

February | 2020

Realtime Image Noise Reduction
FPGA Implementation
With Edge Detection
MASTER DISSERTATION

Ricardo Jorge Ferreira Jardim
MASTER IN ELECTRICAL ENGINEERING - TELECOMMUNICATIONS

Realtime Image Noise Reduction

FPGA Implementation

With Edge Detection
MASTER DISSERTATION

Ricardo Jorge Ferreira Jardim
MASTER IN ELECTRICAL ENGINEERING - TELECOMMUNICATIONS

SUPERVISION
Fernando Manuel Rosmaninho Morgado Ferrão Dias

iii

iii

Abstract
The purpose of this dissertation was to develop and implement, in a Field

Programmable Gate Array (FPGA), a noise reduction algorithm for real-time
sensor acquired images. A Moving Average filter was chosen due to its
fulfillment of a low demanding computational expenditure nature, speed, good
precision and low to medium hardware resources utilization. The technique is
simple to implement, however, if all pixels are indiscriminately filtered, the result
will be a blurry image which is undesirable.

Since human eye is more sensitive to contrasts, a technique was
introduced to preserve sharp contour transitions which, in the author’s opinion,
is the dissertation contribution. Synthetic and real images were tested.
Synthetic, composed both with sharp and soft tone transitions, were generated
with a developed algorithm, while real images were captured with an 8-kbit
(8192 shades) high resolution sensor scaled up to 10 × 103 shades.

A least-squares polynomial data smoothing filter, Savitzky-Golay, was
used as comparison. It can be adjusted using 3 degrees of freedom ─ the
window frame length which varies the filtering relation size between pixels’
neighborhood, the derivative order, which varies the curviness and the
polynomial coefficients which change the adaptability of the curve. Moving
Average filter only permits one degree of freedom, the window frame length.
Tests revealed promising results with 2𝑛𝑛𝑛𝑛 and 4𝑡𝑡ℎ polynomial orders. Higher
qualitative results were achieved with Savitzky-Golay’s better signal
characteristics preservation, especially at high frequencies.

FPGA algorithms were implemented in 64-bit integer registers serving
two purposes: increase precision, hence, reducing the error comparatively as if
it were done in floating-point registers; accommodate the registers’ growing
cumulative multiplications. Results were then compared with MATLAB’s double
precision 64-bit floating-point computations to verify the error difference
between both. Used comparison parameters were Mean Squared Error, Signal-
to-Noise Ratio and Similarity coefficient.

Keywords:

Denoising, FPGA, contour detection, Moving Average, Savitzky-Golay.

iii

iii

Resumo
O objetivo desta dissertação foi desenvolver e implementar, em FPGA,

um algoritmo de redução de ruído para imagens adquiridas em tempo real.
Optou-se por um filtro de Média Deslizante por não exigir uma elevada
complexidade computacional, ser rápido, ter boa precisão e requerer moderada
utilização de recursos. A técnica é simples, mas se abordada como filtragem
monotónica, o resultado é uma indesejável imagem desfocada.

Dado o olho humano ser mais sensível ao contraste, introduziu-se uma
técnica para preservar os contornos que, na opinião do autor, é a sua principal
contribuição. Utilizaram-se imagens sintéticas e reais nos testes. As sintéticas,
compostas por fortes e suaves contrastes foram geradas por um algoritmo
desenvolvido. As reais foram capturadas com um sensor de alta resolução de
8-kbit (8192 tons) e escalonadas a 10 × 103 tons.

Um filtro com suavização polinomial de mínimos quadrados, Savitzky-
Golay, foi usado como comparação. Possui 3 graus de liberdade: o tamanho da
janela, que varia o tamanho da relação de filtragem entre os pixels vizinhos; a
ordem da derivada, que varia a curvatura do filtro e os coeficientes polinomiais,
que variam a adaptabilidade da curva aos pontos a suavizar. O filtro de Média
Deslizante é apenas ajustável no tamanho da janela. Os testes revelaram-se
promissores nas 2ª e 4ª ordens polinomiais. Obtiveram-se resultados
qualitativos com o filtro Savitzky-Golay que detém melhores características na
preservação do sinal, especialmente em altas frequências.

Os algoritmos em FPGA foram implementados em registos de vírgula
fixa de 64-bits, servindo dois propósitos: aumentar a precisão, reduzindo o erro
comparativamente ao terem sido em vírgula flutuante; acomodar o efeito
cumulativo das multiplicações. Os resultados foram comparados com os
cálculos de 64-bits obtidos pelo MATLAB para verificar a diferença de erro
entre ambos. Os parâmetros de medida foram MSE, SNR e coeficiente de
Semelhança.

Palavras-chave:

Ruído, FPGA, deteção de contorno, Média Deslizante, Savitzky-Golay.

iii

iv

Acknowledgements

This work represents another important stage of my life and is the
culmination of a series of steps which may not have been achieved without the
precious contribution of several people, made available in several forms,
including their knowhow, psychological support, understanding and patience.

First, to my supervisor, Professor Fernando Morgado-Dias, for the
opportunities given, and there were several, including conferences participation,
for his guidance on this dissertation and his understanding. This
acknowledgment extends since from under graduation course.

To my wife Anna, for her unconditional support, understanding, and
coolness, especially on less reasonable moments.

To my exceptional parents that have been campaigning me since from
the womb, for their support through the route of my life, particularly for their
confidence and friendship.

To several friends related to the academic world and from outside of it,
for their support and suggestions, that directly or indirectly have contributed to
this Master Dissertation.

v

List of Acronyms

AI – Artificial Intelligence

AWGN – Additive White Gaussian Noise

AXI – Advanced eXtensible Interface

CLB – Configurable Logic Block

CPU – Central Processing Unit

DMA – Direct Memory Access

DSP – Digital Signal Processor

FWC – Factor Wheel Conversion

FPGA – Field Programmable Gate Array

FIFO – First Input First Output buffer

IEEE – Institute of Electrical and Electronics Engineers

I/O – Input/Output

IP – Intellectual Property

LUT – Look-Up Table

MSE – Mean Squared Error

PCIe – Peripheral Component Interconnect express

PDF – Probability Density Function

PSNR – Peak Signal-to-Noise Ratio

RAM – Random Access Memory

RGB – Red, Green, Blue

RTL – Register-Transfer Level

SMF – Sigma Multiplicative Factor

SNR – Signal-to-Noise Ratio

TCP/IP – Transmission Control Protocol/Internet Protocol

USB – Universal Serial Bus

VHDL – Very High-Speed Integrated Circuit Hardware

Description Language

vi

List of Symbols

𝜇𝜇 – Mean

𝜎𝜎 – Standard deviation

𝜎𝜎2 – Variance

𝑀𝑀𝑀𝑀𝑀𝑀 – Mega Hertz

𝑁𝑁 – Number of pixels (filter size)

vii

Contents

Abstract .. III

Resumo ... III

Acknowledgements ... IV

List of Acronyms ... V

List of Symbols ... VI

Contents ... VII

1. INTRODUCTION... 1

1.1. Motivation .. 3

1.2. Objectives ... 5

1.3. Contents framework ... 6

1.4. Own work ... 7

2. STATE OF ART ... 9

2.1 Noise generation ... 9
2.1.1 Introduction .. 9
2.1.2 Noise generation in a signal.. 10
2.1.3 Noise generation in an image ... 11
2.1.4 Image denoising techniques ... 11

2.2 Conclusions ... 13

3. IMAGE DENOISE FPGA IMPLEMENTATION USING A MOVING AVERAGE
FILTER WITH CONTOUR DETECTION .. 16

3.1. Introduction .. 16

3.2. Moving Average Filter ... 18

3.3. Methodology and Used Equipment ... 24

3.4. Results .. 26

3.5. Conclusions ... 27

3.6 Acknowledgments .. 29

3.A. Timing diagram ... 30

3.B. Information of the FPGA’s implemented logic... 30

3.C. Results table ... 31

viii

4. SAVITZKY-GOLAY FILTERING AS IMAGE NOISE REDUCTION WITH SHARP
COLOR RESET ... 32

4.1. Introduction .. 33

4.2. Proposed Savitzky-Golay filter .. 38

4.3. Test settings .. 42

4.4. Results .. 44

4.5. Conclusions ... 47

4.6. Acknowledgments .. 47

4.A. Appendix ... 48

5. TESTING .. 49

5.1 Platform .. 49

5.2 Data flow between FPGA and CPU .. 51

5.3 FPGA IP core module ... 53
5.3.1 Flowcharts ... 53
5.3.2 Increasing denoising smoothness on darker colors with a polynomial function.................. 55
5.3.3 Schematics and Synthesis .. 57
5.3.4 Timing diagram ... 59
5.3.5 Implementation ... 61
5.3.6 Bitstream .. 61

5.4 CPU host applications ... 62

5.5 Conclusions ... 65

6. GENERAL CONCLUSIONS ... 66

7. REFERENCES .. 70

A APPENDICES .. 73

A.1 Moving average FPGA source code ... 73

A.2 Simulation file of moving average FPGA source code .. 77

A.3 CPU side C source code ... 79
A.3.3 Streamread.c ... 79
A.3.4 Streamwrite.c .. 80
A.3.5 MATLAB scrips and source C code .. 82

ix

 1

1. Introduction
This Master Dissertation is the culmination of a research from which

resulted two papers, one entitled “Image Denoise FPGA Implementation using a
Moving Average Filter with Contour Detection”, which was presented on the
International Conference of Biotechnology and Engineering Applications
(ICBEA) 2018 having been peer reviewed and published through Institute of
Electrical and Electronics Engineers (IEEE)
(https://ieeexplore.ieee.org/document/8471740) and a second paper, entitled
“Savitzky-Golay filtering as Image Noise Reduction with Sharp Color Reset”,
which was submitted to the Evise ─ Microprocessors and Microsystems Journal
paper (https://www.evise.com/), which was, as well, peer reviewed and
accepted to be published on Volume 74, in April 2020, with the number 103006.
Its DOI webpage is https://doi.org/10.1016/j.micpro.2020.103006.

The dissertation was initially projected, as was its purpose, to reflect the
work developed on the first paper, a time-domain noise reducing filter for real-
time acquired images by image sensors connected to low complex, low power,
digital processing units such as those normally found in small cameras or
smartphones, more specifically, on FPGAs. However, the work further extended
leading, lately, to a second published paper, which scrutinizes a filter that better
preserves the signal characteristics, especially on the high-frequency spectrum,
the Savitzky-Golay filter.

Noise is a general and abroad concept which basically means a random
uncorrelated statistical distribution which, at some point, can be approached by
one or more processes such as Gaussian, Rayleigh, Beta, or higher order
distributions such as Dirichlet. More complex noise patterns can follow yet other
distributions or compositions of them difficult to model.

In the context of the signal processing and, especially of this dissertation,
besides, following on how image acquisition areas have been traditionally dealt
with, it will be referred as a Gaussian white random process, normally known by
Additive White Gaussian Noise (AWGN). It is white because the range of
signals that composes a specific bandwidth of interest have all the same
amplitude. It is a random process because it cannot be predicted when a
specific spectral component will appear at a specific time. Finally, it is Gaussian
because it can be described as a probabilistic process that follows a distribution
with the same name with.

Probabilistic processes can be described with a minimum of two
parameters such as mean, 𝜇𝜇, and standard deviation, 𝜎𝜎. However, in Electrical
Engineering, it is common to refer to the latter as variance, 𝜎𝜎2. Variance

https://ieeexplore.ieee.org/document/8471740
https://www.evise.com/
https://www.sciencedirect.com/science/journal/01419331/74/supp/C
https://doi.org/10.1016/j.micpro.2020.103006

 2

enhances the visualization of the error growth comparatively to the standard
deviation because it imputes more emphasis the larger it develops, instead of a
linear growth as standard deviation does.

When light is captured by an image sensor, the process begins with
photons-to-electrons conversion in semiconductor electronic components, as
shown in Figure 1.1. This conversion process is made up to a rate which is
proportional to the light conditions. The signals are diffused through the
distribution channels and lanes, passing through passive components and are
delivered with an amplitude which is resultant from the referred conversion.

The final process is the gathering of all these individual values in a matrix
which, after adjusted, will lead to the generation of pixels, the minimal picture
fragment or unit of light that composes an image. If a pixel is monochromatic,
then is only defined by gray shades and has one subpixel. If it is a color pixel,
then it is normally defined by 3 subpixels, corresponding to the 3 basic colors
Red, Green and Blue (RGB). Figure 1.2, shows an RGB image composed by
pixels in Bayer pattern disposition.

This light capture process suffers oscillations which have consistently
been verified to follow an AWGN curve with mean, 𝜇𝜇 = 0, and a certain
variance, 𝜎𝜎2. Higher variances mean noisier images. Under low light conditions
noise becomes granularly more perceptible. During the development of this
project this condition was verified and addressed with the creation and
implementation of an inverse non-linear function.

Noise generated in an image can be composed by a contribution of both
a signal-independent and a signal-dependent parts. The independent part,

Figure 1.1- Photons to pixels process [1].

 3

which cannot be directly controlled and therefore can only be estimated, is due
to the contribution of the photons, i. e., light intensity, weather conditions,
scattering phenomena, etc.

On the other side, a wafer manufacture process destinated to make
image sensors can itself introduce non-uniform linearities contributing ultimately
to the noise generation. It is, however, a process that can be mitigated and
corrected and up to a certain degree, it is a characteristic of the non-homogenic
semiconductor doping process. This is also regarded as the dependent-signal
noise contribution [3−6].

1.1. Motivation
Photosensors are ubiquitous our days, making it integral part of video

and photo cameras. They are spread out all over and a constant presence of
the modern’s lifestyle. Embedded into personal smartphones ranging through
standalone photo snappers, professional studio machines until the huge
industrial, printing process controllers, pictures are taken anywhere, at any time,
with any light conditions, from the dawn to the dusk, even during the night.

With acceptable brightness, the number of photons acquired by camera
sensors are enough to be evenly converted by the devices’ circuitry to electrons
and distributed through the pixel matrix to compose and generate pictures given
a good brightness/contrast ratio. However, when that is not the case and, below
certain brightness levels, it can be perceptive a certain image granularity
proportionally inverse to the light conditions that was gathered at the shooting
time, due to this sparse photons-to-electrons conversion. All this process
introduces some level of noise on the images they generate. However, the
purpose of this work is to focus on noise reduction for devices of low-power
consuming, low-processing capabilities.

Figure 1.2 - Image composed by pixels in a Bayer pattern disposition [2].

 4

Despite some of the high range performers’ smartphones to include low
precision, low bit depth, fast dedicated hardware oriented for Artificial
Intelligence (AI) and self-learning capabilities targeting quick audio and video
recognition, they often lack specialized Digital Signal Processors (DSPs) for
immediate noise processing coming right out from the sensors, such as
embedded FPGAs. This voids the parallelization spurs of the whole set of
device’s operations leaving main Central Processing Units (CPUs) overburden
with all sorts of tasks, that could otherwise, have been split among generalists
and dedicated processors.

Several techniques exist for noise reduction as this has been a hot topic
from 20–30 years now. However, this is a non-trivial choice process and should
mandatorily consider tradeoffs between, by one side, fast and simple
techniques, even though, with less satisfactory results and, on the other side,
more complex, time and processing resources consuming but qualitative ones.
In situations where speed and quality cannot be achieved, preference, quite
often, is given to speed over quality and this is particularly valid in real-time
situations.

On all, noise reduction techniques, especially when applied to pictures,
are interpreted as psychovisual outcomes which may not generally have an
immediate connection with measurable parameters such as MSE, SNR and
Local or Global Similarity. In addition, because of time limitations, it is very
difficult to develop global and scalable solutions in order to exploit the immense
assortment of DSPs and CPUs processing devices, including FPGAs which is
the case of the current work's plan.

Meaningful outcomes are questionably connected with complex
computations evolving transforms between physical domains, namely between
time and/or space and frequency domains, use of trigonometric functions,
calculus and heavy numbering computations. Acceptable precision results might
not be achieved if floating point computations does not come into question, and
consequently, real time results might be conditioned even though considering
the use of Look Up Tables (LUTs) which can sky rock memory usage the more
the precision is demanded.

These issues led to the development of two real-time algorithms, one
being the focus of this dissertation initial work, which can reduce the noise and
lead perceptually, up to a certain degree, to granular-free images. The first is a
less computationally expensive algorithm, and the second one, a slightly more
advanced and a more effective algorithm at the signal integrity preserving
especially at higher frequencies, where noise reduction operations are critical.
The development was done towards precision but without threatening the

 5

expected ready availability of the results, thus maintaining low complexity with a
minimum of power consumption.

Initially, the work of research started on the AWAIBA enterprise having
interest in the development of a low computational algorithm looking forward
minimizing the generated noise out of their sensors. In that sense, this
dissertation can be regarded as an important contribution in order to
parametrize and hence, take the most out of their sensors for matters of low
noise image quality.

1.2. Objectives
The objective of the initial project was to study the noise generation in

images on sensors in general, verifying the relationship on how varying the light
conditions does that affect the granularity in the inverse proportion, that is,
under low light conditions the photons are scarce and spreads through the
image unevenly, leading to uncontrolled signal variations.

Always when possible, precautions were taken to detach these
processes, making them independent from a specific architecture and focus on
the process of the image formation and to the noise attached to it. Hence,
although tests were done with images sourced from a particular image sensor,
processed with a certain FPGA through Universal Serial Bus (USB) channels,
the interest fall on techniques of noise reduction which can be extended to a
multitude of sensors and platforms. Thus, during the execution of this project, a
plan of work was respected that guaranteed the following objectives:

1. Research on photons-to-electrons conversion principle, including theory
and equations, how does it lead to an image construction, and how and
in what conditions can result in noise generation.

2. To study and understand the existing Very High-Speed Integrated Circuit
Hardware Description Language (VHDL) source code for image capture,
pre-processing and interface routing, identifying control signals
pretraining to sensors image acquisition.

3. Image capture under several ambient light conditions and study of the
noise generation under these conditions regardless of the underlying
associated equipment used in the acquisition process, including, image
sensors, signal processing platforms and signal routing used for
propagation through related processing stages .

4. Study of image sensors exposition controlling methods to the light and

 6

source light intensity dynamics control in order to mitigate and reduce
noise generation, leading, lately, to signal processing solution complexity
reduction.

5. Development and simulation of a fixed-point solution in parallel with a
floating-point in MATLAB and comparing the error before porting to
VDHL language and implemented on an FPGA.

6. Analysis and constraints of a real-time image acquisition and denoise
processing implementation.

7. Development and integration of two algorithms, in VHDL code, for an
FPGA platform, making comparisons between both and additional
development of MATLAB support programs to test, as well as, to
compare its efficiency.

1.3. Contents framework
The sequence of this dissertation, which resulted in two papers is

structured in 6 chapters – Introduction, State of Art, Image Denoise FPGA
Implementation using a Moving Average Filter with Contour Detection, Savitzky-
Golay filtering as Image Noise Reduction with Sharp Color Reset, Testing
Platform, Conclusion and Appendices.

Chapter one starts with the introduction, a quick reference of the noise
concept and how it is generated, it expresses the motivation behind today’s
demanding for low processing computational algorithms using the power of
FPGA’s configurable blocks. These devices possess a parallelizing processing
nature which unclutter the bottlenecks of the CPU’s different paradigm. Finally,
how this dissertation is structured through this contents’ framework.

In Chapter two, a research is made through state of art with a quick
introduction on noise generation on an image to help to understand what the
tradeoffs are between choosing some determinate technique over another,
particularly in a less expensive computational realm and immediately post-
sensor delivering data.

Chapter three is the IEEE paper which resulted of the work done in the
sequence of this dissertation, which was presented on ICBEA18 International
Conference of Biomedical Engineering and Applications and the focus and
purpose of this dissertation.

Chapter four is an evolution paper with a different filtering technique to

 7

the previously work done. While the moving average filter is a constant
coefficients filtering technique, the Savitzky-Golay filter is an adaptative least
squares error curve fitting. This paper is now published by Elsevier, Journal of
Microprocessors and Microsystems - Embedded Hardware Design.

Chapter five describes in detail the two developed solutions and extends
the characteristics of the platform used to implement and to test these
techniques.

Chapter six draws general conclusions and comments the results.

The Appendices state the VHDL source codes used on the testing FPGA
and the C source codes used on the CPU side.

1.4. Own work
Although similar techniques exist, it is believed that this work contributes

with an original computational FPGA’s image processing with contour color
preserving technique that is computationally speedy, with results comparable to
those of the most complex processing devices and algorithms.

Several studies [7]−[8] point that Human eye is more sensitive to the
Luminance, than Chrominance, that is, except for low modulation frequencies,
humans can better spot changes in contrasts or shapes than in colors, as can
be seen in Figure 1.3’s study [7].

Therefore, the author of this dissertation proposes two real-time
algorithms, which aim to denoise images acquired with low to mid-range image
sensors, while preserving the images’ contrasts. The two solutions already

Figure 1.3 – Human eye contrast sensitivity tests for 2 different tones. On the left, the dots,
correspondent to pattern detection, is 3x more sensitive than for chromatic detection. Spatial
frequency is expressed in cycles/degree of modulation change. On the right, the temporal
CSF modulation for the same 2 colors [7].

 8

exist. However, the author believes that the images’ preservation technique,
that is, the images’ contour preservation is his own contribution.

The development is to be applied to a very fast-processing platform such
an FPGA using the VHDL hardware description language.

 9

2. State of Art
In this section the basics principles of the signal processing are quickly

reviewed, since they are further analyzed in Chapters 3 and 4, the chapters
which have resulted from the work developed for this dissertation. Thus, the aim
of this work focusses particularly in computational techniques for real-time noise
reduction applied to images, using FPGAs as main processing platform.

The most common used methods are referenced, from the simplest to
the most complex ones pointing, and whenever necessary, it will be point out
each one’s strengths and weaknesses.

Additionally, it is referenced, the tradeoffs for opting for some determined
architecture considering the complexity of the algorithm in question. Finally, it is
referenced the algorithms’ development platform for both, implementation and
testing.

2.1 Noise generation
2.1.1 Introduction

Noise can be described as a random or stochastic, undesirable and
uncorrelated signal that sums up to the signal of interest [9]–[11]. In turn, a
stochastic signal can be part of a broader family of discreet-time Probability
Density Functions (PDFs). It is understood that, at any given moment, a certain
signal can be modeled by one or a combination of PDFs. Thus, a signal, can be
interpreted as set of individual or jointly probabilities which are specified by a
sequence of random variables distributed in the axis of time [9].

A physical observable signal can be a superimposition of a random,
correlated signal we want to extract information from and an uncorrelated,
stationary in average, disturbing signal, known as noise [12]−[13].

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖_𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜 + 𝑠𝑠𝑜𝑜𝑠𝑠𝑜𝑜𝑜𝑜

in other words,

where 𝑖𝑖𝑠𝑠 is the independent time variable defined as 𝑖𝑖𝑠𝑠 =
𝑠𝑠

𝑠𝑠
, 𝑠𝑠 is a number of

random samples, 𝑠𝑠 is the indexed sample, 𝑀𝑀𝑠𝑠 𝑠𝑠𝑠𝑠𝑖𝑖~ 𝑁𝑁(0,1) is an AWGN and 𝜗𝜗 is the
attached noise [11].

This superimposition can happen at the moment of the creation or the
transformation of the observable signal thus, the latter does not possess the

𝑖𝑖𝑠𝑠 = 𝑓𝑓(𝑖𝑖𝑠𝑠) + 𝜗𝜗𝑀𝑀𝑠𝑠 (2.1)

 10

same integrity as of that the time of its creation [12]. Therefore, unless the
attached noise is added deliberately with the purpose of scrambling or hide the
relevant signal, or the signal is to be emerged below the noise threshold level
for the same purpose, this uncorrelated noise is undesirable [14].

In turn, noise does not have a physical meaning itself, neither can be
measurable isolatedly hence, it can be regarded as a disturbance to the model
or to the system which is not part of [11].

In the imagery creation context, i. e., created by image sensors, signal’s
attached noise can be a contribution from two sources: one, from a dependent
source of noise which is characterized as photonic noise; the other one, from an
independent source which is generated in the device’s circuitry. The later, has
trendily been reducing over times along with technical progress [3].

It is then desired to filter the interest signal out of the noise in order to
obtain, as much as possible, an 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖_𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜. Noise
can be generated from several sources: thermal, shot, flicker, burst and others
[15].

2.1.2 Noise generation in a signal
Considering the amount of types of noise that exist and assuming that

they all are unwanted stochastic processes that sum up to the signal of interest,
whatever its origin, the noise interferes with the information signal, distorts and
degrades its quality [15].

Often, the noise is considered to be an information-carrier, with a proper
pattern which is revealing of its origin, whether it is acoustic, thermal, electronic,
shot, electromagnetic, cosmic and several others. In this sense, a distorted
signal has some degree of certainty to carry noise attached to it, drifting the
signal itself from its ideal conditions [13], [15]. For example, on a transmission
line the noise is one of the main limitative factors of the signal integrity at the
destiny given that the initial transmission conditions are ideal [12]−[13],
[15]−[16].

Noise itself can be, and often is, modulated by a statistical model which,
depending on its source, can follow one or more Probability Distribution
Functions (PDFs). One of the mostly considered PDFs, in all engineering
disciplines, particularly in Electrical Engineering, which includes the creation of
pseudorandom noisy models for synthetic testing purposes, is the White Noise
with a Gaussian PDF, that is, Additive White Gaussian Noise (AWGN). AWGN
is known to have a consistent and flat signal spectrum density. Jamming,
cryptography, communication and electronic calibration systems are examples

 11

of such a deliberate utilization [17]− [18].

2.1.3 Noise generation in an image
A pure informative signal is a generalized term which defines a set of

random variables, strongly correlated, whose values or amplitudes can be
defined, at any moment, by one or more sets of probabilistic functions,
specifically PDFs. A pure image is also a signal which is subjected to the same
random nature disturbances as the signal is [9].

Image sensor photon detection leading to a pixel generation is subject to
some perturbations which are the result of both, the manufacture process, i. e.,
non-homogenic doping process in the whole surface of the semiconductor
material and certain light conditions [17].

These perturbations might lead to a perceptible granularity in the image,
as can be seen on the right side of the Figure 2.1, which is to say, a random
tone variability, known as variance, within a similar tone area, known as noise.
The aforementioned process is of an uncorrelated nature, and it has been
verified to exhibit a probabilistic Gaussian normal behavior [9], [17].

2.1.4 Image denoising techniques
Several algorithms have been studied through the last 2 to 3 decades.

On one side, there are simple time domain denoise techniques with quite good
results but poor band stopping. On the other side, it exists a sheer amount of
frequency domain denoising techniques, several of them with stellar results [4].

In the field of our interest, noise generation resulting from a photoelectron
counting conversion is a hypothesized electromagnetic signal which is defined
statistically to be deterministic, having a zero-mean, and a Gaussian shape-like
which can be expanded by Karhunen–Loéve series of orthogonal functions.

Figure 2.1 - An image, on the left, without noise, and on the right with AWGN
[26].

 12

This type of source generated noise can be modeled by Laguerre polynomials
[19].

Discreet Cosines is a technique of low complexity which may or may not
use orthogonal transforms. Can be applicable to random shape signals, thus to
images, yet using relatively low computational resources [20].

A new wavelet approach of point despeckling or smoothing a high
variability signal that can produce good results on low gradient transitions while
still preserving most of the image’s signal energy. It should not be considered
for this dissertation purposes because it requires expensive frequency
transforms computations [4]−[5].

To preserve most of the image’s signal energy techniques exist based on
undecimated wavelet decomposition with the need of having to work with time
or space and frequencies domains [21].

A general denoising model for images, can be achieved by employing
several mathematical fields such as numerical analysis, statistical models,
weighted similarities between pixels and patches with several expectations,
besides statistics, for example, in color multiscale analysis and graph-based
data representation where the employment of quadratic Laplacian forms are
used in order to obtain information about the energy distribution and from there
the signal’s filtering technique to apply. This is typically used jointly with wavelet
transforms [20].

If the noise model is known to be uncorrelated, which in its majority is, a
generalized similarity approach assumption among pixels and patches with
dependency of the distribution model of the noise may be applied with the use
of weights which can be tweaked with the last assessment similarity. This
scheme can improve the SNR, with images affected by additive Gaussian and
by multiplicative speckle noise models [23].

A shape-adaptative technique using Discreet Cosines Transforms (DCT)
can be combined with local polynomial approximation and anisotropy to filter
shape-adaptative blocks. It works by compressing an image in DCT blocks then
to compute the confidence intervals to find the transform’s support shape on a
pointing adaptative method. With established appropriate threshold values, it
can be found the estimation coefficients [24]−[25] that serve to reconstruct the
signal’s support shape. This technique somehow imposes restrictions in the
luminance-chrominance space in order to increase the accuracy of the image’s
colors. This adaptative reconstruction enhances the color transitions (cleanses
undesired artefacts) [20], [26].

 13

Strictly time domain techniques such as moving averages [27] and
polynomial curve fits using least squares errors [28] are among the most used
with very good results and these are the main focus of this dissertation.

All image sensors, namely photo and video sensors add noise to the
visual information (images) they acquire. This phenomena correlates several
principles which will be further developed in the next chapters, but to get an idea
they include but are not limited to, the scattering light conditions at the moment
of the photo snapping, the photons-to-electrons conversion process on the
circuitry upon the pixels acquisition on the sensor, known as Factor Wheel
Conversion (FWC) and the thermal noise generated from two sources: the
atmospheric and the devices’ electronics.

Although several noise reduction techniques exist for any type of signal in
general and for imagery in particular, for this dissertation’s working thread
proposed objectives, we aim to develop two different but comparable fast image
processing denoising techniques with image contour preservation. As referred,
they should be fast processing, relatively simple to implemented in nearly all
hardware FPGA platforms and should give visible results to justify its
implementation.

It is believed that those can be found amongst the simplest time domain
constant, as well as adaptative polynomial curves moving average filtering
techniques. These can be as fast as real-time and with a minimum possible
latency. Although other possible solutions exist, such as frequency domain
processing and they will be referred throughout this dissertation, they will not be
considered due to their substantial implementation complexity, hence, the
processing time required and computational resources used.

For the mentioned considerations two solutions were developed and
implemented. The first, a moving average filter with image contour preservation
which is described in Chapter 3. The second, an adaptative least squares error
Savitzky-Golay filter, as well with image contour preserving, described on
Chapter 4.

2.2 Conclusions
These chosen techniques have both advantages and constraints over

others that should be referred:

Advantages

• Entirely processing in time domain. Transforming between time and

 14

frequencies domains can bring a bit better results, by selectively
filtering noisier bands but are time and computationally too expensive.
Besides they require costly floating-point calculations.

