427 research outputs found

    Intelligent Processing in Wireless Communications Using Particle Swarm Based Methods

    Get PDF
    There are a lot of optimization needs in the research and design of wireless communica- tion systems. Many of these optimization problems are Nondeterministic Polynomial (NP) hard problems and could not be solved well. Many of other non-NP-hard optimization problems are combinatorial and do not have satisfying solutions either. This dissertation presents a series of Particle Swarm Optimization (PSO) based search and optimization algorithms that solve open research and design problems in wireless communications. These problems are either avoided or solved approximately before. PSO is a bottom-up approach for optimization problems. It imposes no conditions on the underlying problem. Its simple formulation makes it easy to implement, apply, extend and hybridize. The algorithm uses simple operators like adders, and multipliers to travel through the search space and the process requires just five simple steps. PSO is also easy to control because it has limited number of parameters and is less sensitive to parameters than other swarm intelligence algorithms. It is not dependent on initial points and converges very fast. Four types of PSO based approaches are proposed targeting four different kinds of problems in wireless communications. First, we use binary PSO and continuous PSO together to find optimal compositions of Gaussian derivative pulses to form several UWB pulses that not only comply with the FCC spectrum mask, but also best exploit the avail- able spectrum and power. Second, three different PSO based algorithms are developed to solve the NLOS/LOS channel differentiation, NLOS range error mitigation and multilateration problems respectively. Third, a PSO based search method is proposed to find optimal orthogonal code sets to reduce the inter carrier interference effects in an frequency redundant OFDM system. Fourth, a PSO based phase optimization technique is proposed in reducing the PAPR of an frequency redundant OFDM system. The PSO based approaches are compared with other canonical solutions for these communication problems and showed superior performance in many aspects. which are confirmed by analysis and simulation results provided respectively. Open questions and future Open questions and future works for the dissertation are proposed to serve as a guide for the future research efforts

    Basic Understanding of Condensed Phases of Matter via Packing Models

    Full text link
    Packing problems have been a source of fascination for millenia and their study has produced a rich literature that spans numerous disciplines. Investigations of hard-particle packing models have provided basic insights into the structure and bulk properties of condensed phases of matter, including low-temperature states (e.g., molecular and colloidal liquids, crystals and glasses), multiphase heterogeneous media, granular media, and biological systems. The densest packings are of great interest in pure mathematics, including discrete geometry and number theory. This perspective reviews pertinent theoretical and computational literature concerning the equilibrium, metastable and nonequilibrium packings of hard-particle packings in various Euclidean space dimensions. In the case of jammed packings, emphasis will be placed on the "geometric-structure" approach, which provides a powerful and unified means to quantitatively characterize individual packings via jamming categories and "order" maps. It incorporates extremal jammed states, including the densest packings, maximally random jammed states, and lowest-density jammed structures. Packings of identical spheres, spheres with a size distribution, and nonspherical particles are also surveyed. We close this review by identifying challenges and open questions for future research.Comment: 33 pages, 20 figures, Invited "Perspective" submitted to the Journal of Chemical Physics. arXiv admin note: text overlap with arXiv:1008.298

    Wind Energy Potential Estimation via a Hybrid Data Assimilation Method

    Get PDF
    This research proposes a 4D-Var ensemble-based data assimilation framework for wind energy potentialestimation. In this formulation, in the 4D-Var context, the intrinsic need of adjoint models is avoided via the use of an ensemble of model realizations. These ensembles are employed to build control spaces onto which analysis increments are estimated. Control spaces are built via a modified Cholesky decomposition. The particular structure of this estimator allows for a matrix-free implementation of the proposed filter formulation. Experimental tests are performed,making use of wind turbines catalogs and the Atmospheric General Circulation Model Speedy. The results reveal that our proposed framework can properly estimate wind energy potential capacities within reasonable accuracies in terms of Root-Mean-Square-Error, and even more,these estimations are better than those of traditional 4D-Var ensemble-based methods. Besides, Wind Turbine Generators(WTGs) with low rate-capacity are the ones which provide homogeneous behavior of error estimations around the globe. As the rate-capacity increases,the potential energy increases as well, but the error dispersion of ensemble members grow, which can difficult decision-makingprocesses. Of course, rate-capacity is just a single parameter of many in the WTG context, and we do not consider, for instance, economic aspects in our study, which can be crucial for deciding whether or not to employ green sources of energy.DoctoradoDoctor en Ingeniería de Sistemas y Computació

