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Abstract  

Electroencephalography (EEG) is commonly used for observing brain function over a 

period of time. It employs a set of invasive electrodes on the scalp to measure the 

electrical activity of the brain. EEG is mainly used by researchers  and clinicians to study 

the brain’s responses to a specific stimulus - the event-related potentials (ERPs). Different 

types of undesirable signals, which are known as artefacts, contaminate the EEG signal. 

EEG and ERP signals are very small (in the order of microvolts); they are often obscured 

by artefacts with much larger amplitudes in the order of millivolts. This greatly increases 

the difficulty of interpreting EEG and ERP signals. 

Typically, ERPs are observed by averaging EEG measurements made with many 

repetitions of the stimulus.  The average may require many tens of repetitions before the 

ERP signal can be observed with any confidence.  This greatly limits the study and use 

of ERPs.  This project explores more sophisticated methods of ERP estimation from 

measured EEGs.  An Optimal Weighted Mean (OWM) method is developed that forms a 

weighted average to maximise the signal to noise ratio in the mean.  This is developed 

further into a Bayesian Optimal Combining (BOC) method where the information in 

repetitions of ERP measures is combined to provide a sequence of ERP estimations with 

monotonically decreasing uncertainty.  A Principal Component Analysis (PCA) is 

performed to identify the basis of signals that explains the greatest amount of ERP 

variation.  Projecting measured EEG signals onto this basis greatly reduces the noise in 

measured ERPs.  The PCA filtering can be followed by OWM or BOC.  Finally, cross 

channel information can be used.  The ERP signal is measured on many electrodes 

simultaneously and an improved estimate can be formed by combining electrode 

measurements.  A MAP estimate, phrased in terms of Kalman Filtering, is developed 

using all electrode measurements.   
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The methods developed in this project have been evaluated using both synthetic and 

measured EEG data.  A synthetic, multi-channel ERP simulator has been developed 

specifically for this project.  

Numerical experiments on synthetic ERP data showed that Bayesian Optimal Combining 

of trial data filtered using a combination of PCA projection and Kalman Filtering, yielded 

the best estimates of the underlying ERP signal.  This method has been applied to subsets 

of real Ambulatory Electroencephalography (AEEG) data, recorded while participants 

performed a range of activities in different environments.  From this analysis, the number 

of trials that need to be collected to observe the P300 amplitude and delay has been 

calculated for a range of scenarios.  
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Chapter 1  Introduction 

1.1 Introduction 

1.1.1 EEG: what is it and why do it? 

Researchers, clinicians and neurologists make extensive use of 

electroencephalography (EEG), a technique for scientifically logging the electrical 

activity of the brain, in order to monitor and assess brain function and in the diagnosis 

and management of brain disorders and mental problems, (Nunez & Srinivasan, 2006). 

Niedermeyer  defines electroencephalography as the logging of brain activity via a set 

of electrodes which are placed on the scalp. The firing of neurons generates a flow of 

current within the brain which creates a variation in voltage (electric potential) which 

is measured by the EEG (Niedermeyer, 2005). When the measured brain activity is 

occurring in response to a sensory, motor or cognitive stimulus, the measured EEG 

potential is termed the event-related potential (ERP).  An individual's brain can create 

EEG signals that appear to vary in terms of amplitude and frequency, for example, 

according to various states of consciousness such as waking, sleeping, etc (Luck, 

2014). 

A key task in the analysis of brain data is the extraction of the ERP responses 

concealed within the EEG information. For instance, a common ERP stimulus used 

clinically is a flashing checkerboard, used to gauge the response of the visual cortex, 

(Odom et al., 2004). Further studies, (Nicolas-Alonso & Gomez-Gil, 2012; Kaplan et 

al., 2013) have noted increasing application of EEG-ERP measurements in clinical 

setting, and also in building an understanding of brain function.  According to Sanei 

& Chambers (2013), this interest has led to a focus on the issues surrounding the 

weakening and corruption of EEG recordings due to unwanted electrical signals 
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derived from physiological and external sources. It would be beneficial to enhance the 

signal-to-noise ratio (SNR) of the EEG data by reducing EEG artefacts in order to 

avoid the erroneous interpretation of EEG data or of the response of the brain to 

various stimuli. External (non-physiological) artefacts are generally removed by 

means of linear filtering, or data preparation protocols implemented according to the 

particular experimental data. However, since physiological artefacts overlap the EEG 

frequency bands, these cannot be effectively eliminated by basic filtering. Hence, 

various methods have been suggested for reducing physiological artefacts in EEG 

signals. According to (Papadelis et al., 2007; Jung et al., 2000a), initial efforts resulted 

in a significant loss of data as the artefacts were eliminated by rejecting the 

contaminated temporal segments of multichannel EEG recordings. More sophisticated 

methods have been developed in order to reduce EEG data loss. Independent 

Component Analysis (ICA), an example of the Blind Source Separation technique, is 

effective and widely used. These methods rely upon the use of prior information or 

assumptions.  For example, ICA assumes that brain and non-brain signals are 

statistically independent.  The success of these methods depends upon the validity of 

the underlying assumptions or prior knowledge (Hyvärinen et al., 2001).   

1.1.2 Ambulatory EEG: what is it and why do it?  

According to Mauguière (1987), increasing use of electroencephalography is being 

made in a wide range of applications, including the clinical diagnosis and management 

of brain function defects, where the use of fixed EEG facilities limits the ability to 

address clinical or research questions . Hence, the need exists to develop and enable 

the transfer of EEG from the laboratory into the outside world e.g. by the development 

of portable battery-powered EEG systems. The recorded data can either be saved to a 

portable memory device for subsequent off-line study and analysis, or transmitted in 
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real-time to a PC or handheld device for online viewing. At the present time, 

commercially available technology includes wearable headsets developed mainly for 

Brain Computer Interface uses, as well as smaller devices incorporating a limited 

number of electrodes which can be worn as a headband, with a waist mounted EEG 

system, and developed mainly for psychophysiological examination and 

neurofeedback applications. Fully ambulatory EEG (AEEG) systems for research is in 

development, with favourable early indications (Park et al., 2015).  

The majority of investigations aimed at verifying AEEG technology have concentrated 

on the P300 ERP response. Due to progress in both AEEG technology and signal 

processing, it is presently feasible to record brain activity during sporting activity. 

Indeed, Park et al. (2015) noted the recent commercial release of ambulatory EEG 

equipment designed specifically for sporting applications with the capacity to log up 

to 64-channels of high resolution EEG, a recording capability previously found only 

in laboratory-based equipment. 

 

 

Figure 1.1 A montage of images illustrating the developments in EEG systems (Sanei & 
Chambers, 2013; Park et al., 2015). 
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The AEEG equipment used in this thesis was developed at the University of Hull. The 

core of the system is a waist mounted control system capable of measuring 24 channel 

voltages, with 24 bit resolution and a 250 Hz sampling frequency. This is sufficient to 

be compatible with the international 10/20 system, and also provides five additional 

channels available for ECG, EOG or EMG recordings. The data are sent via WiFi in 

real time to a partnered laptop or smartphone. An app running on the smartphone 

allows recording and plotting of live data, whereas a PC provides greater processing 

capability for algorithms applied to online data. Use of the smartphone allows 

electrode attachment problems to be identified immediately and greatly reduces the 

weight and size of the data recording equipment. 

For the experiments described in this thesis, 19 EEG channels were monitored with 

the 20th channel being the reference electrode connected to an ear lobe. Eyes blinks 

were monitored using electrodes around the eyes. Two electrodes, one above and one 

below the left eye, measured the electric field generated by vertical eye movements 

(VEOG). The signal due to horizontal eye movements (HEOG) were measured using 

two electrodes, one each side of the head at eye-level. 

1.1.3 ERP: what is it, why measure it, how is it measured? 

(Blackwood & Muir, 1990) define event-related potentials (ERPs) as very small 

voltage fluctuations which are produced in brain structures in response to specific 

present-time events or stimuli. ERPs can be prompted by a wide variety of cognitive, 

motor or sensory events and can be measured at the scalp. Therefore, these time-

specific EEG responses can furnish a non-invasive and secure methodology for 

examining the psychophysiological consequences of mental processes (Sur & Sinha, 

2009). Since the amplitude of an ERP is generally less than that of the background 
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EEG, an accurate ERP is acquired by taking the average of EEG fragments from 

numerous repeated trials. 

According to (Kropotov, 2016), each ERP results from the aggregation of potentials 

from numerous disparately located and functionally distinct cortical sources, termed 

components, which are theoretically linked to discrete psychological operations. 

(Kropotov, 2016; Waryasz, 2017) both described a method for separating the 

components by observing a difference between two ERPs, e.g. standard and deviant, 

target and non-target, or oddball and non-oddball. 

In humans, ERP signals fall into two groups. The initial sensory or exogenous wave 

components peak within ~100 milliseconds of the stimulus and depend primarily upon 

the physical characteristics of the stimulus. However, ERPs arising later relate to the 

individual's approach to evaluating the stimulus and therefore provide an insight into 

the processing of information; these are referred to as cognitive or endogenous ERPs. 

This distinction provides a description of the waveforms in terms of amplitude and 

latency. (Sur & Sinha, 2009) described various forms of ERP waves including P50, 

N100, P200, P300, N400, P600, etc. These labels indicate (P) positive or (N) negative 

excursions and the number is the delay in milliseconds between the stimulus and the 

response.  According to Luck (2005), researchers often present graphs of ERP 

components with the potential becoming more negative upward, as shown in Figure 

1.2, although this is not a universal practice. 
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Figure 1.2 An EEG waveform consisting of ERP components N100 (labelled N1), P300 
(labelled P3), etc. (Luck, 2005). 

1.2 Clinical Uses of EEG and ERP Signals 

Electroencephalogram (EEG) and evoked potentials techniques have been widely used 

clinically to examine brain and sensory function (Polich, 2007; Polich, 2004). The 

P300 potential is elicited by variants of the ‘oddball’ paradigm, either auditory or 

visual ERPs. The subject is required to respond physically or mentally to the target or 

the ‘oddball’ stimuli that are presented (Johnson, 1993). This section describes 

possible correlation of EEG and ERP signals with externalizing spectrum disorders, 

schizophrenia, bipolar affective disorder, depression, phobia, panic disorder, 

generalised anxiety disorder, obsessive compulsive disorder, dissociative disorder, 

personality disorder, seizures and epilepsy, sleep disorder, Alzheimer's and dementia. 
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Externalizing spectrum disorders 

It has been suggested that the general neurobiological vulnerability characteristic of 

externalizing spectrum disorders such as adult antisocial behaviour, alcoholism, drug 

addiction and nicotine dependence can be indicated by a decreased P300 amplitude 

(Patrick et al., 2006). However, although acute ethanol intake is observed to reduce 

the P300 amplitude, (Patrick et al., 2006) noted that wave anomalies are also observed 

in abstinent individuals and in patients' immediate relatives. 

Schizophrenia 

Reduced P300 amplitude is one of the most compelling neurophysiological 

observations in schizophrenia, becoming increasingly smaller in amplitude and 

increasingly delayed with increasing duration of the illness. Moreover, (Simlai & 

Nizamie (1998) noted that the P300 was increasingly delayed in schizophrenic patients 

but not in their immediate relatives. The P300 amplitude has been observed to decline 

over time in schizophrenia subjects but not in control subjects (Doege et al., 2009). 

Observation of differences in P300 amplitudes have shown a high test–retest reliability 

in schizophrenia patients and control subjects (Poulsen & Jørgensen, 2008). According 

to Mathalon et al. (2000), longitudinal studies have indicated that P300 amplitude is 

independent of medication and is responsive to variations in the acuteness of positive 

symptoms and the persistence of severe negative symptoms. Although (Bramon et al., 

2004) noted reduced levels of P50 suppression in schizophrenia patients, (Clementz et 

al., 1998) noted that this indicator is also observed in non-psychotic relatives. 

According to O'Donnell et al. (2004), individuals with schizophrenia have also 

displayed decreased N100, P200 and N200 amplitudes. Meanwhile, (Sur & Sinha, 

2009) noted increased delays in N400 and P600 in schizophrenic patients. 

Bipolar Affective disorder 
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(Schulze et al., 2007)  have reported reductions in P50 suppression in patients with 

bipolar disorder involving psychotic symptoms and in their unaffected immediate 

relatives; which implies that P50 is an endophenotypic indicator for this disorder. 

Reduction in P300 has been observed by (Salisbury et al., 1999) in manic psychosis. 

Moreover, (O'Donnell et al., 2004) reported prolonged delay and decrease in 

amplitude in chronic bipolar patients. 

Depression 

(Hansenne et al., 1996) have reported decreased P300 amplitude in depressed patients, 

primarily in cases with psychotic aspects, suicidal thoughts or extreme depression. 

Observation of changes in P300 have been associated with psychiatric disorders such 

as depression, bipolar disorder, personality disorders etc. (Sahoo, 2016).  

Phobia 

According to Miltner et al. (2000), significantly enhanced P300 amplitudes, relative 

to those of healthy controls, have been demonstrated in individuals with snake and 

spider phobias when presented with images of the feared objects. This demonstrates 

increased stimulus processing indicative of fear of danger. 

Panic disorder 

According to Turan et al. (2002), the dysfunctional prefrontal-limbic pathway 

hypothesis of panic disorder is supported by an increased P3a (frontal P300) response 

to distracting stimuli during a three-tone discrimination task. Increased delay in P3b 

was also observed in drug-free patients, relative to unaffected controls, which may 

indicate dysfunction of the amygdala and hippocampus. 
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Generalized anxiety disorder 

(De Pascalis et al., 2004) observed that ERPs provoked by threat-related stimuli such 

as fear-related pictures or words, substantiate the existence of attention bias in patients 

with high-trait anxiety or anxiety disorders, demonstrated by increased P300 

amplitude and protracted waves in comparison with those of healthy controls. 

Obsessive compulsive disorder 

Significantly reduced delays in P300 and N200, along with increased N200 negativity, 

have been observed in response to target stimuli for patients with obsessive 

compulsive disorder relative to healthy controls. There is, however, no significant 

correlation between these ERP anomalies and the type or severity of obsessive 

compulsive symptoms. By contrast, (Sur & Sinha, 2009) observed increased P300 

delays along with no change in amplitude for individuals with obsessive compulsive 

disorder. 

Dissociative disorder 

According to (Sur & Sinha, 2009), the P300 amplitude may be a state-dependent 

biological indicator of dissociative disorders. Indeed, patients suffering from 

dissociative disorders displayed significantly reduced P300 amplitudes in comparison 

with their levels upon remission, although the P300 latency was unaltered.  

Personality disorders 

A number of investigations have noted certain correlations between N200, P300 and 

personality in healthy individuals. For example, introverted people consistently 

display enhanced amplitude P300 in comparison to those of extroverts. The P300 

amplitude shows a moderate positive correlation with self-directedness, while the 

contingent negative variation amplitude is similarly correlated with cooperativeness. 
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(Sur & Sinha, 2009) assert that an increased delay in N200 may be linked with an 

enhanced harm avoidance score, while the N200 amplitude is negatively correlated 

with persistence (hence a decreased N200 amplitude may be associated with a higher 

persistence score). 

Seizure and Epilepsy  

Electrical activity of the brain varies from one second to the next and standard EEGs 

obtain only a brief sample of this activity. Consequently, if epilepsy waves occur in 

the brain only once every few hours, or only after an hour of sleep, a standard EEG 

will generally not detect the relevant brain activity. Hence, it becomes essential to 

obtain extensive records covering significant periods of time when the patients are 

asleep and awake. According to (Jeong, 2004), a number of extensive studies have 

employed ambulatory EEG for various recording periods of up to 96 hours in the 

diagnosis of epilepsy. The study by (Faulkner et al., 2012) indicated that a 48-hour 

acquisition period was adequate for the diagnosis of most patients with interictal 

epileptiform discharges on surface EEG. 

In a study by (Wang et al., 2012) , the features of AEEG system were examined prior 

to making the decision to withdraw anti-epileptic drugs, indicating that most 

anomalous EEGs were due to an inappropriate dose or to patient non-compliance. 

According to (Askamp & van Putten, 2014), most neurologists believe that ambulatory 

EEG can have further benefits in the investigation of paroxysms of uncertain cause, 

but not in the initial diagnosis following a first seizure. 

Sleep disorders 

In spite of the prevalence of sleep disorders, their diagnosis is challenging and 

resources are inadequate, so that total waiting times between referral and sleep study 

in the UK can be as much as three years (Flemons et al., 2004). Diagnosis is usually 
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by polysomnography involving brain monitoring by EEG along with heart rate and 

rhythm monitoring by ECG during sleep. In view of the need to have as little effect as 

possible upon the sleeping patient, the devices employed have to be even less 

burdensome than in other contexts. (Bruyneel et al., 2013) have suggested the use of 

home-polysomnography as an economical option for the diagnosis of obstructive sleep 

apnoea, indicating that this is topic with potential for further research. 

Alzheimer and Dementia  

The most prevalent neurodegenerative disorder, Alzheimer’s disease (AD), is typified 

by behavioural disruption and loss of cognitive and intellectual capacity. The 

diagnosis of AD has involved the use of EEG for a number of decades and, in view of 

its minimal cost, is continuing to develop (Kanda et al., 2014). According to (Jeong, 

2004), the primary indicators are a shift in the power spectrum towards lower 

frequencies and a reduction in the consistency of fast rhythms. In addition, (Wu et al., 

2014) noted that the EEG technique has found frequent application in distinguishing 

between AD and vascular dementia. No published studies have been found dealing 

with the use of home or ambulatory EEG for dementia cases, even though these 

techniques could potentially be used to monitor the progression of the condition. 

1.3 Research Questions 

The major research questions addressed in this thesis focus on the measurement of 

ERPs from experiments performed using AEEG systems while the participant engages 

in a range of activities and in a range of environments.  The research questions are: 

 In environments presenting a person with a range of stimuli, how many 

repetitions of the ERP measurement are required to reliably identify the ERPs 

and to separate it from other signals and noise? 
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 In what range of different activities and environments can ERPs be reliably 

measured? 

 What is the best way of using repeated ERP measurements to estimate ERPs 

i.e. to separate ERPs from noise and artefacts?  

Each ERP measurement trial involves the recording of EEG signals during a trial that 

starts just before the stimulus and ends when the associated brain response has become 

too small to measure.  Historically, ERP responses are estimated by averaging trial 

time-series across tens of trials, sometimes from more than one individual.  The 

number of trials needed to obtain the signal-to-noise ratio (SNR) necessary to observe 

features in the ERP, depends upon the SNR in each trial. The noise level depends on 

the nature of the experiment and the characteristics of the subject (Luck & Todd, 

2004). Assuming the trial noises are statistically independent, the SNR in the averaged 

evoked response is proportional to the number of trials (Luck, 2005; Goldenholz et al., 

2009). The number of trials typically required in the average to be able to observe 

clinically important features, such as P300, has been reported to be around 36 usable 

trials (after artefact rejection or correction) in each stimulus category (Polich, 2004), 

although there is evidence that 20 trials may suffice (Cohen & Polich, 1997).  

Woodman reported around 35-60 trials for each condition from each subject 

(Woodman, 2010).  The much smaller P100 and N100, can require between 300 to 

1000 trials for each condition to measure consistently.  These are for EEG recordings 

in ideal conditions.  It is far more challenging to observe ERP responses in AEEG data 

collected in stimulating environments and while the participant engages in activity. 

In practice, individual trials vary considerably in SNR.  Artefacts such as eye-blink 

signals, are high amplitude and intermittent. Therefore, some trials have very low 

SNRs and including these in an average reduces the SNR in the ERP estimate.  A two 

stage approach is required where the uncertainty in trials is estimated and then trials 
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are combined in an optimised way.  Some trials may contain so little ERP information 

that they are not worth using.  Pre-processing of trial time-series may identify these 

trials or reduce the noise artefacts before optimal combining.  The latter part of this 

thesis looks at the quantification of uncertainty in trial data and methods of combining 

trial data that yields an estimate of the ERP and its uncertainty.  This can be calculated 

during an ERP experiment so data acquisition can be terminated when the uncertainty 

is low enough.  There are many clinical applications that could be made faster and less 

intrusive on the participant if these processes were used. 

1.4 Thesis Outline 

The research carried out in this thesis can be outlined as follows: 
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Figure 1.3  Block diagram of the thesis structure. 
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Chapter 1: Introduction 

This chapter provides a brief introduction to EEG, ERPs, and clinical uses of EEG.  It 

focusses on applications of AEEG systems and states the research questions of this 

project. 

Chapter 2: EEG Background 

This chapter expands on the topic of EEG signals.  It begins with a brief historical 

background of EEG.  The anatomy and physiology of the brain are presented from 

neuron activities to action potentials.  The process of EEG generation, brain waves 

and the basic concepts of EEG recording are presented. 

Chapter 3:  Methodology 

The protocol followed in this project, when making ERP measurements, is detailed.  

This includes preparing the EEG experiment, connecting the participant to the EEG, 

experimental procedures, collecting data and pre-processing data. 

Chapter 4: EEG Signal processing 

This chapter looks at the signal to noise ratio (SNR) in ERP measurements.  It presents 

the detection and reduction of artefacts using standard ICA and ADJUST in the 

EEGLAB toolbox. 

Chapter 5:  PCA Filtering of Auditory Event-Related Potentials 

ERP filtering by projection onto subspaces spanned by Principal Component (PCA) 

basis signals, is developed and evaluated.  The PCA filtered ERPs are further filtered 

by optimal fusing with the apriori expected ERP signal.  This MAP estimate is 

presented in terms of Kalman Filtering.  Much of the power of the proposed algorithm 

comes from exploiting apriori cross-channel information in the form of a PCA weight 

covariance matrix. The performance of the method is quantified using synthetic multi-

channel ERP signals with known amounts of synthetic noise added to all the channels.  
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Chapter 6:  Estimating ERP Response by Combining Trials 

In this chapter different methods for combining filtered trial ERPs are investigated.  

