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Abstract 
The purpose of this dissertation was to develop and implement, in a Field 

Programmable Gate Array (FPGA), a noise reduction algorithm for real-time 
sensor acquired images. A Moving Average filter was chosen due to its 
fulfillment of a low demanding computational expenditure nature, speed, good 
precision and low to medium hardware resources utilization. The technique is 
simple to implement, however, if all pixels are indiscriminately filtered, the result 
will be a blurry image which is undesirable.  

Since human eye is more sensitive to contrasts, a technique was 
introduced to preserve sharp contour transitions which, in the author’s opinion, 
is the dissertation contribution. Synthetic and real images were tested. 
Synthetic, composed both with sharp and soft tone transitions, were generated 
with a developed algorithm, while real images were captured with an 8-kbit 
(8192 shades) high resolution sensor scaled up to 10 × 103 shades. 

A least-squares polynomial data smoothing filter, Savitzky-Golay, was 
used as comparison. It can be adjusted using 3 degrees of freedom ─ the 
window frame length which varies the filtering relation size between pixels’ 
neighborhood, the derivative order, which varies the curviness and the 
polynomial coefficients which change the adaptability of the curve. Moving 
Average filter only permits one degree of freedom, the window frame length. 
Tests revealed promising results with 2𝑛𝑛𝑛𝑛 and 4𝑡𝑡ℎ polynomial orders. Higher 
qualitative results were achieved with Savitzky-Golay’s better signal 
characteristics preservation, especially at high frequencies.  

FPGA algorithms were implemented in 64-bit integer registers serving 
two purposes: increase precision, hence, reducing the error comparatively as if 
it were done in floating-point registers; accommodate the registers’ growing 
cumulative multiplications. Results were then compared with MATLAB’s double 
precision 64-bit floating-point computations to verify the error difference 
between both. Used comparison parameters were Mean Squared Error, Signal-
to-Noise Ratio and Similarity coefficient. 
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Resumo 
O objetivo desta dissertação foi desenvolver e implementar, em FPGA, 

um algoritmo de redução de ruído para imagens adquiridas em tempo real. 
Optou-se por um filtro de Média Deslizante por não exigir uma elevada 
complexidade computacional, ser rápido, ter boa precisão e requerer moderada 
utilização de recursos. A técnica é simples, mas se abordada como filtragem 
monotónica, o resultado é uma indesejável imagem desfocada.  

Dado o olho humano ser mais sensível ao contraste, introduziu-se uma 
técnica para preservar os contornos que, na opinião do autor, é a sua principal 
contribuição. Utilizaram-se imagens sintéticas e reais nos testes. As sintéticas, 
compostas por fortes e suaves contrastes foram geradas por um algoritmo 
desenvolvido. As reais foram capturadas com um sensor de alta resolução de 
8-kbit (8192 tons) e escalonadas a 10 × 103 tons. 

Um filtro com suavização polinomial de mínimos quadrados, Savitzky-
Golay, foi usado como comparação. Possui 3 graus de liberdade: o tamanho da 
janela, que varia o tamanho da relação de filtragem entre os pixels vizinhos; a 
ordem da derivada, que varia a curvatura do filtro e os coeficientes polinomiais, 
que variam a adaptabilidade da curva aos pontos a suavizar. O filtro de Média 
Deslizante é apenas ajustável no tamanho da janela. Os testes revelaram-se 
promissores nas 2ª e 4ª ordens polinomiais. Obtiveram-se resultados 
qualitativos com o filtro Savitzky-Golay que detém melhores características na 
preservação do sinal, especialmente em altas frequências.  

Os algoritmos em FPGA foram implementados em registos de vírgula 
fixa de 64-bits, servindo dois propósitos: aumentar a precisão, reduzindo o erro 
comparativamente ao terem sido em vírgula flutuante; acomodar o efeito 
cumulativo das multiplicações. Os resultados foram comparados com os 
cálculos de 64-bits obtidos pelo MATLAB para verificar a diferença de erro 
entre ambos. Os parâmetros de medida foram MSE, SNR e coeficiente de 
Semelhança.  

Palavras-chave: 

Ruído, FPGA, deteção de contorno, Média Deslizante, Savitzky-Golay. 
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1. Introduction 
This Master Dissertation is the culmination of a research from which 

resulted two papers, one entitled “Image Denoise FPGA Implementation using a 
Moving Average Filter with Contour Detection”, which was presented on the 
International Conference of Biotechnology and Engineering Applications 
(ICBEA) 2018 having been peer reviewed and published through Institute of 
Electrical and Electronics Engineers (IEEE) 
(https://ieeexplore.ieee.org/document/8471740) and a second paper, entitled 
“Savitzky-Golay filtering as Image Noise Reduction with Sharp Color Reset”, 
which was submitted to the Evise ─ Microprocessors and Microsystems Journal 
paper (https://www.evise.com/), which was, as well, peer reviewed and 
accepted to be published on Volume 74, in April 2020, with the number 103006. 
Its DOI webpage is https://doi.org/10.1016/j.micpro.2020.103006.  

The dissertation was initially projected, as was its purpose, to reflect the 
work developed on the first paper, a time-domain noise reducing filter for real-
time acquired images by image sensors connected to low complex, low power, 
digital processing units such as those normally found in small cameras or 
smartphones, more specifically, on FPGAs. However, the work further extended 
leading, lately, to a second published paper, which scrutinizes a filter that better 
preserves the signal characteristics, especially on the high-frequency spectrum, 
the Savitzky-Golay filter. 

Noise is a general and abroad concept which basically means a random 
uncorrelated statistical distribution which, at some point, can be approached by 
one or more processes such as Gaussian, Rayleigh, Beta, or higher order 
distributions such as Dirichlet. More complex noise patterns can follow yet other 
distributions or compositions of them difficult to model. 

In the context of the signal processing and, especially of this dissertation, 
besides, following on how image acquisition areas have been traditionally dealt 
with, it will be referred as a Gaussian white random process, normally known by 
Additive White Gaussian Noise (AWGN). It is white because the range of 
signals that composes a specific bandwidth of interest have all the same 
amplitude. It is a random process because it cannot be predicted when a 
specific spectral component will appear at a specific time. Finally, it is Gaussian 
because it can be described as a probabilistic process that follows a distribution 
with the same name with. 

Probabilistic processes can be described with a minimum of two 
parameters such as mean, 𝜇𝜇, and standard deviation, 𝜎𝜎. However, in Electrical 
Engineering, it is common to refer to the latter as variance, 𝜎𝜎2. Variance 

https://ieeexplore.ieee.org/document/8471740
https://www.evise.com/
https://www.sciencedirect.com/science/journal/01419331/74/supp/C
https://doi.org/10.1016/j.micpro.2020.103006
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enhances the visualization of the error growth comparatively to the standard 
deviation because it imputes more emphasis the larger it develops, instead of a 
linear growth as standard deviation does. 

When light is captured by an image sensor, the process begins with 
photons-to-electrons conversion in semiconductor electronic components, as 
shown in Figure 1.1. This conversion process is made up to a rate which is 
proportional to the light conditions. The signals are diffused through the 
distribution channels and lanes, passing through passive components and are 
delivered with an amplitude which is resultant from the referred conversion.  

 

 

 

 

 

 

 

 

 

The final process is the gathering of all these individual values in a matrix 
which, after adjusted, will lead to the generation of pixels, the minimal picture 
fragment or unit of light that composes an image. If a pixel is monochromatic, 
then is only defined by gray shades and has one subpixel. If it is a color pixel, 
then it is normally defined by 3 subpixels, corresponding to the 3 basic colors 
Red, Green and Blue (RGB). Figure 1.2, shows an RGB image composed by 
pixels in Bayer pattern disposition. 

This light capture process suffers oscillations which have consistently 
been verified to follow an AWGN curve with mean, 𝜇𝜇 = 0, and a certain 
variance, 𝜎𝜎2. Higher variances mean noisier images. Under low light conditions 
noise becomes granularly more perceptible. During the development of this 
project this condition was verified and addressed with the creation and 
implementation of an inverse non-linear function. 

Noise generated in an image can be composed by a contribution of both 
a signal-independent and a signal-dependent parts. The independent part, 

Figure 1.1- Photons to pixels process [1]. 
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which cannot be directly controlled and therefore can only be estimated, is due 
to the contribution of the photons, i. e., light intensity, weather conditions, 
scattering phenomena, etc.  

 

 

 

 

 

 

 

 

On the other side, a wafer manufacture process destinated to make 
image sensors can itself introduce non-uniform linearities contributing ultimately 
to the noise generation. It is, however, a process that can be mitigated and 
corrected and up to a certain degree, it is a characteristic of the non-homogenic 
semiconductor doping process. This is also regarded as the dependent-signal 
noise contribution [3−6].  

1.1. Motivation 
Photosensors are ubiquitous our days, making it integral part of video 

and photo cameras. They are spread out all over and a constant presence of 
the modern’s lifestyle. Embedded into personal smartphones ranging through 
standalone photo snappers, professional studio machines until the huge 
industrial, printing process controllers, pictures are taken anywhere, at any time, 
with any light conditions, from the dawn to the dusk, even during the night.  

With acceptable brightness, the number of photons acquired by camera 
sensors are enough to be evenly converted by the devices’ circuitry to electrons 
and distributed through the pixel matrix to compose and generate pictures given 
a good brightness/contrast ratio. However, when that is not the case and, below 
certain brightness levels, it can be perceptive a certain image granularity 
proportionally inverse to the light conditions that was gathered at the shooting 
time, due to this sparse photons-to-electrons conversion. All this process 
introduces some level of noise on the images they generate. However, the 
purpose of this work is to focus on noise reduction for devices of low-power 
consuming, low-processing capabilities.  

Figure 1.2 - Image composed by pixels in a Bayer pattern disposition [2]. 
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Despite some of the high range performers’ smartphones to include low 
precision, low bit depth, fast dedicated hardware oriented for Artificial 
Intelligence (AI) and self-learning capabilities targeting quick audio and video 
recognition, they often lack specialized Digital Signal Processors (DSPs) for 
immediate noise processing coming right out from the sensors, such as 
embedded FPGAs. This voids the parallelization spurs of the whole set of 
device’s operations leaving main Central Processing Units (CPUs) overburden 
with all sorts of tasks, that could otherwise, have been split among generalists 
and dedicated processors. 

Several techniques exist for noise reduction as this has been a hot topic 
from 20–30 years now. However, this is a non-trivial choice process and should 
mandatorily consider tradeoffs between, by one side, fast and simple 
techniques, even though, with less satisfactory results and, on the other side, 
more complex, time and processing resources consuming but qualitative ones. 
In situations where speed and quality cannot be achieved, preference, quite 
often, is given to speed over quality and this is particularly valid in real-time 
situations.  

On all, noise reduction techniques, especially when applied to pictures, 
are interpreted as psychovisual outcomes which may not generally have an 
immediate connection with measurable parameters such as MSE, SNR and 
Local or Global Similarity. In addition, because of time limitations, it is very 
difficult to develop global and scalable solutions in order to exploit the immense 
assortment of DSPs and CPUs processing devices, including FPGAs which is 
the case of the current work's plan. 

Meaningful outcomes are questionably connected with complex 
computations evolving transforms between physical domains, namely between 
time and/or space and frequency domains, use of trigonometric functions, 
calculus and heavy numbering computations. Acceptable precision results might 
not be achieved if floating point computations does not come into question, and 
consequently, real time results might be conditioned even though considering 
the use of Look Up Tables (LUTs) which can sky rock memory usage the more 
the precision is demanded.  

These issues led to the development of two real-time algorithms, one 
being the focus of this dissertation initial work, which can reduce the noise and 
lead perceptually, up to a certain degree, to granular-free images. The first is a 
less computationally expensive algorithm, and the second one, a slightly more 
advanced and a more effective algorithm at the signal integrity preserving 
especially at higher frequencies, where noise reduction operations are critical. 
The development was done towards precision but without threatening the 
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expected ready availability of the results, thus maintaining low complexity with a 
minimum of power consumption. 

Initially, the work of research started on the AWAIBA enterprise having 
interest in the development of a low computational algorithm looking forward 
minimizing the generated noise out of their sensors. In that sense, this 
dissertation can be regarded as an important contribution in order to 
parametrize and hence, take the most out of their sensors for matters of low 
noise image quality. 

 

1.2. Objectives 
The objective of the initial project was to study the noise generation in 

images on sensors in general, verifying the relationship on how varying the light 
conditions does that affect the granularity in the inverse proportion, that is, 
under low light conditions the photons are scarce and spreads through the 
image unevenly, leading to uncontrolled signal variations.  

Always when possible, precautions were taken to detach these 
processes, making them independent from a specific architecture and focus on 
the process of the image formation and to the noise attached to it. Hence, 
although tests were done with images sourced from a particular image sensor, 
processed with a certain FPGA through Universal Serial Bus (USB) channels, 
the interest fall on techniques of noise reduction which can be extended to a 
multitude of sensors and platforms. Thus, during the execution of this project, a 
plan of work was respected that guaranteed the following objectives: 

1. Research on photons-to-electrons conversion principle, including theory 
and equations, how does it lead to an image construction, and how and 
in what conditions can result in noise generation. 

