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Abstract

The treatment of municipal and industrial wastewaters in conventional wastewater treat-

ment plants (WWTPs) requires a significant amount of energy in order to meet ever more

stringent discharge regulations. However, the wastewater treatment industry is undergo-

ing a paradigm shift from a focus on waste-stream treatment and contaminant removal

to a proactive interest in energy and resource recovery facilities, driven by both economic

and environmental incentives. The main objective of this thesis is the development of a

decision-making tool in order to identify improvement opportunities in existing WWTPs

and to develop new concepts of sustainable wastewater treatment/recovery facilities.

The first part of the thesis presents the application of a model-based methodology based

on systematic optimisation for improved understanding of the tight interplay between ef-

fluent quality, energy use, and fugitive emissions in existing WWTPs. Plant-wide models

are developed and calibrated in an objective to predict the performance of two conven-

tional activated sludge plants owned and operated by Sydney Water, Australia. In the

first plant, a simulation-based approach is applied to quantify the effect of key operating

variables on the effluent quality, energy use, and fugitive emissions. The results show

potential for reduced consumption of energy (up to 10-20%) through operational changes

only, without compromising effluent quality. It is also found that nitrate (and hence total

nitrogen) discharge could be signficantly reduced from its current level with a small in-

crease in energy consumption. These results are also compared to an upgraded plant with

reverse osmosis in terms of energy consumption and greenhouse gas emissions. In the

second plant, a systematic model-based optimisation approach is applied to investigate

the effect of key discharge constraints on the net power consumption. The results show

a potential for reduction of energy (20-25%), without compromising the current effluent

quality. The nitrate discharge could be reduced from its current level to less than 15

mg/L with no increase in net power consumption and could be further reduced to <5

mg/L subject to a 18% increase in net power consumption upon the addition of an ex-

ternal carbon source. This improved understanding of the relationship between nutrient

removal and energy use for these two plants will feed into discussions with environmental

regulators regarding nutrient discharge licensing.
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The second part of the thesis deals with the application of a systematic, model-based

methodology for the development of wastewater treatment/resource recovery systems that

are both economically and environmentally sustainable. With the array of available treat-

ment and recovery options growing steadily, a superstructure modeling approach based

on rigorous mathematical optimisation provides a natural approach for tackling these

problems. The development of reliable, yet simple, performance and cost models is a

key issue with this approach in order to allow for a reliable solution based on global

optimisation. it is argued that commercial wastewater simulators can be used to de-

rive such models. The superstructure modeling framework is also able to account for

wastewater and sludge treatment in an integrated system and to incorporate LCA with

multi-objective optimisation to identify the inherent trade-off between multiple economic

and environmental objectives. This approach is illustrated with two case studies of re-

source recovery from industrial and municipal wastewaters. The results establish that the

proposed methodology is computationally tractable, thereby supporting its application

as a decision support system for selection of promising wastewater treatment/resource

recovery systems whose development is worth pursuing. Our analysis also suggests that

accounting for LCA considerations early on in the design process may lead to dramatic

changes in the configuration of future wastewater treatment/recovery facilities.
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Chapter 1

Introduction

As the world’s population is expected to reach over 8 billion by 2030, the global challenge

for humanity is to cope with growing demands for water, energy and food in the face of

increasingly scarce resources. The U.N. estimates that we will need 30% more water, 45%

more energy and 50% more food by 2030, and climate change will exacerbate this situation

even further [1]. Water, energy and food are inextricably interconnected and considered

as the water-food-energy nexus (Figure 1.1). Globally, 70% of freshwater is used for the

agricultural sector in terms of agricultural production, forestry, fisheries and the agri-food

supply chain, making it the first water consumer [2]. Large quantities of water are also

needed in most power generation processes, including electricity, hydropower and cooling

for thermal power. At the same time, food production and its supply chain uses 30% of

the energy consumed globally [3], and energy is used to extract, lift, pump, transport and

treat water. In this context, growing demands for water, energy and food, and increasing

competition for resources between them, may affect livelihoods and the environment in

unpredictable ways.

The water-energy-food nexus is regarded as a system governed by complexity and in-

terconnections that cannot be accounted for separately. A sudden change in one aspect

can cause unpredicted and dangerous outcomes. In an irrigated agricultural sector, for ex-

1
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ample, growing bioenergy crops can potentially increase energy supply and employment

opportunities, but this may lead to problems regarding land use and water resources

[4]. To date, a system-wide method of considering these three aspects is not widely un-

derstood and rarely used in decision-making policy and regulation because the existing

water-energy-food policies are developed in isolation from each other. As a result, there

are negative consequences in terms of economic, environmental and social aspects such as

commodity prices, sub-optimal infrastructure design, as well as environmental degrada-

tion. An important step toward integration of the energy-water-food nexus is to develop

an analytical tool, conceptual model, appropriate validation method and data set that

can provide insights into the future of energy, water and food [5]. In addition, climate

change has already started to affect precipitation and temperature patterns, as well as

population growth continuing to increase. All these factors may have large impacts on

the management of food, energy and water systems.

Water

Food Energy

Water    energy

e.g. electricity, hydro power, 

cooling

Energy    water

e.g. treatment, extraction

Water    food

e.g. agrigulture, food 

processing

Food    water  

overuse of water in agriculture 

and water scarcity  

Food    energy

e.g. biofuel from crops

Energy    food

e.g. food production and 

supply chain   

Figure 1.1: Water energy food nexus.
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1.1 Wastewater Treatment Challenges

Wastewater treatment plants (WWTPs) have played an important role in returning clean

and safe water back to the environment, and are regarded as a portion of the broader nexus

between water and energy [6]. Every step in the WWTP requires energy, from wastewater

collection to discharge, meanwhile the treated water can be reused for generating energy.

To produce satisfactory effluent quality for discharge into the environment, wastewater

treatment processes require large amount of energy, mostly as electricity, which is likely

to increase in the future due to increasing population and stricter discharge regulations.

In the UK, for example, there are around 9,000 operating WWTPs [7], consuming around

1% of the overall electricity demand in the UK for treating sewage wastewater; this makes

it the fourth most energy intensive sector in the UK economy. In an aim to continuously

improve surface water quality, it is likely that effluent regulations will be tightened in the

future, along with an increasing population, which will increase the energy footprint of

WWTPs even further. This higher energy consumption will have a negative impact on

the global water industry, and is inextricably connected to climate change because elec-

trical energy, the main energy source in the WWTPs, is produced from fossil fuels. These

are becoming major concerns for the WWTP industry in terms of progressing towards

economic viability and environmental sustainability simultaneously.

In addition, a major challenge for WWTPs is disposing of the sludge produced in the

WWTPs. There are several problems associated with this sludge, such as an increase

in sludge production, increasing costs for sludge treatment, and the risks of sludge to

the environment and to human health. This is because toxic contaminants including

pathogens in wastewater are concentrated in the sludge. Awareness of the risks associ-

ated with sludge to the environment and human health has increasingly affected sludge

application as fertilizers in the agricultural sector. Policy and regulations associated with

sludge treatment and disposal have been developed to control the adverse impact of toxic

pollutants and pathogens. These have led to increased pressures for wastewater treatment
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design and operation to achieve sustainability.

Sustainability is normally defined by the World Commission on Environment and De-

velopment on the sustainability development as “Development that meets the needs of the

present generations to meet their own needs” [8]. However, this is a fundamental concept

rather than an exact meaning so its definition can be subjective and change from time

to time. Mitcham [9] made the criticism that sustainability could mean almost anything.

Instead, sustainability is typically defined in three dimensions in terms of economic, en-

vironmental and social cultural [10].

• Economic sustainability - This focuses on an increase of human quality of life to meet

and satisfy human needs. The utilities should be financially viable with sufficient

resources to maintain their infrastructure.

• Environmental sustainability - It should be an energy neutral system with minimal

chemical consumption. Nutrient management should be performed to minimise

dispersal to the aquatic environment. Also, the wastewater industry has to minimise

the other environmental impacts regarding air pollutions (e.g. CO2, N2O and CH4)

and other impacts from energy and chemical use.

• Social-cultural sustainability - This aspect may have different definitions for different

people. People are aimed to have equally social-cultural and spiritual with stable

morality, relationships and institutions [10].

In the wastewater treatment community, these aspects of sustainability and key factors

contributing to sustainable wastewater treatment facilities are investigated using differ-

ent tools, e.g. economic analysis and life cycle assessment (LCA) as a single or multiple

indicators. The assessment of sustainability by using these indicators is well-established

and found in many studies [10, 11]. It is noted that selection of the indicators varied from

study to study which depends on geography, culture, and population served [12]. More

specifically, sustainability in this study focuses on economic and environmental sustain-

ability which aims to maximise human quality of life to satisfy needs and minimisation
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of the overall environmental impacts. The financial indicator in terms of the net present

value (NPV) and the LCA methodology would be used to quantify economic and envi-

ronmental sustainability. The social-cultural sustainability is not considered in this study

because there is no standard approach to evaluate the social sustainability [13].

Achieving economic and environmental sustainability of wastewater treatment processes

can be performed through either improvement of existing WWTPs or construction of new

wastewater treatment facilities. The former can be accomplished in the short-to-medium

period of time compared to the latter. Over the last few decades, pollution reduction

measures on the quality of water bodies have been set as the first priority for wastewater

treatment processes. An improvement in effluent quality to minimise contaminants, such

as lower levels of COD or nutrients, typically requires more intensive treatment, which

often entails larger energy consumption. To address this issue, the development of im-

proved operational and control strategies is a promising option among alternatives for the

sewage industry because it involves a reduction in energy required, and an improvement

in effluent quality, which may not require any cost in terms of further investment [14].

However, it is not a straight-forward task because wastewater influent varies substantially

from one place to another, a variety of biological processes, e.g. activated sludge and

anaerobic digestion acting on different time scale and interacting with each other through

recycle streams. This has driven decision-makers to use modeling techniques to improve

plant operation. Mathematical modeling of WWTPs has become increasingly accepted

as a tool for practical use as it can provide reliable predictions of a plant’s behavior by

capturing the major process dynamics thereof, and is used to predict reliable behaviour

of the system. An important hurdle to the widespread application of such models for

WWTPs is to develop reliable models despite the limited amount of information that is

typically available (lack of characterization of the incoming wastewater and at different

stages of the treatment). Despite carrying significant uncertainty, models can still provide

valuable insights in assessing and comparing different control and operational strategies.
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Parallel to the improvement of existing WWTPs, development of new wastewater treat-

ment facilities is equally important to achieve sustainability. Most wastewater treatment

plant design is still similar to when it was established back in the early 20th century [15].

While the primary aim of conventional WWTPs is to protect human health and the en-

vironment, they are becoming one of the largest energy consumers in the UK. Evaluation

of the sustainability of WWTPs has been carried out in the the past 15 years, and the

goal of WWTPs should go beyond wastewater purification. A paradigm shift is currently

under way towards making WWTPs more sustainable; in the new paradigm, wastewa-

ter is regarded as a renewable resource from which water, energy and materials can be

recovered by using resource recovery facilities [16]. Resource recovery from wastewater

requires not only the development of new technologies, but also decision making tools that

help to evaluate innovative approaches on the basis of economic, environmental and social

aspects. A challenge here is to select a combination of treatment/recovery technologies

and interconnections among alternatives for treating a given wastewater influent (flowrate

and concentrations) to achieve performance criteria while meeting effluent requirements.

Currently, WWTP design is mostly based on design rules and guidelines e.g. Metcalf

& Eddy [17] used by engineers, which is limited for the modern technologies or config-

urations due to a steady increase in degree-of-freedoms and objectives that need to be

satisfied, e.g. effluent requirements, cost and safety. Complex WWTPs with a large num-

ber of treatment or separation units and interconnections require systematic optimisation

tools [10, 18]. Superstructure optimisation [19] provides an ideal approach to identifying

optimal solutions of complex design problems and it can account for multiple conflicting

objectives, e.g. economic and environmental performance indicators. This approach has

been increasingly applied to the synthesis of water networks [20, 21, 22, 23, 24], but only

limited optimisation research have been reported on wastewater treatment and resource

recovery systems [25, 26, 27, 28]. These studies provide insight into the potential of the

systematic optimization-based approaches for wastewater treatment design, but they are

nonetheless limited to optimizing a given process or selecting the most appropriate pro-

cess among a small number of alternatives mainly based on economical considerations.
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Because it is computationally demanding, the key to its success and novelty is the de-

velopment and selection of mathematical models for the units that are simple enough for

the optimisation problems to remain tractable, yet to provide reliable estimates of their

process performances and associated cost and environmental indicators.

Overall, this thesis aims to develop decision-making tools to identify the optimal condi-

tions for wastewater treatment design and operation using model-based methodology to

achieve economic and environmental sustainability. With the wastewater treatment chal-

lenges above, applications of the model-based methodology can provide a better under-

standing of the link between economic and environmental aspects to improve operational

strategies of existing WWTPs and valuable insights to select wastewater treatment/re-

source recovery facilities among process alternatives to achieve the performance targets,

while meeting effluent discharge requirements. The developed decision-making tool can

be expectedly used by a wide range of users including policy makers, plant managers,

researchers, engineers, environmental regulators and operators. The users should have a

basic knowledge of the system under study and aim to learn further about the economic

and environmental implications of the tools. The research gaps and specific aims will be

discussed in the next Chapter.

1.2 Outline of Thesis

The rest of the thesis is organized as follows. Chapter 2 surveys the literature on conven-

tional WWTPs and their energy use; this includes common ways to improve the WWTP,

and a model-based methodology for process optimisation and process design (a decision-

making tool) to improve sustainability in WWTPs. Chapter 3 presents the application

of a plant-wide model to evaluate operational strategies. In this chapter, a plant-wide

model is developed and calibrated with data obtained from the full-scale WWTP owned

and operated by Sydney Water to perform scenario analysis and improve operational

strategies. Later, the application of a systematic optimisation for WWTPs is presented
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in Chapter 4, which also includes the model development, calibration and scenario anal-

ysis. Chapter 5 presents a systematic approach for the synthesis of WWTPs based on

a superstructure optimisation-based approach. The use surrogate models in the optimi-

sation formulation for model tractability is proposed. Also, the extended study for the

synthesis of the WWTPs is presented by incorporating biosolids treatment and life cycle

assessment in the optimisation problem in Chapter 6. Finally, Chapter 7 concludes with

the main contributions of this thesis and discusses future research directions.



Chapter 2

Literature Review

Depletion of resources including fossil fuels and environmental pollution are the main

driving forces for better wastewater treatment. While the elimination of contaminants in

wastewater is an important task, sustainability is gradually becoming part of the criteria

for decision makers during process design and operation. Conventional wastewater treat-

ment processes are energy intensive, and considerable amounts of excess sludge and green-

house gases (GHGs) such as CO2 and N2O are produced and emited into the atmosphere

during treatment. Consequently, they can have a negative impact on the environment

and its ecology. Several studies have been carried out in order to address such problems

which are likely to become worse in the near future. This literature review chapter cov-

ers the general background of the wastewater treatment processes, which includes the

environmental impact of wastewater and conventional WWTPs. Also, typical problems

regarding WWTPs, e.g. energy use and GHG emissions are discussed in order to investi-

gate the opportunities to improve exising wastewater treatment facilities. Finally, several

approaches towards sustainability will be discussed ranging from short (energy efficiency)

to longer term (resource recovery) plans, including the use of modeling to solve energy

and environment-related problems.

9
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2.1 Wastewater and its Environmental Impacts

In the UK, over 11 billion litres of wastewater are treated daily by 9,000 sewage treatment

facilities before discharge to inland waters, estuaries and the sea. Without appropriate

treatment, wastewater can potentially damage the water environment and cause public

health problems [7]. Wastewater contains organic matter, nutrients, bacteria and chem-

icals. The negative impacts of wastewater depend on the volume of wastewater, and

the chemical and microorganisms concentrations/compostion [29]. Aerobic bacteria use

dissolved oxygen in wastewater to degrade these substances, and when there are more bac-

teria, substrate, dissolved oxygen in wastewater becomes depleted, leading to anaerobic

conditions which can produce maldorous gases and adverse impacts on aquatic life, and

other undesirable consequences. Nutrients, especially nitrogen and phosphorus, are the

primary constituents limiting the untrammelled growth of algae in the environment (eu-

trophication). The presence of these nutrients stimulates the growth or blooms of aquatic

plants, e.g. algae,which limit light penetration, and can reduce their growth and cause

these plants to die. When these plants eventually die, bacteria use dissolved oxygen in

water to decompose the plants,which causes a reduction in oxygen in the water and affects

the aquatic population. In addition, wastewater used for crop production or farming com-

munities can also cause adverse impacts on communities and ecosystems. For instance,

when nutrients leach down through the soil, they can potentially degrade groundwater

quality [30]. Problems regarding wastewater are becoming increasingly difficult to handle

because of rapidly increasing populations, and extensive industrialization. Wastewater

generated from domestic activities and/or industrial processes can be a major source of

pollution, consisting of a wide range of chemical contaminants and microorganisms.

Currently, there are several key indicators of water quality, e.g. biological oxygen demand

(BOD), chemical oxygen demand (COD), dissolved oxygen (DO), suspended solids, am-

monia nitrogen, nitrate, nitrite, phosphate and other nutrients, as well as trace metals.

There are also emerging pollutants such as pharmaceutical and personal care products
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(PPCPs) released in the wastewater [31]. High concentrations of these pollutants, except

dissolved oxygen, above the regulated values are unacceptable in water receiving bodies

due to their negative impacts on the environment, and health impacts on humans and

animals. Wastewater treatment is required to remove organic matter, nutrients and toxic

metals to acceptable levels before discharge and reuse. Standard regulations set by the

environmental regulators specify the amount and concentrations of wastewater that are al-

lowed to be discharged. Failure to meet such standards can result in heavy fines, or further

punishment. Over the past 40 years, regulatory standards for wastewater discharge have

become more and more important for improving water quality. In an attempt to improve

water quality in the UK and Europe, the EU Water Framework Directive was established,

and set a target for standard effluent quality to preserve water quality, and protect the

aquatic ecosystem; wastewater needs to be treated before discharge to receiving waters

to satisfy these standard regulations.

2.2 Conventional Wastewater Treatment Process

2.2.1 Overview of Wastewater Treatment Process

Wastewater treatment was first developed to prevent negative impacts on the environ-

ment and public health. As the population increased significantly, the amount of wastew-

ater generated rose rapidly and exceeded the self-purifying capacity of receiving water

bodies. From 1900 to the early 1970s, the main aim of wastewater treatment was to

remove suspended and floatable material, BOD and disease-causing pathogenic bacteria

[17]. Wastewater treatment was later focused primarily on aesthetics and environment

from the early 1970 to 1990s [32], however, the existing requirement remained valid but

at higher levels. Nutrient removal started to be addressed in some streams, and as a con-

sequence, this increased understanding of the environmental effect caused by wastewater,

and knowledge of negative impacts caused by the specific components in wastewater [33].

Wastewater treatment has also focused on the heath concerns regarding toxic and poten-
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tial toxic chemicals discharged into the environment since 1990 [34]. While the earlier

treatment objectives remain valid, the degree of treatment and treatment objectives have

increased significantly; this can be achieved through appropriate wastewater treatment

processes [17, 34].

Sewage/wastewater is necessarily treated before discharge into the environment. To treat

wastewater, organic matter and other pollutants are removed from wastewater to an

acceptable level before discharge. Based on wastewater regulations this does not re-

quire specific technologies, so the systems for collecting, treating and disposing municipal

wastewater vary widely in terms of processes used and equipment. In order to satisfy the

level of contaminant removal which is typically enforced by local regulations, biological,

chemical and physical processes are used to remove contaminants from the wastewater,

and these methods are combined into various linked systems, classified as preliminary,

primary, secondary and tertiary treatment [7, 35] (Figure 2.1) as follows.

primary
treatment

Secondary
treatment

Tertiary
treatment

Sludge
treatment

Preliminary/

Residual 
sludge

Influent Effluent

Sludge

Recycle

Figure 2.1: Levels of wastewater treatment processes.

2.2.1.1 Preliminary Wastewater Treatment

Preliminary wastewater treatment involves the removal of wastewater constituents which

may cause maintenance or operational problems in subsequent processes. It solely sepa-

rates the floating materials (tree branches, papers, pieces of rags, wood etc) and the heavy
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inorganic solids. Examples of prelimanary unit operations include screening (removal of

debris and rags), grit removal (removal of coarse suspended matter) and floatation (re-

moval of oil and grease).

2.2.1.2 Primary Wastewater Treatment

A portion of the organic matter and suspended solids are removed in primary treatment.

The liquid effluent from primary treatment may still have a high BOD (around 60%

of wastewater influent), and contain large amounts of suspended organic matter. The

separated organic solids from this stage are sometimes stabilized by anaerobic digestion,

or incinerated for energy recovery; the remains from sludge stabilisation is used either

for landfill or fertilizer. The removal is achieved by sedimentation and some chemicals

such as metal salt and polymers as organic polyelectrolytes [36] may be added to enhance

solids removal.

2.2.1.3 Secondary Wastewater Treatment

After primary treatment, wastewater is sent to secondary treatment to remove organic

matter and any remaining suspended solids by means of biological treatment, either un-

der aerobic or anaerobic conditions. In biological treatment, biomass decomposes the

organic matter to produce a clearer effluent, and the effluent from secondary treatment

usually contains very little BOD (5-10% of wastewater influent), and small amounts of

DO. Biosolids or sludge separated in the secondary settling tanks is sometimes disposed by

stabilizing it under anaerobic conditions (similar to the primary sludge). Aerobic treat-

ment is commonly used as secondary wastewater treatment, e.g. the activated sludge

process, because it is the most conventional approach to removing organic matter and nu-

trients, and is very flexible in achieving specific effluent requirements, although it needs a

large amount of energy, mostly for aeration to maintain an aerobic population of bacteria

in the bioreactor. Anaerobic treatment, on the other hand, requires less energy consump-

tion and some portion of the potential energy can be recovered. Due to the energy crisis
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in the 1970s, research attention has been shifted from aerobic to anaerobic wastewater

treatment [33]. However, bacteria under the anaerobic condition require longer retention

times due to their slow growth, and it has a very little effect on nutrient removal.

2.2.1.4 Tertiary/Advanced Wastewater Treatment

Tertiary treatment involves additional treatment beyond the secondary treatment or the

final cleaning process to improve wastewater quality before being reused, recycled or

discharged to the environment. The majority of BOD and suspended solids found in

wastewater are removed in the primary and secondary stages. This stage of treatment

is particular important in the sensitive or fragile ecosystems, e.g. estuaries, coral reefs

and rivers to protect those areas and/or to meet requirement standards of directives.

The tertiary treatment would be tailored to specific contaminants [37]. This includes

filtration, disinfection and nutrient removal. It is also known as “advanced treatment”

where nutrient removal is included. The following section provides further details about

nutrient removal in wastewater treatment.

2.2.2 Nutrient Removal

Nutrients, especially nitrogen and phosphorus are of considerable concern in wastewater

discharge. Discharging these nutrients into receiving waters may stimulate the growth

of algae/rooted aquatic plants in shallow streams, and lead to eutrophication. Large

amounts of nitrogen and phosphorus can also have other negative effects such as: toxicity

to aquatic life (NH3), chlorine disinfection efficiency (NH3 to chloramines), depletion of

dissolved oxygen due to nitrogenous oxygen demand (oxidation of ammonia to nitrate),

and creation of a public health hazard (e.g. infant methaemoglobinaemia from nitrate

ingestion [38]). Phosphorus and nitrogen can be removed by either biological, chemical

or physical methods, as described below.
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2.2.2.1 Nitrogen Removal

Nitrogen is an important nutrient for the growth of biological life, and one of the primary

components in living organisms. However, excessive amounts of nitrogen in wastewa-

ter can be toxic for aquatic organisms, eg. fish, and cause eutrophication. Nitrogen in

wastewater can be present in several forms, e.g. ammonia, nitrate, nitrite and organic

compounds; most nitrogen in wastewater is in the form of ammonium and ions that are

difficult to remove. Typically, nitrogen is removed through biological processes consisting

of two steps, nitrification and denitrification, and each step requires different environmen-

tal conditions. Complete nitrification is performed through two sequential oxidative steps

by autotrophic bacteria under aerobic conditions. Each step is carried out by different

bacteria genera which use ammonia or nitrite as an energy source, and oxygen as an elec-

tron acceptor, while the carbon source used is carbon dioxide. In the first step, ammonia

is oxidized to nitrite by a group of autotrophic bacteria called Nitroso-bacteria or Am-

monia Oxydizing Bacteria (AOB), and Nitrosomonas is the most commonly recognized

genus of bacteria to perform ammonia oxidation (2.1) [39]:

NH+
4 +

3

2
O2 −→ NO−

2 + 2H+ +H2O (2.1)

Then nitrite, which is a product of ammonia oxidation, is further transformed into nitrate

by another group of autotrophic bacteria called Nitro-bacteria or Nitrite Oxidizer Bacteria

(NOB). Nitrobacter is the most commonly recognized nitrite oxidizer [39]:

NO−
2 +

1

2
O2 −→ NO−

3 (2.2)

Autotrophic nitrifying bacteria are more sentitive to environmental conditions, and their

growth rate is relatively slower than heterotrophic bacteria [39]. As a result, the reten-

tion time required for biomass in nitrifying reactors is necessarily longer than treatment

systems for COD removal in order to have enough time to grow the nitrifying bacteria.

The growth rate of nitrite oxidizing bacteria depends on ammonia oxidizing bacteria for
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their nitrite supply, although it is higher.

Denitrification involves nitrate reduction, thereby transforming it to nitrogen gas, and

is carried out by facultative heterotrophic or autotrophic bacteria under anoxic con-

ditions. For the heterotrophic denitrifers, biological denitrification is the oxidation of

organic substrates in wastewater which use nitrate or nitrite as the electron acceptor.

Nitrate reduction involves several steps from nitrate to nitrite, nitric oxide, nitrous oxide,

and finally nitrogen gas. If the process is not complete, nitric oxide (NO) and nitrous

oxide (N2O) can be emitted, which can contribute to smog and GHGs, respectively.

6NO−
3 + 5CH3OH −→ 5CO2 + 3N2 + 7H2O+ 6OH− (2.3)

For autotrophic bacteria, inorganic compounds, e.g. sulphur, iron and hydrogen are used

as electron donors instead of organic carbon for growth, and nitrate is still used as an

electron acceptor, while organic carbon is obtained from carbon dioxide. The main advan-

tage of autotrophs over heterotrophs is that it is easier to manage and maintain inorganic

compounds than organic carbon [40].

Nutrient removal can be achieved through severa options in wastewater treatment pro-

cesses, e.g. activated sludge, trickling filters, membrane bioreactor (MBR), moving bed

biofilm reactor (MBBR). However, activated sludge is commonly used for organic and ni-

trogen treatment for both domestic and industrial wastewater because it has been proven

successful and reliable [41, 42]. The simplest activated sludge system consists of two main

components: the bioreactor or the aeration tank and clarifier. Biomass or bacteria in

the bioreactor convert soluble and colloidal biodegradable organic matter, nutrients and

certain inorganic compounds into cell mass and metabolic end products. Then, treated

water and biomass are separated in the clarifier by means of sedimentation. The activated

sludge system was developed by Arden and Lockett in 1914 [43], and has becoming very

popular all over the world. Activated sludge has also been applied for nitrification and

denitrification by changing its environmental conditions; for instance, high levels of oxy-
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gen are supplied for nitrification under aerobic conditions, although isolated anoxic and

aerobic reactors are usually used (pre-denitrification and post denitrification). There are

typically three main process configurations for biological nitrogen removal (BNR), and

for the preanoxic denitrification (Figure 2.2a), which is a sequence of anoxic and aerobic

tanks. The nitrate produced in the aerobic zone is recycled back to the anoxic zone to

combine with the carbon source available in the influent for denitrification to occur. The

postanoxic configuration (Figure 2.2b), on the other hand, is the sequence of the aerobic

and anoxic zones. This approach requires the external carbon source added in the anoxic

zone to perform denitrification because most of the organic carbon available for deni-

trification in the wastewater influent may be already degraded in the aerobic zones. In

the third configuration, nitrification and denitrification occurs in one bioreactor, and an

alternating operational strategy is carried out between aeration and no aeration periods.

The aeration period when COD oxidation and nitrification are performed alternates with

a period of no aeration when the biomass depletes the oxygen to create anoxic conditions

for denitrification.

However, conventional nitrogen removal based on nitrification and denitrification is an

energy intensive process. Over the last few decades several new and cost-effective nitro-

gen removal processes have been developed. Anaerobic ammonium oxidation (Anammox

process) is a promising technology among a variety of alternatives, and may be suitable for

the treatment of nitrogen-rich wastewater. The discovery of Anammox bacteria provides

a better understanding of the nitrogen cycle, and was first discovered in a denitrifying flu-

idized bed reactor [44]; ammonium is oxidized to nitrogen gas by autotrophic Anammox

bacteria under anoxic condtions. Anammox has advantages in terms of smaller reactors,

higher nitrogen removal rate, and lower operational costs. It has been successfully im-

plemented at the laboratory, pilot and full scale to treat ammonium-rich wastewater, e.g.

supernatants from anaerobic digestion [45]. However, ammonium is required to be partly

preoxidized to nitrite before the Anammox process, and as a result Anammox needs to

be operated in sequence with a partial nitrification process such as a single reactor high
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activity ammonium removal over nitrite process (SHARONR©) [46]. SHARONR© was de-

veloped for ammonia removal through the nitrite route, and provides appropriate influent

conditions for the Anammox reaction. The partial nitrification is typically performed in a

single stirred tank with suitable conditions (no sludge retention, about 1 day HRT, 30-40

◦C and 6.6-7 pH) and this results in a stable nitrification with nitrite [47].

Influent

Return sludge

T

Internal recycle

(a)

Influent

Return sludge

T

(b)

Figure 2.2: Activated sludge with nitrification and denitrification processes; a) preanoxic,
b) postanoxic.

2.2.2.2 Phosphorus Removal

Phosphorus removal can be achieved using either a chemical or biological process, or

a combination of both. The chemical precipitation of phosphorus was used in Paris in

1740 with lime [48] and with alum/iron salts [49]; the method is relatively simple and

well established in several countries around the world. It involves the addition of metal

salts to wastewater resulting in the precipitation of an insoluble metal phosphate which

is separated by sedimentation; metals such as calcium, iron and aluminium are normally

added, while lime and anionic polymers may also be used to precipitate and assist solids
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separation. Chemical precipitation for phosphorus removal is very flexible and can be

implemented at several stages during wastewater treatment. In addition, chemical pre-

cipitation produces phosphorus bound up as a metal salt in the waste sludge, which could

provide potential value when it is used in agriculture. However, this approach results

in high reactive chemical costs, and produces additional sludge. Several studies have at-

tempted to develop alternative technologies that can offer more value and a consistent

product for recycling phosphorus to other applications [50].

Biological phosphorus removal is more complicated involving a group of bacteria called

PAOs (Phosphorus Accumulating Organisms), and is based on switching the system be-

tween anerobic and aerobic conditions. During anaerobic conditions PAOs store organic

compounds such as VFAs as PHA (Polyhydroxyalkanoates) which are then degraded for

growth and respiration. At the same time, phosphate is assimilated into cells and the

storage of polyphosphate is increased. Phosphorus removal occurs when sludge with the

accumulated phosphorus is removed, as illustrated in Figure 2.3. Biological phosphorus

PHA

Poly-P

VFA
PO3-

4

Energy

PHA

Poly-P

CO2 + H2O
PO3-

4

Energy

 O2/NO3
-/NO2

-

Anaerobic conditions Anoxic/aerobic conditions

Figure 2.3: Mechanism of biological phosphorus removal modified from Ostace [51].

removal is commonly achieved in the activated sludge process, thereby placing an anaero-

bic and/or anoxic zone ahead of an aerobic zone. In the anaerobic zone where oxygen and

nitrate is not available, bacteria take up the VFAs and release phosphorus in the form

of phosphate into solution. Then bacteria in the aerobic zone can uptake phosphorus,

which increases overall phosphorus removal to as much as 80-90%. Over the past several

decades, biological treatment systems for simultaneous nitrogen and phosphorus removal
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have been developed and the anaerobic-anoxic-aerobic (A2O) process (Figure 2.4) is the

most simple, common and practical process [52]. However, efficiency of biological phos-

phorus removal is generally low, and it requires chemical precipitation in order to result

in high and consistent removal.

Over the years, sewage sludge has been used in agriculture because it contains useful

nutrients, e.g. phosphorus and nitrogen. Phosphorus is an important, yet limited re-

source that cannot be replaced by other elements, and is one of the main nutrients for

plant growth. With increasing populations, the demand for food crops and hence phos-

phorus consumption has grown significantly. However, the supply of phosphate rock is

expected to be depleted in the near future [53], and a number of researchers have at-

tempted to recycle phosphorus in wastewater [54, 55]. Currently, phosphorus recovery

is attracting considerable attention, and there have been various approaches developed

which will be discussed in the section on resouce recovery.

Influent

Return sludge

T

Internal recycle

Anaerobic Anoxic Aerobic

Figure 2.4: Biological phosphorus removal (A2O) process.

2.2.3 Biosolids Treatment

Biosolids or sludge treatment is a critical issue because a large amount of sludge is pro-

duced as a waste or by-product from conventional WWTPs, and it is one of the most

challenging economic and environmental problems in wastewater treatment [56, 57]. Typ-

ically, sludge from wastewater treatment processes is in liquid form, and its characteristics

are dependent on influent composition and the treatment units used. Solids in wastewater
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influents are usually removed in the primary clarifier, while organic solids are generated

and removed in the secondary treatment or thickening process. The main aim of sludge

treatment is to reduce the sludge volume to reduce handling and transport costs, to pre-

vent odour, and to eliminate disease-causing bacteria. Sludge treatment firstly needs to

reduce the water content of raw sludge, and to transform complex organic matter into a

relatively stable and inert residue. The residue from sludge treatment is required to meet

conditions for disposal acceptance regulations, and several alternatives for sludge disposal

include agricultural reuse, incineration, gasification etc.

Sludge treatment for municipal WWTPs typically consists of the processing steps, as

shown in Figure 2.5. A first step is to thicken the sludge by means of gravity, flotation

Thickener

Sludge pretreatment

Digester Residual sludgeCHP (onsite use)

Supernatant Dewatering

To wastewater 
treatment facilities 

Sludge disposal

Figure 2.5: Schematic representation of sludge treatment modified from Appels et al. [58].

or filtration. The separated water or supernatant is sent back to the head of the WWTP,

and the thickened sludge is subjected to some form of stabilization. Anaerobic digestion

is the most widely used technique for sludge stabilization, and has been for over 100

years, but is now receiving enhanced attention because of its ability to transform organic

matter into biogas (70% methane), and reduce the amount of sludge for disposal; it also
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considerably reduces the pathogens in sludge. Anaerobic digestion involves the biological

oxidation of organic matter without oxygen to produce end-products such as methane and

carbon dioxide. It is used for stabilizing the sludge, reducing the overall load on sludge

disposal [58], enhancing sludge dewatering ability and reducing microorganisms. It also

converts part of the organic matter into biogas which is used as an energy source to reduce

operating costs, and the amount of biogas produced from anaerobic digestion depends on

the sludge composition [59]. Anaerobic digestion of organic matter basically consists of

four stages: hydrolysis, acidogenesis, acetogenesis and methanogenesis, as illustrated in

Figure 2.6. In the first stage, insoluble organic material and complex organic matter such

Complex organic matter

CarbohydratesProtein Lipid

Amino acids, sugar Fatty acids

Volatile fatty acids (VFAs)

Acetic acid H2, CO2

CH4, CO2

Hydrolysis

Acidogenesis

Acetogenesis

Methanogenesis

Figure 2.6: Subsequent stages in the anaerobic digestion process of organic matter.

as carbohydrates, protein, lipids are hydrolyzed into smaller soluble organic substances,

e.g. amino acids, sugar and fatty acids, and hydrolysis is often the rate-limiting stage in

anaerobic digestion. These substances from hydrolysis are further degraded in the sec-

ond stage, where volatile fatty acids (VFAs) along with ammonia, CO2, H2S and other

by-products are produced by acidogenic bacteria. Later, the VFAs are degraded in the

acetogenesis stage to produce acetic acid, CO2 and H2, and the partial pressure of H2

controls this conversion. Finally, methane is produced by two groups of methanogenic
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bacteria in the methanogenesis stage. In the first group, acetic acid is split into methane

and CO2, whereas in the second group H2 as the electron donor combines with CO2 as an

electron acceptor to form methane. The digested sludge has a tar-like consistency, and

smells ammoniacal. Anaerobic digestion also conserves nutrients, which are more available

to plants and reduce the quantity of sludge produced, and is practically combined with a

combined heat and power generation (CHP) unit to produce renewable energy in the form

of electricity and hot water. However, the requirement for long retention times and high

temperatures ( 35 ◦C) are drawbacks for this treatment due to the slow growth rate of

methanogenic bacteria. Several studies have focused on increasing the amount of sludge,

improving mixing in digesters and increasing biogas yield (increasing solids destruction).