• All computations can be done completely in fixed-point arithmetic.

• Low power consumption, hence suitable to be implemented in mobile,
low-power image acquisition devices such as video and photo
cameras, including those embedded on smartphones.

• Very low latency. Results can be obtained at a speed of one clock,
thus to the level of pixel-in this clock, pixel-out next clock.

• Quick processing setup, including hardware optimized for parallel
data processing. Few, if any, configuration parameters are required to
activate/deactivate the denoising FPGA Intellectual Property (IP)
module. For processing parallelization, the developed algorithm
should create several channels.

• Selection of the averaging or the adaptative filter size for both
solutions can give better results up to a certain point. A tradeoff
should be considered.

• It probably does a better job in preserving the images’ shapes than
their frequency domain counterparts, although this was not tested.
However, it is well known that frequency domain processing is done
block after block of pixels, normally 8 × 8 or 16 × 16 and the final
image “stitching” result has a somehow mosaicking effect.

• The adaptative polynomial curves such as the second algorithm
proposed here, the Savitzky-Golay filter, use the least squares errors
and is a bit more complex than simple moving average filters but
better preserves high frequency signals.

Disadvantages

• Both proposed algorithms, the moving average and the Savitzky-
Golay filters behave poorly in the frequency domain. This means that
the secondary lobes are very frequency leaky. We want to filter the
frequencies on the main lobe and cut completely all the others.
Undesirably, this is a characteristic which all time domain filters
possess. Though, there is no such perfect physical filter, even on
frequency domain.

• The adaptative polynomial curves such as the second algorithm

 15

proposed here, the Savitzky-Golay filter, use the least squares errors
and are a bit more complex than simple moving average filters.
However, as advantage, it better preserves high frequency signals.

• For Savitzky-Golay filter, due to its polynomial and hence multiple
derivative nature, for each new derivative, additional information not
immediately seen in the data being smoothed might be revealed.
Depending on the case to which a certain derivative degree is to be
applied on, it can have a pleasant or otherwise an undesirable image
effect.

• Since certain operations, in frequency domain, are simpler than in
time domain, i. e., a convolution in time domain is done as a
multiplication on frequency domain, it is not of common agreement
that time domain filtering will be always simpler than frequency
domain filtering [9], [29].

 16

3. Image Denoise FPGA Implementation using a
Moving Average Filter with Contour Detection

This chapter is the first of two papers which resulted from this master
dissertation work. It is an image contour detection technique using a Moving
Average Filter placed here as a chapter belonging to this dissertation.

The paper was presented on the International Conference on Biomedical
Engineering and Applications ICBEA held in Funchal - July 9th to 12th, 2018,
jointly organized by institute of Knowledge and Development, the University of
Madeira and the Madeira Interactive Technologies Institute.

It was published by IEEE, under the International Standard Book Number
(ISBN) 978-1-5386-8058-2/18/$31.00 ©2018 IEEE

Ricardo Jardim, F. Morgado-Dias
University of Madeira and Madeira Interactive Technologies Institute, 9000-390 Funchal,

Madeira, Portugal

rjjardim@gmail.com , morgado@uma.pt

Abstract—A Moving Average Filter should be among the first filters,
if not the first, one should consider when speed, good precision and low
to medium hardware resources are what is required for implementing
image noise reduction on a physical device. The technique is fairly simple
to implement, but if taken a straightforward approach, the result will be a
blurry image which is undesirable. Since the human eye is most sensitive
to the sharp tone transition, we introduced a contour detection technique.
Because the inherently lack of floating-point representation, except for the
most modern FPGA’s versions, all the calculations were done in fixed
point. Also, images used were scaled up to 10x103 colour levels (a bit
higher than 213 bits). Real results of double precision 64-bit were achieved
through MATLAB and then compared to a Zynq-7000 FPGA using 64-bit
fixed point calculations. The error difference obtained between both
implementations was 1x10-4.

Keywords — color scaling denoising function, DSP, fixed-point
arithmetic, FPGA, image contour/edge detection, moving average filter,
noise reduction, signal processing.

3.1. Introduction
Noise reduction is not a trivial choice process without considering trade-

offs between the quick, simple and less than stellar results to the more complex,
time consuming and satisfying ones. In cases where both speed and quality

mailto:rjjardim@gmail.com
mailto:morgado@uma.pt

 17

cannot be attained, prioritization, almost always, is given to the speed over
quality and this is especially true on critical real-time scenarios. Although active
research has been done from two to three decades now with quite good results,
noise reduction techniques, particularly done on images, are psychovisual
subjective processes which might not always have a direct correlation with
quantifiable by parameters such as Mean Squared Error (MSE), Signal-to-Noise
Ratio (SNR) and Local or Global Similarity. Besides, due to time constraints, it’s
almost impossible to develop completely scalable solutions to take advantage of
the vast variety of Digital Signal Processors (DSP) and/or Central Processing
Units (CPU) processing hardware, namely Field Programmable Gate Arrays
(FPGA) as is the case of this work’s proposal.

Satisfactory results are, arguably, neck to neck with complex processing,
which might evolve bridging between different physical domains, as is the case
of the use of the transforms between time/space and frequency domains,
trigonometric functions implementation, and intensive numbering operation.
There are obviously solutions, that pass, for example, through the use of look-
up tables, but acceptable precision cannot be attained if floating point is not
considered, besides, real time results might be conditioned.

We aim to implement a solution for noise reduction on an FPGA, which
has advantages, over a CPU*:

• Optimize hardware for parallel data processing;

• Reduced dimensions and hence appropriate for mobility;

• Low energy consumption.

On the other hand, it lacks, in most cases, dedicated hardware for
precision calculations, such as floating point.

If, however, simplicity and few utilization resources are desired yet with
good results comparable to floating-point, it is possible to implement a fixed-
point based solution through a moving average filter, which is certainly to be
one of the simplest filters for noise reduction.

This type of filter is easy both to understand and to implement, and for
better visual acuity it can be paired with a sharp colour transition detection
technique while maintaining the smoothness on low gradient colour changes.
This is convenient because, what catches immediately the human eye, when
looking at an image, is the sharp contours. The moving average filter can be
applied to any signal source acquired either in the time or space domains. It can
come from an audio, video, imaging or from any electromagnetic nature. In this
work, the source is stored images, hence the processing is done in the space
domain, but can also be easily applied to real time image acquisition, in time

* Although the same FPGA solution was developed to run on MATLAB, hence, on a CPU
(see the C and M codes in Appendix) it should not be considered a fair comparison due to
the platforms’ different processing conditions (FPGA at 200 MHz with parallel dedicated
processing, while CPU at 2.4 GHz with serial processing through MATLAB)

 18

domain.

An idiosyncrasy of the moving average filter is that while it can generate
quite good results in the time and spatial domains, it has, however, a very poor
degree of controllability in the frequency domain, which is to be considered as
the worst filter to control in this domain, namely, and often useful, a poor
flexibility in band separation [27]. Through this dissertation, we will refer to the
frequency domain, as a comparison reference with the time domain.

MATLAB code was developed to generate all the graphics. The rest of
this dissertation will be organized as follows. Section 3.2 reviews the theoretical
fundaments, how noise can be generated on an image, what parameters are
used to quantify noisy images, what is a moving average filter and how does it
work, its behavior in the frequency domain, what results can be obtained with
filter autoconvolution and finally the proposed technique of contour detection.
Section 3.3 refers to the methodology and the used equipment, its configuration
and the testing scenario. Section 3.4 presents the results and finally, Section
3.5 drives the conclusions.

3.2. Moving Average Filter

3.2.1 Noise Generation on an Image
Image sensor photon detection leading to a pixel generation is subject to

some perturbations which is a result of both the manufacture process, i. e., the
non-homogenic doping process, in the whole surface of the semiconductor
material and the light conditions [19]. These perturbations might lead to a
perceptible granularity in the image, that is, a tone variability within a similar
tone area known as noise. The aforementioned process is of a random nature,
and it has been verified to exhibit a probabilistic Gaussian normal behavior.

3.2.2 Quantifiable Used Parameters
Given two versions of the same image, one contaminated with Additive

White Gaussian Noise (AWGN) being the other, the denoised processed
version, it is possible to compare both versions using the MSE, SNR and the
Peak SNR (PSNR) parameters, which are global values, i. e., unique values
that quantifies the whole set of pixel differences between 2 images. Comparison
between pixels is made on the same coordinate of each 2 images. Structural
Similarity Index (SSIM) is yet another parameter we use both as local and
global. Local values are made on a per-pixel comparison basis, resulting in an
image generated with the same dimensions as the sources, containing the pixel
differences between the 2 source images.

MSE can be calculated using Equation 3.1:

 19

where 𝑌𝑌� is the predictor of the reference image and 𝑌𝑌 is the noisy image.

The SNR can be calculated by Equation 3.2:

The PSNR can be calculated using Equation 3.3:

where 𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 is the image maximum pixel resolution.

3.2.3 Moving Average Filter
It is possible to express the moving average filter using Equation 3.4:

where 𝑚𝑚 is the input pixel, 𝑦𝑦 the output pixel, 𝑁𝑁 the number of counting
pixels for the average, 𝑠𝑠 the index of the pixel being averaging and 𝑗𝑗 the offset
index of the pixel relative to i contributing to the average of the output pixel.

This can be best understood as a step function with an amplitude of 1
𝑁𝑁

being convoluted with the signal of interest. It is easy to verify that the larger the
filtering window, 𝑁𝑁, the smoother will be the output signal, following the square
root law, as it can be seen in Figure 3.1. It is an optimal solution both for solid
and for low gradient colour transitions but otherwise for sharp colour changes,
resulting in blurry image. The step function slope limit, for the left and the right
sides is 𝑁𝑁

2
 and −𝑁𝑁

2
 , respectively.

𝑚𝑚𝑃𝑃𝑁𝑁𝑚𝑚 = 10 𝑜𝑜𝑜𝑜𝑠𝑠10 �
𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚2

𝑀𝑀𝑃𝑃𝑀𝑀 �

Figure 3.1 - Moving average filters of 4, 36, 81 and 121 points
applied to a rectangular step function with random noise.

𝑃𝑃𝑁𝑁𝑚𝑚 = 10 𝑜𝑜𝑜𝑜𝑠𝑠10 �
𝑌𝑌2

𝑀𝑀𝑃𝑃𝑀𝑀�

𝑀𝑀𝑃𝑃𝑀𝑀 =
1
𝑁𝑁
�(𝑌𝑌�𝑖𝑖 − 𝑌𝑌𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

𝑦𝑦𝑖𝑖 =
1
𝑁𝑁
� 𝑚𝑚𝑠𝑠+𝑗𝑗
𝑁𝑁−1

𝑗𝑗=0

(3.1)

(3.2)

(3.3)

(3.4)

 20

3.2.4 Frequency Domain
Complementarily, for better understanding with what we are dealing, the

frequency response of a moving average filter’s kernel seen in time domain as a
rectangular pulse, can be given by its Fourier Transform 𝑀𝑀(𝜔𝜔):

Image acquisition on image sensors is done through channels in which
the unavoidable added noise follows a normal Gaussian distribution curve with
a zero-mean occurrence probability throughout the entire signal spectrum.
However, when the signal is transformed into the frequency domain, the bulk of
the signal energy is concentrated at the lowest frequencies shown by the main
lobes, in Figure 3.2.

This means that the noise added to the lower frequencies of the signal
becomes diluted on it, hence turning the noise unnoticeable, a good feature. On
other side, where the noise becomes noticeable is at higher frequencies. Noise
elimination techniques in frequency make extensive use of this property at
expense of processing power.

In time domain, the moving average is an optimal filter kernel because it
symmetrically reduces the variance of a Gaussian shape with zero-mean
random noise distributed all over the signal. It is, however, possible to choose
where to eliminate specific noise contaminated frequencies by shortening or
enlarging the number of points contributing for the averaging, bearing in mind
that some of the signal information will also be eliminated along with the noise.
In the frequency domain, sequenced high secondary filter lobes turn it poorly
controllable due to the soft roll-off. It is desirable a sharp stopband decay for all
filter lengths, 𝑁𝑁.

If all attempts fail to explain how the moving average filter works, one can
simply resume referring to a basic principle of the Vector Signal: the larger the
signal pulse in the time domain, in this case, a larger 𝑁𝑁, the narrower the range
of the band in the frequency domain, which means a reduced noise variance

ℎ𝐻𝐻 �𝑖𝑖 +
𝑁𝑁
2
� − ℎ𝐻𝐻 �𝑖𝑖 −

𝑁𝑁
2
� ⟺

ℱ
 𝑀𝑀(𝜔𝜔) =

𝑜𝑜𝑠𝑠𝑠𝑠(𝑁𝑁𝑁𝑁𝜔𝜔)
𝑁𝑁𝑁𝑁𝜔𝜔

Figure 3.2 - Frequency response of 4 moving average filters.

(3.5)

 21

obtained.

3.2.5 Multiple Autoconvolution
Different results can be obtained if one or more convolution passes of the

filter over itself are made.

The convolution can be given by Equation 3.6:

where ℎ1(𝑖𝑖) and ℎ2(𝑖𝑖) were given by the left-hand side of ℱ (the time-domain
side), in Equation 3.5.

Figure 3.3 shows several curves, which represent sets of autoconvolution
operations of the same filter.

As the number of passes increase, the filter shape changes from a step
function to a Gaussian function.

The result of successive autoconvolutions, as expected, increases the
noise attenuation but cumulatively decreases signal detail. Also, filter
amplitudes increase as more passes are made due to the increasing integrated
area, although this is not shown in Figure 3.3 because all curves have been

ℎ1 ⋆ ℎ2(𝑖𝑖) ≝ � ℎ𝐻𝐻1(𝜏𝜏) · ℎ𝐻𝐻2(𝑖𝑖 − 𝜏𝜏)𝑖𝑖𝜏𝜏
+∞

−∞

Figure 3.3 - – Autoconvolution. Above: shape
curves from 1 to 4 passes. Below: cumulative
distributions from the corresponding curves

(3.6)

 22

normalized.

While in one pass filtering the weight of the neighbor pixels under it is the
same, on a multiple pass filtering, the averaging weight takes the shape of the
curve being convoluted with the signal, higher on the center of the filter. With 2
passes the filter shape becomes triangular, and from 3 passes up, the curve
gets a non-linear weight Gaussian distribution shape like.

The cumulative distribution below graphic in Figure 3.3, shows how the
filter becomes less sharp inversely proportional to the number of passes, a non-
desirable characteristic due to the non-linearities it introduces but on the other
hand, in the frequency domain, as can be seen in Figure 3.4, the secondary
lobes drastically drop because each new result is a multiplicative operation
between the previous pass and a new function, as given by the right-hand side
of ℱ (the frequency domain-side), Equation 3.5. This is a welcome feature
turning the Moving Average Filter a tradeoff choice between specific
frequencies vs. a whole frequency band.

3.2.6 Contour Detection
The algorithm for implementing the Contour Detection can be developed

starting with the Moving Average Filter given in Equation 3.4. If:

being 𝑀𝑀� the filtered averaged pixels, that is, to the pixels convolved with the
filter, the decision for the pixel, 𝑝𝑝, being analyzed, to contribute to the average is
decided if

in which

Figure 3.4 - Frequency domain
multipass autoconvolution.

𝑀𝑀� = 𝑦𝑦

𝑝𝑝 ⊂ [𝑀𝑀� − 𝜎𝜎…𝑀𝑀� + 𝜎𝜎]

𝜎𝜎 = �𝑀𝑀
�
𝑁𝑁

(3.7)

(3.8)

(3.9)

 23

otherwise, 𝑝𝑝 restarts a new averaging

Visually, the difference between Moving Average Filters, one without
(simple) and another with Contour Detection can be seen below in Figure 3.5. If
a whole width horizontal line of pixels is randomly chosen from the top image
(red) and moving average operations are made with several filter lengths, 𝑁𝑁, the
result will be the middle image pixel profiles. Higher values of the curves
correspond to lighter grey shades and the lower values to darker shades. In the
middle is graphic without contour detection, if 𝑁𝑁 is big enough, we end up losing
the image sharpness since everything gets averaged. Conversely, as shown in
the lower graphic, the steeply tone changes are pretty much preserved and only
the soft transitions variability is smoothed out.

Figure 3.5 - Moving Average Filter (from top to bottom): original image; without contour detection
(graphic and result); with contour detection (graphic and result).

 24

3.3. Methodology and Used Equipment
An image acquired with an image sensor in proper light conditions, to

minimize photon shot noise, was chosen and referenced as original image. The
image’s pixel depth is a 213-bit fixed-point (8192 tones). In MATLAB, the image
was converted to normalized floating-point range [0. .1] with the purpose to add
several AWGN variances noise, according to the Section 3.5. This is needed
because almost all MATLAB’s Toolboxes APIs work in floating-point notation.
The noisy images to be processed in the FPGA were converted back to its
original bit depth fixed-point while the ones to be processed on MATLAB
remained in floating point.

For the real floating-point calculations, MATLAB scripts were used. For
fixed-point calculations it was used a ZedBoard Zynq-7000 All Programmable
SoC XC7Z020-CLG484-1 FPGA board, shown in Figure 3.6, along with
programming environments Xilinx Vivado versions 2017.4 and 2018.1. The
language for the FPGA programming was Very-High Speed Integrated Circuit
Hardware Descriptive Language (VHDL) with some system libraries in Verilog.
The images to be processed in the board were uploaded onto the same SD
card which loads its OS.

Since the original image has a pixel depth of 213-bit, with a Factor Wheel
Conversion (FWC) pixel (photon to electrons conversion) of 10 × 103 (as stated,
slightly above 213, it should be level up, for consistency, to the nearest multiple
of 8 and hence to 216-bit. More, because some pixel’s calculations are same
register cumulative, this easily overflows 32-bit registers if these were chosen,
so 64-bit registers were implemented. This, not only, does not increase roundoff
errors because they are done, as will be discussed, to the nearest zeroth
decimal floor, but also makes room for calculations with higher bit-depth images
without having to redesign the registers.

The hybrid capabilities of Zynq chip, working as a full integrated
CPU+OS computer system with an FPGA easily accessed through an AMBA
AXI3/AXI4 interface bus facilitate the communication process. From the board’s
computing side, images data pixels are loaded and sent in a column-by-column
sequence to the FPGA to be processed, which are then collected, assembled
and stored in the SD card as new images. It is also possible to use the board’s
Ethernet to exchange images between the working computer and the ZedBoard
avoiding constant SD card’s swap, however, network instability issues voided
this option.

In the working computer, measurement parameters described in Section
3.2.2 were used using the MATLAB’s Image Processing Toolbox. Each image,
either fixed- or floating-point, was compared with the original in its respective

 25

scale. These original-processed image pairs were used as MATLAB’s
measurement functions input parameters. The functions return a result which is
a floating-point double value. Visual comparisons were also made.

In Section 3.4, each image has a header defining the attained results
which were transcribed to Figure 3.7 through Figure 3.15 captions.

In Appendix 3.A, Figure 3.16 shows a timing diagram of the FPGA
implemented solution for a filter length 𝑁𝑁 = 4. Despite the volume of signals and
variables, most starting with an “o_” which are internal registers and control
signals, the relevant information is pointed out and is described here. Most
important signals are the highlighted DataIn and DataOut. The first blue marker
at 160 ps delimits the beginning of data sequence to be processed, DataIn,
which starts with a four-value header: N, SMF, bit depth and the number of
passes (how many loops this data sequence is to be processed). So, it can be
seen for this header that 𝑁𝑁 = 4, 𝑃𝑃𝑀𝑀𝑆𝑆 = 50, bit depth = 8192 (213) and
𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 1. Right after, as pointed by the second blue marker, data starts
to flow in. It can then also be seen that the processed data is coming out of the
module, carried by DataOut, in just one complete clock cycle, as shows the
yellow marker. Another signal of interest is the “o_rst_clk”, below DataIn, which
resets the pixel counter every time a colour sharp transition is detected.
Appendix 3.B shows utilization of several FPGA’s resources.

Figure 3.6 - Hardware platform FPGA
ZedBoard Zynq-7000 used for the tests.

 26

3.4. Results
Figure 3.7 is composed of a pair of images in which the top is the original

version and the bottom is the noise contaminated version with 0.01 AWGN
standard deviation. Figure.3.8 through Figure 3.15 show pairs of images
processed using filter lengths 𝑁𝑁 = (4, 9, 16 and 25), chosen according to the
Equation 3.9, which says that the noise reduction factor is given by the squared
root of the filter’s length, 𝑁𝑁, so we can expect noise reduction factors of 2, 3, 4
and 5 folds. For filter lengths above 𝑁𝑁 = 25, the image quality starts to degrade
due to the fact that too much image detail is removed along with the noise.

For each filter length value, 2 multiplicative factors of 𝜎𝜎 (SMF), were
chosen, 50 and 100. It is known that a Gaussian curve is almost entirely
contained between -3𝜎𝜎 and 3𝜎𝜎, so the question is, why to set 𝜎𝜎 equal to 50 and
100? Our experiments show that 𝜎𝜎 factors lower than these simply present
negligible to none filtering results, hence the use of this inflating factor. It can be
seen that there is a denoising increasing factor according to the increase of N
and SMF.

The Table 3.1, in the Appendix 3.C, shows the quantifiable results, based
on the already referred parameters MSE, SNR, PeakSNR and Global Similarity,
associated to these generated images.

Figure 3.7 - Left image: noise free. Right image: contaminated with 0.01 AWGN standard deviation (𝜎𝜎).

Figure.3.8 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1,
Filter size N=4, SMF=50.

Figure 3.9 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1,
Filter size N=4, SMF=100.

Figure 3.10 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1,
Filter size N=9, SMF=50.

 27

3.5. Conclusions
Table 3.1, in Appendix 3.C, show the test results obtained with added

noise variances of 𝜎𝜎2 = 1 × 10−4 and 𝜎𝜎2 = 1 × 10−3 to an image that we
assume to be noise free. Main focus was given to 𝜎𝜎2 = 1 × 10−4 because it
shows a good tradeoff between a mild perceptible added noise to be processed
and the presumed noise free image. The 𝜎𝜎2 = 1 × 10−3 was chosen for
comparison because of its significative noise perceptibility.

A MATLAB pseudorandom generator function was used to add the
indicated noise variances to the image. The rightmost column, Change, shows
the differences, in percentage, including the SNR and PeakSNR logarithmic
values converted to decimal, between the MATLAB’s floating-point version and

Figure 3.11 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1,
Filter size N=9, SMF=100.

Figure 3.12 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1,
Filter size N=16, SMF=50.

Figure 3.13 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1,
Filter size N=16, SMF=100.

Figure 3.14 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1,
Filter size N=25, SMF=50.

Figure 3.15 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1,
Filter size N=25, SMF=100.

 28

the FPGA fixed-point calculations, taking the foremost as reference. Floating-
point calculations were all done in the value’s range between [0. .1], because it
holds the most precision scale. According to MathWorks, MATLAB maximum
rounding error, a machine epsilon, is 2−53 in a scale of values between 2𝑠𝑠 and
2𝑠𝑠 + 1, in this case 𝑠𝑠 = 0. This is the reason to consider it as the reference,
while fixed-point calculations were done, as previously mentioned, in the range
[0. .10 × 103]. Comparing both, as expected, all 𝜎𝜎2 = 1 × 10−4 tests presents
better results than 𝜎𝜎2 = 1 × 10−3, with the highest values being 𝑁𝑁 = 9 and
𝑃𝑃𝑀𝑀𝑆𝑆 = 50, while the lowest being 𝑁𝑁 = 16 and 𝑃𝑃𝑀𝑀𝑆𝑆 = 100. SNR and PeakSNR
depend inversely on MSE as given by Equations 3.1, 3.2 and 3.3, and Global
Similarity follows this trend as well. The less the MSE error, the better the SNR
and hence the better the Similarity between the original and the processed
images.

Relatively to 𝜎𝜎2 = 1 × 10−4, it should be noted that better values are
achieved when values of 𝑃𝑃𝑀𝑀𝑆𝑆 = 50. Also, from 𝑁𝑁 = 4 to 𝑁𝑁 = 25 the results
degrade progressively among the same value of SMF. The exception to this is
when 𝑁𝑁 = 25, which achieves better results for fixed-point in both SMF’s values.
Image’s results reveal that progressive higher quality is achieved at N=16 and
𝑃𝑃𝑀𝑀𝑆𝑆 = 100. For 𝑁𝑁 = 25, images show some adjacent colour fusion, resembling
patches, so beginning to lose some quality. SNR’s magnitude orders of 31 𝑖𝑖𝑑𝑑
and PeakSNR’s of 37 𝑖𝑖𝑑𝑑 for 𝑃𝑃𝑀𝑀𝑆𝑆’𝑜𝑜 = 50 seem reasonable for this value of
noise variance (𝜎𝜎2 = 1 × 10−4) while for 𝑃𝑃𝑀𝑀𝑆𝑆 = 100, lower SNR’s of 28 or 29 𝑖𝑖𝑑𝑑
and PeakSNR’s of 35 dB are more expected, given that a higher SMF increases
the smoothness over a lower SMF for the same N, and so, visually, it seems to
qualitatively reduce further the noise. However, as revealed numerically, image
degrades because information details are, as well, processed along with the
noise. We have made an additional test for comparison, which consisted in a
simple moving average image noise reduction and we got SNR values between
26 and 19 𝑖𝑖𝑑𝑑, hence significantly lower than the ones of our interest. It is also
noticeable that floating-point results are consistent with fixed-point results. The
differences between both are minor but suffice to conclude that the floating-
point, due to higher precision, generates better results. In relation to 𝜎𝜎2 =
1 × 10−3, the best values are obtained when 𝑁𝑁 = 4 and 𝑃𝑃𝑀𝑀𝑆𝑆 = 100. There is,
however, a significant difference: while in 𝜎𝜎2 = 1 × 10−4, SNR results are better
in SMF=50 than in SMF=100 (differences between 2 or 3 𝑖𝑖𝑑𝑑), in 𝜎𝜎2 = 1 × 10−3
they are practically the same around 𝑃𝑃𝑁𝑁𝑚𝑚 = 24𝑖𝑖𝑑𝑑. Given that 𝜎𝜎2 = 1 × 10−3
generates a perceptible noisier image, this is an acceptable result.

The most meaningful result here is that it is possible to make calculations
in a simple fixed-point notation without any visible difference compared to the
more computationally expensive floating-point counterpart, once a relative high

 29

pixel bit depth is chosen. Our tests were made with images containing pixels
with 10 × 103 colour tones, i.e., a little over 213 = 8192 shades. This further
reduces roundoff errors to a level of precision of 1

10 ×103
= 1 × 10−4, due to the

fact that calculations made in fixed-point always ditch the rational part by
flooring down the result to the immediate lower integer available. Additionally,
attention must be given to the whole mathematical operation, with the purpose
to spot where divisions and square roots occur and exert some effort to reduce
it to a maximum of one square root and a maximum of one division, explained
by the fact that round offs only occur on these math operations.

There is yet another feature that needs to be treated properly. A noise
contaminated image is more noticeable at darker colour or shades than lighter
ones and this deserves special care. A non-linear smoothing filtering function
must be adjusted and multiplied by 𝜎𝜎, letting darker colour shades have more
filtering tolerance than the lighter ones.

A quick note on the results: the sparse difference between the
measurement parameters does not quite really translates the visual perception
of the denoising processing results. Furthermore, the different filter sizes and
the multiplicative sigma factor can make a huge contribution when the image
has large solid patch shades to process.

This work shows promising results on low power, low complexity, high
portability, FPGAs utilization for real-time signal processing.

For future works and already working on it, we aim to make use of a
more challenging approach in frequency domain, including Discrete Cosines
(DCT), Fourier and Wavelet Transforms. This was one also of the reasons to
include it as a reference on Section 3.2.

3.6 Acknowledgments
Acknowledgments to the Portuguese Foundation for Science and

Technology for their support through Projeto Estratégico LA 9 -
UID/EEA/50009/2013.

 30

3.A. Timing diagram

3.B. Information of the FPGA’s implemented logic

Figure 3.16 – Timing diagram referenced in Section 3.3.

Figure 3.18 - FPGA resources utilization.

Figure 3.21 - FPGA power
consumption.

Figure 3.17 - Integrated ‘mov_avg’ IP block schematic.

Figure 3.20 - FPGA logic
layout.

Figure 3.19 - Pulse width.

 31

3.C. Results table

Figure Parameter Floating Point (Matlab) Fixed Point (FPGA) Change

 Noise added (σ2) 1x10-4 1x10-3 1x10-4 1x10-3 1x10-4 (%) 1x10-3 (%)

8

Filter length (N) 4

Sigma multiplicative factor 50

MSE 0.00016072 0.000846545 0.000160746 0.000846592 +0.016177 +0.005552

SNR (dB) 31.64 24.43 31.64 24.43 -0.015887 -0.005526

PeakSNR (dB) 37.94 30.72 37.94 30.72 -0.016117 -0.005526

Global Similarity (%) 92.05 67.61 92.05 67.60 -0.000217 -0.000444

9

Filter length (N) 4

Sigma multiplicative factor 100

MSE 0.000254682 0.000667664 0.000254709 0.000667742 +0.010601 +0.011683

SNR (dB) 29.64 25.46 29.64 25.46 -0.010131 -0.011512

PeakSNR (dB) 35.94 31.75 35.94 31.75 -0.010361 -0.011742

Global Similarity (%) 89.72 73.34 89.72 73.35 -0.000669 +0.000682

10

Filter length (N) 9

Sigma multiplicative factor 50

MSE 0.000160537 0.000906685 0.000160546 0.000906783 +0.005606 +0.010809

SNR (dB) 31.65 24.13 31.65 24.13 -0.005987 -0.010822

PeakSNR (dB) 37.94 30.43 37.94 30.42 -0.005987 -0.010822

Global Similarity (%) 92.17 65.81 92.17 65.81 -0.000217 -0.002127

11

Filter length (N) 9

Sigma multiplicative factor 100

MSE 0.000296587 0.000736503 0.000296641 0.000736601 +0.018207 +0.013306

SNR (dB) 28.98 25.03 28.98 25.03 -0.018189 -0.013124

PeakSNR (dB) 35.28 31.33 35.28 31.33 -0.017959 -0.013354

Global Similarity (%) 88.37 72.27 88.37 72.27 -0.002263 -0.000138

12

Filter length (N) 16

Sigma multiplicative factor 50

MSE 0.00016108 0.000910483 0.000161083 0.000910579 +0.001862 +0.010544

SNR (dB) 31.63 24.11 31.63 24.11 -0.002533 -0.010361

PeakSNR (dB) 37.93 30.41 37.93 30.41 -0.002303 -0.010591

Global Similarity (%) 92.15 65.69 92.15 65.68 +0.000109 -0.002436

13

Filter length (N) 16

Sigma multiplicative factor 100

MSE 0.000297388 0.000784837 0.000297413 0.000784952 +0.008407 +0.014653

SNR (dB) 28.97 24.75 28.97 24.75 -0.008519 -0.014735

PeakSNR (dB) 35.27 31.05 35.27 31.05 -0.008289 -0.014735

Global Similarity (%) 88.47 70.37 88.47 70.37 +0.000339 -0.001279

14

Filter length (N) 25

Sigma multiplicative factor 50

MSE 0.000161714 0.000910427 0.000161711 0.000910529 -0.001855 +0.011204

SNR (dB) 31.62 24.11 31.62 24.11 +0.001842 -0.011282

PeakSNR (dB) 37.91 30.41 37.91 30.41 +0.001612 -0.011282

Global Similarity (%) 92.10 65.69 92.11 65.69 +0.000760 -0.002740

15

Filter length (N) 25

Sigma multiplicative factor 100

MSE 0.000293998 0.000799112 0.000293994 0.000799207 -0.001361 +0.011888

SNR (dB) 29.02 24.68 29.02 24.68 +0.001612 -0.011742

PeakSNR (dB) 35.32 30.97 35.32 30.97 +0.001612 -0.011742

Global Similarity (%) 88.74 69.69 88.74 69.69 -0.000338 +0.001148

Table 3.1 - Results relative to figures 3.8 to 3.15 based on the aforementioned parameters MSE, SNR, PeakSNR,
Global Similarity and Noise

 32

4. Savitzky-Golay filtering as Image Noise
Reduction with Sharp Color Reset

This chapter is the second of two papers which resulted from this master
dissertation work. It is a more elaborated filter than the one presented on the
previous chapter, a Savitzky-Golay filter with sharp color detection and is placed
here as a chapter belonging to this dissertation.