2. To study and understand the existing Very High-Speed Integrated Circuit 
Hardware Description Language (VHDL) source code for image capture, 
pre-processing and interface routing, identifying control signals 
pretraining to sensors image acquisition. 

3. Image capture under several ambient light conditions and study of the 
noise generation under these conditions regardless of the underlying 
associated equipment used in the acquisition process, including, image 
sensors, signal processing platforms and signal routing used for 
propagation through related processing stages . 

4. Study of image sensors exposition controlling methods to the light and 
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source light intensity dynamics control in order to mitigate and reduce 
noise generation, leading, lately, to signal processing solution complexity 
reduction. 

5. Development and simulation of a fixed-point solution in parallel with a 
floating-point in MATLAB and comparing the error before porting to 
VDHL language and implemented on an FPGA. 

6. Analysis and constraints of a real-time image acquisition and denoise 
processing implementation. 

7. Development and integration of two algorithms, in VHDL code, for an 
FPGA platform, making comparisons between both and additional 
development of MATLAB support programs to test, as well as, to 
compare its efficiency. 

 

1.3. Contents framework 
The sequence of this dissertation, which resulted in two papers is 

structured in 6 chapters – Introduction, State of Art, Image Denoise FPGA 
Implementation using a Moving Average Filter with Contour Detection, Savitzky-
Golay filtering as Image Noise Reduction with Sharp Color Reset, Testing 
Platform, Conclusion and Appendices. 

Chapter one starts with the introduction, a quick reference of the noise 
concept and how it is generated, it expresses the motivation behind today’s 
demanding for low processing computational algorithms using the power of 
FPGA’s configurable blocks. These devices possess a parallelizing processing 
nature which unclutter the bottlenecks of the CPU’s different paradigm. Finally, 
how this dissertation is structured through this contents’ framework. 

In Chapter two, a research is made through state of art with a quick 
introduction on noise generation on an image to help to understand what the 
tradeoffs are between choosing some determinate technique over another, 
particularly in a less expensive computational realm and immediately post-
sensor delivering data. 

Chapter three is the IEEE paper which resulted of the work done in the 
sequence of this dissertation, which was presented on ICBEA18 International 
Conference of Biomedical Engineering and Applications and the focus and 
purpose of this dissertation. 

Chapter four is an evolution paper with a different filtering technique to 
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the previously work done. While the moving average filter is a constant 
coefficients filtering technique, the Savitzky-Golay filter is an adaptative least 
squares error curve fitting. This paper is now published by Elsevier, Journal of 
Microprocessors and Microsystems - Embedded Hardware Design. 

Chapter five describes in detail the two developed solutions and extends 
the characteristics of the platform used to implement and to test these 
techniques. 

Chapter six draws general conclusions and comments the results. 

The Appendices state the VHDL source codes used on the testing FPGA 
and the C source codes used on the CPU side. 

1.4. Own work 
Although similar techniques exist, it is believed that this work contributes 

with an original computational FPGA’s image processing with contour color 
preserving technique that is computationally speedy, with results comparable to 
those of the most complex processing devices and algorithms. 

 

 

 

 

 

 

 

 

 

Several studies [7]−[8] point that Human eye is more sensitive to the 
Luminance, than Chrominance, that is, except for low modulation frequencies, 
humans can better spot changes in contrasts or shapes than in colors, as can 
be seen in Figure 1.3’s study [7].  

Therefore, the author of this dissertation proposes two real-time 
algorithms, which aim to denoise images acquired with low to mid-range image 
sensors, while preserving the images’ contrasts. The two solutions already 

Figure 1.3 – Human eye contrast sensitivity tests for 2 different tones. On the left, the dots, 
correspondent to pattern detection, is 3x more sensitive than for chromatic detection. Spatial 
frequency is expressed in cycles/degree of modulation change. On the right, the temporal 
CSF modulation for the same 2 colors [7]. 
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exist. However, the author believes that the images’ preservation technique, 
that is, the images’ contour preservation is his own contribution. 

The development is to be applied to a very fast-processing platform such 
an FPGA using the VHDL hardware description language. 
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2. State of Art 
In this section the basics principles of the signal processing are quickly 

reviewed, since they are further analyzed in Chapters 3 and 4, the chapters 
which have resulted from the work developed for this dissertation. Thus, the aim 
of this work focusses particularly in computational techniques for real-time noise 
reduction applied to images, using FPGAs as main processing platform.  

The most common used methods are referenced, from the simplest to 
the most complex ones pointing, and whenever necessary, it will be point out 
each one’s strengths and weaknesses. 

Additionally, it is referenced, the tradeoffs for opting for some determined 
architecture considering the complexity of the algorithm in question. Finally, it is 
referenced the algorithms’ development platform for both, implementation and 
testing.  

2.1 Noise generation  
2.1.1 Introduction 

Noise can be described as a random or stochastic, undesirable and 
uncorrelated signal that sums up to the signal of interest [9]–[11]. In turn, a 
stochastic signal can be part of a broader family of discreet-time Probability 
Density Functions (PDFs). It is understood that, at any given moment, a certain 
signal can be modeled by one or a combination of PDFs. Thus, a signal, can be 
interpreted as set of individual or jointly probabilities which are specified by a 
sequence of random variables distributed in the axis of time [9]. 

A physical observable signal can be a superimposition of a random, 
correlated signal we want to extract information from and an uncorrelated, 
stationary in average, disturbing signal, known as noise [12]−[13].  

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜 =  𝑠𝑠𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖_𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜 +  𝑠𝑠𝑜𝑜𝑠𝑠𝑜𝑜𝑜𝑜 

in other words,  

 

where 𝑖𝑖𝑠𝑠 is the independent time variable defined as 𝑖𝑖𝑠𝑠 =
𝑠𝑠

𝑠𝑠
, 𝑠𝑠 is a number of 

random samples, 𝑠𝑠 is the indexed sample, 𝑀𝑀𝑠𝑠 𝑠𝑠𝑠𝑠𝑖𝑖~  𝑁𝑁(0,1) is an AWGN and 𝜗𝜗 is the 
attached noise [11]. 

This superimposition can happen at the moment of the creation or the 
transformation of the observable signal thus, the latter does not possess the 

𝑖𝑖𝑠𝑠 = 𝑓𝑓(𝑖𝑖𝑠𝑠) + 𝜗𝜗𝑀𝑀𝑠𝑠 (2.1) 
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same integrity as of that the time of its creation [12]. Therefore, unless the 
attached noise is added deliberately with the purpose of scrambling or hide the 
relevant signal, or the signal is to be emerged below the noise threshold level 
for the same purpose, this uncorrelated noise is undesirable [14]. 

In turn, noise does not have a physical meaning itself, neither can be 
measurable isolatedly hence, it can be regarded as a disturbance to the model 
or to the system which is not part of [11]. 

In the imagery creation context, i. e., created by image sensors, signal’s 
attached noise can be a contribution from two sources: one, from a dependent 
source of noise which is characterized as photonic noise; the other one, from an 
independent source which is generated in the device’s circuitry. The later, has 
trendily been reducing over times along with technical progress [3]. 

It is then desired to filter the interest signal out of the noise in order to 
obtain, as much as possible, an 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜 =  𝑠𝑠𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖_𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜. Noise 
can be generated from several sources: thermal, shot, flicker, burst and others 
[15].  

2.1.2 Noise generation in a signal 
Considering the amount of types of noise that exist and assuming that 

they all are unwanted stochastic processes that sum up to the signal of interest, 
whatever its origin, the noise interferes with the information signal, distorts and 
degrades its quality [15].  

Often, the noise is considered to be an information-carrier, with a proper 
pattern which is revealing of its origin, whether it is acoustic, thermal, electronic, 
shot, electromagnetic, cosmic and several others. In this sense, a distorted 
signal has some degree of certainty to carry noise attached to it, drifting the 
signal itself from its ideal conditions [13], [15]. For example, on a transmission 
line the noise is one of the main limitative factors of the signal integrity at the 
destiny given that the initial transmission conditions are ideal [12]−[13], 
[15]−[16].  

Noise itself can be, and often is, modulated by a statistical model which, 
depending on its source, can follow one or more Probability Distribution 
Functions (PDFs). One of the mostly considered PDFs, in all engineering 
disciplines, particularly in Electrical Engineering, which includes the creation of 
pseudorandom noisy models for synthetic testing purposes, is the White Noise 
with a Gaussian PDF, that is, Additive White Gaussian Noise (AWGN). AWGN 
is known to have a consistent and flat signal spectrum density. Jamming, 
cryptography, communication and electronic calibration systems are examples 
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of such a deliberate utilization [17]− [18]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1.3 Noise generation in an image 
A pure informative signal is a generalized term which defines a set of 

random variables, strongly correlated, whose values or amplitudes can be 
defined, at any moment, by one or more sets of probabilistic functions, 
specifically PDFs. A pure image is also a signal which is subjected to the same 
random nature disturbances as the signal is [9]. 

Image sensor photon detection leading to a pixel generation is subject to 
some perturbations which are the result of both, the manufacture process, i. e., 
non-homogenic doping process in the whole surface of the semiconductor 
material and certain light conditions [17].  

These perturbations might lead to a perceptible granularity in the image, 
as can be seen on the right side of the Figure 2.1, which is to say, a random 
tone variability, known as variance, within a similar tone area, known as noise. 
The aforementioned process is of an uncorrelated nature, and it has been 
verified to exhibit a probabilistic Gaussian normal behavior [9], [17]. 

2.1.4 Image denoising techniques 
Several algorithms have been studied through the last 2 to 3 decades. 

On one side, there are simple time domain denoise techniques with quite good 
results but poor band stopping. On the other side, it exists a sheer amount of 
frequency domain denoising techniques, several of them with stellar results [4].  

In the field of our interest, noise generation resulting from a photoelectron 
counting conversion is a hypothesized electromagnetic signal which is defined 
statistically to be deterministic, having a zero-mean, and a Gaussian shape-like 
which can be expanded by Karhunen–Loéve series of orthogonal functions. 

Figure 2.1 - An image, on the left, without noise, and on the right with AWGN 
[26]. 
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This type of source generated noise can be modeled by Laguerre polynomials 
[19]. 

Discreet Cosines is a technique of low complexity which may or may not 
use orthogonal transforms. Can be applicable to random shape signals, thus to 
images, yet using relatively low computational resources [20]. 

A new wavelet approach of point despeckling or smoothing a high 
variability signal that can produce good results on low gradient transitions while 
still preserving most of the image’s signal energy. It should not be considered 
for this dissertation purposes because it requires expensive frequency 
transforms computations [4]−[5].  

To preserve most of the image’s signal energy techniques exist based on 
undecimated wavelet decomposition with the need of having to work with time 
or space and frequencies domains [21]. 

A general denoising model for images, can be achieved by employing 
several mathematical fields such as numerical analysis, statistical models, 
weighted similarities between pixels and patches with several expectations, 
besides statistics, for example, in color multiscale analysis and graph-based 
data representation where the employment of quadratic Laplacian forms are 
used in order to obtain information about the energy distribution and from there 
the signal’s filtering technique to apply. This is typically used jointly with wavelet 
transforms [20]. 

If the noise model is known to be uncorrelated, which in its majority is, a 
generalized similarity approach assumption among pixels and patches with 
dependency of the distribution model of the noise may be applied with the use 
of weights which can be tweaked with the last assessment similarity. This 
scheme can improve the SNR, with images affected by additive Gaussian and 
by multiplicative speckle noise models [23]. 

A shape-adaptative technique using Discreet Cosines Transforms (DCT) 
can be combined with local polynomial approximation and anisotropy to filter 
shape-adaptative blocks. It works by compressing an image in DCT blocks then 
to compute the confidence intervals to find the transform’s support shape on a 
pointing adaptative method. With established appropriate threshold values, it 
can be found the estimation coefficients [24]−[25] that serve to reconstruct the 
signal’s support shape. This technique somehow imposes restrictions in the 
luminance-chrominance space in order to increase the accuracy of the image’s 
colors. This adaptative reconstruction enhances the color transitions (cleanses 
undesired artefacts) [20], [26]. 
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Strictly time domain techniques such as moving averages [27] and 
polynomial curve fits using least squares errors [28] are among the most used 
with very good results and these are the main focus of this dissertation. 

All image sensors, namely photo and video sensors add noise to the 
visual information (images) they acquire. This phenomena correlates several 
principles which will be further developed in the next chapters, but to get an idea 
they include but are not limited to, the scattering light conditions at the moment 
of the photo snapping, the photons-to-electrons conversion process on the 
circuitry upon the pixels acquisition on the sensor, known as Factor Wheel 
Conversion (FWC) and the thermal noise generated from two sources: the 
atmospheric and the devices’ electronics.  

Although several noise reduction techniques exist for any type of signal in 
general and for imagery in particular, for this dissertation’s working thread 
proposed objectives, we aim to develop two different but comparable fast image 
processing denoising techniques with image contour preservation. As referred, 
they should be fast processing, relatively simple to implemented in nearly all 
hardware FPGA platforms and should give visible results to justify its 
implementation. 