For example, conventional anaerobic digesters require large residence time and large vol-

umes due to the slow degradation rate of anaerobic digestion and sludge hydrolysis is

the rate-limiting step. The use of ultrasound, microwaves, high pressure homogenizers,

enzymatic and themal hydrolysis break open cells to increase solids destruction, stabil-

ity at the shorter residence time and biogas production [60, 61] because degradability is

improved. These techniques also improve the subsequent process e.g. dewatering and

sanitisation of sludge and the odour.

Residue sludge after stabilization is transferred to the dewatering unit to further re-

duce the sludge volume. Dewatered sludge contains 20-35% dry solid (65-80% moisture),

and depends on the type of sludge and its dewatering. A conditioner is typically added

to flocculate the particles, and free water is removed. Dewatering is an important step

before utilizing sludge in subsequent processes. For example, the cost of thermal drying is

directly related to the effectiveness of dewatering because it has an effect on the amount

of water to be evaporated. It is interesting to note that the better the dewatering, the

better and easier the sludge would be to be used in subsequent processes. Supernatant

from the dewatering unit is normally returned to the inlet of the wastewater treatment

process because it contains high levels of nitrogen, phosphorus as well as being warm.

The return supernatant can make the process more efficient as there are a number of
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treatment methods which are not commonly used with the main wastewater stream, such

as Anammox and nutrient recovery.

2.3 Energy Use in WWTPs and GHGs Emissions

Wastewater treatment is an energy intensive process as all steps in wastewater treatment

require energy for mixing, pumping and aeration. Energy consumption in WWTPs de-

pends on the location of the plant, size (population, organic/hydraulic loading), wastew-

ater characteristics and effluent requirements. The specific power consumption can be at-

tributed to the difference in the scale of the plants rather than different kinds of WWTPs

[62]. Typically, electricity consumption for wastewater treatment is about 1% (7,703

GWh/year) of the total UK demand, making it the fourth most energy intensive sector

[63] in the UK economy. WWTPs require energy in the range of 0.5-2.0 kWh/m3, but

less than 0.5 kWh/m3 for wastewater treatment without nutrient removal [64]. Different

stages in conventional WWTPs require different energy uses. Bod́ık and Kubaská [65]

reported on the specific energy demands of three treatment stages, which vary widely in

different countries, as presented in Table 2.1.

• Preliminary/Primary treatment - This includes wastewater collection, pump-

ing, screening, grit removal and sedimentation in the primary settling tanks. The

processes in this treatment step requires relatively low energy use (except wastew-

ater pumping). The average or range of energy consumption varies widely in the

literature from different countries. Sludge pumping is generally considered as the

largest energy use. However, efficiency of primary treatment affects energy use in

secondary treatment; for example, a lower efficiency in primary treatment may re-

quire more energy in terms of aeration to remove organic matter and nutrients in

secondary treatment.

• Secondary treatment - Aeration is considered to require the largest amount of

energy in secondary treatment. Typically, the aeration energy in biological treat-
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ment with nutrient removal can represent up to 50% of the overall WWTP operating

costs, or even higher [64]. Along with aeration, mixing and recirculation require sig-

nificant energy use, especially in the activated sludge system. Similarly, the range of

energy use in secondary wastewater treatment varies widely from country to country

[65].

• Tertiary treatment - This stage requires a relatively large amount of energy be-

cause of the demands from nutrient removal processes such as nitrification, denitri-

fication and biological P removal. Additionally, energy use can be even larger for

water reclamation/reuse, which may require advance treatment technologies such as

reverse osmosis to purify wastewater. It is worth noting that this treatment stage

is defined differently between countries.

Table 2.1: Energy use of primary, secondary and tertiary treatment in different countries
[65].

Country Energy consumption, kWh/m3

Primary treatment
USA 0.04
New Zealand 0.04 -0.19
Canada 0.02 - 0.1
Australia 0.01 - 0.37
Secondary treatment
Australia 0.305
China 0.29
Japan 0.304
USA 0.2
Sweden 0.42
Tertiary treatment
Japan 0.39-3.74
USA 0.43
Taiwan 0.41
New Zealand 0.49
Hungary 0.45-0.75
Singapore 0.72-0.92

More specifically, a domestic WWTP with activated sludge and anaerobic sludge diges-

tion consumes around 0.6 kWh/m3 of treated wastewater, which results mainly from the

supply of air for the activated sludge. However, biogas produced from sludge treatment

through anaerobic digestion can reduce the energy use for activated sludge by 25-50%. It
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is worth noting that further plant modifications may be able to reduce energy consump-

tion substantially, and capturing more energy can potentially transform wastewater into

a net energy producer instead of consumer [66]. Other wastewater treatment processes

including lagoons, trickling filters, activated sludge and advanced wastewater treatment

use energy of 0.09-0.29, 0.18-0.42, 0.33-0.6 and 0.31-0.4 kWh per m3 treated wastewater,

respectively [64]. Figure 2.7 represents typical energy use in a 10 million gallons per day
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Figure 2.7: Typical energy use profile for 10 MGD WWTPs, modified from Owen [67].

(MGD) conventional WWTP with commonly used unit operations and processes. How-

ever, the energy consumption of WWTPs with smaller hydraulic capacities and more ad-

vanced treatment technologies generally require larger amounts of energy per unit volume.

Together with energy consumption, the WWTP is a source of greenhouse gas (GHGs)

emissions which are responsible for global climate change. It is found that around 45

million tons of CO2 is emitted annually in the U.S. because of organic waste degradation

apart from the GHG emissions generated from energy consumption [64]. Additionally,

worldwide wastewater is the fifth largest source of fugitive anthropogenic methane (CH4)

emissions. Worldwide wastewater contributes to 3% of the total nitrous oxide (N2O) emis-

sions, which is the sixth largest emission source [68]. Tribe [69] studied carbon emissions

from WWTPs at different levels of ammonia discharge based on tertiary nitrifying trick-
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ling filters. The specific carbon emissions were around 2.2 tCO2e/tNH3-N removed for the

ammonia discharge of 5 mg/L through nitrification. The situation was even worse because

the specific carbon emission rises significantly by almost 50% for an ammonia discharge

of 1 mg/L, as illustrated in Figure 2.8. Quantitatively, the whole life carbon emissions

over 40 years of a WWTP with 200,000 population equivalents is around 455,908 tCO2e

(11,398 tCO2/yr). It was found that the carbon emissions were dominated by carbon from

indirect emissions due to electricity use from the grid, and onsite generation. In addition,
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Figure 2.8: Whole life carbon and effluent quality for tertiary WWTPs, modified from
Tribe [69].

the biological approach for nitrogen removal based on nitrification and denitrification can

contribute to the generation of nitrous oxide (N2O). This is of particular concern because

the radiative forcing of N2O is 300-fold stronger than CO2, and it can react with ozone in

the stratosphere which can result in ozone layer depletion. Thus, small amounts of N2O

can potentially have an adverse impact on the environment. Ni et al. [70] reported that

N2O emissions currently accounts for 0.1-25% of the consumed nitrogen in the nitrification

and denitrification processes.

Interaction inside Wastewater Treatment Processes

After considering various wastewater and sludge treatment processes in WWTPs, it is also

important to view the whole picture of processes and interactions amongst them. This
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is because it has effects in several aspects in terms of process operation, effluent quality,

energy use and environmental impacts. Although it is more convenient to consider one

unit at a time, this may loose sight of interactions amongst them, and the interaction

between various treatment/ separation units makes process design and operation more

difficult to handle. Treated wastewater from one unit will affect the subsequent units,

and recycling within the plant makes the overall operation more complex. Similarly, the

total energy consumption and fugitive emissions in WWTPs are a function of interactions

among the treatment/ separation units. For instance, energy use for secondary treatment

is a function of primary treatment performance, and likewise, the energy requirement for

sludge treatment is affected by both primary and secondary treatment. Most stabilisa-

tion processes are energy efficient when organic matter is concentrated before treatment,

and depending on the wastewater characteristics, primary treatment can remove and con-

centrate organic matter by means of physical separation using small amounts of energy.

However, organic matter is not stabilised in this process and thus subsequent stabili-

sation processes are required. In many applications, the energy cost for removing and

concentrating organic matter in primary treatment can save a large amount of energy

that is otherwise required for subsequent processes. For example, the wastewater influent

is split in primary treatment: a fraction of solids is conveyed to sludge treatment, while

the remainder is sent to secondary treatment. Organic matter can be treated either in

the secondary treatment process or in sludge treatment (which includes secondary waste

activated sludge). If energy efficiency in sludge treatment is higher than in secondary

treatment, the preferred method is to remove as much organic matter as possible in the

primary treatment, sending this organic load to sludge treatment. In the case where there

is no primary treatment and the total organic matter is conveyed to secondary treatment,

this can lead to an increase in energy consumption [67].

Design and operation of secondary treatment will determine the fractions stabilised in

each sequence. In activated sludge, for example, SRT is used to determine the degree

of stabilisation, and this is more complete at long SRTs (less waste sludge generated).
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However, energy consumption due to aeration is higher at longer SRT. Sludge treatment,

e.g. anaerobic digestion, is also affected by activated sludge from waste sludge production.

When considering nitrification at long SRTs, the effect of secondary treatment SRT on

energy consumption can be more dramatic, but in general, shorter SRTs lead to overall

system energy efficiency. However, if sludge treatment is not energy efficient, the con-

verse of the above situation holds true. For medium and large scale WWTPs, wastewater

influent typically undergoes primary settling to remove 50-70% of the particulate matter

[17]. Primary settling has effects on both wastewater and sludge treatment, which turns

out to be lower oxygen demand and higher energy recovery. A practical approach to

enhancing primary sedimentation can be through chemical precipitation by adding metal

salts and/or polymers to enhance precipitation. The addition of chemicals can cause

the suspended particulates to aggregate together through coagulation and flocculation.

However, this may decrease the efficiency of nutrient removal in terms of denitrification

due to the absence of a carbon source. Gori et al. [71] investigated the effect of pri-

mary sedimentation on the energy footprint of wastewater treatment processes. Primary

sedimentation increases the solid fraction of COD sent to anaerobic digestion, and this

leads to an increase in biogas production, and energy recovery of up to 130%. It could

also reduce energy consumption by up to 13.5% compared to a scenario without primary

sedimentation.

2.4 Sustainable WWTPs

Economic and environmental crises have steadily increased due to an increase in energy

use and GHGs emissions, and the foreseeable depletion of non-renewable resources. These

problems have driven WWTPs toward a more sustainable utilization of wastewater, how-

ever, solving such problems is not a straightforward task. Baleta and McDonnell [72]

pointed out that there are conflicts between the European Union Water Framework Di-

rective (EU WFD) and the United Kingdom Climate Change Act (UK CCA). The EU

WFD aims to achieve good ecological and chemical status in inland and coastal waters by
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2015, which can be implemented by increasing effluent quality standards and removing

hazardous components from wastewater discharge. However, this requires addtional treat-

ment and consequently more carbon emissions, and it is estimated by the WFD that this

will result in an increase of 110,000 tonnes of carbon emissions per year.Unfortunately,

this contradicts the UK CCA policy which aims to reduce GHG emissions by 80% by 2050

from the baseline levels in 1990. Additionally, problems regarding climate variability, e.g.

rising temperature, drier summer, and more intense rainfall, can lead to a worsening of

the situation, e.g. risks of higher water demand from drought or flooding. Such con-

tradictions with respect to carbon emissions reduction and effluent quality requirements

present a moral dilemma in comparing two conflicting situations.

Sustainability as defined in Chapter 1 is becoming an increasingly important criterion

in WWTPs, but current practices in WWTPs are typically energy intensive and require

large investments, as well as operating costs. In addition, there is a significant amount

of both offsite and onsite GHGs emissions such as CO2, CH4, N2O and other volatile

compounds. At the same time, excess sludge is being produced and needs further treat-

ment and disposal. Finally, most of the valuable resources in wastewater such as NH+
4 -N,

PO3−
4 -P and heavy metals are removed instead of being recovered; without improvement

and process modification these can lower process sustainability significantly. Recently,

effort has been made by the wastewater treatment community to improve sustainability,

which includes the optimisation of energy use, resource recovery, efficiency of equipment

and energy costs.

For instance, the Strass WWTP in Austria has undergone excellent improvements towards

being more sustainable. It serves approximately 60,000-250,000 population-equivalent, de-

pending on the season (peak during the tourist season in the winter) and consists of a two-

stage biological treatment to remove organics and nutrients. Several efforts were made to

produce more electrical energy than the energy required for its operation. These include a

reduction in chemical cost and energy consumption through replacing old equipment with
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new/more efficient equipment, changing control/operational strategies and implementing

a sidestream nitrogen removal (DEMONR©). Additionally, new co-generation was used to

enhance the efficiency of electricity production. The WWTP could produce energy of up

to 8,500 kWh/day, while requiring only 7,869 kWh/day [73], and hence was energy neu-

tral. It becomes clear that WWTPs have considerable potential to become a sustainable

process, or even an energy exporting one. More generally, two main approaches may be

used in WWTP in order to improve sustainability, namely energy efficiency and resource

recovery.

2.4.1 Energy Efficiency for WWTPs

Water quality is the main concern in the wastewater industry to keep public trust [74].

WWTPs are traditionally designed to meet effluent requirements without taking energy

efficiency into account. Their design and operation are mostly based on intuition and

experience [17], rather than on optimal conditions [75], and hence WWTPs consequently

use a large amount of energy for process operation. More specifically, energy distribution

in a conventional WWTP is shown in Figure 2.9. It can be clearly seen that aeration

accounts for significant energy use, ranging from 50-75% of the total energy consumption

[64]; wastewater pumping and anaerobic digestion are also major energy intensive pro-

cesses. Recently, energy efficiency has played an important role in achieving sustainability,

and there is even more potential to slow the increase in energy use through improving

energy efficiency while improving wastewater treatment. It is obvious that higher energy

efficiency can offer lower energy use, GHGs emisssions and operating costs for WWTPs

[76]. Energy efficiency can be achieved through several approaches, including control and

operational changes, and replacing and retrofiting inefficient equipment. Energy use in

WWTPs can be reduced significantly by replacing and/or retrofitting existing equipment,

e.g. pumps with better-sized and higher efficiency equipment. Practically, equipment

should be evaluated regularly in terms of its condition, performance and remaining life-

time. Aging equipment which has reached the end of its lifetime, is typically inefficient
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Aeration (54%)

Clarifier (3.2%)
Grit chambers (1.4%)

Wastewater pumping (14.3%)

Lighting and buildings (8.1%)

Chlorination (0.3%)

Belt press (3.9%)

Anaerobic digestion (14.2%)

Gravity thickening (0.1%)
Return sludge pumping (0.5%)

Figure 2.9: Distribution of energy requirement for conventional WWTPs in U.S., modified
from Gude [64].

and requires more energy than new equipment. While this concept requires capital invest-

ment for purchasing new equipment, energy saving costs could be more effective over the

life cycle. Several assumptions were probably made in the conservative design of previous

equipment, including the use of design guidelines, engineering experiences, safety factors

and a worst case scenario, which may lead to an oversized design. Consequently, the

operation may be far away from its optimal conditions, and the replacement of the old

pumps with higher effciency pumps or a new model can typically save around 5-15% of

its energy costs [77]. For instance, the East Bay Municipal Utility District (EBMUD) in

northern California treats 1.57 billion litres of wastewater a day. Several energy efficiency

measures were implemented, which included replacing two smaller compressors with one

large unit, and installing a higher efficiency motor with variable frequency drives (VFDs).

This led to a reduction in electricity use by the pumps of around 50% [78].

Energy efficiency can be implemented through a modification of control and operational

strategies. It is important to understand how the individual treatment/separation units
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in WWTPs are operated, and how they affect the other units, because setpoints of some

units, e.g. DO level can be changed within the design limits. Better control and opera-

tional strategies can offer opportunities to reduce energy use and GHGs emissions while

still maintaining effluent quality within the regulatory limits. However, control and oper-

ational strategies for WWTPs are different from plant to plant, and may vary by time of

day, season, and/or other characteristics. Evaluating influent and effluent trends regularly

can help improve control and operational strategies. Improving control and operational

strategies in WWTPs such as adjustment of the aeration capacity and flowrate involves

a reduction in energy use, and can typically save more energy than equipment upgrades

without any capital investment requirements [79]. It is interesting to note that the aim

of this approach is to achieve an optimal balance between effluent quality and energy.

Several attempts in the wastewater treatment community have been made to optimise

aeration through controlling a dissolved oxygen setpoint due to the fact that aeration

is an energy-intensive process. Åmand et al. [80] investigated an approach to control

aeration to reduce energy consumption while satisfying effluent discharge standards. The

results show that the air flow requirement can be reduced around 1-4% in comparison

with the constant dissolved oxygen set point, and 14% in comparison with fast feedback

of effluent ammonium, thereby changing the control and operational strategies. Recently,

Mamais et al. [81] assessed energy consumption and GHG emissions in Greek WWTPs

ranging from 10,000 to 4,000,000 population-equivalents (PE), and used a mathematical

model to evaluate the proposed energy saving strategies through changing control/opera-

tion strategies. The results of this case study show that there is a potential to reduce both

energy use and GHG emissions by up to 4.5 MWh/yr, through the reduction of dissolved

oxygen set points and sludge retention times.

Although WWTPs consume a large amount of energy, it is possible to recover/gener-

ate renewable energy within the plant. The main energy contributor derives from biogas

produced in the anaerobic digester, and heat that is conserved in the wastewater. In

certain cases, energy contributions from solar, wind and hydroelectric energy can also be
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used as follows:

• Biogas - this energy is in the form of a methane-rich biogas that can be extracted and

transformed into electrical and thermal energy. If the influent load of organic matter

is relatively high, it is easier to extract more energy in comparison with a low loaded

plant. The production of biogas occurs where wastewater/sludge is anaerobically

treated. Normally, the biogas consists of 60-70% CH4, 30-40% CO2, 4% nitrogen and

trace elements. A full scale WWTP in Austria with nutrient removal is energy self-

sufficient because the energy production from anaerobic digestion through Combined

Heat and Power (CHP) generation is larger than the electrical energy used [82].

• Wastewater heat energy - the stored heat energy in wastewater can be extracted and

used for heating WWTPs, as well as distributing to a local district heating network.

However, most wastewater plants are located far from urban areas or district-heating

networks so the possibility of distributing this to the local district-heating network

is limited. Wastewater treatment generally requires the stored heat for enhancing

biological activity, so possible heat extraction should occur when the wastewater

has already been treated. The wastewater is a suitable heat source because of its

generally large volumes and reliable steady flow [66, 83].

• Hydroelectric power - this technology utilizes turbines and/or other devices to gen-

erate electricity from effluent water. Such devices may be installed in conduits e.g.

pipelines or aqueducts. With the elevation condition, hydroelectric power can be

used as an alternative energy source, and commonly a hydroelectric power unit can

generate energy with over 70% efficiency. For normal cases, the hydroelectric power

can generate a few kW for each metre of height, and the energy generated from this

technology is propotional to the flowrate, head, height and generation efficiency.

Apart from electricity generation, the effluent hydropower is also able to increase

the dissolved oxygen concentration in the treated water. However, the main chal-

lenging of this technology is that it requires the effluent to have sufficient kinetic or

potential energy to make investment attractive [83].
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• Solar and wind energy - solar and wind can be transformed into energy in the form

of electricity. A large area of solar panels and wind turbines is necessarily required

for extracting energy. Fortunately, most WWTPs cover a large area and the simple

shape of the plants makes it easier to install equipment for solar and wind energy

generator so these requirements are often satisfied. For the wind energy, most

WWTPs are located at a low level and this is a disadvantage when the wind energy

aspect is taken into account. In some cases, however, when the plants are placed

near the ocean, wind energy can be considered as an interesting alternative. The

disadvantage, however, is that solar panels and wind turbines are expensive for

investment [84].

2.4.2 Resource Recovery

As discussed previously, conventional wastewater treatment facilities are designed to

remove organic matter and nutrients from wastewater, rather than resource recovery.

Also nutrients, especially nitrogen and phosphorus, are transformed or removed from the

wastewater due to their potential to trigger eutrophication or aquatic toxicity. The re-

moval of organic matter and nutrients not only entails energy and/or chemical use, but

also often yields byproducts which requires further processing. However, it has been found

that wastewater can be a valuable source of resouces rather than a waste. Awareness of

this fact has driven the development of resouce recovery technologies, and the following

section reviews a number of promising technologies that have been developed for the

recovery of energy and materials from wastewater.

Energy Recovery

The organic matter in both municipal and industrial wastewater can be transformed into

methane-rich biogas through anaerobic digestion. It is estimated that about 30-60 L/d

per capita of CH4 could be generated from municipal wastewater if all the biodegradable



36 Chapter 2. Literature Review

organic matter was converted into biogas as well as reducing the extra energy cost for

aeration used in conventional activated sludge processes [67]. Besides, anaerobic digestion

has little effect on nutrient removal, e.g. NH+
4 and PO3−

4 so it is a perfect match in terms

of resource recovery where nutrients in the effluent can be separated in downstream units.

Biogas generation from wastewater sludge and high-strength wastewater has been com-

monly used for many years, in contrast to the direct anaerobic treatment of low-strength

wastewater, which has not been widely practiced so far, especially in temperature cli-

mates where wastewater temperature is in the range of 15 ◦C. Innovative reactor design

has been proposed to maintain elevated biomass inventories, e.g. upflow anaerobic sludge

blanket (UASB) and the anaerobic membrane bioreactor (AnMBR), and mitigate some

of their limitations, including extending the application range of anaerobic treatment

[85, 86]. Promising configurations include the submerged anaerobic membrane bioreactor

(SAnMBR; [87, 88]), and the anaerobic fluidized membrane bioreactor (AFMBR; [89]).

Research is ongoing to improve membrane and reactor designs that especially reduce

membrane fouling and enhance dissolved methane recovery [90, 91] .

In certain water systems where heat accumulates in the wastewater, heat pumps or heat

exchangers can be used to recover thermal energy. Although it is low grade energy be-

cause of the small temperature differences, this energy only entails low operation and

maintenance costs. It is suitable for onsite use, and heating or cooling demands in nearby

communities, e.g. for heating buildings. It is estimated that over 500 wastewater heat

pumps are in use worldwide, with thermal energies ranging from 10 kW to 20 MW [92].

Materials Recovery

Phosphorus is being used in four main applications: agricultural fertilizers (80-85% of all

consumption), food or animal feed, detergents and industrial applications. It is a limited

resource mainly mined from mineral rock, which has an estimated lifetime of 50-100 years

[93, 53]. Consequently, the price of mineral phosphorus has increased, and its recovery
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from wastewater has now become more economically viable. Phosphorus is generally

found in wastewater, especially PO3−
4 , where in municipal wastewater 50-80% will leave

with treated water from where it can be recovered [17]. Nitrogenous compounds, on the

other hand, are not a limited resource and can be generated from atmospheric nitrogen,

albeit their production is an energy and GHG intensive process. As energy prices increase,

nitrogen recovery is becoming a promising alternative, and also its economic viability is

increasing. Around 50-80% of the nitrogen in municipal wastewater is present in soluble

and inorganic forms [17]. The high content of nitrogen and phosphorus in wastewater

can cause eutrophication, reduction of dissolved oxygen levels, and algal blooms which

reduce the penetration of solar light. Phosphorus also has a high probability of being

precipitated and forming undesired struvites which can block pipes. These blockage can

reduce pipe diameter by over 50%, and leads to an increase in energy consumption to

pump or drive streams.

Phosphorus and nitrogen (NH+
4 , NO

−
3 and PO3−

4 ) in wastewater can also be recovered

by ion exchange (in contrast to biological methods); the effluent from secondary/tertiary

wastewater treatment is passed through ion exchange columns where phosphorus and ni-

trogen are adsorbed [94, 95]. The columns need to be regenerated cyclically by desorbing

both phosphorus and nitrogen with a low volume and concentrated brine solution. The

phosphorus and nitrogen enriched solutions can then be processed into a valuable product,

e.g. fertilizers. The main advantage of ion exchange over the biological process is that

they can be used over a wide range of temperatures. However, challenges with ion ex-

change are: the potential for fouling with suspended solids, the limited exchange capacity

of some adsorbents which require regeneration every few hours, and the limited selectivity

due to ion competition for the resin sites and the large capital cost [96]. Natural zeolite,

e.g. clinoptilolite to adsorb ammonium ions (NH+
4 ) has been receiving considerable atten-

tion [97, 98], and recently, polymeric resins have been reported as having higher exchange

capacities than zeolite [99]. Ongoing research has focused on the development of anion

adsorbents with high phosphate selectivity and easy regeneration characteristics, which
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include polymeric resins with hydrated ferric oxide nanoparticles [100] and hydrotalcite

(HTAL) [101].

An interesting alternative for phosphorus recovery is reactive filtration. It combines phys-

ical filtration of particulate phosphorus with co-precipitation and adsorption of soluble

phosphorus onto coated sand in a moving bed filter. For example, 95% phosphorus removal

from secondary municipal effluents could be simply achieved by a continuous backwash

filters made of ferric oxide (HFO) coated sand, where continuous regeneneration is applied

by adding 5-10 mg/L of ferric chloride (FeCl3) [102]. Then, phosphorus recovery could

be achieved with a membrane separator, which receives the backwash from the reactive

filter [103] and further processing is needed to convert phosphorus into a saleable form.

Another approach to recovering phosphorus from wastewater is crystallization into reusable

and saleable compounds such as struvite (MgNH4PO4·6H2O) and calcium phosphote

Ca3(PO4)2 [55]. Struvite is, however, in the preferable form for fertilizers because Mg, N,

P can be simultaneously released with 1:1:1 molar ratio, and the rate of nutrient release is

slower in comparison with other fertilizers; this technology involves precipitation in either

fluidized bed reactors or stirred tanks [104]. The former is commonly used to crystallize

struvite from wastewater, and the applications to date have been used to extract struvite

from sludge digester liquor produced from anaerobic digesters due to high concentration

of phosphorus (50-100 mg/L of phosphate), NH+
4 and Mg in them. Under well-controlled

conditions, removal efficiencies of 80% or higher have been reported [105]. When dilute

streams, such as secondary effluents with phosphate concentrations of 4-12 mg/L are con-

sidered, struvite crystallization can be combined with adsorbent columns and fed with

enriched solutions from the adsorbent regeneration; such as in the RIM-NUTR© process by

Liberti et al. [95]. A struvite crystallization plant has been operated at several locations

in Japan since 1987, with capacities of 100-500 kL/d, and produce from 100-500 kg/d of

struvite. There are also three full scale plants which are currently operated in the US.

However, most of current studies are on pilot scale in Australia, Canada and Spain.
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In addition to nutrients, organic carbon recovery can be achieved through the produc-

tion of polyhydroalkanoates (PHAs), a precursor of bioplastics [106]. PHAs are linear

polyesters produced from the fermentation of sugars or lipids by bacteria as energy storage

(up to 50% weight). Their production is technologically proven from synthetic wastewater

under well-controlled conditions. However, full-scale applications are still at the embry-

onic stage, in part due to the challenge associated with the separation of PHAs from the

bacterial biomass. It should also be clear that PHA production, when used in combina-

tion with anaerobic digestion, will result in a net reduction of biogas production by the

digester since it diverts part of the available organic carbon.

2.5 Review of WWTP Modeling

The concern about sustainability issues has encouraged researchers in the wastewater

community to focus on the proper design, operation and control of WWTPs. The per-

formance of WWTPs varies from one plant to another, and this gives rise to adverse

environmental, cost and public health risks due to improper operation of WWTPs. How-

ever, optimal design, operation and control of WWTPs can be achieved though using

modeling tools which represent the real system, and can be used as a decision-making

tool [107]. The usefulness of the model is independent of its completeness, but it is more

important to select the model based on its intended use [108]. Mathematical modeling

of wastewater treatment processes is becoming a widely accepted tool, and used for sev-

eral purposes in the wastewater treatment process, especially for process design [109],

control and operation [108]. There are a number of models describing the processes in

WWTPs, starting from activated sludge through to whole plant models. Most of the

models of wastewater treatment processes are incorporated into commercial simulation

packages e.g. BioWinR©, GPS-XR©, WESTR© and STOWA. Currently, the design, upgrad-

ing/retrofiting of WWTPs and improvement of process operation are based on simulation

results. More plant engineers and operators are now being trained to use the mathemat-



40 Chapter 2. Literature Review

ical models as decision-making tools because it is easier for them to assess the outcomes

of the process modification on WWTP performance and/or effluent quality.

2.5.1 Modeling in WWTPs

Over the last two decades, mathematical modeling of WWTPs has been divided into three

main areas. Firstly, the wastewater stream including nutrient removal has been investi-

gated; this group is dominated by Activated Sludge Models (ASM) models developed by

the International Water Association (IWA) [110] to predict the organic matter and nutri-

ent removal from the wastewater stream. The second group involves modeling of sludge

stabilization, which is dominated by anaerobic digestion processes, and the IWA ADM1

model. The final group is modeling of the whole WWTP which considers all wastewater

streams, sludge streams and the recycle stream which results in significant nutrient loads

on the overall WWTP from sidestreams.

2.5.1.1 Activated Sludge Model

The biological phenomena involved in aerated bioreactors are modelled by the activated

sludge model. Over the last thirty years, four activated sludge models known as the

ASM models (i.e. ASM1, ASM2, ASM2d and ASM3) have been published by the IWA

(International Water Association) [110]. These models are widely used to describe the

behaviour of activated sludge processes, and all of these models are based on the same

principles; the biological activities in the activated sludge process are described through

different compounds (substrates, particulates and biomass), and a number of processes

based on mass conservation equations. The reactions of different processes rely on the

concentration of compounds/biomass by using Monod equations. The models are typically

summarised in a matrix format (Petersen Matrix) where the processes are represented in

rows, and the components in columns and the stoichiometry in the table. An example of

ASM1, which is represented in the Petersen Matrix format, is shown in Table 2.2. See

the IAWQ Task group reports [110] for further detail.
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Table 2.2: Example of ASM1 in the Petersen matrix format [111].

Component, i → 1 2 3 4 5
Reaction rate

Process, j ↓ SI SS XI XS XBH

1. Aerobic growth of
heterotrophic bacteria

− 1
YH

1 µmH(
SS

KS+SS
· SO
KOH+SO

)XBH

2. Anoxic growth of
heterotrophic bacteria

− 1
YH

µmH(
SS

KS+SS
· KOH

KOH+SO
· SNO

KNO+SNO
)ηgXBH

ASM1 was first developed by Henze and co-workers [111], and the main activities occur-

ing in the bioreactor include oxidation of organic compounds, nitrification/denitrification,

decay of the biomass, the ammonification of soluble organic nitrogen and hydrolysis of

particulates. It is based on 13 components: particulate-soluble inert compounds (XI and

SI), particulate-soluble substrate (XS and SS), autotrophic/heterotrophic biomass (XA

and XH), particulate inert compounds from biomass decay (XP), oxygen (SO), ammoni-

um/ammonia (SNH), nitrate/nitrite (SNO), particulate-soluble organic nitrogen (XND and

SND) and alkalinity (Salk).

Several extensions of the ASM1 model have been developed later on, which add a number

of processes or fix certain limitations. The ASM2d model encompasses biological and

chemical phosphorus removal, based on the following fractionation (Note that fraction-

ation is refered to concentration of the wastewater characterisation components used to

describe wastewater characteristics. For example, ASM1 consists of 13 wastewater char-

acterisation components used to describe composite components, e.g. COD, TSS and

TN.); phosphate (SPO4
), phosphorus accumulating biomass (XPAO), internal cell storage

(XPHA), poly-phosphate (XPP), metal-hydroxides (XMeP4
) and metal-phosphate (XMeP).

Moreover, soluble organic substrates are further divided into fermentable substate (SF)

and fermentation products (SA) with a fermentation process describing the transition be-

tween two substrates. However, ASM1 remains the most commonly used activated sludge

model in the literature due to its rather low complexity, extensive calibration, and the lack

of trust in other models. More recently, several studies have focused on the mechanisms

and conditions that trigger N2O emissions. The activated sludge model-nitrogen (ASMN)
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model developed by Hiatt and Grady [112] is an extension of ASM1 with two-step nitri-

fication and four-step denitrification, capable of quantitative prediction of N2O emissions

from these intermediate processes.

2.5.1.2 Anaerobic Digestion Model

In the early 70s, modeling of the anaerobic digestion process started in order to improve

the efficient operation of anaerobic digesters. Due to a limited knowledge of the process,

the models in that period were relatively simple [113]. With the development of system

analysis and computing capabilities, more detailed models have been developed in recent

years. The generic model, Anaerobic Digestion Model No.1 (ADM1), developed by the

IWA Task Group for Mathematical Modeling of Anaerobic Digestion Process [114] is one

of most widely used for describing anaerobic digestion among alternatives. The ADM1

includes 24 components and 19 bioconversion processes to describe the dynamic anaer-

obic digestion, as illustrated in Figure 2.10. The model involves biochemical processes

(hydrolysed by intra-extra cellular enzymes) and physico-chemical processes (gas-liquid

transfer and ion association/dissociation); however, precipitation is not included in the

model. The degradation sequence of organic matter for anaerobic digestion is shown in

Figure 2.10. The complex compounds are firstly hydrolysed into carbohydrates, proteins,

lipids and inerts (i.e. not degraded further during anaerobic digestion). Then, carbohy-

drates, proteins and lipids are hydrolysed by enzymes into monosaccharides, amino acids

and long chain fatty acids (LCFA), respectively. The next step is known as acidogenesis

in which monosaccharides and amino acids are degraded into acetic, propionic, butyric,

valeric acids and hydrogen. After that, it is the action of acetogenesis where propionic,

butyric, valeric acids and long chain faty acids (LCFA) are degraded into acetic acid and

hydrogen. Finally, two groups of methanogenic bacteria degrade acetic acid and hydro-

gen to CH4. All of these reactions are first order kinetics, which are regulated by the

Monod equation relevant to the substrate, inihition, hydrogen and free ammonia. The

large number of parameters, difficult identifiability, and structural weaknesses are the ma-

jor drawbacks of ADM1, although it has been used in many applications in recent years



2.5. Review of WWTP Modeling 43

[115, 116].
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Figure 2.10: Schematic representation of processes in the ADM1: (1) acidogenesis from
sugars, (2) acidogenesis from amino acids, (3) acetogenesis from LCFA, (4) acetogenesis
from propionate, (5) acetogenesis from butyrate and valerate, (6) aceticlastic methano-
genesis, and (7) hydrogenotrophic methanogenesis modified from Batstone et al. [114].

2.5.1.3 Plant-wide Model

Recently, more attention in the wastewater treatment community has focused on the mod-

eling of the whole WWTP, which considers both wastewater and sludge streams. WWTPs

involve a great variety of processes acting on different time scales, and interacting with

each other through recycling loops. Although it is more convenient to study an individual

process, a whole plant should eventually be considered for a number of reasons: i) even

processes in a simple sequence are often affected by the previous process, e.g. utilization

of COD and biomass, and; ii) interactions between the processes can propagate the effect
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from one process to the next through recycle streams [108]. As a result, the design and op-

erational policy of an entire WWTP may differ from the compilation from a unit-process.

Modeling of plant-wide WWTPs is not a straightforward task [117] because the existing

standard models have been focused mostly on development of the individual unit process.

This gives rise to considerable inconsistencies and differences in model components and

transformations among the standard process models in terms of descriptions of carbona-

ceous substrates, nitrogen, pH and buffer capacity [118].