The paper was submitted to the Elsevier – Microprocessors and
Microsystems Journals & Books, has been accepted to be published on the
Volume 74, in April 2020, with the number 103006. It can be found on the DOI
webpage https://doi.org/10.1016/j.micpro.2020.103006.

Ricardo Jardim, F. Morgado-Dias
University of Madeira and Madeira Interactive Technologies Institute, 9000-390 Funchal,

Madeira, Portugal

rjjardim@gmail.com , morgado@uma.pt

Abstract — Images acquired through photosensors, known to be
non-stationary correlated signals, due to its acquisition characteristics,
often come attached with uncorrelated, zero-mean, variance 𝝈𝝈𝟐𝟐, stationary
processes. The latter can be built-up over the former, being sourced from
two contributions, one dependently, known as photonic noise, while the
other independently, if circuitry generated. Either way, a straightforward
approach to reduce this noise would be the use of low-pass filters. We
propose an improvement of the Moving Average Filter with a polynomial
Savitzky-Golay filter. Based on the obtained results, we believe that, in
most cases, this filter can produce better results than the standard Finite
Impulse Response (FIR) filters since it does a better job in preserving the
high-frequency signals. The challenge is to choose the best tradeoff
between the window frame size, the derivative order and polynomial
coefficients. The contour (color sharp) transitions are done through filter
resetting every time the next pixel value is outside the variance markers of
the filter. Since the processing is intended to be done in real time, we want
to stick in time domain using fixed-point calculations. MATLAB is used to
compare floating-point results with an integer processing platform, an
FPGA. Error and Signal-to-Noise Ratio (SNR) improvements were
achieved by several orders of magnitude using this new method.

Keywords — Savitzky-Golay filter; noise reduction; polynomial
smoothing; least-squares; FPGA; DSP; signal processing; fixed and
floating-point arithmetic; color transition detection.

https://www.sciencedirect.com/science/journal/01419331/74/supp/C
https://doi.org/10.1016/j.micpro.2020.103006
mailto:rjjardim@gmail.com
mailto:morgado@uma.pt

 33

4.1. Introduction

There is no easy way to properly make a choice about what method to
apply to reduce the noise out of a signal. It is desirable to be quick and simple
but at the same time as efficient as possible. Noise reduction techniques has
been a hot topic for 20 to 30 years now and still continues improving, relying the
bulk of its development with a strong basis of statistics and optimized with a
proper numeric tool. Designing for mobile low power devices, it is required and
desirable to make use of techniques that permit quick, almost instantaneous
results.

When photon-to-electrons conversion takes place on a photosensor
leading to an image generation, the result can be a noisy signal whose
magnitude is inversely proportional to the efficiency of the conversion rate. The
contained signal be sourced from two ways, as described by Alparone et al. [3].
This conversion was already studied, quite some time now, by Karp and Clark
[19] and published in 1970. The work describes the photoelectron counting
problem which is classical in noise generation where it is assumed that an
electromagnetic signal resulting from this conversion is a deterministic, zero-
mean, Gaussian random process which can be expanded by Karhunen-Loéve
series of orthogonal functions. The functional similarity is shown by Laguerre
polynomials as well as the MAP (maximum a posteriori) and the ML (maximum
likelihood) constraints estimation functions.

Argenti et al. in [4] and [5], uses a new approach of point despeckling or
smoothing a high variability signal that can produce good results on low
gradient transitions while still preserving most of the image’s signal energy.
However, it is based on undecimated wavelet decomposition, which is better
explained by Starck et al. [21]. It requires the use of transforms between the
time and the frequencies’ domains. It should be reminded that the purpose of
this work is to maintain low computational processing resources and also within
the realm of the time-domain, so avoiding high resourceful demanding filters.

Sikora [30], uses a relatively low complexity approach based on a shape-
adaptive Discreet Cosines which in turn, is based on Gilge’s [31] arbitrary
shaped images processing algorithm with orthogonal transforms. It is a good
algorithm for managing image segments of random shape yet using low
computational resources but again, involves transforms between domains, a
high demanding computational expense not practical on many of todays’
FPGAs integer operational nature.

Block-matching 3D (BM3D) transform, proposed by Chen [32], has an
augmented performance for denoising mild noisy images. It works by grouping
similar 2D image’s fragments into an array, that can be regarded as the addition

 34

of an extra dimension, effectively, sets of 3D blocks from which it derivates its
name. It has, however, a low efficiency when the noise increases because,
along with it, the similarity mismatching also increases. Besides, this algorithm
uses, as well, DCT transforms.

Another proposal of 2D block-grouping into 3D arrays which is based on
an enhanced sparse representation is studied by Dabov et al [33]. The author
tags Collaborative filtering to the manipulation of these similar 3D arrays, which
includes 3D transformation, shrinkage of the signal’s spectrum in order to
reduce the noise, and inverse 3D transformation. These transforms use discreet
cosines hence, another method that gives the power of the spectrum
manipulation but increases the complexity and the computational resources.

A general mathematical denoising model, in comparison with other
models and their classification, along with a proposal of a NL-means (Non-
Local) algorithm is suggested by Buades et al. [34]. NL-means are Euclidean
distances between patches. Patches are themselves sets of two pixels centered
in the middle of their junction. In his proposal, he tries to preserve the structure
of the image, a feature within the context of our previous paper [35] as well as
this work’s objective, although using other techniques. To achieve this, he
makes use of numerical analysis, statistical models, weighted similarities
between pixels and patches with certain limits’ assumptions. Additionally, it is
used anisotropy, a curvature motion technique, but this leads us to the
frequencies’ domain, which is out of scope of our proposal.

Deledalle [23] proposes a new approach for a known uncorrelated noise
model which is an extension of the NL-means [34]. It is proposed a more
generalized similarity approach among pixels and patches in which it has
dependency with the distribution model of the noise. The selected weights can
be refined based on the similarity taken out from the last estimation. This
technique improves somehow the SNR, particularly, on SAR (synthetic aperture
radar) images but also, in general, with images affected by additive Gaussian
and by multiplicative speckle noise models. The author claims improvements on
the latter.

Another numerical model in which it is defined color multiscale analysis
and graph-based data representation is exploited by Malek [22]. It uses a
quadratic Laplacian form to obtain information about the energy distribution as
means to draw the new data representation. It also spots the parameters’
influence on that distribution. This approach applies a psychovisual technique
but does not consider the computational resources used as priority, besides, it
makes used of wavelet transforms, which means having to work with floating-
point complex numbering.

Right in the beginning of his shape-adaptative DCT paper, Katkovnik

 35

[20], deliberately warns for the retained complexity pretraining to all comparable
block DCT algorithms. This is yet, another research that combines shape-
adaptative blocking with local polynomial approximation and with anisotropy. It
first works by deblocking the image, previously compressed with blocking DCT.
It then computes the confidence intervals to find the transform’s support shape
on a pointing adaptative method. By previously establishing the appropriate
threshold values, it then finds the estimation coefficients that will serve to
reconstruct the signal’s support shape. Furthermore, the shapes’ supports
normally overlaps in the same pointwise neighborhood, leading to further
computations which are required to make weight averaging. It also proposes
some restrictions in the luminance-chrominance space in order to increase the
accuracy of the image’s colors. This adaptative reconstruction procedure
enhances the color transitions, meaning it cleans the undesired artefacts, in fact
one of the goals of our work’s proposal, consequently, the results are visually
catching. However, besides using transforms between domains, it is too
computationally demanding to be considered within this paper’s boundaries.

Given the above researches, seems that all high-quality results belong to
the realm of the frequencies’ transforms, However, we think there is still room
for improvement not necessarily needing to leave and returning the time domain
as is this paper’s proposal.

Following the processing approach described by Jardim and Morgado-
Dias [35], in which an adapted moving average technique, suitable for real time,
mobile, low power devices was worked out, we introduce the polynomial
flexibility towards noise reduction. It has a benefit to emboss the inflection signal
points, and from there, take the appropriate decisions for further processing. A
quick introduction of the moving average filtering can be consulted in Smith [27].

In a simple and carefully tweaked way, these techniques permit to obtain
a real-time processing without much visual difference relatively to the most
complex ones. This may lead to a one-fit-all general rule which can be
especially true in the case of the photon dependency nature of the noise
generation, given that, by the side of the circuitry independent noise generation,
a previous study can be made in order to map and create a model to virtually
wipe out the noise generated from this source.

Anyway, for quick, yet good visual results, good candidates’ methods for
noise estimation which seems to give better results are those that detect and
apply a correction that less deviate from the noise free references.

Parameters that can be used to quantify the level of uncorrelated
randomness in an image, although not always related with the visual perception
are the Mean Squared Error, MSE, a parameter that parabolically magnifies the
error the more it deviates from the reference. The ubiquitous Signal-to-Noise

 36

Ratio, SNR, can be used to qualify the signal deterioration, for example, with the
help of the former computed MSE. Similarity between two sets of pixels is
another parameter that can be used to measure its differences either globally, a
unique value which translates the whole difference between the pixels’ sets, or
locally, a map based on a per-pixel comparison.

Bearing in mind that the aim of this work is to study denoising solutions
that target low power consumption, low processing demanding and ready to be
viewed images, it is always possible to save resources by using fixed point
calculation units such as Field Programmable Gate Arrays, FPGAs, Digital
Signal Processors DSPs and the most recent mobile Central Processing Units,
CPUs, in spite these last two possess the capability to make floating-point
calculations. With these resources, it is tempting to use transforms between
time/space and frequency domains. However, making these operations, the
computational price to pay in order to obtain better visual results in the
frequency domain will rise non-linearly and will end up revealing unfruitful due to
the intensive use of the floating-point computations.

For those less familiar with floating point arithmetic, Nascimento, Jardim
and Morgado-Dias [36] presented the standard approach defined in IEEE 745,
which involves numbering decomposition in signal, exponent and significand or
mantissa parts, only after, the operation takes place. While two numbers’
addition is done roughly in a straightforward manner, multiplication is done first
by adjusting the exponents for addition, then the product of mantissas is
computed, and this requires a great load of bit shift manipulation. The result has
yet to be coded in the floating-point format. A quicker approach evolves the use
of lookup tables which introduce errors of higher magnitude orders.

If the proposed solution is to exploit the advantages of several FPGAs
architectures, even if using fixed-point arithmetic at, for example, 64-bit
resolution depths which were used in this work, it is possible to keep rounding
errors to its minimum. Our tests reveal fixed- to floating-point differences
roughly between 1.4 × 10−4 and 1 × 10−3.

Figure 4.1 - Response of a Savitzky-Golay filter. The curve is the
polynomial fit, 𝒑𝒑�(𝒏𝒏) [24].

S-G Impulse Response: N = 6, M = 16

sample time n

 37

Maintaining the low complexity of the Moving Average filter presented by
Jardim and Morgado-Dias [35], we propose a polynomial Savitzky-Golay filter.
Contrary to the flat averaging behavior of the former, the S-G filter is built with a

polynomial estimator 𝑝𝑝�, of an arbitrary degree N, and coefficients 𝑜𝑜� that
minimizes the least squares error difference, which in the case shown in Figure
4.1, responds to the unit impulse in the range of n integers −𝑀𝑀 ≤ 𝑠𝑠 ≤ 𝑀𝑀. Due to
its control’s flexibility, compared to the former, it makes available more degrees
of freedom. The challenge is to choose the best tradeoff between the window
frame size, the derivative order and the polynomial coefficients. Color transitions
are made through filter resetting, similarly to what was done by Jardim and
Morgado-Dias [35] every time the pixel under scrutiny is outside the established
variance markers. It is possible to obtain better results than the standard FIR
filters, such as those previously obtained with the moving average filter due to a
better interpolation adjustment, hence, resulting in better high-frequency signals
preserving, critical in denoising processes.

The key principle of noise reducing is to seek for a low variability between
adjacent values, a well-known characteristic of any signal’s source. It is possible
to use this feature to correlate adjacent pixels while identifying the random
uncorrelated additive noise. Though, it is possible to substitute the correlated
signal points with an average value, so reducing the high variability differences.
If more surrounding values are compared, the further the ambiguity reduces. In
this sense, it is easy to see that Savitzky-Golay filter follows the same line as
the moving average filter. Coupled with contour color detection, most of the
image’s relevant information can be preserved.

Due to its polynomial nature, Savitzky-Golay filters can be easily derivate
𝑖𝑖 − 1 times, 𝑖𝑖 being the polynomial degree. This often reveals hidden
information, like the trend of the curve, the inflective points and gives the
possibility to take appropriate decisions for data treatment. It has frequently
been verified that degrees of 𝑖𝑖 = 2 and 𝑖𝑖 = 4 give the best results. This
behavior contrasts with the flat nature (if no autoconvolution is applied) of the
moving average filter. The lower the polynomial degree, the better it smooths
the signal but less preserves the highs and the widths of the signal.

Arguably, the biggest advantage of making all the operations in time
domain, within the context of this work proposed objectives, is that complex
domain transforms’ computations along with additional processing for selection
and suppression of bands where noise is more noticeable, all together are
avoided.

𝑝𝑝�(𝑠𝑠) = � 𝑜𝑜�2𝑘𝑘

⌊𝑁𝑁/2⌋

𝑘𝑘=0

𝑠𝑠2𝑘𝑘 (4.1)

 38

All floating-point data computation was done using MATLAB scripts and
compared with a Zynq-7000 FPGA series for fixed-point results. The theory
contents are reviewed in Section 4.2, including the process of noise addition to
a signal, the parametrization to measure the noise in images, a brief explanation
of the Savitzky-Golay filter and finally, the color sharp transition algorithm. In
Section 4.3 a brief description of configuration of the testing platform is given.
On Section 4.4 we describe the results, and in Section 4.5 we take the
conclusion notes.

4.2. Proposed Savitzky-Golay filter

4.2.1 Uncorrelated Stationary Random Processes
Noise is a stationary, uncorrelated random process that is normally

attached to images acquired from image sensors. When the acquisition channel
is unknown or when the noise itself expresses an unknow behavior it can be
assumed to possess a zero-mean, variance 𝜎𝜎2 and assumed, as well, as to be
equally distributed all over its bandwidth, that is, white Gaussian noise. It can,
however, culminate in estimation, leading to the creation of more appropriate
models. Image features, such light, brightness and contrast should not change
the noise model for the same sensor. Noise generation acquired from photonic
contribution is a dependent process, while noise generated by the equipment
underlying circuitry photon-to-electron conversion is an independent process.
The contribution ratio of the latest, the deterministic model, and the foremost,
the photon unpredictable model, has been reduced due to the progress being
made in the technology.

4.2.2 Noise metrics
Most channels add noise spread all over its bandwidth that follows a

Gaussian probability distribution known as AWGN or Additive White Gaussian
Noise with a zero-mean and a variance 𝜎𝜎2. A feasible way to get the noise
metrics is to determine how far a set of noise free pixels is from its counterpart
contaminated version. The least square error, MSE, can be used for this
purpose:

𝑌𝑌� is the estimator of the noiseless image and 𝑌𝑌 the noisy image. The estimator
is the unbiased probabilistic parameter acquired from a theoretical infinite
number of trials, 𝑁𝑁, which will converge and will result into the Central Limit
Theorem. Thereafter, as N grows, 𝜎𝜎2 reduces proportionally. Once determined,
MSE can be used to obtain another important metric, the Signal-to-Noise Ratio,
SNR:

𝑀𝑀𝑃𝑃𝑀𝑀 =
1
𝑁𝑁
��𝑌𝑌�𝑖𝑖 − 𝑌𝑌𝑖𝑖�

2
𝑁𝑁

𝑖𝑖=1

(4.2)

 39

The peak SNR, PSNR, can be obtained using the image maximum pixel
resolution, maxPR:

Structural Similarity Index, SSIM, is yet another parameter that can be
used to quantify how far the original pixels detach from their noisy counterparts.

4.2.3 Savitzky-Golay filter
Savitzky-Golay smoothing filters, Schafer et al [24], are typically used to

"smooth out" a noisy signal whose frequency span (without noise) is large. They
are also called digital smoothing polynomial filters or least-squares smoothing
filters. In essence, this kind of filters perform, in some applications, better than
standard averaging FIR filters, which tend to filter the high-frequency content
along with the noise. Additionally, these filters are more effective at preserving
high frequency signal components but are less successful at rejecting noise.

Savitzky-Golay filters are optimal in the sense that they minimize the
least-squares error in fitting a polynomial to frames of noisy data.

They fall into a class of low-pass, time domain filters that smooth out data
high variability taking advantage of the least-squares to minimize the errors,
seen in Figure 4.2. On top, a synthetic signal with added Gaussian white noise.
Below, the dashed line represents the noiseless signal and the solid line is
filtered signal. These filters belong to the class or FIR filters, which are non-
recursive and are defined as polynomials. Depending on its polynomial degree
suitable for some particular applications, they can be set up to adjust a
particular curve or signal. They are considered better than other similar filters in
the sense that they can be tweaked to preserve high frequencies hence, either
or rejecting less noise or increase the smoothness.

Top: A synthetic signal with added Gaussian white noise. Below: solid line is the noisy
signal filtered with a S-G filter with M=16 (33 points), N=4. Dashed line is the noiseless signal

data points

𝑚𝑚𝑃𝑃𝑁𝑁𝑚𝑚 = 10 log10 �
𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚2

𝑀𝑀𝑃𝑃𝑀𝑀 �

Figure 4.2 - S-G filter with a size of 33 points and a 4th order
degree.

𝑃𝑃𝑁𝑁𝑚𝑚 = 10 log10 �
𝑌𝑌2

𝑀𝑀𝑃𝑃𝑀𝑀� (4.3)

(4.4)

 40

Similarly, to the moving average filters proposed by [35], Savitzky-Golay
filters are completely described in the time domain. The interest in these filters
came from the observation that its successive derivatives could give information
pretraining to the trend of the curve, which is not always easily detectable,
namely the heights and the widths and the inflective points. They constitute a
useful tool in chemical spectrometric analysis and, in subject of this work’s
interest, noise reduction.

Savitzky-Golay filters can be described as:

The pixel 𝑓𝑓 at position 𝑠𝑠 to be filtered is linearly combined with adjacent
pixels, to its left 𝑠𝑠𝐿𝐿 and to its right 𝑠𝑠𝑅𝑅, to generate the pixel 𝑠𝑠. Parameters 𝑐𝑐𝑛𝑛 are
the weight contribution coefficients that have to be determined to take
advantage of the curve fit.

4.2.4 Behavior on the frequency domain
Simply stated, the idea for building this filter is to find a polynomial

equation 𝑝𝑝, with coefficients 𝑜𝑜, with variable 𝑠𝑠:

that fits the data by the difference of the least squares error, 𝜀𝜀,

where 𝑚𝑚 is the data points. Figure 4.3 shows the behavior of the S-G filter with
several polynomials’ orders which are the frequencies’ domain representation of
the impulse response given in Figure 4.1. Care must be taken to properly adjust
the curve fitting, that is, the filter size 2𝑀𝑀 + 1, has to be equal or greater than
the number of the coefficients of the polynomial order, 𝑁𝑁 + 1. Additionally, 𝑁𝑁
shall not be too large resulting, as such, in an improper curve fitting. However,
given these unfavorable factors, if the order 𝑁𝑁 and the number of points 𝑀𝑀 are
wisely chosen it is possible to take advantage of several frequency pass or
rejecting band behaviors.

𝑠𝑠𝑖𝑖 = � 𝑐𝑐𝑛𝑛 𝑓𝑓𝑖𝑖 + 𝑠𝑠
𝑛𝑛𝑅𝑅

𝑛𝑛=−𝑛𝑛𝐿𝐿

𝑐𝑐

𝑝𝑝(𝑠𝑠) = �𝑜𝑜𝑘𝑘

𝑁𝑁

𝑘𝑘=0

𝑠𝑠𝑘𝑘

𝜀𝜀𝑁𝑁 = � ��𝑜𝑜𝑘𝑘𝑠𝑠𝑘𝑘
𝑁𝑁

𝑘𝑘=0

− 𝑚𝑚[𝑠𝑠]�
𝑀𝑀

𝑛𝑛=−𝑀𝑀

 (4.7)

(4.5)

(4.6)

 41

The filter half decay, where the cutoff frequency happens at 3 dB, is
determined by the order 𝑁𝑁 and by its length 𝑀𝑀. Like the moving average filter,
as expected, the longer the M the shorter the cutoff frequency.

The Z-domain unit circle where the zeros might appear, traces the sharpness of
the cutoff decay.

It can be shown that if the system response, 𝑀𝑀�𝑜𝑜𝑗𝑗𝑗𝑗��
𝑗𝑗=0

= 0, it imputes a

constant top limit horizontality during its passband. It continues this behavior
through its 𝑜𝑜𝑡𝑡ℎ derivative, on the frequencies’ domain, 𝜔𝜔, for 𝑜𝑜 = 1, 2, … , N:

where h is the system’s impulse response.

Similar to the moving average filter, the S-G has a poor stopband. The
secondary lobes have high amplitude in pretty much all of the fitting polynomial
orders.

It is well established that the higher the polynomial order N, the higher
the cutoff frequency, and for this matter, as stated above, the shorter the
number of points M.

4.2.5 Color transitions
Different from the constant mean value of the moving average filter in

Jardim and Morgado-Dias [35], Equation 4.8, the color transitions are now the
mean of the least square errors, 𝜀𝜀𝑁𝑁���, given in Equation 4.6:

The decision to include the next pixel, 𝑝𝑝, in the curve fitting, is taken if its value
is within the threshold marked by

𝑖𝑖𝑟𝑟𝑀𝑀�𝑜𝑜𝑗𝑗𝑗𝑗�
𝑖𝑖𝜔𝜔𝑟𝑟 �

𝑗𝑗=0
= (−𝑗𝑗)𝑟𝑟 � 𝑠𝑠𝑟𝑟ℎ[𝑠𝑠] =

𝑀𝑀

𝑛𝑛=−𝑀𝑀

0

𝜀𝜀𝑁𝑁��� = 𝑦𝑦

Frequency response of S-G Filters (M=16)

normalized frequency 𝑗𝑗
𝜋𝜋

Figure 4.3 - S-G filters in frequency domain with
𝑀𝑀 = 𝑠𝑠𝐿𝐿 = 𝑠𝑠𝑅𝑅 = 16 and polynomials orders 𝑁𝑁 of
0, 2, 4, 6 and 12 [24].

(4.8)

(4.9)

 42

𝑝𝑝 resets the filter if it is outside the threshold.

The standard deviation, 𝜎𝜎, where 𝑀𝑀 is the filter length, is:

Shown by Jardim and Morgado-Dias [35], the color sharp transition
maintains clear image’s contours, i. e., it keeps out the blurriness. Figure 4.7,
shows an image with a row of pixels sampled, on top, which was added
variance noise of 0.001.

In the middle, the row is filtered using various sizes of moving average
and in the bottom, filtered with several sizes Savitzky-Golay filters with 2𝑛𝑛𝑛𝑛 and
4𝑡𝑡ℎ orders. It is immediately visible that the S-G filters make a better filtering job.
High values reveal lighter tones while low values are darker tones.

It is our intention to show that, substituting the Moving Average filters,
implemented in FPGAs [35], by Savitzky-Golay filters, not only does not
increase complexity much more but also, reveal better results.

4.3. Test settings
The methodology used for the tests settings was to obtain as clear as

possible, i. e., noise free, high-resolution images, as a reference, and then
generate pseudo-random noise white Gaussian noise, AWGN, using a variance

(𝜀𝜀𝑁𝑁��� − 𝜎𝜎) ≤ 𝑝𝑝 ≤ (𝜀𝜀𝑁𝑁��� + 𝜎𝜎)

𝜎𝜎 = �
𝜀𝜀𝑁𝑁���

2𝑀𝑀 + 1
 (4.11)

(4.10)

Comparison between Moving Average and S-G filters

length (pixels)

co
lo

r d
ep

th
 (0

 is
 th

e
da

rk
es

t,
10

3 is
 th

e
hi

gh
es

t)

Figure 4.4 - Filtering an image pixels row, profiled by a red line (on top) with a Moving Average filter
(middle curve) and with a S-G filter (bottom curve).

 43

of 𝜎𝜎2 = 1 × 10−4.

The algorithms are then tested in a fixed-point FPGA board comparing it
with a floating-point MATLAB version with the same bit-depth. Both platforms
ran a version of the moving average filter comparing it with the proposed
Savitzky-Golay filter. Tests were done using 13-bit depth resolution source
images, which were acquired from a high sensitivity sensor on a balanced
brightness-contrast environment, targeting the minimization of the photonic
noise dependency.

In order to generate the Gaussian noise, the reference source images
were fed into MATLAB, were normalized and noise contaminated then the
version to be tested in the FPGA board was converted back to fixed point 13-bit
depth resolution. Normalization in MATLAB is a required process since mostly
functions work by taking a minimum quantization scaling error in the range
between 0 to 1.

Due to its versatility, fixed-point tests ran in a ZedBoard FPGA SoC
Zynq-7000, model XC7Z020-CLG484-1, that can be seen in Figure 4.5. Xilinx
Vivado 2018.3 version, was used as platform environment. The main FPGA
programming language used was Very-High Speed Integrated Circuit Hardware
Descriptive Language, VHDL, and some APIs in Verilog. The noise
contaminated image, fixed-point version, was transferred to the FPGA board
using a mini SD card, the same that bootstraps a Linux OS board adapted
version.

Some math operations such as multiplication can easily overflow if care
is not taken to properly dimension the registers used for operations. Images
were acquired using a 13-bit pixel photosensor, but for consistency and platform
compatibility (FPGA and MATLAB), images were scaled up to 16-bit. This is
because register reusage due to successive refeed operations can easily lead
to sky rock roundoff errors. Therefore, MATLAB’s natural operation with 64-bit

Figure 4.5 - Testing FPGA SoC ZedBoard
Zynq-7000 platform.

ZedBoad Zynq-7000 SoC FPGA boad

 44

registers was chosen to be implemented on the FPGA also not only to maintain
the errors to a minimum, because it floors integers to the nearest decimal zero,
but also accommodates deeper bit resolutions, that is, above 13 bits. It should
be said that this sensor has a photon to electrons factor conversion of 1 to
1 × 103.

Jardim and Morgado-Dias [35] verified that the squared errors differences
between the fixed- and the floating-point calculations was roughly 2 × 10−3%
and 2 × 10−2%. We expect to maintain the same order of magnitude for the two
filters’ comparisons.

4.4. Results
Figure 4.6 shows a comparison between a moving average filter a S-G

filters. The filtering curves were generated without searching the colors’
contours. It is clearly visible that the S-G filters give the best results in the signal
preservation.

length (pixels)

Figure 4.6 - Above, moving average vs. below, Savitzky-Golay.

Comparison between filters moving average, on top and S-G on

co
lo

r d
ep

th
 (0

 is
 th

e
da

rk
es

t,
10

3 is
 th

e
hi

gh
es

t)

 45

A pair of images is given in Figure 4.7, the top one is the noiseless and
the bottom is the same image but with 0.001 AWGN variance. Figures 4.8
through 4.12 show comparisons between MA filters, on top and S-G filters, on
bottom. As verified by Jardim and Morgado-Dias [35], for MA filters above 𝑁𝑁 =
25, the filtering removes too much image information, hence, in this paper, S-G
filtering will not be extended above this value. Given the results achieved by
Jardim and Morgado-Dias [35], the best filters sizes are for 𝑁𝑁 = 4, 9, 16 or 25.
Since Savitzky-Golay filters work better with odd filter sizes, they will be
incremented, if even. Regarding to the MA’s Sigma Multiplicative Factor,
SMF=50 or SMF=100, it will be used, in the case of Savitzky-Golay, two
polynomial orders of 𝑁𝑁 = 2 and 𝑁𝑁 = 4, respectively.

Appendix 4.A, shows a table with the results for the MA and the S-G
filters. The fixed-point ones were done in the Zynq-7000 FPGA and the floating-
point ones in MATLAB.

4.4.1 Discussion of the results
Results are shown below, in Table 4.1. Comparison was made between

a moving average filter of several sizes and the Savitzky-Golay filter order 2,
compared to SMF of 50, and the order 4, compared to SMF of 100. These
orders were chosen according to several studies already made, being
consistently verified to give the best results. This is majorly due to the optimal
coefficients that makes the polynomial best fit the data with the minimum
squares error, hence, as can be showed in Figure 4.6, that the S-G filter
“constantly” seeks to fit a given signal, even if it encounters high frequency
steeply transitions, using lengthy filters, contrary to the MAs which pretty much
behave by averaging the whole signal, meaning to lose all the image’s
information details.