It is believed that those can be found amongst the simplest time domain 
constant, as well as adaptative polynomial curves moving average filtering 
techniques. These can be as fast as real-time and with a minimum possible 
latency. Although other possible solutions exist, such as frequency domain 
processing and they will be referred throughout this dissertation, they will not be 
considered due to their substantial implementation complexity, hence, the 
processing time required and computational resources used.  

For the mentioned considerations two solutions were developed and 
implemented. The first, a moving average filter with image contour preservation 
which is described in Chapter 3. The second, an adaptative least squares error 
Savitzky-Golay filter, as well with image contour preserving, described on 
Chapter 4. 

 

2.2 Conclusions  
These chosen techniques have both advantages and constraints over 

others that should be referred: 

Advantages 

• Entirely processing in time domain. Transforming between time and 
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frequencies domains can bring a bit better results, by selectively 
filtering noisier bands but are time and computationally too expensive. 
Besides they require costly floating-point calculations. 

• All computations can be done completely in fixed-point arithmetic. 

• Low power consumption, hence suitable to be implemented in mobile, 
low-power image acquisition devices such as video and photo 
cameras, including those embedded on smartphones. 

• Very low latency. Results can be obtained at a speed of one clock, 
thus to the level of pixel-in this clock, pixel-out next clock. 

• Quick processing setup, including hardware optimized for parallel 
data processing. Few, if any, configuration parameters are required to 
activate/deactivate the denoising FPGA Intellectual Property (IP) 
module. For processing parallelization, the developed algorithm 
should create several channels. 

• Selection of the averaging or the adaptative filter size for both 
solutions can give better results up to a certain point. A tradeoff 
should be considered. 

• It probably does a better job in preserving the images’ shapes than 
their frequency domain counterparts, although this was not tested. 
However, it is well known that frequency domain processing is done 
block after block of pixels, normally 8 × 8 or 16 × 16 and the final 
image “stitching” result has a somehow mosaicking effect. 

• The adaptative polynomial curves such as the second algorithm 
proposed here, the Savitzky-Golay filter, use the least squares errors 
and is a bit more complex than simple moving average filters but 
better preserves high frequency signals. 

Disadvantages 

• Both proposed algorithms, the moving average and the Savitzky-
Golay filters behave poorly in the frequency domain. This means that 
the secondary lobes are very frequency leaky. We want to filter the 
frequencies on the main lobe and cut completely all the others. 
Undesirably, this is a characteristic which all time domain filters 
possess. Though, there is no such perfect physical filter, even on 
frequency domain.  

• The adaptative polynomial curves such as the second algorithm 
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proposed here, the Savitzky-Golay filter, use the least squares errors 
and are a bit more complex than simple moving average filters. 
However, as advantage, it better preserves high frequency signals. 

• For Savitzky-Golay filter, due to its polynomial and hence multiple 
derivative nature, for each new derivative, additional information not 
immediately seen in the data being smoothed might be revealed. 
Depending on the case to which a certain derivative degree is to be 
applied on, it can have a pleasant or otherwise an undesirable image 
effect. 

• Since certain operations, in frequency domain, are simpler than in 
time domain, i. e., a convolution in time domain is done as a 
multiplication on frequency domain, it is not of common agreement 
that time domain filtering will be always simpler than frequency 
domain filtering [9], [29]. 
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3. Image Denoise FPGA Implementation using a 
Moving Average Filter with Contour Detection 

This chapter is the first of two papers which resulted from this master 
dissertation work. It is an image contour detection technique using a Moving 
Average Filter placed here as a chapter belonging to this dissertation. 

The paper was presented on the International Conference on Biomedical 
Engineering and Applications ICBEA held in Funchal - July 9th to 12th, 2018, 
jointly organized by institute of Knowledge and Development, the University of 
Madeira and the Madeira Interactive Technologies Institute. 

It was published by IEEE, under the International Standard Book Number 
(ISBN) 978-1-5386-8058-2/18/$31.00 ©2018 IEEE 

 

Ricardo Jardim, F. Morgado-Dias   
University of Madeira and Madeira Interactive Technologies Institute, 9000-390 Funchal, 

Madeira, Portugal 

rjjardim@gmail.com , morgado@uma.pt 

Abstract—A Moving Average Filter should be among the first filters, 
if not the first, one should consider when speed, good precision and low 
to medium hardware resources are what is required for implementing 
image noise reduction on a physical device. The technique is fairly simple 
to implement, but if taken a straightforward approach, the result will be a 
blurry image which is undesirable. Since the human eye is most sensitive 
to the sharp tone transition, we introduced a contour detection technique. 
Because the inherently lack of floating-point representation, except for the 
most modern FPGA’s versions, all the calculations were done in fixed 
point. Also, images used were scaled up to 10x103 colour levels (a bit 
higher than 213 bits). Real results of double precision 64-bit were achieved 
through MATLAB and then compared to a Zynq-7000 FPGA using 64-bit 
fixed point calculations. The error difference obtained between both 
implementations was 1x10-4. 

Keywords — color scaling denoising function, DSP, fixed-point 
arithmetic, FPGA, image contour/edge detection, moving average filter, 
noise reduction, signal processing. 

3.1. Introduction 
Noise reduction is not a trivial choice process without considering trade-

offs between the quick, simple and less than stellar results to the more complex, 
time consuming and satisfying ones. In cases where both speed and quality 

mailto:rjjardim@gmail.com
mailto:morgado@uma.pt
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cannot be attained, prioritization, almost always, is given to the speed over 
quality and this is especially true on critical real-time scenarios. Although active 
research has been done from two to three decades now with quite good results, 
noise reduction techniques, particularly done on images, are psychovisual 
subjective processes which might not always have a direct correlation with 
quantifiable by parameters such as Mean Squared Error (MSE), Signal-to-Noise 
Ratio (SNR) and Local or Global Similarity. Besides, due to time constraints, it’s 
almost impossible to develop completely scalable solutions to take advantage of 
the vast variety of Digital Signal Processors (DSP) and/or Central Processing 
Units (CPU) processing hardware, namely Field Programmable Gate Arrays 
(FPGA) as is the case of this work’s proposal. 

Satisfactory results are, arguably, neck to neck with complex processing, 
which might evolve bridging between different physical domains, as is the case 
of the use of the transforms between time/space and frequency domains, 
trigonometric functions implementation, and intensive numbering operation. 
There are obviously solutions, that pass, for example, through the use of look-
up tables, but acceptable precision cannot be attained if floating point is not 
considered, besides, real time results might be conditioned. 

We aim to implement a solution for noise reduction on an FPGA, which 
has advantages, over a CPU*:  

• Optimize hardware for parallel data processing; 

• Reduced dimensions and hence appropriate for mobility; 

• Low energy consumption. 

On the other hand, it lacks, in most cases, dedicated hardware for 
precision calculations, such as floating point. 

If, however, simplicity and few utilization resources are desired yet with 
good results comparable to floating-point, it is possible to implement a fixed-
point based solution through a moving average filter, which is certainly to be 
one of the simplest filters for noise reduction. 

This type of filter is easy both to understand and to implement, and for 
better visual acuity it can be paired with a sharp colour transition detection 
technique while maintaining the smoothness on low gradient colour changes. 
This is convenient because, what catches immediately the human eye, when 
looking at an image, is the sharp contours. The moving average filter can be 
applied to any signal source acquired either in the time or space domains. It can 
come from an audio, video, imaging or from any electromagnetic nature. In this 
work, the source is stored images, hence the processing is done in the space 
domain, but can also be easily applied to real time image acquisition, in time 

* Although the same FPGA solution was developed to run on MATLAB, hence, on a CPU 
(see the C and M codes in Appendix) it should not be considered a fair comparison due to 
the platforms’ different processing conditions (FPGA at 200 MHz with parallel dedicated 
processing, while CPU at 2.4 GHz with serial processing through MATLAB) 
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domain. 

An idiosyncrasy of the moving average filter is that while it can generate 
quite good results in the time and spatial domains, it has, however, a very poor 
degree of controllability in the frequency domain, which is to be considered as 
the worst filter to control in this domain, namely, and often useful, a poor 
flexibility in band separation [27]. Through this dissertation, we will refer to the 
frequency domain, as a comparison reference with the time domain. 

MATLAB code was developed to generate all the graphics. The rest of 
this dissertation will be organized as follows. Section 3.2 reviews the theoretical 
fundaments, how noise can be generated on an image, what parameters are 
used to quantify noisy images, what is a moving average filter and how does it 
work, its behavior in the frequency domain, what results can be obtained with 
filter autoconvolution and finally the proposed technique of contour detection. 
Section 3.3 refers to the methodology and the used equipment, its configuration 
and the testing scenario. Section 3.4 presents the results and finally, Section 
3.5 drives the conclusions. 

3.2. Moving Average Filter 

3.2.1 Noise Generation on an Image  
Image sensor photon detection leading to a pixel generation is subject to 

some perturbations which is a result of both the manufacture process, i. e., the 
non-homogenic doping process, in the whole surface of the semiconductor 
material and the light conditions [19]. These perturbations might lead to a 
perceptible granularity in the image, that is, a tone variability within a similar 
tone area known as noise. The aforementioned process is of a random nature, 
and it has been verified to exhibit a probabilistic Gaussian normal behavior. 

3.2.2 Quantifiable Used Parameters  
Given two versions of the same image, one contaminated with Additive 

White Gaussian Noise (AWGN) being the other, the denoised processed 
version, it is possible to compare both versions using the MSE, SNR and the 
Peak SNR (PSNR) parameters, which are global values, i. e., unique values 
that quantifies the whole set of pixel differences between 2 images. Comparison 
between pixels is made on the same coordinate of each 2 images. Structural 
Similarity Index (SSIM) is yet another parameter we use both as local and 
global. Local values are made on a per-pixel comparison basis, resulting in an 
image generated with the same dimensions as the sources, containing the pixel 
differences between the 2 source images. 

MSE can be calculated using Equation 3.1:  
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where 𝑌𝑌�  is the predictor of the reference image and 𝑌𝑌 is the noisy image. 

The SNR can be calculated by Equation 3.2: 

 

The PSNR can be calculated using Equation 3.3: 

 

where 𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 is the image maximum pixel resolution. 

 

3.2.3 Moving Average Filter 
It is possible to express the moving average filter using Equation 3.4: 

 

where 𝑚𝑚 is the input pixel, 𝑦𝑦 the output pixel, 𝑁𝑁 the number of counting 
pixels for the average, 𝑠𝑠 the index of the pixel being averaging and 𝑗𝑗 the offset 
index of the pixel relative to i contributing to the average of the output pixel.  

This can be best understood as a step function with an amplitude of  1
𝑁𝑁

  

being convoluted with the signal of interest. It is easy to verify that the larger the 
filtering window, 𝑁𝑁, the smoother will be the output signal, following the square 
root law, as it can be seen in Figure 3.1. It is an optimal solution both for solid 
and for low gradient colour transitions but otherwise for sharp colour changes, 
resulting in blurry image. The step function slope limit, for the left and the right 
sides is 𝑁𝑁

2
 and −𝑁𝑁

2
 , respectively. 
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Figure 3.1 - Moving average filters of 4, 36, 81 and 121 points 
applied to a rectangular step function with random noise. 
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3.2.4 Frequency Domain  
Complementarily, for better understanding with what we are dealing, the 

frequency response of a moving average filter’s kernel seen in time domain as a 
rectangular pulse, can be given by its Fourier Transform 𝑀𝑀(𝜔𝜔): 

 

Image acquisition on image sensors is done through channels in which 
the unavoidable added noise follows a normal Gaussian distribution curve with 
a zero-mean occurrence probability throughout the entire signal spectrum. 
However, when the signal is transformed into the frequency domain, the bulk of 
the signal energy is concentrated at the lowest frequencies shown by the main 
lobes, in Figure 3.2. 

 

 

 

 

 

 

 

This means that the noise added to the lower frequencies of the signal 
becomes diluted on it, hence turning the noise unnoticeable, a good feature. On 
other side, where the noise becomes noticeable is at higher frequencies. Noise 
elimination techniques in frequency make extensive use of this property at 
expense of processing power. 

In time domain, the moving average is an optimal filter kernel because it 
symmetrically reduces the variance of a Gaussian shape with zero-mean 
random noise distributed all over the signal. It is, however, possible to choose 
where to eliminate specific noise contaminated frequencies by shortening or 
enlarging the number of points contributing for the averaging, bearing in mind 
that some of the signal information will also be eliminated along with the noise. 
In the frequency domain, sequenced high secondary filter lobes turn it poorly 
controllable due to the soft roll-off. It is desirable a sharp stopband decay for all 
filter lengths, 𝑁𝑁. 

If all attempts fail to explain how the moving average filter works, one can 
simply resume referring to a basic principle of the Vector Signal: the larger the 
signal pulse in the time domain, in this case, a larger 𝑁𝑁, the narrower the range 
of the band in the frequency domain, which means a reduced noise variance 
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Figure 3.2 - Frequency response of 4 moving average filters. 

(3.5) 
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obtained. 

3.2.5 Multiple Autoconvolution  
Different results can be obtained if one or more convolution passes of the 

filter over itself are made.  

