
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groundwater quality assessment, a comprehensive study was performed by considering a 

wide range of quality indicators for both drinking and irrigation uses and by investigating 

the long-term quantity depletion. The proposed methodology combined the probabilistic 

and deterministic approaches. Application of the probabilistic approach, which included 

multivariate statistical analysis, provided a classification scheme for categorizing the 

physiochemical properties of aquifer. Further application of the deterministic approach, 

which was built upon the obtained results from the conducted probabilistic analysis, led 

to comprehensive evaluation of the groundwater quality. The developed multi-hazard 

based procedure was found to be an inclusive tool for irrigation groundwater risk 

assessment. Additionally, the water quality index proved to be an effective method for 

assessing the overall drinking quality of groundwater. By using a consistent criterion, this 

methodology was found to be specifically suitable for comparing the overall groundwater 

quality conditions across different aquifers or for a temporal assessment within one.  

Overall, the research study used multivariate data analysis algorithms to identify the 

inherent structure of the wastewater and groundwater physicochemical characteristics 

from various treatment plants and aquifer systems. The methodologies described herein 

can provide a scientific basis for a robust control system on the performance of any 

treatment plant and/or aquifer systems. Also, the presented methods can be used to 

effectively manage water quality monitoring programs, in both wastewater and 

groundwater fields, while reducing the number of quality parameters which must be 

routinely measured and also controlling the quality of sampling efforts and 

measurements. The presented methodologies in this research study provide the 

environmental analysts and governmental decision makers with a comprehensive tool for 
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evaluation of current and future quality conditions within any given environmental 

system. 

 

Recommendations for future work 

The developed methodologies in this study for assessing the temporal performance of 

wastewater and groundwater systems can be upgraded and transferred to the broader 

arena of civil infrastructure systems. It would be beneficial to continue the primary 

research agenda described in this research study for optimization and performance 

assessment of other environmental infrastructures by using multivariate data analysis and 

simulation. 

Also, to perform the aforementioned studies with the objective of optimization of 

systems, the main focus could be on the simulation and scenarios analyses by using 

different simulator software packages. To accomplish this, a step-by-step approach can 

be summarized as: 

1- Setting up the physical, biological, and chemical layouts of the system 

2- Defining the dimension of different physical units 

3- Inserting the input quantitative and qualitative data like flow rate, COD, TP, NH, 

and TSS, 

4- Assigning the control data measurements like DO concentration of aeration tanks, 

nutrient concentration of chemical dosing stages, and recycled activated sludge 

rates 

5- Evaluating the constructed model for hydraulic mass balance 
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6- Calibration phase: developing a robust methodology is required for calibrating the 

physical, chemical, and biological models by considering both steady and 

dynamic simulation states 

7- Scenario Analysis: to obtain the desired management strategies, there is a need to 

introduce a model-based optimization and scenario analysis platforms 

8- Cost Analysis phase: evaluating the associated costs from different performed 

scenarios 

The results from conducting those researches can also be used as a framework or 

guideline to assist decision-makers in considering economic and environmental aspects 

for designing civil and environmental infrastructures. 



 

153 
 

 

REFERENCES 
 

Abbassi, B., Dullstein, S., and Rabiger, N. (2000). "Minimization of excess sludge production by 
increase of oxygen concentration in activated sludge flocs; Experimental and theoretical 
approach." Water Research, 34(1), 139-146. 

Abeling, U., & Seyfried, C. F. (1992). "Anaerobic-aerobic treatment of high-strength ammonium 
wastewater-nitrogen removal via nitrite". Water Science and Technology, 26(5-6), 1007-
1015. 

Abubakkar, S., Kundu, K., and Sreekrishnan, T. R. (2015). "Comparative study of the 
performance of an anaerobic rotating biological contactor and its potential to enrich 
hydrogenotrophic methanogens." Journal of Chemical Technology and Biotechnology, 
90(3), 398-406. 

Aguado, D., and Rosen, C. (2008). "Multivariate statistical monitoring of continuous wastewater 
treatment plants." Engineering Applications of Artificial Intelligence, 21(7), 1080-1091. 

Ahn, Y. T., Kang, S. T., Chae, S. R., Lee, C. Y., Bae, B. U., & Shin, H. S. (2007). "Simultaneous 
high-strength organic and nitrogen removal with combined anaerobic upflow bed filter 
and aerobic membrane bioreactor". Desalination, 202(1), 114-121.  

Al-Malack, M. H. (2006). "Determination of biokinetic coefficients of an immersed membrane 
bioreactor." Journal of Membrane Science, 271(1-2), 47-58. 

Al-Mutairi, N. Z., Hamoda, M. F., and Al-Ghusain, I. A. (2003). "Performance-based 
characterization of a contact stabilization process for slaughterhouse wastewater." Journal 
of environmental science and health. Part A, Toxic/hazardous substances & 
environmental engineering, 38(10), 2287-2300. 

Alberto, W. D., del Pilar, D. a. M. a., Valeria, A. M. a., Fabiana, P. S., Cecilia, H. A., and de los 
Ángeles, B. M. a. (2001). "Pattern Recognition Techniques for the Evaluation of Spatial 
and Temporal Variations in Water Quality. A Case Study:: Suquı́a River Basin 
(Córdoba–Argentina)." Water research, 35(12), 2881-2894. 

Apha, A. (2012). "WEF.(2012)." Standard methods for the examination of water and wastewater, 
22. 

APHA (1998). "Standard Methods for the Examination of Water and Wastewater." American 
Public Health Association Washington DC, 2005–2605. 

Arnaud, T. (2009). "Treatment of winery wastewater with an anaerobic rotating biological 
contactor." Water Science Technology, 60(2), 371-379. 

Arumugam, K., and Elangovan, K. (2009). "Hydrochemical characteristics and groundwater 
quality assessment in Tirupur Region, Coimbatore District, Tamil Nadu, India." 
Environmental Geology, 58(7), 1509-1520. 

Asadi, S., Vuppala, P., and Reddy, M. A. (2007). "Remote sensing and GIS techniques for 
evaluation of groundwater quality in municipal corporation of Hyderabad (Zone-V), 
India." International journal of environmental research and public health, 4(1), 45-52. 

Avella, A., Görner, T., Yvon, J., Chappe, P., Guinot-Thomas, P., and de Donato, P. (2011). "A 
combined approach for a better understanding of wastewater treatment plants operation: 
Statistical analysis of monitoring database and sludge physico-chemical 
characterization." Water research, 45(3), 981-992. 