Up until now, two main approaches have been proposed to handle modeling of the whole

WWTP: the supermodel and interface approaches. For the supermodel, a common frac-

tionation to reproduce every process within the WWTP is developed to describe the

biochemical, chemical, physico-chemical or relevant processes of the whole plant [119]. It

is convenient to use this approach because no transformation is required between unit

process models, and the transformations can be simply turned on/off depending on the

environmental conditions. However, the main drawback of this approach is that the su-

permodel lacks flexibility to add or remove components, and may need to develop a new

model when a new process is added. Additionally, supermodels are not fully documented

in the literature and are restricted to specific simulation platforms, e.g. the Activated

Sludge Digestion Model (ASDM) in BioWinR© [120, 121].

An extensive supermodel was proposed by Grau et al. [118]; this approach includes

only the most relevant transformations and components, instead of listing a priori the

required fractionations. The descriptive capacity of the models, the complexity of mathe-

matical formulation, and the number of components are adapted to the specific objectives

and requirements of the plant. Even though some of the models can turn on/off blocks

of transformations, this approach is based on user selection from a set of transformations

which is strictly required to reproduce the activity of the related bacterial populations

in the WWTP. Therefore, the availability of a consensus and common transformations

which includes all relevant process transformations is an important aspect of modelling.
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This approach is more flexible in constructing the supermodel than the previous approach,

which are specificially modified/adapted to the plant requirements. However, a rigorous

and systematic way to select transformations to create the appropriate model for a specific

case is needed.

The second method is known as the interface approach, and is based on the construction

of specific interfaces to connect the existing standard unit process models; the interface

transformation converts one set of fractionation to another. The equation of continuity

of the mass and charge balances are included in the tranformations to make sure that

it is consistent from unit to unit. For instance, the ASM1-ADM1 interfaces were pro-

posed to link the activated sludge model no.1 (ASM1) and anaerobic digestion model

no.1 (ADM1), and Nopens et al. [122] developed an interface and characterisation model.

Degradable components from ASM1 are mapped directly to carbohydrates, proteins and

lipids, as well as organic acids instead of using pooling techniques in terms of XC pro-

posed by Copp et al. [123]. The main advantage of this approach is that each unit-process

model is quite standard and has been successfully applied to many practical case studies.

However, model components, e.g. COD fractions, description of organic nitrogen, pH

and alkalinity are different from process to process. Up until now, plant-wide modeling

is still discussed in the scientific community because there is no general consensus on the

simplest modeling approach. The current approach used by most researchers is still based

on personal preferences and modelling software capabilities.

2.5.2 Model Applications in WWTPs

Modeling of WWTPs is practically used in two main applications: i) process control

and optimisation where several scenarios are evaluated to improve operation of existing

WWTPs and ii) process synthesis and design where several WWTP configurations are

screened and assessed.
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2.5.2.1 Process Control and Optimisation

Over the past few decades, tighter effluent limits imposed on WWTPs, and enhancing

sustainability have been the driving forces to improve treatment technologies, and these

need both process control and optimisation. Modeling is a valuable tool in terms of time

and effort required to predict different what-if scenarios to push WWTPs toward sustain-

ability. The benefits of process control and optimisation in WWTPs range from improving

WWTP performance and energy saving, while effluent quality is satisfied. Proper control

and operation of WWTPs have been receiving more attention recently because of the rise

in energy prices, and environmental concerns. Inadequate strategies for process opera-

tion of WWTPs may lead to an increase in energy use, and serious environmental/public

health problems [124]. The use of modeling for process control and optimisation can be

applied both online and offline; the former refers to the use of calibrated models for on-line

schemes such as model predictive control [125], and a plant-wide control system [80, 126].

The latter is used in applications where the calibrated model is used to determine optimal

conditions, and the results are later applied and tested on real plants. Process control

and optimisation have been used for several purposes, and most studies have evaluated

different scenarios through simulation. For instance, new stricter regulations are applied

to the existing WWTP, or significant changes in the plant loads. Based on the current

operational or control strategies, the effluent quality may not satisfy the new regulations,

or it requires more energy expenditure. The model can be used to evaluate new opera-

tional and control strategies to improve the existing plant, which is typically carried out

through process simulation [127, 128, 129, 130, 131, 132, 133, 134, 135].

Some studies have focused on the evaluation and comparison of plant-wide WWTP con-

trol strategies to improve process performance in terms of economic and environmental

objectives. In the wastewater treatment community, improvement of control and opera-

tional strategies through the DO setpoint in activated sludge has received considerable

attention. This is because aeration and pumping have the largest impact on the energy

cost in WWTPs, and reliable effluent quality is expected to be maintained at reasonable
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cost despite disturbances [136]. Pittoors et al. [136] found that model-based aeration

optimisation can lead to alarge cost reduction of up to 66%. In addition, some attention

have been paid to sustainability issues in WWTPs, including the use of models to evalu-

ate energy consumption, chemical use, and GHG emissions. Few attempts have also been

made to combine GHG emissions with the plant performance; Guo et al. [137] proposed a

benchmarking tool to evaluate mitigation strategies to reduce fugitive emissions by means

of a generic sewer model, including a WWTP plant-wide model. The new activated sludge

model for GHGs (ASMG) was implemented and used to predict direct nitrous oxide (N2O)

emissions from biological treatment, while other GHG emissions were obtained through

empirical relationships. Different scenarios were then tested to compare performance in

terms of GHG emissions, effluent quality and energy consumption. Flores-Alsina et al.

[138] investigated the effect of changing control/operational strategies in WWTPs on the

plant performance, which included GHG emissions, effluent quality (EQI) and operational

cost (OCI). The GHG evaluation was based on dynamic models that included both on-site

and off-site sources of CO2, CH4 and N2O. The process variables under study consisted

of the set point for aeration control in the activated sludge, the removal efficiency of TSS

in the primary settler, the anaerobic digestion temperature, and the control of the super-

natant flow from sludge treatment. Their results showed the potential impact of energy

efficiency, particularly in the importance of plant-wide evaluation, energy reduction in

the aeration system, and energy recovery in anerobic digestion. However, the beneficial

impacts were counterbalanced by an increase in N2O emissions. For instance, decreasing

the DO setpoint may reduce the offsite CO2 emissions due to a decrease in electricity

use, but the N2O emissions also increase significantly. The authors also emphasized the

advantages of using multiple criteria as a decision-making tool to evaluate the control/-

operational strategies.

Recently, many optimisation approaches for process design and operation have been im-

proved and are available in the scientific literature. Each method has several advantages,

but also drawbacks which can limit their potential; gradient-based methods offer a promis-
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ing approach among alternatives. It can provide a high level of precision and rapid con-

vergence to the optimum, and this approach has been applied to a WWTP under steady

state and dynamic conditions. The reactions in the wastewater treatment process involve

a wide range of time scales from less than a minute, e.g. the dissolved oxygen concentra-

tion to several days, e.g. the growth of biomass. Thus, the dynamic model accounting

for the time-varying responses of the system can be defined differently based on the ob-

jectives. Gradient-based optimisation has mostly been applied to small-scale WWTPs

[139, 140, 141, 142], while Rivas et al. [109] presented a model-based decision making

tool for predicting optimum design parameters in a WWTP. The proposed mathematical

model can be solved using a non-linear optimisation algorithm (GRG2), which can be

applied to either a steady state or dynamic model under a set of constraints associated

with operation and effluent quality. The proposed methodology was applied to simple case

studies to evaluate the optimum design parameters, e.g. HRT, SRT, and volumes for the

activated sludge Step-Feed process to enhance nitrogen removal. The Step-Feed process is

an approach to remove nitrogen by using a couple of stages of denitrification-nitrification

in series. The influent flow is distributed to the anoxic tanks which can increase the sus-

pended solids gradient through the reactors; the main advantage of this approach is that

internal recycle of the mixed liquor is not required.

However, only a few articles have applied the plant-wide model-based methodology for

process optimisation. Descoins and coworkers [143] optimised a whole wastewater treat-

ment process by evaluating the electrical efficiency. In this work, the WWTP configura-

tion is based on the plant-wide BSM2 model, including activated sludge and anaerobic

digestion, to identify the optimal operating conditions. In order to satisfy the standard

regulations, wastewater with a high content of nitrogen needs to be treated through nitri-

fication/ denitrification which consume large amounts of energy. Sludge from primary and

secondary treatment is sent to the anaerobic digester to produce a methane-rich biogas.

Although anaerobic digestion can produce a methane-rich biogas, it also produces more

NH+
4 from the degradation of organic matter which is then sent back to the activated
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sludge process. Thus, trade-offs between energy consumption for nutrient removal and

electricity produced from biogas were performed through plant-wide optimisation. The

methodology of plant-wide modeling was based on a new plant-wide modeling as proposed

by Grau et al. [118], and the model was simulated/optimised on the gPROMS platform

under steady state conditions. Their results showed that there are strong links between

nitrogen removal, availability of carbon substrate for denitrification, and overall electrical

efficiency. It is also possible to select the optimum point of primary settling efficiency and

the amount of carbon needed for denitrification.

2.5.2.2 Decision-making Tool for Process Design

Similarly, upgrading existing WWTPs and/or the design of new wastewater treatment

facilities can be carried out by means of modeling. The modeling approach offers a sub-

stantial reduction in time and cost during scaling-up the processes; for instance, different

wastewater treatment processes can be evaluated in terms of cost analysis and/or envi-

ronmental impacts before building a pilot plant. Typically, it can transform useful data

obtained from measurements into quantitative knowledge which can be further used in

the decision-making processes. As a result, it is used to close the discrepancies between

lab-scale experiments and full-scale implementations to select the desirable wastewater

treatment systems [144]. In recent years, a number of wastewater treatment technolo-

gies have been developed to address current and future conditions, i.e. the effluent from

WWTPs needs to satisfy the Urban Wastewater Treatment Directives (91/271/EEC). No

single or group of technologies, however, have been developed to satisfy all conditions

that may occur within these systems. As a result, different technologies or treatment

units are combined and modified to satisfy the specific requirements [145]. The number

of technologies developed has steadily increased the number of possible process configura-

tions, which makes it more and more difficult to select the optimal wastewater treatment

process flowsheet. The traditional approach to process design of WWTPs is based on

engineering calculations and empirical knowledge, e.g. Metcalf & Eddy [17], which may

not be adequate for these emerging new technologies such as SanMBR, and the targets
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they have to achieve.

Hamouda et al. [18] reviewed and summarized approaches to developing decision-making

tools in the process design of WWTPs. Typically, there were four stages to developing

decision-making tools for the WWTPs. Firstly, it involves the problems analysis, which

may be concerned with specific contaminants or treatment processes; there are generally

several factors which need to be considered when selecting the wastewater treatment pro-

cesses. Technical and economic aspects such as removal efficiency, and capital cost are

commonly used because they are easier to quantify and compare among various alter-

natives, while different factors can provide different insights about the characteristics of

the wastewater system. However, the integrated system including economical, technical,

social aspects is more reliable and sustainable as it can account for interactions among

the various system components. The second stage includes development of reasoning

models where knowledge can be collected from the previous stage, and relavant data can

be extracted from different sources, such as the literature and case studies. Several ap-

proaches can be used to acquire knowledge, e.g. mathematical programming, simulation

and artificial intelligence; selecting the best approach is based on type, available knowl-

edge and a set of objectives. Later, the actual decision-making process is used to evaluate

different alternatives for process selection in the third stage. The optimisation approach

is an important aspect at this stage, and needs to incorporate all the criteria to select

the best possible option. In the final stage (fourth stage), usability is required through

validation and verification to make sure that the results obtained are meaningful, correct

and consistent.

Mathematical modeling has been a powerful tool to assisting decision making in WWTP

design since the 1990s. Not only have the computational capabilities and numerical so-

lution technology improved drastically, but the mathematical models too have become

more predictive, now enabling plant-wide simulation routinely using a range of commer-

cial simulators (GPS-XR©, BioWinR©, WESTR©, etc). Conventional model-based WWTP
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design starts with the selection of a plant layout, and then focuses on the detailed de-

sign and analysis of this particular layout. The selection of an appropriate design that

meets the specified objectives and constraints involves comparing the capital and oper-

ating costs of multiple plant configurations, thus requiring repetitive model simulations

alongside comprehensive process knowledge. As the number of processes and configura-

tions increases, this design approach becomes more tedious, and ultimately unmanageable.

In order to deal with large numbers of treatment or separation units and possible in-

terconnections, a system engineering approach defined as the interdisciplinary approach

or development of systematic methods for design and operation of the complex process

systems is most useful. Systematic methods for the synthesis of complex chemical plants

and biorefineries based on superstructure modeling and optimisation are well developed

[19, 146, 147]. These approaches are also increasingly applied to water network synthesis

in process plants in order to minimize fresh water consumption and wastewater generation

through regeneration, recycle and reuse [20, 23]. Regarding municipal wastewater facili-

ties, the need for systematic approaches has been emphasized [10, 18], but relatively few

studies have been published to date [26, 25, 148, 28]. These studies provide insight into

the potential of the systematic optimisation-based approaches for wastewater treatment

design, but they are nonetheless limited to optimising a given process or selecting the most

appropriate process among a small number of alternatives mainly based on economical

considerations.

2.5.3 Model Calibration

Modeling in WWTPs is useful for process design and operation, however, it is impor-

tant for models to be calibrated for reliable and correct representation of the real system.

Model calibration is defined as the adjustment of the model parameters, e.g. influent frac-

tionation, stoichiometric and kinetic parameters, to fit a certain set of data obtained from

experiments and/or measurements of full-scale applications. Several protocols for model
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calibration have been developed by different research groups over the last few decades,

however, it is still the main bottleneck in wastewater modeling. Model calibration is a

challenging task as models, especially biological processes, are complex and typically char-

acterized by a large number of variables and parameters [149]. Also, there are a number of

model outputs that need to be fitted with the limited measured data in terms of effluent

quality. As a result, wastewater models are over-parameterized and there are generally

problems with identifiability; hence, unique estimation of all parameters is not possible,

although selected parameters can be used for fine-tuning the model calibration. Note that

input data including influent wastewater and operational data are expected to be checked

and elaborated carefully before introducing them into the model. Reliable measurement

is required over a period of time from a few days to years to capture steady state and

dynamic behaviour in the WWTPs. Up to now, parameter selection has been carried out

through: i) an experience-based approach, which use process knowledge and experience,

and, ii) a systems analysis approach where the identifiability of the model is based on the

sensitivity analysis of model parameters [150]- both approaches have different advantages

and disadvantages. It is worth pointing that the experience-based approaches based on

engineering knowledge and cumulative experience has been most commonly used in the

wastewater treatment field. In contrast, applications have been limited for the system

analysis approach in this field [150].

With respect to the experience-based approach, expert knowledge and experience are

important. Calibration protocols require some experimental designs, as well as data anal-

ysis to reduce the number of calibrated parameters, and certain parameters, e.g. batch

tests are fixed to obtain accurate or reasonable predictions. Sin et al. [151] reviewed four

different calibration methodologies: Biomath [152], STOWA [153], HSG [154] and WERF

protocols [155]. These calibration protocols have common points in terms of: i) influence

of goals in the calibration, ii) the importance of data collection, verification and reconcil-

iation, and iii) the suggestion of validating the model with a different data set. However,

these approaches are different based on three main points: i) the planning of the mea-
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surement campaign; ii) the measurement approach to characterizing wastewater influent,

and; iii) the calibration approach including the selection of parameter subsets. The system

analysis approach has attracted more attention, and includes a sensitivity analysis, pa-

rameter identification and error propogation. The parameter subset for model calibration

is selected based on a sensitivity analysis which can be performed through either local or

global techniques. Identifiability measures are then evaluated from a subset of parameters

ranked in the previous step. Although several models and calibration protocols have been

developed extensively, only a few studies have applied such concepts to full-scale WWTPs.

Liwarska-Bizukojc et al. [156] presented the calibration results for a full scale WWTP in

Poland serving a community of 94,000 population-equivalents. It consists of three zones

of biological treatment and clarifiers in the Phoredox process configuration, which is a

sequence of anaerobic, anoxic and aerobic zones. The data were collected to perform

steady state (1 month) and dynamic calibrations (48 hr) and analysed through a sta-

tistical analysis. The model was implemented in the commercial wastewater treatment

process simulation, BioWinR©. Prior calibration, and a sensitivity analysis, including the

calculation of a normalized sensitivity coefficient, was investigated to rank the sensitive

parameters to use for calibration purposes. Most of the highly sensitive parameters were

associated with the growth and decay of ordinary heterotrophic bacteria and phosphorus

accumulating bacteria. The results from the model calibration revealed that there were

no statistical differences between the simulated results and the measured data for steady

state; however, discrepancies of up to 20% could be observed from the dynamic calibration.

However, traditional plant operation provides only routinely measured data such as BOD,

COD and TSS, which may not be directly applicable for modeling purposes. There are

only a few examples in the literature where only plant operating data was used [157], and

Sochacki et al. [158] used the plant-wide modeling approach in a full-scale WWTP in

Poland. Model development and calibration were based on only routinely obtained oper-

ational data from the WWTP, without additional measurements. The WWTP consisted
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of primary settling, four activated sludge bioreactors, a secondary clarifier, thickener and

anaerobic digester. In this study, the plant-wide model was implemented in the commer-

cial wastewater treatment process simulator, WESTR© and model predictions use effluent

quality, biogas production and input sludge concentration in the anaerobic digestion as

the indicator of model accuracy. The results show that the calibrated model can provide

acceptable accuracy with limited data, however, there was still limited predictive ability,

and the model represents only specific variables.

2.6 Summary of Current Studies and Research Ob-

jectives

Conventional WWTPs have been used for many years to treat wastewater before discharge

into receiving water bodies to protect both the environment and public health. However,

they are energy-intensive and it is likely that energy use will increase significantly in the

future due to increasing population and stricter discharge regulations. In addition, GHG

emissions and sludge disposal are critical issues that can exacerbate these problems in

the future. These are the main driving force for the improvement of existing WWTPs

and development of new wastewater treatment facilities to achieve sustainability. Based

on the foregoing review which presents a general background and current studies in the

wastewater treatment field, this section outlines the gaps in the literature summarised as

follows:

Improvement of Existing WWTPs

Plant-wide model-based methodology has been used as a tool in several applications, e.g.

evaluating control and operational strategies when stricter regulations are applied or in-

vestigating effects of changes in the plant loads. However, few studies have applied the

plant-wide approach to full-scale WWTPs. Mannina et al. [149] pointed out that model

applications to a full-scale WWTP is a challenging task due to the fact that there are a
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number of model parameters that need to be estimated compared to the limited data. A

major challenge here is to develop a reliable plant-wide model with the limited amount of

plant data that is typically available. In addition, incorporation of GHG emissions with

effluent quality and operational cost as performance indicator is another challenging task.

It is important to point out that there is a trade-off between energy consumption, effluent

quality and GHG emissions. Thus, a decision support tool is needed to identify or balance

trade-offs between effluent quality, operational performance and GHG emissions.

Development of New Wastewater Treatment Facilities

To date, decision-making tools for design of wastewater treatment facilities is not fully

developed. Conventional WWTP design is based on experience and engineering guide-

lines [17]. It is interesting to point out that model-based WWTP design is mostly based

on the pre-selection of plant-layouts and simulation of the selected plant configurations.

Then, each WWTP configuration is compared in terms of the capital and operating costs

to choose the most appropriate design [109]. As the number of process and configurations

increases, this approach is becoming more difficult and unmanagable. Some studies have

investigated using the optimisation-based approach [26, 25]. These studies can provide

insights to select the promising WWTP but the concept is limited to either optimising the

best process configuration from a small number of alternatives or given treatment pro-

cess. A major challenge here is to use a systematic approach to select the most promising

and optimal wastewater treatment facilities among process alternatives. Additionally,

most WWTP design studies aim to minimise the contaminants in wastewater but do not

consider the overall environmental impacts. As a result, it has negative impacts on the

overall environment. LCA methodology should be incorporated with economic and social

evaluations to provide a more complete picture of sustainability [159]. Therefore, it is

important to link the economic and environmental criteria to address problems regarding

sustainability and to achieve wider acceptance amongst decision-makers.

Research Objectives
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Based on the research gaps summarized previously, the specific research objectives ad-

dressed in this thesis are the following:

• To develop a better understanding of what level of nutrient discharges, energy con-

sumption and GHG emissions can be reduced and what impact further reduction in

nutrient discharges has on the overall plant’s performance. This information can be

used to identify the main trade-offs between effluent quality, energy consumption

and fugitive emissions.

• To investigate the feasibility and assess the potential of systematic (model-based)

optimisation methods for enhancing the removal of nutrients and reducing the energy

consumption in existing wastewater treatment facilities.

• To develop a superstructure optimisation methodology for synthesis of sustainable

wastewater treatment/recovery plants using plant-wide surrogate models, and to

demonstrate computational tractability using state-of-the-art optimisation technol-

ogy that can provide a certificate of global optimality.

• To develop a decision-making tool for the synthesis of sustainable wastewater treat-

ment/recovery facilities with biosolid management that incorporates Life Cycle As-

sessment (LCA) alongside economic criteria.



Chapter 3

Plant-wide Model-based Assessment

of WWTP Operation

3.1 Introduction

WWTPs have conventionally been assessed through effluent quality, subject to technical

feasibility and cost, but the issue of sustainability as defined in Chapter 1, especially

GHG emissions, is becoming increasingly important. This is because significant amounts

of GHGs are emitted from full-scale WWTPs [160]. In addition, control and operational

strategies of WWTPs are traditionally set to maintain suitable effluent quality even with

unpredictable events, such as heavy rainfall and/or high loading contaminants. One draw-

back of such operational strategies, however, is that it not only entails high operational

costs, but it can also have large environmental impacts due to CO2 and other fugitive

emissions, mostly from electrical power consumption. Analysis of overall impacts on the

environment is rarely available because WWTP performance is generally assessed based

only on its point-source discharge to a water receiving body. However, increasing demand

for environmental protection at a lower cost, together with concerns about GHG emis-

sions, are important driving forces to enhance the sustainability of existing WWTPs.

57
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Among the various alternatives for the sewage industry to reduce their energy consump-

tion, and other environmental impacts, without compromising on effluent quality is im-

proving the control and operational strategies of the WWTP. These strategies may be

particularly useful for energy intensive processes such as activated sludge aeration, which

can account for 45-75% of a plant’s energy expenditure [67]; overall, it is estimated that

energy consumption of most WWTPs could be reduced by 10-40% [161]. Nonetheless,

WWTPs are comprised of a large number of treatment and separation units, which involve

a great variety of processes acting on different time scales and interacting with each other

via recycling loops. Failure to account for these interactions, for instance, by considering

optimisation in a unit-wise manner, may not lead to the largest possible improvements,

and could even be detrimental to the overall efficiency [143]. In this context, developing

effective operational strategies can defy engineering intuition, and plant-wide simulation

models, such as BSM2 [116], have started playing an increasingly important role [138, 143]

in investigating optimal operating strategies.

Plant-wide mathematical models have been used to consider interactions between pro-

cesses, and to investigate and compare the performance of different operational strate-

gies. Thanks to a better understanding of the chemical and biochemical mechanisms of

GHG emissions, several research groups in the wastewater community have developed

the mathematical models to predict GHG emissions from WWTPs, and/or incorporate

the capability of GHGs e.g. CH4, N2O and CO2 predictions into the existing standard

models [112, 162]. However, only a few studies have discussed the practical benefits of

adding GHG emissions as a criterion together with effluent quality and operational costs

for performance evaluation [138]. The study of Flores-Alsina et al. [138] presented the

considerable advantages of including GHG emissions as the additional criterion to eval-

uate different control strategies through four key operating variables: the DO set-point,

removal efficiency of TSS in the primary sedimentation, the temperature in the anaero-

bic digester and the flowrate of supernatants from anaerobic digesters. A shortcoming

is that they did not quantify what level of nutrient discharges, energy consumption and
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GHG emissions can be reduced due to the limited number of scenarios. Also, one of the

N2O emission pathways through incomplete oxidation of hydroxylamine to NO−
2 was not

taken into account and did not deal with model calibration to the WWTPs which is a

challenging task as pointed out by Mannina et al. [149].

The main contribution and novelty of this chapter is to apply a model-based method-

ology to provide a better understanding of how changing the effluent quality targets

impacts on plant-wide energy use and fugitive emissions. More specifically, the developed

model can used to identify what level of nutrient discharges, energy use as well as GHG

emissions can be reduced and what impact further reduction in nutrient discharges has

on energy use and GHG emissions, e.g. a significant increase of energy use and GHG

emissions. With the application of the scenario-based simulation, it will help assess more

precisely the potential of operational strategies upon relaxing certain discharge limits.

This chapter is related to developing a reliable plant-wide model based on the commercial

simulator BioWinR© and gPROMS, and calibrating the plant-wide model to predict the

performance of an activated sludge plant with sludge treatment owned and operated by

Sydney Water. A scenario-based approach is then applied to quantify the effect of key pro-

cess variables, and to identify operational strategies that reduce energy consumption and

fugitive emissions at different nutrient discharge levels. These operational improvements

are also compared to an alternative plant upgrade scenario based on reverse osmosis to

achieve a better effluent quality. This improved understanding of the relationship between

energy use and nutrient removal will feed into discussions with environmental regulators

regarding nutrient discharge licensing. The remainder of this chapter is organised as

follows: Section 3.2 focuses on the methodology to set up a reliable plant-wide model

to predict performance, energy consumption and GHG emissions. Section 3.3 presents

results of the model calibration and validation, based on data derived from routine and

non-routine measurements, to ensure that the plant-wide model can represent the actual

system. This also includes results of a plant-wide analysis through model predictions with

different operational strategies.
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3.2 Methodology

3.2.1 Plant Description

The WWTP under investigation is a tertiary plant owned and operated by Sydney Water.

Over the years, the pollution load on this WWTP has increased significantly, and its efflu-

ent discharge constitutes a main point source of pollution for the receiving surface water.

The general layout is shown in Figure 3.1; it operates two parallel primary/secondary

treatment lines, called Stage 1/2 and Stage 3 hereafter: Stage 1/2 operates a primary

clarifier followed by a Bardenpho process (a Modified Ludzack-Ettinger (MLE) process

followed by a sequence of anoxic and aerobic zones) to remove total nitrogen (TN); Stage

3 operates an A2O process to remove both TN and total phosphorus (TP) using primary

sludge from Stage 1/2 in the initial anaerobic zone. These parallel stages are followed by

a common tertiary treatment for effluent polishing, while the secondary sludge is digested

aerobically before disposal. The nutrient discharge limits currently in application are 5

mg/L, 45 mg/L and 5 mg/L for NH+
4 , TN and TP, respectively, although a much higher

effluent quality is produced. This WWTP is flexible enough to explore a wide range of

scenarios and presents excellent potential for optimisation due to substantial interactions

between its two treatment lines.

I�������
E�fluent

S�����

A��	
��
D���
��	�

����������

Alkalinity

S�����

Metal

Metal

Alkalinity

C����������

C���������R���������������������������

P�����y
s�����ng ���� ���

P�����y
���!� �

P�����y
���!� �

P�����y
���!� �

P�����y
����"� �

P�����y
����"� �

P�����y
����"� �

P�����y
����"� #

P�����y
����"� $

�� ��%��&
����"� �

�� ��%��&
����"� �

�� ��%��&
���!� �

�� ��%��&
���!� �

F�������� ������"� �������"� � ������"� � ������"� #

���!� ����!� ����!� ����!� #

Methanol F�����
T������&
C��������F��  '����on

��F

M�!���

Figure 3.1: Activated sludge plant layout.
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3.2.2 Data Acquisition

Historical data is routinely collected from both online measurements such as daily flow,

pH and dissolved oxygen, and from laboratory analysis of an extensive range of biological

and chemical parameters. The laboratory analysis is carried out onsite at the WWTP,

and at a laboratory accredited by the Australian National Association of Testing Author-

itis carrying out analyses such as COD, BOD5, TSS, N-NH
+
4 , N-NO

−
3 and TN. Moreover,

additional data collected from a two-week non-routine monitoring campaign (conducted

in June and July in 2013) were used for model calibration, and 12 months of data (from

April 2012 to April 2013) from Sydney Water’s data management system for the model

validation.

The collected data for model calibration and validation was subjected to statistical analy-

sis, as presented in Table 3.1 and 3.2, in terms of median values and standard deviations.

Note that the median values were used to reduce the effects of outliers. The refined

data was then introduced into the modeling platform (BioWinR© and gPROMS). Despite

some variation for the wastewater influent concentrations during the monitoring cam-

paign, the concentrations were not measured every day and a dynamic calibration could

not be performed based on typical diurnal variations. Instead, the average wastewater

influent concentrations were used in the BioWinR© and gPROMS and kept constant over

the calibration period.

Table 3.1: Summary of plant influent data for model calibration.

Details Units Median StdDev [%] Count
Influent flowrate ML/d 34.8 4 14
Alkalinity mg CaCO3/L 256 5.4 14
COD mg/L 594.5 17.9 6
TSS mg/L 263 26.9 14
NH+

4 -N mg/L 38.9 11.2 14
Total nitrogen mg/L 52.8 11.8 14
PO3−

4 -P mg/L 3.6 17.8 14
Total phosphorus mg/L 7.4 14.9 14
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Table 3.2: Summary of plant influent data for model validation.

Details Units Median StdDev [%] Count
Influent flowrate ML/d 30.1 40 351
Alkalinity mg CaCO3/L 248 25.9 12
COD mg/L 584 17.6 12
TSS mg/L 280 25.0 12
NH+

4 -N mg/L 38.4 13.8 12
Total nitrogen mg/L 50 15.1 12
PO3−

4 -P mg/L 4.6 31 12
Total phosphorus mg/L 7.1 19.8 12

3.2.3 Plant-wide Model Development

The main modeling platform used to conduct the analysis was BioWinR© (http://envirosim.

com/), and the results have been cross-validated with an implementation of BSM2 in

the equation-oriented process simulator gPROMS (http://www.psenterprise.com/).

BioWinR© is routinely used in the wastewater industry as a process analysis tool and

to design or upgrade WWTPs. It uses state-of-the-art models of the biological and phys-

ical treatment units, and provides support for the adjustment of mode parameters. The

model is based on the integrated activated sludge and anaerobic digestion model known

as the BioWinR© general model developed by Barker and Dold [120]. It has been used

for biological nutrient removal, and extended to encompass both the activated sludge and

anaerobic digestion models. The biomass separation units consist of three models includ-

ing point, ideal and flux-based separation models. In this work, the ideal separation model

was used throughout the plant because of limited operational data and to reduce numer-

ical difficulties arising from the large number of model variables acting on different time

scales from less than a minute to several days as mentioned in the previous Chapter and

this would affect the numerical integration. In addition, BioWinR© has a new feature to

predict direct GHG emissions from biological treatment, especially N2O. N2O produced by

several groups of bacteria involved in nitrification and denitrification. During nitrification

N2O is produced during the oxidation of NH+
4 to N2O by the AOB, and the production

of N2O is greater at lower concentrations of dissolved oxygen, resulting in the accumula-

tion of N2O. Also, N2O can be an intermediate product in heterotrophic denitrification,
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known as incomplete denitrification. Its production is affected by several factors, e.g. the

ratio of COD to N, the type of substrate and biomass, pH and temperature. However, to

date, there is no indication that nitrite oxidizers (NOB) and anaerobic ammonia oxidiers

significantly contribute to N2O emissions. BioWinR© can predict N2O emissions from the

following three mechanisms (Figure 3.2): (i) nitrification by-products whereby part of the

NH3 NH2OH NO2
- NO N2O N2

NO2
- NO N2O N2NO3

-

2

ion

cation

cation

Figure 3.2: N2O pathway modified from Wrage et al. [163].

ammonia is converted to N2O by ammonia oxidizing bacteria (AOB) via hydroxylamine

oxidation, normally when ammonia is present in excess and without oxygen limitations;

(ii) nitrifier denitrification, also mediated by AOBs, but under oxygen-limited conditions,

whereby free nitrous oxide (FNA) is used as a terminal electron acceptor to remove nitrite;

and, (iii) heterotrophic denitrification, whereby N2O is produced as an intermediate in

denitrification by heterotrophs. Apart from its capability to model effluent quality and

fugitive emissions, it is also used to predict aeration energy consumed by activated sludge

and aerobic digestion processes here.

Besides BioWin, the plant-wide model was also implemented in gPROMS, which is an

equation-oriented process simulator, and features powerful process system analysis and

optimisation tools. Here, the unit models in gPROMS were implemented based on ASM2d

for the activated sludge process and ideal separation for physical seperation units. Its com-

plementary role, using two modeling platforms, allowed us to cross-compare the simula-

tion results to check consistency. The application of a plant-wide model requires influent

fractionation, especially COD and TN, because state variables used in plant-wide mod-

els cannot be measured directly, and most measurable variables are based on composite
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variables. Thus, wastewater fractionation is required so that the model can be used to

predict or describe reactions in the system. Additional characterization is required for

the calibration step to estimate influent fractionation. Fortunately, BioWinR© Influent

Specifier developed by EnviroSim Associates Ltd. in an Excel worksheet is used to calcu-

late wastewater influent fractions, and used in both modeling platforms. This worksheet

was developed to convert the common measured influent data, e.g. COD, TSS into the

variables, e.g. readily biodegradable substrate that can be used in the model, and is based

on engineering knowledge and experience. More specifically, the measured components,

e.g. COD, TSS, NH3-N, TN were input into the Excel worksheet. Fractions of model

components were then adjusted in a given range based on guidelines to match with the

measured components. The obtained model components were input into the plant-wide

model.

3.2.4 Performance Indicators

3.2.4.1 Energy Consumption

WWTPs involve many different streams flowing through pipes, and these streams are

mostly driven by pumps. In practical terms, the energy used by pumps is the main plant

energy demand and accounts for 25 percent of the total energy consumption. The energy

consumption of pumps depends on the efficiency of pumps, pipe length, water head, etc.,

and can be quantified by mathematical expressions; however, most data regarding pumps

is not available. One way to track the energy use of pumps is based on the development

of regression models which can be based on a simple relationship between power used and

stream flowrates through pumps obtained from measurements. Also, energy consumption

of pump is practically calculated in combination with process models. Due to the high

level of detail in the process models, simplified energy consumption models have been

used in many studies [164, 165] and potentially used for the optimisation studies. In this

study, the pumps were assumed to operate at a constant efficiency for all flowrates. The

historical static energy use, energy break down for each treatment unit, and the flowrate
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obtained from Sydney Water’s energy database were used to develop simple regression

models. Then, energy consumption can be expressed as a function of flowrate entering the

treatment/separation units. It is worth pointing out that the assumption for calculating

energy consumption of pumps is a first/rough approximation and could lead to poor pre-

dictions on the cost calculation. Based on the current availability of operational data, the

predictions of energy consumption can provide relative trends over different operational

strategies. More detail on the pumps, e.g. pump head and pump efficiency which is not

currently available can provide more accurate predictions.

Aeration energy in the plant-wide model was calculated based on the mass transfer coeffi-

cient, KLa, which is related to the superficial gas velocity (the air flowrate per bioreactor

cross-sectional area) and diffuser density as follows:

KLa = C · UY
SG (3.1)

C = k1 ·DD0.25 + k2 (3.2)

where k1, k2 and Y are the diffuser parameters specific to the diffuser type. These pa-

rameter values are presented in Table 3.3. DD,USG and Qair represent diffuser coverage,

superficial gas velocity, and air flowrate, respectively. The mass transfer coefficient (KLa)

Table 3.3: Parameter values for estimating aeration energy in the bioreactor.

Parameter Description Value
k1 Correlation parameter 2.5656
k2 Correlation parameter 0.04320
Y Correlation parameter 0.82
A Correlation parameter -66.7354
B Correlation parameter 87.4755
C Correlation parameter 24.4526

can be used to calculate the aeration energy (AE) from the following relationship [164]:

AE =
Ssat
O

1.8 · 1000

Naerationtank∑
k=1

Vk ·KLa (3.3)
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where V is the volume of the bioreactor and Ssat
O is the saturation concentration of oxygen

dependent on temperature which can be calculated as follows:

Ssat
O = 0.9997743214 ·

8

10.5
· 6791.5 ·K (3.4)

K = 56.12eA+B/T ∗+ClnT ∗

(3.5)

T ∗ = TK/100 (3.6)

where TK is the temperature of bioreactor in Kelvin.