Traditionally, unweighted averages have been used.  However, as the noise varies 

considerable across trials, other methods such as optimal weighted mean and Bayesian 

optimal combining, promise to yield better estimates of the underlying ERP.  These 

methods are evaluated using synthetic data and a new processing protocol is chosen 

that combines PCA filtering of trails with optimal combining.  

Chapter 7:  Estimation of Auditory ERPs from Measured Data 

Chapter 7 explicitly states the proposed processing protocol in steps that can be applied 

in a clinical situation.  In previous chapters, some processing parameters were chosen 

using knowledge of the underlying ERP.  New methods are tested for estimating the 

noise power in measured ERPs.  

Chapter 8: Quantification of Repetitions Needed to Observe Clinically Important 

Features in ERPs. 

A dataset of measured AEEG data collected in a range of environments and while the 

participant is standing or walking, is used to evaluate the proposed processing 

protocol.  The number of trials that need to be filtered and combined, to estimate 

clinically important P300 parameters, is calculated for standard processing and the 

proposed processing protocol.  

Chapter 9: Conclusion and future work. 

The final chapter presents a summary of the results and achievements along with 

suggestions for future work. 
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1.5 Thesis Aims 

The major research questions addressed in this thesis focuses on the measurement of 

ERPs from experiments performed using AEEG systems while the participant engages 

in a range of activities and in a range of environments. As seen in thesis outline there 

are 9 chapter of this thesis.  To address research questions, there are many steps were 

developed in chapters 5,6,7 and 8. In flowchart 1.4 summarize each chapter. 

 

Thesis Aim

Chapter 5

PCA Filtering of Auditory Event-

Related Potentials

ERP Signal Simulator

PCA Applied to Multi-Channel 

Simulator

PCAKF Applied to Multi-Channel 

Simulator 

Uniform Average

Optimal weighted Average 

Bayesian Optimal Combining 

Chapter 6

Estimating ERP Response by 

Combining Trials

Chapter 7

Estimation of Auditory ERPs 

from Measured Data

Chapter 8

Quantification of Trials Needed to 

Observe Clinically Important 

Features in ERPs

Synthetic Model to Real ERP Signal

PCA Basis for each Channel of the 

ERP signal

Estimation of ERP Response from 

measured data: 7 variations tested

Applying Filter and Combining 

Methods to Real Data

Comparison of estimated ERPs, 

after the standard and the proposed 

filtering and combining protocols.

 

Figure 1.4 Thesis Aim flowchart. 
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1.6 List of Publications 

The following publications by the author have resulted from this project 

 Paulson, K. S. & Alfahad, O. A. (2018) Estimation of auditory event-related 

potentials using a combination of principal component analysis and Kalman 

filtering. Proceedings of the 4th World Congress on Electrical Engineering and 

Computer Systems and Science (EECSS'18). Madrid, Spain. 

 

 Paulson, K. S. & Alfahad, O. A. (2018) Identification of auditory event-related 

potentials using a combination of principal component analysis and Kalman 

filtering. 3rd International Conference on Biomedical Imaging, Signal 

Processing (ICBSP 2018) Bari, Italy. 

1.7 Summary 

The measurement of brain signals by EEG has been introduced, with an emphasis on 

the estimation of ERP signals using AEEG systems.  Clinical applications have been 

reviewed and research questions developed.  This project will focus on the estimation 

of ERPs from repeated AEEG measurements in stimulating environments or while the 

participant is active.  It will focus on the signal processing aspects of EEG filtering 

and ERP combining. 
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Chapter 2  EEG Background  

2.1 Introduction 

Electroencephalography is a health diagnostic imaging method which measures 

electrical signals produced by brain function on a set of electrodes connected to the 

scalp. The electroencephalogram (EEG) is the set of electrical signals, often 

decomposed into different frequency bands.  The electrodes are often metallic and 

electrically conected to the scalp using a conductive media (Teplan, 2002). When EEG 

signals are acquired on the skin the output is known as an electrocardiogram, whereas  

measurements from inside the head are known as an electrogram.  

Brain function requires activation of neurons (brain cells).  The activation of many 

neurons in a region of the brain produces a small current and electric field which leads 

to the electrical signals on the scalp measured by the EEG. Generally, EEG measures 

only those currents which are produced during synaptic excitations of cerebral cortex 

neurons. Neuronal current or impulses are associated with Na+, K+, Ca++, and Cl- ions 

which are propelled through channels and regulated by the neuronal membrane 

potential (Teplan, 2002; Tortora & Derrickson, 2011). Enormous populations of active 

neurons are required to generate electrical impulses that are recordable on the scalp 

(Teplan, 2002; Nunez & Cutillo, 1995). Weak neuronal impulses may be also recorded 

by EEG after amplifying and other computational processes, but controlling noise is 

essential in these processes. Measurable electrical neuronal signals start in the foetus 

during the 17th to 23rd week and at birth the full number of neural cells is developed, 

approximately 1011 neurons (Nunez & Cutillo, 1995; Akaishi et al., 2013).  

Normal EEG patterns are observable across the bulk of the population.  However, 

abnormal patterns are consistently associated with neural problems.  Therefore, EEG 
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is considered as a very powerful tool in the field of neurology and neurophysiology 

(Dubey & Pathak, 2010).  For example, abnormal EEG potentials are associated with 

some abnormalities such as a seizure (induced by pentylenetetrazol), hypercapnia, and 

asphyxia (Caspers et al., 1987). 

2.1.1 Neuron Activity 

Neurons are made of three major parts; axons, dendrites, and cell bodies; as shown in 

Figure 2.1. Generally, neurons respond to stimuli and transmit information (Tortora & 

Derrickson, 2011). Axons are long cylinders that transmit electrical impulses. 

Dendrites are linked to either the axons or dendrites of other neurons and thus receive 

impulses from other neurons. In the human brain, one neuron is linked to around 

10,000 other neurons, through dendritic linkage (Tortora & Derrickson, 2011).  

 

 Figure 2.1 Structure of neuron which consist of three major parts; axons, dendrites, and cell 
bodies (Sanei & Chambers, 2013). 

The activities or impulses of neurons are primarily associated with the synaptic 

currents which are transferred between the connections (synapses) of axons and 

dendrites, or dendrites and dendrites, of neurons. A potential of 60-70 mV exists across 

the neural membrane and a reversal of polarity is linked with synaptic activities (Sanei 

& Chambers, 2007). When the potential travels along the fibre that ends in an 



 

 

40 

 

excitatory synapse, an excitatory postsynaptic potential (EPSP) arises in the neuron. 

When the fibre ends in an inhibitory synapse, hyperpolarization will occur, indicating 

an inhibitory postsynaptic potential (IPSP) as shown in Figure 2.2 (Speckmann, 1993; 

Shepherd, 2003).  

 

 

Figure 2.2 Action potentials in the excitatory and inhibitory presynaptic fibre respectively 
lead to EPSP and IPSP in the postsynaptic neuron (Sanei & Chambers, 2007). 

Primary currents from the membrane generate secondary currents (inonal) alongside 

the neuronal membranes in the intra- and extracellular space. The extracellular space 

currents are mainly responsible for the field potentials at frequencies less than 100 Hz.  

It is variation in these signals that are commonly measured using EEG. 

2.1.2 Action Potentials 

The information communicated by a neuron is known as an action potential (AP). AP 

is initiated by an exchange of ions through the neuronal membrane. AP is a brief 

alteration in neuronal membrane potential, which is communicated throughout the 

axon. It is typically introduced in the neuron cell body and moves in one direction 
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(Sanei & Chambers, 2013). The neuronal membrane potential depolarizes, i.e. 

reverses polarity for a short time. After the depolarisation peak, the neuronal 

membrane repolarizes relatively slowly while being negative for about 4 millisecond 

(ms), as shown in Figure 2.3. Generally, APs of most neurons last between 5 and 10 

milliseconds (Sanei & Chambers, 2007).  

 

Figure 2.3 Schematic plot of action potential (Sanei & Chambers, 2007). 

The stimuli must surpass a threshold point to initiate an AP. weak stimuli may trigger 

a tiny native electrical disruption, but they are not able to generate a transmitted AP. 

Once the stimuli exceeds the threshold point, an AP is generated and travels down the 

neurons (Sanei & Chambers, 2013). 

The AP spikes are generally instigated by the opening of sodium (Na) ion channels. 

The Na+ pump yields a gradient of sodium and potassium (K) ions, which are 

important to the generation of APs. After opening, the Na channel allows a rush of 

Na+ ions into the neuronal cell (Fridlyand et al., 2013; Kim et al., 2010). This event 

causes the neuronal membrane potential to become positive i.e. depolarized, and thus 
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generating the spikes. In humans, the APs amplitude ranges may vary between -60 

mV and 10 mV (Testa-Silva et al., 2014; Moore et al., 2014).  

2.1.3 EEG Signal Generation 

When neurons are stimulated, synaptic currents are generated inside the neuronal 

dendrites. These currents may further produce a magnetic field which may be 

measured by electromyogram (EMG) and a subsequent secondary electrical field over 

the scalp measurable by EEG (Nicolas-Alonso & Gomez-Gil, 2012; Rossini et al., 

2015). In the brain, the current is mainly generated due to the pumping of positive ion 

gradients (Na+, K+, Ca++) and negative ion gradients (Cl-), throughout the neuronal 

membrane in the same direction that is directed by the membrane potential (Atwood 

& MacKay, 1989). 

The human head may be anatomically divided into three major components: the scalp, 

skull and brain; and many thin layers between (Acar & Makeig, 2013; Sadleir & 

Argibay, 2007). The skull reduces the intensity of the electrical signals about one 

hundred times more than the other soft tissues. Hence, only huge populations of active 

neurons can produce sufficient potential to be recordable using the electrodes on the 

scalp. These signals may be amplified significantly for display (Sanei & Chambers, 

2007). The noise in measured electrical signals may be internal, due to other biological 

functions, or external due to the measurement system and other non-biological sources 

(Sanei & Chambers, 2013). 

2.1.4 Brain Rhythms 

Many neuro-disorders may be diagnosed by the visual introspection of EEG signals. 

The five main brain signals are differentiated by frequency ranges. The EEG bands, 
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from low to high frequencies, are commonly known as alpha (α), theta (θ), beta (β), 

delta (δ), and gamma (γ) as shown in Figure 2.4.  

Delta waves range from 0.5 to 4 Hz and are mainly associated with deep sleep and the 

waking state. Sometimes, delta frequencies are very close to artefact signals generated 

by neck muscles. These muscles are near the skin surface and therefore produce large 

signals, particularly at the back of the head. Usually neck muscle artefacts are easily 

separated from brain generated EEG signals unless the movements are excessive 

(Ashwal & Rust, 2003). 

Theta waves are found between 4 and 7.5 Hz. The term theta may acknowledge the 

origin of these signals in the thalamic origin. Theta waves appear during drowsiness 

and deep meditation. Theta waves often occur simultaneously with other waves and 

appear to be associated with the level of stimulus. They are particularly strong during 

infancy and childhood. The rhythmic changes in theta waves are examined mainly for 

emotional analysis (Ashwal & Rust, 2003). 

Alpha waves lie between 8 and 13 Hz as round or sinusoidal shaped signals and are 

mostly observed in the posterior lobes and occipital region of the brain. The alpha 

frequencies are often the highest amplitude waves but their origin and physiological 

significance are still unknown (Niedermeyer, 2005). 

Beta waves range between 14–26 Hz and are associated with activities such as 

thinking, attention, focus or solving concrete problems. They appear in normal adults 

but high-amplitude beta waves are also found in people of all ages in states of panic 

and around the temporal regions (Sterman et al., 1974; Chapman, 1999). 

Gamma waves are found above 30 Hz and are sometimes also called fast beta 

frequencies.  The amplitudes of gamma are low and they are relatively rare. They may 

be observed to confirm certain brain diseases and are a good indicator in event-related 



 

 

44 

 

studies. It can be used to demonstrate the locus for right and left index finger 

movement, right toes, and the rather broad and bilateral area of tongue movement 

(Pfurtscheller et al., 1994; Kornmeier & Bach, 2012). 

Frequencies higher than the EEG activity range, generally 200 to 300 Hz, may be 

found in the cerebellar region of the brain and they do not have any role in clinical 

diagnostic neurophysiology (Javitt et al., 2008; Dalal et al., 2013). 

 

Figure 2.4 Typical waves of brain rhythm from high to low frequencies (Sanei & Chambers, 
2007). 
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2.1.5 EEG Recording and Measurement 

EEG systems have three major components: a set of electrodes on the surface of the 

head connected to electronics which amplify and condition the measured scalp 

voltages, and some sort of data recording device; historically, needle or moving pen 

recorders traced the multichannel EEG signals onto paper (Sanei & Chambers, 2013). 

For the last 50 years or so computer based systems have been used to digitize and store 

the signals. Digital systems permit variable settings, stimulations, and sampling 

frequencies, and may be paired with simple or advanced signal processing devices for 

processing the signals. The transformation from analogue to digital EEG is performed 

by means of multichannel analogue-to-digital converters. The bandwidth of EEG 

signals is relatively small, limited to approximately 100 Hz (Sanei & Chambers, 

2007).  The EEG recording electrodes are very important for obtaining reliable data. 

A wide range of electrodes are used in the EEG recording systems, such as disposable 

(gel-less, and pre-gelled types), reusable disc electrodes (gold, silver, stainless steel, 

or tin), headbands and electrode caps, saline-based electrodes, and needle electrodes 

(Sanei, 2013).  

2.1.6 Conventional Electrode Positioning  

The International Federation of Societies for Electroencephalography and Clinical 

Neurophysiology has suggested the conventional electrode setting for 21 electrode 

systems (without the earlobe electrodes), commonly known as 10-20 system, as shown 

in Figure 2.5 (Sanei & Chambers, 2013). The earlobe electrodes are commonly 

referred to as A1 and A2 and are attached to the left and right earlobes respectively. 

They are used as the reference electrodes for the voltage measurements. The 10–20 

system yields reproducible and comparable measurements by locating electrodes 

relative to particular anatomical locations. Distances are measured relative to an ear-
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to-ear measurement across the top of the scalp.  The odd electrodes are placed on the 

left side and the even are on the right side.  (Sanei & Chambers, 2007).  

 

Figure 2.5 Conventional 10-20 EEG electrodes position and placement. 20% are the distance 
between each electrodes or 10% between Inion or Nasion and electrode. (Sanei & Chambers, 

2013). 

Further electrodes may be placed equi-distant between two standard locations.  For 

example, C1 may be positioned between C3 and Cz. About 75 electrodes together with 

reference electrodes may be placed according to the American EEG Society standard, 

as shown in Figure 2.6. Occasionally, extra electrodes are employed to measure the 

eye blink and surrounding muscles. In ERP analysis and brain computer interfacing, a 

single channel might be used in a standard location.  Electrodes C3 and C4 may be 

placed to measure signals related to right and left finger movement respectively, for 

brain-computer interfacing applications. Electrodes F3, F4, P3, and P4 are particularly 

sensitive to ERP P300 signals (Sanei & Chambers, 2013). Physical references can be 
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used such as vertex (Cz), linked-ears, linked-mastoids, ipsilateral ear, contralateral ear, 

C7, bipolar references, and tip of the nose (Sanei & Chambers, 2013).  

 

Figure 2.6 The international 10-20 system seen from (A) left and (B) above the head. The 
letters refer to electrode placement frontal (F), parietal (P), occipital (O), and temporal (T). 
The odd electrodes are placed on the left side while the even are on the right side. (Sanei & 

Chambers, 2013). 

2.2 Event-Related Potentials 

Event-related potentials (ERPs) are very small signals produced in the brain in 

response to particular events or stimuli (Woodman, 2010). They indicate a change in 

the EEG dependent upon sensory or cognitive events.  Measurement of ERPs is a non-

invasive and harmless method to examine the psychological and physiological 

connection of mental progressions (Peterson et al., 1995). ERP experiments yield a 

temporal resolution which allows the measurement of brain responses from one 

millisecond to the next.  This compares to aspects of attention and perception that 

develop over tens of milliseconds (de Haan, 2013). Since the brain is fundamentally a 

wet electrical device, these electrophysiological measurements deliver a direct 

measure of the frequency of the system (Woodman, 2010). For the human brain, ERP 



 

 

48 

 

may be classified into two categories. The early components, collected within 100 

milliseconds of the stimulus, are commonly referred to as ‘sensory’ or ‘exogenous’. 

These are determined by the physical parameters of stimuli. The later ERP signal is 

produced while the participant assesses the stimuli, and are generally known as 

‘cognitive’ or ‘endogenous’ ERPs (Csibra et al., 2008).  

2.2.1 Common ERP Forms 

P50  

The most positive peak between 40 and 75 (ms) after the conditioning stimulus is the 

P50 (Olincy & Martin, 2005). The P50 amplitude is the absolute difference between 

the P50 peak and the preceding negative trough (Clementz et al., 1997).  The P50 

amplitude change between the first and second repetition of a stimulus is related to the 

potency of the inhibitory pathway. This pattern is used when investigating sensory 

gating. Sensory gating is very important to an individual’s capability to carefully 

attend to salient stimuli and ignore repetitive information, which may protect the brain 

from information overload (Light & Braff, 2003).  

P 300 

The P300 wave is a positive deflection and it is usually stimulated in an "oddball" 

pattern once a subject notices a special "target" stimulus in a steady sequence of typical 

stimuli. The name P300 refers to a positive signal that reaches a peak about 300 ms 

after the stimulus (Sutton et al., 1965).  The P300 wave signal is most pronounced 

when the participant is actively involved in the task of spotting unusual targets. Its 

amplitude and time of peak depend upon the distinguishability and type of common 

and oddball stimuli.  A typical adult peak latency is 300 ms.  In people with reduced 

mental aptitude, the P300 is less significant and later than in age-matched normal 
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subjects. The origin of the P300 wave is unknown and its role not fully understood. 

The P300 may possess numerous intracerebral generators, with the hippocampus and 

various association areas of the neocortex all contributing to the scalp-recorded 

potential. The P300 wave can characterise the transmission of information to 

cognizance, a process that utilises several specific areas of the brain. P300a originates 

from stimulus-driven frontal attention mechanisms during task processing, whereas 

P300b originates from temporal-parietal activity associated with attention and appears 

related to subsequent memory processing (Picton, 1992). P300 can be seen between 

200- 500 ms (Doege et al., 2009) while (Luck, 2005) said P300 peaks between 350 to 

600 ms post stimulus.  

P600 

The P600 is an ERP normally related to the processing of wave pattern irregularities 

or incompatibilities, which raises the question whether these ERP responses reflect 

common essential progressions, and what might be the precise procedures which are 

combined during successful parsing of well-formed sentences and the detection and 

repair of syntactic anomalies (Gouvea et al., 2010). 

N100 or N1 wave 

The negative peak (N100) contains several different subcomponents that have peaks 

between 80 to 150 ms after the stimulus (Luck, 2005). A negative excursion may be 

measured between 90-20 (ms) after the stimulus begins.  It is a positioning or matching 

response and occurs on every occasion a stimulus is compared with earlier stimuli, 

particularly when the brain has been trained to respond to the particular stimulus. It 

produces highest amplitude at Cz and so is also known as a vertex potential (Sur & 

Sinha, 2009). 
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2.2.2 Evoked Potential 

Evoked potentials (EPs) are neural electrical events in response to external stimulation 

factors such as light, sound, taste or smell. EEG EP signals are due to polyphasic 

waves ranging between 0.1-20 μA within 2-500 ms of the stimulation. The signals 

may be synaptic discharges or post-synaptic potentials along neural pathways (Akay, 

2012).  

 The clinical uses of EPs are mainly due to their ability to investigate abnormalities of 

the sensory system.  This is particularly useful when the neurological examination is 

difficult, i.e. when the participant cannot or will not cooperate. Furthermore EP 

measurements provide information on the temporal and anatomical distribution of 

brain activity pattern and aid the understanding of the pathophysiology of disease 

processes.  

The three main types of EPs used in routine clinical studies are (Akay, 2012; Walsh et 

al., 2005):  

1. Somatosensory evoked potentials (SSEPs), 

2. Auditory evoked potentials (AEPs), 

3. Visually evoked potentials (VEPs). 

2.2.2.1 Somatosensory Evoked Potentials  

Somatosensory evoked potentials (SSEPs) are measured EEG responses due to touch 

stimulus.  The stimulus may be based on vibration, position, or epicritic tactile senses 

(Akay, 2012).  In some cases the peripheral sense is stimulated by delivering an 

electric current. SSEPs are primarily measured in the region of the cortex.   

Components of SSEPs 

SSEPs are broadly divided into early, middle and late components as shown in Figure 

2.7 (Akay, 2012). 
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Figure 2.7  Schematic diagram of SSEPs divided into early, middle and late components. 
potentials with very small amplitude for 10-15 ms before the occurrence of components with 

a large amplitude that start nearly 20 ms after stimulus (Akay, 2012). 

In the above Figure, the late components are non-specific waves that may differ for 

the same person depending on the attention-consciousness of that person at the time. 

It is not only associated with the primary cortex region but it is also related to the 

cortical association, activities of the components, and effects of the Ascending 

Reticular Activating System. Those component potentials having large amplitude are 

cortical activities which are recorded under and around the active electrodes; known 

as near-field recording or middle components. The small amplitude before the near-

field potentials arises from the subcortical regions, commonly known as far-field 

recording or early components of SSEPs (Akay, 2012).  

The shape of the measured SSEPs response depends strongly on the location of the 

reference electrode.  The responses of subcortical structure are detected first. The 

amplitude and polarity may differ due to the location of the electrode and some 

components may be missing or not appear.  For example, if the reference electrode is 

fixed on the forehead region the components of subcortical regions may become weak. 
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Effective recording of the subcortical components requires that the electrodes should 

be placed near the source. Generally SSEPs are used to examine the spinal cord, 

somesthetic cortex and peripheral sensory fibres (Akay, 2012). 

2.2.2.2 Auditory evoked potentials 

Auditory evoked potentials (AEPs) are used to examine the auditory channels up to 

the primary cortex regions, by applying auditory stimulus through a classic 

audiometric earphone above the hearing threshold to the external auditory canal. The 

auditory stimulus device typically generates square waves of 100 - 200μs, 10 times 

per second, known as a “click” sound. Generally, the intensity of the sound applied to 

generate stimulus is 65-70db and so well above hearing threshold.  It is increased in 

patients having hearing problems (Akay, 2012). 