The convolution can be given by Equation 3.6: 

 

where ℎ1(𝑖𝑖) and ℎ2(𝑖𝑖) were given by the left-hand side of ℱ (the time-domain 
side), in Equation 3.5. 

Figure 3.3 shows several curves, which represent sets of autoconvolution 
operations of the same filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the number of passes increase, the filter shape changes from a step 
function to a Gaussian function. 

The result of successive autoconvolutions, as expected, increases the 
noise attenuation but cumulatively decreases signal detail. Also, filter 
amplitudes increase as more passes are made due to the increasing integrated 
area, although this is not shown in Figure 3.3 because all curves have been 

ℎ1 ⋆ ℎ2(𝑖𝑖) ≝ � ℎ𝐻𝐻1(𝜏𝜏) · ℎ𝐻𝐻2(𝑖𝑖 − 𝜏𝜏)𝑖𝑖𝜏𝜏
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−∞
 

Figure 3.3 - – Autoconvolution. Above: shape 
curves from 1 to 4 passes. Below: cumulative 
distributions from the corresponding curves 

 

 

(3.6) 



 22 

normalized. 

While in one pass filtering the weight of the neighbor pixels under it is the 
same, on a multiple pass filtering, the averaging weight takes the shape of the 
curve being convoluted with the signal, higher on the center of the filter. With 2 
passes the filter shape becomes triangular, and from 3 passes up, the curve 
gets a non-linear weight Gaussian distribution shape like. 

The cumulative distribution below graphic in Figure 3.3, shows how the 
filter becomes less sharp inversely proportional to the number of passes, a non-
desirable characteristic due to the non-linearities it introduces but on the other 
hand, in the frequency domain, as can be seen in Figure 3.4, the secondary 
lobes drastically drop because each new result is a multiplicative operation 
between the previous pass and a new function, as given by the right-hand side 
of ℱ (the frequency domain-side), Equation 3.5. This is a welcome feature 
turning the Moving Average Filter a tradeoff choice between specific 
frequencies vs. a whole frequency band. 

 

 

 

 

 

 

 

 

3.2.6 Contour Detection 
The algorithm for implementing the Contour Detection can be developed 

starting with the Moving Average Filter given in Equation 3.4. If: 

 

being 𝑀𝑀�  the filtered averaged pixels, that is, to the pixels convolved with the 
filter, the decision for the pixel, 𝑝𝑝, being analyzed, to contribute to the average is 
decided if 

 

in which 

 

Figure 3.4 - Frequency domain 
multipass autoconvolution. 
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otherwise, 𝑝𝑝 restarts a new averaging 

Visually, the difference between Moving Average Filters, one without 
(simple) and another with Contour Detection can be seen below in Figure 3.5. If 
a whole width horizontal line of pixels is randomly chosen from the top image 
(red) and moving average operations are made with several filter lengths, 𝑁𝑁, the 
result will be the middle image pixel profiles. Higher values of the curves 
correspond to lighter grey shades and the lower values to darker shades. In the 
middle is graphic without contour detection, if 𝑁𝑁 is big enough, we end up losing 
the image sharpness since everything gets averaged. Conversely, as shown in 
the lower graphic, the steeply tone changes are pretty much preserved and only 
the soft transitions variability is smoothed out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

Figure 3.5 - Moving Average Filter (from top to bottom): original image; without contour detection 
(graphic and result); with contour detection (graphic and result). 
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3.3. Methodology and Used Equipment 
An image acquired with an image sensor in proper light conditions, to 

minimize photon shot noise, was chosen and referenced as original image. The 
image’s pixel depth is a 213-bit fixed-point (8192 tones). In MATLAB, the image 
was converted to normalized floating-point range [0. .1] with the purpose to add 
several AWGN variances noise, according to the Section 3.5. This is needed 
because almost all MATLAB’s Toolboxes APIs work in floating-point notation. 
The noisy images to be processed in the FPGA were converted back to its 
original bit depth fixed-point while the ones to be processed on MATLAB 
remained in floating point. 

For the real floating-point calculations, MATLAB scripts were used. For 
fixed-point calculations it was used a ZedBoard Zynq-7000 All Programmable 
SoC XC7Z020-CLG484-1 FPGA board, shown in Figure 3.6, along with 
programming environments Xilinx Vivado versions 2017.4 and 2018.1. The 
language for the FPGA programming was Very-High Speed Integrated Circuit 
Hardware Descriptive Language (VHDL) with some system libraries in Verilog. 
The images to be processed in the board were uploaded onto the same SD 
card which loads its OS. 

Since the original image has a pixel depth of 213-bit, with a Factor Wheel 
Conversion (FWC) pixel (photon to electrons conversion) of 10 × 103 (as stated, 
slightly above 213, it should be level up, for consistency, to the nearest multiple 
of 8 and hence to 216-bit. More, because some pixel’s calculations are same 
register cumulative, this easily overflows 32-bit registers if these were chosen, 
so 64-bit registers were implemented. This, not only, does not increase roundoff 
errors because they are done, as will be discussed, to the nearest zeroth 
decimal floor, but also makes room for calculations with higher bit-depth images 
without having to redesign the registers. 

The hybrid capabilities of Zynq chip, working as a full integrated 
CPU+OS computer system with an FPGA easily accessed through an AMBA 
AXI3/AXI4 interface bus facilitate the communication process. From the board’s 
computing side, images data pixels are loaded and sent in a column-by-column 
sequence to the FPGA to be processed, which are then collected, assembled 
and stored in the SD card as new images. It is also possible to use the board’s 
Ethernet to exchange images between the working computer and the ZedBoard 
avoiding constant SD card’s swap, however, network instability issues voided 
this option. 

In the working computer, measurement parameters described in Section 
3.2.2 were used using the MATLAB’s Image Processing Toolbox. Each image, 
either fixed- or floating-point, was compared with the original in its respective 
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scale. These original-processed image pairs were used as MATLAB’s 
measurement functions input parameters. The functions return a result which is 
a floating-point double value. Visual comparisons were also made. 

In Section 3.4, each image has a header defining the attained results 
which were transcribed to Figure 3.7 through Figure 3.15 captions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Appendix 3.A, Figure 3.16 shows a timing diagram of the FPGA 
implemented solution for a filter length 𝑁𝑁 = 4. Despite the volume of signals and 
variables, most starting with an “o_” which are internal registers and control 
signals, the relevant information is pointed out and is described here. Most 
important signals are the highlighted DataIn and DataOut. The first blue marker 
at 160 ps delimits the beginning of data sequence to be processed, DataIn, 
which starts with a four-value header: N, SMF, bit depth and the number of 
passes (how many loops this data sequence is to be processed). So, it can be 
seen for this header that 𝑁𝑁 = 4, 𝑃𝑃𝑀𝑀𝑆𝑆 = 50, bit depth =  8192 (213) and 
𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 1. Right after, as pointed by the second blue marker, data starts 
to flow in. It can then also be seen that the processed data is coming out of the 
module, carried by DataOut, in just one complete clock cycle, as shows the 
yellow marker. Another signal of interest is the “o_rst_clk”, below DataIn, which 
resets the pixel counter every time a colour sharp transition is detected. 
Appendix 3.B shows utilization of several FPGA’s resources.  

Figure 3.6 - Hardware platform FPGA 
ZedBoard Zynq-7000 used for the tests. 
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3.4. Results 
Figure 3.7 is composed of a pair of images in which the top is the original 

version and the bottom is the noise contaminated version with 0.01 AWGN 
standard deviation. Figure.3.8 through Figure 3.15 show pairs of images 
processed using filter lengths 𝑁𝑁 = (4, 9, 16 and 25), chosen according to the 
Equation 3.9, which says that the noise reduction factor is given by the squared 
root of the filter’s length, 𝑁𝑁, so we can expect noise reduction factors of 2, 3, 4 
and 5 folds. For filter lengths above 𝑁𝑁 = 25, the image quality starts to degrade 
due to the fact that too much image detail is removed along with the noise. 

For each filter length value, 2 multiplicative factors of 𝜎𝜎 (SMF), were 
chosen, 50 and 100. It is known that a Gaussian curve is almost entirely 
contained between -3𝜎𝜎 and 3𝜎𝜎, so the question is, why to set 𝜎𝜎 equal to 50 and 
100? Our experiments show that 𝜎𝜎 factors lower than these simply present 
negligible to none filtering results, hence the use of this inflating factor. It can be 
seen that there is a denoising increasing factor according to the increase of N 
and SMF. 

The Table 3.1, in the Appendix 3.C, shows the quantifiable results, based 
on the already referred parameters MSE, SNR, PeakSNR and Global Similarity, 
associated to these generated images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 - Left image: noise free. Right image: contaminated with 0.01 AWGN standard deviation (𝜎𝜎). 

Figure.3.8 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1, 
Filter size N=4, SMF=50. 

Figure 3.9 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1, 
Filter size N=4, SMF=100. 

Figure 3.10 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1, 
Filter size N=9, SMF=50. 
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3.5. Conclusions 
Table 3.1, in Appendix 3.C, show the test results obtained with added 

noise variances of 𝜎𝜎2 = 1 × 10−4 and 𝜎𝜎2 = 1 × 10−3  to an image that we 
assume to be noise free. Main focus was given to 𝜎𝜎2 = 1 × 10−4  because it 
shows a good tradeoff between a mild perceptible added noise to be processed 
and the presumed noise free image. The 𝜎𝜎2 = 1 × 10−3 was chosen for 
comparison because of its significative noise perceptibility.  

A MATLAB pseudorandom generator function was used to add the 
indicated noise variances to the image. The rightmost column, Change, shows 
the differences, in percentage, including the SNR and PeakSNR logarithmic 
values converted to decimal, between the MATLAB’s floating-point version and 

Figure 3.11 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1, 
Filter size N=9, SMF=100. 

Figure 3.12 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1, 
Filter size N=16, SMF=50. 
 

Figure 3.13 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1, 
Filter size N=16, SMF=100. 
 

Figure 3.14 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1, 
Filter size N=25, SMF=50. 

 

Figure 3.15 - Left image: Floating-point version, Right image: Fixed-point version. Number of Passes=1, 
Filter size N=25, SMF=100. 
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the FPGA fixed-point calculations, taking the foremost as reference. Floating-
point calculations were all done in the value’s range between [0. .1], because it 
holds the most precision scale. According to MathWorks, MATLAB maximum 
rounding error, a machine epsilon, is 2−53 in a scale of values between 2𝑠𝑠 and 
2𝑠𝑠 + 1, in this case 𝑠𝑠 = 0. This is the reason to consider it as the reference, 
while fixed-point calculations were done, as previously mentioned, in the range 
[0. .10 × 103]. Comparing both, as expected, all 𝜎𝜎2 = 1 × 10−4 tests presents 
better results than 𝜎𝜎2 = 1 × 10−3, with the highest values being 𝑁𝑁 = 9 and 
𝑃𝑃𝑀𝑀𝑆𝑆 = 50, while the lowest being 𝑁𝑁 = 16 and 𝑃𝑃𝑀𝑀𝑆𝑆 = 100. SNR and PeakSNR 
depend inversely on MSE as given by Equations 3.1, 3.2 and 3.3, and Global 
Similarity follows this trend as well. The less the MSE error, the better the SNR 
and hence the better the Similarity between the original and the processed 
images. 

Relatively to 𝜎𝜎2 = 1 × 10−4, it should be noted that better values are 
achieved when values of 𝑃𝑃𝑀𝑀𝑆𝑆 = 50. Also, from 𝑁𝑁 = 4 to 𝑁𝑁 = 25 the results 
degrade progressively among the same value of SMF. The exception to this is 
when 𝑁𝑁 = 25, which achieves better results for fixed-point in both SMF’s values. 
Image’s results reveal that progressive higher quality is achieved at N=16 and 
𝑃𝑃𝑀𝑀𝑆𝑆 = 100. For 𝑁𝑁 = 25, images show some adjacent colour fusion, resembling 
patches, so beginning to lose some quality. SNR’s magnitude orders of 31 𝑖𝑖𝑑𝑑 
and PeakSNR’s of 37 𝑖𝑖𝑑𝑑 for 𝑃𝑃𝑀𝑀𝑆𝑆’𝑜𝑜 = 50 seem reasonable for this value of 
noise variance (𝜎𝜎2 = 1 × 10−4) while for 𝑃𝑃𝑀𝑀𝑆𝑆 = 100, lower SNR’s of 28 or 29 𝑖𝑖𝑑𝑑 
and PeakSNR’s of 35 dB are more expected, given that a higher SMF increases 
the smoothness over a lower SMF for the same N, and so, visually, it seems to 
qualitatively reduce further the noise. However, as revealed numerically, image 
degrades because information details are, as well, processed along with the 
noise. We have made an additional test for comparison, which consisted in a 
simple moving average image noise reduction and we got SNR values between 
26 and 19 𝑖𝑖𝑑𝑑, hence significantly lower than the ones of our interest. It is also 
noticeable that floating-point results are consistent with fixed-point results. The 
differences between both are minor but suffice to conclude that the floating-
point, due to higher precision, generates better results. In relation to 𝜎𝜎2 =
1 × 10−3, the best values are obtained when 𝑁𝑁 = 4 and 𝑃𝑃𝑀𝑀𝑆𝑆 = 100. There is, 
however, a significant difference: while in 𝜎𝜎2 = 1 × 10−4, SNR results are better 
in SMF=50 than in SMF=100 (differences between 2 or 3 𝑖𝑖𝑑𝑑), in 𝜎𝜎2 = 1 × 10−3 
they are practically the same around 𝑃𝑃𝑁𝑁𝑚𝑚 = 24𝑖𝑖𝑑𝑑. Given that 𝜎𝜎2 = 1 × 10−3 
generates a perceptible noisier image, this is an acceptable result. 