3.2.4.2 GHG Emissions

Recently, the prediction of GHG emissions from WWTPs has become of great interest

to enhance sustainability, and the quantification of GHGs is becoming important to im-

prove insights into carbon flow in WWTPs. Evaluation of GHGs emissions should be

accounted for during process design, operation and optimisation of WWTPs [166], and

plant-wide mathematical modeling is a promising approach among various alternatives

to help improve the understanding of the effects of operational and control strategies on

GHG emissions. Also, it can be used to reduce GHG emissions and improve environmental

protection. Typically, WWTPs involve three sources of GHG emissions: direct, indirect

external and indirect internal [167]. Direct emissions involve biological processes which

can be fugitive emissions from biomass respiration; biogas from digesters or gas lines;

and indirect external emissions resulting from sources that are not controlled directly in

WWTPs e.g. sludge disposal, production of chemicals used in WWTPs. Finally, indirect

internal emissions are related to the consumption of acquired or purchased electric/ther-

mal energy. The main GHG emissions from WWTPs include CO2, CH4 and N2O. It

is worth noting that N2O emissions have gained more attention due to its larger global

warming potential than CO2 of approximately 298 times [168]. Even low amounts of N2O

emissions could potentially be of concern; thus N2O emissions were mainly focused in this

study. In order to deal with the different elements of GHG emissions, every gas was typi-

cally converted into a single unit of CO2 equivalent (CO2e) based on the global warming
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potential (GWP) over 100 years (CH4 is 25 and N2O is 298); note that sludge disposal

was not considered in this case. The following sources of GHG emissions are included as

criteria to evaluate plant performance under different control and operational strategies:

• Biological treatment - This is related to the emissions resulting from biological

treatment, including biomass respiration and BOD oxidation. This covers GHG

emissions during wastewater and sludge treatment generated in the bioreactors and

aerobic digesters. Also, N2O generation as intermediate products from nitrification

and denitrification through three pathways is also included in the model prediction,

which is available in BioWin R©.

• Overall energy consumption - This is related to emissions from energy consump-

tion which is mainly from electricity, and involves pumping, mixing and aeration.

In this study, there is no energy production from electricity generated by the com-

bined heat and power unit. The conversion factor of energy consumption to GHG

emissions used was 0.86 kg CO2/kWh based on electricity purchased from the grid

in the local area [169].

• Chemical usage - This contribution involved the external carbon source (methanol).

Based on the current operation, methanol is added to enhance the denitrification

process in Stage 1/2. The conversion factor of chemical usage to GHG emissions is

1.54 gCO2e/g methanol [170].

3.2.5 Scenario-based Simulation

A scenario-based approach is applied to quantify the effects of key process variables on

WWTP performance, and to identify operational strategies that reduce energy consump-

tion and fugitive emissions at different nutrient discharge levels. These operational im-

provements were also compared to an alternative plant upgrade scenario based on reverse

osmosis to achieve better effluent quality. Different scenarios were selected to show effects

of operational strategies which may be carried out by engineers or operators to enhance
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overall plant performance and/or increase energy efficiency. The following key operating

variables were adjusted based on a practical viewpoint and the operating ranges were

selected based on guidelines from the real plant to investigate operational strategies to

improve the WWTP under study.

• DO set-point - It is a key operating variable in the activated sludge process because

it has substantial impacts on biological reactions, including biomass growth and

sludge settling properties. Also, energy cost from aeration is significantly high, and

several studies were carried out to reduce the supplied. It was assumed that the

controlller was “perfect” and outputs can reach set-points instantaneously; in this

work the DO set-point was varied from 0.2 mg/L to 3 mg/L.

• Flow splitting - The WWTP under study was operated with two parallel stages of

activated sludge, and the flow splitting process was important because it represents

the loads of wastewater to each stage. An overloaded stage can have a detrimental

impact on plant performance in terms of effluent quality, energy use and GHG

emissions. The flow splitting varied from 35% to 65%.

• Waste activated sludge - It is a key operating variable to control SRT or sludge

age. SRT is also believed to have an impact on the growth of microorganisms and

sludge bulking. In this study, the SRT was varied from 8 to 16 days.

• Mixed liquor recycle (MLR) - Activated sludge with predenitrification processes

require certain amounts of NO−
3 to be recirculated from aerobic zones where nitri-

fication occurs back to anoxic zones through MLR to combine with organic matter

available in wastewater influent for denitrification. Variation of the MLR can greatly

affect the level of TN concentration. Note that the oxygen content in the recycle

stream may limit the denitrification process.
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3.3 Results and Discussion

3.3.1 Model Calibration

A calibration and first validation was carried out for both the BioWinR© and gPROMS

models using a combination of routine and non-routine monitoring data. The calibrated

models were then used in a scenario-based analysis in order to quantify the links between

energy use, effluent quality and fugitive emissions, and to determine improved operational

strategies.

In this study, the calibration was conducted to capture the major trends within the

plant, with an emphasis on mass conservation and flow splitting. In the first step, the

physical separation units consisting of the primary sedimentation tanks, the DAF units,

the sludge dewatering units, the tertiary clarifiers and the dual media filters were cali-

brated based on data from a two-week non-routine monitoring campaign, and validated

with 12 months of data (from April 2012-April 2013) from Sydney Water’s data man-

agement system. Calibration of these physical units was carried out by adjusting either

the efficiency of solids removal, or sludge settling parameters as appropriate, so that the

predicted liquid and solid outflows would match the available data. The results of the

calibration and validation are shown in Figure 3.3 for a primary sedimentation.

Secondly, the bioreactors were calibrated by adjusting a minimal number of kinetic param-

eters from their default values. Parameter selection for model calibration was based on a

sensitivity analysis in order for the predictions to be in good agreement with the primary,

secondary, and tertiary effluent concentrations collected during the 2-weeks non-routine

monitoring campaign. In this work, local sensitivity analysis was considered based on the

steady state simulation relying on the variation of one parameter at a time. First, the

simulation was performed based on the default parameter values, then each parameter

was varied by a 10% increase/decrease from their default values. The results obtained
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Figure 3.3: Calibration (top plots) and validation (bottom plots) of liquid and solid flows
in primary sedimentation tank: underflow, m3/day (left plots) and TSS, mg/L (right
plots).

from this sensivity analysis were able to identify the most sensitive parameters in ac-

cordance with the model outputs. The results from this sensitivity analysis were later

used to prioritize parameters for the model calibration. The adjusted parameters in the

BioWin’s model corresponded to the nitrite oxidizing biomass (maximum specific growth

rate, half-saturation constant for NO2), and the ordinary heterotrophic organisms (fer-

mentation rate) as presented in Table 3.4. Additionally, values of the stoichimetric and

kinetic parameters in the gPROMS implementation of the modified BSM2 model have

been modified to reflect those used in the BioWinR© model. Comparison results reported

in Table 3.5 for the tertiary effluent show good agreement between the measured and

calibrated values - average values considered here as the variations during the two-week

period were small (dry weather). Most of simulated results are within the confidence

interval, which means that there is no statistical significant difference for investigated
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variables between the simulated value and measured data.

Table 3.4: List of kinetic parameters to calibrate the plant-wide model.

Parameter Description Default Calibration
µNOB Maximum specific growth rate of NOB (1/d) 0.7 0.9
KNO2

Substrate (NO2) half saturation constant (mgN/L) 0.1 0.25
qfe Fermentation rate (1/d) 1.6 3.2

Table 3.5: Comparison of the predictions with both simulation platforms (after calibra-
tion against measurements during the 2 weeks non-routine monitoring campaign for the
tertiary effluent (average values).

Measurements Count BioWinR© gPROMS
NH4-N, mg/L 0.02±0.007 14 0.08 0.09
NO3-N, mg/L 4.3±0.6 14 4.4 4.8
PO4-P, mg/L 0.02±0.005 14 0.04 0.04
COD, mg/L 34±5 14 31 30
MLSS, g/L 7.7±0.5 14 7.4 7.4

In order to validate the plant-wide model, another dataset was used (12 months of data

from April 2012 to April 2013). Note that the adjusted parameters from the model

calibration were kept constant to obtain matching results. The results of model validation,

which are presented in Table 3.6, indicate that there was good agreement between the

model predictions and the measured data, although the model was calibrated based on

only steady state data. Analysis reveals that the plant-wide model had a predictive ability

which was sufficiently accurate for the investigated variables; however, the plant-wide

model should be used with caution and engineering judgement. A number of assumptions

were made during the investigation due to numerical difficulties in simulating the plant-

wide model, and the lack of data availability. It is worth noting that relative trends

obtained from the plant-wide model are much more reliable than the absolute performance

of model predictions, which makes the plant-wide model well suited for scenario analysis.

To improve model calibration and validation, extensive sampling data should be collected

including dynamic plant data ranging from less than a minute to several days. In addition,

a rigorous model calibration process would be necessary to ensure that the plant-wide

model can accurately capture the behavior of the plant.
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Table 3.6: Comparison of the predictions with both simulation platforms (after validation
against measurements during 12 months of data collection from April 2012 to April 2013
for the tertiary effluent (average values).

Measurements Count BioWinR© gPROMS
CBOD, mg/L <2 84 <2 <2
NH4-N, mg/L 0.02±0.06 61 0.07 0.08
NO3-N, mg/L 3±0.5 61 3.4 3.7
PO4-P, mg/L 0.03±0.005 60 0.03 0.04
COD, mg/L N/A 0 30 30
MLSS, mg/L 7.3±0.15 177 6.9 6.8

3.3.2 Strategies for Reducing Energy Consumption

Possible strategies for reducing the energy consumption of the plant, without significantly

deteriorating the effluent quality or increasing the fugitive emissions (e.g., in the form of

N2O). The overall energy consumption in the current plant operation is dominated by

compression energy for aeration of the activated sludge tanks in both treatment lines;

this high level of aeration results in very low ammonia effluent concentration, less than

0.1 mg/L. This presents a question of whether there could be a better balance between

these two parameters. Here, a sensitivity analysis reveals that the dissolved oxygen (DO)

set-points in either treatment line and, to a lesser extent, the sludge retention time (SRT)

in either treatment line, are most sensitive with respect to the aeration energy among

the key operational variables. The effect of various DO set-points (taken as identical

in both wastewater and sludge treatment lines) on the energy consumption, ammonia

discharge, TN discharge and N2O emissions is presented in Figure 3.4, showing a tight

interplay between these key performance indicators. It is predicted that a decrease in the

DO set-point from 2 mg/L to 1 mg/L can decrease the aeration energy by about 15%,

with minimal impact on the ammonia discharge, and a reduction in total nitrogen (TN)

discharge of 1 mg/L (Figure 3.4a). An extra 10% reduction in aeration energy, and a

further 0.5 mg/L reduction in the TN effluent concentration could be achieved when the

DO set-point is decreased down to 0.5 mg/L, while the ammonia effluent concentration

is kept below 0.2 mg/L. In contrast, the low DO set-point can have a negative impact

on global climate change because decreasing the DO set-point leads to an increase in the
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N2O emissions due to incomplete nitrification, which increases by a factor of 3 between

0.5 mg/L and 2 mg/L (Figure 3.4b). It is also interesting to note that operating at the

low DO set-point may also have other adverse effects on the treatment quality, such as

poor sludge settleability, which is not considered in the model.
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Figure 3.4: Effect of DO set-points on (a) the aeration energy, effluent quality (NH3-N
represented by the red line and TN represented by the green line) and (b) N2O emissions
(The concentrations in Figure (3 mg/L, 2 mg/L, 1 mg/L, 0.5 mg/L and 0.3 mg/L) indicate
the DO-setpoints).

Other studies have also investigated the general trends in energy consumption and fugitive

emissions when the DO set-point is varied, and a comparison between our results and

those reported by Flores-Alsina et al. [138] is presented in Table 3.7. Note that the

overall GHG emission values at different DO set-points are consistent, and show a similar

trend for lower DO set-points. Although off-site CO2 emissions may decrease, this effect is

counterbalanced by increased N2O emissions, especially since N2O has a 300-fold stronger

greenhouse effect than CO2. In addition, our modeled N2O emissions are between 0.009

and 0.027 kgN2O per kg N in the influent. This is in the medium range compared to other

full-scale WWTPs, typically between 0.001 and 0.25 kgN2O/kg N influent, which vary

widely depending on a plant’s configuration or operation [171, 172]. Similarly, the effect

of SRT variation in Stage 1/2 (keeping the SRT in Stage 3 at its current nominal value)

on the energy consumption, TN discharge and N2O emissions (shown in Figure 3.5) was

also investigated. It is noted that the effect of varying the SRT in Stage 3 had similar
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Table 3.7: Comparison of the overall GHG emissions at various DO set-points with those
from the work by Flores-Alsina et al. [138] - the reported values are per m3 of treated
wastewater.

DO set-point This work Flores-Alsina et al. [138]
0.5 mg/L 1.19 kgCO2e/m

3 N/A
1 mg/L 1.02 kgCO2e/m

3 ca. 1.6 kgCO2e/m
3

2 mg/L 1.00 kgCO2e/m
3 ca. 1.25 kgCO2e/m

3

3 mg/L 1.04 kgCO2e/m
3 ca. 1.3 kgCO2e/m

3

results. It is possible to reduce the aeration energy by a small percentage by decreasing

the SRT (Figure 3.5a), and therefore the extent of endogenous decay, but this then leads

to increasing the energy/cost of sludge treatment at the same time. A reduction in the

SRT is also accompanied by an increase in N2O emissions (Figure 3.5b), although, again,

this is small compared to GHG emissions from the related energy use. Regarding the

effluent quality, Figure 3.5 shows that the effect of reducing the SRT would be beneficial

in terms of the TN concentration, with possible reductions over 1 mg/L. This is mainly

due to a reduction in nitrate concentration, whereas the ammonia concentration remains

below 0.2 mg/L despite a decrease in the nitrifier biomass for lower SRT values.
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Figure 3.5: Effect of SRT in Stage 1/2 on (a) the aeration energy, effluent quality and (b)
N2O emissions.

On the whole, decreasing the DO set-points and the SRT could lead to a significant re-

duction in energy consumption and a lower TN effluent concentration, while maintaining

a very high treatment quality regarding ammonia and keeping N2O emissions at an ac-
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ceptable level compared to other GHG emissions. It is pointed out that NH3-N and TN

that are not removed in the plant can be released to the environment. This can be an im-

portant source of N2O emissions in the river up to 0.68 Tg/yr of anthropogenic N inputs

estimated by the river network models [173] so further study on incorporation of GHG

emissions from river or water receiving body should provide more picture of the over-

all GHG emissions. Regarding the characterization factors (GWP100) used to combine

the environmental impact of N2O and CH4 with other environmental impacts including

energy consumption, these values have been used by several studies [138, 174]. Even

though these values are relatively high, an increase or decrease (10%) from the default

values would slightly affect the overall GHG emissions (less than 5%). This is because

direct emissions, e.g. N2O and CH4 are only one part of GHG emissions and the main

contribution of the overall GHG emissions is from energy consumption.

3.3.3 Strategies for Enhanced Nutrient Removal

Strategies for improving the effluent quality are also investigated, without causing a

large increase in energy consumption or fugitive emissions. Given that the plant already

achieves low ammonia and phosphate discharge, the analysis has focused on enhancing

nitrate removal. The major bottleneck in the current operation appears to be low carbon

availability for denitrification in the anoxic tanks of both treatment lines. Especially sen-

sitive in this context are the operational variables corresponding to the influent flow split

between Stage 1/2 and Stage 3, and the mixed-liquor recirculation (MLR) rate.

The effect of varying the influent fraction between Stage 1/2 and Stage 3 was investi-

gated ranging from 35% to 65% (current operation 46%), and the corresponding trends

are shown in Figure 3.6. Increasing the influent fraction to Stage 1/2 results in a possi-

ble reduction of the TN effluent concentration by about 1 mg/L (Figure 3.6a). Further

inspection reveals that the TN concentration in the Stage 1/2 effluent is at a minimum

for a split fraction of around 55% (compromise between a sufficient residence time in the
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anoxic tanks and the need for a high enough C:N ratio). Whereas, the TN concentra-

tion in the Stage 3 effluent is decreased with increasing influent flow to Stage 1/2. It is

noted that there is a limited effect of the influent flow splitting on the aeration energy

or the final ammonia effluent concentration, which remains below 0.2 mg/L for influent

fraction in the range of 35-65%. For the N2O emissions, they are predicted to increase as

a larger fraction of the wastewater is treated in Stage 1/2 (Figure 3.6b) due to incomplete

nitrification, which leads to nitrite accumulation in the anoxic tank of Stage 1/2 despite

a decrease in these emissions in Stage 3. It was also observed that the small amount of

methane emissions from the anaerobic reactor in Stage 3 slightly increased. However, all

these fugitive emissions remain small compared to energy-related GHG emissions.
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Figure 3.6: Effect of influent split between Stage 1/2 and Stage 3 on (a) the NO−
3 discharge

and (b) N2O emissions.

As expected, an increase in the MLR in either treatment line can lead to sending around

a larger amount of NO−
3 back to the anoxic zone where denitrification occurs and, as a

result, a reduction in the NO−
3 effluent concentration is predicted. For the Stage 1/2,

the effect of MLR variation is illustrated in Figure 3.7a, showing a potentially significant

decrease in NO−
3 concentration; it is noted that similar behaviour is observed with Stage

3; typically, such a reduction would entail larger pumping energy/costs. With regard to

N2O emissions, greater emissions are predicted when increasing the MLR in Stage 1/2

(Figure 3.7b); this is possibly because a large MLR can result in an excessively low C:N
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ratio, which then leads to nitrite accumulation. On the other hand, an increase in the

MLR in Stage 3 can result in a reduction in the N2O emissions because the C:N ratio is

not limited in this stage of treatment.
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Figure 3.7: Effect of varing mixed-liquor recycling (MLR) in Stage 1/2 on (a) the NO−
3

discharge and (b) N2O emissions.

By and large, this analysis suggests that increasing the influent split to Stage 1/2 as well

as increasing the MLR in both stages could lead to a lowering of the TN discharge con-

centration to approximately 3 mg/L, while not causing a large increase in aeration energy

and keeping fugitive emissions at a low level compared to other GHG emissions.

In the near future, the EPA licenses on effluent quality are likely to be stricter. The

low concentrations of nutrients are required at this WWTP to reduce the nutrient load

to the river which is sensitive to the algae bloom. A new way to treat wastewater will

be used to provide the better effluent quality. The alternative way to enhance nutrient

removal is to use reverse osmosis (RO). The RO was already installed at the WWTP

to recycle water that can be used in many ways. The volume of nutrients is reduced

to provide high quality similar to drinking water as the key part of the plan to increase

water recycling. Membrane technology might become necessary to achieve the required

level of effluent quality with stricter effluent quality regulations, or in cases of wastewater

reclamation. Currently, a fraction of the wastewater from the WWTP is being polished
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in an advance process where RO is used; after RO the TN concentration in the effluent

could be as low as 0.3 mg/L. This scenario was compared with the other three scenarios

evaluated in terms of energy use and GHG emissions from the modelled treatment plant

with TN discharge concentrations of 3 mg/L, 5 mg/L and 8 mg/L. The results of all

these scenarios are presented in Figure 3.8, with their respective energy consumption and

CO2-equivalent emissions [175, 176]. It can be seen that advanced treatment (RO) would

contribute to substantial increases in energy consumption and GHG emissions by about

50% in comparision with those scenarios in which RO is not included, and this would have

an increased negative impact on the environment. Hence, this scenario-based modeling

provides a means of incorporating a broader picture of the environmental benefits and

drawbacks of upgrading to RO.
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Figure 3.8: Comparison of plant upgrade scenarios, including operational changes and
reverse osmosis, in terms of TN discharge and GHG emissions (both fugitive and energy
related).

3.4 Summary

This chapter has presented the application of a plantwide model-based methodology to

conduct a detailed analysis of operational strategies on energy use, effluent quality and

fugitive emissions for an existing WWTP which operates two parallel treatment stages.

The key improvemence and difference from other similar studies is that the plant-wide
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model under study is able to identify what level of nutrient discharges, energy consump-

tion and GHG emissions can be reduced and what impact of further reduction in nutrient

discharges has on the overall plant performance. This is important information used to

identify the main trade-off between effluent quality, energy consumption and GHG emis-

sions. Also, this study presents the model calibration to the full-scale WWTP based

on routine and non-routine measurements. Quantitatively, potential improvements have

been identified by the plant-wide model to reduce energy consumption. It is suggested

that the energy consumption could be reduced by up to 10-20% by manipulating the DO

set-point and SRT based on the nominal condition in both treatment stages. However,

these changes can typically lead to an increase in N2O emissions because of incomplete

nitrification or denitrification. In addition to potential improvements to reduce the energy

consumption, a scenario-based analysis was conducted to identify potential improvements

to decrease nutrient discharge. It was found that the nitrate concentration in the ter-

tiary effluent could potentially be reduced to approximately 3 mg/L through operational

changes to the influent splitter fraction between treatment stages, and the MLR rate in

both stages. As the licenses on effluent quality is likely to be stricter in the near future,

an alternative way to treat wastewater is implemented to provide better effluent quality

before discharge water into the river where is particular sensitive to the algae bloom. Fur-

ther improvement of effluent quality can be performed through RO installed at the current

WWTP to recycle water. The RO can treat water to reach the high level of quality similar

to potable water. Expectedly, RO could potentially enhance nutrient removal down to 0.3

mg/L, but this would entail an energetic penalty with a corresponding increase in GHG

emissions of up to 50%. Such a model-based methodology provides valuable information

about the impact of wastewater treatment on the environment and could be used to guide

discussions about environmental licensing of existing WWTPs.



Chapter 4

Plant-wide Model-based

Optimisation of WWTP Operation

4.1 Introduction

WWTPs involve a number of processes to remove organic matter and nutrients such as

activated sludge and/or anaerobic digestion. Operation of WWTPs is another important

aspect to consider to improve the performance of WWTPs in terms of effluent quality

and energy use. Descoins et al. [143] stated that researchers in the wastewater commu-

nity have mainly focused on modeling and associated water quality. More effort should

focus on the link between water quality, the removal efficiency of WWTP contaminants,

and energy aspects because energy is inextricably interconnected with economic and envi-

ronmental issues. Plant-wide models and rigorous optimisation techniques can be useful

for this problem because they allow us to capture the overall performance of each treat-

ment/separation unit, and provide a better understanding of the biological and physical

mechanisms, including their interactions. In this chapter, a plant-wide model-based op-

timisation is applied to another activated sludge plant with anaerobic sludge treatment,

owned and operated by Sydney Water. The aim is to; (i) quantify the impacts of key

operating variables on effluent quality and energy use to develop a better understanding

80
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of what level of nutrient discharges can be reduced without a significant increase in energy

consumption, (ii) develop optimised operational strategies to enable plant managers to

trade-off these conflicting objectives, and (iii) incorporate uncertainty into a plant-wide

model to increase the robustness of plant-wide model predictions through the applica-

tion of robust optimisation methods. The Chapter is organised as follows: Section 4.2 is

concerned with plant-wide model development, and presents the calibration/validation of

this model based on existing plant-data. Then, Section 4.3 describes the scenario-based

optimisation approach and discusses the results in light of the aforementioned objectives.

4.2 Plant-wide Model Development

4.2.1 Plant Description

The WWTP under study is a tertiary plant owned and operated by Sydney Water, which

is designed to treat a population load of 210,000 population-equivalents, and the treated

effluent is discharged into coastal waters. The layout of this plant is shown in Figure

4.1; the wastewater influent initially undergoes screening and primary sedimentation to

remove large particulates. Then, the wastewater is sent to secondary treatment, consisting

of five parallel aerobic/anoxic tanks (modified Ludzack-Ettinger process) for carbon and

nitrogen removal. The wastewater is finally polished by sand filtration and UV disinfection

before being discharged to the coastal waters. The UV disinfection was not included in

the model configuration because it does not affect the selected/monitored effluent quality,

e.g. COD, TKN, or nitrate. In addition to the wastewater stream, sludge produced in

primary and secondary treatment are mixed, thickened and digested anaerobically before

disposal. It is noteworthy that the quality of the treated effluent is usually better than

the required standards, especially with regards to ammonia discharge to maintain suitable

effluent quality even when unpredictable situations. This WWTP is flexible enough for

exploration of a wide range of scenarios, and it presents excellent potential for optimisation

due to substantial interactions between different liquid and sludge treatment stages.
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Figure 4.1: Layout of the activated sludge plant with anaerobic digestion treatment.

4.2.2 Plant-wide Model Formulation

This subsection presents the main components of plant-wide model, which is based on

the interface approach (see Section 2.5.1.3) and the benchmark model BSM2. The latter

is commonly used for assessing process performance, control system evaluation, etc [116],

and is available in several commercial wastewater treatment process simulators, including

GPS-XR©, SIMBAR© and WESTR©. The general layout of BSM2, which is shown in Figure

4.2, is indeed very similar to the actual plant under consideration in Figure 4.1. A brief

description of the main units and interfaces is given in the following subsections.

4.2.2.1 Activated Sludge Model

The activated sludge process is the most commonly used biological treatment in WWTPs.

Several models for the activated sludge process have been developed to describe the pro-

cess, especially models from the ASM family (ASM1, ASM2, ASM2d, ASM3) proposed

by the International Water Association (IWA) [110]. They are increasingly dominant and

represent a major contribution to the wastewater treatment community. Also, these are

considered as state-of-the-art models of the activated sludge process, and are used in most

commercial process simulators. For BSM2, ASM1 is selected to describe the biological

reactions of carbon and nitrogen in the bioreactor as depicted in Figure 4.3. The model
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Figure 4.2: Plant layout for the BSM2 modified from Jeppsson et al. [116].

consists of 13 variables and eight processes to describe biological behavior, and use Monod

kinetics to describe the biological growth rates of these processes. Further details of ASM1

is available in Henze et al. [111].

4.2.2.2 Secondary Sedimentation

Secondary sedimentation is the unit operation where biomass and other solids settle out

from the clear treated effluent after biological treatment. A certain fraction of the sludge

is sent back to combine with inlet streams to maintain a good population of biomass in the

bioreactor, while the remaining sludge undergoes treatment. The settling model developed

by Takács et al. [177] is commonly used, and is modeled as a multi-layer non-reactive

model based on the solid flux and mass balance around each layer and uses a double

exponential settling function to describe the settling velocity on the sludge concentration.

Note that gravity settling is calculated by the solid flux–the product of the settling velocity

and the solid concentration in each layer. More detail of the sedimentation model is

available in several technical reports and in the published literature [165, 177].
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Figure 4.3: Schematic representation of ASM1 modified from Alex et al. [165].

4.2.2.3 Anaerobic Digestion Model

The Anaerobic Digestion Model No. 1 (ADM1) developed by Batstone et al. [114] is

widely recognized and used for modeling the anaerobic digestion process,and has been

implemented and validated in several software platforms. The model considers biological

reactions in the liquid and gas phases, including gas- liquid interactions. The ADM1 for

the plant-wide model was modified from its orginal version in terms of inhibition functions,

gas flow calculations etc., because of computational difficulties (the model is stiff because

the range of time scale is large from a second to months), and no explicit values being

available for carbon and nitrogen contents for some state variables in Batstone et al. [114].

Note that the model variables used are different from other models so a model interface

is needed. More details of the ADM1 model for the platform-wide implementation are

available in Rosén et al. [178].
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4.2.2.4 Primary Sedimentation Model

The primary sedimentation model is based on Otterpohl and Freund [179], and Otterpohl

et al. [180]. The model assumes no biological activity in the settler, which is described as

a completely mixed tank. Effluent is divided into water and sludge streams based on an

empirical expression which considers hydraulic retention time, and the ratio of particulate

to total COD. Soluble components are assumed to be not affected and equal to the inlet

for both outlet streams. The flowrate of sludge is set to be proportional to the influent

flowrate; more detail of the primary sedimentation model is available at Otterpohl and

Freund [179] and Otterpohl et al. [180].

Figure 4.4: Schematic representation of proposed primary sedimentation model modified
from Otterpohl and Freund [179] and Otterpohl et al. [180].

4.2.2.5 Thickener Model

For simplification, the thickener, filtration and dewatering units are modeled as ideal

and continuous processes without biological reaction. Most particulate matter fed into

the thickener or dewatering units is assumed to be settled and discharged in the sludge

stream. The model does not consider the change of sludge characteristics and assume

good settling qualities. Concentrations of soluble components are equal in both outlet

streams which are identical to the inlet concentrations.
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4.2.2.6 Interface Model

Variables in the activated sludge and anaerobic digestion models are different, so a

model interface is necessary to combine the two process variables, and researchers in

the wastewater treatment community have developed a number of interface models. The

ASM1/ADM1 interface, developed by Nopen et al. [122], is a promising version among

the various alternatives, and has been used along with the BSM2 in several applications;

it is modified from the model interface developed by Copp et al. [123]. The ASM1/ADM1

interface initially removes oxygen and NO−
3 -N in wastewater with a reduction in associ-

ated COD. The remaining COD and nitrogen are converted directly into proteins, lipids,

carbohydrates, inerts, amino acids and sugars based on corresponding nitrogen fractions,

and soluble and particulate fractions. In the final step, the inorganic fractions are cal-

culated to balance the charge interface, as shown in Figure 4.4a. For the ADM1/ASM1

interface, the concept is similar to the ASM1/ADM1 interface, which maps the biomass,

COD and nitrogen variables of ADM1 into ASM1 variables directly based on correspond-

ing fractions of nitrogen. Finally, the charge is calculated to balance alkalinity (Figure

4.4b).
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Figure 4.4: Schematic representation of the interface model modified from Nopen et
al.[122].

4.2.3 Calibration Procedure and Results

Model calibration of the WWTP under study is based on historical plant data for a 6-

month period, obtained from Sydney Water’s data management system. Historical data

is routinely collected from online measurements and from laboratory analysis. The lab-

oratory analysis is performed both onsite at the WWTP, and at a laboratory accredited

by the Australian National Association of Testing Authorities. The data set consists of

the wastewater average daily flow, solids flows and concentrations to and from the main

separation units, MLSS concentration in the aeration tanks, effluent concentrations, and

the biogas production. Additionally, measurements of the wastewater composition are

available (from September to March), as reported in Table 4.1 in terms of their mean

values and standard deviations. Given the rather large uncertainty regarding the wastew-

ater composition for the calibration data set, a two-step calibration procedure is used in

order to capture the main trends in the plant, focusing primarily on mass conservation

and flow splitting [152, 181]. The first step involves calibration of the physical separation

unit models, including the primary sedimentation tanks, thickener units, dissolved-air

flotation (DAF) units, secondary clarifiers, and tertiary filters. Specifically, adjusting the

solids removal efficiency or other sludge settling parameters as appropriate is carried out,



88 Chapter 4. Plant-wide Model-based Optimisation of WWTP Operation

Table 4.1: Summary of plant influent data for model calibration.

Details Units Median StdDev [%] Count
Alkalinity mg CaCO3/L 231.0 14.6 6
COD mg/L 569.0 40 6
TSS mg/L 296.0 24 18
NH+

4 -N mg/L 42.9 26 6
Total nitrogen mg/L 61.3 24 6

in order for the predicted flows and solids concentrations to match the available data in

the least-squares sense. The calibration results are shown on Figure 4.5, and the corre-

sponding calibrated parameters for each unit are reported in Table 4.2. The calibrated

flows and solids concentrations are found to be in good agreement with the corresponding

measurements for all the separation units. Besides the use of simple separation models

(static input-output maps), and the fact that a single parameter is adjusted for each one

of them, the observed mismatch between the predictions and measurements from one day

to the next can also be attributed to the use of daily averages for the flows and concen-

trations. Note that the main objective in this study is to capture the major trends of

the plant-wide behavior which is well-predicted by the model predictions. However, the

current accuracy is limited by the availability of operational data. In order to improve

the accuracy of model predictions, more consistently operational data, e.g. TSS and data

from experimental design is needed, e.g. sludge volume index (SVI).

Table 4.2: Calibrated model parameters in separation units.

Unit Parameter Value
Primary settling fcorr (Correction factor) 0.61

Clarifier fns (Non-settleable fraction) 0.01
DAF ηTSS (TSS removal efficiency) 0.99

Thickener ηTSS (TSS removal efficiency) 0.98
Filter ηTSS (TSS removal efficiency) 0.94

Dewatering ηTSS (TSS removal efficiency) 0.98

The second step involves calibration of the biological processes in the plant-wide model,

as described by ASM1 and ADM1, for the aerobic/anoxic tanks and the anaerobic di-

gesters, respectively. The idea is to adjust selected parameters in order for the predicted
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Figure 4.5: Calibration of liquid and solid flows in the physical separation units.

MLSS, effluent concentrations, and biogas production to match their corresponding mea-

sured vlaues. Given the rather large uncertainty on wastewater composition (see Table

4.1), the focus here is on adjusting the influent fractions, while keeping the kinetic and

stoichiometric parameters in ASM1/ADM1 at their default values. Although fine-tuning

certain kinetic or stoichiometric parameters can help further close the gap between pre-

dictions and measurements, it is found that the resulting estimates fail to be statistically

meaningful given the lack of plant data here, which could be detrimental to the pre-

diction capability (robustness) of the model. Fractionation of the influent in BSM2 is

based on the state variables in ASM1 [111, 116]. Apart from the inlet concentrations

of ammonia and alkalinity whose values can be directly determined from the influent

measurements, it was assumed as a first approximation that no heterotrophic biomass,

autotrophic biomass, products of biomass decay, or nitrate are brought in with the influ-

ent. This leaves us with the following six influent fractions to determine: inert soluble

organic matter (fSI
); readily biodegradable substrate (fSS

); inert particulate organic mat-

ter (fXI
); slowly biodegradable substrate (fXS

); soluble biodegradable organic nitrogen

(fSND
), and; slowly biodegradable organic nitrogen (fXND

). Moreover, these fractions



90 Chapter 4. Plant-wide Model-based Optimisation of WWTP Operation

must satisfy the following relationships.

fSI
+ fSS

+ fXI
+ fXS

= 1 (4.1)

0.75(fXI
+ fXS

) = 1 (4.2)

fSND
+ fXND

+ 0.06
COD

TN
fXI

+
NH+

4 −N

TN
= 1 (4.3)

When inlet concentrations of COD, TSS, TN and NH+
4 -N are specified, the influent frac-

tionation problem thus has 3 degrees of freedom only. The fractionation results obtained

by considering the mean influent concentrations in Table 4.1, together with default ki-

netic/stoichiometric parameters in ASM1 and ADM1, are reported in the Set #1 column

in Table 4.3; the corresponding model predictions are shown in Figure 4.6 (red line). A

good agreement is observed overall between the model predictions and the measurements

during the 6 month period. The main trends appear to be captured well by the plant-wide

model, with the exception of biogas production whose rate is underestimated by 25-30%

during the first 120 days. Nonetheless, the fact that the predicted MLSS concentration

in the aeration tank follows the measurements well during the same period indicates that

such a discrepancy could be due to the mean COD and/or TSS influent concentrations in

Table 4.1 being underestimated themselves. To confirm it, both influent COD and TSS

concentrations have been estimated along with their fractionation in a separate calibra-

tion. These results are reported in the Set #2 column in Table 4.3, with the corresponding

model predictions also shown on Figure 4.6 (green line). The optimised COD and TSS

inlet concentrations are expectedly larger than the mean values used in initial calibration,

yet within the standard deviation range of Table 4.3, thereby leading to a reduction in

the biogas production rate mismatch. Both calibration sets are considered subsequently

for the plant-wide analysis and optimisation. Because the plant-wide model with default

kinetic and stoichiometric parameters may provide limited predictive capability for cer-

tain key process variables, such as biogas production, a similar calibration procedure for

another data set was conducted. The fractionation results obtained by considering the

mean influent concentration in Table 4.4, are presented in the Set #1 column in Table
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Table 4.3: Calibrated parameters of the wastewater influent and its fractionation.

Parameter Unit Set #1 Set #2
fSI g(COD)/g(COD) 0.06 0.05
fSS g(COD)/g(COD) 0.25 0.16
fXI g(COD)/g(COD) 0.07 0.07
fXS g(COD)/g(COD) 0.62 0.72
fSND g(N)/g(N) 0.16 0.11
fXND g(N)/g(N) 0.10 0.15
COD mg/L 569 597
TSS mg/L 296 350
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Figure 4.6: Calibration of effluent quality and biogas production in the WWTP. Calibra-
tion Set #1 (red trend line): mean COD and TSS influent from Table 2; Calibration Set
#2 (green trend line): optimised influent COD and TSS.

4.5; the corresponding model predictions are shown in Figure 4.7 (red line). Here again,

the main trend is well captured by the plant-wide model, although biogas production

is underestimated by 25%. However, the predicted MLSS concentration in the aeration

tank is well estimated during the same period, which possibly results from the same rea-

son in that the mean COD and/or TSS influent concentration being underestimated. To

confirm it, both influent COD and TSS concentrations have been estimated with their

fractionation in a separate calibration. The results are presented in the Set #2 column

in Table 4.5, with the corresponding model predictions shown in Figure 4.7 (green line).