    On recursive least-squares filtering algorithms and implementations

    Get PDF
    In many real-time signal processing applications, fast and numerically stable algorithms for solving least-squares problems are necessary and important. In particular, under non-stationary conditions, these algorithms must be able to adapt themselves to reflect the changes in the system and take appropriate adjustments to achieve optimum performances. Among existing algorithms, the QR-decomposition (QRD)-based recursive least-squares (RLS) methods have been shown to be useful and effective for adaptive signal processing. In order to increase the speed of processing and achieve high throughput rate, many algorithms are being vectorized and/or pipelined to facilitate high degrees of parallelism. A time-recursive formulation of RLS filtering employing block QRD will be considered first. Several methods, including a new non-continuous windowing scheme based on selectively rejecting contaminated data, were investigated for adaptive processing. Based on systolic triarrays, many other forms of systolic arrays are shown to be capable of implementing different algorithms. Various updating and downdating systolic algorithms and architectures for RLS filtering are examined and compared in details, which include Householder reflector, Gram-Schmidt procedure, and Givens rotation. A unified approach encompassing existing square-root-free algorithms is also proposed. For the sinusoidal spectrum estimation problem, a judicious method of separating the noise from the signal is of great interest. Various truncated QR methods are proposed for this purpose and compared to the truncated SVD method. Computer simulations provided for detailed comparisons show the effectiveness of these methods. This thesis deals with fundamental issues of numerical stability, computational efficiency, adaptivity, and VLSI implementation for the RLS filtering problems. In all, various new and modified algorithms and architectures are proposed and analyzed; the significance of any of the new method depends crucially on specific application

    Realtime image noise reduction FPGA implementation with edge detection

    Get PDF
    The purpose of this dissertation was to develop and implement, in a Field Programmable Gate Array (FPGA), a noise reduction algorithm for real-time sensor acquired images. A Moving Average filter was chosen due to its fulfillment of a low demanding computational expenditure nature, speed, good precision and low to medium hardware resources utilization. The technique is simple to implement, however, if all pixels are indiscriminately filtered, the result will be a blurry image which is undesirable. Since human eye is more sensitive to contrasts, a technique was introduced to preserve sharp contour transitions which, in the author’s opinion, is the dissertation contribution. Synthetic and real images were tested. Synthetic, composed both with sharp and soft tone transitions, were generated with a developed algorithm, while real images were captured with an 8-kbit (8192 shades) high resolution sensor scaled up to 10 × 103 shades. A least-squares polynomial data smoothing filter, Savitzky-Golay, was used as comparison. It can be adjusted using 3 degrees of freedom ─ the window frame length which varies the filtering relation size between pixels’ neighborhood, the derivative order, which varies the curviness and the polynomial coefficients which change the adaptability of the curve. Moving Average filter only permits one degree of freedom, the window frame length. Tests revealed promising results with 2 and 4ℎ polynomial orders. Higher qualitative results were achieved with Savitzky-Golay’s better signal characteristics preservation, especially at high frequencies. FPGA algorithms were implemented in 64-bit integer registers serving two purposes: increase precision, hence, reducing the error comparatively as if it were done in floating-point registers; accommodate the registers’ growing cumulative multiplications. Results were then compared with MATLAB’s double precision 64-bit floating-point computations to verify the error difference between both. Used comparison parameters were Mean Squared Error, Signalto-Noise Ratio and Similarity coefficient.O objetivo desta dissertação foi desenvolver e implementar, em FPGA, um algoritmo de redução de ruído para imagens adquiridas em tempo real. Optou-se por um filtro de Média Deslizante por não exigir uma elevada complexidade computacional, ser rápido, ter boa precisão e requerer moderada utilização de recursos. A técnica é simples, mas se abordada como filtragem monotónica, o resultado é uma indesejável imagem desfocada. Dado o olho humano ser mais sensível ao contraste, introduziu-se uma técnica para preservar os contornos que, na opinião do autor, é a sua principal contribuição. Utilizaram-se imagens sintéticas e reais nos testes. As sintéticas, compostas por fortes e suaves contrastes foram geradas por um algoritmo desenvolvido. As reais foram capturadas com um sensor de alta resolução de 8-kbit (8192 tons) e escalonadas a 10 × 103 tons. Um filtro com suavização polinomial de mínimos quadrados, SavitzkyGolay, foi usado como comparação. Possui 3 graus de liberdade: o tamanho da janela, que varia o tamanho da relação de filtragem entre os pixels vizinhos; a ordem da derivada, que varia a curvatura do filtro e os coeficientes polinomiais, que variam a adaptabilidade da curva aos pontos a suavizar. O filtro de Média Deslizante é apenas ajustável no tamanho da janela. Os testes revelaram-se promissores nas 2ª e 4ª ordens polinomiais. Obtiveram-se resultados qualitativos com o filtro Savitzky-Golay que detém melhores características na preservação do sinal, especialmente em altas frequências. Os algoritmos em FPGA foram implementados em registos de vírgula fixa de 64-bits, servindo dois propósitos: aumentar a precisão, reduzindo o erro comparativamente ao terem sido em vírgula flutuante; acomodar o efeito cumulativo das multiplicações. Os resultados foram comparados com os cálculos de 64-bits obtidos pelo MATLAB para verificar a diferença de erro entre ambos. Os parâmetros de medida foram MSE, SNR e coeficiente de Semelhança