 

154 
 

 

Ayers, R. S., and Westcot, D. W. (1985). Water quality for agriculture, FAO, Rome. 
Baghvand, A., Nasrabadi, T., Bidhendi, G. N., Vosoogh, A., Karbassi, A., and Mehrdadi, N. 

(2010). "Groundwater quality degradation of an aquifer in Iran central desert." 
Desalination, 260(1), 264-275. 

Banerjee, G. (1997). "Hydraulics of bench-scale rotating biological contactor”, Water Research, 
31(10), 2500-2510). 

Basavarajappa, H. T., and Manjunatha, M. C. (2015). "Groundwater Quality Analysis in 
Precambrian Rocks of Chitradurga District, Karnataka, India Using Geo-Informatics 
Technique." Aquatic Procedia, 4, 1354-1365. 

Bayo, J., and López-Castellanos, J. (2016). "Principal factor and hierarchical cluster analyses for 
the performance assessment of an urban wastewater treatment plant in the Southeast of 
Spain." Chemosphere, 155, 152-162. 

Belkhiri, L., Boudoukha, A., and Mouni, L. (2011). "A multivariate statistical analysis of 
groundwater chemistry data." International Journal of Environmental Research, 5(2), 
537-544. 

Bharti, N., and Katyal, D. (2011). "Water quality indices used for surface water vulnerability 
assessment." International Journal of Environmental Sciences, 2(1), 154. 

Bordalo, A. A., Teixeira, R., and Wiebe, W. J. (2006). "A water quality index applied to an 
international shared river basin: the case of the Douro River." Environmental 
management, 38(6), 910-920. 

Boyacioglu, H. (2007). "Development of a water quality index based on a European classification 
scheme." Water Sa, 33(1). 

Bryant, C. W. (1995). "A simple method for analysis of the performance of aerated wastewater 
lagoons." Water Science and Technology, 31(12), 211-218. 

Caliński, T., and Harabasz, J. (1974). "A dendrite method for cluster analysis." Communications 
in Statistics-theory and Methods, 3(1), 1-27. 

CCME (2001). "Canadian water quality guidelines for the protection of aquatic life:  CCME 
Water Quality Index." Canadian environmental quality guideline, Canadian Council of 
Ministers of the Environment, Winnipeg. 

Cervantes, F. J., Pavlostathis, S. G., and Van Haandel, A. C. (2006). "Advanced biological 
treatment processes for industrial wastewaters: principles and applications", IWA 
publishing. 

Chadha, D. (1999). "A proposed new diagram for geochemical classification of natural waters 
and interpretation of chemical data." Hydrogeology Journal, 7(5), 431-439. 

Chan, Y. J., Chong, M. F., Law, C. L., and Hassell, D. G. (2009). "A review on anaerobic-aerobic 
treatment of industrial and municipal wastewater." Chemical Engineering Journal, 155(1-
2), 1-18. 

Chebotarev, I. I. (1955). "Metamorphism of natural waters in the crust of weathering—1." 
Geochimica et Cosmochimica Acta, 8(1–2), 22-48. 

Chong, I.-G., and Jun, C.-H. (2005). "Performance of some variable selection methods when 
multicollinearity is present." Chemometrics and Intelligent Laboratory Systems, 78(1), 
103-112. 

Chu, L. B., and Wang, J. L. (2011). "Comparison of polyurethane foam and biodegradable 
polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N 
ratio." Chemosphere, 83(1), 63-68. 

Cobaner, M., Yurtal, R., Dogan, A., and Motz, L. H. (2012). "Three-dimensional simulation of 
seawater intrusion in coastal aquifers: A case study in the Goksu Deltaic Plain." Journal 
of Hydrology, 464–465(0), 262-280. 

Cohen, J., Cohen, P., West, S. G., and Aiken, L. S. (2013). Applied multiple 
regression/correlation analysis for the behavioral sciences, Routledge. 



 

155 
 

 

Cortez, S., Teixeira, P., Oliveira, R. and Mota, M. (2008). "Rotating biological contactors: a 
review on main factors affecting performance", Reviews in Environmental Science and 
Bio/Technology, 7(2), 155-172. 

Cortez, S., Teixeira, P., Oliveira, R., and Mota, M. (2011). "Denitrification of a landfill leachate 
with high nitrate concentration in an anoxic rotating biological contactor." 
Biodegradation, 22(3), 661-671. 

Costa, J., Alves, M., and Ferreira, E. (2009). "Principal component analysis and quantitative 
image analysis to predict effects of toxics in anaerobic granular sludge." Bioresource 
technology, 100(3), 1180-1185. 

Davis, J. C., and Sampson, R. J. (1986). Statistics and data analysis in geology, Wiley New York 
et al. 

De Rosemond, S., Duro, D. C., and Dubé, M. (2009). "Comparative analysis of regional water 
quality in Canada using the Water Quality Index." Environmental monitoring and 
assessment, 156(1-4), 223-240. 

Dhanasekarapandian, M., Chandran, S., Devi, D. S., and Kumar, V. (2016). "Spatial and temporal 
variation of groundwater quality and its suitability for irrigation and drinking purpose 
using GIS and WQI in an urban fringe." Journal of African Earth Sciences, 124, 270-288. 

Diya'uddeen, B. H., Daud, W. M. A. W., and Aziz, A. R. A. (2011). "Treatment technologies for 
petroleum refinery effluents: A review." Process Safety and Environmental Protection, 
89(2), 95-105. 

Domenico, P. A. (1972). Concepts and models in groundwater hydrology, McGraw-Hill, New 
York. 

Durmusoglu, E., and Yilmaz, C. (2006). "Evaluation and temporal variation of raw and pre-
treated leachate quality from an active solid waste landfill." Water, Air, & Soil Pollution, 
171(1-4), 359-382. 

Ebrahimi, M., Kazemi, H., Mirbagheri, S. A., & Rockaway, T. D. (2017). Integrated Approach to 
Treatment of High-Strength Organic Wastewater by Using Anaerobic Rotating 
Biological Contactor. Journal of Environmental Engineering, 144(2), 04017102. 

Ebrahimi, M., Kazemi, H., Mirbagheri, S., and Rockaway, T. D. (2016). "An optimized 
biological approach for treatment of petroleum refinery wastewater." Journal of 
Environmental Chemical Engineering, 4(3), 3401-3408. 