On other hand, MA filters deal better with noisy flat colors, since they
bounce with a less degree, especially after a high derivative transition, that is,
are less affected by Gibbs effect.

It can be questionable whether comparing MAs’ SMFs with S-Gs’
polynomial orders would be a fair treat. However, comparing the same filtering
length for both filters, a trade between curve adaptability (in S-G) for an
increase of variance (in MA) would be feasible, given the attained results. S-G
achieves better results in shorter filter sizes, degrading to lengthy filters, in
orders of 2 vs. 4, (38 to 40 vs. 27 to 36 dB), comparatively to MA filtering.

 46

The last set of images, in Figure 4.12, show that both the MA and the S-
G, filters with length above 25 points the smoothing is done in patches, visibly a
shear reduction in the image’s quality.

Figure 4.10 - Filter size=9. Top: Floating-pt, Left: S-G filter,
Ord=4, Right: MA filter, SMF=100. Bottom: Fixed-pt. version
of the Top.

Figure 4.9 - Filter size=16. Top: Floating-pt, Left: S-G filter,
Ord=2, Right: MA filter, SMF=50. Bottom: Fixed-pt. version
of the Top.

Figure 4.7 - Top: Original noise
free. Bottom: Added noise with
0.001 AWGN variance (σ2).

Figure 4.8 - Filter size=4. Top: Floating-pt, Left: S-G filter,
Ord=2, Right: MA filter, SMF=50. Bottom: Fixed-pt. version
of the Top.

Figure 4.12 - Filter size=16. Top: Floating-pt, Left: S-G filter,
Ord=4, Right: MA filter, SMF=100. Bottom: Fixed-pt. version
of the Top.

Figure 4.11 - Filter size=25. Top: Floating-pt, Left: S-G
filter, Ord=4, Right: MA filter, SMF=100. Bottom: Fixed-pt.
version of the Top.

 47

4.5. Conclusions
There is available several degrees of freedom to exploit, and it is

important to say that, due to the polynomial nature of the Savitzky-Golay filters,
each new derivative can reveal further information not immediately seen in the
data being smoothed. It is possible to infer from the figures, that the best results
are achieved by S-G filters, those on the left columns.

The final inferences can result in ambiguous decisions and it should be
said that these tests were done, using as source, a generated synthetic image
that can, most of the time, resemble real-world pictures due to its trade in
smooth color changes and sharp color transitions. Comparison between
floating- and fixed-point calculations are minimal due to the use of 64-bit
registers. This is possible because the registers are much larger than the
images bit depth resolutions and this way it is possible to reduce the round-off
errors. Consequently, as a rule of thumb, the registers to be chose, in order to
make these computations should be at least the quadruple the bit-depth size the
highest digital number of the picture, rounded up to the nearest multiple of 8. In
this case, the 13-bit depth images used for the tests were round up to 16-bit and
all the math done on 64-bit registers.

An inverse scaling polynomial function of low order degree was created,
modeled and adjusted as a post-filter to the application of the S-G filters to
further smooth the noise in darker colors relatively to the lightest ones, because
the noise is more perceptive in dark tones.

4.6. Acknowledgments
The author would like to acknowledge the Portuguese Foundation for

Science and Technology for their support through Projeto Estratégico LA 9 -
UID/EEA/50009/2019.

 48

4.A. Appendix

Table 4.1 - Numerical results, measured with parameters MSE, SNR, PeakSNR, Global Similarity and
comparison between S–G and MA filters. Some of these results correspond to the Figs. 4.8 – 4.12, as
indicated by the Test/Figure column.

Test / Figure Parameter Floating Point (MATLAB) Fixed Point (FPGA) Change (%)

 Filter Used Savitzky-
Golay MA Savitzky-

Golay MA S-G Fix.
to Flt.

MA Fix. to
Flt.

Float S-G to
MA

Fixd. S-G to
MA

1 / 4.8

Filter length 4
Polynom.
Order 2 2

SMA 50 50
MSE 0.000337336 0.000473407 0.000337345 0.000473429 2.67E-03 4.65E-03 -28.74 -28.74
SNR (dB) 32.59 31.12 32.59 31.12 -2.53E-03 -4.61E-03 40.34 40.34
PeakSNR (dB) 34.72 33.25 34.72 33.25 -2.76E-03 -4.61E-03 40.34 40.34
GS (%) 83.81 78.93 83.81 78.93 4.18E-03 3.04E-03 4.88 4.88

2 / NA

Filter length 4
Polynom.
Order 4 4

SMA 100 100
MSE 0.000315486 0.000430113 0.00031552 0.000430134 1.08E-02 4.88E-03 -26.65 -26.65
SNR (dB) 32.89 31.54 32.88 31.54 -1.11E-02 -4.61E-03 36.33 36.33
PeakSNR (dB) 35.01 33.66 35.01 33.66 -1.11E-02 -4.61E-03 36.33 36.33
GS (%) 85.60 81.24 85.60 81.24 5.84E-03 4.92E-03 4.36 4.36

3 / NA

Filter length 9
Polynom.
Order 2 2

SMA 50 50
MSE 0.00035738 0.00049495 0.000357373 0.000494928 -1.96E-03 -4.44E-03 -27.79 -27.79
SNR (dB) 32.34354 30.92923 32.34362 30.92942 1.84E-03 4.38E-03 38.49 38.49
PeakSNR (dB) 34.4687 33.05438 34.46878 33.05458 1.84E-03 4.61E-03 38.49 38.49
GS (%) 82.89 78.06 82.90 78.07 4.34E-03 4.48E-03 4.83 4.83

4 / 4.9

Filter length 9
Polynom.
Order 4 4

SMA 100 100
MSE 0.000389991 0.000500329 0.000390046 0.000500359 1.41E-02 6.00E-03 -22.05 -22.05
SNR (dB) 31.96429 30.88229 31.96368 30.88202 -1.40E-02 -6.22E-03 28.29 28.28
PeakSNR (dB) 34.08945 33.00745 34.08884 33.00718 -1.40E-02 -6.22E-03 28.29 28.28
GS (%) 84.54 80.10 84.54 80.10 6.62E-03 4.49E-03 4.44 4.44

5 / 4.10

Filter length 16
Polynom.
Order 2 2

SMA 50 50
MSE 0.000358618 0.00049607 0.000358593 0.000496053 -6.97E-03 -3.43E-03 -27.71 -27.71
SNR (dB) 32.32852 30.91941 32.32883 30.91956 7.14E-03 3.45E-03 38.33 38.33
PeakSNR (dB) 34.45368 33.04457 34.45399 33.04472 7.14E-03 3.45E-03 38.33 38.33
GS (%) 82.78 78.00 82.79 78.00 5.19E-03 4.49E-03 4.79 4.79

6 / 4.11

Filter length 16
Polynom.
Order 4 4

SMA 100 100
MSE 0.000404021 0.00051525 0.000404014 0.000515254 -1.73E-03 7.76E-04 -21.59 -21.59
SNR (dB) 31.8108 30.75466 31.81088 30.75463 1.84E-03 -6.91E-04 27.53 27.53
PeakSNR (dB) 33.93596 32.87982 33.93604 32.87979 1.84E-03 -6.91E-04 27.53 27.53
GS (%) 83.67 79.15 83.68 79.15 8.72E-03 3.79E-03 4.52 4.53

7 / NA

Filter length 25
Polynom.
Order 2 2

SMA 50 50
MSE 0.000358561 0.000496088 0.000358545 0.000496071 -4.46E-03 -3.43E-03 -27.72 -27.72
SNR (dB) 32.32921 30.91925 32.3294 30.91941 4.38E-03 3.68E-03 38.36 38.36
PeakSNR (dB) 34.45437 33.04441 34.45456 33.04457 4.38E-03 3.68E-03 38.36 38.36
GS (%) 82.79 77.99 82.79 78.00 5.07E-03 4.87E-03 4.79 4.79

8 / 4.12

Filter length 25
Order 4 4
SMA 100 100
MSE 0.000406163 0.000516593 0.000406159 0.00051658 -9.85E-04 -2.52E-03 -21.38 -21.38
SNR (dB) 31.78784 30.74335 31.78789 30.74347 1.15E-03 2.76E-03 27.19 27.19
PeakSNR (dB) 33.913 32.86851 33.91304 32.86863 9.21E-04 2.76E-03 27.19 27.19
GS (%) 83.25 78.91 83.26 78.92 7.69E-03 4.94E-03 4.34 4.34

 49

5. Testing

5.1 Platform
The testing platform was already covered in Chapters 3 and 4. However,

and summing up, the main processing device used for tests and simulations
was the ZedBoard Zynq-7000 All Programmable System on Chip (SoC)
XC7Z020-CLG484-1 FPGA board, which is a hybrid FPGA+CPU all-in-one chip.

The programmable logic is based on the Artix-7 series equivalent FPGA.
The CPU is based on a dual ARM Cortex A9 running at 667 MHz. The shared
memory between FPGA and the CPU is a 32-bit wide bus with a size of 512 MB
type DDR3. This shared memory is a key feature in order to transfer and ease
the data flow between the 2 processing units.

On the CPU side, the data is prepared, resized in proper chunks and fed
to the FPGA through the memory common address space. The Advanced
eXtensible Interface (AXI4)-Lite protocol is used to setup, synchronize, read,
write and flag the traffic in both ways. Figure 5.1 shows the layout of the Zynq-
7000 SoC chipset.

Figure 5.1 - The Zynq-7000 SoC series [38].

 50

The ZedBoard brings an SD card preloaded with a lite version of the
Linux OS which is built with a RAM disk file system. This approach, named
Xillybus, is an Intellectual Property (IP) developed to let users stay focused
straight on the problem/solution paradigm instead of having to divert their
attention into technical details of setting up and establish communication
between the CPU and the FPGA, which, in fact, increases the chances to
introduce additional bugs to the possible ones already existing in their
project(s).

Xillybus, comprises a wrapper, i. e., a module which includes data
transportation protocols such as Direct Memory Access (DMA) and Peripheral
Component Interconnect express (PCIe) in order to handle the data flow not
only between the CPU and the FPGA but as well to other peripherals such 100
and Giga bit Ethernet, USB, Video Graphics Array (VGA), and several others,
including the dedicated JTAG debug serial channel, through a USB port. Figure
5.2 shows the ZedBoard Zynq-7000 SoC along with all the possible peripheral
accesses.

Figure 5.2 - ZedBoard Zynq-7000 SoC with peripheral accesses [39].

 51

5.2 Data flow between FPGA and CPU
As stated, the FPGA and the CPU exchange information through a range

of memory addresses.

The FPGA and the CPU tasks are explained more detailed later in the
next subchapter. However, in brief, the FPGA’s role is to receive sorted columns
of pixels from an image which is prepared and sent by the CPU, apply the
developed algorithm and then return those processed pixels back to CPU.

The Xillybus IP core manages one or more simultaneous bidirectional
data streamings, for example, audio, VGA and a user IP, between the
programable logic (FPGA) and the processing unit (CPU), as illustrated in
Figure 5.3.

The User IP is the author’s developed algorithm.

As shown in Figure 5.3, a developed user application running on the CPU
side communicates with User IP module, on the FPGA side, through the
Xillybus IP core. The application supplies the raw data to be processed to the
FPGA User IP module and afterwards collects it after being processed, which
can then be saved to the SD card or relayed to the one of the peripherals such
as VGA, Ethernet, USB or any other transport channel.

The User IP can be composed by one or more modules, of any size and
complexity, limited only to the FPGA resources available. All the modules are
wrapped within a top-level module, which given the context of this Master
dissertation, is called “Moving Average”.

Depending on the type of project being designed, a First In First Out
(FIFO) memory buffer can be placed either before, after or both (in some rare
design requirements) of the User IP module, relieving the user to have to worry

Figure 5.3 - Xillybus IP core functionality. User IP is the author’s own work.

 52

about traffic details. This is achieved through Xillybus memory fullness or
emptiness cycling probing, taking an appropriate action accordingly by
triggering or stalling data transfers, through the “full”, “empty”, “read enable” and
“write enable” flags. in either streaming directions. The Xillybus streaming
bidirectional flow management, for matters of simplicity, is made without any
assumptions about any specific data rates. There is, however, a minor efficiency
price to pay with this procedure, in that, for small data chunks, instead of
buffering a considerable amount of data and thereafter burst it, the FIFO keeps
receiving and sending any data chunk sizes. For any other specific project,
which every bit of efficiency is accounted, or even the need to control DMA
memory access buffers is a critical factor, this solution offers little to none
benefits. Its purpose is merely to ease one or more of three possible scenarios,
prototyping, what-if testing or DMA future maintenance concerns.

5.2.1 Driver communication process

The communication process behaves pretty much like a named pipe [37].
A pipe is a shared memory section that serves for an intercommunication
process between the FPGA IP module and the CPU host application. A named
pipe is a one-way or a duplex pipe intended to establish communication
between the pipe server and the pipe client. These later roles are exchangeable
between the FPGA module and the host CPU, and for them, the pipes are seen
as regular files which can be opened, read a written. However, its behavior is
more like Internet TCP/IP streams or piped intercommunication processes,
which in reality, is a FIFO on an FPGA fabric logic instead of yet another CPU
process [37], [40].

For this communication process to be effective, data streams and its
parameters are detected by the driver upon its load to the memory and, on the
CPU host side, by the running application request, it is opened a memory
communication process which is established through the AXI protocol from and
to where the application can open, read and write files. Additionally, DMA
buffers allocated on the host application and on the FPGA sides are informed
about its addresses. The size and the number of the DMA buffers are stream
independent. The exchanged data is transparent for both the host application
and the IP core module and interpreted as a continuous data stream. In fact, the
DMA buffers are being filled, handed over and acknowledged from side to side
[37], [40].

 53

5.3 FPGA IP core module
5.3.1 Flowcharts

The IP module is composed by three processes, 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐_𝑜𝑜𝑁𝑁𝑚𝑚,
𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐_𝑚𝑚𝑜𝑜𝑜𝑜𝑠𝑠 and 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐ℎ𝑜𝑜𝑐𝑐𝑒𝑒_𝑠𝑠𝑓𝑓_𝑠𝑠𝑁𝑁𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖_𝑠𝑠𝑜𝑜_0, which are shown in the
Figure 5.4, Figure 5.6, and Figure 5.9, respectively.

Concerning to the main process 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐_𝑜𝑜𝑁𝑁𝑚𝑚, whose flowchart is
shown above, in Figure 5.4, as soon as the IP module starts receiving pixel
values, send from the host application in the CPU side through the Xillybus
management and upon clock synchronization, it immediately verifies if these
pixels belong to a new streaming, which has a layout shown, below, in Figure
5.5.

Figure 5.4 - Process used to calculate the sum of pixels used for averaging.

 54

The bidirectional data streaming is organized with a first section, the
header, in red, which is composed by the squared filter size, 𝑁𝑁2, it is pre-
squared since it eases the calculations on the FPGA, the Sigma Multiplying
Factor (SMF), explained in Chapter 3.4, the Factor Wheel Conversion (FWC),
explained in Chapter 3.3, the maximum pixel bit depth and the number of
passes that the filter should auto convolve, which is further explained in Chapter
3.2.5. The next section of the steaming layout are the pixel values to be
processed by the FPGA.

On the left half side of the flowchart shown in Figure 5.4, a sequence of
verifications is made to check the reset state of the header variables. All these
variables are checked, in sequence, on each rising edge of the clock. If they are
null then the received value is attributed to that variable. 𝑜𝑜𝑜𝑜𝑖𝑖 signal is used to
clear all the module’s signals and variables.

After the header has been received, shown on the right half side of
Figure 5.4, there is an index incremental shift for the eventual pixels already
under the averaging filter from their actual position to make room for the new
input pixel. If the pixel is inside the range between [𝜇𝜇 − 𝜎𝜎… 𝜇𝜇 + 𝜎𝜎], except for
the first one, which must start with an initial mean value, then it is accumulated
on the variable 𝑜𝑜𝑁𝑁𝑚𝑚. Otherwise, it resets the counter, cleans the variables and
starts a new counting, which means that a sharp color contour was detected on
that area of the image where the pixel was token.

Additionally, upon a reset, since the filter 𝑁𝑁 with a certain size, depending
on the size chose value, grows starting from zero until 𝑁𝑁 − 1 it is constantly
being assessed in order to verify if that size does not exceed its maximum
value. Should ever this situation happen, the filter maintains the maximum size
by extracting the older value and inserting the newer received one.

This sequence of pixels is sent from the CPU host side application,
column by column which can be seen as the temporal sequence fashion
streamed by a line sensor to the FPGA in order to be processed, which is
different from the pixels’ sequence of the standard spatial processing extracted
from the area sensors or from an image already built.

In parallel with the above described process 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐_𝑜𝑜𝑁𝑁𝑚𝑚, it runs
another process called 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐_𝑚𝑚𝑜𝑜𝑜𝑜𝑠𝑠, whose flowchart is shown below in

Figure 5.5 – Layout of the bidirectional data streaming between FPGA IP module and CPU host

 55

Figure 5.6. Upon the 𝑜𝑜𝑁𝑁𝑚𝑚 variable update triggered by the input of each pixel,
that variable triggers the 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐_𝑚𝑚𝑜𝑜𝑜𝑜𝑠𝑠 process. The 𝑚𝑚𝑜𝑜𝑜𝑜𝑠𝑠 variable is then
computed by 𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁
 if the module pixels’ 𝑐𝑐𝑜𝑜𝑁𝑁𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜 is active or cleared otherwise.

After acquiring the mean, 𝜇𝜇, in the main module, it is calculated the

variance 𝜎𝜎2 = 𝜇𝜇
𝑁𝑁

 , then standard deviation 𝜎𝜎 = �𝜇𝜇
𝑁𝑁
 using a thirty-part algorithm

[41].

5.3.2 Increasing denoising smoothness on darker colors with a polynomial
function
As explained on Chapter 3.5, it was developed and introduced 2𝑛𝑛𝑛𝑛-order

polynomial function to 𝜎𝜎 range of possible pixels’ candidates contributing to the
𝜇𝜇 average. It was stated that the white noise, because of its equalized Power
Spectral Density, it turns to be more perceptible in darker colors. The developed
adjustment function increases the filter size in the time domain hence,
narrowing the pass-thru filter in the frequencies’ domain.

Figure 5.6 – Process which calculates the mean.

Figure 5.7 – Sigma vs. pixels values curves: theoretical and desirable.

 56

Figure 5.7 shows the 𝜎𝜎 vs. range of pixel values evaluation. In blue, the

theoretical 𝜎𝜎 = �𝜇𝜇
𝑁𝑁
, which contradicts a correct usage of a larger filter for lower

pixel values. It feels the need to invert this function to behave properly in
agreement with the desirable result, that is, the sigma must broaden the range
of pixels with lower values, restricting it as it progresses to higher values, which

is shown by the orange curve 𝜎𝜎 = �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑠𝑠𝑎𝑎
𝑁𝑁

− �𝜇𝜇
𝑁𝑁
.

However, due to the high resolution of the testing images (213 𝑜𝑜𝑠𝑠𝑖𝑖𝑜𝑜 =
 8196 colors, compared with standard image resolutions with 256 colors), the
developed polynomial had to be adjusted for satisfactory visual results, and has
a shape shown in Figure 5.8.

The polynomial which was found to be equivalent to the desirable
function is illustrated in Equation 5.1:

FWC and SMF have both degrees of freedom which are dependent of the
image sensor, in case of the first parameter and the level of noise it inputs, in
the latter case. However, as stated above, tests revealed that in the specific
case of having high resolution images, a much larger filtering coefficient should
be imposed, hence the green curve of the Figure 5.8, is what was implemented
after being adjust for the aforementioned best visual results. Additionally, since
this function is to be computed on FPGA hardware, it must be converted to
integer numbers. The model applied is shown on Equation 5.2, and the
members appears in the same order in which the mathematical operations were
made, towards efficiency and resources optimization.

SMF√𝜇𝜇 137
√𝛮𝛮 125

−
SMF√𝜇𝜇 2257 𝜇𝜇

√𝛮𝛮 107
+

SMF√𝜇𝜇 𝜇𝜇2

√𝛮𝛮 82372323

SMF�0.50410−8 �FWC�
𝜇𝜇
𝛮𝛮�

2

− 0.000229�FWC�
𝜇𝜇
𝛮𝛮�

+ 1.036�

Figure 5.8 – Developed polynomial compared with theoretical and desired curves

(5.1)

(5.2)

 57

A verification process is also added to the module in order to check if the
numerator is zero. This is trivial and should not be necessary since there is only
problems on the division if the denominator is zero. However, problems were
experienced in the referred situation and that was the reason this process was
added. Since there are no situations where the denominator can be zero,
because, as can be verified in Equation 5.2, 𝑁𝑁 can never be zero (its values
range from 4 to 100), this process only verifies possible cases where 𝜇𝜇 = 0. As
so, there are 3 members in which divisions applies, each one with a numerator
and a respective denominator. Those 3 members are the ones that compose
the 2𝑛𝑛𝑛𝑛-order polynomial function. The checking process is made by verifying if
the numerator is zero. Should that be the case and it returns zero, otherwise
computes the division. The flowchart of the process
𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐ℎ𝑜𝑜𝑐𝑐𝑒𝑒_𝑠𝑠𝑓𝑓_𝑠𝑠𝑁𝑁𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖_𝑠𝑠𝑜𝑜_0 is shown in Figure 5.9.

5.3.3 Schematics and Synthesis
The code was developed using the Very High-Speed Integrated Circuit

Hardware Description Language (VHDL) on the Xilinx Integrated Development
Environment, Vivado, which is a well-known, well-supported hardware

Figure 5.9 - 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐ℎ𝑜𝑜𝑐𝑐𝑒𝑒_𝑠𝑠𝑓𝑓_𝑠𝑠𝑁𝑁𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖_𝑠𝑠𝑜𝑜_0 which verifies if numerators
are null, due to hardware issues.

 58

descriptive language. As a note, hardware descriptive languages do not
normally compile like software for CPUs/DSPs, which create an object file and
the linker then translates it to opcodes or instructions for the CPU. A hardware
descriptive language infers the VHDL user instructions into Configurable Logic
Blocks (CLBs) or cells of the FPGA, with the best translation it can. These
blocks are composed by registers or individual flip-flops, which work
commanded by a clock, and by lookup tables (LUTs) where are implemented
the combinatorial logic. Blocks are interconnected by programmable routes,
while the FPGAs Input/Output (I/O) signals are being taken care by special
blocks. Figure 5.10 shows the layout of an FPGA.

Figure 5.10 – Layout of an FPGA.

Figure 5.11- Moving Average module connected to the Xillybus HDL platform.

 59

The developed module was connected to a 32-bit FIFO module, as
shown in Figure 5.11, on the Xillybus HDL platform, covered in Chapter 5.1.

According to Xillybus recommendations, any developed user’s modules
should be placed before or after an 8-bit or a 32-bit FIFO. This is because the
CPU Processing System (PS) and the Programmable Logic (PL) sides have
different clock domains, hence need some a buffering solution in order not to
loose data.

The Xillybus platform has available, besides the FIFOs, a 32-bit audio
module, an 8-bit System Management bus (SMbus) for lightweight
communications which is a subset of the serial I2C protocol and, two banks, one
of 8-bit and one of 32-bit RTL RAM memories. All of these modules are
connected to the Xillybus core which serves as a bridge between the PS and
the PL sides using Random Access Memory (RAM) as data exchange payload,
and in turn, this can be a synchronous or an asynchronous procedure.

Inside the moving_average_inst VHDL module (the _inst suffix means
“instance”) as it is called is just a conglomerate of FF’s and combinatorial logic
and it is a descriptive hardware translation of the VHDL code. Figure 5.12
shows a glimpse of the referred module.

5.3.4 Timing diagram
On Vivado, the Hardware Description Language (HDL) development

environment of the Xilinx enterprise, the manufacturer of the SoC IC used in our
concept-to-chip path Register-Transfer Level (RTL) analysis was made, in order
to test its functionality. This is where some racing conditions may occur due to
timing issues, triggered, for example, by the asynchronous functionality of the
set and reset which is an important consideration for the signaling stability. In

Figure 5.12 – Arbitrary section of the generated moving_average_inst module.

 60

this RTL phase, attributes are generated such Maximum Fanout, Route
Behavior and Debug Marks insertion points, along with Clocking, Multipliers,
DSPs, Netlists RAM inferences as well as Cross Domains clocking, which in our
case reveals of critical importance since the SoC has different clocks, either in
the CPU and in the FPGA domains. Figure 5.11 shows an implementation
fragment of one of the detailed testing scenarios shown by the Figure 3.16, of
the Chapter 3.A.

After testing the circuit’s functionality by series of simulations, some
timing adjustments, especially the signaling of the counter resets (shown in red
circles) revealed to be a critical problem. They are outplaced relative to where
the true count reset should have been occurred (orange “eye” shapes and
arrows), as can be seen in Figure 5.13.

In other words, the circuit behaves as expected because the filter is reset
on the correct places and in fact, the result outputs averaging values when the
neighbor pixel falls inside 𝜇𝜇 ± 𝜎𝜎, otherwise it resets the counter and hence
restarts a new averaging. However, the counter reset flag is misplaced.

It is suspected this is due to hardware constraints, since these flags,
which have a period of 3 ns have less than a clock period which is 10 ns. We
wanted to have results coming out of the module immediately after the first
pixel, a condition that is verified, however, not all hardware platforms can deal
with this tide timings and as a consequence they should be tweaked in order to
meet each brand and model constraints. Pulses behavior due to their sub-clock
period was not predicted and they should be treated with relaxed timings, that
is, they should propagate without timing constraints until output.

Figure 5.13 – Timing diagram fragment of the testing scenario.

 61

5.3.5 Implementation
After Synthesis, it follows the Implementation stage, where the FPGA’s

blocks are configured according to the VHDL source code translation made on
the Synthesis stage. There, it is calculated the utilization resources of the PL
side, shown in the top half of the Figure 5.14, including the power dissipation on
bottom half of the same figure. It should be mentioned that FPGAs have a high
energy efficiency despite their specific timing and signal structuring constraints,
compared to, for example, to 9th generation i7 − 9700 Intel CPU, which has a
power dissipation of 65 Watt.

5.3.6 Bitstream
A bitstream generation is the FPGA resulting hardware configurable file

that is to be uploaded upon the operating system boot. This bitstream file, is
generated after the completion of the simulation, the synthesis and the
implementation phases and it sets the functional logic and sequential gates, the
internal routing and maps the external I/O connectivity. Figure 5.15 shows the
resulting bitstream mapping for the Zynq-7000 SoC.

Figure 5.14 – On top half, the resources utilization of the FPGA. On bottom half, the power
dissipation of each one of those resources

 62

Every time any change or new functionality needs to be implemented; it
must pass through the aforementioned phases until the resulting bitstream file
with the bin extension which must be saved to the SD card to be booted along
with the operating system. FPGA’s programmable logic is now ready to receive/
send data from/to CPU as explained in Section 5.2 through DMA access
synchronous or asynchronously.

5.4 CPU host applications
On the CPU side, 2 separate C language developed programs, one

named streamwrite_32 and the other named streamread_32.

The foremost opens the image file stored on the SD card, reads the first
two words, the image’s height and width in order to keep tracking of the number
of pixels’ lines and columns. It then feeds the FPGA’s 32-bit FIFO with the
remaining of the header, shown in Figure 5.16, along with the image’s pixels
information. In order to be processed in FPGA, these images are first
transposed in MATLAB, that is, lines with columns. This is because the chosen
moving average filtering is a temporal filter and the lines were acquired from a
line sensor. In this sense, the sensor acquires one line at each moment, passes
it to the FPGA and immediately get the next line. The latter program,

Figure 5.15 – FPGA gate and routing activation of
the Moving Average algorithm.

 63

streamread_32, reads from the command line parameters passed to it, starting
by the image’s width and height and then stores processed pixels coming from
the FPGA’s FIFO into a file, again column by column.

The processed image is transposed again in MATLAB and then
formatted into a more popular picture file format.

Relatively to the streamwrite_32 program, following the already referred
dimension words, width and height, each of the remaining words are stuffed
with one null word, so becoming 32-bit and then streamed to the FPGA. This
stuffing is the most sensible in order to avoid adding unnecessary logic of
unpacking 2 × 16-bit out of a 32-bit, processing the first 16 LSB’s while holding
the others 16 MSB’s for the next clock.

This would make the FPGA’s result exiting at half of the input’s clock
rate. Since there are only two FIFOs on the supplied Xillybus platform, one of 8-
bit and other of 32-bit, the latter one was picked, even though with half of the
bandwidth used. Speed is not a critical factor here.

From the CPU side, 32-bit are sent to the 32-bit sized FIFO (MSB’s are
null). From these, the same 32-bit are debited but only 16 LSB bits are routed to
the moving_average_inst module.

On the other side, streamread_32 receives, at a time, the same 32-bit,
column by column, but again, only 16 bits have meaningful data. The header,
which is passed from the FPGA is saved to the image file untouched, i. e,
without suffer any processing. All the other data is saved to a memory buffer
and at the end this data suffers a transpose similar to a matrix transpose
operation, which accordingly to what was already stated, due to the data being
received column sequenced.

The CPU side programs streamwrite_32 and streamread_32 only need to
keep track the images’ sizes and, without any data change, the aforementioned
program sends pixels’ column sets while the latter program receives them
processed from the FPGA.

Figure 5.16 - Image header structure

 64

The flowchart represented in Figure 5.17, shows the sequence of
explained actions taken by the streamwrite_32 C program.

It should not be necessary an additional flowchart for the FPGA

Figure 5.17 – Flowchart of the streamwrite_32 C program.

 65

processed data, since the sequence of actions are basically the in reverse order
of those stated in Figure 5.17.

5.5 Conclusions
For versatility, online sheer amount of support and the convenience to

have a CPU and an FPGA in one chip (SoC) a ZedBoard Zynq-7000 was
chosen in order to develop, test and simulate the algorithms developed in this
dissertation. However, with some additional work, the same results could have
been obtained using solely one FPGA chip.

Another advantage of this board is the utilization of a Linux version,
making this a fully testing platform. For one side, the CPU is available on the
same platform which can be programmed with any convenient data feeder and
collector code in order to support the FPGA’s main algorithms. On the other
side, from the CPU perspective, the FPGA is an accelerator that can be seen
analogically as a sound or graphics accelerator, which can be accessed through
a range of RAM memory addresses.

This paradigm greatly simplified the development and the testing
processes, particularly on data transportation between the CPU and the FPGA.
To sum up and the way the whole process behaves, to the CPU, the FPGA is a
file which can be written to and read from. To FPGA, data is a stream that
enters the IP modules, is processed and exits to memory.