The most meaningful result here is that it is possible to make calculations 
in a simple fixed-point notation without any visible difference compared to the 
more computationally expensive floating-point counterpart, once a relative high 
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pixel bit depth is chosen. Our tests were made with images containing pixels 
with 10 × 103 colour tones, i.e., a little over 213 = 8192 shades. This further 
reduces roundoff errors to a level of precision of 1

10 ×103
= 1 × 10−4, due to the 

fact that calculations made in fixed-point always ditch the rational part by 
flooring down the result to the immediate lower integer available. Additionally, 
attention must be given to the whole mathematical operation, with the purpose 
to spot where divisions and square roots occur and exert some effort to reduce 
it to a maximum of one square root and a maximum of one division, explained 
by the fact that round offs only occur on these math operations.  

There is yet another feature that needs to be treated properly. A noise 
contaminated image is more noticeable at darker colour or shades than lighter 
ones and this deserves special care. A non-linear smoothing filtering function 
must be adjusted and multiplied by 𝜎𝜎, letting darker colour shades have more 
filtering tolerance than the lighter ones. 

A quick note on the results: the sparse difference between the 
measurement parameters does not quite really translates the visual perception 
of the denoising processing results. Furthermore, the different filter sizes and 
the multiplicative sigma factor can make a huge contribution when the image 
has large solid patch shades to process.  

This work shows promising results on low power, low complexity, high 
portability, FPGAs utilization for real-time signal processing. 

For future works and already working on it, we aim to make use of a 
more challenging approach in frequency domain, including Discrete Cosines 
(DCT), Fourier and Wavelet Transforms. This was one also of the reasons to 
include it as a reference on Section 3.2. 
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3.A. Timing diagram 
 

 

 

 

 

 

 

 

 

 

 

 

3.B. Information of the FPGA’s implemented logic 
 

 

 

 

 

 

 

 

 
  

Figure 3.16 – Timing diagram referenced in Section 3.3. 

Figure 3.18 - FPGA resources utilization. 

 

Figure 3.21 - FPGA power 
consumption. 

Figure 3.17 - Integrated ‘mov_avg’ IP block schematic. 

Figure 3.20 - FPGA logic 
layout. 

Figure 3.19 - Pulse width. 
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3.C. Results table 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

Figure Parameter Floating Point (Matlab) Fixed Point (FPGA) Change 

 Noise added  (σ2) 1x10-4 1x10-3 1x10-4 1x10-3 1x10-4 (%) 1x10-3 (%) 

8 

Filter length (N) 4 

Sigma multiplicative factor 50 

MSE 0.00016072 0.000846545 0.000160746 0.000846592 +0.016177 +0.005552 

SNR (dB) 31.64 24.43 31.64 24.43 -0.015887 -0.005526 

PeakSNR (dB) 37.94 30.72 37.94 30.72 -0.016117 -0.005526 

Global Similarity (%) 92.05 67.61 92.05 67.60 -0.000217 -0.000444 

9 

Filter length (N) 4 

Sigma multiplicative factor 100 

MSE 0.000254682 0.000667664 0.000254709 0.000667742 +0.010601 +0.011683 

SNR (dB) 29.64 25.46 29.64 25.46 -0.010131 -0.011512 

PeakSNR (dB) 35.94 31.75 35.94 31.75 -0.010361 -0.011742 

Global Similarity (%) 89.72 73.34 89.72 73.35 -0.000669 +0.000682 

10 

Filter length (N) 9 

Sigma multiplicative factor 50 

MSE 0.000160537 0.000906685 0.000160546 0.000906783 +0.005606 +0.010809 

SNR (dB) 31.65 24.13 31.65 24.13 -0.005987 -0.010822 

PeakSNR (dB) 37.94 30.43 37.94 30.42 -0.005987 -0.010822 

Global Similarity (%) 92.17 65.81 92.17 65.81 -0.000217 -0.002127 

11 

Filter length (N) 9 

Sigma multiplicative factor 100 

MSE 0.000296587 0.000736503 0.000296641 0.000736601 +0.018207 +0.013306 

SNR (dB) 28.98 25.03 28.98 25.03 -0.018189 -0.013124 

PeakSNR (dB) 35.28 31.33 35.28 31.33 -0.017959 -0.013354 

Global Similarity (%) 88.37 72.27 88.37 72.27 -0.002263 -0.000138 

12 

Filter length (N) 16 

Sigma multiplicative factor 50 

MSE 0.00016108 0.000910483 0.000161083 0.000910579 +0.001862 +0.010544 

SNR (dB) 31.63 24.11 31.63 24.11 -0.002533 -0.010361 

PeakSNR (dB) 37.93 30.41 37.93 30.41 -0.002303 -0.010591 

Global Similarity (%) 92.15 65.69 92.15 65.68 +0.000109 -0.002436 

13 

Filter length (N) 16 

Sigma multiplicative factor 100 

MSE 0.000297388 0.000784837 0.000297413 0.000784952 +0.008407 +0.014653 

SNR (dB) 28.97 24.75 28.97 24.75 -0.008519 -0.014735 

PeakSNR (dB) 35.27 31.05 35.27 31.05 -0.008289 -0.014735 

Global Similarity (%) 88.47 70.37 88.47 70.37 +0.000339 -0.001279 

14 

Filter length (N) 25 

Sigma multiplicative factor 50 

MSE 0.000161714 0.000910427 0.000161711 0.000910529 -0.001855 +0.011204 

SNR (dB) 31.62 24.11 31.62 24.11 +0.001842 -0.011282 

PeakSNR (dB) 37.91 30.41 37.91 30.41 +0.001612 -0.011282 

Global Similarity (%) 92.10 65.69 92.11 65.69 +0.000760 -0.002740 

15 

Filter length (N) 25 

Sigma multiplicative factor 100 

MSE 0.000293998 0.000799112 0.000293994 0.000799207 -0.001361 +0.011888 

SNR (dB) 29.02 24.68 29.02 24.68 +0.001612 -0.011742 

PeakSNR (dB) 35.32 30.97 35.32 30.97 +0.001612 -0.011742 

Global Similarity (%) 88.74 69.69 88.74 69.69 -0.000338 +0.001148 

Table 3.1 - Results relative to figures 3.8 to 3.15 based on the aforementioned parameters MSE, SNR, PeakSNR, 
Global Similarity and Noise 
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4. Savitzky-Golay filtering as Image Noise 
Reduction with Sharp Color Reset 

This chapter is the second of two papers which resulted from this master 
dissertation work. It is a more elaborated filter than the one presented on the 
previous chapter, a Savitzky-Golay filter with sharp color detection and is placed 
here as a chapter belonging to this dissertation. 

The paper was submitted to the Elsevier – Microprocessors and 
Microsystems Journals & Books, has been accepted to be published on the 
Volume 74, in April 2020, with the number 103006. It can be found on the DOI 
webpage https://doi.org/10.1016/j.micpro.2020.103006. 

 

Ricardo Jardim, F. Morgado-Dias   
University of Madeira and Madeira Interactive Technologies Institute, 9000-390 Funchal, 

Madeira, Portugal 

rjjardim@gmail.com , morgado@uma.pt 

Abstract — Images acquired through photosensors, known to be 
non-stationary correlated signals, due to its acquisition characteristics, 
often come attached with uncorrelated, zero-mean, variance 𝝈𝝈𝟐𝟐, stationary 
processes. The latter can be built-up over the former, being sourced from 
two contributions, one dependently, known as photonic noise, while the 
other independently, if circuitry generated. Either way, a straightforward 
approach to reduce this noise would be the use of low-pass filters. We 
propose an improvement of the Moving Average Filter with a polynomial 
Savitzky-Golay filter. Based on the obtained results, we believe that, in 
most cases, this filter can produce better results than the standard Finite 
Impulse Response (FIR) filters since it does a better job in preserving the 
high-frequency signals. The challenge is to choose the best tradeoff 
between the window frame size, the derivative order and polynomial 
coefficients. The contour (color sharp) transitions are done through filter 
resetting every time the next pixel value is outside the variance markers of 
the filter. Since the processing is intended to be done in real time, we want 
to stick in time domain using fixed-point calculations. MATLAB is used to 
compare floating-point results with an integer processing platform, an 
FPGA. Error and Signal-to-Noise Ratio (SNR) improvements were 
achieved by several orders of magnitude using this new method. 

Keywords — Savitzky-Golay filter; noise reduction; polynomial 
smoothing; least-squares; FPGA; DSP; signal processing; fixed and 
floating-point arithmetic; color transition detection. 

https://www.sciencedirect.com/science/journal/01419331/74/supp/C
https://doi.org/10.1016/j.micpro.2020.103006
mailto:rjjardim@gmail.com
mailto:morgado@uma.pt
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4.1. Introduction 

There is no easy way to properly make a choice about what method to 
apply to reduce the noise out of a signal. It is desirable to be quick and simple 
but at the same time as efficient as possible. Noise reduction techniques has 
been a hot topic for 20 to 30 years now and still continues improving, relying the 
bulk of its development with a strong basis of statistics and optimized with a 
proper numeric tool. Designing for mobile low power devices, it is required and 
desirable to make use of techniques that permit quick, almost instantaneous 
results. 

When photon-to-electrons conversion takes place on a photosensor 
leading to an image generation, the result can be a noisy signal whose 
magnitude is inversely proportional to the efficiency of the conversion rate. The 
contained signal be sourced from two ways, as described by Alparone et al. [3]. 
This conversion was already studied, quite some time now, by Karp and Clark 
[19] and published in 1970. The work describes the photoelectron counting 
problem which is classical in noise generation where it is assumed that an 
electromagnetic signal resulting from this conversion is a deterministic, zero-
mean, Gaussian random process which can be expanded by Karhunen-Loéve 
series of orthogonal functions. The functional similarity is shown by Laguerre 
polynomials as well as the MAP (maximum a posteriori) and the ML (maximum 
likelihood) constraints estimation functions. 

Argenti et al. in [4] and [5], uses a new approach of point despeckling or 
smoothing a high variability signal that can produce good results on low 
gradient transitions while still preserving most of the image’s signal energy. 
However, it is based on undecimated wavelet decomposition, which is better 
explained by Starck et al. [21]. It requires the use of transforms between the 
time and the frequencies’ domains. It should be reminded that the purpose of 
this work is to maintain low computational processing resources and also within 
the realm of the time-domain, so avoiding high resourceful demanding filters. 

Sikora [30], uses a relatively low complexity approach based on a shape-
adaptive Discreet Cosines which in turn, is based on Gilge’s [31] arbitrary 
shaped images processing algorithm with orthogonal transforms. It is a good 
algorithm for managing image segments of random shape yet using low 
computational resources but again, involves transforms between domains, a 
high demanding computational expense not practical on many of todays’ 
FPGAs integer operational nature. 

Block-matching 3D (BM3D) transform, proposed by Chen [32], has an 
augmented performance for denoising mild noisy images. It works by grouping 
similar 2D image’s fragments into an array, that can be regarded as the addition 
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of an extra dimension, effectively, sets of 3D blocks from which it derivates its 
name. It has, however, a low efficiency when the noise increases because, 
along with it, the similarity mismatching also increases. Besides, this algorithm 
uses, as well, DCT transforms. 

Another proposal of 2D block-grouping into 3D arrays which is based on 
an enhanced sparse representation is studied by Dabov et al [33]. The author 
tags Collaborative filtering to the manipulation of these similar 3D arrays, which 
includes 3D transformation, shrinkage of the signal’s spectrum in order to 
reduce the noise, and inverse 3D transformation. These transforms use discreet 
cosines hence, another method that gives the power of the spectrum 
manipulation but increases the complexity and the computational resources. 

A general mathematical denoising model, in comparison with other 
models and their classification, along with a proposal of a NL-means (Non-
Local) algorithm is suggested by Buades et al. [34]. NL-means are Euclidean 
distances between patches. Patches are themselves sets of two pixels centered 
in the middle of their junction. In his proposal, he tries to preserve the structure 
of the image, a feature within the context of our previous paper [35] as well as 
this work’s objective, although using other techniques. To achieve this, he 
makes use of numerical analysis, statistical models, weighted similarities 
between pixels and patches with certain limits’ assumptions. Additionally, it is 
used anisotropy, a curvature motion technique, but this leads us to the 
frequencies’ domain, which is out of scope of our proposal. 

Deledalle [23] proposes a new approach for a known uncorrelated noise 
model which is an extension of the NL-means [34]. It is proposed a more 
generalized similarity approach among pixels and patches in which it has 
dependency with the distribution model of the noise. The selected weights can 
be refined based on the similarity taken out from the last estimation. This 
technique improves somehow the SNR, particularly, on SAR (synthetic aperture 
radar) images but also, in general, with images affected by additive Gaussian 
and by multiplicative speckle noise models. The author claims improvements on 
the latter. 