Similar trends are observed that the optimised influent COD and TSS concentrations are

larger than the mean values within the standard deviation range, but this results in a
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large reduction in the biogas production rate mismatch.

Table 4.4: Summary of plant influent data for model validation.

Details Units Median StdDev [%] Count
Alkalinity mg CaCO3/L 231.0 14.6 6
COD mg/L 494.0 47 6
TSS mg/L 276 34 19
NH+

4 -N mg/L 38.8 31 6
Total nitrogen mg/L 51 28 6

Table 4.5: Calibrated parameters of wastewater influent and its fractionation with another
6 months data.

Parameter Unit Set #1 Set #2
fSI g(COD)/g(COD) 0.09 0.08
fSS g(COD)/g(COD) 0.16 0.10
fXI g(COD)/g(COD) 0.07 0.07
fXS g(COD)/g(COD) 0.68 0.75
fSND g(N)/g(N) 0.11 0.09
fXND g(N)/g(N) 0.09 0.11
COD mg/L 494 600
TSS mg/L 276 369

4.3 Plant-wide Analysis and Optimisation

The developed plant-wide model provides a means of quantifying effects of key operating

variables on energy use/production and effluent quality in the WWTP. It can be also

used to improve performance of the WWTP through systematic optimisation techniques

based on mathematical programming. The following subsection gives more detail about

the plant-wide optimisation problem formulation.

4.3.1 Optimisation Formulation

An informal statement of the optimisation problem for optimal operation of the WWTP

is as follows: “Find the optimal operational decision variables minimizing the plant’s
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Figure 4.7: Recalibration of effluent quality and biogas production in the WWTP to verify
the plant-wide model. Calibration Set #1 (red trend line): mean COD and TSS influent
from Table 2; Calibration Set #2 (green trend line): optimised influent COD and TSS.

average energy consumption, while meeting the effluent regulations and satisfying the

operational specifications.”

The optimisation problem can be formulated as follows:

min
u

J(u) (4.4)

s.t. ż = f(t, z(t), y(t), u(t))

g(t, z(t), y(t), u(t)) = 0

uL ≤ u(t) ≤ uU

yL ≤ y(t) ≤ yU

zL ≤ z(t) ≤ zU

where J is the objective function, z(t) the vector of differential state variables, u(t) the

vector of control/manipulated variables, and y(t) the vector of algebraic state variables,

i.e. composite variables (e.g. COD, TSS, BOD, etc.). The differential and algebraic

equations are equality constraints which can be described by a mass balance of the plant-

wide wastewater treatment model. In this study, implementation of the plant-wide model

is carried out in the general purposed modeling platform gPROMS, which has built-
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in optimisation capability to solve such optimisation problems. More detail for each

component of the optimisation problem (4.4) is given below.

4.3.1.1 Objective Function

The optimisation objective involves minimizing the net energy consumption, namely the

difference between the average energy consumption of the main treatment/separation

units and the average energy recovered from the biogas produced in the anaerobic di-

gesters.

J = Ēconsumption − Ēproduction (4.5)

where Ēconsumption, Ēproduction are average energy consumption and energy recovered from

biogas, respectively. energy consumption associated with both mixing and pumping is

computed based on correlations derived from historical plant data. Due to the fact that

data for calculation of pumping energy is not available, surrogate models through re-

lationship between energy used and stream flowrate through pumps is developed. It is

assumed that pumps were operated at constant efficiency for all flowrates; energy con-

sumption for pumps can then be expressed as a function of flowrate through the pumps.

Whereas, energy consumption of the aeration system and energy recovered from biogas

produced are computed based on the relationships found in Gernaey et al. [164] as a first

approximation:

AE =
Ssat
O

T · 1.8 · 1000

∫ T

t=1

V ·KLa(t)dt (4.6)

ME =
16 · Patm

R · Tad · T

∫ T

t=1

Qgas(t) · pgas,CH4
(t)

Pgas(t)
dt (4.7)

where T is time duration, AE and ME are energy consumption from aeration and energy

recovered from anaerobic digestion, respectively. V is the volume of bioreactors; Patm,

Pgas, pgas,CH4
are atmospheric pressure, biogas pressure and partial pressure of CH4,

respectively ; Tad is the operating temperature of the anaerobic digester, and R is the ideal
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gas constant. Note that energy consumption from aeration (AE) and energy production

(ME) are part of the average energy consumption (Ēconsumption) and energy production

(Ēproduction) in Eq. 4.5.

4.3.1.2 Effluent Standards and Operational Constraints

In order to cope with the current regulations of the Australian Environment Protection

Authorithy (EPA), constraints are defined on BOD, TSS and NH+
4 -N concentrations in

treated effluent, as given in Table 4.6. Note that satisfying these limits does not pose any

particular problem with the current operation, at least during dry weather conditions (see

Figure 4.6). Nonetheless, the quality standards are likely to be tightened in the coming

years, especially with regards to nitrogen discharge (both NH+
4 -N and NO−

3 -N). Other

Table 4.6: Effluent quality limits.

Component BOD TSS NH+
4 -N

mg/L mg/L mg/L
max 15 10 45.7

constraints are defined on a range of control variables e.g. DO, WAS, RAS and MLR in

order to account for equipment limits and/or in agreement with current engineering prac-

tice. Moreover, operational ranges are defined for two key process operation indicators,

namely the sludge age (SRT) and the MLSS concentration. These limits and ranges are

reported in Table 4.7 below.

Table 4.7: Operational limits and ranges.

Decision DO WAS RAS MLR
variables mg/L m3/day m3/day m3/day

min 0.5 – – –
max 3.0 4,142.7 103,680 100,000

Operation MLSS SRT
variables g/L day

min 2 7
max 5 15
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4.3.1.3 Decision Variables

Practical decision variables, e.g. variables that are commonly maniputed in WWTPs

were selected to keep the optimisation results as practical as possible; Table 4.8 shows

the selected variables and their nominal values. It should be noted that internal recycling

of the mixed liquor from the aerated zone back to the anoxic zone is not currently used

in this plant. In addition to the above variables, the effect of solids capture efficiency

(SCE) in the primary sedimentation tanks were also considered. Although SCE is usually

not manipulated in practice, one can easily imagine doing so by redirecting some of the

primary sludge to the secondary treatment for instance (instead of the sludge treatment).

Also, the addition of an external carbon source (methanol) for enhanced nutrient removal

was also investigated.

Table 4.8: Decision variables and nominal values.

Variable Description Nominal value
DO Dissolved oxygen setpoint 2 mg/L
WAS Waste activated sludge 2,272 m3/day
RAS Recycle activated sludge 58,000 m3/day
MLR Internal recycle flowrate 0 m3/day

4.3.1.4 Scenario-based Solution and Analysis

Instead of carrying out a single optimisation based on the foregoing problem statement, a

scenario-based procedure is considered whereby variable discharge levels are imposed for

NH+
4 -N or NO−

3 -N. Note that each scenario involves solving a separate (dynamic) optimi-

sation problem, here using gPROMS. This procedure yields insight into the sensitivity of

the optimal energy consumption, and corresponding operational decisions with respect to

key discharge constraints, thereby providing a means for analyzing the interplay between

energy consumption and effluent quality. In turn, this improved understanding helps

determine improved strategies for energy saving and nutrient removal.
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4.3.1.5 Scenario-based Robust Optimisation

WWTPs are generally associated with uncertainty for various reasons such as natural vari-

ability, insufficient data and measurement errors [182]. A plant-wide WWTP model also

consists of numerous uncertain parameters including influent conditions and kinetic coef-

ficients for each unit process model. As a result, a number of problems have been arisen

from model prediction accuracy to the risk associated with engineering decisions during

design, upgrade or optimisation. While the results from nominal values are important to

describe the qualitative features, it is important to account for uncertainty to improve the

understanding of process phenomena, model prediction accuracy, and making solutions

more practical. To deal with such problems, researchers have been working on various

concepts of robustness which aims not to find the best solution to the nominal values

(undisturbed systems), but to investigate a robust solution which is still good in the case

of uncertain systems. In this study, the robustness is defined as the ability of the process

to maintain its performance in an acceptable level although the actual parameters are

different from the values assumed [182]. Once uncertainty has been considered explicitly

during design and operation, it will provide more realistic results and enhance an under-

standing of specific phenomena. However, incorporation of uncertainty into wastewater

engineering is less advanced compared to other fields, including a comprehensive discus-

sion of sources of uncertainty, and evaluation methods applicable to wastewater treatment

projects. Several attempts have been made to propose methods for the quantification of

model prediction accuracy and uncertainty incorporated in model development and ap-

plications [183]. A scenario-based robust optimisation is a promising approach among

alternatives such as Monte-Carlo simulation [184, 185]. This approach is computationally

simple, easy to implement [186, 187], and can provide optimal operational conditions for

a defined range of perturbations. For example, given that nominal wastewater influents

in Table 4.1, or model parameters, may vary 10% in either direction, it would provide

optimal conditions which an acceptable level of performance is maintained even though

the nominal values are changed. This approach has been used in several studies and ap-

plications including the planning of a decentralized water supply and reuse system [187],
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robust model predictive control [188], and a water distribution system (WDS) [189]. Note

that a scenario-based robust optimisation for the plant-wide WWTP model is still com-

putationally difficult to incorporate all uncertain parameters because of a large number

of variables, constraints and high nonlinearity. To reduce computational difficulties from

the large scale optimisation problem (large nubmer of variables, constraints and high

nonlinearity), only selected uncertain parameters and scenarios are incorporated.

4.3.2 Strategies for Reduction of Energy Consumption

In the current mode of operation, the plant-wide energy consumption is dominated by

the aeration of the activated sludge reactors. Although partly compensated for by biogas

production in the anaerobic digesters, this energy consumption appears to be relatively

high compared to the current effluent quality, thereby suggesting good improvement po-

tential.

The effect of varying the NH+
4 -N discharge concentration on the plant’s minimal net

energy consumption is presented in Figure 4.8a, and the corresponding optimal decision

and operational variables are shown in Figure 4.8b. The optimisation results follow a sim-

ilar trend for both calibration sets (see Section 4.2.3 and Table 4.3). Quantitatively, the

larger organic load in Calibration Set #2 allows for a higher biogas production, and there-

fore a lower net energy consumption, compared to Calibration Set #1. Quite remarkably

though, the optimal decision and operational variables are nearly identical, suggesting

a certain robustness of the model-based predictions towards the uncertainty in influent

composition. Especially clear from Figure 4.8a is the tight interplay between net energy

consumption and NH+
4 -N discharge. For comparison, the actual plant’s net energy con-

sumption is estimated to be 2.18×104 kWh/day (daily average), and the treated effluent

contains 0.9 mg(NH+
4 -N)/L (daily average). Therefore, a reduction in the net energy

consumption by around 20-25% could be achieved, through operational changes, without

compromising the ammonia concentration in the effluent. Conversely, a reduction in the
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Figure 4.8: Effect of NH+
4 -N discharge level on (a) the net energy consumption and (b)

on the decision/operational variables, for the two calibration sets in Table 4.3.
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ammonia discharge by over 50% (0.4 mg/L) could also be obtained without increasing the

net energy consumption. Overall, these results suggest that: (i) treating ammonia down

to residual concentrations of approximately 1 mg/L may not increase energy consump-

tion from the current level of energy consumption for this plant; (ii) a good compromise

between energy saving and nutrient removal might be found for the plant as long as the

ammonia discharge limit remains greater than approximately 0.6 mg/L, and; (iii) the

plant may not produce an effluent with residual ammonia levels less than approximately

0.35 mg/L through operational changes only.

Closer inspection of the decision/operational variables trends in Figure 4.8b reveals that

the optimal DO set-point increases significantly from 0.5 mg/L to 3 mg/L as the NH+
4 -N

discharge concentration is lowered. Quite expectedly, the largest energy saving involves

lowering the DO set-point to 0.5-1 mg/L here. Operating the activated sludge reactors at

longer SRTs is also found to be advantageous from a plant-wide perspective, despite the

corresponding reduction in biogas production due to a higher endogenous respiration and

thus a lower sludge production (WAS flowrate). Conversely, the RAS flowrate increases

significantly as the NH+
4 -N discharge concentration is reduced, thus maintaining an op-

timal MLSS concentration around 3 g/L. Finally, the optimal strategy does not involve

recycling the mixed-liquor back to the anoxic zone since high limit is currently defined

with regards to TN discharge, and an increased MLR would entail extra pumping costs.

It can be clearly seen that the net energy consumption is dominated by aeration energy,

and hence a lower DO set-point can significantly reduce the net energy consumption while

effluent quality is still satisfied. However, it is not widely accepted in practice to reduce

the DO set-point below 2 mg/L to handle uncertain situations such as large fluctuation

of the flowrate, and/or influent concentrations. The effect of varying NH+
4 -N discharge

concentration at the constant DO set-point of 2 mg/L on the net energy consumption

was also investigated. The result is presented in Figure 4.9a, and the corresponding op-

timal decision and operational variables are shown in Figure 4.9b. A reduction in the
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net energy consumption of around 13% could be achieved, through operational changes,

without changing the DO setpoint (2 mg/L) and enhancing NH+
4 -N removal performance

in the effluent over 50% (0.44 mg/L). It is also found that the decision/operational vari-

ables follow the same trends as in Figure 4.9b when the NH+
4 -N discharge concentration

is varied.

Another interesting study was to investigate the feasibility of incorporating uncertainty

into a plant-wide model to robustify plant-wide model predictions through the application

of a scenario-based robust optimisation that directly accounts for the uncertainty. Here,

COD and TSS in the wastewater influent are selected as uncertain parameters because

it was found in Section 4.2.3 that COD and TSS have high standard deviations from

measurements, and both parameters are likely to be the main cause of the observed mis-

match between the predictions and measurements. Initially, two uncertain parameters

(COD represented by θ1 and TSS represented by θ2) were perturbed within 0-15% from

the nominal values (Table 4.1), and then 5 scenarios were generated for each perturbation

shown in Figure 4.10a to explore the optimal condition at a given range of perturbations

to enhance robustness. However, to prove that these 5 scenarios are a set of representative

ranges of plausible uncertain parameter values, the other 5 sampling scenarios were also

included, as illustrated in Figure 4.10b (5 more points in the box). Then, the 5 scenarios

(the nominal and perturbed values) are optimised simultaneously compared to the 10

scenarios (the nominal, perturbed values and sampling points). Figure 4.11 shows a

comparison between two cases (5 and 10 scenarios). Both cases follow a similar trend

for the net energy consumption, and the optimal decision/operational variables are also

found to be identical. Therefore, the first case (5 scenarios) is used subsequently in order

to robustify the optimal operational strategies in the presence of uncertainty.

Figure 4.12a shows the plant’s minimal net energy consumption at various NH+
4 -N dis-

charge levels when the uncertain parameters 0-15% perturbations are taken into account;

the corresponding optimal decision and operational variables are reported in Figure 4.12b.
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Figure 4.9: Effect of NH+
4 -N discharge level on the net energy consumption when the DO

setpoint is fixed at 2 mg/L (a) and the decision/operational variables (b), for the two
calibration set in Table 4.3.
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Figure 4.10: Scenario generation after perturbation (a) the perturbed values and the
nominal value (b) the perturbed values, the nominal value and the sampling points (5
points in the box). θ in this study is referred to uncertain parameters (COD and TSS)

The results show a similar trend for a given range of perturbations, but different mag-

nitudes; the larger the plant is perturbed by uncertain parameters (COD and TSS),

the higher the net energy consumption. Apparently, there is a trade-off between the

plantwide’s minimal net energy consumption and robustness. This is because the scenario-

based optimisation needs to provide larger flexibility within the system to allow it to adapt

to a range of uncertain events at reasonable net energy consumption. The optimal con-

ditions need to provide the best operational strategies to best fit all scenario constraints

(effluent quality and operational constraints) as closely as possible while still maintaining

feasibility. Closer investigation of the decision/operational variable trends in Figure 4.12b

shows that they follow similar trends to the previous study when the NH+
4 -N discharge

level is varied. But whereas the WAS and MLR flowrates and the DO set-point are rather

insensitive to the level of uncertainty, the RAS flowrate increases more appreciably in

the robust solution, thus providing a means of counteracting uncertainty in the influent

concentration.
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Figure 4.11: Comparison of the scenario-based robust optimisation for 5 scenarios and 10
scenarios (a) the net energy consumption, (b) the decision/operational variables.
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Figure 4.12: Effect of ammonia discharge level on the net energy consumption (a) and on
the decision/operational variables (b) under the presence of uncertainty.
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4.3.3 Strategies for Enhanced Nutrient Removal

Because residual NH+
4 -N levels are already quite low, typically less than 1 mg/L, most

of the potential for enhancing nutrient removal lies with reducing NO−
3 -N levels. This

section investigates to what extent such reductions can be achieved through operational

improvements. The effect of varying the NO−
3 -N discharge concentration on the plant’s

minimal net energy consumption, at a constant NH+
4 -N discharge concentration of 0.9

mg/L, is presented in Figure 4.12a; the corresponding optimal decision and operational

variables are reported in Figure 4.12b. Note that these results are based on Calibration

Set #2 (see Section 4.2.3), and turn out to be similar to those produced with Calibration

Set #1. Moreover, the three curves on the plots correspond to the optimal operation in

terms of the decision variables DO, RAS, WAS and MLR, without (red solid line), with

(green dotted line) SCE as an extra decision variable. The nominal value of 55% capture

efficiency was used in the former case and addition of external carbon source (blue dotted

line).
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Figure 4.12: Effect of nitrate discharge level on the net energy consumption (a), on the
decision/operational variables (b) and on the amount of carbon addition (c), at constant
ammonia discharge level of 0.9 mg/L and for Calibration Set #2 in Table 4.6.
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As previously with NH+
4 -N discharge, Figure 4.12a shows a tight interplay between net

energy consumption and NO−
3 -N removal. For comparison, the current plant’s net energy

consumption is estimated to be 2.18 × 104 kWh/day (daily average), and the treated

effluent contains as much as 22.1 mg/L (daily average). The optimisation results suggest

that a reduction of the NO−
3 -N concentration down to approximately 14 mg/L could be

obtained without increasing the net energy consumption, through operational changes.

These changes involve increasing the recirculation of mixed-liquor back to the anoxic zone

as a source of carbon for denitrification; mainly an increase in the MLR flowrate here. In

this instance, the additional pumping energy is balanced by a reduction of the compres-

sion energy (DO set-point down to 0.5 mg/L).

Regarding solid capture efficiency, a lower SCE means that a larger fraction of particu-

late organic pollution entering the plant will be sent to the secondary treatment, thereby

increasing the amount of carbon available for denitrification in the anoxic tanks. On the

other hand, the BOD load sent to the anaerobic digester will decrease, which in turn will

decrease biogas production. These considerations explain why NO−
3 -N concentrations

lower than 10 mg/L could be achieved if the SCE were to be reduced to <42%, with

a slight increase in the net energy consumption of the plant (around 5%). In practice,

this strategy should be compared to the direct addition of a fresh carbon source (e.g.,

methanol) in the anoxic tanks.

Addition of external carbon source (methanol) was also studied to investigate its effect

on nutrient removal. The results show that greater nutrient removal could be achieved

through the addition of external carbon, and an increased flowrate of recycling streams

(MLR and RAS) to send back NO−
3 -N to the anoxic zone for denifrification. A reduction

in NO−
3 -N concentration can be lower than 5 mg/L, thereby increasing amounts of carbon

addition (see Figure 4.12c), although this would be at the cost of around an 18% increase

in the net energy consumption of the plant because of no limitations in organic matter

available for denitrification. However, it turns out that the net energy consumption is
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lower compared to variation of SCE because addition of external carbon does not need

to compromise the amount of sludge sent to anaerobic digestion, unlike a variation in

SCE. Note that using an external carbon source can incur addtional costs with regard to

chemicals, which is not considered in this case.

4.4 Summary

This chapter has presented the application of a systematic model-based optimisation

to a full-scale activated sludge plant combined with anaerobic sludge digestion. The

objective was to quantify the effect of key operational variables on effluent quality and

energy consumption, and to determine improved operational strategies to take account

of these conflicting objectives. Overall, the model-based optimisation can be used to

simultaneously adjust the key operating variables to optimise the WWTP’s performance

compared to the current studies, i.e. adjusting one operating variables at the time and

the optimal solution is not guaranteed. Similar to the previous study, it is used to inform

what point of nutrient discharges uss significant amount of energy to identify the main

trade-off between two conflicting objectives. It is also possible for model predictions to

incorporate the uncertainy into the optimisation framework to robustify the operational

strategies. Although the results observed are only specific for this case study, the concept

of systematic optimisation based on plant-wide models together with a scenario-based

robust optimisation can be applied to other wastewater treatment systems to develop the

optimal operational strategies with enhanced robustness. The results of the scenario-based

optimisation show good potential for further improvements, with reduction in energy

consumption of around 20-25% through operational changes (DO set-point, and WAS,

RAS and MLR flowrates) if the effluent targets were to remain at the same level. It was

also found that the NO−
3 -N concentration in the effluent could be reduced to less than 15

mg/L with no increase in net energy consumption. Our analysis suggests that the NO−
3 -N

concentration could even be reduced to 10 mg/L or less by decreasing the solids capture

in the primary sedimentation tanks to only 42%, subject to a small increase in net energy
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consumption. Finally, addition of an external carbon source (methanol) can provide

better performance in terms of greater NO−
3 -N removal, and lower net energy consumption

compared to the case of solids capture variation. A reduction in NO−
3 -N concentration to

lower than 5 mg/L subject to an 18% increase in net energy consumption.



Chapter 5

Synthesis of Wastewater Treatment

and Recovery Facilities using

Superstructure Optimisation

5.1 Introduction

Wastewater has been considered a human health concern and environmental hazard for a

long time. Most wastewater treatment designs are based on engineering traditions estab-

lished back in the early 20th century [15]. To produce an effluent that was of satisfactory

quality for discharge into the environment, processes were developed which used large

amounts of energy and land, and produced large amounts of sludge; however, a paradigm

shift is underway towards making wastewater treatment facilities more sustainable. In

this new paradigm, wastewater is regarded as a renewable resource from which water,

materials and energy can be recovered, thereby forcing “wastewater treatment” to transit

towards “resource recovery” facilities [16]. It has even been argued that the design of

wastewater facilities could have a significant impact on reducing greenhouse gas emissions

[190]. Until recently a majority of the activities related to resource recovery from wastew-

ater have focused on waste sludge streams, which are a by-product of biological treatment.

111
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Because these streams have relatively low flows in comparison to the main wastewater

stream, and are more concentrated, resources can be recovered from them with minimal

changes to the wastewater treatment infrastructure. For instance, mesophilic anaerobic

digestion of primary and waste-activated sludge produces a methane-rich gas which is

being used in most treatment facilities worldwide to recover energy. It has been reported

that a quarter to half of the energy requirements for an activated sludge facility can be

provided by such energy recovery systems [66, 191].

It is now recognized that wastewater is a potential source of valuable resources, and

technologies required for resource recovery are maturing. Apart from the barrier of tech-

nological and market penetration, a lack of design methodologies and decision-making

tools are also a significant problem in being able to evaluate the most sustainable fa-

cility in a given geographic and cultural context. Several studies have investigated the

possibility of designing a new wastewater treatment facility to select the optimal process

configuration. Sutton et al. [103] developed a new municipal wastewater treatment flow-

sheet with the aim of achieving sustainability though energy, water and nutrient recovery,

as shown in Figure 5.1. The new flowsheet consists of an aerobic membrane bioreactor

Figure 5.1: Schematic representation of the new flowsheet [103].
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coupled with an anaerobic MBR digestion system where energy can be recovered, and

physical-chemical systems (reactive filtration and zeolite ammonia removal system) to re-

cover nutrients. It is found that the modeling results support the new flowsheet in terms

of economic and environmental advantages compared to the conventional approach. How-

ever, a number of questions arose regarding the selection of treatment/separation units

and their interconnections from a wide variety of unit operations that are available. This

question is known as flowsheeting or synthesis in process engineering. It should be men-

tioned that there are also other factors used to design wastewater treatment treatment

facilities which are not considered, e.g. skill of operators, funding availability for the sim-

plicity reasons. More detail or factors can be added in the future study to make it more

practical.

In order for the synthesis of sustainable WWTPs to be feasible, it is necessary to account

for the trade-offs between capital, operating costs and sales, while water quality, and other

environmental considerations also need to be satisfied. Although technical considerations

can significantly decrease the combinatorial problem and enable us to select the promising

solutions, they typically do not provide all the information required for an optimal system.

As the array of technical options grows, a simple enumeration of all possible alternatives

quickly becomes unmanageable, quite apart from the fact that each technology has its

own parameters to specify or optimise. In this chapter, we advocate the use of systems

engineering methods and tools to address this problem in a systematic way. A super-

structure modeling approach [19] is considered which can account for a large number of

treatment and separation options (units), along with all the feasible interconnections be-

tween them. Rigorous optimisation based on such a superstructure leads to mixed-integer

nonlinear programs (MINLPs) that can be implemented and solved using state-of-the-art

mathematical optimisation software such as GAMS (http://www.gams.com). However,

the key to the success of this methodology is the development/selection of mathemati-

cal models for the units that are simple enough for the optimisation problem to remain

tractable, yet provide reliable estimates of their performance and associated costs. The
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remainder of this chapter is organised as follows: Section 5.2 describes the superstructure

approach, and focuses on the performance models for the treatment/separation units, and

assessment criteria. Section 5.3 presents the optimisation formulation including material

balances and optimisation techniques used to solve the superstructure-based optimisation.

The proposed methodology is illustrated by the synthesis of a simple resource recovery

facility in Section 5.4.

5.2 Methodology

In chemical processes where advance technologies for process design and operation are

well developed, design methodology can be divided into two main approaches: traditional-

conceptual [192, 193], and superstructure optimisation-based approaches [19]. The former

relies on the existence of a natural hierarchy among engineering decisions, which are made

during the generation of a process flowsheet. This approach is widely used because the

complexity of process synthesis is relatively low where subprocesses of a plant are designed

sequentially without considering interactions between the different stages. Specific con-

ceptual tools are also developed to support the design of particular subprocesses through

graphical representations based on thermodynamics, such as the use of residue curves to

design of distillation-based separation, and the use of pinch technology to design heat

exchanger networks. In the superstructure optimisation-based approach, a network con-

sisting of all potentially feasible unit operations and relevant interconnections, known as

a superstructure, is initially taken into account. Then, this superstructure is used to for-

mulate an optimisation model including reformulated unit models, interconnections and

relevant constraints. Such a model generally includes binary selection to allow us to selec-

t/deselect the unit operations and their interconnections. This approach has been applied

to several scenarios, especially water network synthesis to minimize fresh water consump-

tion, and wastewater generation through regeneration and recycle/reuse [194, 21, 22].

More specifically, the synthesis of wastewater treatment facilities is the selection of treat-
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ment/ separation processes which treat wastewater to satisfy the standard regulations

before being discharged into the receiving waters. There are several factors considered

in designing wastewater treatment processes [17], and the number of treatment/separa-

tion unit alternatives have been increasing steadily. The design of wastewater treatment

processes relies mostly on knowledge-based systems [145], and heuristic rules based on ex-

perience [17], that are used for the selection and ordering of wastewater treatment units;

however, they cannot guarantee an “optimum” solution. The systematic superstructure

optimisation-based approach can be ideally effective because a large number of process

alternatives are considered, and it can optimise the optimal process configuration and its

operational conditions.

5.2.1 Superstructure-based Optimisation

Superstructure modeling and optimisation is at the core of the synthesis of sustainable

wastewater treatment facilities. In this work, surrogate models have been applied to gener-

ate simple, yet reliable models to reduce the inherent complexity of wastewater treatment

models. The proposed methodology is illustrated in Figure 5.2. The most promising

alternatives would in turn be validated against the performance and cost predicted by

the wastewater treatment simulator. Typically, this would create an iteration between

the superstructure optimisation and the simulator in order to refine the regression models

as appropriate. In particular, recent developments in surrogate-based optimisation can

guarantee an overall optimum with minimum recourse to detailed models [195, 196]. Fi-

nally, the selected process candidates would be considered for detailed performance and

cost analysis, including integration options and operability issues. Here again, further

iterations with the superstructure optimisation block could prove necessary in order to

account for additional design and operational constraints. The focus in this chapter is

more specifically on the components in the gray-shaded area of Figure. 5.2. The main

objective of the following case study is to provide a proof-of-concept of this superstruc-

ture optimisation approach based on simple regression models, while also showing that
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the underlying optimisation problems are indeed tractable to produce guaranteed global

optimality. An extension of this approach to incorporate LCA considerations, along with

a more complex case study in municipal wastewater treatment, will be presented later on

in Chapter 6.
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Figure 5.2: Illustration of the proposed methodology based on superstructure optimisation
and regression models.

5.2.2 Surrogate Model

To address challenges associated with complexity in wastewater treatment facilities, and

their interactions, the whole process/plant needs to be disaggregated into smaller process

groups. This approach allows us to handle highly complex models and reduce the com-

plexity of optimisation problems. The model generated from the smaller or less complex

systems can then be used to formulate the superstructure-based optimisation problem

to determine process alternatives and their interconnections. After disaggregating the

complex proceess into the smaller process groups, it is the role of the mathematical mod-

els of each treatment/separation unit to predict their performance. In compliance with

the superstructure optimisation method and current capabilities of optimisation technol-

ogy, these models must remain as simple as possible, typically linear, piecewise-linear

or polynomial relationships between the input/output variables. Currently, the direct
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use of complex biodegradation models such as ASM1-3 [110] and ADM1 [114] for the

bioreactor, or complex crystallization, adsorption and filtration model for the separation

units for performance prediction in the superstructure is intractable from a computational

standpoint. The simple and widely used approach is to assume fixed conversion, removal

or split fractions in the treatment/separation units, and such an approach is typically

used in water network synthesis (see, e.g. Khor et al. [22]). In this work, an alternative,

potentially more accurate method relying on detailed first principle models, as performed

in wastewater treatment simulators such as GPS-XR©, is developed. This is known as the

surrogate model or the response surface model. The surrogate model is defined a simpli-

fied approximate model mimicing the behavior of the high fidelity model. Based on data

generated by a simulator, either at steady state or averaged over a cyclic steady state, for

various influent compositions (COD, TSS, etc.) and given operational parameters (HRT,

SRT, etc.), simple regression models can be fitted to the simulated data. It should be

noted that the validity of generated surrogate models is limited to certain ranges based on

simulation ranges, and the bounds of such ranges should be included in the problem for-

mulation to ensure that the surrogate models are valid. However, this approach may fail

to obtain the optimal solution, or the solutions are very different from the integrated sys-

tem; to overcome such problems the surrogate model, including simulated ranges, needs

to be updated every time the solution is found. Different techniques are used to develop

a surrogate model based on the complexity of the treatment/separation units. For the

units with less complexity, the simplified model can be used as a surrogate model directly.

As the first principle models of wastewater treatment processes are highly complex, the

surrogate models generated need to be accurate enough while maintaining simplicity to

make the superstructure-based optimisation problem tractable. Such surrogate models

can be derived using data obtained from simulated or experimental data of individual

units/models. In this work, the commercial wastewater process simulator, GPS-XR©, was

used to generate the necessary data from the treatment/separation units to predict the

behaviour of the disaggregated units. Having the simulated or experimental data, it is
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important to generate the surrogate or the simplified approximate model. Polynomial

regression including linear, piecewise, and quadratic is the simplest technique and widely

used in several applications [197]. The approximation of polynomial regression can be

generally written as [198]:

y(x(i)) =

K∑
j=1

ajνj(x
(i)) (5.1)

Or it can be presented in the matrix expression

y = XA (5.2)

where y = [y(x(1)y(x(2)...y(x(p)]T is a vector of observed responses (simulated or exm-

perimental data), X is a matrix of the basis functions, p is the number of simulated or

experimental data or sampling point. A is a vector of estimated polynomial regression

coefficient which can be calculated as follow:

A = (XTX)−XTy (5.3)

The first-order polynomial model (linear) is the simplest example of polynomial regression.

y(x) = y([x1, x2, ..., xn]
T ) = a0 +

n∑
j=1

ajxj (5.4)

where y(x) = y([x1, x2, ..., xn]
T ) is the observed responses and a0, aj are the linear regres-

sion coefficient. Figure 5.3 shows an example of the methane conversion efficiency in a

UASB reactor as predicted by the ManTIS2 model in GPS-XR© for various HRTs, along

with a corresponding piecewise-linear regression model using in the superstructure model.

Some disaggregated models which are simple enough can be used directly in the optimi-

sation framework. For example, an ideal separation model is used to reduce the amount

of the particulate fraction in the wastewater stream, and to concentrate the particulate

fraction in the sludge stream. The model is already simple because of several assumptions,

e.g. no reactions occurring in the system, and is typically controlled by two parameters:



5.2. Methodology 119

0 10 205 15 25
0.55

0.555

0.56

0.565

0.57

0.575

0.58

0.585

0.59

0.595

0.6

HRT[/day]

C
H

4
effi

ci
en
cy

[-
]

GPS-XR©

surface-response model

Figure 5.3: Illustration of a piecewise-linear performance model obtained from GPS-XR©

simulated data.

the split fraction and TSS removal efficiency. The soluble fraction is not affected, and

equal to the inlet stream for the outlets of water and sludge streams; it appears that this

model is simple enough and can be used in the optimisation problem directly.

Similar to the performance of disaggregated treatment units, reliable costing informa-

tion (both CAPEX and OPEX) can be obtained from preliminary costing software such

as CapdetWorks
R©, or data from the literature or provided by practitioners. Data can

be generated by such programs for various units and/ or flowrates and make a surrogate

model to obtain a simple linear, piecewise-linear or polynomial models. Note that the

actual cost for CAPEX and OPEX which can be from different companies/people is sug-

gested to be used for analysis to make the results more practical. However, the actual data

is sometimes not available. Instead, the approximated cost is used and it is worth point-

ing out that using a common source and methodology for costing various technologies is

advantageous in terms of consistency. In this study, CapdetWorks
R© can provide cost

information including construction, energy, material, labor and chemical costs. The cost
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estimates are based on national indices (not site specific) and equipment cost databases

in U.S. Different countries may have different cost databases and this can lead to different

solutions. For example, land cost in some countries may be significantly high compared

to other costs, e.g. equipment and energy cost so the optimal solution obtained is likely

to use a small area of land but may use high energy. Some countries, however, may have

a high energy cost compared to land cost are likely to obtain the optimal solution that

uses lower amount of energy.

5.2.3 Problem Statement

The synthesis problem statement starts with the specification of the following data:

• A set of wastewater influents of given flowrates and composition,

• A set of water sinks with known maximum concentration limits e.g. local regula-

tions,

• A set of treatment/separation units with given performance for target compounds.

These specifications can be represented by a generic superstructure in which every pos-

sible interconnection in a fixed network topology is considered. The superstructure is

illustrated in Figure 5.4 for a simple network topology that consists of a single wastew-

ater stream, a single water sink and a set of treatment/separation units. The objective

of the synthesis problem is to determine an optimal resource recovery facility in terms

of; (i) its units, (ii) the piping interconnections between the units, and, (iii) the flowrates

and compositions in the interconnections. The mathematical model of integrated process

wastewater treatment facilities consists of mass balance equations for selected components

for every treatment/separation unit in the network.



5.3. Optimisation Model Formulation 121

r

Membrane 

filter

Influent

fluent

Figure 5.4: Illustration of a simple superstructure layout.

5.3 Optimisation Model Formulation

Superstructure-based optimisation is typically formulated as a mixed integer programming

(MIP) problem containing two types of decision variables:

• Discrete variables - these are usually binary variables, which decide on the selection

of treatment/separation units along with their interconnections to include in the

system, here denoted by y; and,

• Continuous variables - this defines the flows and composition as well as certain

design and operating parameters, here denoted by x.
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An optimisation problem can be posed as the following mathematical programming prob-

lem:

min
x,y

f(x, y) (P)

s.t. h(x) = 0

g(x, y) ≤ 0

x ≥ 0, y ∈ {0, 1}

The objective function f(x, y) in (P), which can be expressed as a sustainability, eco-

nomic, or environmental index is a function of both types of variables. The continuous

variables, x, which are assumed to be non-negative variables for physical reasons, must

follow material balance equations of the form h(x) = 0, where usually dim(h) < dim(x).