When the stimulus rate is greater than 10 per second, the absolute latencies and inter-

peak latencies are extended and the amplitudes are decreased. If the sound intensity is 

reduced, the morphology of waves change. In an AEP examination, a minimum of 

2000 samples of 10 ms duration each, must be acquired for each ear, and the 

examination should recur at least twice (Akay, 2012).  

2.2.2.3 Visual evoked potentials 

Visual evoked potentials (VEPs) are produced by retinal stimulations. These stimuli 

may be generated by various sources, such as (a) stroboscopic flashing light with 

continuous flashing intervals - mainly used for babies and uncooperative patients, (b) 

a flashing LED - used for special designed lenses, (c) alternating checkerboard pattern 

stimulation – this is a commonly used technique due to its highly sensitive and stable 

nature. This method is also known as pattern-shift visual evoked potential (Akay, 

2012). 
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VEPs caused by short-term stimuli are generally transient responses of the visual 

system. Transient visual evoked potentials (TVEPS) are responses to speedy 

alterations in the input (Basar et al., 1999). Long-term stimuli are generally 

sinusoidally modulated monochromatic light.  These EEG waves are commonly 

known as steady-state visually evoked potentials (Regan & Regan, 1988). SSVEPs 

yield EEG measurements with distinct frequency components that remain similar in 

amplitude and phase over a long period, and so may be identified by temporal 

averaging (Nakayama & Mackeben, 1982; Wandell et al., 2007). SSVEPs may be 

found in both in humans and animals (Nakayama & Mackeben, 1982; Rager & Singer, 

1998).  

Transient VEPs are used to estimate the time required for a visual stimulus to travel 

from the eye to occipital cortex. This value may be used to diagnose ophthalmological 

diseases, multiple sclerosis and abnormalities of the brain’s visual function area.  
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Figure 2.8 Schematic diagram of TVEPs and SSVEPs. (a) Input function with a square 
stimulation transient and measured TVEP. (b) Steady state input and SSVEP.  Lower left 

and right are the power spectral density for TVEPs and SSVEP respectively. 

In Figure 2.8, the shape of the response over one input cycle is not enough to 

differentiate the SSVEPs from TVEPs. However, the spectral response contains 

distinct peaks for the SSVEP associated with the input pulse rate. If the stimulus is 

repeated then this response complex may be similarly repeated, and the collective 

response will be structured i.e. with stationary periodic oscillations.  The power 

spectral density highlights the difference between TVEPs and SSVEPs (Vialatte et al., 

2010).  
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2.3 EEG and Artefacts 

EEG measures the electrical potential on the scalp using several electrodes (Nunez & 

Srinivasan, 2006). The changes in potential are principally due to brain activity.  It is 

not possible to measure the activity of a single cortical neuron on the scalp, due to the 

very weak electrical field produced by a single neuron. On the other hand, many 

cortical neurons acting together do generate a small but measurable electrical field that 

is detected on the scalp (Nunez & Srinivasan, 2006; Delorme et al., 2012). The 

measured activity has a broad spectrum, similar to pink noise, but with peaks in 

particular frequency bands, related to EEG rhythms (Sörnmo & Laguna, 2005). Other 

neurological activities can also be measured, such as changes in brain rhythms and 

evoked potentials (Fatourechi et al., 2007).  

Artefacts are unwanted signals that may obscure or distort the brain signals of interest 

(Anderer et al., 1999). EEG artefacts are often non-cerebral in origin. They may be 

broadly classified into physiological and non-physiological artefacts as seen in figure 

2.9. 

 

Figure 2.9 Normal brain rhythms and artefacts.   Left figure is brain: (A) Delta (B) Theta (C) 
Alpha (D) Beta (E) Gamma comprise the typical EEG spectrum from low to high 

frequencies. Right figure is   Artefacts: (F) Ocular (G) Muscular (H) Cardiac are the 
common contaminants in the EEG recording. 
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2.3.1 Physiological Artefacts  

Physiological artefacts are generated by the body.  Muscles produce electrical fields 

when they contract and so eye-blinks and neck support can cause large artefact signals 

in EEG.  The pumping of blood through the head by the heart causes rhythmic shape 

and conductivity changes in the head.  These can be seen in EEG measurements 

(Urigüen & Garcia-Zapirain, 2015; Fisch & Spehlmann, 1999).   

2.3.1.1 Ocular Artefacts 

Ocular artefacts arise due to eye movement and blinks. Normally, electrooculogram 

(EOG) determines the electrical activities produced by eye movements. The EOG 

signals are large enough to be measured by the EEG (Croft & Barry, 2000). The eye 

movement signals are mainly collected by the frontal electrodes (Romero et al., 2008; 

Fisch & Spehlmann, 1999). The signal intensities of eye movement may depend on 

the closeness of the electrodes position to the eyes as well as the direction of eye 

movement. Eye blinking may also cause artefacts on the EEG recording. Generally, 

the amplitude of artefacts due to blinking is much larger than the EEG signals (Urigüen 

& Garcia-Zapirain, 2015; Croft & Barry, 2000), especially for electrodes near the front 

of the head as seen in figure 2.10.  EOG reference signals may be measured at the 

same time as the EEG recording, and may be partially cancelled (Urigüen & Garcia-

Zapirain, 2015). Usually the vertical (VEOG), horizontal (HEOG) and radial (REOG) 

signals are recorded independently as these signals propagate differently across the 

scalp (Urigüen & Garcia-Zapirain, 2015). 

 



 

 

57 

 

 

Figure 2.10 Medium amplitude and low frequency signals confined to the frontal electrodes 
may be recognized as an ocular artefact (red) due to their signal morphology (Marella, 2012) 

2.3.1.2 Muscle Artefacts 

Muscle artefacts are linked to muscular movement during EEG recording. An 

electromyogram (EMG) measures electrical signals on the body during muscular 

movements. The muscular artefacts may be associated with swallowing, walking and 

talking (Sörnmo & Laguna, 2005).  The EMG spectral shape and intensities may 

depend on the types of muscles and their contraction strength. EMG has large 

amplitudes and frequency range, and so disturbs all EEG bands; although particularly 

in the beta and alpha bands. EMG is often measured across the entire scalp due to 

myogenic activity of the head, face and neck (Goncharova et al., 2003).  Other EMG 

artefacts are more common or stronger in the frontal and temporal electrodes. EMG 

artefacts can be reduced by low-pass frequency filtering below 35 Hz (Reis et al., 

2014). It can be seen in figure 2.11 EEG recording shows the EMG artefacts in 

electrodes T3 and T5.  
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Figure 2.11 EEG recording shows the EMG artefacts appearing in T3-T5 electrodes 
(between red lines) (Marella, 2012). 

2.3.1.3 Cardiac Artefacts 

The heart generates two distinct types of artefacts: i) electrical and ii) mechanical. 

Both types of cardiac artefacts are time locked to cardiac contractions and identified 

by their synchronization with complexes in the ECG channel (Fisch & Spehlmann, 

1999; Urigüen & Garcia-Zapirain, 2015). The electrical cardiac artefact is the ECG 

signal, as recorded from head electrodes. The P and T waves commonly do not appear, 

due to the distance from the heart and the orientation of the associated electrical field 

vector in the heart. The artefact is a distorted QRS complex cardiac mechanical 

artefacts arise via the circulatory pulse and are sometimes classified as electrode 

artefacts. They arise when an electrode rests over a vessel.  The cardiac signal appears 

as a periodic slow wave with a consistent interval that follows the ECG artefact's peak 

by about 200 ms.  It occurs over the frontal and temporal regions but it may present 

over other regions of the brain (Fisch & Spehlmann, 1999) as seen in figure 2.12. 
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Figure 2.12 EEG recording shows the ECG artefacts appearing at T3-A1 electrodes 
(between red lines) (Marella, 2012). 

2.3.2 Non- physiological Artefacts 

Various types of external devices generate EEG artefacts. The most common external 

artefacts are due to the alternating current through an electrical power supply (Fisch 

& Spehlmann, 1999) . The noise is usually of medium to low amplitude and having 

single component at mains frequency, 60 Hz in the USA and 50 Hz in the rest of the 

world. Mains artefacts may appear in all or some channels and may include electrodes 

that may have inadequately coordinated impedances (Urigüen & Garcia-Zapirain, 

2015; Fisch & Spehlmann, 1999).  The signal can be due to poor isolation within the 

EEG instrument, voltage induced on electrodes by nearby electrical equipment, or by 

coupling between the EEG and poorly isolated electrical equipment. 

Artefacts in the EEG signal can also be caused by changes in the electrode attachment 

to the scalp.  Attachment is sometimes problematical due to hair.  Sometimes 

electrodes adhere directly to the scalp and sometimes a conductive jelly is introduced 

into the space between the electrode and the scalp.  Electrode detachment or loss of 

electrical connection due to movement or drying of the conductive jelly, means that 
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the measured voltage no longer tracks the potential on the scalp. Physical movement 

of the electrodes can lead to signals due to changes in location, electrical effects due 

to rubbing or rapid changes due to intermittent attachment. 
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Chapter 3  Methodology 

3.1 Introduction 

This chapter details the processes involved in recording and processing EEG to 

estimate ERPs during a range of activities and in a range of environments.  These 

initial experiments were performed to trial the complete measurement process and to 

produce data on which to develop and test ERP estimation algorithms.  The steps in 

the experiment are described, as well as the initial quality control processing of the 

EEG data.  

3.2 Experimental Procedure 

The ERP task consisted of a number of tests while the subjects were in environments 

with different levels of stimuli and while participating at different levels of activity.  

The smartphone based AEEG system used was developed at the University of Hull 

and is specified in (Bateson et al., 2017). The core of the system is a waist mounted 

control system capable of measuring 24 channel voltages, with 24 bit resolution and a 

250 Hz sampling frequency. This is sufficient to be compatible with the international 

10/20 system, and also provides five additional channels available for ECG, EOG or 

EMG recordings. The data are sent via WiFi in real time to a partnered laptop or 

smartphone. An app running on the smartphone allows recording and plotting of live 

data, whereas a PC provides greater processing capability for algorithms applied to 

online data. Use of the smartphone allows electrode attachment problems to be 

identified immediately and greatly reduces the weight and size of the data recording 

equipment. 
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For the experiments described in this thesis, 19 EEG channels were monitored with 

the 20th channel being the reference electrode connected to an ear lobe. Eyes blinks 

were monitored using electrodes around the eyes. Two electrodes, one above and one 

below the left eye, measured the electric field generated by vertical eye movements 

(VEOG). The signal due to horizontal eye movements (HEOG) were measured using 

two electrodes, one each side of the head at eye-level.  Each experiment consisted of 

a 10 minutes period during which the participant listened to a series of tones through 

earphones controlled by the smartphone.  All the tones were 64 ms in duration and 

three-quarters of the tones were at the common frequency of 600 Hz while one quarter 

were at the oddball frequency of 1200 Hz.  The tones were presented to the participant 

in a pseudo-random sequence and the participant was asked to count the number of 

oddball tones.   In each test, participants would listen to 340 tones, of which about 

25% would be oddball.  The AEEG system recorded a marker on the EEG data at the 

time of each tone (Bateson et al., 2017). 

Experiments were performed in a range of situations: 

1. Sitting in a shielded room; 
2. Walking in a shielded room; 

3. Sitting in a laboratory; 
4. Walking in a laboratory; 

 
The shielded room is a large metal lined room designed to eliminate external 

electromagnetic interference.  It is considered to be a very low-stimulus environment.  

The laboratory contains a lot of equipment and is visually stimulating.   

For the sitting shielded room and laboratory experiments, the participants were 

encouraged to keep their heads as still as they could.  However, for the walking 

experiment, more head and eye movements were expected as the participants 

navigated around obstacles. These experiments were designed to highlight the 

difference between movement artefacts and brain signals due to sensory stimulation. 
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3.3 Participants  

Ten healthy participants (aged 20–45) two females and eights males were selected 

from a group of volunteers. To be selected the applicants needed to match a set of 

inclusion and exclusion criteria to match the ethical approval. These were designed to 

eliminate people with health conditions that may affect the measurements, and 

individuals who could be disturbed by the measurement process.  The full procedure 

and instructions of the protocol were explained to all participants. This study was 

conducted under ethical approval from the Faculty of Science and Engineering Ethics 

Review Board and written informed consent was obtained from each participant. 

  

 

Figure 3.1 AEEG data recorded in during sitting inside shielded room. 
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3.4 Initialising EEG Equipment 

Ambient electromagnetic noise may cause problems during the recoding of EEG.  The 

EEG equipment (stimulus generating devices and data collections instruments) is 

switched on 10 minutes before use for stabilizing and warming up the equipment.  A 

check is then performed to minimise any mains noise (between 50-60Hz) or any other 

frequency peaks (Light et al., 2010).   

The participant’s hair must be washed without using any conditioners or gel products, 

as these can affect the electrical connection between the electrodes and the scalp.  

Participants were asked to do this before they came for measurements. 

The electrode cap must be selected according to the participant’s head size and 

electrodes should already be snapped into white plastic adaptors on the cap (Light et 

al., 2010). 

Via a lead, electrodes should be connected to the EEG measurement and recording 

equipment.  As more than 20 electrodes are used, it is important that the cap electrode 

agrees with the electrode position built into the equipment. 

 

Figure 3.2 Schematic diagram of a typical EEG setup.  Stimulus generation computer 

outputs stimuli to the subject via the stimulus amplifier. EEG data collected by 
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electrode cap on participant’s head is relayed to EEG amplifier and integrated with 

information about timing. Amplified EEG data with stimulus markers is then relayed 

to acquisition computer for data analysis  (Light et al., 2010). 

3.5 Mounting the Caps on the Participant 

Before fixing the cap on the participant’s head, the distance between nasion (nose-

bridge) and inion (bump on the lower base of skull) must be measured as this distance 

sets the position of all the electrodes. The cap should be tight and is placed on the head 

and centred by ensuring that the distance from the central electrode, Cz, to the ears is 

the same on both sides as well as the distance between nasion (nose-bridge) and inion 

should be equal.  When in the correct position, the cap should be secured with a chin 

strap. 

Additional electrodes may be placed on the cap or directly on the skin to measure eye 

movement.  Electro-oculographic electrodes (EOGs) may be placed around the eyes 

to monitor vertical and horizontal eye movements as well as reference and ground 

electrodes (Light et al., 2010).  

The impedance of electrical connection between electrodes and the scalp must be 

minimized by applying electrolyte gel.  The gel also reduces noise due to electrode 

movement. However, too much gel can weaken the electrical connection by 

interference between electrodes.  Impedance can be controlled by filling electrodes 

with gel or by gently scrubbing the scalp with gel before placing electrodes. 

Impedance can also be lowered by continuously twisting a Q-tip on the scalp (Light et 

al., 2010).  For these experiments, a small amount of gel was injected through the 

electrode to fill the space between the electrode and the scalp.  Electrical connection 

was tested by observing the signals through all electrodes before the experimental 

measurements were started. 
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3.6 Data Collection 

For data collection, the EEG acquisition software was initiated and a participant file 

is created. It is necessary to observe the resting activity of all electrodes. In the ideal 

conditions, electrode signals exhibit low amplitude and correlated variation. If any 

faulty channels are suspected then more electrolyte gel should be applied. Initial data 

are filtered and compared with the reference or control values (Light et al., 2010). 

When the operation of the equipment has been verified, the experimental 

measurements are performed following the sequence specified in Section 3.2. 

3.7 Post EEG Experiment 

After the experiment, the cap and electrodes are removed gently from the participant's 

head. Gel should be cleaned from the hair and all electrodes should be cleaned and 

safely stored to prevent corrosion or damage to the electrodes or cables. 

3.8 EEG Data Pre-processing 

The recorded EEG signals were collected and analysed using the Matrix Laboratory 

(MATLAB) and EEGLAB toolbox (Delorme & Makeig, 2004) . A frequency filter 

was first used to remove noise outside the EEG frequency range, and to remove any 

50 Hz mains hum. High pass filters were used for low frequency, baseline wander 

removal (0.1-1 Hz) whereas low pass filters were used remove high frequency noise, 

such as EMG activity (45-60Hz). Then 19 electrode channels were selected for signal 

observation, with the 20th used as a reference which put on the right ear. The filtered 

EEG data were segmented into individual trials from 200 ms before the stimulus to 

800 ms after. ERPs trials were calculated using averaging over each category of 

recording i.e. common or oddball as seen in figure 3.2, sitting or walking, shielded 
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room or lab as seen in figure 3.3. There are differences in ERP signal before and after 

eye blinks filters as seen in the figures 3.4.  There are variations in ERP signals during 

different activities, tasks etc. (Heinrich & Bach, 2008; Debener et al., 2012). 

Moreover, the signal to noise ratio for each task was estimated. 

 

Figure 3.3 Oddball and Non oddball ERPs for different channels. It can be seen variations of 
ERP Oddball and standard signal in different electrodes. 
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Figure 3.4 Oddball ERPs during sitting and walking inside & outside shielded room. It can 
be seen variations of ERP Oddball signal in different environments and electrodes also 

Oddball ERP can be seen in Cz and Pz electrodes much better than O1 and O2 electrodes. 

 

Figure 3.5 Oddball ERPs before & after Eye blinks removal. It can be seen variations of 
Oddball ERP in different electrodes when eye blink filtered. 
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3.9 Conclusions 

An experimental protocol has been defined and an initial set of data acquired from ten 

healthy participants.  The following chapter describes the processing of these data to 

estimate the ERP. 
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Chapter 4  EEG Signal Processing 

4.1 Introduction 

This chapter introduces the signal to noise ratio as a measure of EEG signal quality.  

Sources of noise are presented along with their spatial and temporal characteristics.  

The most contemporary and commonly used EEG denoising algorithm is presented.  

This is known as ADJUST and is a plug-in to the widely used EEGLAB toolbox within 

MATLAB software.  ADJUST uses Independent Component Analysis (ICA) to 

separate eye-blink and other artefact signals from brain signals.  ICA is presented in 

some detail along with the heuristics applied, along with statistical independence, to 

separate the signal and artefact time series.  This work introduces a weak form of 

spatial filtering that leads to the more robust spatial averaging developed in Chapter 

6, based on Principal Component Analysis. 

4.2 Signal to Noise Ratio 

4.2.1 Theoretical Overview of SNR 

Signal to noise ratio (SNR) is the ratio of signal power to noise power (Ahlfors et al., 

1993): 

    𝑃 =
PSignal

𝑃𝑁𝑜𝑖𝑠𝑒
    PPdB 10log10  

At low SNR it is difficult to observe features of the signal as they are obscured by 

variation due to the noise.  Therefore, the SNR indicates whether clinically important 

features will be observable in the processed signal.  For individual ERP measurements, 

the SNR is often low due to the high amplitude noise signals caused by electrode 

movement and other bio-signals. Many repetitions of the ERP measurement are 
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averaged in an attempt to increase the SNR.  The SNR of the average indicates whether 

the required quality has been achieved. 

4.2.2 EEG Signal Noise  

The SNR depends upon the number of individual ERP time-series in the average, the 

SNR of each time-series, and time between stimuli (Ahlfors et al., 1993). When 

designing an ERP experiment, it is necessary to determine the number of trials to be 

performed. Averaging tends to maintain the power of the coherent signal while 

reducing the power of the incoherent noise. Therefore the SNR of the average 

increases as the number of trials is increased. The noise power in ERP time-series will 

depend on the nature of the experiment and the characteristics of the subjects (Luck & 

Todd, 2004). If each ERP time series is contaminated by independent and stationary 

noise, then the noise power decreases as one over the number of time-series in the 

average, and the noise amplitude decreases as one over the square root of the number 

in the average (Ahlfors et al., 1993; Luck, 2005). This has been stated to be 

approximately the case for EEG signals (Stecker, 2000). However, noise in ERP time-

series is not stationary or independent.  Non-stationary noise comes from intermittent 

artefacts such as eye-blink artefacts.  When an eye-blink occurs, the noise can have an 

amplitude of an order-of-magnitude larger than the ERP signal, but each blink 

typically affects a single ERP trial.  Dependent noise can come from non-brain signals 

produced by responses to the ERP stimulus, e.g. the subject may flex a muscle each 

time a stimulus is received.  For these reasons, the SNR in the average may not reduce 

as expected by the number in the average, and may not reduce at all.  For example, if 

one more trial time-series is included in the average but it includes a very large eye-

blink noise artefact, then the SNR in the average could increase (Farwell & Donchin, 

1988). 



 

 

72 

 

The following sections explore the SNR in ERP signals collected to determine the 

presence or absence of a P300. 

4.3 Reduction of EEG Artefacts  

Contamination of EEG signals by artefacts due to eye movements, blinks, muscle, 

heart and lead noise is a serious problem for EEG interpretation and analysis. Eye 

movement and blink artefacts are the largest biological sources of noise in EEG 

measurements. Many methods have been proposed to reduce the amplitude of these 

artefacts in EEG recordings, such as fixation, rejection and correction (Pham et al., 

2011; Croft et al., 2005) . 

Typically EEG signals due to neural sources have much less amplitude than those due 

to artefacts. Artefacts can be generated by physiological sources or sources external to 

the body. Eye movements can affect the electrical field over the entire scalp but 

particularly near the eyes (Croft & Barry, 2000). 

4.3.1 Identification of Artefacts in EEG using ICA  

Independent Component Analysis (ICA) is a blind source separation method that divides 

complex signals into sets of maximally statistically independent signals (Hyvarinen et al., 

2000). ICA can be used for identifying the information sources mixed in the EEG data 

(Lee et al., 1999). ICA has been proven to be successful in attenuating several types 

of artefacts such as eye movements, eye blinks, muscle and cardiac artefacts 

(Hoffmann & Falkenstein, 2008).  