Ebrahimi, M., Gerber, E. L., and Rockaway, T. D. (2017). "Temporal performance assessment of 
wastewater treatment plants by using multivariate statistical analysis." Journal of 
Environmental Management, 193, 234-246. 

Ebrahimi, M., Kazemi, H., Ehtashemi, M., and Rockaway, T. D. (2016). "Assessment of 
groundwater quantity and quality and saltwater intrusion in the Damghan basin, Iran." 
Chemie der Erde-Geochemistry. 

El-Naas, M. H., Alhaija, M. A., and Al-Zuhair, S. (2014). "Evaluation of a three-step process for 
the treatment of petroleum refinery wastewater." Journal of Environmental Chemical 
Engineering, 2(1), 56-62. 

Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., and Abidin, 
Z. Z. (2009). "Review of technologies for oil and gas produced water treatment." Journal 
of Hazardous Materials, 170(2), 530-551. 

Fetter, C. W. (1999). Contaminant hydrogeology, Prentice Hall Upper Saddle River, NJ. 
Fipps, G. (2003). "Irrigation water quality standards and salinity management strategies." Texas 

Cooperative Extension, College Station, TX. 
Gasim, H., Megat, A. R. M. M. A., and Shamsul, R. M. K. "Treatment of Petroleum Refinery 

Wastewater Using Extended Aeration Activated Sludge." Proc., International Journal of 
Engineering Research in Africa, Trans Tech Publication, 1-7. 

Gautam, S. K., Maharana, C., Sharma, D., Singh, A. K., Tripathi, J. K., and Singh, S. K. (2015). 
"Evaluation of groundwater quality in the Chotanagpur plateau region of the 



 

156 
 

 

Subarnarekha river basin, Jharkhand State, India." Sustainability of Water Quality and 
Ecology, 6, 57-74. 

Ghavami, M., Zhao, Q., Javadi, S., Jangam, J. S. D., Jasinski, J. B., & Saraei, N. (2017). Change 
of organobentonite interlayer microstructure induced by sorption of aromatic and 
petroleum hydrocarbons—A combined study of laboratory characterization and 
molecular dynamics simulations. Colloids and Surfaces A: Physicochemical and 
Engineering Aspects, 520, 324-334. 

Goode, C., LeRoy, J., and Allen, D. (2007). "Multivariate statistical analysis of a high rate 
biofilm process treating kraft mill bleach plant effluent." Water Science and Technology, 
55(6), 47-55. 

Grau, P., Dohanyos, M., and Chudoba, J. (1975). "Kinetics of Multicomponent Substrate 
Removal by Activated-Sludge." Water Research, 9(7), 637-642. 

Greenberg, A. E., and Navone, R. (1958). "Use of the Control Chart in Checking Anion-Cation 
Balances in Water." Journal (American Water Works Association), 50(10), 1365-1370. 

Greene, M. R., and DeLorenzo, R. J. (2005). "Full Scale Demonstration of Selector-Contact 
Stabilization Process at Town of Rosendale Wastewater Treatment Plant, Ulster County, 
New York."Albany, NY. 

Greenwood, N. N., and Earnshaw, A. (2012). Chemistry of the Elements, Elsevier. 
Güler, C., Thyne, G. D., McCray, J. E., and Turner, K. A. (2002). "Evaluation of graphical and 

multivariate statistical methods for classification of water chemistry data." Hydrogeology 
journal, 10(4), 455-474. 

Hallock, D. (2002). A water quality index for ecology's stream monitoring program, Washington 
State Department of Ecology Olympia. 

Hanchang, S. (2009). "Industrial wastewater-types, amounts and effects." Point Sources of 
Pollution: Local Effects and their Control-Volume II, 191. 

Hao, X., Doddema, H., and Van Groenestijn, J. (1996). "Use of contact tank to enhance 
denitrification in oxidation ditches." Water Science and Technology, 34(1), 195-202. 

Hassard, F., Biddle, J., Cartmell, E., Jefferson, B., Tyrrel, S., and Stephenson, T. (2015). 
"Rotating biological contactors for wastewater treatment–A review." Process Safety and 
Environmental Protection, 94, 285-306. 

Heijnen, J.J., Mulder, A., Weltevrede, R., Hols, J. and Van Leeuwen, H.L.J.M., 1991. Large scale 
anaerobic-aerobic treatment of complex industrial waste water using biofilm reactors. 
Water Science and Technology, 23(7-9), pp.1427-1436. 

Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water, 
Department of the Interior, US Geological Survey. 

Herczeg, A., Dogramaci, S., and Leaney, F. (2001). "Origin of dissolved salts in a large, semi-
arid groundwater system: Murray Basin, Australia." Marine and Freshwater Research, 
52(1), 41-52. 

Hopkins, B. G., Horneck, D. A., Stevens, R. G., Ellsworth, J. W., and Sullivan, D. M. (2007). 
"Managing irrigation water quality for crop production in the Pacific Northwest." 
[Covallis, Or.]: Oregon State University Extension Service. 

Hurley, T., Sadiq, R., and Mazumder, A. (2012). "Adaptation and evaluation of the Canadian 
Council of Ministers of the Environment Water Quality Index (CCME WQI) for use as 
an effective tool to characterize drinking source water quality." water research, 46(11), 
3544-3552. 

Iranmanesh, A., Ii, R. A. L., and Wimmer, B. T. (2014). "Multivariate statistical evaluation of 
groundwater compliance data from the Illinois Basin–Decatur Project." Energy Procedia, 
63, 3182-3194. 

Jamshidzadeh, Z., and Mirbagheri, S. (2011). "Evaluation of groundwater quantity and quality in 
the Kashan Basin, Central Iran." Desalination, 270(1), 23-30. 



 

157 
 

 

Jang, C.-S., Chen, S.-K., and Kuo, Y.-M. (2012). "Establishing an irrigation management plan of 
sustainable groundwater based on spatial variability of water quality and quantity." 
Journal of Hydrology, 414–415, 201-210. 

Javadi, S., Ghavami, M., Zhao, Q., Bate, B. (2016). "Advection and retardation of non-polar 
contaminants in compacted clay barrier material with organoclay amendment” Applied 
Clay Science, https://doi.org/10.1016/j.clay.2016.10.041. 