In order to avoid additional programming complexity, MATLAB was used,
especially on the image transpositions before sent to and after received from
the testing platform in order to format the image according to a temporal sensor
reading idiosyncrasy, and also to insert in each “column” (which is read as a
line) the needed header for the FPGA algorithm. This way, the testing images’
format were tailored as a convenient raw processing format.

As seen in the Chapter 5.3.4 -Timing diagram, it was possible to obtain a
processing rate of pixel per clock also with a latency of 1 clock. However, since
these algorithms are relatively low in computational expenditure it is expected to
obtain such latencies. However, these should increase proportionally for more
complex processing demands.

In all, the whole results came up near to what was expected,
notwithstanding some temporal latency in data processing. However, since
timing is not an issue, mitigation time to this were not delved.

 66

6. General Conclusions
The objective of this dissertation was initially, to develop a denoising

algorithm, using an FPGA as processing unit. Afterwards, on a sequence of an
invitation for an event, it surged a second algorithm which was used as means
of comparison to the first one. Both solutions would have to be computationally
simple and speedy, targeting real-time images acquisitions and processing. This
would require managing all the computations to be strictly in the time domain.
Therefore, transforms to and from frequency domain would have to be
excluded.

The two chosen solutions, whose work resulted in a published paper
each, were, a Moving Average filter, transcript in the Chapter 3 and a Savitzky-
Golay filter, transcript in Chapter 4. The research done to the state-of-art up
until to the development decision of the first solution, leaded to conclude that
quickness would arguably be the one with the required characteristics, that is,
one of the most, if not the computational simplest and quickest solution. To
compare its results, the Savitzky-Golay filter was opted.

Basically, the working principles of each’s one filters are, first, the moving
average filter builds up an average of adjacent pixel values. The condition for an
adjacent pixel, to enter on that average is stated in Equation 3.8 and 3.9. The
number of pixels has a limit which equals to the size of the filter 𝑁𝑁. The filter
resets or restarts a new averaging buildup when the adjacent pixel is out of the
range of the referred equations.

The Savitzky-Golay filter, in turn, instead of being a filter with a constant
average value, as is the moving average, it is built by adjacent pixels which
follows a Minimal Mean Square Errors shape adaptative regression. This
approach reveals better behavior particularly in high frequencies preservation.

Even though being a simple time-domain filter, the moving average,
when properly scaled to the resolution of the image that will be applied on, it can
give comparable results to some other algorithms which require transitions
between time-space and frequency domains. Additionally, it does an
outstanding job in preserving the image’s sharp color transitions.

Before implementing the algorithms in VHDL code, a MATLAB
pseudorandom generator function was used to add synthetically noise
variances of 𝜎𝜎2 = 1 × 10−4 and 𝜎𝜎2 = 1 × 10−3 to high-resolution images
acquired with a high-quality line sensor. Thus, before this acquisition procedure,
the image may be assumed to be virtually noise free. On Chapter 3, Table 3.1
show results with these noise variances.

Considering that the variance 𝜎𝜎2 = 1 × 10−3 generates perceptibly more
noise to an image than the variance 𝜎𝜎2 = 1 × 10−4 does, the latter was chosen

 67

as a reference comparatively to the former for two reasons. First, it is unlikely
that an high quality sensor such as the one used to capture the testing images
may generate levels of noise variance that equals 𝜎𝜎2 = 1 × 10−4, even if those
images where to be acquired by a decade year old sensors found on portable
cameras and smartphones. Second, it reveals to be a pondered tradeoff
between the noise-free image and their processed counterparts. This noise
imputed process was done for both filters’ solutions.

The column Change, in Table 3.1, shows the percentual differences
comparison made between MATLAB’s floating-point version, taken as
reference, and the FPGA fixed-point calculations, including the SNR and
PeakSNR logarithmic parameters which were meanwhile converted to decimal.

Floating-point calculations were all done in the value’s range between
[0. .1], since it holds the most precision scale. That is, the maximum machine
epsilon floating-point rounding error is 2−52 in a scale of binary values between
2𝑛𝑛 and 2𝑛𝑛+1, when 𝑠𝑠 = 0. Because this naturally adds the least error to the final
calculations, comparatively to fixed-point, this was the reason they were chosen
as reference. Meanwhile, because fixed-point calculations cannot be done in
this range, since it would result in zero, those remained in the range [0. .10 ×
103], as already stated.

It can be verified that 𝜎𝜎2 = 1 × 10−4 tests reveal better results than 𝜎𝜎2 =
1 × 10−3, with the highest values being at 𝑁𝑁 = 9 and 𝑃𝑃𝑀𝑀𝑆𝑆 = 50, while the lowest
being at 𝑁𝑁 = 16 and 𝑃𝑃𝑀𝑀𝑆𝑆 = 100. SNR and PeakSNR depend inversely on MSE
as given by Equations 3.1, 3.2 and 3.3, and Global Similarity follows, as well,
this trend. The lower the MSE, the better the SNR and better the match
between the Similarity of the original and the processed images.

In general, a noise variance of 𝜎𝜎2 = 1 × 10−4 have better results when
done with 𝑃𝑃𝑀𝑀𝑆𝑆 = 50 signaled filters. Likewise, the range of 𝑁𝑁 between 4 and 25,
have progressive degrading results among the same value of SMF. The
exception to this is for 𝑁𝑁 = 25, which accomplishes better outcomes for fixed-
point in both SMF's fixed- and floating-point results. Image’s results reveal that
progressive higher quality is achieved with 𝑁𝑁 = 16 and 𝑃𝑃𝑀𝑀𝑆𝑆 = 100.

For 𝑁𝑁 = 25, images show some adjacent color blurring, resembling
pixeled blocks and thus start to lose quality. With 𝑃𝑃𝑀𝑀𝑆𝑆𝑜𝑜 = 50, SNR’s magnitude
orders of 31 𝑖𝑖𝑑𝑑 and PeakSNR’s of 37 𝑖𝑖𝑑𝑑 seem acceptable for this level of noise
variance of 𝜎𝜎2 = 1 × 10−4, whilst with 𝑃𝑃𝑀𝑀𝑆𝑆𝑜𝑜 = 100, lower SNR’s of 28 or 29 𝑖𝑖𝑑𝑑
and PeakSNR’s of 35 𝑖𝑖𝑑𝑑 seem fair, because within the same 𝑁𝑁 frame size
filtering, the higher the SMF the more the high-range frequencies which are
wiped out along with the noise. This is even more perceptible in these frequency
ranges due to loss of the image detail. However, visually, it looks like there is an

 68

additional noise reduction, in the latter SMFs. Not withstand, image degrades
because information details are also lost. On the limit, a very high SMF would
lead to an image built with only contour patches.

We have made an additional comparison test, which consisted in a
simple moving average image noise reduction, without sharp color detection
and it was obtained SNR values between 26 and 19 𝑖𝑖𝑑𝑑, hence significantly
lower than those of our interest. It is also noticeable that floating-point results
are consistent with fixed-point ones.

The differences between both are minor but suffice to conclude that the
floating-point, due to a higher precision, generate better results. In relation to
𝜎𝜎2 = 1 × 10−3, the best values are obtained when 𝑁𝑁 = 4 and 𝑃𝑃𝑀𝑀𝑆𝑆 = 100. There
is, however, a significant difference: while better SNR results are obtained with
𝑃𝑃𝑀𝑀𝑆𝑆 = 50 rather than with 𝑃𝑃𝑀𝑀𝑆𝑆 = 100 for a variance of 𝜎𝜎2 = 1 × 10−4, which
accounts with differences between 2 and 3 𝑖𝑖𝑑𝑑, relatively to 𝜎𝜎2 = 1 × 10−3, they
are practically the same, around 𝑃𝑃𝑁𝑁𝑚𝑚 = 24 𝑖𝑖𝑑𝑑. Considering that 𝜎𝜎2 = 1 × 10−3
generates perceptible noisier images, this is an acceptable result.

The most meaningful conclusion here is that it is possible to make
calculations in a simple fixed-point notation without any visible difference
compared to a more computationally expensive floating-point counterpart, once
a relative high pixel bit depth is chosen, which makes the chosen platform very
suitable for this type of processing.

Our tests were made with images containing pixels with 10 × 103 colour
tones, i.e., a little over 213 = 8192 shades. This further reduces roundoff errors
to a level of precision of 1

10 ×103
= 1 × 10−4, due to the fact that calculations

made in fixed-point always ditch the rational part by flooring down the result to
the immediate lower integer available.

Additionally, attention must be given to the whole mathematical
operation, tracking specifically where divisions and square roots occur. It is
needed to exert some effort to reduce to the minimum the number of square
roots and divisions operations. The developed algorithm has a maximum of one
square root and a maximum of one division operation. It is a necessary task
since round offs only occur on these math operations.

There is yet another feature that needs to be treated properly. A noise
contaminated image is more noticeable at darker colors or shades than lighter
ones and this deserves special care. A non-linear smoothing filtering function
must be adjusted and multiplied by 𝜎𝜎, letting darker color shades have more
filtering tolerance than the lighter ones.

A quick note on the results: the sparse difference between the

 69

measurement parameters does not quite really translates the visual perception
of the processed denoised results. Furthermore, the different filter sizes and the
multiplicative sigma factor can make a huge contribution when the image has a
large solid patch shades to be processed.

Comparatively with a moving average filter, the Savitzky-Golay filter
generally gives better results as can be seen in Table 4.1, in 4.A-Appendix.
several degrees of freedom to be exploit, and it is important to say that, due to
the polynomial nature of the Savitzky-Golay filters, each new derivative can
reveal further information not immediately seen in the data being smoothed.
This is a characteristic not directly comparable with a constant average value
filter such as the moving average filter. It is possible to infer from the resultant
figures, that the best results are achieved by S-G filters, those on the left
columns.

The final inferences can be the result of some biased comparison
decisions. It should be said that some of these tests were done using as source,
computerized generated synthetic images, which can, most of the time,
resemble real-world pictures due to its tradeoff in smooth color changes and
sharp color transitions.

Comparison between floating- and fixed-point calculations present a
minimal gap due to the use of 64-bit registers. This is possible because the
registers are much larger than the images bit depth resolutions and this way it is
possible to reduce the round-off errors. Consequently, as a rule of thumb, the
chosen registers’ sizes which make possible these computations should be, at
least, the quadruple of the highest bit-depth size of the picture rounded up to the
nearest multiple of 8. In this case, the 13-bit depth images used for the tests
were round up to 16-bit and all the math done on 64-bit registers.

An inverse scaling polynomial function of low order degree was created,
modeled and adjusted as a post-filter to the application of the S-G filters to
further smooth the noise in darker colors relatively to the lightest ones, because
the noise is more perceptive in dark tones.

This work shows promising results on low power, low complexity, high
portability, FPGAs utilization for real-time signal processing.

For future works, we aim to make use of a more challenging approach in
frequency domain, including Discrete Cosines (DCT), Fourier and Wavelet
transforms. This was one also of the reasons to include it as a reference on
Section 3.2.

 70

7. References
[1] Sensitivity and Image Quality of Digital Cameras, Dirks, Friedrich
10.1.1.85.7059.

[2] Image “Garden” in Bayer pattern https://www.cameradebate.com/wp-
content/uploads/2015/05/bayer-image-garden.jpg

[3] Alparone L, Selva M, Aiazzi B, Baronti S, Butera F, Chiarantini L, Signal-
dependent Noise Modelling and Estimation of New Generation Imaging Spectrometers.
978-1-4244-4687-2/09/$25.00 ©2009 IEEE

[4] Argenti F., Tizano B., Alparone L., Multiresolution MAP Despeckling of SAR
Images Based on Locally Adaptative Generalized Gaussian pdf Modeling, 1057-
7149/$20.00 © 2006 IEEE.

[5] Argenti F., Torricelli G., Alparone L., MMSE filtering of generalized signal-
dependent noise in spatial and shift-invariant wavelet domains, 1057-7149/$20.00 ©
2006 IEEE.

[6] Hara K., Horiguchi T., Kinoshita T., Highly efficient photon-to-electron
conversion with mercurochrome-sensitized nanoporous oxidesemiconductor solar cells,
Elsevier, Solar Energy Materials & Solar Cells 64 (2000) 115-134.

[7] DeValois R. L., DeValois K., Spatial Vision, Oxford University Press, 1990, pp.
212-225.

[8] Varadharajan S, Spatial Vision and Pattern, Chapter 2.1.5, DOI 10.1007978-3-
540-79567-4_2.1.5.

[9] Oppenheim A.V., Schafer R.W. (1999) Discrete-Time Signal Processing.
Prentice-Hall, Englewood Cliffs, NJ. pp. 65-70.

[10] Donoho D. L., De-noising by soft-thresholding, IEEE Trans. Inform. Theory,
vol. 41, pp. 613–627, May 1995.

[11] Klöckner A., Linden, F., Zimmer, D., Noise Generation for Continuous System
Simulation, German Aerospace Center (DLR), Institute of System Dynamics and
Control, DOI: 10.3384/ECP14096837.

[12] Nyquist, H., Certain topics in telegraph transmission theory, AIEE Trans., 47:
621–637, Jan. 1928.

[13] Kalman R.E. (1960) A New Approach to Linear Filtering and Prediction
Problems. Trans. of the ASME, Series D, Journal of Basic Engineering, 82.

[14] Wilsky A.S. (1979) Digital Signal Processing, Control and Estimation Theory:
Points of Tangency, Areas of Intersection and Parallel Directions. MIT Press,
Cambridge, MA.

[15] Davenport W.B. and Root W.L. (1958) An Introduction to the Theory of
Random Signals and Noise. McGraw-Hill, New York.

[16] Therrien C.W. (1992) Discrete Random Signals and Statistical Signal

 71

Processing. Prentice-Hall, Englewood Cliffs, NJ.

[17] Bennett W.R. (1960) Electrical Noise. McGraw-Hill. New York (1960).

[18] Awad A, Denoising images corrupted with impulse, Gaussian, or a mixture of
impulse and Gaussian noise, Elsevier, 2019,
https://doi.org/10.1016/j.jestch.2019.01.012.

[19] Karp S., Clark, J. R., “Photon Counting: A Problem in Classical Noise Theory”
Electronics Research Center, Cambridge Mas., NASA,
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19700014758.pdf.

[20] Foi A., Katkovnik V., Egiazarian K., Pointwise shape adaptive DCT for high-
quality denoising and deblocking of grayscale and color images, IEEE Transactions on
Image Processing 16 (5) (2007) 1395.

[21] Jean-Luc Starck J-L, Fadili J, Murtagh F, The Undecimated Wavelet
Decomposition and its Reconstruction, 1057-7149/$25.00 © 2007 IEEE.

[22] Malek M., Helbert D., Carré P., “The Color Graph-based Wavelet Transform
with Perceptual Information” (Oct 20, 2015), Cornell University Library,
https://arxiv.org/pdf/1510.05436.pdf.

[23] Deledalle C.-A., Denis L., Iterative Weighted Maximum Likelihood Denoising
With Probabilistic Patch-Based Weight, 1057-7149/$26.00 © 2009 IEEE.

[24] Schafer, Ronald W, On the Frequency-Domain Properties of Savitzky-Golay
Filters, HP Laboratories-2010-109.

[25] Kailath T. (1980) Linear Systems. Prentice Hall, Englewood Cliffs, NJ.

[26] Yuen M., Wu H., A survey of hybrid MC/DPCM/DCT video coding distortions,
Signal Processing 70 (3) (1998) 247–278.

[27] Smith, S. W., “The scientist & Engineer’s Guide to Digital Processing”, Chapter
15, (1997-12-24).

[28] Dong G., Zhichang G., Wu B., A Convex Adaptive Total Variation Model
Based on the Gray Level Indicator for Multiplicative Noise Removal, DOI:
10.1155/2013/912373.

[29] Claerbout Jon, Image Estimation by Example: Geophysical Soundings Image
Construction, Multidimensional autoregression, Stanford University,
http://sepwww.stanford.edu/sep/prof/gee/mda/paper_html/node1.html.

[30] Sikora T., Low complexity shape-adaptive DCT for coding of arbitrarily shaped
image segments, Signal processing: Image communication 7 (4–6) (1995) 381–395.

[31] Gilge M., Engelhardt T., Mehlan R., Coding of arbitrarily shaped image
segments based on a generalized orthogonal transform, Signal Processing: Image
Communication, Vol. 1, No. 2, October 198.

[32] Chen Q., Wu D., “Image denoise by bounded block matching and 3D filtering”
Elsevier, vol. A247, pp. 529–551, October 2009.

[33] Dabov K., Foi A., Katkovnik V., Egiazarian K, et al., Image denoising by

https://doi.org/10.1016/j.jestch.2019.01.012
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19700014758.pdf
https://arxiv.org/pdf/1510.05436.pdf
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1155%2F2013%2F912373
http://sepwww.stanford.edu/sep/prof/gee/mda/paper_html/node1.html

 72

sparse 3-D transform-domain collaborative filtering, IEEE Trans- actions on Image
Processing 16 (8) (2007) 2080–2095.

[34] Buades A., Coll B., Morel J., A review of image denoising algorithms, with a
new one, Multiscale Modeling and Simulation 4 (2) (2006) 490–530.

[35] Jardim R., Morgado-Dias F., Image Denoise FPGA Implementation using a
Moving Average Filter with Contour Detection, July 2018, DOI:
10.1109/ICBEA.2018.8471740, Conference: 2018 International Conference on
Biomedical Engineering and Applications (ICBEA).

[36] Nascimento I., Jardim R., Morgado-Dias F., A new solution to the hyperbolic
tangent implementation in hardware: polynomial modeling of the fractional expon. Part,
Neural Comput. & Applic. (2013) 23: 363. https://doi.org/10.1007/s00521-012-0919-0.

[37] Xillybus host application programming guide for Linux, documentation site (Ch
4-5)
http://www.xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf.

[38] Xilinx Zynq-7000 System-On-Chip (SoC) series manufacturer webpage,
https://www.xilinx.com/content/dam/xilinx/imgs/block-diagrams/zynq-mp-core-dual.png.

[39] ZedBoard™ Getting Started Guide, Version 7.0, page 10,
http://zedboard.org/sites/default/files/documentations/GS-AES-Z7EV-7Z020-G-V7-
1.pdf.

[40] Xillybus FPGA designer’s guide, documentation site (Ch. 2-3-4)
http://www.xillybus.com/downloads/doc/xillybus_fpga_api.pdf.

[41] Li Y, Chu W, A New Non-Restoring Square Root Algorithm and Its VLSI
Implementations, International Conference on Computer Design (ICCD’96), October 7–
9, 1996, Austin, Texas, USA.

[42] Gauss K.G. (1963) Theory of Motion of Heavenly Bodies. Dover, New York.

[43] Cox I. J., Miller M.L., Bloom J.A., Fridrich J. and Kalker T. (2008) Digital
Watermarking and Steganography, 2nd edit, Morgan Kaufmann.

[44] Kung S.Y. (1993) Digital Neural Networks. Prentice-Hall, Englewood Cliffs, NJ.

[45] Vaidyanathan P.P. (1993) Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice-Hall, Inc.

[46] Askari, G., Motamedi N., Karimian M., Sadeghi H, Design and Implementation
Of an X-Band White Gaussian Noise Generator, Canadian Conference on Electrical
and Computer Engineering, June 2008, IEEE, DOI: 10.1109/CCECE.2008.4564708.

[47] Goossens B., Pižurica A., Philips W., Removal of Correlated Noise by
Modeling the Signal of Interest in the Wavelet Domain.

https://doi.org/10.1007/s00521-012-0919-0
http://www.xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
https://www.xilinx.com/content/dam/xilinx/imgs/block-diagrams/zynq-mp-core-dual.png
http://zedboard.org/sites/default/files/documentations/GS-AES-Z7EV-7Z020-G-V7-1.pdf
http://zedboard.org/sites/default/files/documentations/GS-AES-Z7EV-7Z020-G-V7-1.pdf
http://www.xillybus.com/downloads/doc/xillybus_fpga_api.pdf

 73

A Appendices

NOTE: Some code was commented because does not relate with the code that is active, either in
functionality or testing conditions or both.

A.1 Moving average FPGA source code

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_unsigned.all;
4 use ieee.numeric_std.all;
5
6 library work;
7 use work.pkg_math.all;
8
9
10 -- Uncomment the following library declaration if instantiating any Xilinx leaf cells in this code.
11 --library UNISIM;
12 --use UNISIM.VComponents.all;
13 entity mov_avg_thesis is
14 generic (
15 COUNTER_DEPTH:integer := 7; --counter will need to count until 100 for N maximum number for averaging,
hence 2^7=128 which is enough
16 G_DATA_W :integer := 16
17);
18
19 port (
20 clk :in std_logic;
21 rst :in std_logic;
22 en :in std_logic;
23 o_count :buffer std_logic;
24 iv_data :in std_logic_vector(G_DATA_W-1 downto 0);
25 o_reg_addr :buffer std_logic_vector(COUNTER_DEPTH-1 downto 0);
26 o_rst_cnt :buffer std_logic;
27 o_regN :buffer std_logic_vector(G_DATA_W-1 downto 0);
28 o_regsigmaCoeff :buffer std_logic_vector(G_DATA_W-1 downto 0);
29 o_regFWC :buffer std_logic_vector(G_DATA_W-1 downto 0);
30 o_regcolourRange :buffer std_logic_vector(G_DATA_W-1 downto 0);
31 o_regnumPasses :buffer std_logic_vector(G_DATA_W-1 downto 0);
32 o_reg0 :buffer std_logic_vector(G_DATA_W-1 downto 0);
33 o_reg1 :buffer std_logic_vector(G_DATA_W-1 downto 0);
34 o_reg2 :buffer std_logic_vector(G_DATA_W-1 downto 0);
35 o_reg3 :buffer std_logic_vector(G_DATA_W-1 downto 0);
36 o_reg4 :buffer std_logic_vector(G_DATA_W-1 downto 0);
37 o_sum :buffer std_logic_vector(G_DATA_W*4-1 downto 0); -- NOTE: for safe we reserve
inner math operations
38 o_mean :buffer std_logic_vector(G_DATA_W*4-1 downto 0); -- to 4*data_in size,
although 2*datata_in would be
39 o_sqrtMean_x_sigCoeff:buffer std_logic_vector(G_DATA_W*4-1 downto 0); -- suffice
40 o_sqrtN :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
41 o_num_sigma1 :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
42 o_den_sigma1 :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
43 o_sigma1 :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
44 o_numTMPsigma2 :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
45 o_num_sigma2 :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
46 o_den_sigma2 :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
47 o_sigma2 :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
48 o_meanPow2 :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
49 o_num_sigma3 :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
50 o_den_sigma3 :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
51 o_sigma3 :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
52 o_sigma :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
53 ov_data :out std_logic_vector(G_DATA_W-1 downto 0)
54);
55 end entity;
56
57
58
59 architecture mov_avg_thesis_rtl of mov_avg_thesis is
60
61 constant REG_SIZE :integer := 2**COUNTER_DEPTH; -- this is the filter size constant. it is set
for 128 but we will only need 100, which is the maximum filter size
62 signal start_from :std_logic_vector(COUNTER_DEPTH-1 downto 0); -- connected to the input port
of the counter. used to start the counter with any arbitrary number
63 signal reg_addr :std_logic_vector(COUNTER_DEPTH-1 downto 0); -- connected to the output Q
port of the counter
64 signal idx_reg_addr :integer range 0 to REG_SIZE-1; -- integer index translator of the
std_logig_vector of the previous reg_addr
65 type type_reg_array is array(0 TO REG_SIZE-1) of unsigned(G_DATA_W*4-1 downto 0); -- this is the filter
size. it is set for 128 registers of 64-bits, but we will only need 100, which is the maximum filter size
66 signal reg_array :type_reg_array; -- array of registers for filter previously declared
67
68 signal s_en :std_logic;

 74

69 signal count :std_logic;
70 signal rst_cnt :std_logic;
71
72 signal regN :unsigned(G_DATA_W-1 downto 0); -- reg for storing the filter length N to
calculate sigma = sqrt(mean) / sqrt(N). because N comes already squared, so possible values are 2, 3, 4,
5, 6, 7, 8 , 9 and 10, then sigma = sqrt(pixel) / N,
73 signal regSigmaCoeff :unsigned(G_DATA_W-1 downto 0); -- reg for storing multiplicative sigma
coefficient. Can be 50 or 100 for testing
74 signal regFWC :unsigned(G_DATA_W-1 downto 0);
75 signal regColourRange :unsigned(G_DATA_W-1 downto 0);
76 signal regNumPasses :unsigned(G_DATA_W-1 downto 0);
77
78 signal sum :unsigned(G_DATA_W*4-1 downto 0); -- the accumulator to generate the average
of the mean
79 signal mean :unsigned(G_DATA_W*4-1 downto 0); -- by dividing the above sum by N we
calculate the mean
80 signal sqrtMean_x_sigCoeff :unsigned(G_DATA_W*4-1 downto 0); -- pre-multiplies mean x sigmaCoeff (for
efficiency on math operations it will only be needed to make 3 divisions at the end)
81 signal sqrtN :unsigned(G_DATA_W*4-1 downto 0); -- calculates sqrt of N (for efficiency on
math operations this is calculated only once)
82 signal num_sigma1 :unsigned(G_DATA_W*4-1 downto 0); -- numerator for operation 1
83 signal den_sigma1 :unsigned(G_DATA_W*4-1 downto 0); -- denominator for operation 1
84 signal sigma1 :unsigned(G_DATA_W*4-1 downto 0); -- result of the operation 1
85 signal numTMPsigma2 :unsigned(G_DATA_W*4-1 downto 0); -- temporary result for operation 2
86 signal num_sigma2 :unsigned(G_DATA_W*4-1 downto 0); -- numerator for operation 2
87 signal den_sigma2 :unsigned(G_DATA_W*4-1 downto 0); -- denominator for operation 2
88 signal sigma2 :unsigned(G_DATA_W*4-1 downto 0); -- result of the operation 2
89 signal meanPow2 :unsigned(G_DATA_W*4-1 downto 0); -- mean^2
90 signal num_sigma3 :unsigned(G_DATA_W*4-1 downto 0); -- numerator for operation 3
91 signal den_sigma3 :unsigned(G_DATA_W*4-1 downto 0); -- denominator for operation 3
92 signal sigma3 :unsigned(G_DATA_W*4-1 downto 0); -- result of the operation 3
93 signal sigma :unsigned(G_DATA_W*4-1 downto 0); -- final result
94
95 component counter -- declares the counter to count data_in
96 --generic(n: natural := 5);
97 port(
98 clock: in std_logic;
99 clear: in std_logic;
100 count: in std_logic;
101 start_from: in std_logic_vector(COUNTER_DEPTH-1 downto 0); -- tells from which number to start
counting from, instead of the usual zero
102 Q: out std_logic_vector(COUNTER_DEPTH-1 downto 0) -- the out value of the counter
103);
104 end component;
105
106
107 begin
108 o_count <= count; -- commands the counter to start counting
109 o_reg_addr <= reg_addr; -- for debug: watches the value Q of the counter
110 o_rst_cnt <= rst_cnt; -- reset the clock when outside the moving average mean-sigma or
mean+sigma (when a sharp image coutour is detected)
111 o_regN <= std_logic_vector(regN); -- this stores the size of the filter, which is supplied
in the header of the data_in streamming
112 o_regsigmaCoeff <= std_logic_vector(regSigmaCoeff); -- this stores the sigma multiplicative
factor, which is supplied in the header of the data_in streamming
113 o_regFWC <= std_logic_vector(regFWC); -- this stores the factor wave conversion (num of egenerated
by each photon) which is rough the same as pixel bith depth, which is supplied in the header of
the data_in streamming
114 o_regcolourRange <= std_logic_vector(regColourRange); -- this stores the aka bith depth, which is
supplied in the header of the data_in streamming
115 o_regNumPasses <= std_logic_vector(regNumPasses); -- this stores the number of filter passes, which
is supplied in the header of the data_in streamming
116 o_reg0 <= std_logic_vector(reg_array(0)(G_DATA_W-1 downto 0)); -- the next 5 registers are
only for debug watch
117 o_reg1 <= std_logic_vector(reg_array(1)(G_DATA_W-1 downto 0));
118 o_reg2 <= std_logic_vector(reg_array(2)(G_DATA_W-1 downto 0));
119 o_reg3 <= std_logic_vector(reg_array(3)(G_DATA_W-1 downto 0));
120 o_reg4 <= std_logic_vector(reg_array(4)(G_DATA_W-1 downto 0));
121 o_sum <= std_logic_vector(sum); -- all these variables are for inner math calculations
122 o_mean <= std_logic_vector(mean);
123 o_sqrtMean_x_sigCoeff <= std_logic_vector(sqrtMean_x_sigCoeff);
124 o_sqrtN <= std_logic_vector(sqrtN);
125 o_num_sigma1 <= std_logic_vector(num_sigma1);
126 o_den_sigma1 <= std_logic_vector(den_sigma1);
127 o_sigma1 <= std_logic_vector(sigma1);
128 o_numTMPsigma2 <= std_logic_vector(numTMPsigma2);
129 o_num_sigma2 <= std_logic_vector(num_sigma2);
130 o_den_sigma2 <= std_logic_vector(den_sigma2);
131 o_sigma2 <= std_logic_vector(sigma2);
132 o_meanPow2 <= std_logic_vector(meanPow2);
133 o_num_sigma3 <= std_logic_vector(num_sigma3);
134 o_den_sigma3 <= std_logic_vector(den_sigma3);
135 o_sigma3 <= std_logic_vector(sigma3);
136 o_sigma <= std_logic_vector(sigma);
137
138 counter_inst : entity work.counter generic map(count_depth => COUNTER_DEPTH) -- instantiate the counter
139 port map(clock => clk,
140 clear => rst_cnt,
141 count => count,--gives order to start counter of the leading edge (the