    FPGA Hardware Implementation of DOA Estimation Algorithm Employing LU Decomposition

    Get PDF
    In this paper, authors present their work on field-programmable gate array (FPGA) hardware implementation of proposed direction of arrival estimation algorithms employing LU factorization. Both L and U matrices were considered in computing the angle estimates. Hardware implementation was done on a Virtex-5 FPGA and its experimental verification was performed using National Instruments PXI platform which provides hardware modules for data acquisition, RF down-conversion, digitization, etc. A uniform linear array consisting of four antenna elements was deployed at the receiver. LabVIEW FPGA modules with high throughput math functions were used for implementing the proposed algorithms. MATLAB simulations of the proposed algorithms were also performed to validate the efficacy of the proposed algorithms prior to hardware implementation of the same. Both MATLAB simulation and experimental verification establish the superiority of the proposed methods over existing methods reported in the literature, such as QR decomposition-based implementations. FPGA compilation results report low resource usage and faster computation time compared with the QR-based hardware implementation. Performance comparison in terms of estimation accuracy, percentage resource utilization, and processing time is also presented for different data and matrix sizes

    Detection And Classification Of Buried Radioactive Materials

    Get PDF
    This dissertation develops new approaches for detection and classification of buried radioactive materials. Different spectral transformation methods are proposed to effectively suppress noise and to better distinguish signal features in the transformed space. The contributions of this dissertation are detailed as follows. 1) Propose an unsupervised method for buried radioactive material detection. In the experiments, the original Reed-Xiaoli (RX) algorithm performs similarly as the gross count (GC) method; however, the constrained energy minimization (CEM) method performs better if using feature vectors selected from the RX output. Thus, an unsupervised method is developed by combining the RX and CEM methods, which can efficiently suppress the background noise when applied to the dimensionality-reduced data from principle component analysis (PCA). 2) Propose an approach for buried target detection and classification, which applies spectral transformation followed by noisejusted PCA (NAPCA). To meet the requirement of practical survey mapping, we focus on the circumstance when sensor dwell time is very short. The results show that spectral transformation can alleviate the effects from spectral noisy variation and background clutters, while NAPCA, a better choice than PCA, can extract key features for the following detection and classification. 3) Propose a particle swarm optimization (PSO)-based system to automatically determine the optimal partition for spectral transformation. Two PSOs are incorporated in the system with the outer one being responsible for selecting the optimal number of bins and the inner one for optimal bin-widths. The experimental results demonstrate that using variable bin-widths is better than a fixed bin-width, and PSO can provide better results than the traditional Powell’s method. 4) Develop parallel implementation schemes for the PSO-based spectral partition algorithm. Both cluster and graphics processing units (GPU) implementation are designed. The computational burden of serial version has been greatly reduced. The experimental results also show that GPU algorithm has similar speedup as cluster-based algorithm