Another numerical model in which it is defined color multiscale analysis 
and graph-based data representation is exploited by Malek [22]. It uses a 
quadratic Laplacian form to obtain information about the energy distribution as 
means to draw the new data representation. It also spots the parameters’ 
influence on that distribution. This approach applies a psychovisual technique 
but does not consider the computational resources used as priority, besides, it 
makes used of wavelet transforms, which means having to work with floating-
point complex numbering. 

Right in the beginning of his shape-adaptative DCT paper, Katkovnik 
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[20], deliberately warns for the retained complexity pretraining to all comparable 
block DCT algorithms. This is yet, another research that combines shape-
adaptative blocking with local polynomial approximation and with anisotropy. It 
first works by deblocking the image, previously compressed with blocking DCT. 
It then computes the confidence intervals to find the transform’s support shape 
on a pointing adaptative method. By previously establishing the appropriate 
threshold values, it then finds the estimation coefficients that will serve to 
reconstruct the signal’s support shape. Furthermore, the shapes’ supports 
normally overlaps in the same pointwise neighborhood, leading to further 
computations which are required to make weight averaging. It also proposes 
some restrictions in the luminance-chrominance space in order to increase the 
accuracy of the image’s colors. This adaptative reconstruction procedure 
enhances the color transitions, meaning it cleans the undesired artefacts, in fact 
one of the goals of our work’s proposal, consequently, the results are visually 
catching. However, besides using transforms between domains, it is too 
computationally demanding to be considered within this paper’s boundaries. 

Given the above researches, seems that all high-quality results belong to 
the realm of the frequencies’ transforms, However, we think there is still room 
for improvement not necessarily needing to leave and returning the time domain 
as is this paper’s proposal.  

Following the processing approach described by Jardim and Morgado-
Dias [35], in which an adapted moving average technique, suitable for real time, 
mobile, low power devices was worked out, we introduce the polynomial 
flexibility towards noise reduction. It has a benefit to emboss the inflection signal 
points, and from there, take the appropriate decisions for further processing. A 
quick introduction of the moving average filtering can be consulted in Smith [27]. 

In a simple and carefully tweaked way, these techniques permit to obtain 
a real-time processing without much visual difference relatively to the most 
complex ones. This may lead to a one-fit-all general rule which can be 
especially true in the case of the photon dependency nature of the noise 
generation, given that, by the side of the circuitry independent noise generation, 
a previous study can be made in order to map and create a model to virtually 
wipe out the noise generated from this source.  

Anyway, for quick, yet good visual results, good candidates’ methods for 
noise estimation which seems to give better results are those that detect and 
apply a correction that less deviate from the noise free references.  

Parameters that can be used to quantify the level of uncorrelated 
randomness in an image, although not always related with the visual perception 
are the Mean Squared Error, MSE, a parameter that parabolically magnifies the 
error the more it deviates from the reference. The ubiquitous Signal-to-Noise 
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Ratio, SNR, can be used to qualify the signal deterioration, for example, with the 
help of the former computed MSE. Similarity between two sets of pixels is 
another parameter that can be used to measure its differences either globally, a 
unique value which translates the whole difference between the pixels’ sets, or 
locally, a map based on a per-pixel comparison.  

Bearing in mind that the aim of this work is to study denoising solutions 
that target low power consumption, low processing demanding and ready to be 
viewed images, it is always possible to save resources by using fixed point 
calculation units such as Field Programmable Gate Arrays, FPGAs, Digital 
Signal Processors DSPs and the most recent mobile Central Processing Units, 
CPUs, in spite these last two possess the capability to make floating-point 
calculations. With these resources, it is tempting to use transforms between 
time/space and frequency domains. However, making these operations, the 
computational price to pay in order to obtain better visual results in the 
frequency domain will rise non-linearly and will end up revealing unfruitful due to 
the intensive use of the floating-point computations.  

For those less familiar with floating point arithmetic, Nascimento, Jardim 
and Morgado-Dias [36] presented the standard approach defined in IEEE 745, 
which involves numbering decomposition in signal, exponent and significand or 
mantissa parts, only after, the operation takes place. While two numbers’ 
addition is done roughly in a straightforward manner, multiplication is done first 
by adjusting the exponents for addition, then the product of mantissas is 
computed, and this requires a great load of bit shift manipulation. The result has 
yet to be coded in the floating-point format. A quicker approach evolves the use 
of lookup tables which introduce errors of higher magnitude orders. 

If the proposed solution is to exploit the advantages of several FPGAs 
architectures, even if using fixed-point arithmetic at, for example, 64-bit 
resolution depths which were used in this work, it is possible to keep rounding 
errors to its minimum. Our tests reveal fixed- to floating-point differences 
roughly between 1.4 × 10−4 and 1 × 10−3. 

 

 

 

 

 

 

 

Figure 4.1 - Response of a Savitzky-Golay filter. The curve is the 
polynomial fit, 𝒑𝒑�(𝒏𝒏) [24]. 

S-G Impulse Response: N = 6, M = 16 

sample time n 
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Maintaining the low complexity of the Moving Average filter presented by 
Jardim and Morgado-Dias [35], we propose a polynomial Savitzky-Golay filter. 
Contrary to the flat averaging behavior of the former, the S-G filter is built with a  

 

 

polynomial estimator 𝑝𝑝�, of an arbitrary degree N, and coefficients 𝑜𝑜� that 
minimizes the least squares error difference, which in the case shown in Figure 
4.1, responds to the unit impulse in the range of n integers −𝑀𝑀 ≤ 𝑠𝑠 ≤ 𝑀𝑀. Due to 
its control’s flexibility, compared to the former, it makes available more degrees 
of freedom. The challenge is to choose the best tradeoff between the window 
frame size, the derivative order and the polynomial coefficients. Color transitions 
are made through filter resetting, similarly to what was done by Jardim and 
Morgado-Dias [35] every time the pixel under scrutiny is outside the established 
variance markers. It is possible to obtain better results than the standard FIR 
filters, such as those previously obtained with the moving average filter due to a 
better interpolation adjustment, hence, resulting in better high-frequency signals 
preserving, critical in denoising processes. 

The key principle of noise reducing is to seek for a low variability between 
adjacent values, a well-known characteristic of any signal’s source. It is possible 
to use this feature to correlate adjacent pixels while identifying the random 
uncorrelated additive noise. Though, it is possible to substitute the correlated 
signal points with an average value, so reducing the high variability differences. 
If more surrounding values are compared, the further the ambiguity reduces. In 
this sense, it is easy to see that Savitzky-Golay filter follows the same line as 
the moving average filter. Coupled with contour color detection, most of the 
image’s relevant information can be preserved.  

Due to its polynomial nature, Savitzky-Golay filters can be easily derivate 
𝑖𝑖 − 1 times, 𝑖𝑖 being the polynomial degree. This often reveals hidden 
information, like the trend of the curve, the inflective points and gives the 
possibility to take appropriate decisions for data treatment. It has frequently 
been verified that degrees of 𝑖𝑖 = 2 and 𝑖𝑖 = 4 give the best results. This 
behavior contrasts with the flat nature (if no autoconvolution is applied) of the 
moving average filter. The lower the polynomial degree, the better it smooths 
the signal but less preserves the highs and the widths of the signal.  

Arguably, the biggest advantage of making all the operations in time 
domain, within the context of this work proposed objectives, is that complex 
domain transforms’ computations along with additional processing for selection 
and suppression of bands where noise is more noticeable, all together are 
avoided.  

𝑝𝑝�(𝑠𝑠) = � 𝑜𝑜�2𝑘𝑘

⌊𝑁𝑁/2⌋

𝑘𝑘=0

𝑠𝑠2𝑘𝑘 (4.1) 
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All floating-point data computation was done using MATLAB scripts and 
compared with a Zynq-7000 FPGA series for fixed-point results. The theory 
contents are reviewed in Section 4.2, including the process of noise addition to 
a signal, the parametrization to measure the noise in images, a brief explanation 
of the Savitzky-Golay filter and finally, the color sharp transition algorithm. In 
Section 4.3 a brief description of configuration of the testing platform is given. 
On Section 4.4 we describe the results, and in Section 4.5 we take the 
conclusion notes. 

4.2. Proposed Savitzky-Golay filter 

4.2.1 Uncorrelated Stationary Random Processes 
Noise is a stationary, uncorrelated random process that is normally 

attached to images acquired from image sensors. When the acquisition channel 
is unknown or when the noise itself expresses an unknow behavior it can be 
assumed to possess a zero-mean, variance 𝜎𝜎2 and assumed, as well, as to be 
equally distributed all over its bandwidth, that is, white Gaussian noise. It can, 
however, culminate in estimation, leading to the creation of more appropriate 
models. Image features, such light, brightness and contrast should not change 
the noise model for the same sensor. Noise generation acquired from photonic 
contribution is a dependent process, while noise generated by the equipment 
underlying circuitry photon-to-electron conversion is an independent process. 
The contribution ratio of the latest, the deterministic model, and the foremost, 
the photon unpredictable model, has been reduced due to the progress being 
made in the technology. 

4.2.2 Noise metrics 
Most channels add noise spread all over its bandwidth that follows a 

Gaussian probability distribution known as AWGN or Additive White Gaussian 
Noise with a zero-mean and a variance 𝜎𝜎2. A feasible way to get the noise 
metrics is to determine how far a set of noise free pixels is from its counterpart 
contaminated version. The least square error, MSE, can be used for this 
purpose: 

 

 

𝑌𝑌�  is the estimator of the noiseless image and 𝑌𝑌 the noisy image. The estimator 
is the unbiased probabilistic parameter acquired from a theoretical infinite 
number of trials, 𝑁𝑁, which will converge and will result into the Central Limit 
Theorem. Thereafter, as N grows, 𝜎𝜎2 reduces proportionally. Once determined, 
MSE can be used to obtain another important metric, the Signal-to-Noise Ratio, 
SNR: 

𝑀𝑀𝑃𝑃𝑀𝑀 =
1
𝑁𝑁
��𝑌𝑌�𝑖𝑖 − 𝑌𝑌𝑖𝑖�

2
𝑁𝑁

𝑖𝑖=1

(4.2) 
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The peak SNR, PSNR, can be obtained using the image maximum pixel 
resolution, maxPR: 

 

 

Structural Similarity Index, SSIM, is yet another parameter that can be 
used to quantify how far the original pixels detach from their noisy counterparts. 

4.2.3 Savitzky-Golay filter 
Savitzky-Golay smoothing filters, Schafer et al [24], are typically used to 

"smooth out" a noisy signal whose frequency span (without noise) is large. They 
are also called digital smoothing polynomial filters or least-squares smoothing 
filters. In essence, this kind of filters perform, in some applications, better than 
standard averaging FIR filters, which tend to filter the high-frequency content 
along with the noise. Additionally, these filters are more effective at preserving 
high frequency signal components but are less successful at rejecting noise. 

Savitzky-Golay filters are optimal in the sense that they minimize the 
least-squares error in fitting a polynomial to frames of noisy data. 

They fall into a class of low-pass, time domain filters that smooth out data 
high variability taking advantage of the least-squares to minimize the errors, 
seen in Figure 4.2. On top, a synthetic signal with added Gaussian white noise. 
Below, the dashed line represents the noiseless signal and the solid line is 
filtered signal. These filters belong to the class or FIR filters, which are non-
recursive and are defined as polynomials. Depending on its polynomial degree 
suitable for some particular applications, they can be set up to adjust a 
particular curve or signal. They are considered better than other similar filters in 
the sense that they can be tweaked to preserve high frequencies hence, either 
or rejecting less noise or increase the smoothness. 

 

 

 

 

 

 

 

 

Top: A synthetic signal with added Gaussian white noise. Below: solid line is the noisy 
signal filtered with a S-G filter with M=16 (33 points), N=4. Dashed line is the noiseless signal 

data points 

𝑚𝑚𝑃𝑃𝑁𝑁𝑚𝑚 = 10 log10 �
𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚2

𝑀𝑀𝑃𝑃𝑀𝑀 �

Figure 4.2 - S-G filter with a size of 33 points and a 4th order 
degree. 

𝑃𝑃𝑁𝑁𝑚𝑚 = 10 log10 �
𝑌𝑌2

𝑀𝑀𝑃𝑃𝑀𝑀� (4.3) 

(4.4) 
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Similarly, to the moving average filters proposed by [35], Savitzky-Golay 
filters are completely described in the time domain. The interest in these filters 
came from the observation that its successive derivatives could give information 
pretraining to the trend of the curve, which is not always easily detectable, 
namely the heights and the widths and the inflective points. They constitute a 
useful tool in chemical spectrometric analysis and, in subject of this work’s 
interest, noise reduction. 

Savitzky-Golay filters can be described as: 

 

 

The pixel 𝑓𝑓 at position 𝑠𝑠 to be filtered is linearly combined with adjacent 
pixels, to its left 𝑠𝑠𝐿𝐿 and to its right 𝑠𝑠𝑅𝑅, to generate the pixel 𝑠𝑠. Parameters 𝑐𝑐𝑛𝑛 are 
the weight contribution coefficients that have to be determined to take 
advantage of the curve fit. 