Many sources of noise artefacts are independent of the brain response to stimuli, and 

so ICA can separate multi-channel ERP time-series into brain response and artefact 

signals.  The ICA-based artefact reduction approach has the advantage of avoiding the 

rejection of trials contaminated with ocular artefacts. This can be of particular 
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importance when recording sessions need to be short and the amount of EEG data 

collected is minimal, as for instance is the case when testing clinical populations or 

children (McMenamin et al., 2011) 

Many ICA based EEG denoising algorithms have been developed for visual stimuli, 

as well as muscle activity, cardiac signals, electrode noise, etc. Regressing out muscle 

artefacts is most difficult as muscle signals derive from numerous muscle groups 

which require different reference channels.  

ICA procedures are based on the expectation that the signals recorded on the scalp are 

mixtures of temporally independent cerebral and artefact signals.  These arise from 

different parts of the brain, scalp, and body; and are summed linearly at the electrodes 

(Lee, 1998).  Jung et al developed a numerical tool that decomposes EEG data in 

blocks of sources with maximally independent time series, and so have suggested an 

automatic ICA-based algorithm to identify EEG artefacts (Jung et al., 1998).  Makeig 

et al. (Makeig et al., 1996) found that ICA could be used to automatically separate 

neural activity from muscle and blink artefacts in multichannel recordings (Makeig et 

al., 1997; Vigário, 1997).  Bell and Sejnowski, have created a technique to remove and 

isolate most EEG artefacts by linear decomposition using an extension of the ICA 

algorithm (Bell & Sejnowski, 1995).  

ICA does not need reference channels for each artefact source because it uses spatial 

filtering. When the independent time series of artefact sources are separated, these can 

be subtracted from the measured EEG data to remove the contributions of the artefact 

sources (Jung et al., 2000b). 

In the 1996, Jung said that regression in the time and frequency domains were applied 

to remove eye movement’s artefacts (Jung et al., 2000a).  
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Multichannel EEG activity is recorded at many places on the scalp and so includes 

some redundant information, i.e. the same brain activity is recorded at multiple 

electrodes.  The same is true for artefact signals.  When the triggers for brain activity 

and artefacts are independent, then ICA can be used to both separate brain signal and 

artefacts, and to perform some level of spatial averaging (Jung et al., 2000b; Makeig 

et al., 1996). 

4.3.2 Identification of Artefacts in EEG using ADJUST plugin  

Artefacts in EEG signals due to eye movements can be identified and eliminated using 

the ADJUST plug-in to the EEGLAB toolbox in Matlab, where ADJUST stands for 

Automatic EEG Artefact Detection Based on the Joint Use of Spatial and Temporal 

information. This tool isolates the artefact-specific temporal and spatial elements by 

automatically tuning the parameters of the EEG data. It is essential also to examine 

the separate component classification in the absence of any other information e.g. 

electrooculography (EOG) channels. The ADJUST plug-in performs the three key 

steps shown schematically in Figure 4.1 and described in the following paragraphs 

(Mognon et al., 2011). 
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Figure 4.1 The architecture of the ADJUST algorithm a generic detector with one spatial and 
one temporal feature (Mognon et al., 2011).  

It is assumed that a sequence of q measured time series random variables described by 

the function 𝐆(𝑡) = [ 𝑔1(𝑡), … . , 𝑔𝑞 (𝑡)]
𝑇
is obtained by linear combination of 𝑝  

independent source signal time series  𝐒(𝑡) = [ 𝑆1,… , … 𝑆𝑝(𝑡)]
𝑇
.  In order to obtain a 

unique independent decomposition, the number of observations q must be greater than 

the number of independent source signals (i.e. p ≤ q).  The source signals can be non-

Gaussian or non-white in time (Lee et al., 1999; Belouchrani et al., 1997). 

The ICA model can be described by equation (4.1): 

   𝐆(𝑡) = 𝐀𝐒(𝑡) + 𝑵(𝑡)             (4.1) 
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where the observations 𝐆(𝑡) can be obtained by combining the source signals 

𝐒(𝑡) using a constant [𝑞 × 𝑝] matrix 𝐀, termed the mixing matrix, with addition of the 

white noise vector 𝐍(𝑡), which is ignored in some implementations. The mixing 

matrix is full column-rank (𝑟(𝐀) = 𝑝). 

On the basis of these assumptions, a solution to the problem of isolating the ICA 

components can be realised, and the independent components (ICs) approximated, by 

determining a [𝑝 ×  𝑞] matrix 𝐖, termed the unmixing matrix. The product of 𝐖 and 

the function 𝐆(𝑡)  gives the source signal time series 𝐒(𝑡) as stated in equation (4.2):

   𝐒(𝒕) = 𝐖𝐆(𝒕)              (4.2) 

In contrast to Principal Component Analysis, ICA is non-linear and, hence, its solution 

requires non-linear optimisation. 

The INFOMAX algorithm is based on a learning rule which minimizes the mutual 

information between source signal estimates. This algorithm has been used by (Bell & 

Sejnowski, 1995) to implement ICA within the ADJUST plug-in in EEGLAB. 

4.3.2.1 ADJUST Features Computation 

With respect to spatial and temporal features, Figure 4.2 indicates the most suitable 

acquired behaviour of the ICs associated with four types of artefacts, namely: eye-

blinks, horizontal eye movements, vertical eye movements and generic discontinuities. 

These are described in the following sections. 
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Figure 4.2 The areas of scalp used in the ADJUST computation of spatial features for the 
automatic detection of spatial-temporal EEG artefact. Left: Frontal area (green) and posterior 
area (blue). Right: Left eye area (yellow) and right eye area (purple). The red dots indicate 

channel positions in the validation dataset (Mognon et al., 2011). 

4.3.2.1.1 Eye Blinks 

Eye blinks generally create sudden jumps in the signal amplitude in frontal electrodes. 

Since the kurtosis (the third statistical moment) is highly sensitive to outliers in the 

amplitude distribution, this measure satisfactorily encapsulates the time period of eye 

blinks ((Barbati et al., 2004; Delorme et al., 2007). Because the presence of slow drifts 

in amplitude would impede its sensitivity to sudden jumps, the kurtosis is first 

calculated within individual trial epochs after subtracting the epoch mean, and 

subsequently averaged over epochs: such that their average is very low, resulting in a 

spuriously high value of the spatial average difference (SAD), as indicated in equation 

(4.3): 

 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  𝑡𝑟𝑖𝑚_𝑎𝑛𝑑_𝑚𝑒𝑎𝑛 ⟨
⟨𝐒𝐢 (𝒕)𝟒 ⟩ 𝒆𝒑

〈𝐒𝐢  (𝒕)𝟐⟩
𝒆𝒑

𝟐 − 3⟩

𝐢

          (4.3) 

where Si(𝑡)  is the IC time series given by equation (4.2) within the ith epoch, the 

brackets ⟨… ⟩ 𝑒𝑝  indicate the average within an epoch, and  𝑡𝑟𝑖𝑚_𝑎𝑛𝑑𝑚𝑒𝑎𝑛 ⟨… ⟩ 𝑖  
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indicates the average across epochs calculated after removal of up to 1% of the 

samples. According to (Mognon et al., 2011), this measure is preferable to the simple 

average because the latter would be too sensitive to bogus outliers.  

The spatial topography of blink ICs is described by the SAD, a measure which is 

particularly sensitive to epochs in which the frontal areas display higher amplitudes 

than the posterior areas. It is given by equation (4.4): 

 

 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =   |⟨𝒂 ⟩𝑭𝑨| −  |⟨𝒂 ⟩𝑷𝑨|          (4.4) 

where 𝒂  is the vector of IC topography normalised across the scalp, ⟨… ⟩𝐹𝐴 is the 

average over all channels in the frontal area (FA) and ⟨𝒂 ⟩𝑃𝐴 is the average over all 

channels in the posterior area (PA) as indicated in Figure 4.2 (Mognon et al., 2011). 

Two further controls are applied, as follows: 

1) In order to distinguish between blinks and horizontal eye movements, the average 

IC topography weights over the left eye (LE) area must have the same sign as those 

over the right eye (RE). 

2) The variance of scalp weights in the FA must be greater than those in the PA. This 

control is stated computationally in equation (4.5), which should be positive for eye 

blink components: 

 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  (⟨𝒂𝟐  ⟩
𝑭𝑨

− ⟨𝒂 ⟩𝟐
𝑭𝑨) − (⟨𝒂𝟐  ⟩

𝑷𝑨
− ⟨𝒂 ⟩𝟐

𝑷𝑨)        (4.5) 

This control is essential in avoiding false positives; in cases where the IC weights 

across the PA encompass both positive and negative values, their average would be 

extremely low and, hence, the SAD would be spuriously high. 
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4.3.2.1.2 Vertical Eye Movements 

Since vertical eye movements give rise to large amplitude fluctuations in the frontal 

channels that are generally slower than those produced by blinks, they are not readily 

identifiable by the kurtosis. They are, however, adequately identified via a temporal 

characteristic based on the signal variance within each epoch. This maximum epoch 

variance (MEV) is given by equation (4.6):  

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑝𝑜𝑐ℎ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
𝑡𝑟𝑖𝑚 𝑎𝑛𝑑 max  ( ⟨ Si (𝑡)2 ⟩

𝑒𝑝
 − ⟨ Si (𝑡)2 ⟩

𝑒𝑝
)

𝑖
  

𝑡𝑟𝑖𝑚 𝑎𝑛𝑑 𝑚𝑒𝑎𝑛 ( ⟨ Si (𝑡)2 ⟩
𝑒𝑝

   − ⟨ Si (𝑡)2 ⟩
𝑒𝑝

)
𝑖

          (4.6) 

where  𝑡𝑟𝑖𝑚 𝑎𝑛𝑑 𝑚𝑎𝑥 (… )𝑖 is the maximum value of the trimmed vector of variance 

within the epochs.  As with kurtosis, the MEV is preferable to the simple maximum 

since the latter would be over-sensitive to bogus outliers. In order to more effectively 

identify the difference from the baseline behaviour of the time series, the MEV is 

normalised relative to the average of trimmed variance values,

𝑡𝑟𝑖𝑚 𝑎𝑛𝑑 𝑚𝑒𝑎𝑛 ( . . )𝑖, as in the above description of Temporal Kurtosis (TK). 

Moreover, the similarity between the spatial distributions of artefacts due to vertical 

eye movement and blink artefacts means that the SAD is again used and the same 

additional controls are applied. In Figure 4.3, vertical eye movement artefacts are 

identified by ADJUST via MEV crossing the threshold, while IC is identified as a 

blink artefact via SAD and TK crossing the threshold. 
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Figure 4.3  Detection of vertical eye movements and eye blinks by ADJUST.  The IC were 
categorized as a vertical eye movement and Eye blinks because of both features associated 

with SAD, MEV and TK obviously cross threshold (Mognon et al., 2011). 

4.3.2.1.3 Horizontal Eye Movements 

The time series of artefacts resulting from horizontal eye movement is comparable to 

that produced by vertical eye movement; hence, the same temporal feature is used, 

namely the 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑝𝑜𝑐ℎ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (MEV) in equation (4.6). The spatial 

distribution is typified by large amplitude signals in the frontal channels close to the 

eyes, generally in opposite phases (i.e. one positive and one negative). The spatial 

average difference is sensitive to this pattern and is given by equation (4.7):  

 𝑆𝑝𝑎𝑡𝑖𝑎𝑙  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =   |⟨𝐚 ⟩𝐿𝐸| − |⟨𝐚 ⟩𝑅𝐸|         (4.7) 

where ⟨… ⟩𝐿𝐸  and ⟨… ⟩𝑅𝐸 indicate the average overall channels in the LE and RE areas 

respectively.  
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In order to verify that the amplitudes are in opposite phases, the additional control is 

applied that the average of the IC topographic weights in the LE and RE must differ 

in sign. In Figure 4.4, artefacts due to horizontal eye movement were identified by 

ADJUST via SAD and MEV crossing the threshold. 

 

 

Figure 4.4 Horizontal eye movements detected by ADJUST.  The IC were categorized as a 
horizontal eye movement because both features associated with HEM, SED and MEV 

obviously cross threshold (Mognon et al., 2011).  

4.3.2.1.4 Generic Discontinuities 

Variations in impedance or interference from electronic devices generally lead to 

artefacts characterised by abrupt amplitude variations in one channel, with no spatial 

bias. The time series of this artefact is encapsulated by  𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑝𝑜𝑐ℎ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒  

(MEV) in equation (4.6), while its spatial distribution is encapsulated by the generic 
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discontinuities spatial feature in equation (4.8) which is sensitive to local spatial 

discontinuities: 

𝐺𝑒𝑛𝑒𝑟𝑖𝑐 𝐷𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑖𝑒𝑠 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 =  max( |𝐚𝑛  −  ⟨𝐾𝑚𝑛𝐚𝑛 ⟩𝑚|
n)              (4.8) 

where 𝐚𝑛 is the 𝑛th topography weight, nmax(...) is the maximum over all channels 𝑛 

of the scalp, and the factor 𝐾𝑚𝑛  declines exponentially with distance (i.e. 

⟨𝐾𝑚𝑛 = exp( − ||𝑦 
𝑚

− 𝑦𝑛||), where  ||𝑦 
𝑚

− 𝑦𝑛|| between channel 𝑚 and channel 

𝑛 is the average over all channels 𝑚 ≠ 𝑛). 

4.4 Conclusions 

ADJUST is state-of-the-art in EEG ERP artefact reduction.  It uses some spatial 

information to identify and reduce artefacts.  However, It has been used to produce 

reasonable spatial heuristics, rather than optimally combining spatial information. 

ADJUST can greatly reduce some artefacts, and can be used as a pre-processor before 

more sophisticated artefact reduction. 
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Chapter 5  PCA Filtering of Auditory 

Event-Related Potentials 

5.1 Introduction 

Auditory event-related potentials (ERPs) are contaminated by a variety of artefacts 

and noises, making it difficult to separate ERPs from other brain signals, biological 

signals such as muscle (EMG) and eye movements, artefacts due to electrode and 

equipment movement, and interference from other systems. In measurements from 

ambulatory EEG (AEEG) systems, the artefacts are often even larger and more 

frequent than for a static system.  However, there is increasing interest in the 

measurement of ERPs while individuals engage in the physical activities associated 

with normal living (Bateson et al., 2017). 

Typically, individual ERP measurements are too noisy to allow ERPs to be observed. 

ERP signals may have peaks of several micro-Volts (μV), while noise artefacts can 

have peaks of tens or hundreds of μV.  Often, ERPs from many repeated 

measurements, on single or multiple individuals, are averaged before clinically 

important features can be observed.  Important features include the positive and 

negative voltage peaks, often labelled N100, P200, P300 etc. (Luck, 2005). A 20-

electrode EEG system provides 19 channels of differential ERP measurement from 

different standard locations on the scalp (Luck, 2005; Debener et al., 2012).  Each 

electrode measures the same brain reaction, but filtered due to the electrode position 

and the intervening tissue, plus noise.  A method is introduced that allows averaging 

across channels.  Although each channel sees a different view of the ERP response, a 

priori knowledge of the signal correlations allows the channels to be combined to yield 

the best estimate of the underlying ERP.  
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Principal Component Analysis (PCA) has been applied to ERP signals before.  PCA 

was used for reducing ocular artefacts in ERP signal by subtracting the principal 

component related to eye artefacts such as eye-blinks, horizontal eye movements and 

vertical eye movements from raw EEG data (Costa et al., 2014; Casarotto et al., 2004). 

The Electrooculogram (EOG) signal is a large noise artefact in measured EEG data 

and for frontal electrodes has an amplitude much larger than brain signals.  Reducing 

the EOG component of the measured EEG signal is vital when observing ERPs. The 

Casarotto et al. PCA method yielded efficient and effective reduction of EOG artefacts 

(Casarotto et al., 2004). Similarly, Kobayashi and Kuriki employed PCA to increase 

the signal-to-noise ratio (SNR) in evoked neuromagnetic signals applied to subjects. 

Using simulated evoked fields they demonstrated SNR improvement compared to the 

common averaging method (Kobayashi & Kuriki, 1999). 

Kalman filtering was developed by Kalman in 1960 for parameter estimation and has 

been widely applied to parameter tracking applications in many fields.  It yields the 

maximum likelihood estimator given a priori and posteriori estimates of parameter 

vectors, (Kalman, 1960).  Kalman Filters (KF) have been applied to EEG time series. 

Kalman Smoothing has been applied to EEG signals to identify spikes associated with 

psychological diseases, (Oikonomou et al., 2009). Oikonomou found that there is a 

significant enhancement in EEG SNR when using time-varying coefficients for an 

autoregressive model signal, estimated using Kalman filtering (Oikonomou et al., 

2007). 

In this chapter, PCA bases are calculated in two different seniarios: 

1. PCA basis for each channel of ERP signal; 

2. PCA basis for all channels of ERP signal concatenated. 
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The chapter begins by introducing a method to produce synthetic multi-channel ERP 

signals in section 5.2.  These synthetic signals are used to quantify the performance of 

the proposed ERP estimation method. Section 5.3 describes the calculation of PCA 

bases for each channel ERP signal and the calculation of the covariance of channel 

PCA basis weights.  The projection of ERP signals onto PCA bases, and the filtering 

it provides, are described in Section 5.3.1.  Section 5.3.2 introduces Kalman filtering 

to provide the optimal combination of PCA filtered channel ERPs and the a priori 

expected multi-channel ERP.  Finally, Sections5.3.3 test the algorithms with synthetic 

signals and noises and this is followed by a discussion section.  

Then we have introducing same a method to produce synthetic multi-channel ERP 

signals in section 5.2.  These synthetic signals are used to quantify the performance of 

the proposed ERP estimation method. Section 5.4.1 describes the calculation of PCA 

bases for all channel ERP signal and the calculation of the covariance of all channel 

PCA basis weights.  The projection of ERP signals onto PCA bases, and the filtering 

it provides, is described in Section 5.4.1.  Section 5.4.2 introduces Kalman filtering to 

provide the optimal combination of PCA filtered channel ERPs and the a priori 

expected multi-channel ERP.  Sections 5.4.3 test the algorithms with synthetic signals 

and noise. Finally, consideration is given to the combining of results from many trials 

to estimate the underlying ERP.  

5.2 Multi-Channel ERP Simulation   

When the brain responds to a stimulus, electrical signals move around the part of the 

brain involved in processing that stimulus.  This could be modelled as a movement of 

charge or the movement, rotation and evolution in strength, of one or more electrical 

dipoles.  Electrodes attached to the scalp measure the electric potential on the surface 

due to this brain activity.  The multi-channel simulator assumes that all channels 
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measure the same underlying brain process, but filtered by the bone and tissue between 

the activity and the electrode on the scalp.  Therefore, many features of the ERP 

response will be consistent across channels.  For example, the P300 response is 

assumed to be measured at the same time on all channels.  Similarly, the response 

amplitude is assumed to vary proportionately across all channels.  It is the resulting 

correlation across channels that will be exploited in the proposed algorithm introduced 

below. 

The ERP signal on each channel is approximated by a sum of Gaussian pulses: 

   𝐸𝑖(𝑡) = ∑ 𝐴𝑖𝑗 𝑓(𝑡; 𝑡𝑗, 𝜎𝑗)𝑁𝐺
𝑗=1            (5.1a) 

   where 𝑓(𝑡; 𝑡𝑗, 𝜎𝑗) = 𝑒𝑥𝑝 (−
1

2𝜎𝑗
2 (𝑡 − 𝑡𝑗)

2
)        (5.1b) 

   𝐸𝑖 is the pure ERP signal measured on the ith channel, for a particular trial.  For this 

project, three pulses were used i.e. 𝑁𝐺 = 3; corresponding to the N100, P200 and P300 

responses.  The three parameters for each pulse : 𝐴𝑖𝑗, 𝑡𝑗, and 𝜎𝑗; specify the amplitude, 

centre time and width of each of the Gaussian pulses respectively.  For each trial, these 

parameters are determined from six independent samples from a Standard Normal 

distribution: 𝑧𝑘 ← 𝑁(0,1),𝑘 = 1, ⋯ ,6. 

   𝐴𝑖𝑗 ← 𝐴̅𝑖𝑗 × (1 + 0.1𝑧𝑗) , j=1,2,3          (5.2a) 

   𝑡𝑗 ← 𝑡𝑗̅ + 10𝑧𝑗+3 , j=1,2,3          (5.2b) 

 The 2D array 𝐴̅𝑖𝑗 is preset with amplitudes that reflect the spatial-channel 

dependence of the responses.  Each of the N100, P200 and P300 response amplitudes 

are assumed to vary independently, from trial to trial and from each other.  However, 

for any trial, the amplitudes are consistent across channels.  Similarly, the response 

peak times are assumed to vary independently but are the same for all channels.  The 

mean peak times are: 𝑡𝑗̅ = {100,200,350} 𝑚𝑠 and the peak widths are 𝜎𝑗 =
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{50,30,75} 𝑚𝑠.  These parameters have been chosen to match the ERP responses in 

(Luck, 2005; Debener et al., 2012) . For 3 Gaussians and 19 differential measurements, 

the mean peak amplitude array used is:  

𝐴̅
𝑖𝑗 = [

18 17 53
18 17 53
30 40 53

  
85 110 90
85 110 90
85 160 130

  
55 85 170
55 85 170
55 85 190

  
190 180 60
210 180 60
220 180 60

⋯ 

54 160 100
54 160 120
54 160 200

  
95 52 12
95 52 12

155 52 20

  
11
11
18

] × 10−2 𝜇𝑉 

Figure 5.1 illustrates a typical synthetic multi-channel ERP response. 

 

Figure 5.1 Synthetic ERP Signal for 19 channels. Three parameters for N100, P200 and 
P300 specify the amplitude, centre time and width of each of the Gaussian pulses 

respectively for 19 channels across the head.   
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5.3 PCA basis for each Channel of ERP Signal. 

The PCA basis is calculated from ERP trial data for each channel.  Each channel ERP 

signal can then be expressed as a weighted sum of PCA basis signals.  Finally, the 

covariance of channel PCA basis weights is calculated.  In this section, the 

multichannel ERP simulator is used to test the use of PCA data to filter noisy ERP 

data. 