 75

end) of the filter
142 start_from => start_from, -- tells from which number to start counting
from, instead of the usual zero
143 Q => reg_addr);
144
145 idx_reg_addr <= conv_integer(reg_addr); -- just convert the Q exit from the counter, which is a
std_logic_vector to interger, because indexing is made with intger numbers
146
147
148 proc_calc_mean: process(sum) -- this procedure is to be done in parallell by procedure "proc_calc_sum:
process(clk, rst)" below
149 begin -- for now, this is only done when the size of the filter, N, is 4. TODO:
check for other cases, but at 1st analysis, seems
150 if count = '1' then -- mean <= sum / (idx_reg_addr + frst_rst_made)
151 mean <= sum / (idx_reg_addr + 1);
152 else
153 mean <= (others => '0');
154 end if;
155 end process;
156
157 ov_data <= std_logic_vector(mean(G_DATA_W-1 downto 0));
158 -- below are the variables that run in parallell with the procedure "proc_calc_sum", below the
"proc_check_if_numerat_is_0", as well as with the above procedure "proc_calc_mean"
159 -- it calculates sqrt(mean / (i - M0 + 1)) * (sigmaFactor/FWC*100) * (1.214e-8*FWC^2*mean^2 -
0.0002290*FWC*mean + 1.096), in which:
160 -- (i - M0 + 1) is the maximum length of the filter heading at the index i and tailing at M0
161 -- (sigmaFactor/FWC*100) is the normalized sigma factor (percentage to be scaled in pixel range
between 0..1)
162 -- and (1.214e-8*FWC^2*mean^2 - 0.0002290*FWC*mean + 1.096) is the smoothing polynomial equation
that smooths more in darker colours than in white ones (also normalized)
163 -- all is rearranged in nominators and denominators to equate all in 1 division and 1 sqrt to increase
precision
164 sqrtMean_x_sigCoeff <= x"00000000" & sqrt_Li_Chu(mean(G_DATA_W*2-1 downto 0)) * regSigmaCoeff; -- does
floor(sqrt_mean) * sigma_coeff (floor is implicit on fixed point FPGA maths)
165 sqrtN <= x"000000000000" & sqrt_Li_Chu(x"0000" & regN); -- calculates sqrt(N)
166 num_sigma1 <= x"0089" * sqrtMean_x_sigCoeff(G_DATA_W*3-1 downto 0); -- x"0089"=137; calculates
the sigma1 numerator member: 137 * sqrtMeanXsigmaCoeff
167 den_sigma1 <= sqrtN(G_DATA_W*3-1 downto 0) * x"007D"; --x"007D"=125; calculates the sigma1
denominator member: sqrtN * 125
168
169 numTMPsigma2 <= x"08D1" * mean(G_DATA_W*3-1 downto 0); -- x"08D1"=2257; calculates the sigma1
numerator member: 2257 * mean
170 num_sigma2 <= numTMPsigma2(G_DATA_W*2-1 downto 0) * sqrtMean_x_sigCoeff(G_DATA_W*2-1 downto 0);
-- calculates 2257 * mean * sqrtMeanXsigmaCoeff
171 den_sigma2 <= sqrtN(G_DATA_W*2-1 downto 0) * x"00989680"; --x"989680"=10^7; calculates: sqrtN *
10^7
172
173 meanPow2 <= mean(G_DATA_W*2-1 downto 0) * mean(G_DATA_W*2-1 downto 0); -- calculates mean^2
174 num_sigma3 <= meanPow2(G_DATA_W*2-1 downto 0) * sqrtMean_x_sigCoeff(G_DATA_W*2-1 downto 0); --
x"0089"=137; calculates: mean^2 * sqrtMeanXsigmaCoeff
175 den_sigma3 <= sqrtN(G_DATA_W*2-1 downto 0) * x"04E8E6E3"; --x"04E8E6E3"=82372323; calclates sqrtN
* 82372323
176
177 -- below sre the variables that run in parallell by procedure "proc_calc_sum: process(clk, rst)" below as
do the above procedure
178 proc_check_if_numerat_is_0: process(num_sigma1, num_sigma2, num_sigma3)
179 begin
180 if num_sigma1 = to_unsigned(0, num_sigma1'length) then
181 sigma1 <= (others => '0');
182 else
183 sigma1 <= num_sigma1 / den_sigma1;
184 end if;
185 if num_sigma2 = to_unsigned(0, num_sigma2'length) then
186 sigma2 <= (others => '0');
187 else
188 sigma2 <= num_sigma2 / den_sigma2;
189 end if;
190 if num_sigma3 = to_unsigned(0, num_sigma3'length) then
191 sigma3 <= (others => '0');
192 else
193 sigma3 <= num_sigma3 / den_sigma3;
194 end if;
195 end process;
196 sigma <= sigma1 - sigma2 + sigma3;
197
198
199 proc_calc_sum: process(clk, rst)
200 begin
201
202 if rst = '1' then -- if set, FPGA should expect a stream of data that starts below on
rising_edge(clk), so reset all
203 s_en <= '0';
204 count <= '0';
205 rst_cnt <= '1';
206 start_from <= (others => '0');
207 regN <= (others => '0');
208 regSigmaCoeff <= (others => '0');
209 regFWC <= (others => '0');
210 regColourRange <= (others => '0');

 76

211 regNumPasses <= (others => '0');
212 for i in 0 to REG_SIZE-1 loop
213 reg_array(i)<= (others => '0');
214 end loop;
215 sum <= (others => '0');
216 elsif rising_edge(clk) then
217 s_en <= en;
218
219 if s_en = '1' then -- starts the streaming of word bytes
220 if regN = to_unsigned(0, regN'length) then -- this is the 1st parameter passed to FPGA, which
is the size of the filter to convolute with the array of pixels
221 regN <= unsigned(iv_data);
222 elsif regSigmaCoeff = to_unsigned(0, regSigmaCoeff'length) then -- the multiplicative sigma
factor (50 or 100, or other)
223 regSigmaCoeff <= unsigned(iv_data);
224 elsif regFWC = to_unsigned(0, regFWC'length) then -- how many electrons are generated by each
photon (normally the same as the maximum image pixel depth
225 regFWC <= unsigned(iv_data);
226 elsif regColourRange = to_unsigned(0, regColourRange'length) then -- maximum color tones
(normally the same as FWC
227 regColourRange <= unsigned(iv_data);
228 elsif regNumPasses = to_unsigned(0, regNumPasses'length) then -- number of passes (convolution
of several passes generates fiferent filters, from rectangular, triangular and different shapes
of gaussian
229 regNumPasses <= unsigned(iv_data);
230 elsif rst_cnt = '1' then -- since rst_cnt has been '1' from the begining of this streaming, set
it now to zero, still this clock, to start a new processiong
231 rst_cnt <= '0'; -- reset clock still on this clock. this is used also when next pixel value
is (< mean - sigma) or (> mean + sigma)
232 count <= '1'; -- start the counter 1st word
233 sum <= x"000000000000" & unsigned(iv_data); -- start already with the 1st value it has
234 else
235 for i in 0 to REG_SIZE-2 loop -- this "for loop" is used to shift register the position of
the input data position to the position + 1 place...
236 reg_array(i+1) <= reg_array(i);
237 end loop;
238 reg_array(0) <= x"000000000000" & unsigned(iv_data); -- ...for then receive the next word
data in
239
240 if (unsigned(iv_data) < mean - sigma or
241 unsigned(iv_data) > mean + sigma) then -- if this word is outside the moving average
mean-sigma or mean+sigma (when a sharp image coutour is detected) ...
242 rst_cnt <= '1'; -- rise the flag
243 rst_cnt <= '0' after 3 ns; -- drop the flag (this rising and dropping cannot exceed a
whole clock period
244 start_from <= (others => '0'); -- put back reset_from = 0, that was forced to stay in the
value regN - 1, in order to maintain the average
245
246 for i in 1 to REG_SIZE-1 loop -- sets all memory ...
247 reg_array(i) <= (others => '0'); -- ...to zero due to a sharp detection
248 end loop;
249 sum <= x"000000000000" & unsigned(iv_data) after 1 ns; -- restart only with this new value
250 else
251 sum <= sum + (x"000000000000" & unsigned(iv_data)) - reg_array(conv_integer(o_regN)-1)
after 1 ns; -- makes moving average until the size of of the filter included
252 if (regN - 1) = idx_reg_addr then -- if the counter reaches teh filter size, N (actualy
counter must be equal to N-1 because it starts on 0)
253 start_from <= reg_addr; -- if reached then keep it there (dont let go higher than N
254 end if;
255 end if;
256
257 end if;
258 else
259 sum <= (others => '0');
260 end if;
261 end if;
262
263 end process;
264
265
266 end architecture;

 77

A.2 Simulation file of moving average FPGA source code

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_unsigned.ALL;
4 use ieee.numeric_std.ALL;
5
6 entity tb_mov_avg_thesis is
7 generic (
8 G_DATA_W :integer := 16;
9 COUNTER_DEPTH :integer := 7 --counter will need to count until 100 for N maximum number for
averaging, hence 2^7=128 which is enough
10);
11 end entity;
12
13 architecture tb_mov_avg_thesis_rtl of tb_mov_avg_thesis is
14 signal clk :std_logic := '0';
15 signal rst :std_logic := '0';
16 signal en :std_logic := '0';
17 signal DataEn :std_logic := '0';
18 signal DataEn_reg1 :std_logic := '0';
19 signal DataEn_reg2 :std_logic := '0';
20 signal DataEn_reg3 :std_logic := '0';
21 signal DataEn_reg4 :std_logic := '0';
22 signal DataEn_reg5 :std_logic := '0';
23 signal o_count :std_logic;
24 signal DataIn :std_logic_vector(G_DATA_W-1 downto 0);
25 signal o_reg_addr :std_logic_vector(COUNTER_DEPTH-1 downto 0);
26 signal o_rst_cnt :std_logic;
27 --signal o_can_reset :std_logic;
28 --signal o_frst_rst_made :std_logic;
29 signal o_regN :std_logic_vector(G_DATA_W-1 downto 0);
30 signal o_regSigmaCoeff :std_logic_vector(G_DATA_W-1 downto 0);
31 signal o_regFWC :std_logic_vector(G_DATA_W-1 downto 0);
32 signal o_regColourRange :std_logic_vector(G_DATA_W-1 downto 0);
33 signal o_regnumPasses :std_logic_vector(G_DATA_W-1 downto 0);
34 signal o_reg0 :std_logic_vector(G_DATA_W-1 downto 0);
35 signal o_reg1 :std_logic_vector(G_DATA_W-1 downto 0);
36 signal o_reg2 :std_logic_vector(G_DATA_W-1 downto 0);
37 signal o_reg3 :std_logic_vector(G_DATA_W-1 downto 0);
38 signal o_reg4 :std_logic_vector(G_DATA_W-1 downto 0);
39 signal o_sum :std_logic_vector(G_DATA_W*4-1 downto 0);
40 signal o_mean :std_logic_vector(G_DATA_W*4-1 downto 0);
41 signal o_sqrtMean_x_sigCoeff:std_logic_vector(G_DATA_W*4-1 downto 0);
42 signal o_sqrtN :std_logic_vector(G_DATA_W*4-1 downto 0);
43 signal o_num_sigma1 :std_logic_vector(G_DATA_W*4-1 downto 0);
44 signal o_den_sigma1 :std_logic_vector(G_DATA_W*4-1 downto 0);
45 signal o_sigma1 :std_logic_vector(G_DATA_W*4-1 downto 0);
46 signal o_numTMPsigma2 :std_logic_vector(G_DATA_W*4-1 downto 0);
47 signal o_num_sigma2 :std_logic_vector(G_DATA_W*4-1 downto 0);
48 signal o_den_sigma2 :std_logic_vector(G_DATA_W*4-1 downto 0);
49 signal o_sigma2 :std_logic_vector(G_DATA_W*4-1 downto 0);
50 signal o_meanPow2 :std_logic_vector(G_DATA_W*4-1 downto 0);
51 signal o_num_sigma3 :std_logic_vector(G_DATA_W*4-1 downto 0);
52 signal o_den_sigma3 :std_logic_vector(G_DATA_W*4-1 downto 0);
53 signal o_sigma3 :std_logic_vector(G_DATA_W*4-1 downto 0);
54 signal o_sigma :std_logic_vector(G_DATA_W*4-1 downto 0);
55 signal DataOut :std_logic_vector(G_DATA_W-1 downto 0);
56 -- for ReadDataFromFile and WriteDataToFile
57 signal eof :std_logic := '0';
58 signal eof_reg1 :std_logic := '0';
59 signal eof_reg2 :std_logic := '0';
60
61 signal o_fifo_DataOut :std_logic_vector(G_DATA_W*2-1 downto 0); --user_r_read_32_data,
62 signal o_full :std_logic := '0'; --user_w_write_32_full,
63 signal o_empty :std_logic := '1'; --user_r_read_32_empty
64
65 constant ClkGenConst :time := 10 ns;
66
67 begin
68 --
69 read_data_inst: entity work.read_data_from_file
70 generic map (
71 G_FILE_NAME =>
"C:\Users\rj\Xilinx\RJa\Projects_HDL\project_2\project_2.srcs\sources_1\bd\design_1\hdl\simulation\mov_a
vg_thesis/xn3508_in.dat",
72
--"D:\RJa\Projects_HDL\project_2\project_2.srcs\sources_1\bd\design_1\hdl\simulation\mov_
avg_thesis/xn3508_in.dat", -- :string := "DataIn.dat";
73 G_DATA_W => G_DATA_W -- :integer := 16
74)
75 port map (
76 clk => clk, -- :in std_logic;
77 en => en, -- :in std_logic;
78 o_data_en => DataEn, -- :out std_logic;
79 ov_data => DataIn, -- :out std_logic_vector(G_DATA_W-1 downto 0);
80 o_eof => eof -- :out std_logic
81);

 78

82
--
83 mov_avg_inst: entity work.mov_avg_thesis
84 generic map (
85 G_DATA_W => G_DATA_W
86)
87 port map (
88 clk => clk, -- :in std_logic;
89 rst => rst, -- :in std_logic;
90 en => en, --DataEn, -- :in std_logic;
91 o_count => o_count, -- :buffer std_logic;
92 iv_data => DataIn, -- :in std_logic_vector(G_DATA_W-1 downto 0);
93 o_reg_addr => o_reg_addr, -- :buffer std_logic_vector(COUNTER_DEPTH-1 downto 0);
94 o_rst_cnt => o_rst_cnt, -- :buffer std_logic;
95 o_regN => o_regN, -- :buffer std_logic_vector(G_DATA_W-1 downto 0);
96 o_regSigmaCoeff => o_regSigmaCoeff, -- :buffer std_logic_vector(G_DATA_W-1 downto 0);
97 o_regFWC => o_regFWC, -- :buffer std_logic_vector(G_DATA_W-1 downto 0);
98 o_regColourRange => o_regColourRange,-- :buffer std_logic_vector(G_DATA_W-1 downto 0);
99 o_regNumPasses => o_regNumPasses, -- :buffer std_logic_vector(G_DATA_W-1 downto 0);
100 o_reg0 => o_reg0, -- :buffer std_logic_vector(G_DATA_W-1 downto 0);
101 o_reg1 => o_reg1, -- :buffer std_logic_vector(G_DATA_W-1 downto 0);
102 o_reg2 => o_reg2, -- :buffer std_logic_vector(G_DATA_W-1 downto 0);
103 o_reg3 => o_reg3, -- :buffer std_logic_vector(G_DATA_W-1 downto 0);
104 o_reg4 => o_reg4, -- :buffer std_logic_vector(G_DATA_W-1 downto 0);
105 o_sum => o_sum, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); -- NOTE: for
safe we reserve inner math operations to
106 o_mean => o_mean, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); --
4*data_in size, although 2*datata_in would be
107 o_sqrtMean_x_sigCoeff => o_sqrtMean_x_sigCoeff,--:buffer std_logic_vector(G_DATA_W*4-1 downto 0); --
suffice
108 o_sqrtN => o_sqrtN, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
109 o_num_sigma1 => o_num_sigma1, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
110 o_den_sigma1 => o_den_sigma1, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
111 o_sigma1 => o_sigma1, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
112 o_numTMPsigma2 => o_numTMPsigma2, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
113 o_num_sigma2 => o_num_sigma2, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
114 o_den_sigma2 => o_den_sigma2, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
115 o_sigma2 => o_sigma2, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
116 o_meanPow2 => o_meanPow2, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
117 o_num_sigma3 => o_num_sigma3, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
118 o_den_sigma3 => o_den_sigma3, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
119 o_sigma3 => o_sigma3, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0);
120 o_sigma => o_sigma, -- :buffer std_logic _vector(G_DATA_W*4-1 downto 0);
121 ov_data => DataOut -- :out std_logic_vector(G_DATA_W-1 downto 0)
122);
123
124 -- 32-bit loopback
125 fifo_32_inst : entity work.fifo_32x512
126 port map(
127 clk => clk, --bus_clk, -- :in std_logic;
128 srst => rst, --reset_32, -- :in std_logic;
129 din => x"0000" & DataOut, --user_w_write_32_data, -- :in std_logic_vector(31 downto 0);
130 wr_en => DataEn_reg4, --user_w_write_32_wren, -- :in std_logic;
131 rd_en => o_count, --o_count, --user_r_read_32_rden, -- :in std_logic;
132 dout => o_fifo_DataOut, --user_r_read_32_data, -- :out std_logic_vector(31 downto 0);
133 full => o_full, --user_w_write_32_full, -- :out std_logic;
134 empty => o_empty --user_r_read_32_empty -- :out std_logic;
135);
136 --reset_32 <= not (user_w_write_32_open or user_r_read_32_open);
137 --user_r_read_32_eof <= '0';
138
139 --
140 write_data_inst: entity work.write_data_to_file
141 generic map (
142 G_FILE_NAME =>
"C:\Users\rj\Xilinx\RJa\Projects_HDL\project_2\project_2.srcs\sources_1\bd\design_1\hdl\simulation\mov_a
vg_thesis/xn3508_out.dat",
143
--"D:\RJa\Projects_HDL\project_2\project_2.srcs\sources_1\bd\design_1\hdl\simulation\mov_
avg_thesis/xn3508_out.dat", -- :string := "DataOut.dat";
144 G_DATA_W => G_DATA_W -- :integer := 16
145)
146 port map (
147 clk => clk, -- :in std_logic;
148 en => o_count, --DataEn_reg2, -- :in std_logic;
149 iv_data => DataOut, -- :out std_logic;
150 i_eod => eof_reg1, -- :out std_logic_vector(G_DATA_W-1 downto 0);
151 o_eof => open -- :out std_logic
152);
153
--
154 clock_generator: process
155 begin
156 clk <= '0' after ClkGenConst, '1' after 2*ClkGenConst;
157 wait for 2*ClkGenConst;
158 end process;
159 --
160 rst <= '1', '0' after 100 ns;
161

 79

--
162 en_proc: process
163 begin
164 en <= '0';
165 wait until rst = '0';
166 wait until rising_edge(clk);
167 wait for 35 ns;
168 en <= '1';
169 wait until eof = '1';
170 en <= '0';
171 --wait until o_empty = '1';
172 wait;
173 end process;
174
--
175 delay_en_for_write: process(clk)
176 begin
177 if rising_edge(clk) then
178 DataEn_reg1 <= DataEn;
179 DataEn_reg2 <= DataEn_reg1;
180 DataEn_reg3 <= DataEn_reg2;
181 DataEn_reg4 <= DataEn_reg3;
182 DataEn_reg5 <= DataEn_reg4;
183 eof_reg1 <= eof;
184 eof_reg2 <= eof_reg1;
185 end if;
186 end process;

A.3 CPU side C source code
A.3.3 Streamread.c

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <stdlib.h>
4 #include <errno.h>
5 #include <sys/types.h>
6 #include <sys/stat.h>
7 #include <fcntl.h>
8
9 /* streamread.c -- Demonstrate read from a Xillybus FIFO.
10
11 This simple command-line application is given one argument: The device
12 file to read from. The read data is sent to standard output.
13
14 This program has no advantage over the classic UNIX 'cat' command. It was
15 written merely to demonstrate the coding technique.
16
17 We don't use allread() here (see memread.c), because if less than the
18 desired number of bytes arrives, they should be handled immediately.
19
20 See http://www.xillybus.com/doc/ for usage examples an information.
21
22 */
23
24 void allwrite(int fd, unsigned char *buf, int len);
25
26 int main(int argc, char *argv[]) {
27
28 int fd, rc;
29 unsigned char buf[128];
30
31
32 if (argc!=2) {
33 fprintf(stderr, "Usage: %s devfile\n", argv[0]);
34 exit(1);
35 }
36
37 fd = open(argv[1], O_RDONLY);
38
39 if (fd < 0) {
40 if (errno == ENODEV)
41 fprintf(stderr, "(Maybe %s a write-only file?)\n", argv[1]);
42
43 perror("Failed to open devfile");
44 exit(1);
45 }
46
47 while (1) {
48 rc = read(fd, buf, sizeof(buf));
49
50 if ((rc < 0) && (errno == EINTR))
51 continue;
52
53 if (rc < 0) {

 80

54 perror("allread() failed to read");
55 exit(1);
56 }
57
58 if (rc == 0) {
59 fprintf(stderr, "Reached read EOF.\n");
60 exit(0);
61 }
62
63 // Write all data to standard output = file descriptor 1
64 // rc contains the number of bytes that were read.
65
66 allwrite(1, buf, rc);
67 }
68 }
69
70 /*
71 Plain write() may not write all bytes requested in the buffer, so
72 allwrite() loops until all data was indeed written, or exits in
73 case of failure, except for EINTR. The way the EINTR condition is
74 handled is the standard way of making sure the process can be suspended
75 with CTRL-Z and then continue running properly.
76
77 The function has no return value, because it always succeeds (or exits
78 instead of returning).
79
80 The function doesn't expect to reach EOF either.
81 */
82
83 void allwrite(int fd, unsigned char *buf, int len) {
84 int sent = 0;
85 int rc;
86
87 while (sent < len) {
88 rc = write(fd, buf + sent, len - sent);
89
90 if ((rc < 0) && (errno == EINTR))
91 continue;
92
93 if (rc < 0) {
94 perror("allwrite() failed to write");
95 exit(1);
96 }
97
98 if (rc == 0) {
99 fprintf(stderr, "Reached write EOF (?!)\n");
100 exit(1);
101 }
102
103 sent += rc;
104 }
105 }

A.3.4 Streamwrite.c

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <stdlib.h>
4 #include <errno.h>
5 #include <sys/types.h>
6 #include <sys/stat.h>
7 #include <fcntl.h>
8 #include <termio.h>
9 #include <signal.h>
10
11 /* streamwrite.c -- Demonstrate write to a Xillybus FIFO
12
13 This simple command-line application is given one argument: The device
14 file to write to. The data is read from standard input.
15
16 This program can't be substituted by UNIX' 'cat', because the latter works
17 at line-by-line basis.
18
19 See http://www.xillybus.com/doc/ for usage examples an information.
20
21 */
22
23 void allwrite(int fd, unsigned char *buf, int len);
24 void config_console();
25
26 int main(int argc, char *argv[]) {
27
28 int fd, rc;
29 unsigned char buf[128];
30
31 if (argc!=2) {
32 fprintf(stderr, "Usage: %s devfile\n", argv[0]);

 81

33 exit(1);
34 }
35
36 fd = open(argv[1], O_WRONLY);
37
38 if (fd < 0) {
39 if (errno == ENODEV)
40 fprintf(stderr, "(Maybe %s a read-only file?)\n", argv[1]);
41
42 perror("Failed to open devfile");
43 exit(1);
44 }
45
46 config_console(); // Configure standard input not to wait for CR
47
48 while (1) { // this loop only ends if Ctrl+C pressed
49 rc = read(0, buf, sizeof(buf)); // Read from standard input = file descriptor 0
50
51 if ((rc < 0) && (errno == EINTR))
52 continue;
53
54 if (rc < 0) {
55 perror("allread() failed to read");
56 exit(1);
57 }
58
59 if (rc == 0) {
60 fprintf(stderr, "Reached read EOF.\n");
61 exit(0);
62 }
63
64 allwrite(fd, buf, rc);
65 }
66 }
67
68 /*
69 Plain write() may not write all bytes requested in the buffer, so
70 allwrite() loops until all data was indeed written, or exits in
71 case of failure, except for EINTR. The way the EINTR condition is
72 handled is the standard way of making sure the process can be suspended
73 with CTRL-Z and then continue running properly.
74
75 The function has no return value, because it always succeeds (or exits
76 instead of returning).
77
78 The function doesn't expect to reach EOF either.
79 */
80
81 void allwrite(int fd, unsigned char *buf, int len) {
82 int sent = 0;
83 int rc;
84
85 while (sent < len) {
86 rc = write(fd, buf + sent, len - sent);
87
88 if ((rc < 0) && (errno == EINTR))
89 continue;
90
91 if (rc < 0) {
92 perror("allwrite() failed to write");
93 exit(1);
94 }
95
96 if (rc == 0) {
97 fprintf(stderr, "Reached write EOF (?!)\n");
98 exit(1);
99 }
100
101 sent += rc;
102 }
103 }
104
105 /* config_console() does some good-old-UNIX vodoo standard input, so that
106 read() won't wait for a carriage-return to get data. It also catches
107 CTRL-C and other nasty stuff so it can return the terminal interface to
108 what is was before. In short, a lot of mumbo-jumbo, with nothing relevant
109 to Xillybus.
110 */
111
112 void config_console() {
113 struct termio console_attributes;
114
115 if (ioctl(0, TCGETA, &console_attributes) != -1) {
116 // If we got here, we're reading from console
117
118 console_attributes.c_lflag &= ~ICANON; // Turn off canonical mode
119 console_attributes.c_cc[VMIN] = 1; // One character at least
120 console_attributes.c_cc[VTIME] = 0; // No timeouts
121

 82

122 if (ioctl(0, TCSETAF, &console_attributes) == -1)
123 fprintf(stderr, "Warning: Failed to set console to char-by-char\n");
124 }
125 }
126

A.3.5 MATLAB scrips and source C code

A.3.5.1 NoiseAndHistograms.m

1 delete(findall(0, 'Type', 'figure'));

2 FWC = 10e3; % Coefficient (or Factor) of the Wavelength Conversion in electrons (accepted value is 10000 e-)

3 img_original = imread('img_MartinPattern.png');
4 img_original = double(img_original(:, :, 1));
5 img_original = img_original/max(max(img_original)); % multiply by the maximum value of electrons

6 var = 0.001;

7 img_noisy=imnoise(img_original, 'gaussian', 0, var);

8 f1=figure('Name', 'img original', 'NumberTitle', 'off'); imshow(img_original)
9 f1.OuterPosition = [1 1805 1375 573];
10 f2=figure('Name', sprintf('noisy variance=%g%%', var*100), 'NumberTitle', 'off'); imshow(img_noisy)
11 f2.OuterPosition = [265 1805 1375 573];

12 col=1900;%col=4014;

13 f=figure('Name', 'histogram original img', 'NumberTitle', 'off');
14 f.OuterPosition = [1922 1735 341 493];
15 h_img_original=histogram(img_original(:,col) * FWC, 'Normalization', 'count');
16 f=figure('Name', sprintf('histogram noisy variance=%g%%, col=%d', var*100, col), 'NumberTitle', 'off');
17 f.OuterPosition = [1922 1201 341 493];
18 h_img_noisy=histogram(img_noisy(:,col) * FWC, 'Normalization', 'count');

19 figure('Name', sprintf('img 0.1%% noisy: col=%d', col), 'NumberTitle', 'off');
20 img_noisy=histogram(img_noisy(:,col), 'Normalization', 'count')
21 SNR_MovingAverage(img_noisy, img_original, [1,2,3,4,5,6,7,8,9].^2, [50, 100], FWC, [0 FWC], 1, col)

22 return

A.3.5.2 SNR_MovingAverage.m
1 %==
2 % USAGE: [out, var] = SNR_Martin(noisy_image; original_image (clean image for comparison); sigmaCoeff=1,2,3;
3 % FWD=10000e-; colourRange=[0 2^16]; numPasses=1,2,3,4,...);
4 %==
5 % read first the noisy and the original images to the Workspace:
6 % im = imread('img.pgm'); the clean image for comparison
7 % im_noisy001 = imread('img_noisy001.pgm'); then noisy image for processing
8 % the rest of parameters are:
9 % filterLength = [1,2,3,4,5,6,7,8,9].^2; array of moving average filters of several lengths. the more lengthy,

the more effective but also more blurry the picture
10 % sigmaCoeff = [1, 3]; (standard deviation, sigma, that restricts the noise variance for about 68% if 1xsigma or

is more noise permissive about 99% if 3xsigma
11 % FWC = Coefficient (or Factor) of the Wavelength Conversion in electrons (accepted value is 10000 e-)
12 % colourRange = [0 1]; pictures range of colors
13 % numPasses = 1; number of passes that filter executes over image
14 % col = number of the column to plot a profile
15 % EXAMPLE: SNR_Martin_MovingAverage(im_noisy001, im, [1,2,3,4,5,6,7,8,9].^2, [1, 3], [0 1], 10000, 1, col)
16 % SNR_Martin_MovingAverage(img0001_noisy, img_original, [1,2,3,4,5,6,7,8,9].^2, [50, 100], FWC, [0 FWC],

1, num columns to plot for profile)
17 function SNR_MovingAverage (imNoisy, imOriginal, filterLength, sigmaCoeff, FWC, colourRange,

numPasses, col)
18
19 % delete(findall(0, 'Type', 'figure')); % delete all figure. we want to start clean
20 mp = get(0,'monitorpositions'); %get the starting positions and the length of all monitors attached (this is

for a multimonitor scenario)
21
22 attr = whos ('imNoisy'); % used to get image size (attr.size(1) is the height and attr.size(2) is the width)
23 imgsz = attr.size(1) * attr.size(2); %get the size of the image to be processed
24
25 % ===
26 % this switch both images arguments to normalize double precision
27 % ===
28 if attr.class ~= 'double'

 83

29 imOriginal = double(imOriginal);% swithch to double...
30 imOriginal = imOriginal / max(max(imOriginal)); % ...and normalize it to to increase the precision
31 imNoisy = double(imNoisy);% swithch to double...
32 imNoisy = imNoisy / max(max(imNoisy)); % switch to double precision and normalize it to get accurate

results
33 end
34
35 noise = sqrt(abs(mean(mean(imNoisy.^2)) - mean(mean(imNoisy))^2) * imgsz/(imgsz-1)); %supplied by