Jolliffe, I. (2002). Principal component analysis, Wiley Online Library. 
Kaiser, H. F. (1974). "An index of factorial simplicity." Psychometrika, 39(1), 31-36. 
Kaufman, L., and Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster 

analysis, John Wiley & Sons. 
Kebria, D. Y., Ghavami, M., Javadi, S., & Goharimanesh, M. (2018). Combining an experimental 

study and ANFIS modeling to predict landfill leachate transport in underlying soil—a 
case study in north of Iran. Environmental monitoring and assessment, 190(1), 26. 

Khambete, A., and Christian, R. (2014). "Statistical analysis to identify the main parameters to 
effecting WWQI of sewage treatment plant and predicting BOD." Int. J. Research in 
Engineering and Technology (IJRET), 3(01), 186-195. 

Khan, A. A., Paterson, R., and Khan, H. (2004). "Modification and Application of the Canadian 
Council of Ministers of the Environment Water Quality Index(CCME WQI) for the 
Communication of Drinking Water Quality Data in Newfoundland and Labrador." Water 
Quality Research Journal of Canada, 39(3), 285-293. 

Khan, S. J., Ilyas, S., Javid, S., Visvanathan, C., and Jegatheesan, V. (2011). "Performance of 
suspended and attached growth MBR systems in treating high strength synthetic 
wastewater." Bioresource technology, 102(9), 5331-5336. 

Kheradmand, S., Karimi-Jashni, A., and Sartaj, M. (2010). "Treatment of municipal landfill 
leachate using a combined anaerobic digester and activated sludge system." Waste 
Management, 30(6), 1025-1031. 

Kim, J. H., Kim, R. H., Lee, J., Cheong, T. J., Yum, B. W., and Chang, H. W. (2005). 
"Multivariate statistical analysis to identify the major factors governing groundwater 
quality in the coastal area of Kimje, South Korea." Hydrological Processes, 19(6), 1261-
1276. 

Kolluri, S. S., Esfahani, I. J., Garikiparthy, P. S. N., and Yoo, C. (2015). "Evaluation of 
multivariate statistical analyses for monitoring and prediction of processes in an seawater 
reverse osmosis desalination plant." Korean Journal of Chemical Engineering, 32(8), 
1486-1497. 

Laquidara, M. J., Blanc, F. C., and Oshaughnessy, J. C. (1986). "Development of Biofilm, 
Operating Characteristics and Operational Control in the Anaerobic Rotating Biological 
Contactor Process." Journal Water Pollutant Control Federation, 58(2), 107-114. 

Lebart, L., Morineau, A., and Fénelon, J.-P. (1979). "Traitement des données 
statistiques(méthodes et programmes)." 

Lee, D. S., Lee, M. W., Woo, S. H., Kim, Y.-J., and Park, J. M. (2006). "Multivariate online 
monitoring of a full-scale biological anaerobic filter process using kernel-based 
algorithms." Industrial & engineering chemistry research, 45(12), 4335-4344. 

Lee, D. S., and Vanrolleghem, P. A. (2004). "Adaptive consensus principal component analysis 
for on-line batch process monitoring." Environmental monitoring and assessment, 92(1-
3), 119-135. 

Lefkir, A., Maachou, R., Bermad, A., and Khouider, A. (2015). "Factorization of 
physicochemical parameters of activated sludge process using the principal component 
analysis." Desalination and Water Treatment, 1-6. 

Liu, S.-G., NI, B.-J., WEl, L., TANG, Y., and YU, H.-Q. (2009). "Contact-adsorption-
regeneration-stabilization process for the treatment of municipal wastewater." Journal of 
Water and Environment Technology, 7(2), 83-90. 



 

158 
 

 

Liu, W., Li, X., Shen, Z., Wang, D., Wai, O., and Li, Y. (2003). "Multivariate statistical study of 
heavy metal enrichment in sediments of the Pearl River Estuary." Environmental 
Pollution, 121(3), 377-388. 

Lo, K. V., and Liao, P. H. (1986). "Digestion of Cheese Whey with Anaerobic Rotating 
Biological Contact Reactors." Biomass, 10(4), 243-252. 

Low, E. W., and Chase, H. A. (1999). "Reducing production of excess biomass during 
wastewater treatment." Water Research, 33(5), 1119-1132. 

Lu, M., Gu, L.-P., and Xu, W.-H. (2013). "Treatment of petroleum refinery wastewater using a 
sequential anaerobic-aerobic moving-bed biofilm reactor system based on suspended 
ceramsite." Water Science & Technology, 67(9). 

Lu, C. Y., Yeh, A. C., and Lin, M. R. (1995). "Treatment of High-Strength Organic Wastewaters 
Using an Anaerobic Rotating Biological Contactor." Environment International, 21(3), 
313-323. 

Lumb, A., Halliwell, D., and Sharma, T. (2006). "Application of CCME Water Quality Index to 
monitor water quality: A case study of the Mackenzie River basin, Canada." 
Environmental Monitoring and Assessment, 113(1-3), 411-429. 

Lv, Y., Wang, L., Wang, X., Yang, Y., Wang, Z., and Li, J. (2011). "Macroscale and microscale 
analysis of Anammox in anaerobic rotating biological contactor." Journal of 
Environmental Science (China), 23(10), 1679-1683. 

Machiwal, D., and Jha, M. K. (2015). "Identifying sources of groundwater contamination in a 
hard-rock aquifer system using multivariate statistical analyses and GIS-based 
geostatistical modeling techniques." Journal of Hydrology: Regional Studies, 4, 80-110. 

Mackiewicz, A., and Ratajczak, W. (1993). "Principal components analysis (PCA)." Computers 
and Geosciences, 19, 303-342. 

Mardani, S., Mirbagheri, A., Amin, M. M., and Ghasemian, M. (2011). "Determination of 
Biokinetic Coefficients for Activated Sludge Processes on Municipal Wastewater." 
Iranian Journal of Environmental Health Science & Engineering, 8(1), 25-34. 

Martin-Pascual, J., Lopez-Lopez, C., Cerda, A., Gonzalez-Lopez, J., Hontoria, E., and Poyatos, J. 
M. (2012). "Comparative Kinetic Study of Carrier Type in a Moving Bed System 
Applied to Organic Matter Removal in Urban Wastewater Treatment." Water Air Soil 
Pollution, 223(4), 1699-1712. 