5.3.1 Principal Component Basis for Individual Channels 

An ERP measurement on a single channel yields a discrete voltage time series 𝐄 ∈

R𝑁𝑠   , of  𝑁𝑠  samples.  If a set of   𝑁𝑡  ERP measurements is available, then an uncentred 

covariance matrix 𝐂 ∈ R𝑁𝑠 ×𝑁𝑠  may be estimated.  This matrix provides information on 

the joint probabilities of sample values.  The Eigenvectors of the covariance matrix 

are the principal component (PCA) basis signals.  The Eigenvalues indicate how much 

of the variation between signals comes from components along PCA basis directions.  

Typically, the first few PCA basis signals span a large majority of the variation in the 

ERP responses.  Later basis signals span the noise.  Projecting the ERP signal on the 

subspace spanned by the first few PCA basis signals will keep many of the features of 

the ERP signal while greatly reducing the noise.  Let 𝐁 ∈ R𝑁𝑠 ×𝑁𝑏 be a matrix whose 

𝑁𝑏 columns are the first 𝑁𝑏 PCA basis vectors of length 𝑁𝑠  samples, for a particular 

channel.  The first PCA basis vector is the mean ERP signal:  𝐄̅.  Projecting the 

measurement vector onto the subspace spanned by the PCA basis vectors to get a 

vector of PCA basis weights 𝐀 ∈ R𝑁𝑏   can be written in matrix notation as: 

   𝐀 = 𝐁𝐭𝐄                (5.3) 

and the projected signal is: 

   𝐄𝑝𝑐𝑎 = 𝐁𝐀 = 𝐁𝐁𝐭𝐄.                (5.4) 
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When the PCA weights are to be filtered, then a diagonal filter matrix 𝐅 ∈ R𝑁𝑏 ×𝑁𝑏  

may be introduced: 𝐅 ≡ 𝑑𝑖𝑎𝑔(𝑓𝑖).  The filter weights can be chosen to yield a smooth 

truncation to avoid Gibbs ringing e.g. 𝑓𝑖 = 𝑒𝑥𝑝 (− (𝑖 − 𝑇𝑝𝑐𝑎)
2

2⁄ ) where 𝑇𝑝𝑐𝑎 is the 

truncation basis number.  The PCA filtered ERP signal may be written: 

   𝐄𝐩𝐜𝐚
𝐟 = 𝐁𝐅𝐀 = 𝐁𝐅𝐁𝐭𝐄.                (5.5) 

If 𝐄 ∈ R𝑁𝑠 ×𝑁𝑡  is a matrix whose 𝑁𝑡 columns are ERP measures from 𝑁𝑡 trials, then 

(6.5) yields 𝐄𝐩𝐜𝐚
𝐟 ∈ R𝑁𝑠 ×𝑁𝑡 : a matrix of the results after PCA filtering of each trial ERP 

measurement.  A weighted mean of ERP measurements may be calculated by 

introducing a weight vector 𝐖 ∈ R𝑁𝑡  where:  𝐖 ≡ (𝑤𝑖).  The weighted mean ERP 

measurement may be written: 𝐄̅ = 𝐄𝐖, and the PCA filtered mean measurement is: 

   𝐄̅𝐩𝐜𝐚
𝐟 = 𝐁𝐅𝐀̅ = 𝐁𝐅𝐁𝐭𝐄𝐖.               (5.6) 

Due to the associative property of matrix multiplication, 𝐁𝐅𝐁 𝐭(𝐄𝐖) = (𝐁𝐅𝐁𝐭𝐄)𝐖, 

and so the weighted mean of the PCA filtered ERP responses is the same as the PCA 

filtered weighted mean ERP response. 

Figure 5.2 illustrates the first 5 basis functions for the Fz channel, derived using ERP 

trial data produced using the multichannel simulator with additive white Gaussian 

noise. 
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Figure 5.2 Principal Component Basis for channel Fz, derived using ERP trial data produced 
using the multichannel simulator with additive white Gaussian noise. 

5.3.1.1 Multi-Channel Information 

Using the multi-channel ERP simulator introduced in Section 5.2, PCA bases can be 

calculated for each channel using the methods described in Section 5.3.1.  As the 

underlying ERP signals have so much in common, the PCA bases and PCA projection 

weights 𝐀 will also have similarities.  For a given trial j, the PCA projection weights 

for each channel i  can be collected into a vector:  ijj AX  , where 𝐀𝑖𝑗  is the vector 

of 𝑁𝑏  PCA basis weights for channel i in trial j.   The vector 𝐗𝑗 ∈ R𝑁𝑐 𝑁𝑏 ×1, where 𝑁𝑐 

is the number of channels.  The collection of X vectors for the 𝑁𝑡 trials allows a mean 

and covariance matrix to be estimated: 

   𝐗 = mean({𝐗𝑗}, 𝑗 = 1, ⋯ 𝑁𝑡)              (5.7) 
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   𝐂𝐗 = cov({𝐗𝑗}, 𝑗 = 1, ⋯ 𝑁𝑡)             (5.8) 

The covariance matrix encapsulates all knowledge of the correlation between ERP 

components on all channels.  The mean state vector is our a priori best estimate of the 

multi-channel ERP PCA basis weight vector. 

5.3.2 ERP Estimation 

This section follows the conventional notation of Kalman Filtering, applied to an 

individual PCA filtered ERP measurement i.e. an individual subject and trial.  All the 

channels, as described by the state vector X, are estimated at the same time using an 

algorithm we call PCAKF.  The estimation forms an optimal weighted sum of two 

sources of information: the a priori X and the measured X. 

A priori, an ERP state vector is a sample from the multi-dimensional Normal 

distribution with mean X and covariance XC .  In the absence of any further 

information, the maximum likelihood estimate of the ERP signal is that given by the 

mean vector X .  In terms of Kalman Filters the X and XC  correspond to 1/ kkX and 

1/ kkP . 

Given an ERP measurement on all channels, for a given subject and trial, a measured 

vector 𝐗𝑗 can be calculated using the processes in Section 5.3.  The measurement has 

an uncertainty covariance matrix 𝐑𝑗 that is estimated from the difference between the 

filtered PCA estimate and the measurements, see Section 5.3.2.1.   Given the a priori 

knowledge of ERP and the information provided by the measurement process, an 

estimate of the particular ERP for this subject and trial 𝐗𝑗, can be calculated by solving 

(5.9) for K and then using (5.10):     

   𝐊(𝐂𝐗 − 𝐑𝑗) = 𝐂𝐗 ,             (5.9) 
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   𝐗 𝐣 = 𝐗̂ 𝐣 + 𝐊(𝐗𝑗 − 𝐗) = 𝐂𝐗          (5.10) 

5.3.2.1 Estimation of Measurement Uncertainty  

In order to implement Kalman Filtering, it is necessary to develop an estimate of the 

PCA filtered measurement uncertainty in a single ERP measurement.  If 𝐀𝐩𝐜𝐚
𝐟 = 𝐅𝐁 𝐭𝐄 

are the filtered PCA measurement weights, then we need to estimate the measurement 

uncertainty matrix 𝐂𝐀 ∈ R𝑁𝑏 ×𝑁𝑏  such that the probability density function for the 

actual ERP PCA weight vector, given the measurement, is multi-variate Normal with 

mean 𝐀𝐩𝐜𝐚
𝐟  and covariance 𝐂𝐀

𝐟 .  It will be assumed that the noise in the ERP 

measurement is uniformly distributed across the unfiltered PCA basis weights, 

assuming a full PCA basis of rank 𝑁𝑠  .  Let 𝑛𝑖
2   be the noise power or variance in the 

ith PCA weight.  Then, by Parseval's Theorem: 

   𝑁2 = ∑ 𝑛𝑖
2𝑁𝑠

𝑖=1             (5.11) 

where 𝑁2  is the noise power in the measured ERP signal.  This can be estimated by 

assuming the noise is close to the difference between the measured ERP signal and the 

PCA filtered signal: 

   𝑁2 ≈ ‖𝐄𝐩𝐜𝐚
𝐟 − 𝐄‖

2
.           (5.12) 

Given (6.11) and the assumption of uniform distribution of noise, then for all i:  

   𝑛𝑖
2 =

𝑁2

𝑁𝑠
≈

‖𝐄𝐩𝐜𝐚
𝐟 −𝐄‖

2

𝑁𝑠
.             (5.13) 

The covariance in the unfiltered PCA weights is then: 

   𝐂𝐀 = 𝑛𝑖
2𝐈𝑁𝑏.              (5.14) 

where 𝐈𝑁𝑏
 is the identity matrix of rank 𝑁𝑏 , and the covariance of the PCA filtered 

ERP is:  
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   𝐂𝐀
𝐟 = 𝑛𝑖

2𝑑𝑖𝑎𝑔(𝑤𝑖
2).             (5.15) 

The multi-channel uncertainty matrix 𝐑𝒋 that is the block diagonal matrix formed from 

the individual channel uncertainty matrices i.e. 𝐑𝒋 = diag (𝐂𝐀𝟏

𝐟 , 𝐂𝐀𝟐⋯
𝐟 𝐂𝐀𝐍𝐜

𝐟 ) 

5.3.3 SNR Performance for Individual Channels 

A simulated 20 channel AEEG system, with a 1 kHz sample rate, has been used to test 

the performance of the PCA and PCAKF filters.  The channel PCA bases, mean PCA 

weights vector 𝐗 and weights covariance matrix 𝐂𝐗 were calculated using 100 

simulated multichannel ERP signals.  Each channel signal is sampled from 200 ms 

before the stimulus to 800 ms after.  In Monte Carlo tests, synthetic noise was added 

to the synthetic signals to simulate 100 ERP measurement trials for a range of noise 

scenarios.  The ERP signal and synthetic noise were different for every trial.  Three 

noise scenarios have been tested: additive white Gaussian noise (AWGN), additive 

pink Gaussian noise (APGN), and AWGN noise with amplitude varying with channel.  

All noise was band limited to a maximum frequency of 15 Hz before SNR calculations.  

Signal and noise powers were defined to be the mean square amplitude of the 1000 

sample signal sequences.   

Figure 5.3 illustrates a single channel with band limited AWGN with an initial SNR=0 

dB.  The black curve is the synthetic ERP signal produced by the multi-channel 

simulator, and for these tests can be taken as the true, noise-free ERP signal.  The red 

curve is the measured signal including synthetic noise.  PCA filtering reduces the noise 

in the signal by removing PCA components that are largely noise.  In this example the 

PCA components are smoothly truncated around the 10th basis signal using Gaussian 

weights.  This signal is further combined with the expected signal using a Kalman 

Factor to yield the green curve.  Although only one channel is illustrated, the algorithm 
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mixes information from all channels. All channels had the same initial SNR although, 

as the channel ERP signals have different amplitudes, the noise amplitudes will also 

change between channels.   Figure 5.4 shows the SNR improvement with filtering, 

starting from a range of initial SNRs.  PCA filtering (solid lines) yields about a 10 dB 

SNR improvement just by rejecting components that are predominantly noise.  

PCAKF (dashed lines) yields a further improvement of about 7 dB for relatively clean 

signals and the improvement grows linearly for noisy signals where the measured 

signal is largely disregarded and the a priori expected signal is returned as the most 

likely response.  Note that some of the noise reduction comes from the projection 

method forcing the ERP signal to be zero before the stimulus and after the expected 

ERP response.  A shorter time span, say from -100 ms to 500 ms, would yield a smaller 

SNR improvement. 

 

 

Figure 5.3 Measured, filtered and true channel 10 ERP signal for band limited AWGN, 
SNR=0 dB.  The black curve is the synthetic ERP signal produced by the multi-channel 

simulator, and for these tests can be taken as the true, noise-free ERP signal. The red curve 
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is the measured signal including synthetic white noise.  PCA filtering reduces the noise in 
the signal by removing PCA components that are largely noise. This signal is further 
combined with the expected signal using a Kalman Factor to yield the green curve.   

 

Figure 5.4 Change in SNR Due to PCA and Kalman Filtering for AWGN, for all channels. 
The SNR improvement with filtering, starting from a range of initial SNRs.  PCA filtering 
(solid lines) yields about a 10 dB SNR improvement just by rejecting components that are 
predominantly noise.  PCAKF (dashed lines) yields a further improvement of about 7 dB. 

Figure 5.5 illustrates the results for the same experiment but using pink noise across 

all channels.  Pink noise is much more challenging as it has more power at the lower 

frequencies, which overlap more with the expected ERP signal.  However, both PCA 

projection and Kalman filtering offer similar SNR improvements as with AWGN. 
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Figure 5.5 Change in SNR Due to PCA and Kalman Filtering for APGN.  The SNR 
improvement with filtering, starting from a range of initial SNRs with APGN.  PCA filtering 
and PCAKF (dashed lines) yields an improvement offer similar SNR improvements as with 

AWGN. 
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Figure 5.6  Change in SNR Due To PCA and Kalman Filtering where channels 1, 2 and 3 
have an initial SNR=0 while the other channels have an SNR=10. PCA filtering yields the 
same SNR improvement on all channels as the same noise amplitude exists in all the PCA 

bases.  However, Kalman Filtering uses the cross-channel information and yields much 
higher SNR improvement in the three noisy channels. 

Finally we consider the case where the initial SNR is not the same across all channels.  

This is typically the situation where noise is due to electrode connection problems, 

electrode movement or for biological signals such as eye-blink artefacts.  Eye-blinks, 

in particular, affect the channels at the front of the head much more strongly than those 

further back.  PCAKF filtering has the large advantage of utilizing expected 

correlations between all channel signals.  Noisy channels are identified as part of the 

algorithm and the filtered signals on these channels are guided by the signals measured 

on the less noisy channels.  This is illustrated in an example where channels 1, 2 and 

3 (Fp1, Fp2 and F7) have initial SNR=0 dB while the other channels have SNR=10 

dB.  For this test, AWGN was used.  PCA filtering yields the same SNR improvement 

on all channels as the same noise amplitude exists in all the PCA bases.  However, 
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Kalman Filtering uses the cross-channel information and yields much higher SNR 

improvement in the three noisy channels.  In effect the algorithm reconstructs the 

signals on these channels from the more reliable information measured on the 

relatively clean channels.  

5.3.4 Discussion  

There are many methods applied to treat EEG signal from noise and separating signal 

from artefacts. Principal component analysis (PCA), independent component analysis 

applied in many biological signals for instant ECG and EMG (ICA) were used in many 

application of EEG signal. Many ECG applications are revised where PCA procedures 

have been efficaciously employed for the detection of some abnormality of heart 

function and heart diseases such as atrial fibrillation, myocardial ischemia and 

abnormalities in ventricular depolarization. (Castells et al., 2007). PCA were applied 

successfully for ECG Modelling and QRS Detection (Chawla et al., 2006).  PCA were 

applied in ECG and validated SNR improvements so it has been decided to apply that 

in ERP measurement to EEG signal.  The success of PCA in ECG signal lead us to 

applied PCA in EEG signal as well.   

This chapter presents a synthetic multichannel ERP simulator.  The simulator has been 

used to demonstrate the SNR improvements produced by two denoising filter 

processes.  Initially, PCA bases are calculated for each channel. In practice this would 

be done using a set of clean ERP signals derived from averages over many trials from 

many individuals.  We have used synthetic ERP signals as these allow SNR 

improvements to be calculated.  PCA filtering reduces artefact noise by projecting 

measured ERP signals onto low dimensional subspaces spanned by the first 10 

principal component signals in each channel.  A smooth truncation was used to reduce 

Gibbs ringing.  In these tests, PCA projection increased SNR by about 10 dB for both 
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white and pink Gaussian noise.  In a second stage, the PCA projection weights were 

optimally combined with a priori weights using knowledge of the estimation 

uncertainty, the expected covariance of weights and a Kalman factor.  In effect, this 

uses information from all channels to reduce noise in each channel.  The method was 

demonstrated in a scenario where three channels initially had 10 dB more noise than 

the others, to simulate eye-blink artefacts.  After PCAKF filtering, all channels had 

near the almost SNR.  This method provides a new way to interpolate missing channels 

that is much more sophisticated than methods based on weighted sums of adjacent 

channels.  We propose to use PCAKF filtering on real data as a preprocessor, before 

combining trial outputs in a statistically optimised way to estimate ERP signals in the 

minimum number of trials. 

5.4 PCA basis for all channels of ERP signal 

The previous method calculated a PCA basis for each channel independently.  This 

resulted in a state vector with 𝑁𝑐𝑁𝑏  elements.  The matrices that needed to be solved 

during KF were square and of this size.  Here an alternative, more computationally 

efficient method is presented.  The channel time series are concatenated to yield a long 

measurement vector of length  𝑁𝑐𝑁𝑠.  A single PCA basis is calculated for the trial 

long measurement vectors.  The number of significant basis vectors is much less than 

the 𝑁𝑐𝑁𝑏   required in the previous method.  As matrix manipulations often require 

 3O n  calculations, large computational savings are made during KF.  In the 

development that follows, many of the equations and symbols are unchanged, but need 

to be interpreted given the new definition of measurement vector.  In particular, the 

number of basis vectors,  𝑁𝑏, will be larger as the basis vectors now span all the 

channel measurements. 
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5.4.1 Principal Component Basis for ERP Measurements for all Channels 

As previously, an ERP measurement on a single channel, for the kth trial, yields a 

discrete voltage time series 𝐄𝑖𝑘 ∈ R𝑁𝑠   , of  𝑁𝑠  samples.  The measurement vector 

𝐄𝑘 ∈ R𝑁𝑐 𝑁𝑠 ×1 from the kth trial can be formed from stacking the ERP measurements 

from  𝑁𝑐 channels.  If a set of   𝑁𝑡  ERP measurement vectors is available, then a mean 

vector and uncentred covariance matrix CE ∈ R𝑁𝑐 𝑁𝑠 ×𝑁𝑐 𝑁𝑠  may be estimated: 

   𝐄̅ = mean({𝐄𝒌}, 𝒌 = 𝟏,⋯ 𝑵𝒕)         (5.16) 

   𝐂𝐄 = cov({𝐄𝒌},𝒌 = 𝟏,⋯ 𝑵𝒕)          (5.17) 

As before, the covariance matrix encapsulates all knowledge of the correlation 

between ERP samples on all channels.  The mean state vector is our a priori best 

estimate of the multi-channel ERP measurement vector. 

The PCA basis may be calculated from the covariance matrix of the concatenated 

channel measurement vectors.  Let 𝐁 ∈ R𝑁𝑐 𝑁𝑠 ×𝑁𝑏 be a matrix whose 𝑁𝑏 columns are 

the first 𝑁𝑏 PCA basis vectors of length  𝑁𝑐𝑁𝑠 samples.  The first PCA basis vector is 

the mean ERP signal:  𝐄̅.  Projecting the measurement vector 𝐄𝑘  onto the subspace 

spanned by the PCA basis vectors to get a vector of PCA basis weights X𝒌 ∈ R𝑁𝑏   can 

be written in matrix notation as: 

   𝐗𝒌 = 𝐁𝐭𝐄𝒌              (5.18) 

and the projected signal is: 

   𝐄𝒑𝒄𝒂 = 𝐁𝐗𝒌 = 𝐁𝐁𝐭𝐄𝒌.              (5.19) 

Given a diagonal filter matrix ∈ R𝑁𝑏 ×𝑁𝑏  , the PCA filtered ERP signal may be written: 

   𝐄𝐩𝐜𝐚
𝐟 = 𝐁𝐅𝐗𝒌 = 𝐁𝐅𝐁𝐭𝐄𝒌.            (5.20) 
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As the expressions have the same form as previously, the weighted mean of the PCA 

filtered ERP response vectors is the same as the PCA filtered weighted mean ERP 

response. 

Figure 5.7 illustrates the beginning of the first five PCA basis vectors. Only the part 

of each basis vector spanning the first two measurement channels is shown.  These 

basis vectors continue to span all 19 simulated channels. 

 

 

Figure 5.7 Sections of Principal Component Basis for first two channels of five PCA basis 
vectors. These basis vectors continue to span all 19 simulated channels. 

5.4.1.1 Multi-Channel Information 

As in 5.3.1.1, cross channel information is captured in the covariance of the filtered 

PCA weights.  For a given trial k, the filtered PCA projection weights can be calculated 

using: 
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   𝐗𝑘 = 𝐅𝐁 𝐭𝐄𝑘             (5.22) 

Given a set of   𝑁𝑡  ERP PCA projected and filtered weights, then a mean vector 𝐗 ∈

R𝑁𝑏 ×1and uncentred covariance matrix CX ∈ R𝑁𝑏 ×𝑁𝑏  may be estimated:  

   𝐗 = mean({𝐗𝒌}, 𝒌 = 𝟏, ⋯ 𝑵𝒕)            (5.23) 

   𝐂𝐗 = cov({𝐗𝒌}, 𝒌 = 𝟏, ⋯ 𝑵𝒕)            (5.24) 

5.4.2 PCAKF Applied to Multichannel measurement Vectors 

The mathematical expressions for PCA filtering and Kalman Filter estimation of the 

measured, multichannel ERP signal, are identical to those in the previous section 5.3.2.  

However, the projection weights vector is now of length N𝑏  rather than N𝑐 × N𝑏 , and 

the associated covariance and uncertainty matrices are of associated dimension. 

