1,474 research outputs found

    Understanding the limits of LoRaWAN

    Full text link
    The quick proliferation of LPWAN networks, being LoRaWAN one of the most adopted, raised the interest of the industry, network operators and facilitated the development of novel services based on large scale and simple network structures. LoRaWAN brings the desired ubiquitous connectivity to enable most of the outdoor IoT applications and its growth and quick adoption are real proofs of that. Yet the technology has some limitations that need to be understood in order to avoid over-use of the technology. In this article we aim to provide an impartial overview of what are the limitations of such technology, and in a comprehensive manner bring use case examples to show where the limits are

    Evaluation of LP-WAN technologies for fire forest detection systems

    Get PDF
    Low Power Wide Area Networks (LP-WAN) are receiving a lot of attention because of their ability to communicate using radio frequency in long distances, with low-power consumption and low-cost devices. In this paper, we provide a comparison between the two LP-WAN platforms that are leading the market, the Sigfox and the LoRaWAN, based on the literature. Both platforms are analyzed considering the context of the forest fire detection and verification systems. Many aspects are being considered to identify which LP-WAN is more adequate to be used in this kind of systems, such as battery lifetime, coverage range, business model and costs. The comparison shows that both platforms are very similar in most of the aspects, although LoRaWAN is more flexible than Sigfox on the deployment and management of the network infrastructure. LoRaWAN allows customers to implement and manage their own infrastructure network, which is essential in systems which monitor vast forest areas.info:eu-repo/semantics/publishedVersio

    Internet of things and LoRaWAN enabled future smart farming

    Get PDF
    It is estimated that to keep pace with the predicted population growth over the next decades, agricultural processes involving food production will have to increase their output up to 70 percent by 2050. "Precision" or "smart" agriculture is one way to make sure that these goals for future food supply, stability, and sustainability can be met. Applications such as smart irrigation systems can utilize water more efficiently, optimizing electricity consumption and costs of labor; sensors on plants and soil can optimize the delivery of nutrients and increase yields. To make all this smart farming technology viable, it is important for it to be low-cost and farmer-friendly. Fundamental to this IoT revolution is thus the adoption of low-cost, long-range communication technologies that can easily deal with a large number of connected sensing devices without consuming excessive power. In this article, a review and analysis of currently available long-range wide area network (LoRaWAN)-enabled IoT application for smart agriculture is presented. LoRaWAN limitations and bottlenecks are discussed with particular focus on their effects on agri-tech applications. A brief description of a testbed in development is also given, alongside a review of the future research challenges that this will help to tackle

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Wireless communication technologies for the Internet of Things

    Get PDF
    Internet of Things (IoT) is the inter-networking paradigm based on many processes such as identifying, sensing, networking and computation. An IoT technology stack provides seamless connectivity between various physical and virtual objects. The increasing number of IoT applications leads to the issue of transmitting, storing, and processing a large amount of data. Therefore, it is necessary to enable a system capable to handle the growing traffic requirements with the required level of QoS (Quality of Service). IoT devices become more complex due to the various components such as sensors and network interfaces. The IoT environment is often demanding for mobile power source, QoS, mobility, reliability, security, and other requirements. Therefore, new IoT technologies are required to overcome some of these issues. In recent years new wireless communication technologies are being developed to support the development of new IoT applications. This paper provides an overview of some of the most widely used wireless communication technologies used for IoT applications

    Analysis, Design and Empirical Validation of a Smart Campus Based on LoRaWAN

    Get PDF
    [Abstract] Internet of Things (IoT) applications for smart environments demand challenging requirements for wireless networks in terms of security, coverage, availability, power consumption, and scalability. The technologies employed so far to cope with IoT scenarios are not yet able to manage simultaneously all these demanding requirements, but recent solutions like Low-Power Wide Area Networks (LPWANs) have emerged as a promising alternative to provide low-cost and low-power consumption connectivity to nodes spread throughout a wide area. Specifically, the Long-Range Wide Area Network (LoRaWAN) standard is one of the most recent developments, receiving attention from both industry and academia. This work presents a comprehensive case study on the use of LoRaWAN under a realistic scenario within a smart city: a smart campus. Such a medium-scale scenario has been implemented through an in-house-developed 3D ray launching radio planning simulator that takes into consideration traffic lights, vehicles, people, buildings, urban fixtures, and vegetation. The developed tool is able to provide accurate radio propagation estimations within the smart campus scenario in terms of coverage, capacity, and energy efficiency of the network. These results are compared with an empirical validation in order to assess the operating conditions and the system accuracy. Moreover, the presented results provide some guidelines for IoT vendors, network operators, and city planners to investigate further deployments of LoRaWAN for other medium-scale smart city applicationsXunta de Galicia; ED431C 2016-045Xunta de Galicia; ED431G/01Agencia Estatal de Investigación; TEC2016-75067-C4-1-

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie
    • …
    corecore