Both types of variables also need to satisfy the design specification in terms of discharge

allowance, physical operating limits and logical constraints e.g. the existence of unit and

piping interconnections for the nonzero flows, or to enforce the sequencing of certain units.

5.3.1 Mass Balance

Material balances on flows (F ) and concentrations (X) around the sources, the units,

and the sinks are to be obeyed in addition to the discharge limits and certain design and

structural specifications as follows: (Note that the sets and indices used in the optimisation

formulation are presented in Table 5.1.)

5.3.1.1 Sources

Wastewater influent with contaminants requires further treatment before being discharged

into receiving waters. Wastewater can be different types or sources, e.g. municipal,

industrial wastewater, or a combination of both. This is sent to the initial splitter to

distribute a fraction of the wastewater to other treatment/separation units. Wastewater



5.3. Optimisation Model Formulation 123

Table 5.1: Sets and indices definitions.

Set Definition
I set of sources i
J set of sinks j
K set of all treatment units k

where K = KCU ∪KSU ∪KTU ∪KDU ∪KRU

KCU set of primary treatment unit k
KSU set of secondary treatment unit k
KTU set of tertiary treatment unit k
KDU set of sludge treatment unit k
KRU set of recovery unit k
C set of component c
N set of resources recovered from wastewater n

from sources (i) can be sent to treatment units (k) and sinks (j). In the superstructure-

based optimisation approach, it is typically assumed that splitters in the optimisation

model are ideal, and concentrations of the outlet streams are equal to the inlet stream.

Also, it is possible to have more multiple sources depending on the system under study.

The optimiser aims to determine the split fraction of wastewater with given contaminants

for subsequent units. The overall mass balances for sources are based on the ideal splitter

unit (Figure 5.5), which is given by:

F in
i =

∑
j∈J

Fi−→j +
∑
k∈K

Fi−→k, ∀i ∈ I (5.5)

where the superscripts in, out and was refer to flow/concentrations entering, leaving the

unit and sludge produced in the unit, respectively. Each term has corresponding flowrates,

while the upper and lower bound constraints are formulated in the form of binary variables

to represent the existence of the interconnections between units.

yF lo ≤ F ≤ yF up (5.6)

where F lo and F up are the lower and upper bounds of the flowrate; y is the binary variable

to define the existence of interconnections, which is equal to zero when the stream does

not exist and one in case there is the stream connection.
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Figure 5.5: Schematic representation of sources.

5.3.1.2 Treatment Units

A group of treatment units is used to remove or recover certain components in the wastew-

ater to satisfy the standard legislation before discharge into the receiving waters. The

performance of treatment units are different from one unit to the next, and can be eval-

uated by means of surrogated models, as mentioned in the previous section. Generally,

each treatment/separation unit k is coupled with one mixer (MU) and two splitters (SU1

and SU2) as illustrated in Figure 5.6. Such a combination allows us to consider both

wastewater and sludge treatment because some units may produce a portion of sludge,

e.g. activated sludge, which needs further treatment before discharge to the environment.

Thus, wastewater from some treatment units is splitted into wastewater (FW ) and sludge

(FS) streams before being distributed to other treatment units or sinks. For some treat-

ment units, e.g. ion exchangers which do not produce sludge, it is typically assumed that

the outlet and inlet flowrates are equal and sludge streams can be neglected from the mass

balance equation. Overall, the optimiser aims to select treatment units and interactions

among them.

The flows from sources or other treatment units are mixed in the mixer (MU) before

sending to the treatment unit k. The material balances for each compound c in the mixer
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can be formulated as follows:

F in
k =

∑
i∈I

Fi−→k +
∑
k′∈K

FWk′−→k

+
∑
k′∈K

FSk′−→k, ∀k, k′ ∈ K, k 6= k′ (5.7)

F in
k X in

k,c =
∑
i∈I

Fi−→kXi,c +
∑
k′∈K

FWk′−→kXWk′,c

+
∑
k′∈K

FSk′−→kXSk′,c, ∀k, k′ ∈ K, k 6= k′ (5.8)

Wastewater from the mixer is then processed by treatment unit k. There are typically

two outlet streams from the treatment unit: wastewater (FW) and sludge (FS) streams.

The flowrate of these streams can be predicted based on the split fraction or the surrogate

model, while the outlet concentration can be determined as follow:

F in
k X in

k,c(1− ρk,c) =
∑
k′∈K

FWk−→k′XWk,c +
∑
j∈J

FWk−→jXWk,c, ∀k, k′ ∈ K, k 6= k′ (5.9)

Fwas
k Xwas

k,c =
∑
k′∈K

FSk−→k′XSk,c +
∑
j∈J

FSk−→jXSk,c, ∀k, k′ ∈ K, k 6= k′ (5.10)

where ρk,c is the surrogate model developed for the removal performance of a component

c in a given treatment/separation unit k. Note that F in
k X in

k,c(1 − ρk,c) or F out
k Xout

k,c and

Fwas
k Xwas

k,c can be also replaced by the surrogate model depending on the performance

prediction.

5.3.1.3 Sinks

Sinks can be regarded as ideal mixers where wastewater from sources and treatment/

separation units are mixed before discharge into the receiving water (Figure 5.7). Mul-

tiple sources and sinks are generally common in the applications of superstructure-based

optimisation, e.g. water networks. The optimiser aims to determine the final wastewa-

ter effluent with concentrations received from sources and treatment units to satisfy the

standard legislation. The material balances for compound c in sink j can be expressed in
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Figure 5.6: Schematic representation of treatment units.

Eq. 5.11 and Eq. 5.12 respectively:

F in
j =

∑
i∈I

Fi−→j +
∑
k∈K

FWk−→j +
∑
k∈K

FSk−→j, ∀j ∈ J (5.11)

F in
j X in

j,c =
∑
i∈I

Fi−→jXi,c +
∑
k∈K

FWk−→jXWk,c +
∑
k∈K

FSk−→jXSk,c, ∀j ∈ J (5.12)

A constraint is introduced to ensure that compound c present in a given sink j is regulated

by the discharge limit Xmax
j,c (Eq. 5.13):

∑
i∈I

Fi−→jXi,c +
∑
k∈K

FWk−→jXWk,c +
∑
k∈K

FSk−→jXSk,c ≤ F in
j Xmax

j,c , ∀j ∈ J (5.13)

Fin in
,ci,c

k,c

k,c

Figure 5.7: Schematic representation of sinks.
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5.3.2 Objective Function

The optimal system configuration aims to maximise a certain sustainability index of

the facility, for instance a weighted sum of LCA impacts [159]. Alternatively, economic

efficiency of a facility can be maximised, e.g. life-cycle costing indicator (LCC; [199]) or

net present value (NPV) over the project lifetime:

NPV = −CAPEX +
LT∑
y=1

SALES - OPEX

(1 + DISC)yr
(5.14)

where LT denotes the project lifetime, typically 20 years; SALES represents revenues from

energy/nutrient sales; CAPEX and OPEX denote the costs generated by WWTP capital

investment and operation, respectively. DISC is defined as the theoretical rates at which

future payoffs are discounted back to present value. The NPV indicates the earning gener-

ated by the process/project so the high value (positive) is expected as it can be profitable.

Both CAPEX and OPEX can be predicted using surrogate or approximate models. It

is assumed that design parameters i.e. HRT and SRT for all treatment/separation units

are fixed so the size can be determined from the the inlet flowrate and selected design

parameters. Regarding the surrogate model, it can be simply regressed through a linear

function as follow:

CAPEX =
∑
k

CAPvar
k F in

k + ykCAP
fix
k , ∀k ∈ K (5.15)

OPEX =
∑
k

OPvar
k F in

k + ykOPfix
k , ∀k ∈ K (5.16)

where CAPvar
k and CAPfix

k are the variable and fixed cost coefficient of CAPEX for a treat-

ment/separation unit k; OPvar
k and OPfix

k represent the variable and fixed cost coefficient

of OPEX for a treatment/separation unit k. These parameters are obtained through the

regression of simulated data from the costing software, CapdetWorks
R©. F in

k and yk

denote the inlet flowrate and the binary variable defining the existence of a treatment
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unit, k. SALES is given by:

SALES =
∑
k

∑
n

M rec
k,nPSnSD, ∀k ∈ K, n ∈ N (5.17)

where M rec
k,n is the amount of resource n recovered in a given treatment unit k calculated

using the surrogate model. PSn and SD are the price of each resource n and the number

of annual operating day.

5.3.3 Solution Strategies

The superstructure-based optimisation model leads to a nonconvex MINLP problem due

to the presence of bilinear terms which arise in the material balances as a result of com-

position mixing, in addition to other nonlinearities in the performance and costing equa-

tions. Such nonconvexity can lead to multiple local optimal solutions, which require the

implementation of global optimisation techniques to guarantee a reliable solution. In

this study, the optimisation problem is modeled in GAMS (http://www.gams.com), and

BARON, which is the deterministic global optimisation solver based on branch and bound

algorithms, is used to solve the optimisation problem. To solve nonconvex optimisation

problems, it performs convexification of nonconvex functions, e.g. bilinearity, by develop-

ing convex and concave envelops as linear under and over estimators. Also, it has special

features to enhance the branch and bound approach, including domain reduction and node

partitioning schemes. It is good to provide reasonable bounds for the flows and concen-

trations in the optimisation formulation because they are used for the convex envelops.

The global optimisation solver, BARON, has successfully solved superstructure-based

optimisation problems with nonconvexity in several applications, especially the synthe-

sis of water network. Recently, Ahmetović and Grossmann [21] and Khor et al. [22]

demonstated that BARON is able to solve the well-posed synthesis problems of the water

network with multiple water sources, water-using and treatment units and sinks to global

optimality. It is worth noting that the proper bounds and logic specifications are used to

enhance the solution speed to the global optimum.
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In this study, linear logical constraints are applied to the optimisation MINLP model

to increase solution speed. Such logical constraints are considered to be the incorporation

of qualitative design knowledge based on engineering experience, and design and structure

specifications on the interconnections between units and streams can be enforced using

these logical constraints. The combination of logical constraints and mixed integer pro-

gramming in chemical process synthesis has been used for decades. Raman and Grossman

[200] proposed using logic constraints in mixed integer programming to represent quali-

tative and quantitative analysis, respectively. After that these combinations have been

implemented in several applications to improve solution convergences, such as in water

networks [21, 22].

The logical constraints are able to reduce a number of nonsensical solutions by enforcing

restrictions on the values of the binary variables in the branch and bound algorithms;

this can reduce the number of nodes, and computational loads. As a result, this increases

convergence in solving the optimisation problem by tightening the bounds without elim-

inating the global optimal solution. The logical constraints used for the synthesis of a

wastewater treatment facility are the following:

• Wastewater influent is not allowed to go directly to nutrient recovery units, e.g.

ion exchange and struvite precipitation, to prevent suspended solid clogging up the

adsorbent. Also, it is not practical for wastewater to be sent to sludge treatment

units. This constraint is given by:

yi−→k = 0, ∀i ∈ I, ∀k ∈ {KRU ∪KDU} (5.18)

where yi−→k is the existence of interconnections between the source i and treatment/

separation unit k.

• Only one secondary treatment unit (biological treatment) can be selected among a

set of biological treatment unit candidates. For example, when the UASB is selected,
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the SMBR is then neglected. This can be simply expressed as:

∑
yk = 1, ∀k ∈ KSU (5.19)

where yk is the existence of treatment/separation unit k.

• It is practical not to have more than one interconnection between two treatment/

separation units:

yk−→k′ + yk′−→k ≤ 1, ∀k, k′ ∈ K k 6= k′ (5.20)

The model statistics in this case consist of 161 single and 29 binary variables and the

computational time is 20 minutes for obtaining the global optimisation based on BARON

version 9.0.2

5.4 Case study - Industrial wastewater

The synthesis of a resource recovery facility for the treatment of 100 m3/h of an industrial

wine distillery effluent was considered here as a case study, and the average composition

for the main components in the effluent is given in Table 5.2 [201]. The objective is to

maximize the NPV given in Eq. 5.14, while satisfying maximum discharge requirement

as defined by the EU Directive 91/271/EEC on Urban Wastewater Treatment. These re-

quirements consist of meeting either minimum reduction of 75% total COD, 80% total N

and total P, and 90% TSS or maximum concentrations of 10 g/L total COD, 0.4 g/L total

N, 0.07 g/L total P, and 0.5 g/L TSS. The simple superstructure consists of 2 biologi-

Table 5.2: Characteristics of the industrial wine distillery wastewater.

Total COD Soluble COD VFA TSS VSS
40 g L−1 16 g L−1 48 g L−1 5 g L−1 2.8 g L−1

Total N Ammonia Total P Phosphates Alkalinity
2 g L−1 0.14 g L−1 0.35 g L−1 0.16 g L−1 3100 meq L−1
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Figure 5.8: Subset of regression models for performance and cost prediction of a UASB
unit. Top-left: COD reduction vs. HRT; Bottom-left: COD conversion to CH4 (expressed
as equivalent COD) vs. HRT; Top-center: Ammonia reduction vs. HRT (Negative reduc-
tion ratios for ammonia and phosphates indicate a net increase due to the conversion of
other forms of N and P inside the bioreactor.); Bottom-center: Phosphate reduction vs.
HRT (Negative reduction ratios for ammonia and phosphates indicate a net increase due
to the conversion of other forms of N and P inside the bioreactor.); Top-right: CAPEX
vs. unit volume and influent flow rate; Bottom-right: OPEX vs. unit volume and in-
fluent flow rate; Legend: Solid lines represent regression fits; Triangles denote GPS-XR©

simulation results; Circles denote CapdetWorks
R© simulation results.

cal treatment units (UASB, SMBR), 2 filtration units (sand filter, membrane unit) and

2 nutrient recovery units (struvite crystallizer, zeolite adsorber) as illustrated by Figure

5.4. This case study is kept relatively simple as the main objective was to assess the pro-

posed optimisation methodology and sludge treatment was not taken into account. More

challenging problems which include a variety of treatment/recovery options for carbon,

nitrogen and phosphorus as well as sludge treatment will be discussed in the next chapter.

The performance of the UASB and the SMBR are approximated based on the Man-

TIS2 models in GPS-XR©, respectively. The degradation rates of total COD, total N,

ammonia, total P, phosphate, and TSS, as well as the production rate of methane in a

UASB, are regressed using either linear or piecewise-linear models within an HRT range

of 2-20 d−1. A subset of these performance models are shown in Figure 5.8 (left and center
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plots) for a UASB unit. The performance of the filtration, membrane and struvite units

is also predicted by using simple models in GPS-XR©, and then averaged to yield constant

removal/conversion efficiencies as a first approximation. The zeolite (ion exchange) unit,

currently unavailable in GPS-XR©, is also approximated using constant efficiencies gath-

ered from the literature [202]. The surrogate or the simplified approximate model would

be updated iteratively to reduce uncertainty and improve accuracy of model predictions.

The CAPEX and OPEX of all the units, with the exception of the membrane unit,

are estimated using CapdetWorks
R©, and then regressed with simple linear models as

a function of the unit volume and/or processed flow rate in the range of operation. This

is illustrated in Figure 5.8 (right plots) for the CAPEX and OPEX of a UASB unit. For

the membrane unit, currently unavailable in CapdetWorks
R©, rough estimates of the

CAPEX and OPEX were used as recommended by membrane experts [203]. Besides the

treatment/separation units in the superstructure, an auxiliary piece of equipment is the

electricity generator from biogas. This technology is well developed, with companies such

as Alstom, Capston or General Electric providing lines of engines specially adapted for

biogas from anaerobic digestion. An average conversion efficiency of 40% is assumed here

for the generator, and the OPEX and CAPEX are estimated based on data published

by the United Nations Framework Convention on Climate Change (UNFCCC) and the

International Energy Agency (IEA);

Electricity from biogas = FCH4
·NCV · η (5.21)

where FCH4
represents the amount of methane produced in the anaerobic digestion pro-

cess, NCV is the net calorific value, and η is the efficiency of methane conversion to

electricity.

An important constraint regarding the interconnections in the superstructure is that the

effluent from the UASB cannot pass through the zeolite and/or struvite units directly

for nutrient recovery to prevent large concentrations of solids in the recovery units. The
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optimal configuration is shown at the top of Figure 5.9 - Flowsheet A. Around 60% of the

wastewater stream is first split and processed in the UASB unit, before sending it to the

sand filter unit together with the remaining 40% of the wastewater influent stream. The

outlet stream from the sand filter unit is then sent to the ion exchange column and the stru-

vite crystalizer for nutrient recovery. It turns out that the minimum abatement of 80% in

total P is the most restrictive, while the effluent satisfies all other discharge requirements.

Additionally, the residual COD concentration is mostly comprised of non-biodegradable

soluble compounds, the other part being the biodegradable soluble compounds from the

wastewater fraction not treated in the UASB. An NPV of -7.68 M$ was found for the flow-

Table 5.3: Cost analysis for the case study. A: No further restrictions on the interconnec-
tions; B: Bypass from source to sand filter not allowed; C: Bypass from source to sand
filter or source to sink not allowed.

Flowsheet A B C
CAPEX [M$] 18.70 27.85 28.25
UASB (%) 41.2 54.1 54.2
Electicity generator (%) 14.4 16.4 16.4
Sand filter (%) 14.1 9.4 9.3
Struvite crystalizer (%) 13.2 8.8 8.8
Ion exchange column (%) 17.1 11.3 11.3

OPEX [M$/year] 1.69 2.78 2.86
UASB (%) 41.2 54.1 54.2
Electricity generator (%) 14.4 16.4 16.4
Sand filter (%) 14.1 9.4 9.3
Struvite crystalizer (%) 13.2 8.8 8.8
Ion exchange column (%) 17.1 11.3 11.3

SALES [M$/year] 2.57 4.19 4.25
Electrical power (%) 80.4 83.5 83.5
Struvite fertilizer (%) 6.2 4.0 4.0
Ammonia (%) 13.4 12.5 12.5

NPV [M$] 7.68 10.75 10.93

sheet A over a period of 20 years (an increase/decrease in a period of time would slightly

affect the NPV due to the fact that it is dominated by CAPEX.), and the breakdown

of these costs in terms of CAPEX, OPEX and SALES is shown in Table 5.3. The large

CAPEX, of which more than 40% is accounted for by the UASB unit, cannot be offset by
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the net annual profit of about 0.88 M$, even though, the sales revenue, mainly electricity

from biogas combustion, is more than the OPEX., and this leads to the negative NPV.

Although a resource recovery facility may not completely offset the infrastructure and

operating costs solely based on electricity and nutrient sales, it would be great to miti-

gate the cost of wastewater treatment to complying with the discharge regulations. The
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Figure 5.9: Optimal superstructures for the case study A: No further restrictions on the
interconnections; B: Bypass from source to sand filter not allowed; C: Bypass from source
to sand filter or source to sink not allowed.

decision to split the wastewater stream and divert around 40% of that stream around the

UASB , which is then not processed, may first appear to be counter-intuitive given the

fact that most of the sales revenue is from the biogas produced in the UASB. However,

producing more biogas is only justified in terms of the NPV when the added sales revenue

can offset the extra CAPEX and OPEX for a larger UASB unit. Such a condition is not



5.5. Summary 135

met in this case study, and it is worth investigating the sensivity of this trade-off further

to validate this conclusion.

To confirm this assumption, the possibility of bypassing the UASB by sending part of

the wastewater stream directly to the filtration units was removed; the optimal super-

structure is depicted in Figure 5.9 - Flowsheet B. In this flowsheet, a small fraction of the

wastewater stream is now sent directly to mix with the treated effluent stream without

being processed by treatment/separation units. Expectedly, the estimated NPV value of

Flowsheet B decreases in comparison with Flowsheet A- see Table 5.3 for the breakdown

cost. In particular, there is a large reduction of around 3 M$. Finally, when a small frac-

tion of the wastewater stream is not allowed to be sent directly to mix with the treated

effluent, this can lead to the optimal superstructure depicted in Figure 5.9- Flowsheet C.

The estimated NPV of this flowsheet turns out to be comparable with the estimated NPV

of Flowsheet B.

5.5 Summary

In this chapter, a systematic optimisation-based methodology for the synthesis of wastew-

ater/resource recovery facilities has been discussed and illustrated with a case study. By

and large, this methodology should be regarded as a decision support system for isolat-

ing, among hundreds or even thousands of alternatives, those promising resource recovery

systems whose development is worth pursuing. Based on this pre-selection, further simu-

lation and optimisation studies can then be undertaken to refine the performance and cost

predictions by taking into account detailed design and operation considerations, as well

as process integration. Such decomposition is indeed warranted as current computational

capabilities and available algorithms do not allow for the optimal design and operation

to be solved in a single step due to complex unit configuration, multiple scales, time de-

pendence, and uncertainty.



136 Chapter 5. Synthesis of Wastewater Treatment and Recovery Facilities

A major hurdle in applying this methodology appears to be the availability of reliable

performance models for the treatment and separation units, as well as reliable (capital

and operation) costing data. Here, we advocate the use of state-of-the-art wastewater

treatment simulators in order to derive simple response-surface models, which are gen-

eral enough to be independent of detailed design choices and keep the superstructure

optimisation model computationally tractable-this approach was demonstrated in a sim-

ple case study. Naturally, such simple models carry significant uncertainty and usually

only provide a rough approximation of the actual performance of such complex units. A

way to refine these models involves performing an iteration between the detailed process

simulators and the superstructure optimisation problem. Moreover, for those treatmen-

t/recovery techniques that are less well established, or lack reliable performance models, a

scenario based analysis can be applied, whereby multiple sets of resource recovery systems

are determined on account of the forecast performance and cost scenarios. In particular,

this analysis can be useful for resource allocation, for instance to help determine which

technologies are critical and on which to focus further research and development efforts.



Chapter 6

Synthesis of Wastewater Recovery

Facilities using Enviroeconomic

Optimisation

6.1 Introduction

Wastewater treatment processes are considered as end-of-pipe technologies to handle envi-

ronmental issues concerned with wastewater discharges, and minimise the environmental

impacts of pollutants discharged into a water body. Also, environmental authorities con-

cerned with wastewater treatment are likely to adopt stricter wastewater standards to

protect receiving waters. On balance, this may have negative impacts on the environ-

ment due to the increased emissions of GHGs, e.g. global climate change. Most studies

investigate a variety of approaches to reducing a particular pollutant in the process, or

focus on economic aspects, with little attention paid to a wide range of environmental is-

sues. Nevertheless, while this approach has led to substantial improvements in economic

and environmental impacts, the scope of most of these studies is still limited. Some

provided solutions that could efficiently reduce one environmental impact, but shift the

problem to another sphere of concern, e.g. global warming. Hence unless there is an

137
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integrated approach, problem-shifting occurs which cannot provide holistic and sufficient

solutions for decision-makers. Given the need for sustainability, the main objective of

wastewater treatment should go beyond the environmental impact on surface waters, and

the protection of human health [204]. Recently, considerable research attention has been

paid to the application of life cycle assessment (LCA) to wastewater treatment processes

[159, 205, 206]. LCA is a holistic method which considers all of the processes over an en-

tire life cycle, including input (e.g. input energy) and output (e.g. waste and emissions)

flows. The analysis is based on cradle-to-grave that covers all activities from raw material

acquisition, manufacture, use of product and its end-of-life. The incorporation of the

LCA into the unified framework has been advocated by recent optimisation techniques

and application, and has lead to the concept of multi-objective optimisation where two

or more conflicting objectives are optimised.

This chapter is concerned with extending the methodology presented in the previous

Chapter by incorporating LCA into the decision-making process in order to promote sus-

tainable WWTP designs, alongside economic viability. The remainder of the Chapter is

organised as follows: Section 6.2 presents the general concepts of LCA and multi-objective

optimisation, including a review of recent work on synthesis problems incorporating LCA.

Section 6.3 focuses on the development of environmental performance indicators based on

the LCA approach and case study definition, while solution strategies to handle the multi-

objective optimisation problem are discussed in Section 6.3.2. The results of a case study

with the synthesis of municipal wastewater treatment facility based on the proposed ap-

proach is presented in Section 6.4.
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6.2 Background

6.2.1 LCA

LCA is a methodology to quantify the environmental impacts with respect to products,

services and processes throughout their life cycle from cradle-to-grave. It accounts for

every stage of a product/process, from raw materials acquisition to final disposal. LCA

has been widely recognised as a decision-making tool for identifying the “hot spots”, i.e.

the main contributors to environmental issues. The LCA framework has been formalised

in a series of International Standards (ISO 14040) [207], consisting of four stages: goal

and scope definition, inventory analysis, impact assessment and interpretation (Figure

6.1). The details of the LCA methodology is provided as follows:

Definition

 Inventory 

Analy

Figure 6.1: Phases of an LCA [207].

6.2.1.1 Goal and scope definition

The study goals and scope are defined in this phase. This includes the rational for the

investigation, intended applications and audience, system boundaries, the functional unit

(the important basis on which processes or products can be compared), allocation method-

ology, data requirements, impact categories and impact assessment approach (character-

ization, normalization).
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6.2.1.2 Inventory analysis

This phase involves a compilation of the input/output of the processes/products over their

life cycles. The relevant materials, energy flows and emissions throughout the different

stages of the process or product life cycle are quantified to provide the inputs and outputs

associated with the process or product. The inventory data can be obtained from lab,

industrial operation, and estimation from experts, model predictions, relevant literature

and LCA databases. This data is then used to calculate the set of environmental impacts

of the process in the next phase. Therefore, the analysis depends on the quantities and

types of materials and energy used during its lifespan.

6.2.1.3 Impact assessment

This phase aims to classify and link the input-output flows to relevant environmental

aspects, and evaluate the potential environmental impacts of the whole process or sys-

tem based on the results from the inventory analysis [207]. It consists of compulsory

(classification and characterization) and optional (normalization and weighting) activi-

ties. Classification and characterization stages involve the transformation of data from

the inventory analysis which corresponds to inputs and outputs of materials, energy and

emissions into impact indicators. Initially, the impact categories are defined and selected

to describe the impacts caused by the process or product during production, use and

disposal. There are two approaches developed to describe the pathway from the inven-

tory analysis to the environmental impacts: midpoint and endpoint approaches. The

mid-point approach is known as the problem-oriented approach; it is the impact indica-

tor which represents the mid pathway of impacts before the endpoint. Real phenomena

such as global warming potential, acidification and eutrophication can be translated from

the midpoint impact category. The other approach is the endpoint, also known as the

damage-oriented approach. This refers to the impact indicator for each impact category

at the end of the impact pathway based on the area of protection, e.g. human health,

ecosystem quality and natural resources [208]. Figure 6.2 illustrates the environmen-
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tal impact assessment mechanism describing transformation of a substance into a series

of impacts which eventually leads to damages to the environmental areas of protection.

Also, the difference between the midpoint and endpoint considerations along the pathways

mechanisms is shown. After the selection of impact catagories, the contribution of each

input and output to the environment is mapped into these impact catagories and impact

indicators, corresponding to the potential impacts on the environment. Having obtained

this data, it is then optional to perform normalization and weighting. Normalization en-

ables us to compare all the environmental impacts on the same scale where the factors

are obtained from regional and global databases. One way to carry out normalization is

to divide each impact indicator by the difference between the maximum and minimum

values, which scales all impact indicators into a range between zero and one [209]. Fi-

nally, the different environmental impact catagories are grouped or weighted to convert or

aggregate environmental indicators categories into one single indicator. It is important to

apply different weighting factors to investigate their effects on trade-offs between different

impact indicators. The weighting factors can be defined by the experts or using other

techniques, e.g. monetarization to facilitate the interpretation of the system [210].

Figure 6.2: Schematic representation of the difference between midpoint and endpoint
impact assessment [211].
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6.2.1.4 Interpretation

The results from the impact assessment are interpreted for the decision-making process.

The critical environmental concerns, and the significant contribution of a certain process

or product to the environment can be identified. It is suggested to verify the results by

evaluating the consistency of the approaches, or perform data quality analysis (including

sensitivity and uncertainty analyses) to improve the degree of confidence resulting from

uncertainties in the data or the selected approaches. Although LCA is a powerful tool to

evaluate the environmental impacts, it is evident that data quality and collection is the

main limitation of the LCA method. The LCA methodology is dependent to data so the

availability and quality would affect the overall quality of LCA results. Data selection

and analysis needs to be performed to improve accuracy and quality of the results [212].

6.2.2 Applications of LCA in Process Design

Traditionally, researchers in the process system engineering (PSE) community apply opti-

misation models to design chemical processes and assist in their operation, which focuses

on maximisation of a given economic performance while satisfying mass balances and ca-

pacity constraints. However, awareness of the need to integrate environmental concerns

into economical criteria has been growing steadily in the past decade. This trend has been

motivated by several issues, but primarily from the government and regulatory policy to

tighten environmental regulations [213]. LCA has been used as a decision-making tool

to assess the environmental impacts of several applications in process design to improve

environmental performance [214, 215]. Over the past decade, several attempts have been

made to incorporate the environmental impacts into the optimisation model to satisfy

environmental, economic and social goals simultaneously.

Stefanis et al. [216] developed a methodology to include LCA into a process optimi-

sation framework, and involved the definition of process boundaries, analyses of data

inventory and quantification of environmental impacts. In this case, all environmental
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impacts were added in terms of the global environmental impacts which could be incor-

porated as environmental criteria in process optimisation. Later, Azapegic and Clift [214]

proposed the use of multi-objective optimisation to simultaneously optimise a number

of environmental objectives, quantified by means of the LCA approach. Previous re-

search also demonstrated that it is possible to achieve a trade-off between environmental

and economic performance. Hugo and Pistikopoulos [217] presented a mathematical pro-

gramming approach for incorporating LCA into the strategic investment of supply chain

networks. Their design involved the selection, allocation, and capacity expansion of pro-

cessing technologies and transportation links to satisfy the demands. Such an approach

could be formulated as a multi-objective mixed integer linear programming problem (mo-

MILP), which can be applied as a decision-making tool for strategic investment planning

allowing for environmental impacts. Guillén et al. [213] proposed a similar framework for

chemical process design incorporating environmental evaluation by means of the LCA.

The conceptual design is based on the superstructure optimisation of sustainable chemi-

cal process which is formulated as a mixed-integer problem. The LCA is assessed by the

Eco-indicator-99, reflecting the environmental problems at damage level. The addition

of an environmental indicator can lead to multi-objective optimisation, where the trade-

off solutions exist between cost and environmental impact, and the case study was the

design of the hydrodealkylation (HDA) of toluene. The results show that environmental

improvements in the process are possible through structural modifications and operational

changes. Also, a framework for process design coupled with the environmental impact

can provide insights into the design problem, and can be considered as a decision-making

tool to provide more sustainable alternatives.

More specifically in the design of WWTPs, the LCA approach was first applied in the

1990s to evaluate different small-scale wastewater treatment technologies [218]. Some

studies have applied LCA to plant operation, excluding the design and development phase,

because it is normally assumed that this phase does not contribute much to the environ-

ment impact of a WWTP. However, it turns out that the design and development phase
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can influence the environmental impacts in the other phases [219]. For example, design of

wastewater treatment affects the amount of energy consumption required and emissions in

for the operation phase. Various LCA studies have been carried out to compare different

treatment technologies in wastewater treatment systems [220, 206, 221] or sludge manage-

ment technologies [222], and for evaluating the main environmental impacts associated to

specific wastewater treatment processes [223, 204]. Sensitivity of the LCA results to var-

ious impact assessment methods has also been investigated [205]. However, these studies

have a number of limitations in terms of the limited number of process alternatives or

configurations investigated, the size of the process, and the exclusion of some aspects of

WWTPs, especially the exclusion of sludge treatment [206]. Also, such comparative LCA

studies of different wastewater treatment technologies only provide partial and insufficient

information for decision makers. As pointed out in the recent review paper by Corominas

et al. [159], however, there is a need for better linking LCA with economic and societal

assessments in order to provide a more complete and accurate sustainability picture to

decision makers. The combination of LCA methodology and other criteria i.e. economical

aspects can be a powerful decision-making tool and provide valuable insights to achieve

sustainability. Recently, Garrido-Baserba et al. [224] have incorporated LCA evaluation

into a knowledge-based decision-support system to design wastewater treatment plants

(WWTPs). The results demonstrate the potential of LCA for decision making, although

the approach is largely dependent on the data quality and their specifications [225]. More-

over, this approach may not provide further information with regards to the optimal (or

near-optimal) solutions.

6.2.3 Multi-objective Optimisation

Multi-objective optimisation (MOO) refers to the optimisation of two or more conflict-

ing objectives. Most engineering problems have multiple objective e.g. maximise profit,

minimise environmental impacts. For multi-objective optimisation, the best compromise

solutions for all objective functions are determined. Note that it is impossible to improve
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one objective without deteriorating the other objectives, and this is known as Pareto

optimality [213]. The main advantage of multi-objective optimisation is a set of Pareto-

optimal solutions representing the compromise between the criteria considered is gener-

ated instead of one solution and this allows decision-makers to further explore trade-offs.

Note that a set of Pareto optimal solutions is typically called the Pareto front. A good

Pareto frontier should be evenly distributed and cover a wide range of objective values

under study, and can be convex, concave or both, and contain discontinuities. A convex

Pareto frontier is better than a concave one, and it is common to have the Pareto frontier

with discontinuities for engineering applications, which are complex [226].

Several approaches have been developed to solve the multi-objective optimisation prob-

lems to find the Pareto-optimal solutions. This includes weighted, ε-constraints, goal

programming, meta-heuristic/stochastic approaches, which can be grouped in different

ways depending on preference of decision makers, i.e. priori, posteriori and without pref-

erences or one and many solutions obtained in one run [226]. Evolutionary algorithm, e.g.

non-dominated sorting genetic algorithm (NSGA) is another approach that is suitable for

solving multi-objective optimisation which allows to compute the entire Pareto front but

the shortcoming of this approach is related to the lower speed and the global optimal

solution is not guaranteed [227]. Different approaches have their own advantages and

disadvantages for solving these problems, however, the ε-constraints approach will become

the main focus of this study because it is a promising approach among alternatives, and

has already been applied in several studies on engineering applications [213, 217]. The

multi-objective optimisation is transformed into a single objective optimisation problem,

which can be solved by global deterministic solvers, and is the main focus in this work.

The Pareto frontier can be found by changing the preference or constraints, but never-

theless, this requires more than one run to generate a set of Pareto solutions.

In the field of wastewater treatment, conflicting objectives such as effluent quality and

energy consumption are typically found; to improve effluent quality typically requires
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more energy use. Traditionally, these problems have been addressed using single objec-

tive optimisation through weighting of the various contributions in an overall cost index.

However, multi-objective optimisation has been mostly applied to the operation phase,

especially the implementation of automatic control to investigate the effects of different

control strategies, and to balance the trade-offs between GHG emissions, effluent quality

and operational cost [228, 229, 230]. Multi-objective optimisation has not been applied

widely in WWTP design to date, perhaps due to the complexity of wastewater treatment

processes. Flores-Alsina et al. [231] have proposed a decision-making tool to support

the design of WWTPs based on multi-criteria evaluation. The selection of different pro-

cess alternatives is based on an overall degree-of-satisfaction index, as obtained through

the weighting of selected criteria and objectives, and it relies on a mix of mathematical

modeling and qualitative knowledge. Hakanen et al. [232] have presented an interac-

tive multi-objective optimisation platform coupled with model-based simulation, called

NIMBUS. This platform allows a decision maker to simultaneously consider the design of

WWTPs from different standpoints and to balance between the different objectives. More

recently, Bisinella-de-Faria et al. [233] have developed an integrated framework combining

LCA with dynamic simulation to compare different treatment processes, with a focus on

source separation and energy/nutrient recovery. On the whole, these existing approaches

are certainly heading in the right direction, but the exploration remains limited to a small

number of process configurations nonetheless. In contrast, the following section presents

and illustrates a superstructure modeling and optimisation approach, which may resolve

some of these limitations.