5.4.2.1 Estimation of Measurement Uncertainty 

We need to estimate the measurement uncertainty matrix 𝐑𝑘 ∈ R𝑁𝑏 ×𝑁𝑏  such that the 

probability density function for the actual ERP PCA weight vector, given the 

measurement, is multi-variate Normal with mean 𝐗𝐩𝐜𝐚
𝐟  and covariance 𝐑𝑘.  It will be 

assumed that the noise in the ERP measurement is uniformly distributed across the 

unfiltered PCA basis weights, and a full PCA basis of rank 𝑁𝑐 ×  𝑁𝑠  .  Let 𝑛𝑖
2   be the 

noise power or variance in the ith PCA weight.  Then, by Parseval's Theorem: 

   𝑵𝟐 = ∑ 𝒏𝒊
𝟐𝑵𝒔

𝒊=𝟏               (5.27) 

where 𝑁2  is the noise power in the measured ERP signal.  This can be estimated by 

assuming the noise is close to the difference between the long vector measured ERP 

signal and the PCA filtered signal: 

    𝑵𝟐 ≈ ‖𝐄𝐩𝐜𝐚
𝐟 − 𝐄𝒌‖

𝟐
.             (5.28) 
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Given (5.27) and (5.28) and the assumption of uniform distribution of noise, then for 

all i:  

    𝒏𝒊
𝟐 =

𝑵𝟐

𝑁𝑐 × 𝑁
≈

‖𝐄𝐩𝐜𝐚
𝐟 −𝐄𝒌‖

𝟐

𝑁𝑐 × 𝑁
.            (5.29) 

The covariance in the unfiltered PCA weights is then: 

    𝐑𝒌 = 𝒏𝒊
𝟐 𝐈𝑵𝒃.              (5.30) 

where 𝐈𝑁𝑏
 is the identity matrix of rank 𝑁𝑏 , and the covariance of the PCA filtered 

ERP is:  

    𝐑𝒌 = 𝒏𝒊
𝟐 𝒅𝒊𝒂𝒈(𝑭𝒊

𝟐).             (5.31) 

5.4.3  SNR Performance for Multichannel State Vector 

The same numerical experiments defined in Section 5.3.3. have been carried out to 

assess the multichannel vector form of the PCAKF algorithm.  Simulated 20 channel 

AEEG data was used, with added white and pink Gaussian noise.  Twenty PCA basis 

vectors were generated using simulated data and PCA filter weights were Gaussian.  

Figure 5.8 illustrates multichannel ERP signals as generated with 0 dB AWGN and 

after PCA filtering and PCAKF.  A single channel with band limited AWGN with an 

initial SNR=0 dB.  The black curve is the synthetic ERP signal produced by the multi-

channel simulator, the red curve is the measured signal including synthetic noise, and 

the green curve after PCAKF filtering.  Channel 1 has been expanded in the inserted 

plot.  Clearly there is significant improvement in SNR through noise rejection.  

Figures 5.9 and 5.10 shows the SNR improvement with PCA and PCAKF filtering, 

starting from a range of initial SNRs, for AWGN and APGN respectively.  The 

multichannel vector variant of the PCA filtering (solid lines) yields about a 17 dB SNR 



 

 

104 

 

improvement, significantly more than when a different basis is used for each channel.   

PCAKF (dashed lines) yields a further improvement of about 3 dB for relatively clean 

signals, less than for the previous method, and the improvement grows linearly for 

noisy signals where the measured signal is largely disregarded and the a priori 

expected signal is returned as the most likely response.  AWGN and APGN yield very 

similar results. 

 

Figure 5.8 Measured, filtered and true channels 1&2 ERP signal for band limited AWGN, 
SNR=0 dB. The black curve is the synthetic ERP signal produced by the multi-channel 

simulator, and for these tests can be taken as the true, noise-free ERP signal. The red curve 
is the measured signal including synthetic white noise.  PCA filtering reduces the noise in 

the signal by removing PCA components that are largely noise. This signal is further 
combined with the expected signal using a Kalman Factor to yield the green curve.   
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Figure 5.9 Change in SNR Due to PCA and Kalman Filtering for AWGN, for all channels. 
The SNR improvement with filtering, starting from a range of initial SNRs.  PCA filtering 
(solid lines) yields about a 17 dB SNR improvement just by rejecting components that are 
predominantly noise.  PCAKF (dashed lines) yields a further improvement of about 20 dB. 
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Figure 5.10 Change in SNR Due to PCA and Kalman Filtering for APGN. The SNR 
improvement with filtering, starting from a range of initial SNRs with APGN.  PCA filtering 
and PCAKF (dashed lines) yields an improvement offer similar SNR improvements as with 

AWGN. 
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Figure 5.11 Change in SNR Due To PCA and Kalman Filtering where channels 1, 2 and 3 
have an initial SNR=0 dB while the other channels have an SNR=10 dB. PCA filtering and 

Kalman Filtering use the cross-channel information and yields much higher SNR 
improvement in the three noisy channels. Kalman Filtering yields much better than PCA 

filter. 

Finally, we consider the case where the initial SNR is not the same across all channels.  

This is illustrated in an example where channels 1, 2 and 3 (Fp1, Fp2 and F7) have 

initial SNR=0 dB while the other channels have SNR=10 dB.  For this test, AWGN 

was used. Figure 5.11 shows the SNR improvement from filtering.  PCA filtering 

yields the same SNR improvement on all channels as the same noise amplitude exists 

in all the PCA bases.  However, Kalman Filtering uses the cross-channel information 

and yields much higher SNR improvement in the three noisy channels.  In effect the 

algorithm reconstructs the signals on these channels from the more reliable 

information measured on the relatively clean channels. 
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5.4.4 Conclusion  

The variant of the PCAKF method that uses long multichannel measurement vectors 

yields similar results to the previous method where each channel had its own PCA 

basis.  The new method requires several orders of magnitude less computation. 

5.5 SNR is required to estimate peak parameters 

A numerical experiment has been performed to identify the SNR required for clinically 

useful features of an ERP to be observable.  Synthetic ERPs have been generated and 

band limited (<30 Hz) additive pink Gaussian noise (APGN) has been added to yield 

a range of SNRs.  Figure 5.12 shows some of the time series used in the experiment.  

A sample of 15 academics and PhD students were asked to view the time series on 

paper to determine whether or not they could observe the N100, P200 and P300 

amplitude and delays.  Analysis of the results suggested that a SNR of 14 dB was 

required to observe P200 features and a SNR of 12 dB for P300 features.  This sets a 

target SNR for filtering and combining to achieve. 
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Fig 5.12 a). 
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Fig 5.12 b). 
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Fig 5.12 c). 

Figure 5.12 Synthetic ERPs contaminated with band limited APGN to yield SNRs of a) 10 dB, b) 12 dB and c) 14 dB. 
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5.6 Conclusions 

This Chapter has introduced the use of prior information to guide the rejection of noise 

in ERP measurements.  Knowledge of the expected shape and variability of clean ERP 

measurements allows a PCA basis to be calculated that spans the expected ERPs while 

being orthogonal to a large proportion of the noise.  A large SNR improvement can be 

achieved by projecting measured ERP time series onto the subspace spanned by the 

PCA basis signals.  Further SNR improvement can be gained by combining the PCA 

projected measured signal with an aprioiri expected ERP response.  Filtering yields 

the best estimate of the underlying ERP, for each trail measurement, given the 

measured time series.  The next Chapter considers the combining of several filtered 

trail time series to estimate the mean underlying ERP. 
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Chapter 6  Estimating ERP Response by 

Combining Trials 

The previous Chapter introduced PCA projection and Kalman Filtering to optimally 

estimate the ERP signal produced by each trial.  Typically, each trial will yield an 

ECG signal with a different SNR, both before and after filtering, due to the time 

variation of noise processes.  Within each trial recording, the SNR will also vary.  As 

time progresses after the stimulus the brain can be distracted by other stimuli or 

thoughts, and so noise signals tend to increase over time.  For this reason the N100 is 

likely to be more clearly imaged that P200 or P300.   

This Chapter looks at the combining of trial ERP recordings.  Clinically, ERP 

recording from many trials are averaged, sometimes combining trials from several 

individuals, to produce a clear ERP.  The real variation in individual ERPs is unknown.  

When combining trials, it would make sense to give higher weight to recordings with 

higher SNR.  The following subsections explore this idea further. 

It is difficult to reliably estimate clinically important ERP parameters, such as P300 

height and delay, from a single trial. Figure 6.1 illustrates some typical EEG 

measurements over oddball trials, illustrating typical noise levels.  Although there is 

correlation in the positive and negative excursions related to P300 and N100, no 

reliable clinical parameters could be extracted from a single recording.  The signal 

variation during the interval before the stimulus indicates the level of noise likely to 

exist after the stimulus.  Before the stimulus the ERP signal is expected to be zero so 

all the measured signal is noise.  Noise sources unrelated to the stimulus are expected 

to continue after the stimulus. 
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Figure 6.1 A selection of typical measured oddball ERP signals, illustrating typical noise 
levels.  Although there is correlation in the positive and negative excursions related to P300 

and N100, no reliable clinical parameters could be extracted from a single recording. 

To reduce the noise, averaging across trials and averaging across subjects is commonly 

performed. Unweighted averages are a sub-optimal method of combining 

measurements and so more sophisticated methods are developed in this section.   

6.1 Uniform Weighted Average 

When an average is taken over many oddball trials then the uncorrelated signals are 

attenuated and the average approaches the pure oddball ERP signal.  In situations 

where the non-ERP signals are of higher amplitude or more strongly correlated with 

the ERP signal, then larger numbers of trials need to be averaged before the ERP signal 

becomes apparent.  In this section we estimate the signal-to-noise ratio (SNR) in 

averages of ERP signals and compare the approach of the average over increasing 

numbers of trials to the best estimate of the pure ERP signal.  The SNR curves allow 
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us to estimate the number of repetitions required to identify an ERP signal from data 

acquired in different environments. 

Let an oddball trial be  tOi for index oddNi ,1 .  Each trial is a mixture of the pure 

oddball response  tO  and noise  tN i : 

        tNtOtO ii                 (6.1) 

Let the unweighted average of M trials be: 

       tOmeantO i
M

M                 (6.2) 

Defining the power of a time-series to be the mean square value:    2XEXP   , and 

assuming the pure oddball signal and the noise are uncorrelated, then the power of the 

measured oddball response can be written: 

        ii NPOPOP                (6.3) 

Furthermore, assuming that the noise is uncorrelated across trials, averaging M trials 

reduces the noise power by a factor of M: 

        NP
M

OPOP M

1
               (6.4) 

The signal-to-noise ratio, SNR, is defined to be the signal power divided by the noise 

power: 

   
 
 NP

OP
SNR                  (6.5) 

Individual trials often have low SNRs due to the large amplitude of other biological 

signals and artefacts.  Averaging across trials reduces the noise power.  Equation (6.4) 
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allows both  OP  and  NP  to be estimated by fitting equation (6.4) to the measured 

average trial power  MOP .  From equations (6.4) and (6.5), the SNR as a function of 

number of trials in average can be expressed: 

    
 

 
 1

i

P O
SNR M M SNR M

P N
                (6.6) 

 

Figure 6.2 Reduction of noise by averaging over trials. The coloured symbols are the mean 
SNR over all subsets of trials of size while the black lines are the variation in SNR produced 

by extrapolation from the mean SNR of individual trials. 

Figure 6.2 illustrates this for two EEG channels, showing the hyperbolic convergence 

to the oddball signal power.  The coloured symbols are the mean SNR over all subsets 

of trials of size M.  The black lines are the variation in SNR from equation (6.4), 

produced by extrapolation from the mean SNR of individual trials. The quality of these 

fits shows that the noise and artefacts may be treated as uncorrelated between trials.  
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It also suggests that the SNR was similar in all individual trials.  This would not have 

been the case if trials contaminated by eye-blink artefacts had not been removed. 

6.1.1 Discussion 

Any recorded EEG contains brain’s response to the stimulus plus other activity that is 

unrelated to the stimulus and the consistent response can be extracted by averaging 

across many trials (Luck, 2014).  Most EEG recordings picked up many of artefacts 

which require special treatment such as filtering or averaging. Most common of 

artefacts arise from the eyes. When the eyes move or blink, a large voltage deflection 

is observed over much of the head, and this artefact is usually much larger than the 

ERP signals (Ochoa & Polich, 2000). Trials containing blinks, eye movements, or 

other artefacts are typically excluded from the averaged ERP waveforms. In luck study 

(2014), it is shown two controls and three patients have been excepted from the 

analysis because more than 50% of trials were rejected because of eye blinking 

whereas in remaining subjects around 20% of trials were rejected on average (Luck, 

2014).  There are deficiencies of this approach and most of trials possibly need to be 

rejected and reducing the number of trials contributing to the average ERP waveforms. 

Furthermore, brain effort involved in suppressing eye-blinks may weaken task 

performance (Ochoa & Polich, 2000). For that reason, it has been applied several of 

averaging in ERP signal. 

Uniform averaging has been used for many activities and environments.  Different 

EEG channels yield different SNRs in individual ERP measurements due to their 

location relative to signal generating parts of the brain and to major noise sources such 

as eyes.  Typically, channels towards the posterior of the head measure progressively 

smaller ERP signals as they move away from the auditory processing areas of the 
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brain.  However, eye blink and movement artefacts also decrease in amplitude faster 

than the ERP signal, as the electrodes move further from the eyes.   

Table 6.1 presents the mean trial power in oddball ERP signals collected inside and 

outside the shielded room while the subjects either sat or walked for 70 trials and 

around 20 trials affected by eye blinks.  The power is either calculated from all oddball 

ERP trials, or only those not contaminated by eye blink artefacts.  Several observations 

can be made.  Eye blink artefact power is 10 to 20 times larger than the ERP signal 

power for anterior channels but decreases quickly as channels move toward the 

posterior. Under ideal conditions, sitting inside, the ERP power only decreases slowly 

as the channel moves towards the posterior.  When outside, the mean power after blink 

removal is always higher than when inside.    This is due to other noise sources, such 

as brain activity processing other sensory inputs, e.g. visual processing; and movement 

artefacts such as electrode–scalp connection changes and muscle noise. If every 

measured trial for the same channel contains the same ERP signal but different noise, 

then the smallest power indicates the best estimate of the ERP power.  For anterior 

channels, such as Fp1 and Fp2, the ERP signal power appears to be about 
2 45 V , 

suggesting that even after blink removal and averaging, the noise power in the walking 

outside scenario is ten times larger than the signal power.  

Table 6.1 EEG signal power in 
2V  by channel, inside and outside the shield room, while 

sitting and walking, before and after eye blinks removal (filtered). 

Channel 
Location Sitting Inside Sitting Outside Walking Inside 

Walking 
Outside 

 
With 
Blinks 

Blinks 
Filtered 

With 
Blinks 

Blinks 
Filtered 

With 
Blinks 

Blinks 
Filtered 

With 
Blinks 

Blinks 
Filtered 

Fp1 1113 47 1387 157 2387 123 4259 320 
Fp2 932 54 1381 234 2092 145 2746 541 
F7 834 45 680 100 1327 112 2156 537 
F3 480 61 463 188 535 67 792 248 
Fz 441 76 465 216 490 86 771 393 
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F4 485 70 470 234 470 101 843 584 
F8 459 59 714 384 799 204 1655 351 
T7 172 30 200 137 160 39 283 158 
C3 217 57 262 171 219 57 340 214 
Cz 271 84 293 196 258 82 447 370 
C4 215 67 308 205 267 92 555 421 
T8 242 47 320 262 315 125 862 704 
P7 107 32 156 137 85 40 164 152 
P3 158 52 208 170 147 60 257 237 
Pz 169 59 219 186 162 70 324 328 
P4 164 63 228 191 182 78 415 418 
P8 134 46 206 187 162 77 476 501 
O1 230 42 185 139 115 70 282 296 
O2 119 34 187 154 357 131 323 334 

 

The average powers in Table 6.1 were calculated using a simple uniform average, i.e. 

the sum of M trials divided by M.  This is the optimal method to combine trials when 

they all have the same SNR.  However, even after averaging all the trials 

uncontaminated by eye blinks, the power while walking, or even sitting inside the 

shielded room, is many times that of the estimated pure ERP signal.  Clearly removing 

eye-blink artefacts is essential if the goal is to observe the ERP response in as few 

repetitions as possible.  However, it is observed that the SNR of individual trials still 

varies considerably.  This suggests that a more sophisticated combining method may 

yield better estimates of the underlying ERP. Figures 6.3 and 6.4 show that the 

statistical model assumption of independent noise is accurate across all channels, with 

and without eye blink removal.  This suggests that other major noise mechanisms can 

also be treated as independent.  If noise is independent but not stationary then a 

different method of combining trials to yield an estimate of the underlying ERP signal 

is required. 
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Figure 6.3 Reduction of noise by averaging over trials for 19 channels before eye blinks removal by using simple average. 
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Figure 6.4 Reduction of noise by averaging over trials for 19 channels after eye blinks removal by using simple average. 
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6.2 Optimal Weighted Average 

As in the previous section, consider M  oddball trials: 

   𝑂𝑖 = 𝑂 + 𝑁𝑖,                (6.7) 

where  𝑂(𝑡) is the oddball response and 𝑁𝑖(𝑡) is the noise in the ith trial.  If 𝑂 and 𝑁 

are independent then 𝐸  [𝑆 × 𝑁 ] = 0, and the power in 𝑂𝑖 is  

   𝑃𝑖 = 𝐸 [𝑂𝑖
2] =   𝐸 [𝑂2] +  𝐸 [𝑁𝑖

2]           (6.8) 

where 𝐸 [∗ ] is the expected value.  We want the weighted average oddball response: 

   O̅  = ∑ Wi𝑂𝑖
𝑁
𝑖   : ∑ wi = 1             (6.9a) 

   O̅  = ∑ Wi(𝑂 + 𝑁)𝑖𝑖
           (6.9b) 

   O̅ = 𝑂 ∑ Wi + ∑ Wi𝑁𝑖 =   𝑂 + ∑ Wi𝑁𝑖  𝑖  𝑖  𝑖          (6.9c) 

Except for the unit norm constraint, the weights are arbitrary.  Different choices of 

weights yield different noise powers in the weighted sum.  Assuming the trial noises 

are independent then the SNR in O̅  is:  

   𝑆𝑁𝑅 =
𝐸[𝑂2 ]

∑ 𝑊𝑖
2 𝐸[𝑁𝑖

2 ]
           (6.10) 

and this is maximized when the denominator is minimized. This minimisation can be 

posed as a Lagrange multiplier:  

   Min ( ∑ Wi
2E[Ni

2] − 𝜆(∑ Wi − 1 )) 

And taking derivatives yield:  

   2𝑊𝑖𝐸[𝑁𝑖
2] − 𝜆 = 0           (6.11a) 

   ∑ 𝑊𝑖 = 1            (6.11b) 

(6.11a) hold for all i trials and so: 

    𝑊𝑖 =  
𝜆

2𝐸[𝑁𝑖
2 ]

       ∀𝑖 .           (6.11c) 
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Combining with (6.11b) yields: 

    
𝜆

2
∑( 

1

𝐸[𝑁𝑖
2 ]

 ) =  1         (6.11d) 

Eliminating  from (7.11c) and (7.11d) yields the minimising weights:  

     𝑊𝑖 =  

1

𝐸 (𝑁𝑖
2)

∑ (
1

𝐸(𝑁𝑖
2)

)𝑖

          (6.11e) 

Equation (6.11e) provides the trial weights that maximize the SNR in the weighted 

sum.  In the case where all trials have the same noise power then the weights are also 

the same.  This is the assumption when uniform means are used.  However, when the 

noise power varies between trials, the more reliable trials with the lowest noise powers 

are given a larger weight in the average. 

The proposed ERP estimation method starts with a small number of trials. The average 

power in subsets of trials is calculated and the ERP power and average trial noise 

power,  OP  and  1NP , are estimated by fitting equation (6.6) to these data.  Further 

trials are then measured and combined using a weighted average with the weights 

estimated using equation (6.11e) and the weighted average SNR provided by equation 

(6.10).  With each new trial, the ERP and noise powers may be re-estimated using 

equation (6.4). 

Figures 6.5 and 6.6 compare the powers in uniform averages (all weights the same) 

and optimal weighted averages, for oddball trials acquired with the subject sitting in 

the shielded room.  For this example, eye-blink artefacts have not been removed and 

so some trials contain large noise signals.  The weighted average method automatically 

assigns these trials small weights and so they do not contaminate the average.  It can 

be seen that the weighted average converges to the ERP signal power much faster than 

the uniform average. 
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Figure 6.5 Power in uniform and weighted averages of oddball trials on electrodes Fp1 and 
Fz, for subject sitting in shielded room. 

 

Figure 6.6 Power in uniform and weighted averages of oddball trials on electrodes Pz and 
Cz, for subject sitting in shielded room. 
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When eye-blink artefacts are removed the benefit of weighted averages is not as large 

but is still significant, see Figure 6.7. 

 

Figure 6.7 Power in simple and weighted averages of oddball trials on electrodes Fp1 and 
Fz, for subject sitting in shielded room, with eye-blink artefacts removal. 

6.2.1 Extension of Optimal Weighted Mean 

Simple and optimal weighted averaging were applied for same activities and 

environments. For optimal weighted averages, the power in the ERP estimate falls 

much faster than for simple uniform averages, suggesting it is much more effective at 

reducing the noise power.  However, in some unusual cases the optimal weighting 

algorithm can be unstable.  This is illustrated in Figure 6.8 below where channel P7 



 

 

126 

 

becomes unstable and the SNR increases dramatically with increasing numbers in the 

weighted average. This occurs when the estimate of the ERP signal power is poor, and 

so the noise power estimates are also poor, and so the SNR estimate is very poor.  The 

estimate of the ERP signal power is derived by fitting the statistical model (7.6) to a 

simple average over small numbers of trials.  This estimate can be poor if there is large 

variation in the individual trial SNRs.  This problem can be addressed using an 

iterative method to estimate the ERP signal power i.e.  

1. estimate signal power using uniform averages;  

2. use this to estimate trial noise powers; 

3. use weighted averaging to estimate the signal power; 

4. iterate steps 2 and 3 until converged.  

As seen in Figure 6.8 there were fluctuations in channel P7 when optimal weighted 

mean was used so the iterative algorithm above was employed to tackle this issue. It 

can be noticed in Figure 6.8 that the problem is resolved. 

 

Figure 6.8 Iteration and Optimal Weight Methods to estimate ERPs power. 
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Figure 6.9 Reduction of noise by averaging over trials before eye blinks removal by using optimal average. 
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Figure 6.10 Reduction of noise by averaging over trials after eye blinks removal by using optimal average 
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6.2.2 Optimal Weighted Mean of Filtered Data 

The OWM method uses a noise power estimate for each trial to calculate the weights 

that maximize the SNR in the weighted mean.  In the case where all trials have the 

same noise power then the weights are also the same.  This is the underlying 

assumption when uniform means are used.  However, when the noise power varies 

between trials, the more reliable trials, with the lowest noise powers, are given a larger 

weight in the average.  