Ricardo Sousa, but Martin noticed the mean doesnt make sense, due to the various colours of the image
36
37
38 %==
39 % this first nested for, for..end, end is for the variance with respect to the ROWS (comparison between ROWS in

the same COLUMN)
40 %===
41 % lnMean = imNoisy(1,:); % line of means
42 % imVar = variance_factor * sqrt(imNoisy(:, :)); % matrix of variances.
43 % imN = ones(1,attr.size(2)); % vector of number of pixels processed for this average. will reset (N = 1,

due to MATLAB indexing) if a new average counting
44
45 initialmagnification = 250; %zoom the picture to show
46
47 %===
48 % this creates a noisy piecewise function composed by 2 heavisides and a sin
49 %===
50 t = -5:0.01:10; % independent variable
51 rng default %initiate random generator
52 a1 = find(t>=-5 & t<-2); % independent var for one Heaviside
53 a2 = find(t>=-2 & t<4); % independent var for another Heaviside
54 a3 = find(t>=4); % independent var for sin function
55 x(a1) = (heaviside(t(a1))-heaviside(t(a1)-3)); %it is composed by 2 step heavisides (kind of stairs) and a

sin wave
56 x(a2) = heaviside(t(a2))-heaviside(t(a2)-3) + 1; % another heaviside
57 x(a3) = sin(t(a3)) + 1.2; % raise sin() on YY' axis to not get negative numbers (we want sin above 0
58 xn = x + 0.25*rand(size(t)); %create a squared step with noise
59
60 % ===
61 % this is a figure to compare lines with filters of several lengths. it takes a column from both images and

compares the efficiency of the moving average algorithm using 3 methods:
62 % y1 = 'Simple moving average without regarding to sharp edge detection';
63 % y2 = 'Enterprises''s given algorithm: moving average with sharp edge detection';
64 % ===
65 % use a image's column of data to apply the filters and watch how they behave
66 t = 200 : 750; %size(imNoisy); % size() returns a brackets array of Lines By Columns, but if the brakets

aren't used then the parameter Lines is choosed
67 x = imOriginal(t, 1137)';%2713)'; %3508)'; % we select any column of the original image
68 xn = imNoisy(t, 1137)';%2713)'; %3508)'; % and the same column and the noisy image column ot compre wih
69
70 y1 = 'Simple moving average'; % we will use the simple moving average wihtout reagard to the sharp colour

detection
71 y2 = 'Moving average with sharp edge floating-point'; % and for comparison with the sharp egde detection
72 y3 = 'Moving average with sharp edge fixed-point';
73
74 szFilterLength = length(filterLength); % take the length of the array of the filter's number of points

(might be 10 or more filters of increasing number of point to choos ethe best efficiency)
75 szSigmaCoeff = length(sigmaCoeff); % take the length of the standard deviation, 1xsigma (~68%), or 3xsigma

(~99%)
76 for i = 1 : szFilterLength % run the array of the several length filters for all the column
77 filter = (1/filterLength(i))*ones(1,filterLength(i)); % press F1 on help for 'filter' for the meaning of

B...
78 % A = 1;% ...and A
79 for j = 1 : szSigmaCoeff % does this for all sigmas (for ex. if sigmas are [1 3], does for 1xsigma and

for 3xsigma)
80 eval(['[' sprintf('y1_%gx%g', filterLength(i), sigmaCoeff(j)) ', ' ...
81 sprintf('y2_%gx%g', filterLength(i), sigmaCoeff(j)) ', ' ...
82 sprintf('y3_%gx%g', filterLength(i), sigmaCoeff(j)) ']' '= myfilter_matlab(filter, xn,

sigmaCoeff(j), FWC, numPasses);']);
83
84 % uncomment below, if ever needed to scale up from [0.0..1.0] to [0..FWC]
85 % eval([sprintf('y1_%gx%g', filterLength(i), sigmaCoeff(j)) '= FWC *' sprintf('y1_%gx%g',

filterLength(i), sigmaCoeff(j)) ';']);
86 % eval([sprintf('y2_%gx%g', filterLength(i), sigmaCoeff(j)) '= FWC *' sprintf('y2_%gx%g',

filterLength(i), sigmaCoeff(j)) ';']);
87 end
88 end
89
90
91 cc=hsv(9); %get the colours to plot the curves. the Hue-saturation-value color map to plot each curve
92
93 % ===
94 % this is a figure to compare lines with filters of several lengths for y1 = 'Simple moving average without

regarding to sharp edge detection';
95 % we will use the simple moving average wihtout reagard to the sharp colour detection

 84

96 % ==
97 figure('Name', y1, 'NumberTitle', 'off'); % create a figure frame to plot all curves for y2 (w/o sharp

detection)
98 set(gcf,'position',[mp(1,1) mp(1,2)+mp(1,4)*0.6 mp(1,3) mp(1,4)*0.45]); % set the position of the frame
99 set(gca,'Position',[.03 .06 .95 .93], 'box','on'); % set the position of the axes
100 hold on
101 ax = gca;
102 plot(t, x* FWC, 'Color', ax.ColorOrder(1,:), 'LineStyle', '-'); % plots 'original signal w/o noise', '-'

means normal solid line
103 plot(t, xn* FWC, 'Color', ax.ColorOrder(1,:), 'LineStyle', ':'); % plots 'signal w/ random noise', ':' means

dotted line
104 for i = 2 : szFilterLength %for each moving average window size
105 for j = 1 : szSigmaCoeff %for each sigma
106 if j==1, plotTrace = '-'; else, plotTrace =':'; end % sets the line type to be ploted, if

solid or if dotted
107 yy = eval(sprintf('y1_%dx%d', filterLength(i), sigmaCoeff(j))), 'LineStyle', plotTrace, 'Color',

cc(i-1,:);
108 plot(t, yy * FWC);
109 end
110 end
111 hold off
112 legend('original signal w/o noise', 'signal w/ random noise', ...
113 sprintf('MA filter sz=%d, sigma=%d', filterLength(2), sigmaCoeff(1)), sprintf('MA filter sz=%d,

sigma=%d', filterLength(2), sigmaCoeff(2)), ...
114 sprintf('MA filter sz=%d, sigma=%d', filterLength(3), sigmaCoeff(1)), sprintf('MA filter sz=%d,

sigma=%d', filterLength(3), sigmaCoeff(2)), ...
115 sprintf('MA filter sz=%d, sigma=%d', filterLength(4), sigmaCoeff(1)), sprintf('MA filter sz=%d,

sigma=%d', filterLength(4), sigmaCoeff(2)), ...
116 sprintf('MA filter sz=%d, sigma=%d', filterLength(5), sigmaCoeff(1)), sprintf('MA filter sz=%d,

sigma=%d', filterLength(5), sigmaCoeff(2)), ...
117 sprintf('MA filter sz=%d, sigma=%d', filterLength(6), sigmaCoeff(1)), sprintf('MA filter sz=%d,

sigma=%d', filterLength(6), sigmaCoeff(2)), ...
118 sprintf('MA filter sz=%d, sigma=%d', filterLength(7), sigmaCoeff(1)), sprintf('MA filter sz=%d,

sigma=%d', filterLength(7), sigmaCoeff(2)), ...
119 sprintf('MA filter sz=%d, sigma=%d', filterLength(8), sigmaCoeff(1)), sprintf('MA filter sz=%d,

sigma=%d', filterLength(8), sigmaCoeff(2)), ...
120 sprintf('MA filter sz=%d, sigma=%d', filterLength(9), sigmaCoeff(1)), sprintf('MA filter sz=%d,

sigma=%d', filterLength(9), sigmaCoeff(2)));
121 xlabel('length (pixels)');
122 ylabel('colour depth (0 is the darkest, 10e3 is the lighter)');
123
124 % ==
125 % this is a figure to compare lines with filters of several lengths for y2 = 'Enterprises's given algorithm:

moving average with sharp edge detection'; % and for comparison with the sharp egde detection
126 % ==
127 figure('Name', sprintf('%s, sigma factor: [%d, %d] FWC: %g, num passes: %d', y2, sigmaCoeff, FWC, numPasses),

'NumberTitle', 'off'); % creates a frame window to plot all curves for y3 (with sharp detection)
128 set(gcf,'position',[mp(1,1) mp(1,2) mp(1,3) mp(1,4)*0.4]); % set the position of the frame
129 set(gca,'Position',[.03 .07 .95 .92], 'box','on'); % set the position of the window with all curves
130 hold on
131 ax = gca;
132 plot(t, x* FWC, 'Color', ax.ColorOrder(1,:), 'LineStyle', '-'); % plots 'original signal w/o noise', '-'

means normal solid line (TAKE OUT "* FWC" of "x * FWC" 2nd parameter, THE MULTIPLICATIVE SCALE PLOTED LINE IF
LINE BETWEEN [0..1])

133 plot(t, x* FWC, 'Color', ax.ColorOrder(1,:), 'LineStyle', ':'); % plots 'signal w/ random noise', ':' means
dotted line (TAKE OUT "* FWC" of "xn * FWC" 2nd parameter, THE MULTIPLICATIVE SCALE PLOTED LINE IF LINE BETWEEN
[0..1])

134 for i = 2 : szFilterLength % for each moving average window size
135 for j = 1 : szSigmaCoeff % for each sigma
136 if j==1, plotTrace = '-'; else, plotTrace =':'; end % chooses between solid (for sigma=1) or dotted

line (for sigma=3)
137 yy = eval(sprintf('y3_%dx%d', filterLength(i), sigmaCoeff(j))), 'LineStyle', plotTrace, 'Color',

cc(i-1,:);
138 plot(t, yy * FWC);
139 end
140 end
141 hold off
142 legend('original signal w/o noise', 'signal w/ random noise', ...
143 sprintf('S-G filter sz=%d, order=2', filterLength(2)), sprintf('S-G filter sz=%d, order=4',

filterLength(2)), ...
144 sprintf('S-G filter sz=%d, order=2', filterLength(3)), sprintf('S-G filter sz=%d, order=4',

filterLength(3)), ...
145 sprintf('S-G filter sz=%d, order=2', filterLength(4)), sprintf('S-G filter sz=%d, order=4',

filterLength(4)), ...
146 sprintf('S-G filter sz=%d, order=2', filterLength(5)), sprintf('S-G filter sz=%d, order=4',

filterLength(5)), ...
147 sprintf('S-G filter sz=%d, order=2', filterLength(6)), sprintf('S-G filter sz=%d, order=4',

filterLength(6)), ...
148 sprintf('S-G filter sz=%d, order=2', filterLength(7)), sprintf('S-G filter sz=%d, order=4',

filterLength(7)), ...
149 sprintf('S-G filter sz=%d, order=2', filterLength(8)), sprintf('S-G filter sz=%d, order=4',

filterLength(8)), ...
150 sprintf('S-G filter sz=%d, order=2', filterLength(9)), sprintf('S-G filter sz=%d, order=4',

filterLength(9)));
151 xlabel('length (pixels)');
152 ylabel('colour depth (0 is the darkest, 10e3 is the lighter)');
153 return;
154 % figure('Name', 'Original Image', 'NumberTitle', 'off'); % figure frame for the original image

 85

155 % imshow(imOriginal, 'Border', 'tight', 'DisplayRange', colourRange, 'InitialMagnification',
initialmagnification); % show the original image

156 % figure('Name', 'Noisy Image', 'NumberTitle', 'off'); % figure frame for the noisy image
157 % imshow(imNoisy, 'Border', 'tight', 'DisplayRange', colourRange, 'InitialMagnification',

initialmagnification);% show the noisy image
158
159
160 filter = (1/filterLength(2))*ones(1,filterLength(2));
161 [imDenoised_04x1_SMA, noise_04x1_SMA, mse_04x1_SMA, peaksnr_04x1_SMA, snr_04x1_SMA, global_sim_04x1_SMA, ~,

...
162 imDenoised_04x1_FlP, noise_04x1_FlP, mse_04x1_FlP, peaksnr_04x1_FlP, snr_04x1_FlP, global_sim_04x1_FlP, ~,

...
163 imDenoised_04x1_FxP, noise_04x1_FxP, mse_04x1_FxP, peaksnr_04x1_FxP, snr_04x1_FxP, global_sim_04x1_FxP, ~

...
164] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(1), FWC, imNoisy, noise, imOriginal, colourRange,

initialmagnification, numPasses, [1 1805-151 1375 573]);
165 % f=figure('Name', sprintf('imDenoised: filter=4pts sigma=%d col=%d', sigmaCoeff(1), col), 'NumberTitle',

'off');
166 f.OuterPosition = [2264 1735 341 493];
167 % h_imDenoised_04x1=histogram(imDenoised_04x1_FxP(:,col) * FWC, 'Normalization', 'count');
168
169 filter = (1/filterLength(2))*ones(1,filterLength(2));
170 [imDenoised_04x3_SMA, noise_04x3_SMA, mse_04x3_SMA, peaksnr_04x3_SMA, snr_04x3_SMA, global_sim_04x3_SMA, ~,

...
171 imDenoised_04x3_FlP, noise_04x3_FlP, mse_04x3_FlP, peaksnr_04x3_FlP, snr_04x3_FlP, global_sim_04x3_FlP, ~,

...
172 imDenoised_04x3_FxP, noise_04x3_FxP, mse_04x3_FxP, peaksnr_04x3_FxP, snr_04x3_FxP, global_sim_04x3_FxP, ~

...
173] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(2), FWC, imNoisy, noise, imOriginal, colourRange,

initialmagnification, numPasses, [546 1805-151 1375 573]);
174 % f=figure('Name', sprintf('imDenoised: filter=4pts sigma=%d, col=%d', sigmaCoeff(2), col), 'NumberTitle',

'off');
175 f.OuterPosition = [2264 1201 341 493];
176 % h_imDenoised_04x3=histogram(imDenoised_04x3_FxP(:,col) * FWC, 'Normalization', 'count');
177
178 filter = (1/filterLength(3))*ones(1,filterLength(3));
179 [imDenoised_09x1_SMA, noise_09x1_SMA, mse_09x1_SMA, peaksnr_09x1_SMA, snr_09x1_SMA, global_sim_09x1_SMA, ~,

...
180 imDenoised_09x1_FlP, noise_09x1_FlP, mse_09x1_FlP, peaksnr_09x1_FlP, snr_09x1_FlP, global_sim_09x1_FlP, ~,

...
181 imDenoised_09x1_FxP, noise_09x1_FxP, mse_09x1_FxP, peaksnr_09x1_FxP, snr_09x1_FxP, global_sim_09x1_FxP, ~

...
182] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(1), FWC, imNoisy, noise, imOriginal, colourRange,

initialmagnification, numPasses, [1 1805-302 1375 573]);
183 % f=figure('Name', sprintf('imDenoised: filter=9pts, sigma=%d, col=%d', sigmaCoeff(1), col), 'NumberTitle',

'off');
184 f.OuterPosition = [2607 1735 341 493];
185 % h_imDenoised_09x1=histogram(imDenoised_09x1_FxP(:,col) * FWC, 'Normalization', 'count');
186
187 filter = (1/filterLength(3))*ones(1,filterLength(3));
188 [imDenoised_09x3_SMA, noise_09x3_SMA, mse_09x3_SMA, peaksnr_09x3_SMA, snr_09x3_SMA, global_sim_09x3_SMA, ~,

...
189 imDenoised_09x3_FlP, noise_09x3_FlP, mse_09x3_FlP, peaksnr_09x3_FlP, snr_09x3_FlP, global_sim_09x3_FlP, ~,

...
190 imDenoised_09x3_FxP, noise_09x3_FxP, mse_09x3_FxP, peaksnr_09x3_FxP, snr_09x3_FxP, global_sim_09x3_FxP, ~

...
191] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(2), FWC, imNoisy, noise, imOriginal, colourRange,

initialmagnification, numPasses, [546 1805-302 1375 573]);
192 % f=figure('Name', sprintf('imDenoised: filter=9pts, sigma=%d, col=%d', sigmaCoeff(2), col), 'NumberTitle',

'off');
193 f.OuterPosition = [2607 1201 341 493];
194 % h_imDenoised_09x3=histogram(imDenoised_09x3_FxP(:,col) * FWC, 'Normalization', 'count');
195
196 filter = (1/filterLength(4))*ones(1,filterLength(4));
197 [imDenoised_16x1_SMA, noise_16x1_SMA, mse_16x1_SMA, peaksnr_16x1_SMA, snr_16x1_SMA, global_sim_16x1_SMA, ~,

...
198 imDenoised_16x1_FlP, noise_16x1_FlP, mse_16x1_FlP, peaksnr_16x1_FlP, snr_16x1_FlP, global_sim_16x1_FlP, ~,

...
199 imDenoised_16x1_FxP, noise_16x1_FxP, mse_16x1_FxP, peaksnr_16x1_FxP, snr_16x1_FxP, global_sim_16x1_FxP, ~

...
200] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(1), FWC, imNoisy, noise, imOriginal, colourRange,

initialmagnification, numPasses, [1 1805-453 1375 573]);
201 % f=figure('Name', sprintf('imDenoised: filter=16pts, sigma=%d, col=%d', sigmaCoeff(1), col), 'NumberTitle',

'off');
202 f.OuterPosition = [2949 1735 341 493];
203 % h_imDenoised_16x1=histogram(imDenoised_16x1_FxP(:,col) * FWC, 'Normalization', 'count');
204
205 filter = (1/filterLength(4))*ones(1,filterLength(4));
206 [imDenoised_16x3_SMA, noise_16x3_SMA, mse_16x3_SMA, peaksnr_16x3_SMA, snr_16x3_SMA, global_sim_16x3_SMA, ~,

...
207 imDenoised_16x3_FlP, noise_16x3_FlP, mse_16x3_FlP, peaksnr_16x3_FlP, snr_16x3_FlP, global_sim_16x3_FlP, ~,

...
208 imDenoised_16x3_FxP, noise_16x3_FxP, mse_16x3_FxP, peaksnr_16x3_FxP, snr_16x3_FxP, global_sim_16x3_FxP, ~

...
209] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(2), FWC, imNoisy, noise, imOriginal, colourRange,

initialmagnification, numPasses, [546 1805-453 1375 573]);

 86

210 % f=figure('Name', sprintf('imDenoised: filter=16pts, sigma=%d, col=%d', sigmaCoeff(2), col), 'NumberTitle',
'off');

211 f.OuterPosition = [2949 1201 341 493];
212 % h_imDenoised_16x3=histogram(imDenoised_16x3_FxP(:,col) * FWC, 'Normalization', 'count');
213
214 filter = (1/filterLength(5))*ones(1,filterLength(5));
215 [imDenoised_25x1_SMA, noise_25x1_SMA, mse_25x1_SMA, peaksnr_25x1_SMA, snr_25x1_SMA, global_sim_25x1_SMA, ~,

...
216 imDenoised_25x1_FlP, noise_25x1_FlP, mse_25x1_FlP, peaksnr_25x1_FlP, snr_25x1_FlP, global_sim_25x1_FlP, ~,

...
217 imDenoised_25x1_FxP, noise_25x1_FxP, mse_25x1_FxP, peaksnr_25x1_FxP, snr_25x1_FxP, global_sim_25x1_FxP, ~

...
218] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(1), FWC, imNoisy, noise, imOriginal, colourRange,

initialmagnification, numPasses, [1 1805-604 1375 573]);
219 % f=figure('Name', sprintf('imDenoised: filter=25pts, sigma=%d, col=%d', sigmaCoeff(1), col), 'NumberTitle',

'off');
220 f.OuterPosition = [3260 1735 341 493];
221 % h_imDenoised_25x1=histogram(imDenoised_25x1_FxP(:,col) * FWC, 'Normalization', 'count');
222
223 filter = (1/filterLength(5))*ones(1,filterLength(5));
224 [imDenoised_25x3_SMA, noise_25x3_SMA, mse_25x3_SMA, peaksnr_25x3_SMA, snr_25x3_SMA, global_sim_25x3_SMA, ~,

...
225 imDenoised_25x3_FlP, noise_25x3_FlP, mse_25x3_FlP, peaksnr_25x3_FlP, snr_25x3_FlP, global_sim_25x3_FlP, ~,

...
226 imDenoised_25x3_FxP, noise_25x3_FxP, mse_25x3_FxP, peaksnr_25x3_FxP, snr_25x3_FxP, global_sim_25x3_FxP, ~

...
227] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(2), FWC, imNoisy, noise, imOriginal, colourRange,

initialmagnification, numPasses, [546 1805-604 1375 573]);
228 % f=figure('Name', sprintf('imDenoised: filter=25pts, sigma=%d, col=%d', sigmaCoeff(2), col), 'NumberTitle',

'off');
229 f.OuterPosition = [3260 1201 341 493];
230 % h_imDenoised_25x3=histogram(imDenoised_25x3_FxP(:,col) * FWC, 'Normalization', 'count');
231
232
233 % ====================== COMPARISON BETWEEN NOISY AND ORIGINAL ===
234
235
236 % mse = immse(imNoisy, imOriginalforCompar); % immse(A,ref) calculates

the mean-squared error (MSE = 1/N * Sum(Yhat-Y)^2)
237 % [peaksnr, snr] = psnr(imNoisy, imOriginalforCompar); % SNR = 10 * log10(Y^2 /

MSE); PSNR = 10 * log10(MaxPixelRes^2 / MSE)
238 % str = sprintf('noisy image, noise=%g', noise); % puts these measurements in the a string ...
239 % subplot('Position', [0, 0.5, 0.5, 0.5]);
240 % figure('Name', str, 'NumberTitle', 'off', 'Position', [1 ssz(4)*2/3 ssz(4)/2 ssz(4)/3]);

% .. to put as title in the denoised image to show
241 % imshow(imNoisy, 'Border', 'tight', 'DisplayRange', range); % show the denoise image
242 % title(str);
243 %
244 % [global_sim, local_sim] = ssim(imNoisy, imOriginalforCompar); % ssim(A,ref) computes the

Structural Similarity Index (SSIM). The returning values,
245 % str = sprintf('noisy image, Structural similarity, global=%g', global_sim); % global_sim, a unique

value, is the average and the local_sim, an array,
246 % subplot('Position', [0.5, 1/3, 0.5, 0.5]);
247 % figure('Name', str, 'NumberTitle', 'off', 'Position', [ssz(4)/2 ssz(4)*2/3 ssz(4)/2 ssz(4)/3]);

% is the individual values. the more white (near to 1), the more similar
248 % imshow(local_sim, 'Border', 'tight', 'DisplayRange', range); % show the image
249 % title('Original');
250
251
252 % S = mean(mean(double(imOriginalforCompar) .^ 2)); % signal power
253 % MSE = mean(mean((double(imOriginalforCompar) - double(imNoisy)) .^ 2));
254 % SNR = 10 * log10(mean(mean(double(imNoisy) .^ 2)) / MSE);
255 % PeakSNR = 10 * log10(range(2)^2 / MSE);
256
257 return
258 end
259
260 %%
261 function [imDenoised_SMA, noise_SMA, mse_SMA, peaksnr_SMA, snr_SMA, global_sim_SMA, local_sim_SMA, ... % SMA =

Simple Moving Average
262 imDenoised_FlP, noise_FlP, mse_FlP, peaksnr_FlP, snr_FlP, global_sim_FlP, local_sim_FlP, ... % FlP =

Floating-Point
263 imDenoised_FxP, noise_FxP, mse_FxP, peaksnr_FxP, snr_FxP, global_sim_FxP, local_sim_FxP] = ...% FxP =

Fixed-Point
264 calculateNoiseAndShowImage(filter, attr, sigmaCoeff, FWC, imNoisy, noiseOriginal, imOriginal, range,

initialmagnification, numPasses, figPos)
265 %FWC=100;
266 imgsz = attr.size(1) * attr.size(2); %get the image size
267 [~, filterSize] = size(filter);%take size of the filter window to convolute with the image pixels
268 imDenoised_SMA = zeros(attr.size(1), attr.size(2));
269 imDenoised_FlP = zeros(attr.size(1), attr.size(2));
270 imDenoised_FxP = zeros(attr.size(1), attr.size(2));
271
272 parfor i=1 : attr.size(2) % loop for each column. on each loop, a whole column is being treated

 87

273 imNoisyTemp = imNoisy(:, i)'; % we need the column in the form of a line, hence the transpose
274 [Temp1, Temp2, Temp3] = myfilter(filter, imNoisyTemp, sigmaCoeff, FWC, numPasses); % this is where the

moving average is working
275 imDenoised_SMA(:, i) = Temp1'; % get the line back to a column and insert it on the image
276 imDenoised_FlP(:, i) = Temp2'; % same as above but for floating-point
277 imDenoised_FxP(:, i) = Temp3'; % same as above but for fixed-point
278 end
279
280 noise_SMA = sqrt(abs(mean(mean(imDenoised_SMA.^2)) - mean(mean(imDenoised_SMA))^2) * imgsz/(imgsz-1));
281 noise_FlP = sqrt(abs(mean(mean(imDenoised_FlP.^2)) - mean(mean(imDenoised_FlP))^2) * imgsz/(imgsz-1));
282 noise_FxP = sqrt(abs(mean(mean(imDenoised_FxP.^2)) - mean(mean(imDenoised_FxP))^2) * imgsz/(imgsz-1));
283
284 mse_SMA = immse(imDenoised_SMA, imOriginal); % immse(A,ref) calculates the mean-squared error (MSE)
285 mse_FlP = immse(imDenoised_FlP, imOriginal);
286 mse_FxP = immse(imDenoised_FxP / FWC, imOriginal); % Fixed point must be restore back (/ FWC) to the range

[0..1] as the original image
287
288 [peaksnr_SMA, snr_SMA] = psnr(imDenoised_SMA, imOriginal); % psnr(A,ref) calculates peak signal-to-

noise ratio
289 [peaksnr_FlP, snr_FlP] = psnr(imDenoised_FlP, imOriginal);
290 [peaksnr_FxP, snr_FxP] = psnr(imDenoised_FxP / FWC, imOriginal); % Fixed point must be restore back (/ FWC)

to the range [0..1] as the original image
291
292 [global_sim_SMA, local_sim_SMA] = ssim(imDenoised_SMA , imOriginal); % ssim(A,ref) computes the

Structural Similarity Index (SSIM). Global is a unique
293 [global_sim_FlP, local_sim_FlP] = ssim(imDenoised_FlP , imOriginal); % ... variable and Local, a

pixel per pixel comparison (differential image).
294 [global_sim_FxP, local_sim_FxP] = ssim(imDenoised_FxP / FWC, imOriginal); % Fixed point must be restore

back (/ FWC) to the range [0..1] as the original image
295
296
297 str1 = sprintf('SimpMovAvg:

P=%d,W=%g,S=%g,mse=%.6g,SNR=%.5f,peakSNR=%.5f,globalSim=%.6g,noise=%.6g,originalNoise=%.5f', ...
298 numPasses, filterSize, sigmaCoeff, mse_SMA, snr_SMA, peaksnr_SMA, global_sim_SMA*100,

noise_SMA, noiseOriginal); % global_sim, a unique value, is the average and the local_sim, an array,
299 str2 = sprintf('Float Point:

P=%d,W=%g,S=%g,mse=%.6g,SNR=%.5f,peakSNR=%.5f,globalSim=%.6g,noise=%.6g,originalNoise=%.5f', ...
300 numPasses, filterSize, sigmaCoeff, mse_FlP, snr_FlP, peaksnr_FlP, global_sim_FlP*100,

noise_FlP, noiseOriginal) % global_sim, a unique value, is the average and the local_sim, an array,
301 str3 = sprintf('Fixed Point:

P=%d,W=%g,S=%g,mse=%.6g,SNR=%.5f,peakSNR=%.5f,globalSim=%.6g,noise=%.6g,originalNoise=%.5f', ...
302 numPasses, filterSize, sigmaCoeff, mse_FxP, snr_FxP, peaksnr_FxP, global_sim_FxP*100,

noise_FxP, noiseOriginal) % global_sim, a unique value, is the average and the local_sim, an array,
303 newline
304
305 % f=figure('Name', str1, 'NumberTitle', 'off'); % show the denoise image
306 % imshow(imDenoised_SMA, 'Border', 'tight', 'DisplayRange', [0 1], 'InitialMagnification',

initialmagnification); % show the denoise image
307 % f.OuterPosition = [figPos(1) figPos(2) figPos(3) figPos(4)];
308 f=figure('Name', str2, 'NumberTitle', 'off'); % show the denoise image
309 imshow(imDenoised_FlP, 'Border', 'tight', 'DisplayRange', [0 1], 'InitialMagnification',

initialmagnification); % show the denoise image
310 f.OuterPosition = [figPos(1) figPos(2)-25 figPos(3) figPos(4)];
311 f=figure('Name', str3, 'NumberTitle', 'off'); % show the denoise image
312 imshow(imDenoised_FxP, 'Border', 'tight', 'DisplayRange', [0 FWC], 'InitialMagnification',

initialmagnification); % show the denoise image
313 f.OuterPosition = [figPos(1) figPos(2)-50 figPos(3) figPos(4)];
314 end
315
316 % This function is implemented in a mex file "myfilter.mexmaci64" for spped up
317 function [vecY1, vecY2, vecY3] = myfilter_matlab (filter, vecX, sigma_coeff, FWC, numPasses)%, sharp_detect)
318 %, vecY4, vecY5, vecY6] = myfilter_matlab (filter, vecX, sigma_coeff, FWC, numPasses)%, sharp_detect)
319
320 % mwSize i, j, n, M0;
321 % double N, colorScale1, colorScale2, colorScale3;
322 sf2 = sigma_coeff^2;
323 f = 1.0; % this is a multiplicative scaling factor to stretch the maximum bit range of Digital Numbers used

in integer calculations nature of FPGA's. Due to integer floor division and sqrt rounding results from math
FPGA'a operations, this factor can be used as a "smoothing agent" since this can improve accuracy by a factor of
1/f^3 (see below the function used to calculate vecY3[])

324
325 if (numPasses >= 2)
326 backup = vecX;
327 end
328
329 %%
330 %%%
331 % simple moving average without regarding to sharp edge detection
332 % works like this: the pixel(i) gets the value of the Mean of all pixels under filter over the source vector
333 %%%
334 [~, sizeFilter] = size(filter); % get the filter width, this will be the size of the filter to convolute with

the image X
335 [~, lenX] = size(vecX);
336 vecY1 = vecX; % initialize output

 88

337 vecY2 = vecX; % initialize output
338 vecY3 = vecX; % initialize output
339 for j=sizeFilter : lenX % loop for the whole vector
340 vecY1(j) = mean(vecX(j-sizeFilter+1:j)); % simply make the average of the window filter size
341 end
342 if sizeFilter >2
343 if (sizeFilter==4 || sizeFilter==16 || sizeFilter==36 || sizeFilter==64 || sizeFilter==100)
344 vecY3 = sgolayfilt(vecX,6,2+sizeFilter+1);
345 else
346 vecY3 = sgolayfilt(vecX,6,2+sizeFilter);
347 end
348 end
349
350 %%
351 %%%
352 % Enterprise's given algorithm: moving average with sharp edge detection
353 % works the same way as the above simple moving average, but if a sharp change in color is detected, outside