6.3 Enviroeconomic Optimisation Methodology

As the general methodology framework is described and illustrated by the simple case

study in the previous chapter, here we will focus on incorporation of LCA methodology

into the unified optimisation framework and evaluation of environmental impact assess-

ment to achieve economic and environmental sustainability. The synthesis of wastewater
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treatment facilities incorporating environmental impacts leads to multi-objective mixed

integer nonlinear programming (MO-MINLP) as follows:

min
x,y

[KPI1(x, y), KPI2(x, y), ...] (Q)

s.t. h(x) = 0

g(x, y) ≤ 0

x ∈ Rn, y ∈ {0, 1}m

The objective of the MO-MINLP consists of minimising two or more key performance

indicators (KPIs), which are functions of both continuous and discrete variables. Again,

these variables must satisfy restrictions of the form g(x, y) < 0 , either design specifications

in terms of discharge allowance and physical operating limits, or logical constraints for the

existence of piping interconnections with nonzero flows or the sequencing of certain units.

Last, but not least importantly, the continuous variables x must obey material balance

equations of the form h(x) = 0 (see Section 5.3.1), where usually dim(h) < dim(x),

describing models of the physical units. Regarding the objective functions or KPIs, here

multiple conflicting objectives are considered. One is the net present value (NPV) which

considers both CAPEX and OPEX of the wastewater treatment facilities (see Section

5.3.2). The other objectives are regarded as environmental impacts and the following

section presents an approach to develop such environmental performance indicators.

6.3.1 Environmental Impact Assessment

The LCA principles are applied to evaluate the design alternatives from the environmental

viewpoint. As a result, these impacts can be used as a decision criterion to select those

process alternatives with improved environmental performance. The methodology for

incorporating environmental performance indicators follows the four phases of LCA.
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6.3.1.1 Goal and scope definition

The main goal of this study was to incorporate LCA into a systematic optimisation

framework. With respect to the system boundaries, we consider the entire life cycle of

wastewater treatment processes ranging from design (infrastructure) and operation (en-

ergy consumption and emissions) to reduce overall environmental impacts. The analysis

covers all steps of the wastewater treatment processes, ranging from the wastewater in-

fluent to effluent including sludge treatment produced as a by-product in the process. In

addition, the construction, operation and emissions are accounted for a certain period

of time. Figure 6.4 shows the system boundary for the wastewater treatment facility,

including sludge treatment processes under study. With regards to the functional unit,

it was chosen based on different objectives under study. The functional unit in this work

was based on a given fixed amount of wastewater influent (volume of wastewater within

a period of time) because it is clear and easy to establish an inventory [234].

6.3.1.2 Inventory analysis

The main objective of this phase is to quantify the material and energy inputs and out-

puts associated with the process, where all stages in the system boundaries are included,

and then a set of environmental impacts can be determined. In this study, the selected

elements for inventory data are presented in Table 6.1. Data for the inputs and outputs

of the material and energy balance, including the main sources of environmental burdens,

e.g. construction materials (concrete and steel), effluent quality (COD, NH+
4 -N), sludge

production and direct emissions were obtained from the modeling approach. However,

models for wastewater treatment processes, especially biological wastewater treatment,

are complex and it is computationally intractable for global optimisation to combine these

models into the optimisation framework. The proposed approach to handle this problem

was to develop a simple, yet reliable, model or surrogate model (or approximate model as

defined in the previous Chapter) to generate a set of inputs and outputs of the materials

and energy associated with the process. Such a surrogate model was developed based on
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data obtained from the simulation data of individual treatment/ separation process by

using the commercial wastewater treatment process simulator GPS-XR©.

Table 6.1: Selected elements for wastewater treatment inventory.

Parameter Unit
Energy use
Electricity from grid kWh
Direct emissions
N2O to air tCO2

CO2 to air tCO2

CH4 to air tCO2

Avoided products
Mg as fertiliser kg
N as fertiliser kg
P2O5as fertiliser kg
NH+

4 -N kg
Electricity from CHP kWh
Construction materials
Concrete Tons
Steel Tons
Wastewater & sludge
COD to water kg
TSS to water kg
NH+

4 -N to water kg
NO−

3 -N to water kg
PO3−

4 -P to water kg

6.3.1.3 Impact assessment

In this phase, data from the inventory analysis was translated into the corresponding

environmental impact using standard parameter values available in the environmental

databases. A problem-oriented (mid-point) approach CML2 baseline 2000 is used as the

life cycle assessment (LCIA) method. Initially, we consider two impact catagories, which

are commonly used to evaluate the environmental impacts in the field of wastewater treat-

ment [159] (more impact catagories can be included in a future study, e.g. acidification.);

a description of two environmental impact indicators is presented in Table 6.2. These two

impact indicators are combined with the economic objective (NPV), and are incorporated

into the optimisation problems as key performance indicators. The overall load for a given
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Table 6.2: Selected impact catagory and its description under study.

Impact Category Description
Global warming potential
(GWP)

The overall and potential climate change associated with
GHGs emissions, and has the same effect as CO2 in re-
flecting heat radiation. GWP is quantified based on
the cumulative radiative forcing impacts of a particular
greenhouse gas over a period of time.

Eutrophication The enrichment of nutrients in aquatic and terrestrial
ecosystems leading to an increase in the production of
algae, phytoplankton and/or higher aquatic plants. This
can reduce the amount of oxygen dissolved in water and
lead to a deterioration in water quality.

category l can be quantified as follows (Eq.6.1).

KPIl = INFRAl + LT · (OPERl +WWEFFl +WWSLUl − CREDl) (6.1)

where INFRAl, OPERl, WWEFFl, WWSLUl and CREDl represent the individual loads

associated with the required infrastructure, annual operation of the plant, discharged efflu-

ent, discharged sludge, and obtained credit, respectively. All these loads may themselves

be computed as combinations of a list of ‘elementary’ environmental burdens correspond-

ing – but not limited – to: the use of steel, concrete or electrical power; the emissions

of CO2 or methane from the treatment units; the release of COD, ammonia, phosphates

or suspended solids with the treated effluent; and the utilization of nitrogen, phosphorus

or magnesium resources. In particular, these elementary impacts can be obtained from

the EcoInvent data base, which is available through LCA software such as SimaPro R© as

presented in Table 6.3. Aggregation of these various burdens into the loads in Eq. (6.1)

relies on inventory data predicted by the performance surrogates. The environmental

impacts from each individual load were selected as follows here:

• Inventory data for both wastewater and sludge streams was simply obtained through

the simulation/optimisation of the wastewater treatment facility. The loads of

wastewater (WWEFFl) and sludge (WWSLUl) discharge to the environment can
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Table 6.3: Charactersation factors of selected elements for two impact catagories under
study.

Parameter Unit Eutrophication, kg PO3−
4 /unit GWP100, kg CO2e/unit

Electricity from grid kWh 7.34E-3 0.47
N2O to air kg - 298
CO2 to air kg - 1
CH4 to air kg - 25
Mg as fertiliser kg 1.8E-3 1.77
N as fertiliser kg 5.94E-3 7.04
P2O5as fertiliser kg 3.08E-2 1.2
N as ammonium nitrate kg 6.8E-3 8.54
Concrete kg 0.11 0.44
Steel kg 24.95 39.99
COD to water kg 2.20E-02 -
NH+

4 -N to water kg 0.33 -
NO−

3 -N to water kg 0.1 -
PO3−

4 -P to water kg 1 -

be determined as follows:

WWEFFl =
∑
v

αl,vEFFvSD (6.2)

WWSLUl. =
∑
v

αl,vSLUvSD (6.3)

where EFF, SLU denote the amount of wastewater effluent and discharged sludged

for a given element v; SD is the number of annual production days and αl,v is the

characterization factor of a given element v for the impact catagory l.

• The amount of construction materials (e.g. concrete, steel) required to contstruct

wastewater treatment facilities was predicted by means of costing software such as

CapdetWorks
R© based on selected design parameters (e.g. HRT, SRT). As a first

approximation, the loads may be assumed to scale linearly with the inventory flows.

INFRAl =
∑
k

∑
v

αl,v(INF
var
k,vF

in
k + ykINF

fix
k,v) (6.4)

where INFvar
k,v and INFfix

k,v denote variable and constant terms for the infrastructure

material v of the unit k. F in
k is the wastewater influent of the unit k and yk is the

binary variable to define the existence of the unit k. Note that all constant and
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variable terms used for the predictions of environmental impacts can be obtained

by the regression model.

• The environmental impact associated with operation includes electricity, emissions

from biogas combustion, direct emission, e.g. N2O, CH4, CO2 from biological treat-

ment. The inventory data for this group was calculated using the new wastewater

treatment model, ManTIS3 available in GPS-XR© and costing softwareCapdetWorks
R©.

Then, the loads from operation based on the surrogate model were given by.

OPERl =
∑
k

∑
v

αl,v[(OPEvar
k,vF

in
k + ykOPEfix

k,v) + FCO2

k ρCO2
SD

+ F in
k (CARBvar

k,vX
in
k,v + CARBfix

k,v)] (6.5)

where OPEvar
k,v and OPEfix

k,v denote the projected variable and constant terms of

operational input/output v for unit k including electricity. FCO2

k and ρCO2
are the

flowrate of CO2 from biogas combustion produced by the unit k and density of CO2.

• In order to account for credits of recovering resources from wastewater, electric-

ity produced from biogas, struvite and ammonia were considered. The amount of

resources were calculated based on performance of each treatment/separation unit

predicted by the process simulator or data in the literature (for ion-exchanger).

CREDl =
∑
k

∑
v

αl,vM
rec
k,vSD (6.6)

where M rec
k,v is amount of resource v recovered from the unit k.

6.3.1.4 Interpretation

The results obtained from the optimisation were analyzed, and include conclusions and a

recommendation for the formulated system. Note that this approach can provide insight

into the synthesis problem which enables us to find the trade-off between the objectives.

The results obtained from the multi-objective optimisation should lie on the Pareto-
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frontier.

6.3.2 Numerical Solution Strategies

A challenging task for WWTP design apart from nonconvexity discussed in Section 5.3.3

is to satisfy multiple conflicting objectives simultaneously, while meeting the discharge

regulations. As mentioned in the previous section, there are several approaches proposed

to handle these multi-objective optimisation problems. One of the most widely used

in process engineering is the εi-constraints, which is based on the conversion of multiple-

objectives into a single objective optimisation problem. This approach was first introduced

by Haimes et al. [235] to generate a set of solutions. The concept of this approach is to

maximise one of the objective functions and convert the other objectives into constraints

bounded by the allowable levels, which can be modified to generate the complete Pareto

optimal frontier:

min
x,y

KPI1(x, y) (R)

s.t. KPIi(x, y) ≤ εi i = 2, 3.., nf

h(x) = 0

g(x, y) ≤ 0

x ∈ Rn, y ∈ {0, 1}m

where nf is the number of key performance indicators. The set of Pareto solutions to the

original multi-objective optimisation problem can be obtained from solving the problem

for all possible εi.

An illustration of the Pareto frontier is depicted in Figure 6.3; here we consider two

objective functions: economic, and environmental impact. The optimal solutions of the

problem are the points that lie on the Pareto curve, and it is worth noting that there is

no solution below the curve due to a violation of Pareto optimality. The decision maker
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is likely to choose from the set of Pareto solutions which optimise particular preferences,

while the other objectives are still satisfied at the same time. Note that the formulated

optimisation problem is non-convex due to the presence of bilinearity, and a global optimi-

sation solver is required to compute the Pareto frontier, which is discussed in the previous

chapter. Note that the optimisation model in this study consists of 407 single and 90

binary variables. The computational time ranges from 30 minutes to 7 days depending

on the objective function and constraints based on BARON version 12.7.7.

ec
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Figure 6.3: Illustration of a Pareto curve.

6.4 Case Study - Municipal Wastewater with Biosolids

Management

We consider the problem of constructing aWWTP to process 10,000 m3 municipal wastew-

ater per day, with average composition given in Table 6.4. The objective is to maximise the

NPV and minimise the environmental impacts, while satisfying discharge requirements

defined by EU Directive 91/271/EEC on Urban Wastewater Treatment. This includes

minimum abatements of 75% total COD, 80% total N and total P, and 90% TSS, equiv-

alent to maximal concentrations of 142.3 mg/L total COD, 7.6 mg/L NH+
4 -N, 10.3 mg/L

NO−
3 -N, 0.82 mg/L PO3−

4 -P and 25.9 mg/L TSS. The superstructure is shown in Figure 6.4

and consists of 1 source to split wastewater to other treatment/ separation units or sinks,
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2 sinks to receive wastewater and sludge after treatment before discharge to the environ-

ment or final disposal, 11 treatment/ separation units including conventional wastewater

treatment processes, resource recovery units, side stream treatment and sludge treatment

units as summarised in Table 6.5 and illustrated in Figure 6.4:
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Figure 6.4: System boundaries for the synthesis of a municipal wastewater facility.

Table 6.4: Characteristics of the municipal wastewater.

Total COD Soluble COD TSS VSS VFA
569 mg L−1 129 mg L−1 259 mg L−1 231 mg L−1 10 mg L−1

Total N Ammonia Total P Phosphate Alkalinity
51.6 mg L−1 38 mg L−1 7.6 mg L−1 4.1 mg L−1 253 mg CaCO3 L−1

• Primary Treatment - the primary clarifier was considered in the superstructure

to separate particulate contents from wastewater. It has several impacts on both

wastewater and sludge treatment. Results from Chapter 3 and Chapter 4 and other
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studies have indicated that the primary clarifier can provide benefits in terms of

energy recovery, energy reduction and nutrient removal [71].

• Secondary Treatment - four different biological treatment units were included in

the superstructure: three activated sludge with different configurations and SAn-

MBR. The first three options are conventional wastewater treatment processes, com-

monly used and has been proven to be effective for removing organic content and

nutrients in both lab and full scales. The SAnMBR is a potential technology in

terms of energy-saving and able to improve environmental sustainability [236].

• Tertiary Treatment - a membrane filter (microfiltration) was selected in the su-

perstructure with the aim to polish effluent quality in terms of particulate matter

before discharge.

• Sludge Treatment - anaerobic digestion coupled with dewatering units was used

to stabilise and reduce the volume of sludge before disposal using landfills. This

technology is commonly used and provides several advantages, especially energy

recovery and conditioning of sludge.

• Side-stream Treatment - SHARONR©/Anammox was selected to be included in

the superstructure. It is an innovative and economic approach for ammonium-rich

wastewater. Some studies have indicated that this technology can save significant

amount of energy and cost because of lower oxygen consumption [237].

• Recovery Units - two nutrient recovery units were added in the superstructure to

recover nitrogen and phosphorus: ion exchanger and struvite precipitation. As men-

tioned, we consider SAnMBR as well as anaerobic digestion as the secondary and

sludge treatment. Although these technologies are able to perform organic degra-

dation effectively, they have a little effect on nutrient removal. As a result, further

technologies may need to remove nutrients to satisfy discharge regulations. Also,

both ion exchanger and struvite precipitation can recover nutrients in wastewater

and used as fertilisers.
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Table 6.5: List of treatment/separation units available in the superstructure.

Stage Unit
Primary treatment Primary sedimentation
Secondary treatment Activated sludge with an oxic tank and clarifier

Activated sludge with modified Ludzack-Ettinger
Activated sludge with A2O for phosphorus removal
SAnMBR

Tertiary treatment Membrane filter
Sludge treatment Anaerobic digestion with SRT 15 days

Anaerobic digestion with SRT 20 days
Side stream treatment Anammox
Recovery Ion exchanger

Struvite precipitation

In this study, design parameters, e.g. SRT, HRT were kept constant for each treatmen-

t/separation unit and selected from a given range obtained from engineering guidelines

[17]. This is commonly used to design conventional WWTPs, e.g. activated sludge pro-

cesses. Regarding new technologies where data from engineering guideline is not available

such as SAnMBR, the principle design parameters are considered based on information

from the literature. For instance, HRT of 12 hrs and SRT of 30 days were chosen based

on lab and full scale operating conditions for municipal wastewater available in the liter-

ature [238] and these conditions were fed into the process simulator, GPS-XR© to simulate

performance of the SAnMBR. In this context, the size of each treatment/separation unit

can be calculated using the flowrate determined by the optimiser and selected HRT/SRT.

Note that in order to limit the number of variables in the surrogate models, multiple

instances of the same unit can be considered as part of the superstructure, which cor-

respond to different sets of operating parameters: For example, anaerobic digestion was

simulated for two operating SRTs i.e. 15 and 20 days to increase flexibility and this allows

decision-makers to identify the optimal design parameters for each technology.

6.4.1 Performance of Treatment Units

The performance of the treatment units is approximated based on the simulation outputs

using ManTIS3 built in GPS-XR© by varing COD, NH+
4 -N and PO3−

4 -P concentrations.
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The degradation/removal rates of organic matter, nutrients are regressed using simple

surrogate models, either linear or quadratic models of the form:

Xout
k,c = bek,c +

∑
u

me1
k,cX

in
k,u +

∑
u

me2
k,c(X

in
k,u)

2 (6.7)

F out
k = F in

k (bfk,c +
∑
u

mf1
k,cX

in
k,u +

∑
u

mf2
k,c(X

in
k,u)

2) (6.8)

where bek,c, m
e1
k,c and me2

k,c are the parameters in surrogate models for the concentration c

of unit k. bfk , m
f1
k and mf2

k are the parameters in surrogate models for the outlet flowrate

of unit k. Note that the cross term is not included in a general equation above due to

the fact that accuracy of the predictions is seldom improved compared to the simplified

equation. The performance models as examples are shown in Figure 6.5 for an anaerobic

digester unit. For some treatment units producing sludge, the flowrate and concentrations

of sludge can be predicted based on the surrogate models as follows:

Xwas
k,c = bwe

k,c +
∑
u

mwe1
k,c X

in
k,u +

∑
u

mwe2
k,c (X

in
k,u)

2 (6.9)

Fwas
k = F in

k (bwf
k,c +

∑
u

mwf1
k,c X in

k,u +
∑
u

mwf2
k,c (X in

k,u)
2) (6.10)

where bwe
k,c, m

we1
k,c and mwe2

k,c are the parameters in surrogate models for the sludge concen-

tration c of the unit k. bwf
k , mwf1

k and mwf2
k are the parameters in surrogate models for

the sludge flowrate of the unit k.

Regarding the membrane filters (ultrafiltration) and primary clarifier, the performance

was simulated based on a split fraction of the solid components, which can affect total

suspended solids and the particulate fraction of COD. In the simulation of these two

units, it was assumed that no biological reactions occurred, and treatments had no effect

on soluble components. Due to the unavailability of ion exchanger data in GPS-XR©, the

performance of this unit was modelled based on a Langmuir adsorption isotherm com-

bined with the experimental data derived from a study by Malekian et al. [239]. It was

assumed that the adsorbent only absorbed ammonium, but had no effect on other com-
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ponents, while the concentration of the suspended solids entering the ion exchange unit

was assumed to be less than 12 mg/L to prevent adsorbent pore clogging.

The capital and operational costs of all the units were estimated using CapdetWorks
R©,

and fitted with a linear regression model as a function of the input flowrate within the op-

erational range for a given volume. In addition to treatment/separation units, a combined

heat and power (CHP) unit was modelled in this study for electrical and thermal power

generation from biogas (CHP is not included in Figure 6.4 for simplicity but it would

be taken into account when the anaerobic digestion process is selected) . The CAPEX

and OPEX of CHP in the model were based on the data published by the Department of

Energy & Climate Change [240].
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CH4 production as a function of COD and NH+

4 -N influent.
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6.4.2 Single-objective Optimisation

The optimal configuration for NPV maximisation is shown in Figure 6.6. Approximately

91% of the wastewater stream is processed in the activated sludge unit with enhanced

phosphorus removal efficiency (A2O) and clarifier (not shown in Figure 6.6), before being

mixed with the remaining stream and discharged into receiving waters. The sludge derived

from activated sludge unit is processed in the anaerobic digestion unit with an SRT of 20

days, and the supernatant generated is fed back to the activated sludge unit; the remaining

sludge residue is disposed of to landfill. The minimum reduction requirement for TSS

(90%) is the most restrictive, while the effluent satisfies all other discharge requirements.

The NPV for this optimal configuration over a period of 20 years is estimated as - £7.69

million, with the breakdown costing analysis including CAPEX, OPEX and SALES shown

in Table 6.7. CAPEX is the dominant factor in deriving the NPV, and thus only a small

number of treatment units (to meet the discharge constraint) are selected to achieve NPV

maximisation in this optimisation solution. A long rather than short SRT is suggested

as the optimal configuration for the anaerobic digestion unit, which can be explained

by the greater amount of biogas produced under longer SRTs. However, the optimal

configuration for the economic objective causes high environmental burdens on GWP100

due to the energy-intensive activated sludge unit, as well as its high GHG emission profiles

(e.g. N2O evolved from biological treatment). In addition, this configuration produces

environmental burdens on eutrophication which are mainly caused by the remaining COD,

NO−
3 -N, NH

+
4 -N and PO3−

4 -P in the effluent and sludge residues. Note that bypassing the

wastewater stream directly to the water receiving body may not practically reasonable.

The optimiser selects this configuration as the maximisation of NPV because sending more

amount of wastewater can increase the size of treatment units and this could potentially

lower the NPV. It is also possible to set the constraints that do not allow the wastewater

stream to be sent directly to the sink. It is found that the optimal configuration is similar

to Figure 6.6 with no wastewater stream bypassing to the sink directly. However, the

NPV would be lower (worsen) around 9% due to the larger size of the activated sludge

and anaerobic digestion units.
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Figure 6.6: Illustration of the optimal result (maximisation of NPV)

Another important step in the WWTP decision-making tool development is model verifi-

cation to demonstrate the model consistency, completeness and correctness. The objective

of model verification is to check the quality of the model outputs, and identify further

modifications to ensure that the solution can address the problem. As stated in sec-

tion 5.2.1, surrogate models require verification by comparing the optimisation results

with outputs from the process simulator, and the progressive update of the simulated

data to improve model outcomes. Thus in this study, model verification was carried out

through error analysis by comparing the superstructure-based optimisation results with

full-scale wastewater simulation outputs. Figure 6.7 demonstrates an example of model

verification, i.e. the NPV-maximisation optimal result verified and implemented in the

wastewater treatment simulator. The results from superstructure-based optimisation, and

the full-scale wastewater treatment simulation are summarised in Table 6.6, where the

average deviations of both model results are lower than 5%. Generally, deviations or the

differences between the superstructure-based optimisation and the full-scale wastewater

treatment simulation (verification) decrease gradually with the number of iterations of

the surrogate model updating, because wastewater treatment process simulation results

are influenced by multiple factors, e.g. wastewater compositions and recycle streams. The

surrogate model is updated iteratively and this would affect accuracy of the model pre-

dictions. In this case, the optimal configuration was not affected by the iteration process
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because the surrogate models generated for describing treatment/separation unit perfor-

mance did not change significantly throughout the iteration process. It is interesting to

note that it is possible to obtain results with different configurations for each iteration

though because the optimisation model is based on the surrogate model or the simplified

approximate model. As the surrogate model is updated iteratively, it would be possible

that the updated surrogate model is changed from the previous iteration.

Wastewater
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Alkalinity

Anaerobic

ank ank

Aerobic

ank Clarifier
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Dewatering Sludge
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Figure 6.7: Illustration of full-scale wastewater treatment simulation in GPS-XR©.

Table 6.6: Comparision of the optimisation result obtained from GAMS with the full scale
WWTP simulation in GPS-XR©.

Stream Component Unit Optimisation Simulation Deviation [%]
GAMS GPS-XR©

Effluent Flow m3/d 9999 9996 0.03
COD mg/L 91.18 91.08 0.11
NH+

4 -N mg/L 4.24 4.26 0.47
NO−

3 -N mg/L 7.28 7.45 2.28
PO3−

4 -P mg/L 0.60 0.59 1.69
TSS mg/L 25.9 25.76 0.54

Sludge Flow m3/d 5.67 5.96 4.86
COD mg/L 1.75×105 1.83×105 1.33
NH+

4 -N mg/L 221 218.1 6.51
NO−

3 -N mg/L 0 0 0
PO3−

4 -P mg/L 175 164.3 6.51
TSS mg/L 2×105 2×105 0

Gas CH4 m3/day 342 369.93 7.55
CO2 m3/day 250 268.71 6.96
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The two environmental impacts GWP100 and eutrophication were also investigated using

single-objective optimisation. Both case studies show similar process configurations (Fig-

ures 6.8 and 6.9). The optimal configuration for minimising GWP100 shows that around

52% of the wastewater stream is sent to the SAnMBR, and then mixed with the remaining

48% (bypass directly), and the mixed stream is sent to the membrane filter for particu-

late fraction separation. Sludge produced in the SAnMBR is processed in the anaerobic

digestion units (SRT 20 days), where the supernatant produced is fed back to the SAn-

MBR and the digestate cake produced is collected for disposal. The supernatant from

the membrane filter is sent to the recovery units which consist of an ion exchanger and

struvite precipitation for recovering nitrogen and phosphorus, respectively; the treated

supernatant is then discharged to the environment. Sludge from the membrane filter is

recycled back to the SAnMBR. A similar configuration for the minimisation of eutroph-

ication impacts was also found (Figure 6.9). 100% of the wastewater stream is treated

by a SAnMBR and partially processed in the membrane filter before mixed with the re-

maining fraction and sent to the nutrient recovery units (e.g. ion exchanger and struvite

precipitation). Partial sludge from the membrane filter is recycled back to the SAnMBR

and anaerobic digestion. The selection of a SAnMBR rather than activated sludge in the

environmental optimisation runs can be explained by the superior environmental profiles

of the SAnMBR compared to activated sludge units on GWP100 and eutrophication.

Moreover, the nitrogen and phosphorus nutrient recovery bring environmental credits by

fertiliser substitution, which is another driver of the optimisation outcome. The optimi-

sation model shows that a reduction in the GWP100 and eutrophication burdens can lead

to a lower NPV, whereas the addition of a membrane filter can potentially reduce the

environmental impacts, but incurs higher installation and operational costs.

6.4.3 Multi-objective optimisation

This final section focuses on multi-objective optimisation to generate the Pareto frontiers

to provide insight into the trade-offs between conflicting objectives in this study. Overall,
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Figure 6.8: Illustration of the optimal result (minimisation of GWP100).

three objective functions; NPV, GWP100 and eutrophication were optimised, and the

derived Pareto optimal solutions are shown in Figure 6.10. The Pareto frontier for trade-

off between conflicting NPV, GWP100, and eutrophication can be identified. Note that

each Pareto optimal solution corresponds to a unique process configuration with specific

operating conditions and effluent quality from all Pareto optimal solutions can satisfy

discharge regulations. In this case, all of the NPV values are negative so it would be better

Table 6.7: Cost and environmental analysis for the case study.

Flowsheet max min min
NPV Eutrophication GWP100

CAPEX, M£ -5.42 -11.04 -8.72
OPEX, M£/year -0.45 -0.77 -0.61
SALES, M£/year 0.24 0.45 0.37
NPV, M£ -7.69 -14.41 -11.22
GWP100, × 104 kgCO2e 23.2 1.91 0.66
Eutrophication, × 102 kgPO3−

4 e 4.96 1.55 2.88
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Figure 6.9: Illustration of the optimal result (minimisation of eutrophication).

to clarify that the higher NPV (or lower negative ) mean that the project is better in terms

of economic consideration. The optimal solutions on the bottom of Figure 6.10 emphasize

more on minimise the environmental impacts i.e. GWP100 and eutrophication, while the

optimal solutions on the top of Figure 6.10 yield maximising the NPV. Expectedly, there

is a trade-off among three objectives and the NPV is sensitive to both eutrophication

and GWP100. A small change in either eutrophication or GWP100 can lower the NPV

significantly. Decision makers can choose the optimal design on the Pareto frontier based

on the preference. In this case study, a number of discontinuous planes arising from the

optimal configurations were changed to satisfy the constraints. This situation is commonly

found in the chemical engineering design [213]. When environmental constraints are

tightened, the optimiser selects different process configurations in terms of selected units

and interconnections corresponding to the stricter constraints. Further inspection reveals
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that there are three clear lines of Pareto optimal solutions: A and B corresponding to

the resource recovery facilities with (Figure 6.8 and 6.9) and without membrane filters;

C corresponding to the conventional wastewater treatment facility (Figure 6.6). More

detail about the optimal process configurations is available in appendix 11. Changing the

optimal solutions from C to B would lower the NPV around 40% but the environmental

impacts i.e. GWP100 decreases significantly from 23×104 to 1.7×104 tCO2 (13 folds).

This may be particularly useful in the near future when the carbon tax rate is higher. To

better interpret the trade-offs among the three objectives, the Pareto frontiers achieved

for two objective functions are discussed as follows:
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Figure 6.10: Pareto frontier of three objective functions.

6.4.3.1 NPV and GWP100

The NPV and GWP100 objectives were optimised simultaneously using the multi-objective

programming ε-constraint method, where GWP100 was treated as a constraint. Figure
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6.11 demonstrates a set of Pareto solutions where the conflicting objectives between NPV

and GWP100 are found and each point on the Pareto front represents a unique model

parameterisation. Along the Pareto frontier, a decrease in GWP100 is accompanied by

a reduction in the NPV. The maximised NPV solution has the highest impact on the

environment in terms of GWP100, whereas the most environmentally friendly solution

can be achieved at the expense of a minimised NPV. This is because the minimisation

of GWP100 as a resource recovery facility in Figure 6.8 requires the larger number of

treatment units to satisfy the conditions and large amount of CAPEX. Although more

resources can be recovered, this cannot be compensated by the higher CAPEX. As a

result, the NPV would be lower (minimised NPV). Each solution represents a WWTP

configuration under a set of specific conditions, and hence the solutions on the frontier

show how the model seeks for alternative solutions with varying environmental targets.

To satisfy the imposed environmental requirements, the plant configurations and operat-

ing conditions were adjusted for each case in the model. For example, the conventional

WWTP (A2O) with a energy recovery unit (anaerobic digestion) can yield higher NPV

but it delivers negative impacts on GWP100 due to high energy consumption and induced

direct GHG emissions. The resouce recovery facility is likely to be economic unfavorable

due to high investment, but can potentially produce beneficial impacts due to the credits

obtained from nutrient recovery. In addition, a discontinuous Pareto frontier is observed

in Figure 6.11, which is caused by changing the process configuration or adding treat-

ment/separation unit. More specifically, the discontinuities may result from the fact that

there is no optimal solution found at the certain ranges of ǫ-constaint or the better solu-

tion with the new optimal configuration is found at the lower ǫ-constaint. For instance,

changing from the conventional wastewater treatment plant (Figure 6.6) to the resource

recovery facility (Figure 6.8 and 6.9) could significantly reduces the GHG footprint, but

incurs high installation and operational costs as mentioned above.
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Figure 6.11: Pareto frontier between GWP100 and NPV

6.4.3.2 NPV and eutrophication

The Pareto frontier for trade-off between conflicting NPV and eutrophication objectives is

shown in Figure 6.12. The identified set of optimal solutions consists of different plant con-

figurations and specific conditions from conventional wastewater treatment plants (A2O)

to the resource recovery plants. Decreasing overall eutrophication impacts leads to an in-

crease in NPV; the optimiser selects a conventional activated sludge process with anaerobic

digestion as the NPV optimal solution, as shown in Figure 6.6. Note that the main source

of eutrophication is from effluent and sludge production. The improved eutrophication

performance from (ca. 500 to 350 tPO3−
4 -P) is achieved by decreasing the bypass stream,

and sending it to the treatment units to minimise contaminants discharged into the re-

ceiving waters. Changing the eutrophication profile in this range would slightly lower the

NPV around 14%. Although more resource can be recovered, it cannot be compensated

by the higher CAPEX and OPEX from the larger size of unit operations and higher op-

erating cost. With further enhancement of the eutrophication profile (ca. 350 to 155

tPO3−
4 -P), the configuration shifted from wastewater treatment to the resource recovery

facility, and hence lower contaminants in the discharged effluent, and a higher credit from

N&P nutrient recovery could be achieved. It is infeasible to obtain the optimal solution

when the eutrophication is lower than 155 tPO3−
4 -P.
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Figure 6.12: Pareto frontier between eutrophication and NPV

6.4.3.3 GWP100 and eutrophication

The Pareto frontier for conflicting environmental issues, i.e. eutrophication vs. GWP100,

was obtained by treating eutrophication as a constraint, and solving the resulting single-

objective problem. All optimal configurations presented in Figure 6.13 along the Pareto

frontier are based on the selection of a SAnMBR as the biological treatment, followed

by N&P resouce recovery units, including ion exchange and struvite precipitation. The

results show that GWP100 is highly sensitive to eutrophication. A slightly lower eutroph-

ication profile (from ca. 300 to 150 tPO3−
4 ) can lead to a significantly higher GWP100

from 0.6×104 to 2×104 tCO2. Further inspection reveals that the most environmentally

friendly solution can potentially be achieved by introducing nutrient recovery on the ef-

fluent from existing WWTP facilities. The eutrophication impacts can be decreased by

reducing the bypass stream, sending to the SAnMBR unit, and increasing the nutrient

recovery rate, which not only leads to a reduction in the eutrophication precursors (e.g.

NO−
3 -N NH+

4 -N and PO3−
4 -P) in the effluent, but also brings environmental benefits due

to fertiliser substitution. To achieve optimised GWP100 profiles, the optimiser tends to

choose an increasing bypass stream which in turn lowers the flowrate to the treatmen-

t/separation unit, - the resulting reduced unit size and energy consumption could benefit

GWP100 profiles.
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6.5 Summary

This chapter has presented an extended WWTP synthesis modeling framework based on

enviroeconomic optimisation. The extended model is configured to integrate wastewater

and sludge treatment into a single WWTP system, and incoporates LCA into a multi-

objective optimisation framework to achieve a sustainable WWTP design. With current

computational capabilities, however, it would be computationally intractable to solve a

complex WWTP system with multiple scales, and great uncertainties, e.g. identification of

promising wastewater treatment facilities from hundreds or thousands of alternatives using

global optimisation techniques. The proposed methodology allows us to solve such com-

plex optimisation problems by developing simple surrogate models for unit performance

and costing data based on state-of-the-art wastewater treatment simulators. Typically,

surrogate models provide a rough approximation for the actual performance of complex

systems, and contain significant uncertainty. To solve this issue, we proposed a model

verification approach to refine these surrogate models iteratively. The applicability of

extending the modeling framework has been illustrated through a case study in municipal

wastewater treatment with biosolids management. The set of Pareto optimal solutions de-

termined optimisation suggests that significant environmental improvements in GWP100

and eutrophication can be achieved through a modification of the process configuration,

or operating conditions. Decision-makers can use this approach as a decision-making tool

to choose the most approapriate wastewater treatment facilities based on their preference.
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Also, it is possible to analyse more detail in terms of economic and environmental aspects

to obtain a better understanding for each optimal Pareto solution to identify the trade-off

solutions. Overall, the results show that accounting for LCA considerations early on in

the synthesis problem may lead to dramatic changes in the optimal process configuration,

thereby supporting LCA integration into decision-making tools for wastewater treatment

alongside economical selection criteria.



Chapter 7

Discussions

The results shown in the previous chapters lead to several discussions. This thesis presents

the importance of the model-based methodology as a decision-making tool used to iden-

tify the key improvement opportunities for existing WWTP operation and to design new

wastewater treatment/resource recovery facilities to achieve sustainability defined as max-

imisation of economic objectives and minimisation of overall environmental impact includ-

ing GHG emissions. Regarding existing WWTP operation, plant-wide models can gener-

ally be used as a decision-making tool for engineers, plant managers and environmental

regulators to evaluate the performance of a plant-wide system in setting the targets and

limits of the WWTP. Also, it can be used to optimise operational strategies and plant

performance if the WWTP is upgraded or retrofitted. For design of new wastewater

treatment facilities, the optimal layouts of future wastewater treatment facilities for the

energy and nutrient recovery using cutting-edge treatment technologies can be developed

through the application of the model-based methodology. Using the powerful capability

of the modeling and optimisation techniques, the best possible plant layout among hun-

dreds or thousands of process alternatives can be systematically selected for tomorrow’s

wastewater treatment facilities. More detail of the key findings and limitations of this

thesis is as follows.

172
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7.1 Applications in WWTP Operation

Improving existing WWTP operation with regards to energy use, effluent quality and

GHG emissions can be identified through the model-based methodology. A key finding in

this study shows the importance of plant-wide evalution using the model-based method-

ology and the inherent advantage of incorporating GHG emissions along with effluent

quality. The plant-wide models developed can be used to identify what level of nutrient

discharge, energy consumption and GHG emissions should be reduced and what impact

further reduction in nutrient discharges has on the overall plant’s performance, e.g. a

significant increase in energy consumption as well as GHG emissions. This information

will be used to identify the main trade-off between nutrient discharge, energy consump-

tion and GHG emissions without compromising each other. For example, a decrease in

the DO set-point from 2 mg/L to 1 mg/L can lead to a reduction in the aeration energy

(15%) and total nitrogen 1 mg/L while ammonia discharge is kept at a minimum and

an increase of around 2% in the overall GHG emissions (A decrease in the aeration en-

ergy is counter-balanced by an increase of N2O emissions). These overall GHG emissions

were compared to a similar study and the results also show similar trends as well as in a

medium range of several studies regarding the GHG emissions [171, 172]. Although the

lower DO set-point provides a benefit in terms of energy consumption, the overall GHG

emissions could be largely due to the higher N2O emissions at the lower DO set-point.