Massart, D. L., Massart, D. L., and Kaufman, L. (1983). "The interpretation of analytical 
chemical data by the use of cluster analysis." 

McNeil, V., and Cox, M. (2000). "Relationship between conductivity and analysed composition 
in a large set of natural surface-water samples, Queensland, Australia." Environmental 
Geology, 39(12), 1325-1333. 

Meng, S. X., and Maynard, J. B. (2001). "Use of statistical analysis to formulate conceptual 
models of geochemical behavior: water chemical data from the Botucatu aquifer in Sao 
Paulo state, Brazil." Journal of hydrology, 250(1), 78-97. 

Metcalf, Eddy (2003). Wastewater engineering: treatment and reuse, 4th ed., McGraw-Hill, New 
York.  

Metcalf, Eddy, and Tchobanoglous, G. (1979). Wastewater engineering: treatment disposal reuse, 
McGraw-Hill. 

Mirbagheri, S. A., Ebrahimi, M., and Mohammadi, M. (2014). "Optimization method for the 
treatment of Tehran petroleum refinery wastewater using activated sludge contact 
stabilization process." Desalination and Water Treatment, 52(1-3), 156-163. 

Moletta, R. (2005). "Winery and distillery wastewater treatment by anaerobic digestion." Water 
Science Technology, 51(1), 137-144. 

Moya, C. E., Raiber, M., Taulis, M., and Cox, M. E. (2015). "Hydrochemical evolution and 
groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, 



 

159 
 

 

Australia: a multivariate statistical approach." Science of The Total Environment, 508, 
411-426. 

Moujabber, M. E., Samra, B. B., Darwish, T., and Atallah, T. (2006). "Comparison of Different 
Indicators for Groundwater Contamination by Seawater Intrusion on the Lebanese 
Coast." Water Resources Management, 20(2), 161-180. 

Nagels, J., Davies-Colley, R., and Smith, D. (2001). "A water quality index for contact recreation 
in New Zealand." Water Science and Technology, 43(5), 285-292. 

Niu, B., Wang, H., Loáiciga, H. A., Hong, S., and Shao, W. (2017). "Temporal variations of 
groundwater quality in the Western Jianghan Plain, China." Science of The Total 
Environment, 578, 542-550. 

Noyola, A., Capdeville, B., and Roques, H. (1988). "Anaerobic Treatment of Domestic Sewage 
with a Rotating Stationary Fixed-Film Reactor." Water Research, 22(12), 1585-1592. 

Ouali, A., Azri, C., Medhioub, K., and Ghrabi, A. (2009). "Descriptive and multivariable analysis 
of the physico-chemical and biological parameters of Sfax wastewater treatment plant." 
Desalination, 246(1), 496-505. 

Ouyang, Y. (2005). "Evaluation of river water quality monitoring stations by principal component 
analysis." Water research, 39(12), 2621-2635. 

Padilla-Gasca, E., and López, A. L. (2010). "Kinetics of organic matter degradation in an upflow 
anaerobic filter using slaughterhouse wastewater." Journal of Bioremediation and 
Biodegradation, 1(2). 

Pandian, M., Huu-Hao, N., and Pazhaniappan, S. (2011). "Substrate removal kinetics of an 
anaerobic hybrid reactor treating pharmaceutical wastewater." Journal of Water 
Sustainability, 1(3), 301-312. 

Patel, C., and Madamwar, D. (1997). "Biomethanation of salty cheese whey using an anaerobic 
rotating biological contact reactor." Journal of Fermentation and Bioengineering, 83(5), 
502-504. 

Piper, A. M. (1944). "A graphic procedure in the geochemical interpretation of water‐analyses." 
Eos, Transactions American Geophysical Union, 25(6), 914-928. 

Platikanov, S., Rodriguez-Mozaz, S., Huerta, B., Barceló, D., Cros, J., Batle, M., Poch, G., and 
Tauler, R. (2014). "Chemometrics quality assessment of wastewater treatment plant 
effluents using physicochemical parameters and UV absorption measurements." Journal 
of environmental management, 140, 33-44. 

Raghunath, H. M. (1990). Groundwater, Wiley Eastern Ltd, New Delhi. 
Raju, N. J. (2007). "Hydrogeochemical parameters for assessment of groundwater quality in the 

upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India." 
Environmental Geology, 52(6), 1067-1074. 

Raju, N. J., Patel, P., Gurung, D., Ram, P., Gossel, W., and Wycisk, P. (2015). "Geochemical 
assessment of groundwater quality in the Dun valley of central Nepal using chemometric 
method and geochemical modeling." Groundwater for Sustainable Development, 1(1–2), 
135-145. 

Rastogi, G. K., and Sinha, D. (2011). "A novel approach to water quality management through 
correlation study." J. Environ. Res. Develop., 5 (4), 1029, 1035. 

Reimann, C., Filzmoser, P., and Garrett, R. G. (2002). "Factor analysis applied to regional 
geochemical data: problems and possibilities." Applied Geochemistry, 17(3), 185-206. 

Renda, R., Gigli, E., Cappelli, A., Simoni, S., Guerriero, E., and Romagnoli, F. (2016). 
"Economic Feasibility Study of a Small-scale Biogas Plant Using a Two-stage Process 
and a Fixed Bio-film Reactor for a Cost-efficient Production." Energy Procedia, 95, 385-
392. 

Rosén, C., and Lennox, J. (2001). "Multivariate and multiscale monitoring of wastewater 
treatment operation." Water research, 35(14), 3402-3410. 



 

160 
 

 

Sahu, P., and Sikdar, P. (2008). "Hydrochemical framework of the aquifer in and around East 
Kolkata Wetlands, West Bengal, India." Environmental Geology, 55(4), 823-835. 

Saranya, P., Ramani, K., and Sekaran, G. (2014). "Biocatalytic approach on the treatment of 
edible oil refinery wastewater." RSC Advances, 4(21), 10680-10692. 

Sawyer, C., McCarty, P., and Parkin, G. (2003). Chemistry for Environmental Engineering and 
Science, McGraw-Hill Higher Education. 

Shammas, M. I., and Jacks, G. (2007). "Seawater intrusion in the Salalah plain aquifer, Oman." 
Environmental Geology, 53(3), 575-587. 

Sherif, M., Mohamed, M., Kacimov, A., and Shetty, A. (2011). "Assessment of groundwater 
quality in the northeastern coastal area of UAE as precursor for desalination." 
Desalination, 273(2–3), 436-446. 