Figure 6.11 illustrates a single measured oddball response and the OWM of 50 

unfiltered trials. Evidence of the remaining noise can be seen in the interval before the 

stimulus and towards the end of the recording where the ERP is expected to be zero.  

Even after OWM of 50 trials the SNR is too low to reliably estimate clinically 

important parameters. 

 

Figure 6.10 OWM of unfiltered ERP measurements. A single ERP measurement and the 
OWM of 50 unfiltered trials. Evidence of the remaining noise can be seen in the interval 

before the stimulus and towards the end of the recording where the ERP is expected to be 
zero. 
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In section 5.4, PCA and Kalman filtering were applied to synthetic EEG data. Figure 

6.11 illustrates PCA projection and PCAKF applied to a measured EEG signal.  PCA 

projection forces the noise to be zero before the stimulus and beyond 500 ms after the 

stimulus.  Minor features such as the P200 become visible.  This feature is developed 

even more by Kalman filtering.   Filtering has removed much of the noise from the 

measured time series.  Optimal combining of filtered measurements will yield an even 

better estimate of the underlying ERP.  

 

Figure 6.11 Measured, PCA and KF ERPs for Channel Cz. PCA projection forces the noise 
to be zero before the stimulus and beyond 500 ms after the stimulus.  Minor features such as 

the P200 become visible.   

Figure 6.12 illustrates the results of using OWM applied to signals after PCA 

projection and PCAKF.  Estimates of time series noise power is the principal input 
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parameter to OWM.  For unfiltered data, the noise power can be estimated from the 

interval before the stimulus where only noise was present.  However, for filtered data 

the signal is forced to be zero over this period.  In this example, noise power has been 

estimated as the difference between the power in the filtered time series and the power 

in a synthetic ERP for that channel.  Both PCA projection and KF filtering greatly 

reduce the noise and both yield plausible ERPs for a single measurement.  Combining 

50 trials yields a result that should be closer to the mean ERP and, in this case, exhibits 

an even stronger and more reliable N200.  

 

Figure 6.12 OWM of ERP measurements with PCA and PCAKF. Estimates of time series 
noise power is the principal input parameter to OWM.  For unfiltered data, the noise power 
can be estimated from the interval before the stimulus where only noise was present while 

combining 50 filtered trials yields a result that should be closer to the mean ERP and, in this 
case, exhibits an even stronger and more reliable N200. 
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6.3 Bayesian Optimal Combining (BOC) 

6.3.1 Optimal Combining of ERP Measurements for Uncertainty ERPs 

The OWM method assumes that the noise is stationary across each trial recording.  In 

some cases this is a valid assumption.  However, for some noise sources, the noise 

signal is more impulsive.  Eye-blink artefacts are an example, where the noise signal 

strongly affects only part of a trial time-series.  Furthermore, as time passes after the 

audio stimulus, there is more chance of other stimuli generating a response.  For 

example, the participant may notice a feature of the room or remember they left the 

gas on.  Any brain activity unrelated to the audio stimulus will produce a response 

which is noise when the goal is to estimate ERPs.  This section presents a Bayesian 

Optimal Combining (BOC) approach where the estimated error in each sample 

component can be used when combining trials.  This means that information in trials 

that contain impulsive noise can still add to the confidence in the combined ERP. It is 

a more efficient use of the data. 

The ERP response is a discretised Voltage time-series, or a vector of components in 

some basis, e.g. the PCA basis presented earlier.  The current knowledge of the ERP 

is specified by a probability density function (pdf).  Assuming this is a multivariate 

Normal then the ERP knowledge is specified by the mean and covariance: X  and XC

. If an additional ERP measurement is performed, this provides a new estimate of the 

underlying ERP with its own pdf and uncertainty, specified by  nX  and nC .  This 

information can be used to refine our knowledge of the ERP by combining the two 

Normal distributions.  The combined distribution is the product of the two multivariate 

Normal pdfs, is also multivariate Normal, and is known as the fused distribution.  The 

fused distribution has mean and covariance: 
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   𝐗𝑓 = 𝐂𝑛 (𝐂𝐗 + 𝐂𝑛)−1𝐗 + 𝐂𝐗(𝐂𝐗 + 𝐂𝑛 )−1𝐗𝑛       (6.12a) 

   𝐂𝑓 = 𝐂𝐗(𝐂𝐗 + 𝐂𝑛 )−1𝐂𝑛         (6.12b) 

 

This result suggests an iterative approach to ERP estimation.  Each new measurement 

yields a refined estimate of the underlying ERP.  When the norm of the fused 

covariance matrix is small enough, the experiment can be terminated. 

   𝐗 ← 𝐗1             (6.13) 

   𝐂𝐗 ← 𝐂1  

   For n = 2 to NumberOfTrials 

   𝐗 ← 𝐂𝑛 (𝐂𝐗 + 𝐂𝑛)−1𝐗 + 𝐂𝐗(𝐂𝐗 + 𝐂𝑛 )−1𝐗𝑛 

   𝐂𝐗 ← 𝐂𝐗(𝐂𝐗 + 𝐂𝑛 )−1𝐂𝑛  

6.3.2 Validation for Synthetic Data 

The method hinges on the estimation of the uncertainty in the measured ERP time 

series.  The first test assumes that the uncertainty in each sample is independent and 

estimated by the variability present before the stimulus.  During the ERP interval -200 

ms to the stimulus, any variation is due to factors other than the brain response to the 

stimulus.  Therefore, the total uncertainty in the samples can be estimated from the 

variability during this period, and assumed unchanged in the period after the stimulus.  

This yields a diagonal covariance matrix with uniform elements: 

   𝜎𝑛
2 = 𝑚𝑒𝑎𝑛(𝐸𝑅𝑃𝑛(𝑡)2, 𝑡 < 0)        (6.14a) 

   𝐂𝑛 = 𝜎𝑛
2𝐈𝑛           (6.14b) 

where 𝐈𝑛 is the identity matrix of rank equal to the number of samples in an ERP trial.  

In this special case, the covariance matrices can be replaced by scalars. 

This method has been tested using synthetic ERP signals and additive pink noise with 

a spectral range from DC to 30 Hz, to yield a measured SNR = 0 dB.  Figure 6.13a 
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compares the best estimate ERP response using 1, 5, 10 and 15 measured ERP time 

series.   This is compared to the unweighted mean of the 15 ERPs (green).  The best 

estimate and unweighted average both yield final SNRs of 9.6 dB 
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Fig 6.13a. 

 

Fig 6.13b. 

Figure 6.13 BOC ERP estimate using 1, 5, 10 and 15 trials; and the average of 15 trials 
(green).  a) All trials have SNR=0 dB and b) odd trials have SNR = 5 dB while even trials 

have SNR = -5 dB.  
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A second test assumes measured ERP with SNR = 5 dB for odd numbered trials and 

SNR = -5 dB for even numbered trials, see Figure 6.13b.  In this test the BOC method 

is significantly better than the unweighted average, yielding a final SNR of 12.5 dB 

compared to 10.10 dB for the unweighted average.  BOC method effectively uses a 

lower weighting for the measured ERPs with lower SNR. 

6.3.3 Optimal Combining of ERP PCA Projections. 

The BOC method can also be applied to vectors of PCA projection weights.  This 

reduces the rank of the matrices from 1000 to approximately 5, and so yields a 

considerable computational efficiency gain.  However, the covariance between PCA 

projection weights needs to be estimated.  To some extent, this removes the benefit of 

having a covariance linked to sample in the presence of impulsive noise.  However, it 

has the large advantage that most of the impulsive noise will be eliminated by PCA 

projection, as the PCA basis signals are quite smooth.  The covariance between the 

PCA weights is calculated from the difference between the measured signal and the 

PCA projected signal.  The difference is assumed to be noise and equal across all PCA 

basis directions.  Truncating the PCA projection leads to a proportionate reduction in 

the noise but is assumed to not affect the ERP signal.   

Figure 6.14a illustrates the BOC-PCA process applied to synthetic data with APGN.  

The BOC method yields an uncertainty estimate for each PCA projection weight that 

can be translated into a standard error for each sample.  Figure 6.14a shows error bars 

for each sample indicating the uncertainty.  The uncertainty before the stimulus, and 

long after the stimulus, is zero as the PCA Basis signals are all zero in these regions.  

The uncertainty allows clinically significant parameters to be estimated, also with an 

uncertainty.  This will be important when decision making based on ERP responses is 

automated. 
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Figure 6.14b presents the time-series of BOC PCA weights.  These converge as the 

information from increasing numbers of trials is combined. 

  

Fig 6.14a. 

 

Fig 6.14b. 

Figure 6.14 BOC of PCA weights to estimate the ERP: a) BOC-PCA process applied to 
synthetic data with APGN.  and b) convergence of BOC PCA weights with increasing 

numbers of trials. 
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6.3.4 SNR Performance for different type of combining methods 

A numerical experiment has been performed to compare the best estimate ERP 

produced by a variety of combining techniques.  Synthetic multichannel data were 

generated for 50 trials and contaminated with band limited APGN.  The SNR in dB of 

each trial and channel was selected randomly to be an i.i.d. sample from a Normal 

distribution with mean -4 dB and standard deviation of -4 dB.    The unfiltered trial 

time series were combined using unweighted (or uniform) mean, OWM and BOC.  For 

OWM, three techniques were used to estimate the time series noise power: the true 

noise power of the APGN, the power of the difference between an individual time 

series and the uniform mean, and the iterative method presented in Section 6.2.1.  For 

BOC two methods were used to estimate the uncertainty: the true uncertainty from the 

APGN variance and the uncertainty estimated from the noise power during the period 

before the stimulus.  Figure 6.15a illustrates the channel 1 ERPs estimated from 

combined trials, while Figure 6.15b presents the SNR of the combined ERP estimate, 

calculated by comparison with the mean of the clean synthetic data.  For the majority 

of channels, OWM and BOC using the true noise power yielded the highest SNR.  

However,  the true noise power is generally not available for measured data.  In this 

case, OWM can estimate the noise by comparing with the uniform mean.  This, more 

practical method, offered the next best results,  typically less than 1 dB worse than 

using the true noise power.  Iterative OWM tended to do slightly worse.  These 

methods yield 1 dB to 3 dB improvement over unweighted means.  BOC using a noise 

power estimate derived from the pre-stimulus period yielded the worst results.  This 

200 ms interval does not yield a good estimate of the power in band limited noise. 
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Fig 6.15a.

 

Fig 6.15b. 

Figure 6.15 Comparison of Trial Combining Techniques: a) best estimate ERP and b) SNR 
achieved in different channels (UM is not accurate in most cases, BOC 200 ms is not good 
because of lots of noise before stimuli, OWM-True SNR and BOC True SNR are good but 
ERP signal and noise are unknown,  OWM -Uniform Estimate SNR much better because of 

ERP signal and noise are known ). 
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6.4 Conclusion 

Two new methods for combining trial time series have been developed and tested.  

Both rely strongly on having a good estimate of the noise power or uncertainty in a 

time series.  Where this is known accurately, and is uniform across a time series, then 

the results are very similar.  For measured data, estimation of the noise power is 

difficult.  Where the noise is not stationary across a time series, then BOC can still be 

used.  The reliable parts of the measured signal will be used to improve the combined 

estimate.  In the next chapter, the filtering and combining methods are applied to 

measured data. 
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Chapter 7  Estimation of Auditory ERPs 

from Measured Data 

7.1 Introduction 

Auditory event-related potentials (ERPs) are contaminated by a variety of artefacts and 

noise, making it difficult to separate ERPs from other brain signals, biological signals 

such as muscle and eye movements, artefacts due to electrode and equipment 

movement, and interference from other systems. In measurements from ambulatory 

EEG systems, the artefacts are often larger and more frequent than for a static system.  

However, there is increasing interest in the measurement of ERPs while individuals 

engage in the physical activities associated with normal living (Bateson et al., 2017). 

In Chapter 5 a variety of filtering methods were developed to extract ERP signals from 

noisy measurements. Methods were also developed for combining ERP estimates from 

many trials to produce an estimate of the underlying ERP.  In this Chapter, these 

filtering and combining methods are applied to real measured EEG data. 

Measured data comes with new unknowns.  In previous Chapters, the use of synthetic 

data meant that the correct answer was known, and so the effectiveness of methods 

could be quantified.  With measured data this is not the case.  Furthermore, KF and the 

combining methods require estimates of SNR or uncertainty.  For synthetic data, these 

could be estimated accurately by comparison of signals with the correct answer, but 

this is not possible with measured data. New protocols need to be developed to address 

these problems. 

The success of filtering methods often relies upon the effective use of apriori 

knowledge.  Knowledge of the variation in ERPs informs the PCA basis that allows 

rejection of noise signals during PCA projection. Knowledge of the correlations of 
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PCA projection weights across channels allows further noise discrimination.  Having 

an expected ERP response allows further noise rejection during KF, equivalent to 

Maximum A Posteriori estimation in this case as there is no tracking of parameters 

between trials.  Processing of measured data requires careful use of apriori knowledge 

to reject noise but not to force the observations to have ERP characteristics when there 

is no measured evidence to support it. 

The following Chapter proposes and tests a filtering and combining protocol for 

measured data.  Starting with a set of trail ERP measurement time series, the steps are 

as follows: 

1. Fit the N100, P200 and P300 amplitude and delay parameters of the synthetic 

ERP generator to the measured multichannel ERP averaged over trials; 

2. Use the new synthetic ERP generator to produce a PCA basis for the 

multichannel data; 

3. Use PCA projection, or PCAKF, to filter each measured trial time series; 

4. Compare each filtered trial with the uniform average or synthetic ERPs to 

estimate the noise; 

5. Use combining techniques to estimate the underlying ERP. 

7.2 Fit Synthetic Model to Real ERP Data  

The multi-channel ERP simulation presented in Chapter 5 has parameters chosen to 

match ERPs published in (Debener et al., 2012; Luck, 2005). However, ERPs 

measured using the Hull AEEG system yielded N100s and P300s with different 

amplitude and latency.  In practise, we would expect these to vary between individuals.   

When analysing ERP time series from an individual, allowance needs to be made for 

the exact placement of electrodes on the scalp, head and brain morphology etc.  Earlier 

chapters showed that measured ERP time series are too noisy for the estimation of 

PCA bases.  Therefore, to produce PCA bases customised for an individual’s set of 

measurements, it is necessary to adapt the synthetic ERP generator to their 
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particularities.  The generator has 66 parameters describing the absolute and relative 

amplitudes of the three ERP peaks, their delays and widths, and the typical variability.  

Fitting all these parameters to data from an individual would yield unreliable results 

and so 60 of the parameters are assumed to be fixed.  These parameters are the relative 

amplitudes, widths and variation of the peaks.  They are estimated once from the 

cleanest data available i.e. the average of all trials and all participants.  This process 

has been performed in several stages: 

1. The typical channel variation of N100, P200 and P300 relative amplitudes has 

been estimated by fitting to multichannel ERPs calculated by averaging over 

data from 9 individuals and all oddball trials.  The relative amplitudes are 

assumed to be consistent between individuals. 

2. Typical variation in N100 and P300 absolute amplitudes and delays are 

estimated by fitting multichannel simulated data to averages over all oddball 

trials for all 9 individuals separately. 

3. Finally, an individual’s N100, P200 and P300 absolute amplitudes and delays 

are estimated by fitting multichannel simulated data to averages over all 

oddball trials for an individual. 

 

Steps 1 and 2 need only be done once.  Step 3 is repeated for each new set of data. 

Figure 7.1 illustrates the step 1 process, identifying relative channel N100 and P300 

amplitudes and delays.  Data from the 9 participants while sitting in the shielded room, 

were averaged to yield the cleanest set of multichannel ERP responses available.  The 

relative amplitudes N100, P200 and P300 were estimated by fitting synthetic ERPs to 

these multichannel data.  The fit is not perfect due to noise on the channels and also 

because some parameters are assumed to be consistent across channels i.e. N100, P200 

and P300 delay. 
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Figure 7.1 Synthetic ERP (red) amplitudes’ and delays’ fitted to the average ERP from 9 
individuals and many oddball trials (blue), collected using an AEEG system while 

participants sat in a shielded room. 

The estimated N100, P200 and P300 delays are: 𝑡𝑗̅ = {86,200,385} 𝑚𝑠 and the peak 

widths, which were not fitted, are kept at the original estimates from published data: 

𝜎𝑗 = {50,30,75} 𝑚𝑠.  For the 3 Gaussians representing N100, P200 and P300, the 19 

channel relative amplitudes were:  

𝐴̅
𝑖𝑗 = [

90 87 85
15 17 23
27 25 25

  
120 130 90
38 40 40
30 60 70

  
55 55 130
55 30 40
55 25 30

  
140 130 57
50 70 10
40 60 35

⋯ 

30 70 80
01 15 25
18 35 40

  
75 58 30
05 01 01
35 35 18

  
32
01
25

] ×

10−2 𝜇𝑉   [7.1] 

Step 2 sets the variation in N100 and P300 absolute amplitudes and delays by fitting 

multichannel simulated data to averages over all oddball trials for each of the 9 

individuals separately.  Table 7.1 presents the delays estimated by fitting to 

individual’s mean multichannel ERPs.  The variation between individuals is expected 

to be representative of the variation between experiments.  Note that fitting yielded 
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implausible results on some occasions i.e. N100 for participant 2 occurred before the 

stimulus.  This is due to fitting to noise artefacts.  The results from S3 and S7 were 

considered too unreliable for inclusion in the variance estimation as the average over 

all trials exhibited large noise variation before the stimulus. 

Table 7.1 Delays in ms for the three Gaussians, fitted to the mean oddball response for 8 

individuals. 

Subjects N100 P200 P300 

S1 110 222 308 

S2 -68 251 343 

S4 106 202 354 

S5 117 174 568 

S6 105 205 376 

S8 112 168 461 

S9 124 180 316 

S10 87 56 354 

Mean 87 182 385 

Standard deviation 59 54 82 

 

The previous two steps fixed the majority of the parameters in the ERP generator.  The 

final step fits the six parameters to data from and individual.  These six parameters 

describe the grossest and most easily observed variation i.e. the absolute amplitude 
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and delay of the three major ERP peaks.  These are estimated from to the mean ERP 

response from all channels for that individual.  Figure 7.2 shows a single trial of 

synthetic multichannel ERP responses generated using this process for the participant 

labelled as S1.  This process has been performed using the data expected to be cleanest 

i.e. while sitting in the shielded room.  The same ERP variation is expected when the 

participant is active and in more stimulating environments, albeit measured with much 

larger amounts of noise.  Data collected during activity was so noisy that including it 

in the mean increase uncertainty.  The PCA bases calculated from data produced using 

the fitted synthetic generator and these are assumed to represent the possible ERPs 

present during activity.  

 

Figure 7.2 New synthetic ERPs using parameters fitted to measured ERP. Three parameters 
for N100, P200 and P300 specify the amplitude, centre time and width of each of the 

Gaussian pulses respectively for 19 channels across the head.   

7.2.1 PCA Basis for each Channel of the ERP signal. 

The PCA basis is calculated from the synthetic ERP data for each channel.  Each 

channel ERP signal can then be expressed as a weighted sum of PCA basis signals.  
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Finally, the covariance of channel PCA basis weights is calculated.  Each trial time 

series is projected onto the PCA basis and the weights formed into a vector.  The 

covariance of these vectors is a constraint when estimating PCA weight vectors from 

measured data. 

Once the PCA bases have been calculated, along with the mean and covariance of the 

vectors of PCA projection weights, it is possible to perform PCA and PCAKF filtering 

on measured data. 

7.2.2 Estimation of ERP Response from measured data 

Different filtered versions of the measured ERP trial data are possible.  These are the 

outputs of ADJUST, PCA projection and PCAKF filtering.  These data can then be 

combined using a range of methods and a range of noise estimation techniques.  Unlike 

the results in Chapter 6, the true ERP response is not known for measured data, and so 

results are judged by their plausibility.  Four classes of combining methods are tested: 

1. Estimate the underlying ERP signal using uniformly weighted average from 

both the real and fitted-synthetic data. 

2. Estimate the underlying signal using optimal weighted mean (OWM), using a 

noise power calculated from the difference between filtered trial signal and 

uniform mean of the measured data (OWM-UN).  Alternatively, estimate the 

noise power from difference between the trial signal and uniform mean of the 

synthetic data (OWM-SN). 

3. Estimate the signal using Bayesian optimal combining (BOC) using an 

uncertainty estimated from the uniform mean of measured trials as above (BOC-

UN), or from the uniform mean of synthetic data (BOC-SN). 
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4. Estimate signal using Bayesian optimal combining (BOC) with an uncertainty 

estimated from the difference between the trail time series and the OWM-UN 

estimate (BOC-OWM-UN). 

The combining methods in the protocol above were applied to the three filtered sets of 

measured ERP time series i.e. after ADJUST, PCA and PCAKF.  The measured data 

came from S1 while sitting in the shielded room, as these are expected to be the 

cleanest data.  Fifty oddball trials were recorded.  When the best combination of filter 

and combining methods has been identified, data collected during activities will be 

analysed.  

The clarity of the P300 will be used to judge the combined filtered ERP estimates.  

P300 is most visible on the channels inside the blue square in Figure 7.3, as this is over 

the part of the brain where the response is generated and far from major noise sources, 

such as the eyes, which particularly effect channels Fp1, Fp2.  The response becomes 

weaker when measured at the back of the head on channels O1 and O2.   

Figures 7.4 to 7.6 illustrate the estimated ERP signals for channels 10 and 15, 

corresponding to Cz and Pz.  These are channels are expected to show clear P300 

features.  The gross features in Figures 7.4 and 7.5, using filters PCA and PCAKF 

respectively, are very similar for all combining methods.  All combinations of filtering 

and combining methods yielded the same delays for N100, P200 and P300.  The 

relative amplitudes of the three peaks were maintained by all the methods.  Figure 7.6 

uses the EEGLAB ADJUST filter and is the poorest result.  PCA projection 

automatically zeros the ERP before the stimulus and produces an estimate where the 

signal decays to zero after the P300 peak.  ADJUST does not do this and so large noise 

oscillations dominate before the stimulus and at times after 400 ms.  This noise is also 

present during the response interval from time = 0 ms to 400 ms.  All combining 



 

 

149 

 

methods have performed similarly, but the uniform mean exhibits the largest noise 

oscillations.  This is due to large noise variation between trials.  The OWM and BOC 

methods automatically reduce the impact of the noisiest trial time series, yielding 

superior ERP estimates. 