 

4.2.4 Behavior on the frequency domain 
Simply stated, the idea for building this filter is to find a polynomial 

equation 𝑝𝑝, with coefficients 𝑜𝑜, with variable 𝑠𝑠:  

 

 

that fits the data by the difference of the least squares error, 𝜀𝜀, 

 

 

where 𝑚𝑚 is the data points. Figure 4.3 shows the behavior of the S-G filter with 
several polynomials’ orders which are the frequencies’ domain representation of 
the impulse response given in Figure 4.1. Care must be taken to properly adjust 
the curve fitting, that is, the filter size 2𝑀𝑀 +  1, has to be equal or greater than 
the number of the coefficients of the polynomial order, 𝑁𝑁 +  1. Additionally, 𝑁𝑁 
shall not be too large resulting, as such, in an improper curve fitting. However, 
given these unfavorable factors, if the order 𝑁𝑁 and the number of points 𝑀𝑀 are 
wisely chosen it is possible to take advantage of several frequency pass or 
rejecting band behaviors.  

𝑠𝑠𝑖𝑖 = � 𝑐𝑐𝑛𝑛 𝑓𝑓𝑖𝑖 + 𝑠𝑠
𝑛𝑛𝑅𝑅

𝑛𝑛=−𝑛𝑛𝐿𝐿

𝑐𝑐 

𝑝𝑝(𝑠𝑠) = �𝑜𝑜𝑘𝑘

𝑁𝑁

𝑘𝑘=0

𝑠𝑠𝑘𝑘 

𝜀𝜀𝑁𝑁 = � ��𝑜𝑜𝑘𝑘𝑠𝑠𝑘𝑘
𝑁𝑁

𝑘𝑘=0

− 𝑚𝑚[𝑠𝑠]�
𝑀𝑀

𝑛𝑛=−𝑀𝑀

 (4.7) 

(4.5) 

(4.6) 
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The filter half decay, where the cutoff frequency happens at 3 dB, is 
determined by the order 𝑁𝑁 and by its length 𝑀𝑀. Like the moving average filter, 
as expected, the longer the M the shorter the cutoff frequency. 

The Z-domain unit circle where the zeros might appear, traces the sharpness of 
the cutoff decay. 

It can be shown that if the system response, 𝑀𝑀�𝑜𝑜𝑗𝑗𝑗𝑗��
𝑗𝑗=0

= 0, it imputes a 

constant top limit horizontality during its passband. It continues this behavior 
through its 𝑜𝑜𝑡𝑡ℎ derivative, on the frequencies’ domain, 𝜔𝜔, for 𝑜𝑜 = 1, 2, … , N: 

 

 

where h is the system’s impulse response. 

Similar to the moving average filter, the S-G has a poor stopband. The 
secondary lobes have high amplitude in pretty much all of the fitting polynomial 
orders. 

It is well established that the higher the polynomial order N, the higher 
the cutoff frequency, and for this matter, as stated above, the shorter the 
number of points M. 

 

4.2.5 Color transitions 
Different from the constant mean value of the moving average filter in 

Jardim and Morgado-Dias [35], Equation 4.8, the color transitions are now the 
mean of the least square errors, 𝜀𝜀𝑁𝑁���, given in  Equation 4.6: 

 

 

The decision to include the next pixel, 𝑝𝑝, in the curve fitting, is taken if its value 
is within the threshold marked by 

𝑖𝑖𝑟𝑟𝑀𝑀�𝑜𝑜𝑗𝑗𝑗𝑗�
𝑖𝑖𝜔𝜔𝑟𝑟 �

𝑗𝑗=0
= (−𝑗𝑗)𝑟𝑟 � 𝑠𝑠𝑟𝑟ℎ[𝑠𝑠] =

𝑀𝑀

𝑛𝑛=−𝑀𝑀

0

𝜀𝜀𝑁𝑁��� = 𝑦𝑦 

Frequency response of S-G Filters (M=16) 

normalized frequency 𝑗𝑗
𝜋𝜋

 

Figure 4.3 - S-G filters in frequency domain with 
𝑀𝑀 =  𝑠𝑠𝐿𝐿  =  𝑠𝑠𝑅𝑅  =  16 and polynomials orders 𝑁𝑁 of 
0, 2, 4, 6 and 12 [24]. 

(4.8) 

(4.9) 
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𝑝𝑝 resets the filter if it is outside the threshold. 

The standard deviation, 𝜎𝜎, where 𝑀𝑀 is the filter length, is: 

 

 

Shown by Jardim and Morgado-Dias [35], the color sharp transition 
maintains clear image’s contours, i. e., it keeps out the blurriness. Figure 4.7, 
shows an image with a row of pixels sampled, on top, which was added 
variance noise of 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

In the middle, the row is filtered using various sizes of moving average 
and in the bottom, filtered with several sizes Savitzky-Golay filters with 2𝑛𝑛𝑛𝑛 and 
4𝑡𝑡ℎ orders. It is immediately visible that the S-G filters make a better filtering job. 
High values reveal lighter tones while low values are darker tones. 

It is our intention to show that, substituting the Moving Average filters, 
implemented in FPGAs [35], by Savitzky-Golay filters, not only does not 
increase complexity much more but also, reveal better results. 

 

4.3. Test settings 
The methodology used for the tests settings was to obtain as clear as 

possible, i. e., noise free, high-resolution images, as a reference, and then 
generate pseudo-random noise white Gaussian noise, AWGN, using a variance 

(𝜀𝜀𝑁𝑁��� − 𝜎𝜎) ≤ 𝑝𝑝 ≤ (𝜀𝜀𝑁𝑁��� + 𝜎𝜎) 

𝜎𝜎 = �
𝜀𝜀𝑁𝑁���

2𝑀𝑀 + 1
 (4.11) 

(4.10) 

Comparison between Moving Average and S-G filters 
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Figure 4.4 - Filtering an image pixels row, profiled by a red line (on top) with a Moving Average filter 
(middle curve) and with a S-G filter (bottom curve). 
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of 𝜎𝜎2 = 1 × 10−4. 

The algorithms are then tested in a fixed-point FPGA board comparing it 
with a floating-point MATLAB version with the same bit-depth. Both platforms 
ran a version of the moving average filter comparing it with the proposed 
Savitzky-Golay filter. Tests were done using 13-bit depth resolution source 
images, which were acquired from a high sensitivity sensor on a balanced 
brightness-contrast environment, targeting the minimization of the photonic 
noise dependency.  

In order to generate the Gaussian noise, the reference source images 
were fed into MATLAB, were normalized and noise contaminated then the 
version to be tested in the FPGA board was converted back to fixed point 13-bit 
depth resolution. Normalization in MATLAB is a required process since mostly 
functions work by taking a minimum quantization scaling error in the range 
between 0 to 1. 

Due to its versatility, fixed-point tests ran in a ZedBoard FPGA SoC 
Zynq-7000, model XC7Z020-CLG484-1, that can be seen in Figure 4.5. Xilinx 
Vivado 2018.3 version, was used as platform environment. The main FPGA 
programming language used was Very-High Speed Integrated Circuit Hardware 
Descriptive Language, VHDL, and some APIs in Verilog. The noise 
contaminated image, fixed-point version, was transferred to the FPGA board 
using a mini SD card, the same that bootstraps a Linux OS board adapted 
version. 

 

 

 

 

 

 

 

 

 

Some math operations such as multiplication can easily overflow if care 
is not taken to properly dimension the registers used for operations. Images 
were acquired using a 13-bit pixel photosensor, but for consistency and platform 
compatibility (FPGA and MATLAB), images were scaled up to 16-bit. This is 
because register reusage due to successive refeed operations can easily lead 
to sky rock roundoff errors. Therefore, MATLAB’s natural operation with 64-bit 

Figure 4.5 - Testing FPGA SoC ZedBoard 
Zynq-7000 platform. 

ZedBoad Zynq-7000 SoC FPGA boad 
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registers was chosen to be implemented on the FPGA also not only to maintain 
the errors to a minimum, because it floors integers to the nearest decimal zero, 
but also accommodates deeper bit resolutions, that is, above 13 bits. It should 
be said that this sensor has a photon to electrons factor conversion of 1 to 
1 × 103. 

Jardim and Morgado-Dias [35] verified that the squared errors differences 
between the fixed- and the floating-point calculations was roughly 2 × 10−3% 
and 2 × 10−2%. We expect to maintain the same order of magnitude for the two 
filters’ comparisons. 

 

4.4. Results 
Figure 4.6 shows a comparison between a moving average filter a S-G 

filters. The filtering curves were generated without searching the colors’ 
contours. It is clearly visible that the S-G filters give the best results in the signal 
preservation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

length (pixels) 

Figure 4.6 - Above, moving average vs. below, Savitzky-Golay. 
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A pair of images is given in Figure 4.7, the top one is the noiseless and 
the bottom is the same image but with 0.001 AWGN variance. Figures 4.8 
through 4.12 show comparisons between MA filters, on top and S-G filters, on 
bottom. As verified by Jardim and Morgado-Dias [35], for MA filters above 𝑁𝑁 =
25, the filtering removes too much image information, hence, in this paper, S-G 
filtering will not be extended above this value. Given the results achieved by 
Jardim and Morgado-Dias [35], the best filters sizes are for 𝑁𝑁 = 4, 9, 16 or 25. 
Since Savitzky-Golay filters work better with odd filter sizes, they will be 
incremented, if even. Regarding to the MA’s Sigma Multiplicative Factor, 
SMF=50 or SMF=100, it will be used, in the case of Savitzky-Golay, two 
polynomial orders of 𝑁𝑁 = 2 and 𝑁𝑁 = 4, respectively. 

Appendix 4.A, shows a table with the results for the MA and the S-G 
filters. The fixed-point ones were done in the Zynq-7000 FPGA and the floating-
point ones in MATLAB. 

 

4.4.1 Discussion of the results 
Results are shown below, in Table 4.1. Comparison was made between 

a moving average filter of several sizes and the Savitzky-Golay filter order 2, 
compared to SMF of 50, and the order 4, compared to SMF of 100. These 
orders were chosen according to several studies already made, being 
consistently verified to give the best results. This is majorly due to the optimal 
coefficients that makes the polynomial best fit the data with the minimum 
squares error, hence, as can be showed in Figure 4.6, that the S-G filter 
“constantly” seeks to fit a given signal, even if it encounters high frequency 
steeply transitions, using lengthy filters, contrary to the MAs which pretty much 
behave by averaging the whole signal, meaning to lose all the image’s 
information details.  

On other hand, MA filters deal better with noisy flat colors, since they 
bounce with a less degree, especially after a high derivative transition, that is, 
are less affected by Gibbs effect. 

It can be questionable whether comparing MAs’ SMFs with S-Gs’ 
polynomial orders would be a fair treat. However, comparing the same filtering 
length for both filters, a trade between curve adaptability (in S-G) for an 
increase of variance (in MA) would be feasible, given the attained results. S-G 
achieves better results in shorter filter sizes, degrading to lengthy filters, in 
orders of 2 vs. 4, (38 to 40 vs. 27 to 36 dB), comparatively to MA filtering.  



 46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The last set of images, in Figure 4.12, show that both the MA and the S-
G, filters with length above 25 points the smoothing is done in patches, visibly a 
shear reduction in the image’s quality.  

Figure 4.10 - Filter size=9. Top: Floating-pt, Left: S-G filter, 
Ord=4, Right: MA filter, SMF=100. Bottom: Fixed-pt. version 
of the Top. 

Figure 4.9 - Filter size=16. Top: Floating-pt, Left: S-G filter, 
Ord=2, Right: MA filter, SMF=50. Bottom: Fixed-pt. version 
of the Top. 

Figure 4.7 - Top: Original noise 
free. Bottom: Added noise with 
0.001 AWGN variance (σ2). 

Figure 4.8 - Filter size=4. Top: Floating-pt, Left: S-G filter, 
Ord=2, Right: MA filter, SMF=50. Bottom: Fixed-pt. version 
of the Top. 

Figure 4.12 - Filter size=16. Top: Floating-pt, Left: S-G filter, 
Ord=4, Right: MA filter, SMF=100. Bottom: Fixed-pt. version 
of the Top. 

Figure 4.11 - Filter size=25. Top: Floating-pt, Left: S-G 
filter, Ord=4, Right: MA filter, SMF=100. Bottom: Fixed-pt. 
version of the Top. 
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4.5. Conclusions 
There is available several degrees of freedom to exploit, and it is 

important to say that, due to the polynomial nature of the Savitzky-Golay filters, 
each new derivative can reveal further information not immediately seen in the 
data being smoothed. It is possible to infer from the figures, that the best results 
are achieved by S-G filters, those on the left columns. 

The final inferences can result in ambiguous decisions and it should be 
said that these tests were done, using as source, a generated synthetic image 
that can, most of the time, resemble real-world pictures due to its trade in 
smooth color changes and sharp color transitions. Comparison between 
floating- and fixed-point calculations are minimal due to the use of 64-bit 
registers. This is possible because the registers are much larger than the 
images bit depth resolutions and this way it is possible to reduce the round-off 
errors. Consequently, as a rule of thumb, the registers to be chose, in order to 
make these computations should be at least the quadruple the bit-depth size the 
highest digital number of the picture, rounded up to the nearest multiple of 8. In 
this case, the 13-bit depth images used for the tests were round up to 16-bit and 
all the math done on 64-bit registers. 