Shokrollahzadeh, S., Azizmohseni, F., Golmohammad, F., Shokouhi, H., and Khademhaghighat, 
F. (2008). "Biodegradation potential and bacterial diversity of a petrochemical 
wastewater treatment plant in Iran." Bioresource technology, 99(14), 6127-6133. 

Singh, K. P., Malik, A., Mohan, D., Sinha, S., and Singh, V. K. (2005). "Chemometric data 
analysis of pollutants in wastewater—a case study." Analytica Chimica Acta, 532(1), 15-
25. 

Singh, M., and Desai, J. D. (1987). "Settling Behavior of Activated-Sludge from an Effluent 
Treatment-Plant of a Petrochemical Industry - Involvement of Biofactor in Sludge 
Bulking." Journal of Fermentation Technology, 65(6), 731-733. 

Srinivasamoorthy, K., Gopinath, M., Chidambaram, S., Vasanthavigar, M., and Sarma, V. S. 
(2014). "Hydrochemical characterization and quality appraisal of groundwater from 
Pungar sub basin, Tamilnadu, India." Journal of King Saud University - Science, 26(1), 
37-52. 

Stevens, R. G. (1994). "Water quality and treatment considerations." Tree Fruit Irrigation: A 
Comprehensive Manual of Deciduous Tree Fruit Irrigation Needs, K. E. Williams, and T. 
W. Ley, eds., Good Fruit Grower Publishing (Washington State Fruit Commission), 
Yakima, WA. 

Stover, E. L., and Kincannon, D. F. (1982). "Rotating biological contactor scale-up and design." 
Oklahama State University, Stillwater, OK.  

Sun, Y., Chen, Z., Wu, G., Wu, Q., Zhang, F., Niu, Z., and Hu, H.-Y. (2016). "Characteristics of 
water quality of municipal wastewater treatment plants in China: implications for 
resources utilization and management." Journal of Cleaner Production, 131, 1-9. 

Tafreshi, S. M., Javadi, S., & Dawson, A. R. (2014). Influence of geocell reinforcement on uplift 
response of belled piles. Acta Geotechnica, 9(3), 513-528. 

Tait, S. J., and Friedman, A. A. (1980). "Anaerobic Rotating Biological Contactor for 
Carbonaceous Wastewaters." Journal of Water Pollution Control Federation, 52(8), 2257-
2269. 

Teixeira, P., Fernandes, Z., Azeredo, J., and Oliveira, R. (2010). "Denitrifying Potential of an 
Activated Sludge Derived Consortium." Environmental Engineering Managament 
Journal, 9(3), 299-303. 

Teixeira, P., and Oliveira, R. (2000). "Denitrification by Alcaligenes denitrificans in a closed 
rotating biological contactor." Biotechnology Letters, 22(22), 1789-1792. 

Todd, D. K. (1959). Ground Water Hydrology, Wiley, New York. 
Todd, D. K., and Larry, W. (2005). "Mays, groundwater hydrology." John Wiley & Son, Inc., 

New Jersey, 3. 
Tchobanoglous, G., and Burton, F. L. (1991). "Wastewater engineering." Management, 7, 1-4. 
Thorne, D. W., and Peterson, H. B. (1954). "Irrigated soils." Soil Science, 78(5), 406. 
Tijani, M. N. (1994). "Hydrogeochemical assessment of groundwater in Moro area, Kwara state, 

Nigeria." Environmental Geology, 24(3), 194-202. 



 

161 
 

 

Timmerman, J. G., Beinat, E., Termeer, K., and Cofino, W. (2010). "Analyzing the data-rich-but-
information-poor syndrome in Dutch water management in historical perspective." 
Environmental management, 45(5), 1231-1242. 

Tomita, R. K., Park, S. W., and Sotomayor, O. A. (2002). "Analysis of activated sludge process 
using multivariate statistical tools—a PCA approach." Chemical Engineering Journal, 
90(3), 283-290. 

Trivedy, R., and Goel, P. (1984). Chemical and biological methods for water pollution studies, 
Environmental publications, India. 

Tyagi, R., Tran, F., and Chowdhury, A. (1993). "Biodegradation of petroleum refinery 
wastewater in a modified rotating biological contactor with polyurethane foam attached 
to the disks." Water research, 27(1), 91-99. 

Udayalaxmi, G., Himabindu, D., and Ramadass, G. (2010). "Geochemical evaluation of 
groundwater quality in selected areas of Hyderabad, AP, India." Indian journal of Science 
and Technology, 3(5), 546-553. 

US Salinity Laboratory Staff (1954). "Diagnosis and improvement of saline and alkali soils." 
Agriculture Handbook No. 60, USDA. 

Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R. R., Chidambaram, S., 
Anandhan, P., Manivannan, R., and Vasudevan, S. (2010). "Application of water quality 
index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, 
India." Environmental monitoring and assessment, 171(1-4), 595-609. 

Vasquez Sarria, N., Rodriguez Victoria, J., Torres Lozada, P., and Madera Parra, C. (2011). 
"Performance of a contact stabilization process for domestic wastewater treatment of 
Cali, Colombia." Dyna, 78(168), 98-107. 

Vendramel, S., Bassin, J., Dezotti, M., and Sant'Anna Jr, G. (2015). "Treatment of petroleum 
refinery wastewater containing heavily polluting substances in an aerobic submerged 
fixed-bed reactor." Environmental Technology, 36(16), 2052-2059. 

Wallace, J., Champagne, P., and Hall, G. (2016). "Multivariate statistical analysis of water 
chemistry conditions in three wastewater stabilization ponds with algae blooms and pH 
fluctuations." Water research, 96, 155-165. 

Wanda, E. M., Mamba, B. B., and Msagati, T. A. (2015). "Determination of the water quality 
index ratings of water in the Mpumalanga and North West provinces, South Africa." 
Physics and Chemistry of the Earth, Parts A/B/C. 

Wanda, E., Monjerezi, M., Mwatseteza, J. F., and Kazembe, L. N. (2011). "Hydro-geochemical 
appraisal of groundwater quality from weathered basement aquifers in Northern Malawi." 
Physics and Chemistry of the Earth, Parts A/B/C, 36(14–15), 1197-1207. 

Ward Jr, J. H. (1963). "Hierarchical grouping to optimize an objective function." Journal of the 
American statistical association, 58(301), 236-244. 