 

Figure 7.3 Electrode placement 10-20 system – in blue colour ERP signal appear clearer than 
red colours.  
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Figure 7.4 Different methods of ERP combined estimation for middle electrodes of the head after PCA filtering. 
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Figure 7.5 Different methods of ERP combined estimation for middle electrodes of the head after PCAKF filtering. 
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Figure 7.6 Different methods of ERP combined estimation for middle electrodes of the head after ADJUST filtering. 
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Figures 7.7 and 7.8 illustrate the estimated ERPs for channels 1 and 19, corresponding 

to FP1 and O2.  These channels are expected to measure weak auditory ERPs and are 

strongly affected by noise.  Fp1 experiences strong eye blink artefacts generated by 

the muscles around the eyes.  O2 is over the optical processing part of the brain and so 

and visual stimuli leads to brain signals unrelated to the auditory stimulus.  Figure 7.7 

presents the combining results after PCA projection.  Due to the variability in noise 

power across the trials, and the deviation of the synthetic signal from the 

measurements, there is more variation between combining results.  The combining 

methods tend to agree very well on the time and amplitude of the N100 peak but vary 

more for the P200 and P300, where other stimuli are likely to have cause unrelated 

brain responses.  The _SN methods yield a higher amplitude P300 as they follow the 

synthetic data more closely.  The _SN results favour signals that match across 

channels.   The positive peak at 300 ms in channel 1 is consistent with the strong peak 

identified by all methods in channel 19.  The negative peak at 400 ms is present in all 

optimised combining techniques but not present in the uniform mean at all.  The 

plausibility of the existence of this peak is strengthened by its presence in channel 19.  

That it is not present in channels 10 and 15 suggests it is a brain signal generated near 

the rear of the head.  Figure 7.8 illustrates the ADJUST combined ERPs.  As 

previously, these are far noisier than those after PCA filtering.  For O2, all combining 

methods exhibit a clear P200 where there is none in the synthetic signals.  
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Figure 7.7 Different methods of ERP combined estimation for front and back electrodes of the head after PCA filtering. 
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Figure 7.8 Different methods of ERP combined estimation for electrodes at the front of the head after ADJUST filtering.  
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7.3 Conclusion 

The PCA and PCAKF filtering yields significant advantages over the EEGLAB standard 

ADJUST filtering.  After PCA projection the ERP time series are much more plausible 

and have significantly less noise, due to the rejection of non-ERP signal components.  All 

optimised combining methods perform better than uniform mean, sometimes allowing 

clinically important features to be seen where they could not be seen using the standard 

uniform mean.  The methods that rely upon the synthetic generator can yield distorted 

outputs when the synthetic signal is very different from the measurements.  For this 

reason, the BOC_OWM_UN method has been chosen for evaluating ERPs collected in 

more stimulating environments and during activities.  In the next chapter, 

BOC_OWM_UN will be applied to real data collected during a range of activities and in 

different environments, to determine how many trials are need to observe clinically 

important features. 
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Chapter 8  Quantification of Trials Needed 

to Observe Clinically Important Features in 

ERPs 

8.1 Introduction 

A number of previous studies address the question: how many trials are required for the 

reliable observation of certain ERP components, under given conditions.  Most reports 

are based on measurements made in ideal clinical conditions i.e. the participant reclined 

and immobile in a quiet and plain room.  To reliably observe P300, a minimum of 36 

usable trials (after artefact rejection or correction) in each stimulus category is 

recommended by (Luck, 2005). Eye-blink artefacts lead to trail rejection, and so the total 

number of trials could be significantly increased.  However, (Polich, 1986) suggested that 

20 trials were sufficient for observing the P300 in an oddball paradigm.  He stated that 20 

trials yielded reliable results and that no benefits were seen if the number of trials was 

increased (Cohen & Polich, 1997). Bruder et al said that after an average of 20 oddball 

ERPs trials P300 amplitude seemed to be statistically steady (Bruder et al., 1995). After 

applied and clinical examination of P300 amplitude and latency, (Humphrey & Kramer, 

1994) concluded that there are only insignificant changes in P300 amplitude after 30 

target trials or more.  The results of Boudewyn’s study demonstrate that there are several 

factors that should be considered in determining the number of trials needed in a given 

ERP experiment, and that there is no magic number of trials that can yield high statistical 

power across studies (Boudewyn et al., 2017). 

Many parameters may affect the SNR in EEG signals, such as equipment, recording 

settings, paradigm, age and subject status, even control or individual participants (Luck 
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& Todd, 2004).  It is not clear how these results translate into AEEG data from active 

participants in high sensory environments, and for features smaller than P300.   

8.2 Aim of Chapter 

The measurement of ERPs has clinical applications in the diagnosis and monitoring of 

psychiatric and neurological patients, see section 1.3. However in many circumstances it 

may be difficult to follow the standard measurement protocol, e.g. for subjects with 

mental health problems, for children, or for subjects that may not wish to cooperate.  For 

measurements with ambulatory EEG, the ERP measurements exhibit intermittent and 

very large noise artefacts. In both these scenarios, it is important to be able to minimise 

the number of repetitions required to identify the important features in the processed ERP 

signals; or alternatively to produce the best estimate of the underlying ERP response from 

the set of measured ERP signals. 

Historically, ERP signals have been pre-processed to reduce artefact noise.  This may 

require whole trials to be discarded if too highly contaminated.  Then the processed 

signals are combined to produce an estimate of the underlying ERP signals.  Typically, 

this has been achieved using a simple average. 

This chapter presents ERP measurements made following the protocol presented in 

Chapter 3.  The data are analysed to produce estimates of the underlying ERP signal using 

PCA projection followed by BOC_OWM_UN combining.  The convergence of ERP 

estimates to the best estimate formed using all the trial data, is examined to determine 

after how many trials the important clinical features could be reliably observed.   

8.3 Estimating ERP Response from EEG Measurements 

The aim of data processing was to identify features in the oddball ERP response from 

complex AEEG signals.  AEEG signals contain large signals from sources other than the 
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brain, particularly EOG signals due to eye-movement.  Participant brains are also engaged 

in activities other than listening for oddball responses, such as processing what the 

participant sees and hears, along with navigation and interaction with other people. 

Additionally, AEEG signals contain artefacts due to movement of the electrodes and 

interference with other systems.  

Following the protocol presented in Chapter 3, subjects were exposed to a series of 

auditory stimuli in a range of environments.  The stimuli were either a common or oddball 

tone, produced by the smartphone and presented through earphones worn by the 

participant.  A time interval spanning each tone was recorded as a trial.  Each trial started 

200 ms before the start of the tone and ended 800 ms after.  Typically, each trial recording 

contains the common or oddball response signal plus many other signals due to brain 

processes, other processes such as eye movements, and artefact noises. 

For each individual subject, the synthetic ERP generator was fitted to the uniform mean 

of ERPs from the sitting inside dataset, as described in Section 7.2.  The PCA bases were 

then generated, along with the PCA weight covariance matrix, specific to each individual.  

All ERP data is then PCAKF filtered using each individual's multichannel ERP variation.  

Finally BOC_OWM_UN combining is applied to subsets of trials collected in different 

activities and environments.  Initially, all trials from an individual-activity-environment 

are combined to provide a reference set of ERP parameters.  Then a sequence of smaller 

subsets are tested.  Every subset size from 2 to 50 trials were tested, with 50 subsets of 

randomly chosen trials were tested for each subset size.  Figures 8.1 and 8.2 show the 

convergence of the P300 amplitude and delay estimates to the results using all the trials, 

as a function of subset size.  It can be seen that the delay estimates are more precise than 

amplitude estimates.  The delay estimates have a 5% uncertainty for subsets of size 20 or 

more while the amplitudes have an uncertainty of 10% for the same number of trials.  The 

increase in precision was very slow for increasing numbers of trials above 20.  This 
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experiment has been repeated for all participants and each of the four scenarios, to 

determine the subset size to yield delay and amplitude uncertainties of 5% and 10% 

respectively.     

 

Figure 8.1 P300 amplitude estimates vs subset size.  Error bars indicate mean and quartiles. It 

can be seen P300 amplitude from 4.5- 6.5 μV 15% error. 
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Figure 8.2 P300 delay estimates vs subset size.  Error bars indicate mean and quartiles. It can be 

seen P300 delay from 320- 340 ms 15% error. 

Figure 8.3 illustrates the combined ERP for participant S4 estimated while sitting in the 

shielded room from 12 trials after PCAKF with BOC_OWM_UN compared with 16 trials 

ADJUST with uniform mean.  This is the smallest number of trials that yielded a 

consistent P300 amplitude and delay for this individual under these conditions. 
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Figure 8.3 Comparison of estimated ERPs, after the standard and the proposed filtering and 
combining protocols. Combining protocols forcing the ERP signal to be zero before the 

stimulus and after the expected ERP response.  

Table 8.1 lists the smallest number of trials, for the 8 individuals and the range of 

activities and environments, needed for a consistent P300 amplitude and delay estimate.   

It can be seen in table 8.1 that the number of repetitions needed to measure the P300 

parameters in channels Cz and Pz varies from subject to subject, activity to activity 

(sitting or walking) and from environment to another environment inside shielded room 

or outside (in laboratory). In all but one case an increasing number of trials is required as 

the individual changes from sitting to walking and from inside to outside.  Walking leads 

to movement of the electrodes, leads and equipment; and so more movement artefacts are 

present compared to sitting.  Some muscle noise is also generated by the neck muscles 

maintaining the head position.  Walking requires some brain control, leading to 

contaminating brain signals.  Being in the more stimulating environment outside the 

shielded room causes more brain activity due to processing of other auditory and image 

stimuli.   
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Table 8.1 Number of trails need to be combined to observe P300 amplitude and delay using 

PCAKF with BOC_OWM_UN, compared with ADJUST and uniform mean in brackets (). 

Subject  Activities 

  Sitting Inside Sitting Outside Walking Inside Walking Outside 

S1 17(23) 20(26) 30(37) 35(42) 

S2 8(12) 10(17) 15(20) 23(26) 

S4 12(16) 15(19) 18(22) 24(28) 

S5 20(23) 23(30) 27(31) 32(36) 

S6 6(12) 10(16) 13(20) 15(23) 

S8 21(27) 19(25) 22(27) 27(31) 

S9 5(14) 8(17) 11(15) 15(19) 

S10 13(20) 15(24) 20(24) 25(31) 

Mean 12.8(16.3) 15(21.8) 19.5(24) 24.5(28.3) 

Range 

5 – 21 

(12 – 27) 

8 – 23 

(16 – 26) 

11 – 30 

(15-37) 

15 – 35 

(19 – 42) 

 

Figures 8.2 compares the two processing protocols, for the 8 participants and the four 

scenarios.  In all cases the proposed processing protocol reduces the number of trials 

required, typically by 20 to 30%.   It can also be observed from the estimated ERPs in 

Figure 8.1, that even when the standard processing protocol yielded consistent P300 

parameters, the uncertainty indicated by the noise before the stimulus and after 400 ms 

would suggest that a greater number of trials was necessary.  

Single-tailed statistical hypothesis tests has been performed to determine whether PCAKF 

with BOC_OWM_UN yields estimates of P300 parameters in fewer trials than ADJUST.  

With a level of significance of =0.05, there is statistically significant evidence that the 

proposed protocol requires fewer trials, in both sitting environments.  The evidence of 
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superiority in the two more stimulating environments is not quite statistically significant.  

The table below provides the P-values which are the probability that the performance of 

the two protocols is purely due to chance.  A low P-value is evidence that the performance 

of the protocols is systematic 

Activities Sitting Inside  Sitting Outside Walking Inside Walking Outside 

P values 0.029 0.0053 0.071 0.082 

 

 

Figure 8.4 Number of Trials to observe P300 in different filters and environments. 

8.4  Discussion 

Usually some pre-processing, either manual or automatic, is needed to remove artefacts 

from measured ERP recordings. Linear filtering removes artefact components that are 

outside the ERP frequency band.  However, more sophisticated filters are required to 

reduce the influence of artefacts so that ERP parameters can be identified in an acceptably 

low number of trials.  If too many repetitions of the stimulus are required then the 

experiment becomes expensive, or impractical with some participant categories.   
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To reliably observe P300, a minimum of 36 usable trials (after artefact rejection or 

correction) in each stimulus category is recommended by (Luck, 2005). Eye-blink 

artefacts lead to trial rejection, and so the total number of trials could be significantly 

increased.  However, (Polich, 1986) suggested that 20 trials were sufficient for observing 

the P300 in an oddball paradigm.  He stated that 20 trials yielded reliable results and that 

no benefits were seen if the number of trials was increased (Cohen & Polich, 1997). 

Bruder et al said that after an average of 20 oddball ERPs trials P300 amplitude seemed 

to be statistically steady (Bruder et al., 1995). After applied and clinical examination of 

P300 amplitude and latency, (Humphrey & Kramer, 1994) concluded that there are only 

insignificant changes in P300 amplitude after 30 target trials or more.  The results of 

Boudewyn’s study demonstrate that there are several factors that should be considered in 

determining the number of trials needed in a given ERP experiment, and that there is no 

magic number of trials that can yield high statistical power across studies (Boudewyn et 

al., 2017). 

Many parameters may affect the SNR in EEG signals, such as equipment, recording 

settings, paradigm, age and subject status, even control or individual participants (Luck 

& Todd, 2004).  It is not clear how these results translate into AEEG data from active 

participants in high sensory environments, and for features smaller than P300.   

8.5 Conclusions 

Historically, ERP studies have used simple uniform means of trials to estimate ERP 

responses.  Under ideal conditions, 20 to 30 trials are needed to estimate P300 parameters.  

The signal processing protocol developed in Chapters 5 and 6 has been applied to AEEG 

data collected while participants sit or walk, in a low or high stimulus environment.  Even 

while walking in a high stimulus environment, the processing protocol allows P300 

amplitude and delay to be accurately observed with as few as 15 trials and an average of 
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only 24.5.   While inactive in a low stimulus environment the number of trails required is 

around 12 and can be as low as 5. 

The processing protocol has two classes of applications.  Firstly, if applied to clinical data 

collected in ideal conditions it greatly reduces the number of trials required to measure 

clinically important parameters.  This represents a significant saving in time and money 

if applied to all ERP studies.  Furthermore, it may make some ERP studies possible where 

the subjects are not cooperative.  Secondly, it allows ERPs to be measured while 

participants engage in a wide range of activities in stimulating environments.  This allows 

new science as meaningful EEG data can be acquired while participants engage in their 

normal daily activities, or in special activities designed to highly specific conditions. 
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Chapter 9  Discussion, Conclusions and 

Future Work 

9.1 Discussion 

Compared with other biomedical signals, EEG is extremely difficult for an untrained 

observer to understand, partially because of the spatial mapping of functions onto 

different regions of the brain and electrode placement. Data processing techniques can 

aim human interpretation by extracting clinically important parameters such as P300 

delay and amplitude.  Feature extraction followed by pattern recognition has also been 

used, as in automated spike detection during the monitoring for epileptic seizure activity. 

In early attempts to show a relationship between the EEG and behaviour, analogue 

frequency analysers were used to examine the EEG signals (D'Alessandro et al., 2003). 

Initially, only linear methods were applied to separate EEG signals from noise, and to 

identify artefacts. Principal component analysis (PCA), independent component analysis 

(ICA) and linear discriminant analysis (LDA) are well-known methods for feature 

extraction and data compression transforms the existing features into a lower-dimensional 

structures.  This reduces the feature redundancy in measured signals (Cao et al., 2003; 

Widodo & Yang, 2007).  These methods also allow the use of prior knowledge to 

distinguish signal from noise and artefacts.  Independent Component Analysis (ICA) has 

been proven to be an effective data driven method for analysing EEG data, separating 

signals from temporally and functionally independent brain and non-brain source 

processes and thereby increasing their definition (Artoni et al., 2018).  

Electroencephalography (EEG) is a widely used experimental technique to investigate 

human brain function by tracking the spatio-temporal neural dynamics correlated to 

experimentally manipulated events (Niedermeyer & da Silva, 2005). However, a major 
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problem common to all EEG studies is that the activity due to artefacts is typically much 

higher in amplitude than those generated by neural sources. Artefacts may have a 

physiological origin as eye movements or muscle contractions, or non-biological causes 

as electrode high-impedance or electric devices interference (Croft & Barry, 2000). In a 

typical event-related potential (ERP) paradigm, data are divided in epochs time-locked to 

the stimulus, and artefacts are removed by discarding epochs in which the EEG activity 

exceeds some predefined thresholds either in specific electrodes (e.g., electrooculogram 

(EOG) signals for ocular movements) or in all electrodes throughout the scalp. Artefact-

reduced ERPs are then obtained by averaging the data over the remaining epochs, thereby 

increasing the signal-to-noise ratio. However, this procedure is problematic when only a 

few epochs are available, or when artefacts are very frequent, as in studies involving 

patients or children, or measurements taken in stimulating environements, or when the 

participants are physically active. Alternative procedures consist of modelling the signals 

generated by blinks or ocular movements and removing them from the data while 

preserving the remaining activity. Most of these methods are based on regressing out 

reference signals, usually recorded near the eyes, from the EEG signals with a model of 

artefact propagation.  Regressing out eye artefacts inevitably involves subtracting 

relevant neural signals from each recording as well as ocular activity (Croft & Barry, 

2002).  Moreover, these methods do not work without reference signals, which are not 

always present for ocular movements, and very difficult to obtain for other types of 

artefacts (muscular, non-biological). Another approach to this problem is the use of 

independent component analysis (ICA), a statistical tool that decomposes EEG data in a 

set of sources with maximally independent time courses (Jung et al., 1998). ICA separates 

activity related to a large number of artefacts from neural activity by automatically 

segregating the former in specific independent components (ICs). Since the number of 

sources is potentially much higher than the number of ICs (Liu et al., 2002), this 



 

 

169 

 

separation will never be perfect (Groppe et al., 2009; Delorme et al., 2007). However, 

after removing non-physiological artefacts by an accurate pre-processing of the data, such 

that removing artefact ICs from the data by simple subtraction, generally leads to 

marginal distortion of the remaining EEG data (Joyce et al., 2004; Jung et al., 2000). 

Nevertheless, the practical usability of ICA as a tool for artefact rejection has an important 

limitation:  the detection of the ICs associated with artefacts is time-consuming and 

involves subjective decision making (Delorme et al., 2007; Mantini et al., 2008).  A single 

discriminative measure may already be very helpful in detecting specific artefacts blinks, 

lateral eye movements, heartbeat artefacts or even a wide variety of biological and non-

biological artefacts (Mantini et al., 2008; Okada et al., 2007; Li et al., 2006; Viola et al., 

2009). However, these algorithms are not completely automatic since they either require 

a training set (Delorme et al., 2007; Li et al., 2006; Mantini et al., 2008).  ADJUST 

algorithms were found to detect EEG artefact automatically based on the joint use of 

Spatial and Temporal features (Mognon et al., 2011).  

9.2 Conclusion 

The EEG provides a clinically important measurement of brain activity and has 

applications in the diagnosis and treatment of brain diseases and abnormalities. It is also 

a research tool in the fundamental studies of brain function.  To date, the use of EEGs has 

mostly been limited to measuring brain function of participants who are immobile and 

reclined in a low stimulus environment.  Our knowledge of brain activity derived from 

EEG studies is mostly limited to this artificial scenario. It is assumed that similar activity 

would be measured if the participants were active or were exposed to other simultaneous 

stimuli.  Ambulatory or mobile EEG devices have been developed to test this assumption 

and to measure brain activity under less artificial conditions.  AEEG data is usually 

contaminated with various types of intermittent artefacts, often with large amplitudes. 
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This study, addressed first the pre-processing of continuous EEG data which were filtered 

and corrected by using an ADJUST algorithm. Further filtering methods based on PCA 

projection and Kalman Filtering developed and shown to be very effective in increasing 

signal to noise ratio.  Usually, ERPs are detected by averaging over EEG measurements 

made with many repetitions of the stimulus.  The average may require many tens of 

repetitions before the ERP signal can be observed with any confidence.  This greatly 

limits the study and use of ERPs.  This project explored more sophisticated methods of 

ERP estimation from measured EEGs.   As the noise power varies considerably between 

trials, there is significant advantage in weighting any average formed so the emphasis is 

given to the cleanest data.  A Bayesian Optimal Combining technique was developed 

allowed noisy trials to be incorporated in the best ERP estimate, even if the noise varied 

significantly during the trial measurement.  The combination of these filtering and 

combining techniques yields a signal processing protocol that yields ERP estimates with 

significantly fewer trails than traditional methods.  Furthermore, ERPs can be estimated 

from EEG data acquired during challenging conditions, where the participant is involved 

in activities or in stimulating environments. 

9.3 Future Work 

This work mainly focused on improving the quality and usability of EEG data by reducing 

the noise level via optimised use of the PCA, PCAKF, and introducing the OWM and 

BOC methods to improve ERP estimation. A ERP signal processing protocol: PCA 

projection filtering followed by BOC_OWM_UN, has been developed and tested.  

Further studies can extend the work presented, such as: 

 Applying the protocol developed to other ERP measurements such as the use of 

visual stimuli. 
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 Combining the protocol with more robust artefact reduction methods to extend 

the range of activities in which ERPs can be measured, for example during 

participation in sport. 

 Extend the algorithms to focus on observing the different ERPs from oddball and 

common stimuli.  

The ultimate goal of this project was to make ERP measurement more research and 

clinically applicable, by cost reduction and extending the scenarios where it can be 

applied.  An important element of future work will be the clinical use of the processing 

protocol developed in this project, to evaluate its effectiveness in practise, and to quantify 

the clinical and economic advantages of its use. 
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