    Multiplexed fluorescence diffuse optical tomography

    Get PDF
    Fluorescence tomography (FT) is an emerging non-invasive in vivo molecular imaging modality that aims at quantification and three-dimensional (3D) localization of fluorescent tagged inclusions, such as cancer lesions and drug molecules, buried deep in human and animal subjects. Depth-resolved 3D reconstruction of fluorescent inclusions distributed over the volume of optically turbid biological tissue using the diffuse fluorescent photons detected on the skin poses a highly ill-conditioned problem, as depth information must be extracted from boundary data. Due to this ill-posed nature of FT reconstructions, noise and errors in the data can severely impair the accuracy of the 3D reconstructions. Consequently, improvements in the signal-to-noise ratio (SNR) of the data significantly enhance the quality of the FT reconstructions. Furthermore, enhancing the SNR of the FT data can greatly contribute to the speed of FT scans. The pivotal factor in the SNR of the FT data is the power of the radiation illuminating the subject and exciting the administered fluorescent agents. In existing single-point illumination FT systems, the illumination power level is limited by the skin maximum radiation exposure levels. In this research, a multiplexed architecture governed by the Hadamard transform was conceptualized, developed, and experimentally implemented for orders-of-magnitude enhancement of the SNR and the robustness of FT reconstructions. The multiplexed FT system allows for Hadamard-coded multi-point illumination of the subject while maintaining the maximal information content of the FT data. The significant improvements offered by the multiplexed FT system were validated by numerical and experimental studies carried out using a custom-built multiplexed FT system developed exclusively in this work. The studies indicate that Hadamard multiplexing offers significantly enhanced robustness in reconstructing deep fluorescent inclusions from low-SNR FT data.Ph.D

    Identification of audio evoked response potentials in ambulatory EEG data

    Get PDF
    Electroencephalography (EEG) is commonly used for observing brain function over a period of time. It employs a set of invasive electrodes on the scalp to measure the electrical activity of the brain. EEG is mainly used by researchers and clinicians to study the brain’s responses to a specific stimulus - the event-related potentials (ERPs). Different types of undesirable signals, which are known as artefacts, contaminate the EEG signal. EEG and ERP signals are very small (in the order of microvolts); they are often obscured by artefacts with much larger amplitudes in the order of millivolts. This greatly increases the difficulty of interpreting EEG and ERP signals.Typically, ERPs are observed by averaging EEG measurements made with many repetitions of the stimulus. The average may require many tens of repetitions before the ERP signal can be observed with any confidence. This greatly limits the study and useof ERPs. This project explores more sophisticated methods of ERP estimation from measured EEGs. An Optimal Weighted Mean (OWM) method is developed that forms a weighted average to maximise the signal to noise ratio in the mean. This is developedfurther into a Bayesian Optimal Combining (BOC) method where the information in repetitions of ERP measures is combined to provide a sequence of ERP estimations with monotonically decreasing uncertainty. A Principal Component Analysis (PCA) isperformed to identify the basis of signals that explains the greatest amount of ERP variation. Projecting measured EEG signals onto this basis greatly reduces the noise in measured ERPs. The PCA filtering can be followed by OWM or BOC. Finally, crosschannel information can be used. The ERP signal is measured on many electrodes simultaneously and an improved estimate can be formed by combining electrode measurements. A MAP estimate, phrased in terms of Kalman Filtering, is developed using all electrode measurements.The methods developed in this project have been evaluated using both synthetic and measured EEG data. A synthetic, multi-channel ERP simulator has been developed specifically for this project.Numerical experiments on synthetic ERP data showed that Bayesian Optimal Combining of trial data filtered using a combination of PCA projection and Kalman Filtering, yielded the best estimates of the underlying ERP signal. This method has been applied to subsets of real Ambulatory Electroencephalography (AEEG) data, recorded while participants performed a range of activities in different environments. From this analysis, the number of trials that need to be collected to observe the P300 amplitude and delay has been calculated for a range of scenarios
    • …
    corecore