Watanabe, Y., Matsuoka, K., Hashiguchi, N. (1988). "Treatment of alcoholic distillery waste by 
combined system of flotation and anaerobic rotating biological contactor." Water 
pollution control in Asia, 503-509. http://dx.doi.org/10.1016/B978-0-08-036884-
9.50073-9. 

Wątor, K., Kmiecik, E., and Tomaszewska, B. (2016). "Assessing medicinal qualities of 
groundwater from the Busko-Zdrój area (Poland) using the probabilistic method." 
Environmental Earth Sciences, 75(9), 804. 

Way, C. (2012). "Standard methods for the examination of water and wastewater." Water 
Environment Federation, Secaucus, NJ, USA. 

Wei, Y., Van Houten, R. T., Borger, A. R., Eikelboom, D. H., and Fan, Y. (2003). "Minimization 
of excess sludge production for biological wastewater treatment." Water Research, 
37(18), 4453-4467. 

WHO, G. (2011). "Guidelines for drinking-water quality." World Health Organization, 216, 303-
304. 



 

162 
 

 

Wilcox, L. V. (1955). "Classification and use of irrigation waters." U.S. Department of 
Agriculture, Washington D.C 

Wilcox, L. V. (1948). "The quality of water for irrigation use." United States Department of 
Agriculture, Economic Research Service. 

Yang, Y., Tsukahara, K., and Sawayama, S. (2007). "Performance and methanogenic community 
of rotating disk reactor packed with polyurethane during thermophilic anaerobic 
digestion." Materials Science and Engineering: C, 27(4), 767-772. 

Yeh, A. C., Lu, C. Y., and Lin, M. R. (1997). "Performance of an anaerobic rotating biological 
contactor: Effects of flow rate and influent organic strength." Water Research, 31(6), 
1251-1260. 

Yidana, S. M., and Yidana, A. (2010). "Assessing water quality using water quality index and 
multivariate analysis." Environmental Earth Sciences, 59(7), 1461-1473. 

Yu, H., Wilson, F., and Tay, J.-H. (1998). "Kinetic analysis of an anaerobic filter treating soybean 
wastewater." Water Research, 32(11), 3341-3352. 

Zaidi, F. K., Mogren, S., Mukhopadhyay, M., and Ibrahim, E. (2016). "Evaluation of 
groundwater chemistry and its impact on drinking and irrigation water quality in the 
eastern part of the Central Arabian graben and trough system, Saudi Arabia." Journal of 
African Earth Sciences, 120, 208-219. 

Zhang, Z., Tao, F., Du, J., Shi, P., Yu, D., Meng, Y., and Sun, Y. (2010). "Surface water quality 
and its control in a river with intensive human impacts–a case study of the Xiangjiang 
River, China." Journal of environmental management, 91(12), 2483-2490. 

 
Zhou, P., Su, C., Li, B., & Qian, Y. (2006). "Treatment of high-strength pharmaceutical 

wastewater and removal of antibiotics in anaerobic and aerobic biological treatment 
processes". Journal of Environmental Engineering, 132(1), 129-136. 

Zinatizadeh, A. A. L., and Ghaytooli, E. (2015). "Simultaneous nitrogen and carbon removal 
from wastewater at different operating conditions in a moving bed biofilm reactor 
(MBBR): Process modeling and optimization." Journal of the Taiwan Institute of 
Chemical Engineers, 53, 98-111.  



 

163 
 

 

CURRICULUM VITA 
 

 
NAME: Milad Ebrahimi 

ADDRESS: Department of Civil and Environmental Engineering 
 University of Louisville 
 Louisville, KY, 40292 

EMAIL 
ADDRESS: m.ebrahimi@louisville.edu 

 milad.ebrahimi@louisvillemsd.org 

EDUCATION & Ph.D. Civil and Environmental Engineering 
TRAINING: University of Louisville 
 Louisville, KY (2018) 

 M.Sc. Civil and Environmental Engineering 
 K.N.Toosi University of Technology 
 Tehran, Iran (2012) 

 B.Sc. Civil and Environmental Engineering 
 Tehran Azad University 
 Tehran, Iran (2009) 

AWARDS: Outstanding Student Research Enhancement Award, Kentucky 
Water Resources Research Institute, 2018 

 Outstanding Student Research Competition, World Environmental 
& Water Resources Congress, 2017 

 Grosscurth Ph.D. Fellowship, University of Louisville, 2014 - 
2016 

 Research Scholarship, Graduate Student Council, University of 
Louisville, 2016 and 2017 

 Travel Scholarship, Graduate Student Council, University of 
Louisville, 2016 and 2017 

 



 

164 
 

 

CERTIFICATIONS: Water Quality Standards Academy, Louisville Metropolitan 
Sewer District, 2015 

 Grant Writing Academy, University of Louisville, 2016 

 Entrepreneurship Academy, University of Louisville, 2016 

 Graduate Teaching Academy, University of Louisville, 2016 

 Outstanding Reviewer, Journal of Cleaner Production, 
ELSEVIER, Netherland, 2017 

 Outstanding Reviewer, Journal of Environmental Chemical 
Engineering, ELSEVIER, Netherland, 2017 

PEER-REVIEWED 
JOURNAL 
PUBLICATIONS: 

Ebrahimi M, Kazemi H, Mirbagheri SA, Rockaway TD. 
Integrated Approach to Treatment of High-Strength Organic 
Wastewater by Using Anaerobic Rotating Biological Contactor. 
Journal of Environmental Engineering. 2017 Dec 
6;144(2):04017102. 

 

Ebrahimi M, Gerber EL, Rockaway TD. Temporal performance 
assessment of wastewater treatment plants by using multivariate 
statistical analysis. Journal of environmental management. 2017 
May 15;193:234-46. 

 

Ebrahimi M, Kazemi H, Mirbagheri SA, Rockaway TD. An 
optimized biological approach for treatment of petroleum 
refinery wastewater. Journal of Environmental Chemical 
Engineering. 2016 Sep 1;4(3):3401-8. 

 

Ebrahimi M, Kazemi H, Ehtashemi M, Rockaway TD. 
Assessment of groundwater quantity and quality and saltwater 
intrusion in the Damghan basin, Iran. Chemie der Erde-
Geochemistry. 2016 Jun 1;76(2):227-41. 