This is a clear advantage of incorporating GHG emissions as a criterion along with effluent

quality. Other scenarios were also investigated including influent spliter, MLR and SRT

to examine the potential reduction of nutrient discharge, energy consumption and GHG

emissions. Similar to the DO-setpoint case, manipulating SRT can potentially reduce the

aeration and nutrient discharges but this can lead to an increase in N2O emissions due

to incomplete nitrification. Regarding MLR and influent spliter, it is important to point

out that the nitrate concentration can be reduced down to approximately 3 mg/L. This

reduction leads to an increase in N2O emissions due to carbon availability limits capabil-

ity of denitrification affecting nutrient discharge and the GHG emissions in terms of N2O
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emissions. Adding the external carbon would potentially enhance nutrient removal and

reduce GHG emissions. The potential of reverse osmosis (RO) was also investigated. The

reverse osmosis was installed at the WWTP and only a partial amount of water from the

final effluent is sent to the RO to increase the recycled water. The model predictions are

able to identify an increase of energy consumption when the full amount of water from

the final effluent is sent to the RO. Expectedly, the nutrient concentration was reduced

significantly and provided a quality of water which was similar to potable. However, this

was compensated by a significant increase in energy consumption and GHG emissions.

Another interesting study regarding the improvemence of existing WWTPs was to in-

vestigate the feasibility of systematic optimisation. Similar to the previous study, this

study shows the importance of the plant-wide evaluation using the model-based method-

ology to a full-scale WWTP (owned and operated by Sydney Water). However, the key

finding was that it shows the potential capability of using the systematic optimisation

as a decision-making tool to identify an inherent trade-off between effluent quality and

nutrient discharges and investigate the optimal operational strategies. Also, it is possible

to enhance robustness of the operational strategies to maintain optimal performance even

though the conditions are different from nominal conditions. This study has highlighted

that nutrient discharges in terms of NH+
4 -N and NO−

3 -N can be reduced significantly with-

out compromising energy consumption or it is possible to reduce these significantly while

keeping the level of nutrient discharges the same. The current operation of the WWTP

in the study is based on the high standard set-point to maintain suitable effluent quality

to prevent unpredictable situations, e.g. heavy rainfall. As a result, the treated effluent is

usually much better than the requirements enforced by the environmental regulators and

it leads to significantly higher energy consumption. This shows the excellent potential for

systematic optimisation to improve a WWTP with a large number of process interactions

between liquid and sludge treatment stages, as well as other conflicting objectives are

found. Typically, the model-based methodology relys on simulation but the problem is

that the optimal solution cannot be guaranteed through the model simulation and it is
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time-consuming to investigate several key operating variables on operational strategies of

the WWTP. With capabilities of the model-based methodology and optimisation tech-

niques, several key operating variables can be adjusted to obtain the optimal operational

strategies. Although the results of the model-based methodology is specific for this case

study, the proposed approach can be generic and applied to other wastewater treatment

systems to develop their optimal operational strategies or identify the main trade-off be-

tween conflicting objectives, e.g. effluent quality and energy consumption typically found

in wastewater treatment processes.

It is important to point out that although the plant-wide evaluation in this study can

provide promising results, there are some limitations regarding the plant-wide models.

The operational data is currently recorded online and offline in a database system. How-

ever, it is found that large sets of data are not frequently recorded and some are incorrectly

recorded (outliers). This would affect the accuracy of model predictions. With limited

availability of operational data, several assumptions needed to be made throughout the

study. More data availability including consistent data collection and analysis would re-

duce the uncertainty arising from model assumptions and make the model predictions

more realistic. For example, calibrating the biological treatment is aimed to capture the

average trends and the daily variation of the WWTP, in order to predict the dynamic

behaviour. Operational data should be consistently collected/measured or collected from

experimental design, e.g. the tracer test or the determination of kinetic and stoichiomet-

ric parameter (which is required for the model-based methodology to improve quality of

model calibration). Also, the energy consumption of pumps was calculated based on the

assumption of constant efficiency due to limited data availability of pump calculation.

Although this approach can provide a first approximation, it would be better to improve

the predictive capability by consistently collecting data.
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7.2 Applications in Design of Wastewater Treatment

Facilities

In this study, a superstructure-based optimisation is developed and its applicability is

highlighted through case studies to design new wastewater treatment/resource recovery

facilities to achieve economic and environmental sustainability. The key finding is that the

proposed methodology using superstructure optimisation together with surrogate models

can be used as a decision-making tool to design a globally optimal wastewater treat-

ment facility. It is computationally intractable to design the globally optimal wastewater

treatment facility with regards to the current computational capability and optimisation

techniques due to high complexity of wastewater treatment processes and a large num-

ber of process alteratives. The surrogate model is an approximate model that is simple

but reliable enough to represent the wastewater treatment process. An inherent advan-

tage of using the surrogate model is that it can provide the approximated performance

of treatment units, allowing the use of global optimisation techniques to search for the

global optimality. The global optimisation techniques used are important because there

is a presence of bilinearities from the mass balance and this can result in multiple lo-

cal optimal solutions. As such the surrogate model is more accurate in representing the

performance of treatment units compared to constant values which are typically used

in several applications of the superstructure-based optimisation [21, 22]. The surrogate

model can be developed based on the simulation results or data from experiments to de-

scribe the behaviour for which is not available. It is important to point out that the case

study presented in Chapter 5 is relatively simple because it was used to proof the concept

of this approach that it is computationally tractable to design the complex wastewater

treatment facilities. The optimal solutions show promising resource recovery facilities to

recover resources from industrial wastewater. However, the CAPEX is significantly higher

and it cannot be compensated by the small profit from recovering resources so the NPV

is negative. More detail or the complex case study was presented in Chapter 6. The

sludge management and LCA to evaluate the environmental impacts were incorporated
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into the unified optimisation framework to provide the complete picture of sustainability.

However, this requires the use of multi-objective optimisation to deal with conflicting

objectives and identify trade-offs. Design of a municipal wastewater facility with a po-

tential to recover resources was presented as the case study. The set of optimal solutions

corresponding to different process configurations and specific operating conditions were

presented on the Pareto front. The decision-makers can select the optimal solution or

process configuration based on their preference on the Pareto front. It is found the con-

ventional WWTPs can provide the advantage in terms of the economic aspect but are not

good for the overall environmental impacts because of high energy consumption and GHG

emissions. The resource recovery facilities, on the other hand, provide less environmental

impacts but are not good in terms of the economic aspect because a large number of

recovery units are required. Similarly, the case studies presented are quite specific, but

the proposed approach can be generic and applied to design other wastewater treatment

facilities. Although the proposed approach is a powerful tool used to design the promising

wastewater treatment facilities, a limitation of the proposed approach is that the surro-

gate model or the approximate model needs to be updated iteratively to improve accuracy

and completeness because wastewater treatment processes are complex and consist of sev-

eral variables to describe their behaviours. The surrogate model usually provides a rough

approximation of the actual process so it may carry significant uncertainty and one way

to reduce uncertainty or improve accuracy is to update the surrogate model iteratively to

refine the model.
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Conclusions and Future Directions

8.1 Conclusions

The main objective of this thesis was to develop decision-making tools for WWTP design

and operation. Wastewater treatment facilities are used to ensure a degree of purification

to comply with discharge regulations, whilst keeping cost and environmental impacts to

a minimum. With powerful capabilities of mathematical modeling, we proposed to use a

model-based methodology as a decision-making tool to improve operational strategies of

existing WWTPs and design new wastewater treatment/resource recovery facilities. The

main contributions and novelty are as follows.

8.1.1 Improved Operation of Existing WWTPs

The first contribution of the thesis was to apply the model-based methodology to provide

a better understanding of the trade-off between effluent quality, energy use and fugi-

tive emissions. The methodology relies on a scenario-based simulation and optimisation

approach and has been applied to two conventional activated sludge plants owned and

operated by Sydney Water. An inherent advantage of the methodology is that it can

be used for analyzing other “what-if” scenarios as well as for assessing the performance

178
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of other WWTPs – provided that mathematical models can be developed/calibrated for

those plants. The key novelty in this study is that the developed models can provide a

better understanding of what levels of nutrient discharges, energy consumption as well as

GHG emissions can be reduced and what impact further reduction in nutrient discharges

has on the overall plant performance, e.g. a significant increase in energy consumption

and GHG emissions. This type of information is necessary in order to negotiate targets

and limits of the WWTP in the near future. Also, the model-based methodology with

systematic optimisation allows the modelers to obtain the optimal operational strategies

and to incorporate uncertainty into the framework to robustify the operational strategies.

More specifically, the main outcomes and insights obtained through the thesis are sum-

marized as follows:

For the first plant (a simulation-based approach), the model-based methodology is used

to evaluated the plant-wide performance. It has been found that GHG emissions as a

criterian along with effluent quality and energy consumption can provide a better of the

trade-off between effluent quality, nutrient discharge and GHG emissions. Adjusting the

key operating variables, e.g. DO set-points, MLR and influent splitter is able to improve

the performance in one aspect, e.g. energy consumption but it may worsen the other

aspects, e.g. GHG emissions. Such trade-offs can be identified by the capabilities of the

model predictions. A large reduction of the aeration needs (up to 10-20%), and thus in en-

ergy consumption, appears possible by reducing the DO set-point down to a certain value.

The DO set-point is found to be particularly sensitive though, and too low a set-point

might increase the concentration of NH+
4 in the effluent as well as the N2O emissions dra-

matically. The simulation results also suggest that decreasing the SRT could be beneficial

in terms of reducing the TN effluent level (up to 1 mg/L), yet this might be accompanied

by an increase in N2O emissions. In addition, reductions in the concentration of NO−
3 in

the effluent could be achieved, at the cost of a small energy penalty, by increasing the

MLR flowrate or increasing the wastewater split between stages 1/2 and 3 as long as large

enough quantities of carbon substrate are available for denitrification. The lack of carbon
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substrate might however result in partial denitrification, and hence larger N2O emissions.

To remedy this situation, increasing the available carbon substrate for denitrification ap-

pears possible. Another possibility would be adding an external carbon source. While

reverse osmosis allows a much higher treatment level than the current effluent standards

(TN down to 0.3 mg/L), it also inevitably entails a high energy penalty and thus GHG

emissions (up to 50%). In making the connection with the modelling work, it might only

prove necessary to send a fraction of the treated effluent for polishing in reverse osmosis;

the rest of the treated effluent would be directly discharged in the river system, thereby

reducing the energy consumption.

For the second plant (an optimisation-based approach), the systematic optimisation is

able to simultaneously adjust the key operating variables to optimise the WWTP. The

main trade-off between energy consumption and nutrient discharges can be optimally

identified. Consequently the optimal operational strategies can be developed to reduce

energy consumption without compromising effluent quality. Also, it is able to incorpo-

rate uncertainties into the framework to develop the optimal operational strategies with

enhanced robustness. The developed tool can expectedly be applied to other systems

to identify the key trade-off between conflicting objectives and enhance robustness of

operational strategies. More specifically, reduction in energy consumption (20-25%) is

possible via operational changes (DO set-point in the aeration tank, RAS, WAS and

MLR flowrates). Nonetheless, the concentration of NH+
4 in the treated effluent appears

to be particularly sensitive to the DO set-point, with a sharp increase happening at low

DO levels. Regarding the NO−
3 concentration in the treated effluent, the optimisation re-

sults suggest that the NO−
3 concentration of less than 15 mg/l could be achieved through

operational changes (increasing MLR and RAS flowrates), with no increase in the net

energy consumption (compensated by a reduction of the compression energy). Reduction

of the NO−
3 concentration (down to 10 mg/l or lower) is also achievable by decreasing

the solids capture in the primary sedimentation or further reduction of the NO−
3 concen-

tration (down to 5 mg/L or lower) is possible subject to an 18% increase in net energy
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consumption with addition of the external carbon source. The analysis of the second

plant has mostly focused on the relationship between energy and effluent quality, using a

systematic optimisation approach. An assessment of the overall environmental footprint

would require that fugitive emissions are also taken into account in order to complete the

picture.

8.1.2 Decision-making Tools for Sustainable Wastewater Treat-

ment

The second contribution of the thesis was to develop a novel decision-making tool for the

synthesis of sustainable wastewater treatment facility. The development of the decision-

making tool is based on a superstructure optimisation approach for synthesis of wastewater

treatment/resource recovery facilities using cutting-edge treatment and separation tech-

nologies to select the most promising system among hundreds or thousands of alternatives.

A superstructure optimisation accounting for all process configurations is developed to

determine the ideal network topology (treatment technologies, interconnections, and oper-

ating conditions) to maximise revenue or minimise the environmental footprint. However,

with the current computational capabilities and available algorithms, solving the optimal

design and operation of wastewater treatment systems in a single step is intractable due

to complexity, multiple scales, time dependence, and uncertainty. The proposed method-

ology and key novelty relies on surrogate models as a means for overcoming the limitation

of current global optimisation technology. A key requirement in applying this methodol-

ogy nonetheless is the availability of reliable performance models for the treatment and

separation units, on the one hand, and reliable costing and environmental impact data,

on the other hand. This study advocates the use of state-of-the-art wastewater treatment

simulators for deriving simple response-surface models, which are general enough to be

independent of detailed design choices and keep the optimisation problem computation-

ally tractable. Because such surrogate models may only provide an approximation of the

actual performance and contain significant uncertainty, an iteration is typically required
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between the detailed process simulators and the superstructure-based optimisation prob-

lem to improve the surrogates’ consistency and reliability. For those treatment/separation

units that are a lack of reliable models or less well established, scenario-based analysis

can be applied to predict performance and cost scenarios. The preselected plant config-

urations can be considered for detailed design analysis and optimisation in a subsequent

step. The applicability of the proposed methodology has been presented through two case

studies.

The first case study is the synthesis of a resource recovery facility based on industrial

wastewater. It is relatively simple and limited to the wastewater stream. The results

demonstate that the proposed methodology is computationally tractable using state-of-

the-art optimisation technique that can provide a guarantee to global optimality. Also, the

proposed framework can provide valuable insights for decision-making in WWTP design.

The optimiser selects the resource recovery facility (UASB, Sand filtration, ion exchange

and struvite crystalizer) as the optimal configuration to recover resources in terms of

electricity, ammonia and struvite and provides sales revenue more than the OPEX. The

extended superstructure optimisation framework to include biosolids management and to

incorporate LCA with multi-objective optimisation is presented in the second case study.

In this case, the synthesis of the municipal wastewater treatment facility was investigated

to identify the trade-offs between conflicting objectives in terms of economic and envi-

ronment. Our analysis has confirmed that the main trade-offs in terms of economic and

environmental aspects can be captured. This would allow decision makers to be able

to choose the most approapriate design based on their preference and balance between

conflicting trade-offs. The results are presented as a set of the optimal solutions through

a single and multi-objective optimisation, and that LCA integration into decision-making

tools for wastewater treatment alongside economical considerations may lead to radical

changes in the design of tomorrow’s wastewater treatment facilities.
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8.2 Future Directions

During the investigation of this study, some crucial points and discrepancies have been

observed. As such, key recommendations for future studies are as follows:

8.2.1 Operational Considerations

Wastewater treatment is an energy intensive process. As discharge standards become

stricter, energy use and fugitive emissions for WWTPs are likely to increase substantially.

This study has highlighted that the use of plant-wide models to investigate different op-

erational strategies can significantly improve operation of existing WWTPs in terms of

effluent quality, energy use and fugitive emissions. Future works will focus on incorpo-

ration of biological/chemical phosphorus removal and GHG predictions into a systematic

model-based optimisation approach to identify trade-offs between performance and the

environmental criteria. The current plant-wide model for the systematic optimisation

is based on BSM2 considering only carbon and nitrogen removal with one step nitrifi-

cation/denitrification. Phosphorus removal is an important aspect to take into account

because phosphorus is typically released in forms of phosphate under anaerobic condi-

tions. Phosphorus removal requires large amount of energy in the activated sludge. In

addition, more attention has been paid to GHG predictions, especially N2O in WWTPs.

With capabilities of the systematic optimisation, trade-offs between standard regulations,

energy consumption and fugitive emissions can be identified.

Another key study would be to extend a scenario-based robust optimisation problem to

account for more uncertain parameters arisen from measurements and model parameters.

Plant-wide models of WWTPs involve a number of uncertain parameters e.g. wastewater

influent, kinetic and stoichiometric parameters in the models. It is important to account

for uncertainty to improve insight into process behaviour to enhance model prediction ac-

curacy and make solutions more practical. The variable interval optimisation approach,
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e.g. GlobSol software could be useful for this solving this problem. The optimal op-

erational strategies will be assessed by simulating over uncertainty ranges based on the

Monte Carlo (MC) approach to ensure that the certain operational strategies are flexible

enough to satisfy with given uncertainty ranges. The MC method is commonly used for

evaluating variations in the model predictions by sampling from the uncertainty ranges

and propagating the sampled values through the model simulation to obtain a ranges of

output values.

Based on the current plant-wide model, several assumptions have been made includ-

ing a perfect plant-wide model with fixed model structure, parameters and fixed influent

concentrations. This may contain inherent uncertainties and leads to the wrong con-

clusion. Although, the open-loop optimisation with the nominal values can provide the

better understanding and improve performance of the wastewater treatment process, it is

important to exploit the monitoring capacity and controllability to improve the accuracy

and robustness of the model predictions. The model-based closed-loop optimal control

can be a powerful for this problem and be a key extension for the future study. It is based

on repeating the optimisation online through feedback of the measured variables. The

control and operational strategies from the open-loop optimisation can be initially used to

provide the optimal setting. Then, the measurement can provide new information about

conditions and this enables the model to be updated (reduced model uncertainty). The

optimisation can repeatly perform based on the updated model. Note that the current

plant-wide model of the wastewater treatment process contains high non-linear terms and

dimensional variables. Plant-wide model reduction could be used in this context.

8.2.2 Design Considerations

Synthesis of wastewater treatment/resource recovery facilities based on a superstructure-

based optimisation is a promising approach towards sustainability. The ultimate goal of

WWTPs is an energy-efficient process with a closed-cycle, where all wastewater is reused
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or recycled, and the only outputs of this process are saleable or value-added products. A

key extension will be the development and regular update of information databases as new

advanced treatment and recovery technologies develop, or as the economic, environmental

and socio-cultural contexts evolve. Besides the availability of feasible technologies that

can transform wastewater into a product, and the downstream processing of this product

into a saleable item, the circumstances that are required to successfully establish a func-

tioning and sustainable resource recovery system also involves developing a distribution

infrastructure and catching investors’ interest in developing such technologies.

Another future work would be to account for uncertainty in a superstructure-based opti-

misation model. Uncertainty in WWTP design is far less investigated than other process

design fields and majority of the existing decision-making tools does not explicitly ac-

count for model robustness. Wastewater treatment is an inherently uncertain process due

to large variation of wastewater influent. Instead of determining the optimal solution

with nominal values, the optimisation formulation in presence of uncertainty aims to find

the best possible solution with respect to the fact that all constraints with realisation

of uncertainty are satisfied. A two-stage optimisation approach where the optimisation

problem under uncertainty is divided into two sets could be employed. This approach is

commonly used to include uncertainty into the decision-making process for the synthesis

of chemical processes. The first stage involves selection of the decision variables before

realisation of uncertainty. Subsequently, further design and operation can be improved

when the uncertainty is taken into account.

Based on the proposed methodology, several software platforms are required to design

the new wastewater treatment facility, e.g. GPS-XR©, GAMS. However, it may not be

convenient for a wide range of users and this may be the factors affecting the usability of

the decision-making tool. A promising avenue would appear to be the development of an

integrated and user-friendly platform for practical use. It is noted that several wastewater

process simulators with a user-friendly interface and a wide library of treatment/separa-
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tion units are already available. Thus, a key extension would be to integrate the proposed

optimisation methodology within these wastewater process simulators, thereby making

these tools widely available to decision-makers and practitioners.
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Example of gPROMS code [ASM1]

1 #Soluble inert organic matter SI (1)

2 #Readily biodegradable substrate SS (2)

3 #Particulate inert organic matter XI (3)

4 #Slowly biodegradable substrate XS (4)

5 #Active heterotrophic biomas XB,H (5)

6 #Active autotrophic biomass XB,A (6)

7 #Particulate products from biomass decay XP (7)

8 #Oxygen SO (8)

9 #Nitrate nitrite nitrogen SNO (9)

10 #NH4 #+ + NH3 nitrogen SNH (10)

11 #Soluble biodegradable organic nitrogen SND (11)

12 #Particulate biodegradable organic nitrogen XND (12)

13 #Alkalinity SALK (13)

15 Parameter

16 components as ORDERED SET default [’S I’,’S S’,’X I’,’X S’,’X H’,’

X A’,’X C’,’S O’,’S NO’,’S NH’,’S ND’,’X ND’,’S ALK’]

17 y a as real default 0.24

18 y h as real default 0.67

19 f p as real default 0.08

20 i xb as real default 0.08

21 i xp as real default 0.06

22 mu h as real default 4

187
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23 k s as real default 10

24 k oh as real default 0.2

25 k no as real default 0.5

26 b h as real default 0.3

27 n g as real default 0.8

28 n h as real default 0.8

29 k h as real default 3

30 k x as real default 0.1

31 k nh as real default 1

32 k oa as real default 0.4

33 k a as real default 0.05

34 T as as real default 14.8581

35 A as real default −66.7354

36 B as real default 87.4755

37 C as real default 24.4526

38 v as real

39 no inlets as integer

40 no outlets as integer

41 PORT

42 inlet as array(no inlets) of PMLMaterial DIRECTION INLET

43 outlet as array(no outlets) of PMLMaterial DIRECTION OUTLET

45 PORTSET

46 # Start Port Sets

47 "inlet" as [inlet, outlet]

48 # End Port Sets

50 Variable

51 b a as notype

52 y h as notype

53 mu a as notype

54 Q in as array(no inlets) of flowrate

55 Q out as array(no outlets) of flowrate

56 kla ini as notype

57 u as array(no inlets,components) of conc
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58 rho as array(8) of notype

59 rxn as array(components) of notype

60 y as array(components) of conc

61 mu ht as notype

62 mu at as notype

63 bht as notype

64 bat as notype

65 kat as notype

66 kht as notype

67 kla as notype

68 K as notype

69 T as notype

70 so sat as conc

73 Equation

74 for i := 1 to no inlets do

75 inlet(i).mass flowrate = Q in(i) ;

76 end

77 for i in components do

78 inlet().mass fraction(i) = u(,i) ;

79 end

80 for i := 1 to no outlets do

81 outlet(i).mass flowrate = Q out(i) ;

82 end

83 # process aerobic tank

84 rho(1) = mu ht∗(y(’S S’)/(k s + y(’S S’))) ∗ (y(’S O’)/(k oh + y(’

S O’))) ∗ y(’X H’) ;

85 rho(2) = mu ht∗(y(’S S’)/(k s + y(’S S’))) ∗ (k oh/(k oh + y(’S O

’))) ∗ (y(’S NO’)/(k no + y(’S NO’))) ∗ n g ∗ y(’X H’) ;

86 rho(3) = mu at∗(y(’S NH’)/(k nh + y(’S NH’))) ∗ (y(’S O’)/(k oa +

y(’S O’))) ∗ y(’X A’) ;

87 rho(4) = bht∗y(’X H’) ;

88 rho(5) = bat∗y(’X A’) ;

89 rho(6) = kat∗y(’S ND’) ∗ y(’X H’) ;
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90 rho(7) = kht∗ y(’X S’)/(y(’X H’)+1e−6)/(k x + (y(’X S’)/(y(’X H’)

+1e−6))) ∗ ((y(’S O’)/(k oh + y(’S O’))) + n h ∗ (k oh/(k oh + y(’S O’))

)∗ (y(’S NO’)/(k no + y(’S NO’))) ) ∗ y(’X H’) ;

91 rho(8) = kht∗ y(’X S’)/(y(’X H’)+1e−6)/(k x + (y(’X S’)/(y(’X H’)

+1e−6))) ∗ ((y(’S O’)/(k oh + y(’S O’))) + n h ∗ (k oh/(k oh + y(’S O’))

)∗ (y(’S NO’)/(k no + y(’S NO’))) ) ∗ y(’X H’) ∗ (y(’X ND’)/(y(’X S’)+1

e−6)) ;

94 mu ht = mu h ∗ exp ((log(mu h/3)/5) ∗ (T as − 15)) ;

95 mu at = mu a ∗ exp ((log(mu a/0.3)/5) ∗ (T as − 15)) ;

96 bht = b h ∗ exp ((log(b h/0.2)/5) ∗ (T as − 15)) ;

97 bat = b a ∗ exp ((log(b a/0.03)/5) ∗ (T as − 15)) ;

98 kat = k a ∗ exp ((log(k a/0.04)/5) ∗ (T as − 15)) ;

99 kht = k h ∗ exp ((log(k h/2.5)/5) ∗ (T as − 15)) ;

101 # rxn aerobic tank

102 rxn(’S I’) = 0 ;

103 rxn(’S S’) = − (1/y h) ∗ rho(1) − (1/y h) ∗ rho(2) + rho(7) ;

104 rxn(’X I’) = 0 ;

105 rxn(’X S’) = (1−f p)∗ rho(4) + (1−f p)∗ rho(5) − rho(7) ;

106 rxn(’X H’) = rho(1) + rho(2) − rho(4) ;

107 rxn(’X A’) = rho(3) − rho(5) ;

108 rxn(’X C’) = f p∗rho(4) + f p∗rho(5) ;

109 rxn(’S O’) = −(1−y h)/y h ∗ rho(1) − (4.57−y a)/y a ∗ rho(3) + kla ∗

(so sat − y(’S O’)) ;

110 rxn(’S NO’) = −(1−y h)/(2.86∗y h) ∗ rho(2) + 1/y a ∗ rho(3) ;

111 rxn(’S NH’) = −i xb ∗ rho(1) −i xb ∗ rho(2) − (i xb + 1/y a)∗rho(3) +

rho(6) ;

112 rxn(’S ND’) = −rho(6) + rho(8) ;

113 rxn(’X ND’) = (i xb − f p ∗i xp)∗ rho(4) + (i xb − f p ∗ i xp )∗ rho

(5) − rho(8) ;

114 rxn(’S ALK’) = −i xb/14 ∗ rho(1) + ((1 − y h)/(14∗2.86∗y h) − i xb

/14)∗ rho(2) − (i xb/14 + 1/(7∗y a))∗rho(3) + 1/14 ∗ rho(6) ;

115 kla = (1.024ˆ(T as −15)) ∗ kla ini ;
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116 so sat = 0.9997743214 ∗ 8 ∗ 6791.5 ∗ K/10.5 ;

117 K = 56.12 ∗ exp(A + B/T + C∗log(T)) ;

118 T = (T as + 273.15)/100 ;

121 for i in components do

122 $y(i) = (1/v)∗(SIGMA(inlet().mass flowrate ∗ inlet().mass fraction(i))

− SIGMA(outlet().mass flowrate∗y(i)) + v∗rxn(i)) ;

123 end

124 SIGMA(outlet().mass flowrate) = SIGMA(inlet().mass flowrate) ;

125 #mass balance

126 for i in components do

127 outlet().mass fraction(i) = y(i) ;

128 end
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Example of GAMS code

2 ∗Mass balance on source

3 eq1SO..

4 Fin

5 =e= sum(d t,FIT(d t)) + sum(d j,FIE(d j)) ;

6 ∗Mass balance on sink

7 eq2SI(d j)..

8 Fout(d j)

9 =e= FIE(d j) + sum(d t, FW(d t,d j)) + sum(d t, FS(d t

,d j)) ;

10 eq2 2SI(d j,d c)..

11 Fout(d j)∗xout(d j,d c)

12 =e= FIE(d j)∗xIN(d c) + sum(d t, FW(d t,d j)∗ xTUout(

d t,d c)) + sum(d t, FS(d t,d j)∗ xWAS(d t,d c)) ;

13 ∗Mass balance on treatment unit

14 eq3TU(d t)..

15 FTUin(d t)

16 =e= FIT(d t) + sum(d tt, FTUW(d tt,d t)) + sum(d tt,

FTUS(d tt,d t)) ;

17 eq3 2TU(d t,d c)..

18 FTUin(d t)∗ xTUin(d t,d c)

19 =e= FIT(d t)∗xIN(d c) + sum(d tt, FTUW(d tt,d t)∗

xTUout(d tt,d c)) + sum(d tt, FTUS(d tt,d t)∗ xWAS(
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d tt,d c)) ;

20 eq3 3TU(d t)..

21 FTUout(d t)

22 =e= sum(d tt,FTUW(d t,d tt)) + sum(d j,FW(d t,d j)) ;

23 eq3 4TU(d t)..

24 FTUwas(d t)

25 =e= sum(d tt,FTUS(d t,d tt)) + sum(d j, FS(d t,d j))

;

26 eq3 5TU(d t)..

27 FTUout(d t)

28 =e= FTUin(d t)/FTUin ref(d t)∗(sum(d cc,mETF1(d t,d cc

)∗xTUin(d t,d cc)) + bETF(d t));

29 eq3 6TU(d t)..

30 FTUwas(d t)

31 =e= FTUin(d t)/FTUin ref(d t)∗(sum(d cc,wETF1(d t,d cc

)∗xTUin(d t,d cc)) + bwETF(d t));

32 eq3 7TU(d t,d c)..

33 xTUout(d t,d c)

34 =e= sum(d cc,mETx1(d t,d cc,d c)∗xTUin(d t,d cc))

35 + sum(d cc,mETx2(d t,d cc,d c)∗power(xTUin(d t,

d cc),2))

36 + bETx(d t,d c)∗yT(d t);

37 eq3 8TU(d t,d c)..

38 xWAS(d t,d c)

39 =e= sum(d cc,wETx1(d t,d cc,d c)∗xTUin(d t,d cc))

40 + sum(d cc,wETx2(d t,d cc,d c)∗power(xTUin(d t,

d cc),2))

41 + bwETx(d t,d c)∗yT(d t);
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Example of Optimal Configurations

for Multi-objective Optimisation

As presented in Chapter 6, multi-objective optimisation can be used to handle conflict-

ing objective and a set of optimal solutions is generated in terms of Pareto-front. The

results show that several optimal configuration can be obtained and the following process

configurations are some examples of the optimal solutions shown on the Pareto-front.

SanMBR

Anaerobic 

Out2

In

Membrane

Struvite

Out1
Ion

Alkalinity 

Alkalinity 

Figure 11.1: Example of the optimal configuration on the line A presented in Figure 6.10
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SanMBR

Anaerobic 

Out2

In

Ion

Struvite

Out1

Alkalinity

Alkalinity

Figure 11.2: Example of the optimal configuration on the line B presented in Figure 6.10

Activated 

Sludge (A2O)

Anaerobic 

Digestion

Out1

Out2

In

Alkalinity 

Figure 11.3: Example of the optimal configuration on the line C presented in Figure 6.10
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Activated 

Sludge (A2O)

Anaerobic 

Digestion Out2

In

Alkalinity 

Out1

Figure 11.4: Example of the optimal configuration on the line C presented in Figure 6.10

Activated 

Sludge (A2O)

Anaerobic 

Digestion Out2

In

Alkalinity 

Out1

Struvite 

Figure 11.5: Example of the optimal configuration on the line C presented in Figure 6.10



Bibliography

[1] United Nations Secretary-Generals High-level Panel on Global Sustainability. Re-

silient people, resilient planet: A future worth choosing, 2012. http://www.ipu.

org/splz-e/rio+20/rpt-panel.pdf, (accessed January, 13 2015).

[2] Food and Agriculture Organization of the United Nations. The state of the world’s

land and water resources for food and agriculture: Managing systems at risk,

2011. http://www.fao.org/docrep/017/i1688e/i1688e.pdf, (accessed January,

14 2015).

[3] Food and Agriculture Organization of the United Nations. Energy-smart food for

people and climate, 2011. http://www.fao.org/docrep/014/i2454e/i2454e00.

pdf, (accessed January, 14 2015).

[4] Food and Agriculture Organization of the United Nations. The water-energy-food

nexus: A new approach in support of food security and sustainable agriculture,

2014. http://www.fao.org/nr/water/docs/FAO_nexus_concept.pdf, (accessed

January, 14 2015).

[5] M. Bazilian, H. Rogner, M. Howells, S. Hermann, D. Arent, D. Gielen, P. Steduto,

A. Mueller, P. Komor, R.S.J. Tol, and K.K. Yumkella. Considering the energy,

water and food nexus: Towards an integrated modelling approach. Energy Policy,

39(12):7896–7906, 2011.

[6] A.S. Stillwell, C.W. King, M.E. Webber, I.J. Duncan, and A. Hardberger. The

197



198 BIBLIOGRAPHY

energy-water nexus in Texas. Technical report, Environmental Defense Fund, The

University of Texas at Austin, 2009.

[7] DEFRA. Sewage treatment in the UK: UK implementation of the

EC urban waste water treatment directive, 2002. https://www.gov.

uk/government/uploads/system/uploads/attachment_data/file/69582/

pb6655-uk-sewage-treatment-020424.pdf, (accessed April, 10 2015).

[8] World Commission on Environment and Development. Report of the world com-

mission on environment and development: Our common future, 1987. http://www.

un-documents.net/our-common-future.pdf, (accessed December, 14 2015).

[9] C. Mitcham. The concept of sustainable development: Its origins and ambivalence.

Technology in Society, 17(3):311 – 326, 1995.

[10] A.J. Balkema, H.A. Preisig, R. Otterpohl, A.J. Lambert, and S.R. Weijers. Devel-

oping a model based decision support tool for the identification of sustainable treat-

ment options for domestic wastewater. Water Science & Technology, 43(7):265–270,

2001.

[11] C.K. Makropoulos, K. Natsis, S. Liu, K. Mittas, and D. Butler. Decision support for

sustainable option selection in integrated urban water management. Environmental

Modelling & Software, 23(12):1448 – 1460, 2008.

[12] H.E. Muga and J.R. Mihelcic. Sustainability of wastewater treatment technologies.

Journal of Environmental Management, 88(3):437 – 447, 2008.

[13] M. Al-Hinai. Quantification of social sustainability in software. In Requirements

Engineering Conference (RE), 2014 IEEE 22nd International, pages 456–460, 2014.

[14] EPA. The clean water and drinking water infrastructure gap analysis, 2002. http:

//www.epa.gov/safewater/gapreport.pdf, (accessed January, 16 2015).

[15] G.T. Daigger. Evolving urban water and residuals management paradigms: Water



BIBLIOGRAPHY 199

reclamation and reuse, decentralization, and resource recovery. Water Environment

Research, 81(8):809–823, 2009.

[16] J.S. Guest, S.J. Skerlos, J.L. Barnard, M.B. Beck, G.T. Daigger, H. Hilger, S.J. Jack-

son, K. Karvazy, L. Kelly, L. Macpherson, J.R. Mihelcic, A. Pramanik, L. Raskin,

M.C. Van Loosdrecht, D. Yeh, and N.G. Love. A new planning and design paradigm

to achieve sustainable resource recovery from wastewater. Environmental Science

& Technology, 43(16):6126–6130, 2009.

[17] G. Tchobanoglous, F.L. Burton, and H.D. Stensel. Wastewater engineering: Treat-

ment and reuse. McGraw-Hill Series in Civil and Environmental Engineering.

McGraw-Hill, 2003.

[18] M.A. Hamouda, W.B. Anderson, and P.M. Huck. Decision support systems in water

and wastewater treatment process selection and design: a review. Water Science &

Technology, 60(7):1757–1770, 2009.

[19] L.T. Biegler, I.E. Grossmann, and A.W. Westerberg. Systematic methods of chem-

ical process design. Prentice Hall PTR, 1997.

[20] D.C. Faria and M.J. Bagajewicz. Profit-based grassroots design and retrofit of water

networks in process plants. Computers & Chemical Engineering, 33(2):436 – 453,

2009.
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