[pixel(n-1)-sigma..[pixel(n-1)+sigma] restart pixel counting for a new growing filter until the specified size
354 % Algorithm is: if [pixel(n-1)-sigma <= pixel(n) <= [pixel(n-1)+sigma] then make average, else start a new

counting (reset average), being sigma = sqrt(pixel) / sqrt(N);
355 %%%
356 [~, lenX] = size(vecX); % get the picture height
357 [~, sizeFilter] = size(filter); % get the filter width, this will be the size of the filter to convolve with

the image X
358
359 for n = 1 : numPasses % number of passes means the number of filter auto-convolutions. so, if numPasses=1,

filter is a unit step. if 2, filter is triangular, if 3, a Gaussian shape and so on
360 vecY2 = zeros(1, lenX);% initialize output (the length of the image rows, temporal noise)
361 M0 = 1;% M0 is the beginning index of the filter, so start now by initializing it
362 for i = 1 : lenX %do it for the whole number of the image's rows (temporal noise)
363
364 if i == M0 % the beginning of the filter (M0) has the same index as the one being processed (i)
365 vecY2(i) = vecX(i); % get the same value of the source vector
366 else % or the filter is growing in size while maintaining the average, so, the beginning position

maintains the same
367 if i - M0 >= sizeFilter % dont let the filter size grow up more than size of it was requested
368 M0 = M0 + 1; % if it does, just move the initial index position forward, maintaining its size

as moving occurs
369 end
370
371 % since dark colors are noise noticeable, we need more smoothing on these colors, so let's use

functions for it
372 %colourScale = exp(-3e-4 * vecY2[i-1]); // concave smooth function - inverse exponential smooth

function (smooths the noise on all range of colours inverse exponential, meaning lighter colours get less
smoothing, and reverse otherwise) -> to make tests between 3e-4 (more decay) until 1e-4 (less decay)

373 colourScale = 1.214e-8*FWC^2*vecY2(i-1)^2 - 0.0002290*FWC*vecY2(i-1) + 1.096; % polynomial 2nd
degree

374 %colourScale = 2/(exp(0.0004*vecY2[i-1]+0.05)+exp(-(0.0004*vecY2[i-1]+0.05))); // sec hyperbolic
smooth function (factor multiplying vecY2[i-1] scales the function, the smaller the spreaded the function. the
plus factor displaces the function)

375 %colourScale = 2/(exp(0.0005*vecY2[i-1]+0.88)-exp(-(0.0005*vecY2[i-1]+0.88))); // cosec
hyperbolic smooth function (factor multiplying vecY2[i-1] scales the function, the smaller the spreaded the
function. the plus factor displaces the function)

376 %colourScale = (-1e-4 * vecY2[i-1] + 1); // linear smooth function, negative inclination-
(smooths the noise on all range of colours linearly negatively)

377 %colourScale = (-1e-8 * pow(vecY2[i-1], 2) + 1); // convex smooth function, inverted - inverted
parabola smooth

378 %colourScale = 1-1/(exp((-vecY2[i-1]+FWC/2)/(0.1*FWC)) + 1); // logistic sigmoid smooth function,
mirrored around 0.5*FWD- mirrored sigmoid smooth

379
380 % now, calculate sigma, given that sigma = sqrt(mean) / sqrt(N), and check if [pixel(n-1)-sigma

<= pixel(n) <= [pixel(n-1)+sigma]
381 vecY2(i) = sqrt(vecY2(i-1) / (i - M0 + 1)) * (sigma_coeff/FWC*100) * colourScale; % this is sigma

= sqrt(mean) / sqrt(N)
382
383 if vecX(i) < vecY2(i-1) - vecY2(i) || ... % if this pixel is outside interval [mean-

sigma..mean+sigma]
384 vecX(i) > vecY2(i-1) + vecY2(i)
385 vecY2(i) = vecX(i);%restart a new moving average (picture edge detection)
386 M0 = i;
387 else % else, the pixel is inside the interval, include this pixel to contribute to the mean
388 vecY2(i) = mean(vecX(M0 : i)); % make average accounting with all pixels under the filter
389 % lf = length(vecX(M0 : i));
390 % if lf >= 4
391 % vecY5(i) = sgolayfilt(vecX,2,lf);
392 % else
393 % vecY5(i) = vecY2(i);
394 % end
395 end
396
397 end
398 end
399
400 if numPasses >= 2 % if more than 1 pass...
401 vecX = vecY2; % ... then use this processed vector as a source for the next pass

 89

402 end
403 end
404
405 return;
406
407 if (numPasses >= 2)
408 vecX = backup;
409 end
410 for i = 1 : lenX % fixed-point numbers cannot be calculated within [0..1]. must be calculated in...
411 vecX(i) = round(vecX(i) * FWC); % ... a much greater range, say [0..FWC], being FWC=10000. round here is

used as if Matlab has passed this vector
412 end
413 for n = 1 : numPasses % number of passes means the number of filter auto-convolutions. so, if numPasses=1,

filter is a unit step. if 2, filter is triangular, if 3, a Gaussian shape and so on
414 vecY3 = zeros(1, lenX);% initialize output (the length of the image rows, temporal noise)
415 M0 = 1;% M0 is the beginning index of the filter, so start now by initializing it
416 for i = 1 : lenX %do it for the whole number of the image's rows (temporal noise)
417
418 if i == M0 % the beginning of the filter (M0) has the same index as the one being processed (i)
419 vecY3(i) = floor(vecX(i)); % get the same value of the source vector
420 else % or the filter is growing in size while maintaining the average, so, the beginning position

maintains the same
421 if i - M0 >= sizeFilter % dont let the filter size grow up more than size of it was requested
422 M0 = M0 + 1; % if it does, just move the initial index position forward, maintaining its size

as moving occurs
423 end
424
425 N = i - M0 + 1;
426
427 % since dark colors are noise noticeable, we need more smoothing on these colors, so let's use

functions for it
428 %colourScale = exp(-3e-4 * vecY2[i-1]); // concave smooth function - inverse exponential smooth

function (smooths the noise on all range of colours inverse exponential, meaning lighter colours get less
smoothing, and reverse otherwise) -> to make tests between 3e-4 (more decay) until 1e-4 (less decay)

429 %colourScale = 1.214e-8*vecY2(i-1)^2 - 0.0002257*vecY2(i-1) + 1.096; % polynomial 2nd degree
430 %colourScale = 2/(exp(0.0004*vecY2[i-1]+0.05)+exp(-(0.0004*vecY2[i-1]+0.05))); // sec hyperbolic

smooth function (factor multiplying vecY2[i-1] scales the function, the smaller the spreaded the function. the
plus factor displaces the function)

431 %colourScale = 2/(exp(0.0005*vecY2[i-1]+0.88)-exp(-(0.0005*vecY2[i-1]+0.88))); // cosec
hyperbolic smooth function (factor multiplying vecY2[i-1] scales the function, the smaller the spreaded the
function. the plus factor displaces the function)

432 %colourScale = (-1e-4 * vecY2[i-1] + 1); // linear smooth function, negative inclination-
(smooths the noise on all range of colours linearly negatively)

433 %colourScale = (-1e-8 * pow(vecY2[i-1], 2) + 1); // convex smooth function, inverted - inverted
parabola smooth

434 %colourScale = 1-1/(exp((-vecY2[i-1]+FWC/2)/(0.1*FWC)) + 1); // logistic sigmoid smooth function,
mirrored around 0.5*FWD- mirrored sigmoid smooth

435
436 % now, calculate sigma, given that sigma = sqrt(mean) / sqrt(N), and check if [pixel(n-1)-sigma

<= pixel(n) <= [pixel(n-1)+sigma]
437 %vecY2(i) = sqrt(vecY2(i-1) / (i - M0 + 1)) * sigma_coeff * colourScale; % this is sigma = sqrt(mean) / sqrt(N)
438 vecY3(i) = floor(sqrt(floor(...
439 sf2 * vecY3(i-1) * (82811418643602098467373056.0*(f^2)-

17302750793234380800000.0*f*vecY3(i-1)+917272465632599875.0*(vecY3(i-1)^2))^2 ...
440

/ ...
441

(5708990770823839524233143877797980545530986496000000.0*(f^3)*N) ...
442) ...
443) ...
444);
445
446 if vecX(i) < vecY3(i-1) - vecY3(i) || ... % if this pixel is outside interval [mean-

sigma..mean+sigma]
447 vecX(i) > vecY3(i-1) + vecY3(i)
448 vecY3(i) = floor(vecX(i));%restart a new moving average (picture edge detection)
449 M0 = i;
450 else % else, the pixel is inside the interval, include this pixel to contribute to the mean
451 vecY3(i) = mean(vecX(M0 : i)); % make average accounting with all pixels under the filter
452
453 end
454
455 end
456 end
457
458 if numPasses >= 2 % if more than 1 pass...
459 vecX = vecY3; % ... then use this processed vector as a source for the next pass
460 end
461 end
462
463 end
464 %%
465 % ======================RESET THE IMAGE'S RESOLUTION BACK TO THE ORIGINAL===================================
466 function imOut = resetImageResolution(imIn, attr)

 90

467 imOut = imIn;
468 if strcmp(attr.class, 'uint8')
469 imOut = uint8(round(imIn));
470 elseif strcmp(attr.class, 'uint16')
471 imOut = uint16(round(imIn));
472 elseif strcmp(attr.class, 'uint32')
473 imOut = uint32(round(imIn));
474 elseif strcmp(attr.class, 'uint64')
475 imOut = uint64(round(imIn));
476 end
477 End

A.3.5.3 myfilter.c (used to speed up MATLAB scripts)
2 /*==
3 * myfiltert.c - a MAC executable that is to be called by SNR_Martin_MovingAverage.m
4 *
5 * Given an array of values as an arguments, it returns 2 arrays:
6 * one, is a simple moving average filtering of the input argument
7 * and the second is also a moving average filtering but sharp colour
8 * transitions detection. It speeds up greatly the calculations in
9 * relation to the same implementation done inside the script
10 * SNR_Martin_MovingAverage.m
11 *
12 * The calling syntax is:
13 *
14 * [array1, array2] = arrayProduct(filter, inputArray, sigmaFactor, FWC, numPasses)
15 * array1 = simple moving average of 'inputArray' convoluted with the 'filter'
16 * array2 = moving average with colour sharp detection of 'inputArray' convoluted with the 'filter'
17 * filter = to convolute with 'inputArray'
18 * sigmaCoeff = tolerance of the moving average operation
19 * numPasses = number of convolution passes of 'inputArray' with 'filter'
20 *
21 * This is a MEX-file for MATLAB.
22 * Copyright kykaku for Master Thesis.
23 *
24 *==*/
25 #include <string.h> // for memcpy()
26 // #include "engine.h"
27 #include <math.h>
28 #include "mex.h"
29 /*==*/
30 void mean(double *dest, double *ptrIniVec, double *ptrEndVec)
31 {
32 double *ptr = ptrIniVec;
33 *dest = 0;
34
35 for (ptr = ptrIniVec; ptr <= ptrEndVec; ptr++) {
36 *dest += *ptr;
37 }
38 *dest /= (ptrEndVec-ptrIniVec+1);
39 }
40 void mean_integer(double *dest, double *ptrIniVec, double *ptrEndVec) //same as above but results return number

integer part only by floor(). this is to simulate FPGA's calculations
41 {
42 double *ptr = ptrIniVec;
43 *dest = 0;
44
45 for (ptr = ptrIniVec; ptr <= ptrEndVec; ptr++) {
46 *dest += *ptr;
47 }
48 *dest = floor(*dest / (ptrEndVec-ptrIniVec+1));
49 }
50
51 /*===

==*/
52 // The computational routine
53 void myfilter(double *filter, size_t lenfilter, // filter size and filter length
54 double *vecX, size_t lenvecX, double sigmaFactor, double FWC, size_t numPasses, // src vector,

length, and parameters: sigmaFactior
55 double *vecY1, double *vecY2, double *vecY3)//, // destination vectors: vecY1 (simple mov

average) vecY2 (mov avg w/ edge detection) vecY3 (sama as vecY2 but on fixed point to simulate FPGA calculations)
56 //double *vecY4, double *vecY5, double *vecY6) // destination vectors: vecY4 (savitzky-golay

filter) vecY5 (s-g w/ edge detection) vecY6 (sama as vecY5 but on fixed point to simulate FPGA calculations)
57 {
58 mwSize i, j, n, M0;
59 double N, colorScale;
60 double sf2 = pow(sigmaFactor, 2);
61 double f = 1.0; // this is a multiplicative scaling factor to stretch the maximum bit range of Digital

Numbers used in integer calculations nature of FPGA's. Due to integer floor division and sqrt rounding results
from math FPGA'a operations, this factor can be used as a "smoothing agent" since this can improve accuracy by a
factor of 1/f^3 (see below the function used to calculate vecY3[])

62 double* backup = (double*) malloc(sizeof(double)*lenvecX); // allocate space for original backup
63 memcpy((void *)backup, (void *)vecX, sizeof(double)*lenvecX); // 1st save a copy of the original, because it

might be overwriten if numpasses > 1
64

 91

65
66 //

%%%
%%%

67 // % % simple moving average without regarding to sharp edge detection (this is calculated in the range
[0..1]

68 // % % works like this: the pixel(i) gets the value of the Mean of all pixels under filter over the source
vector

69 //
%%%
%%

70 memcpy((void *)vecY1, (void *)vecX, sizeof(double)*lenvecX); // initialize output
71 for (j = lenfilter-1; j < lenvecX; j++) {// loop for the whole vector
72 mean(&vecY1[j], vecX + (j - lenfilter + 1), vecX + j); // simply make the average of the window filter

size
73 }
74
75 //

%%%
%%

76 // % % Enterprise given algorithm: moving average with sharp edge detection (this is the floating-point
version calculated within range [0..1])

77 // % % works the same way as the above simple moving average, but if a sharp change in colour is detected,
outside [pixel(n-1)-sigma..[pixel(n-1)+sigma] restart pixel counting for a new growing filter until the specified
size

78 // % % Algorithm is: if [pixel(n-1)-sigma <= pixel(n) <= [pixel(n-1)+sigma] then make average, else start a
new counting (reset average), being sigma = sqrt(pixel) / sqrt(N);

79 //
%%%
%%

80 for (n = 0; n < numPasses; n++) { // number of passes means the number of filter auto-convolutions. so, if
numPasses=1, filter is a unit step. if 2, filter is triangular, if 3, a Gaussian shape and so on

81 memset(vecY2, 0, sizeof(double)*lenvecX); // initialize output (the length of the image rows, temporal
noise)

82 M0 = 0; // M0 is the beginning index of the filter, so start now by initializing it
83
84 for (i = 0; i < lenvecX; i++) { // run for this whole row (temporal noise)
85 if (i == M0) { // if the beginning (M0) and the end (i) of the filter match
86 vecY2[i] = vecX[i]; // get the same value of the source vector
87 } else { // else, if the filter is growing (maintaining the average), the beginning (M0) doesn't move

while the end of the filtar (i) keeps moving
88 if (i - M0 >= lenfilter) { // dont let the filter size grow up more than size of it was requested
89 M0 += 1; // if it does, just move the initial index position forward, maintaining its size as

moving occurs
90 }
91
92 // since dark colors are noise noticeable, we need more smoothing on these colors, so let's use

functions for it.
93 // FWC must be joined to each members which figures vecY2[i-1] in the same degree (linear,

squared, ...) to scale this function between [0..1]
94 // polynomial 2nd degree is already scaled. check all the others
95 //colorScale = exp(-3e-4*FWC*vecY2[i-1]); // concave smooth function - inverse exponential

smooth function (smooths the noise on all range of colours inverse exponential, meaning lighter colours get less
smoothing, and reverse otherwise) -> to make tests between 3e-4 (more decay) until 1e-4 (less decay)

96 colorScale = 1.214e-8*pow(FWC,2)*pow(vecY2[i-1],2) - 0.0002290*FWC*vecY2[i-1] + 1.096; //
polynomial 2nd degree.

97 //colorScale = 2/(exp(0.0004*FWC*vecY2[i-1]+0.05) + exp(-(0.0004*FWC*vecY2[i-1]+0.05))); // sec
hyperbolic smooth function (factor multiplying vecY2[i-1] scales the function, the smaller the spreaded the
function. the plus factor displaces the function)

98 //colorScale = 2/(exp(0.0005*FWC*vecY2[i-1]+0.88) - exp(-(0.0005*FWC*vecY2[i-1]+0.88))); // cosec
hyperbolic smooth function (factor multiplying vecY2[i-1] scales the function, the smaller the spreaded the
function. the plus factor displaces the function)

99 //colorScale = -1e-4*FWC*vecY2[i-1] + 1; // negative inclination linear smoothing function, -
(smooths the noise out linearly negative)

100 //colorScale = (-1e-8*pow(FWC,2)*pow(vecY2[i-1],2) + 1); // convex smooth function, inverted -
inverted parabola smooth

101 //colorScale = 1-1/(exp((-FWC*vecY2[i-1]+FWC/2)/(0.1*FWC)) + 1); // logistic sigmoid smooth
function, mirrored around 0.5*FWD- mirrored sigmoid smooth

102
103 // now, calculate sigma*sigmaCoeff, given that sigma = sqrt(pixel) / sqrt(N), and check if

[pixel(n-1)-sigma <= pixel(n) <= [pixel(n-1)+sigma]
104 vecY2[i] = sqrt(vecY2[i-1] / (i - M0 + 1)) * (sigmaFactor/FWC*100) * colorScale; // this is sigma

= sqrt(pixel / N) times the desired sigma factor (if we want more or less smoothing) times the color scale
function

105 //
(sigmaFactor/FWC*100) needs to be adjusted in percentage (divide by FWC, then multiplied for 100)

106 if (vecX[i] < vecY2[i-1] - vecY2[i] || // if this pixel is outside interval [pixel-
sigma..pixel+sigma]

107 vecX[i] > vecY2[i-1] + vecY2[i]) {
108 vecY2[i] = vecX[i]; // restart a new moving average (picture edge detection)
109 M0 = i;
110 } else { // else, the pixel is inside the interval, include this pixel to contribute to the mean
111 mean(&vecY2[i], vecX + M0, vecX + i); // make average accounting with all pixels under the

filter
112 }
113

 92

114 }
115 }
116
117 if (numPasses > 1)
118 memcpy(vecX, vecY2, sizeof(double)*lenvecX); // use this processed vector as a source for the next

pass
119 }
120
121
122
123 //

%%%
%%

124 // % % Enterprise given algorithm: moving average with sharp edge detection (fixed point version of the above
to simulate FPGA's calculations where it will be implemented)

125 // % % fixed-point cannot be calculated within [0..1]. must be calculated in a much bigger range, say
[0..FWC], being FWC=10000 in this case

126 //
%%%
%%

127 if (numPasses > 1)
128 memcpy((void *)vecX, (void *)backup, sizeof(double)*lenvecX);
129
130 for (i = 0; i < lenvecX; i++) { // fixed-point numbers cannot be calculated within [0..1]. must be calculated

in...
131 vecX[i] = round(vecX[i] * FWC); // ... a much greater range, say [0..FWC], being FWC=10000. round here

is used as if Matlab has passed this vector
132 }
133 for (n = 0; n < numPasses; n++) { // number of passes means the number of filter auto-convolutions. so, if

numPasses=1, filter is a unit step. if 2, filter is triangular, if 3, a Gaussian shape and so on
134 memset(vecY3, 0, sizeof(double)*lenvecX); // initialize output (the length of the image rows, temporal

noise)
135 M0 = 0; // M0 is the beginning index of the filter, so start now by initializing it
136
137 for (i = 0; i < lenvecX; i++) { // run for this whole row (temporal noise)
138 if (i == M0) { // if the beginning (M0) and the end (i) of the filter match
139 vecY3[i] = floor(vecX[i]); // get the same value of the source vector
140 } else { // else, if the filter is growing (maintaining the average), the beginning (M0) doesn't move

while the end of the filtar (i) keeps moving
141 if (i - M0 >= lenfilter) { // dont let the filter size grow up more than size of it was requested
142 M0 += 1; // if it does, just move the initial index position forward, maintaining its size as

moving occurs
143 }
144
145 N = i - (double)M0 + 1;
146
147 // this is the same function as the above vecY2[i] = sqrt(vecY2[i-1] / (i - M0 + 1)) *

(sigmaFactor/FWC*100) * colorScale, but properly formated for fixed-point calculations
148 // generation of this function was made with algebric manipulation to reduce all to 1 sqrt and 1

division for better precision on fixed-point, and having the above function as starting point
149 // the coefficients were get with the help of MATLAB
150 vecY3[i] = floor(sqrt(floor(
151 sf2 * vecY3[i-1] * pow(82811418643602098467373056.0*pow(f,2)-

17302750793234380800000.0*f*vecY3[i-1]+917272465632599875.0*pow(vecY3[i-1],2) , 2)
152

/
153

(5708990770823839524233143877797980545530986496000000.0*pow(f,3)*N)
154)
155)
156);
157
158
159 if (vecX[i] < vecY3[i-1] - vecY3[i] || // if this pixel is outside interval [pixel-

sigma..pixel+sigma]
160 vecX[i] > vecY3[i-1] + vecY3[i]) {
161 vecY3[i] = floor(vecX[i]); // restart a new moving average (picture edge detection)
162 M0 = i;
163 } else { // else, the pixel is inside the interval, include this pixel to contribute to the mean
164 mean_integer(&vecY3[i], vecX + M0, vecX + i); // make average accounting with all pixels

under the filter
165 }
166 }
167 }
168
169 if (numPasses > 1)
170 memcpy(vecX, vecY3, sizeof(double)*lenvecX); // then use this processed vector as a source for the

next pass
171 }
172
173 // if (numPasses > 1)
174 memcpy((void *)vecX, (void *)backup, sizeof(double)*lenvecX); // restore back the original vector
175 }

 93

176
177 // The gateway function
178 void mexFunction(int nlhs, mxArray *plhs[],
179 int nrhs, const mxArray *prhs[])
180 {
181 double *filter; // input: filter vector
182 size_t lenfilter; // input: size of the filter
183 double *vecX; // input: source vector
184 size_t lenvecX; // input: size of source vector
185 double sigmaFactor; // input: sigma smoother factor
186 double FWC; // input: FWC (highest digital number of the image) or (Coefficient (or Factor) of the

Wavelength Conversion in electrons, accepted value is 10000 e-)
187 size_t numPasses; // input: number of passes to convolve filters
188 double *vecY1; // output: vector (Moving Average filtering without sharp detection)
189 double *vecY2; // output: vector (Moving Average filtering with sharp edge detection, floating-point)
190 double *vecY3; // output: vector (Moving Average filtering with sharp edge detection, fixed-point to

simulate FPGA)
191 double *vecY4; // output: vector (Savitzky-Golay filtering)
192 double *vecY5; // output: vector (Savitzky-Golay filtering with sharp edge detection)
193 double *vecY6; // output: vector (Savitzky-Golay filtering with sharp edge detection, fixed-point to

simulate FPGA)
194
195 if(nrhs!=5) { // check for proper number of input arguments
196 mexErrMsgIdAndTxt("MyToolbox:myfilter:nrhs","Msg from myfilter.c: 5 inputs required: *filter, *source,

sigma_coeff, FWC and numPasses");
197 }
198 if(nlhs!=3) { // check for output parameters (3 Moving Average: simple, floating-point and fixed-point and 3

Savitzky-Golay: simple, floating-point and fixed-point)
199 mexErrMsgIdAndTxt("MyToolbox:myfilter:nlhs","Msg from myfilter.c: 3 outputs required.");
200 }
201
202 if(!mxIsDouble(prhs[0]) || mxIsComplex(prhs[0])) { // make sure the 1st input argument is type double
203 mexErrMsgIdAndTxt("MyToolbox:myfilter:notDouble","Msg from myfilter.c: Input filter vector must be type

double.");
204 }
205 if(mxGetM(prhs[0])!=1) { // check that number of rows in 1st input argument is 1
206 mexErrMsgIdAndTxt("MyToolbox:myfilter:notRowVector","Msg from myfilter.c: 1st input argument, filter,

must be a row vector.");
207 }
208
209 if(!mxIsDouble(prhs[1]) || mxIsComplex(prhs[1])) { // make sure the 2nd input argument is type double
210 mexErrMsgIdAndTxt("MyToolbox:myfilter:notDouble","Msg from myfilter.c: Input source vector must be type

double.");
211 }
212 if(mxGetM(prhs[1])!=1) { // check that number of rows in 2nd input argument is 1
213 mexErrMsgIdAndTxt("MyToolbox:myfilter:notRowVector","Msg from myfilter.c: 2nd input argument, source

vector, must be a row vector.");
214 }
215 if(!mxIsDouble(prhs[2]) || mxIsComplex(prhs[2]) || mxGetNumberOfElements(prhs[2])!=1) { // make sure the

3rd input argument is scalar
216 mexErrMsgIdAndTxt("MyToolbox:myfilter:notScalar","Msg from myfilter.c: Input source length must be a

scalar.");
217 }
218 if(!mxIsDouble(prhs[3]) || mxIsComplex(prhs[3]) || mxGetNumberOfElements(prhs[3])!=1) { // make sure the

4th input argument is scalar
219 mexErrMsgIdAndTxt("MyToolbox:myfilter:notScalar","Msg from myfilter.c: Input sigmaFactor length must be a

scalar.");
220 }
221 if(!mxIsDouble(prhs[4]) || mxIsComplex(prhs[4]) || mxGetNumberOfElements(prhs[4])!=1) { // make sure the

5th input argument is scalar
222 mexErrMsgIdAndTxt("MyToolbox:myfilter:notScalar","Msg from myfilter.c: Input source length must be a

scalar.");
223 }
224
225
226 filter = mxGetPr(prhs[0]); // create a pointer to the real data in the input filter
227 lenfilter = mxGetN(prhs[0]);// get the dimensions of the input filter matrix filter
228 vecX = mxGetPr(prhs[1]); // create a pointer to the real data in the input source
229 lenvecX = mxGetN(prhs[1]); // get the value of the scalar nlenvecX input
230 sigmaFactor = mxGetScalar(prhs[2]); // get the value of the scalar sigma_coeff input
231 FWC = mxGetScalar(prhs[3]); // get the value of the scalar FWC input
232 numPasses = mxGetScalar(prhs[4]); // get the value of the scalar numPasses input
233
234 plhs[0] = mxCreateDoubleMatrix(1,(mwSize)lenvecX,mxREAL); // create the output vector for Simple moving

average (numRows, numCols, realVals)
235 vecY1 = mxGetPr(plhs[0]); // get a pointer to the real data in the output vecY1
236 plhs[1] = mxCreateDoubleMatrix(1,(mwSize)lenvecX,mxREAL); // create the output vector (Moving average

floating-point with sharp edge detection)
237 vecY2 = mxGetPr(plhs[1]); // get a pointer to the real data in the output vecY2
238 plhs[2] = mxCreateDoubleMatrix(1,(mwSize)lenvecX,mxREAL); // create the output vector (Moving average fixed-

point with sharp edge detection)
239 vecY3 = mxGetPr(plhs[2]); // get a pointer to the real data in the output vecY2
240 /*
241 plhs[3] = mxCreateDoubleMatrix(1,(mwSize)lenvecX,mxREAL); // create the output vector for Savitzky-Golay

filter(numRows, numCols, realVals)
242 vecY4 = mxGetPr(plhs[3]); // get a pointer to the real data in the output vecY1

 94

243 plhs[4] = mxCreateDoubleMatrix(1,(mwSize)lenvecX,mxREAL); // create the output vector (Savitzky-Golay
floating-point with sharp edge detection)

244 vecY5 = mxGetPr(plhs[4]); // get a pointer to the real data in the output vecY2
245 plhs[5] = mxCreateDoubleMatrix(1,(mwSize)lenvecX,mxREAL); // create the output vector (Savitzky-Golay fixed-

point with sharp edge detection)
246 vecY6 = mxGetPr(plhs[5]); // get a pointer to the real data in the output vecY2
247 */
248 myfilter(filter, (mwSize) lenfilter, vecX, (mwSize) lenvecX, sigmaFactor, FWC, numPasses, vecY1, vecY2,

vecY3);//, vecY4, vecY5, vecY6); // call the computational routine
249 }
250
251

	Abstract
	Keywords:

	Resumo
	Acknowledgements
	List of Acronyms
	List of Symbols
	Contents
	1. Introduction
	1.1. Motivation
	1.2. Objectives
	1.3. Contents framework
	1.4. Own work

	2. State of Art
	2.1 Noise generation
	2.1.1 Introduction
	2.1.2 Noise generation in a signal
	2.1.3 Noise generation in an image
	2.1.4 Image denoising techniques

	2.2 Conclusions

	3. Image Denoise FPGA Implementation using a Moving Average Filter with Contour Detection
	3.1. Introduction
	3.2. Moving Average Filter
	3.2.1 Noise Generation on an Image
	3.2.2 Quantifiable Used Parameters
	3.2.3 Moving Average Filter
	3.2.4 Frequency Domain
	3.2.5 Multiple Autoconvolution
	3.2.6 Contour Detection

	3.3. Methodology and Used Equipment
	3.4. Results
	3.5. Conclusions
	3.6 Acknowledgments
	3.A. Timing diagram
	3.B. Information of the FPGA’s implemented logic
	3.C. Results table

	4. Savitzky-Golay filtering as Image Noise Reduction with Sharp Color Reset
	4.1. Introduction
	4.2. Proposed Savitzky-Golay filter
	4.2.1 Uncorrelated Stationary Random Processes
	4.2.2 Noise metrics
	4.2.3 Savitzky-Golay filter
	4.2.4 Behavior on the frequency domain
	4.2.5 Color transitions

	4.3. Test settings
	4.4. Results
	4.4.1 Discussion of the results

	4.5. Conclusions
	4.6. Acknowledgments
	4.A. Appendix

	5. Testing
	5.1 Platform
	5.2 Data flow between FPGA and CPU
	5.2.1 Driver communication process

	5.3 FPGA IP core module
	5.3.1 Flowcharts
	5.3.2 Increasing denoising smoothness on darker colors with a polynomial function
	5.3.3 Schematics and Synthesis
	5.3.4 Timing diagram
	5.3.5 Implementation
	5.3.6 Bitstream

	5.4 CPU host applications
	5.5 Conclusions

	6. General Conclusions
	7. References
	A Appendices
	A.1 Moving average FPGA source code
	A.2 Simulation file of moving average FPGA source code
	A.3 CPU side C source code
	A.3.3 Streamread.c
	A.3.4 Streamwrite.c
	A.3.5 MATLAB scrips and source C code
	A.3.5.1 NoiseAndHistograms.m
	A.3.5.2 SNR_MovingAverage.m
	A.3.5.3 myfilter.c (used to speed up MATLAB scripts)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