 

Mirbagheri SA, Ebrahimi M, Mohammadi M. Optimization 
method for the treatment of Tehran petroleum refinery 
wastewater using activated sludge contact stabilization process. 
Desalination and Water Treatment. 2014 Jan 2;52(1-3):156-63. 

 

Ebrahimi M, Javadi S, Kazemi H, Ehteshami M, Rockaway TD. 
Quality Appraisal of Groundwater in Arid Regions by using 
Deterministic and Probabilistic Approaches, Journal of 
Groundwater for Sustainable Development, 2018, Under Review 

  



 

165 
 

 

CONFERENCE 
ORAL 
PRESENTATIONS: 

Temporal performance assessment of wastewater treatment 
plants by using multivariate statistical analysis, Kentucky Water 
Resource Research Institute Annual Symposium, Lexington, 
KY, 2018 

 

Optimization of wastewater treatment plants by using simulation 
and multivariate data analysis, Water Environment Federation 
Technical Exhibition and Conference (WEFTEC), Chicago, IL, 
2017 

 
Comprehensive groundwater quality appraisal for arid regions, 
World Environmental & Water Resources Congress (EWRI), 
Sacramento, CA, 2017 

 

Feasibility and Biogas Production Potential of Using Combined 
RBC System in Anaerobic Condition for High Strength 
Wastewater, World Environmental & Water Resources Congress 
(EWRI), West Palm Beach, FL, 2016 

 

Efficiency of Petroleum Refinery Wastewater Treatment by 
Using Rotating Biological Contactor System, Water 
Environment Federation Technical Exhibition and Conference 
(WEFTEC), New Orleans, LA 2016 

 


	Assessment and optimization of environmental systems using data analysis and simulation.
	Recommended Citation

	CHAPTER ONE. INTRODUCTION
	1.1.  Statement of the Issue
	1.2. Importance of the Issue
	1.3. Current Practices and Challenges
	1.4. Objective of the Research
	1.5. Research Approach
	1.6. Structure of the Dissertation

	CHAPTER TWO. METHODOLOGY
	2.1. Introduction
	2.2. Descriptive Data Analysis of Monitored Parameters
	2.3. Water Quality Index Development
	2.3.1. Wastewater Quality Index
	2.3.2. Groundwater Quality Index
	2.4. Pearson Product Moment Correlation Analysis
	2.5. Principal Component Analysis
	2.6. Statistical Modelling Approach
	2.7. Conclusion

	CHAPTER THREE. TEMPORAL PERFORMANCE ASSESSMENT OF WASTEWATER TREATMENT PLANTS BY USING MULTIVARIATE STATISTICAL ANALYSIS
	3.1. Introduction
	3.2. Materials and methods
	3.2.1. Description of the Floyds Fork Water Quality Treatment Center
	3.2.2. Monitored Parameters and Analytical Methods
	3.2.3. Descriptive Analysis of the Parameters
	3.2.4. Temporal Assessment of the Experimental Data

	3.3. Results and Discussion
	3.3.1. Wastewater Quality Index (WWQI)
	3.3.2. Multivariate Statistical Analysis Approach
	3.3.2.1 Correlation Analysis
	3.3.2.2 Principal Component Analysis
	3.3.2.3 Statistical Modelling Approach
	3.3.2.3.1. Predictive Model for Influent Parameters
	3.3.2.3.2. Predictive Model for Effluent Parameters
	3.3.2.3.3. Model Quality Appraising and Verification



	3.4. Conclusions
	3.5. Recommendation

	CHAPTER FOUR. AN INTEGRATED APPROACH TO TREATMENT OF HIGH STRENGTH ORGANIC WASTEWATER BY USING ANAEROBIC ROTATING BIOLOGICAL CONTACTOR
	4.1. Introduction
	4.2. Materials and methods
	4.2.1. Combined System Design
	4.2.2. Synthetic Wastewater
	4.2.3. Process Description
	4.2.4. Anaerobic Biokinetic Coefficients
	4.2.4.1. The modified Stover-Kincannon model
	4.2.4.2. Grau second-order substrate removal model


	4.3. Result and discussion
	4.3.1. Anaerobic Reactor
	4.3.1.1. Effect of Hydraulic Retention Time (AnRBC)
	4.3.1.2. Effect of Disk Rotational Speed (AnRBC)
	4.3.1.3. Effect of Organic Loading Rate (AnRBC)
	4.3.1.4. Biokinetic Coefficients
	4.3.1.4.1. Prediction and validation


	4.3.2. Aerobic bioreactor
	4.3.2.1. Effect of Hydraulic Retention Time (MBBR)
	4.3.2.2. Effect of Organic Loading Rate (MBBR)

	4.3.3. Combined System

	4.4. Conclusion

	Chapter FIVE. AN OPTIMIZED BIOLOGICAL APPROACH FOR TREATMENT OF PETROLEUM REFINERY WASTEWATER
	5.1. Introduction
	5.2. Material and methods
	5.2.1. Contact-Stabilization Process
	5.2.2. Pilot Plant Description
	5.2.3. Wastewater
	5.2.4. Operational Conditions
	5.2.5. Sampling and Laboratory Testing

	5.3. Results and discussion
	5.3.1. Biokinetic Coefficients
	5.3.2. Optimum Aeration Phase
	5.3.3. Return Activated Sludge

	5.4. Conclusion

	Chapter SIX. QUALITY APPRAISAL OF GROUNDWATER IN ARID REGIONS BY USING DETERMINISTIC AND PROBABILISTIC APPROACHES
	6.1. Introduction
	6.2. Material and Methods
	6.2.1. Methodology
	6.2.2. The Study Area
	6.2.3. Groundwater Sampling Results

	6.3. Analysis and Discussion
	6.3.1. Multivariate Statistical Analysis
	6.3.1.1. Correlation Analysis
	6.3.1.2. Cluster Analysis
	6.3.1.3. Principal Component Analysis

	6.3.2. Groundwater Quality Assessment
	6.3.2.1. Chemical Composition Assessment
	6.3.2.2. Drinking Water Quality Assessment
	6.3.2.3. Groundwater Quality Index
	6.3.2.4. Agricultural Water Quality Assessment
	6.3.2.5. Multi-Hazard Risk Assessment

	6.3.3. Comparison with Previous Studies

	6.4. Summary and Conclusions

	Chapter SEVEN. SUMMARY AND RECOMMENDATION
	References
	CURRICULUM VITA