An inverse scaling polynomial function of low order degree was created, 
modeled and adjusted as a post-filter to the application of the S-G filters to 
further smooth the noise in darker colors relatively to the lightest ones, because 
the noise is more perceptive in dark tones. 
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4.A. Appendix 
 

   
Table 4.1 - Numerical results, measured with parameters MSE, SNR, PeakSNR, Global Similarity and 
comparison between S–G and MA filters. Some of these results correspond to the Figs. 4.8 – 4.12, as 
indicated by the Test/Figure column. 

Test / Figure Parameter Floating Point (MATLAB) Fixed Point (FPGA) Change (%)  

  Filter Used Savitzky-
Golay MA Savitzky-

Golay MA S-G  Fix. 
to Flt. 

MA  Fix. to 
Flt. 

Float S-G to 
MA 

Fixd. S-G to 
MA 

1 / 4.8 

Filter length  4 
Polynom. 
Order 2   2           

SMA   50   50         
MSE 0.000337336 0.000473407 0.000337345 0.000473429 2.67E-03 4.65E-03 -28.74 -28.74 
SNR (dB) 32.59 31.12 32.59 31.12 -2.53E-03 -4.61E-03 40.34 40.34 
PeakSNR (dB) 34.72 33.25 34.72 33.25 -2.76E-03 -4.61E-03 40.34 40.34 
GS (%) 83.81 78.93 83.81 78.93 4.18E-03 3.04E-03 4.88 4.88 

2 / NA 

Filter length  4 
Polynom. 
Order 4   4           

SMA   100   100         
MSE 0.000315486 0.000430113 0.00031552 0.000430134 1.08E-02 4.88E-03 -26.65 -26.65 
SNR (dB) 32.89 31.54 32.88 31.54 -1.11E-02 -4.61E-03 36.33 36.33 
PeakSNR (dB) 35.01 33.66 35.01 33.66 -1.11E-02 -4.61E-03 36.33 36.33 
GS (%) 85.60 81.24 85.60 81.24 5.84E-03 4.92E-03 4.36 4.36 

3 / NA 

Filter length  9 
Polynom. 
Order 2   2           

SMA   50   50         
MSE 0.00035738 0.00049495 0.000357373 0.000494928 -1.96E-03 -4.44E-03 -27.79 -27.79 
SNR (dB) 32.34354 30.92923 32.34362 30.92942 1.84E-03 4.38E-03 38.49 38.49 
PeakSNR (dB) 34.4687 33.05438 34.46878 33.05458 1.84E-03 4.61E-03 38.49 38.49 
GS (%) 82.89 78.06 82.90 78.07 4.34E-03 4.48E-03 4.83 4.83 

4 / 4.9 

Filter length  9 
Polynom. 
Order 4   4           

SMA   100   100         
MSE 0.000389991 0.000500329 0.000390046 0.000500359 1.41E-02 6.00E-03 -22.05 -22.05 
SNR (dB) 31.96429 30.88229 31.96368 30.88202 -1.40E-02 -6.22E-03 28.29 28.28 
PeakSNR (dB) 34.08945 33.00745 34.08884 33.00718 -1.40E-02 -6.22E-03 28.29 28.28 
GS (%) 84.54 80.10 84.54 80.10 6.62E-03 4.49E-03 4.44 4.44 

5 / 4.10 

Filter length  16 
Polynom. 
Order 2   2           

SMA   50   50         
MSE 0.000358618 0.00049607 0.000358593 0.000496053 -6.97E-03 -3.43E-03 -27.71 -27.71 
SNR (dB) 32.32852 30.91941 32.32883 30.91956 7.14E-03 3.45E-03 38.33 38.33 
PeakSNR (dB) 34.45368 33.04457 34.45399 33.04472 7.14E-03 3.45E-03 38.33 38.33 
GS (%) 82.78 78.00 82.79 78.00 5.19E-03 4.49E-03 4.79 4.79 

6 / 4.11 

Filter length  16 
Polynom. 
Order 4   4           

SMA   100   100         
MSE 0.000404021 0.00051525 0.000404014 0.000515254 -1.73E-03 7.76E-04 -21.59 -21.59 
SNR (dB) 31.8108 30.75466 31.81088 30.75463 1.84E-03 -6.91E-04 27.53 27.53 
PeakSNR (dB) 33.93596 32.87982 33.93604 32.87979 1.84E-03 -6.91E-04 27.53 27.53 
GS (%) 83.67 79.15 83.68 79.15 8.72E-03 3.79E-03 4.52 4.53 

7 / NA 

Filter length  25 
Polynom. 
Order 2   2           

SMA   50   50         
MSE 0.000358561 0.000496088 0.000358545 0.000496071 -4.46E-03 -3.43E-03 -27.72 -27.72 
SNR (dB) 32.32921 30.91925 32.3294 30.91941 4.38E-03 3.68E-03 38.36 38.36 
PeakSNR (dB) 34.45437 33.04441 34.45456 33.04457 4.38E-03 3.68E-03 38.36 38.36 
GS (%) 82.79 77.99 82.79 78.00 5.07E-03 4.87E-03 4.79 4.79 

8 / 4.12 

Filter length  25 
Order 4   4           
SMA   100   100         
MSE 0.000406163 0.000516593 0.000406159 0.00051658 -9.85E-04 -2.52E-03 -21.38 -21.38 
SNR (dB) 31.78784 30.74335 31.78789 30.74347 1.15E-03 2.76E-03 27.19 27.19 
PeakSNR (dB) 33.913 32.86851 33.91304 32.86863 9.21E-04 2.76E-03 27.19 27.19 
GS (%) 83.25 78.91 83.26 78.92 7.69E-03 4.94E-03 4.34 4.34 
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5. Testing 

5.1 Platform 
The testing platform was already covered in Chapters 3 and 4. However, 

and summing up, the main processing device used for tests and simulations 
was the ZedBoard Zynq-7000 All Programmable System on Chip (SoC) 
XC7Z020-CLG484-1 FPGA board, which is a hybrid FPGA+CPU all-in-one chip.  

The programmable logic is based on the Artix-7 series equivalent FPGA. 
The CPU is based on a dual ARM Cortex A9 running at 667 MHz. The shared 
memory between FPGA and the CPU is a 32-bit wide bus with a size of 512 MB 
type DDR3. This shared memory is a key feature in order to transfer and ease 
the data flow between the 2 processing units.  

On the CPU side, the data is prepared, resized in proper chunks and fed 
to the FPGA through the memory common address space. The Advanced 
eXtensible Interface (AXI4)-Lite protocol is used to setup, synchronize, read, 
write and flag the traffic in both ways. Figure 5.1 shows the layout of the Zynq-
7000 SoC chipset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 - The Zynq-7000 SoC series [38]. 
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The ZedBoard brings an SD card preloaded with a lite version of the 
Linux OS which is built with a RAM disk file system. This approach, named 
Xillybus, is an Intellectual Property (IP) developed to let users stay focused 
straight on the problem/solution paradigm instead of having to divert their 
attention into technical details of setting up and establish communication 
between the CPU and the FPGA, which, in fact, increases the chances to 
introduce additional bugs to the possible ones already existing in their 
project(s). 

Xillybus, comprises a wrapper, i. e., a module which includes data 
transportation protocols such as Direct Memory Access (DMA) and Peripheral 
Component Interconnect express (PCIe) in order to handle the data flow not 
only between the CPU and the FPGA but as well to other peripherals such 100 
and Giga bit Ethernet, USB, Video Graphics Array (VGA), and several others, 
including the dedicated JTAG debug serial channel, through a USB port. Figure 
5.2 shows the ZedBoard Zynq-7000 SoC along with all the possible peripheral 
accesses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2 - ZedBoard Zynq-7000 SoC with peripheral accesses [39]. 
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5.2 Data flow between FPGA and CPU 
As stated, the FPGA and the CPU exchange information through a range 

of memory addresses.  

The FPGA and the CPU tasks are explained more detailed later in the 
next subchapter. However, in brief, the FPGA’s role is to receive sorted columns 
of pixels from an image which is prepared and sent by the CPU, apply the 
developed algorithm and then return those processed pixels back to CPU.  

The Xillybus IP core manages one or more simultaneous bidirectional 
data streamings, for example, audio, VGA and a user IP, between the 
programable logic (FPGA) and the processing unit (CPU), as illustrated in 
Figure 5.3. 

 

 

 

 

 

 

 

The User IP is the author’s developed algorithm. 

As shown in Figure 5.3, a developed user application running on the CPU 
side communicates with User IP module, on the FPGA side, through the 
Xillybus IP core. The application supplies the raw data to be processed to the 
FPGA User IP module and afterwards collects it after being processed, which 
can then be saved to the SD card or relayed to the one of the peripherals such 
as VGA, Ethernet, USB or any other transport channel.  

The User IP can be composed by one or more modules, of any size and 
complexity, limited only to the FPGA resources available. All the modules are 
wrapped within a top-level module, which given the context of this Master 
dissertation, is called “Moving Average”. 

Depending on the type of project being designed, a First In First Out 
(FIFO) memory buffer can be placed either before, after or both (in some rare 
design requirements) of the User IP module, relieving the user to have to worry 

Figure 5.3 - Xillybus IP core functionality. User IP is the author’s own work. 
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about traffic details. This is achieved through Xillybus memory fullness or 
emptiness cycling probing, taking an appropriate action accordingly by 
triggering or stalling data transfers, through the “full”, “empty”, “read enable” and 
“write enable” flags. in either streaming directions. The Xillybus streaming 
bidirectional flow management, for matters of simplicity, is made without any 
assumptions about any specific data rates. There is, however, a minor efficiency 
price to pay with this procedure, in that, for small data chunks, instead of 
buffering a considerable amount of data and thereafter burst it, the FIFO keeps 
receiving and sending any data chunk sizes. For any other specific project, 
which every bit of efficiency is accounted, or even the need to control DMA 
memory access buffers is a critical factor, this solution offers little to none 
benefits. Its purpose is merely to ease one or more of three possible scenarios, 
prototyping, what-if testing or DMA future maintenance concerns. 

 

5.2.1 Driver communication process 

The communication process behaves pretty much like a named pipe [37]. 
A pipe is a shared memory section that serves for an intercommunication 
process between the FPGA IP module and the CPU host application. A named 
pipe is a one-way or a duplex pipe intended to establish communication 
between the pipe server and the pipe client. These later roles are exchangeable 
between the FPGA module and the host CPU, and for them, the pipes are seen 
as regular files which can be opened, read a written. However, its behavior is 
more like Internet TCP/IP streams or piped intercommunication processes, 
which in reality, is a FIFO on an FPGA fabric logic instead of yet another CPU 
process [37], [40]. 

For this communication process to be effective, data streams and its 
parameters are detected by the driver upon its load to the memory and, on the 
CPU host side, by the running application request, it is opened a memory 
communication process which is established through the AXI protocol from and 
to where the application can open, read and write files. Additionally, DMA 
buffers allocated on the host application and on the FPGA sides are informed 
about its addresses. The size and the number of the DMA buffers are stream 
independent. The exchanged data is transparent for both the host application 
and the IP core module and interpreted as a continuous data stream. In fact, the 
DMA buffers are being filled, handed over and acknowledged from side to side 
[37], [40]. 

  



 53 

5.3 FPGA IP core module 
5.3.1 Flowcharts 

The IP module is composed by three processes, 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐_𝑜𝑜𝑁𝑁𝑚𝑚, 
𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐_𝑚𝑚𝑜𝑜𝑜𝑜𝑠𝑠 and 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐ℎ𝑜𝑜𝑐𝑐𝑒𝑒_𝑠𝑠𝑓𝑓_𝑠𝑠𝑁𝑁𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖_𝑠𝑠𝑜𝑜_0, which are shown in the 
Figure 5.4, Figure 5.6, and Figure 5.9, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Concerning to the main process 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐_𝑜𝑜𝑁𝑁𝑚𝑚, whose flowchart is 
shown above, in Figure 5.4, as soon as the IP module starts receiving pixel 
values, send from the host application in the CPU side through the Xillybus 
management and upon clock synchronization, it immediately verifies if these 
pixels belong to a new streaming, which has a layout shown, below, in Figure 
5.5. 

Figure 5.4 - Process used to calculate the sum of pixels used for averaging. 
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The bidirectional data streaming is organized with a first section, the 
header, in red, which is composed by the squared filter size, 𝑁𝑁2, it is pre-
squared since it eases the calculations on the FPGA, the Sigma Multiplying 
Factor (SMF), explained in Chapter 3.4, the Factor Wheel Conversion (FWC), 
explained in Chapter 3.3, the maximum pixel bit depth and the number of 
passes that the filter should auto convolve, which is further explained in Chapter 
3.2.5. The next section of the steaming layout are the pixel values to be 
processed by the FPGA. 

On the left half side of the flowchart shown in Figure 5.4, a sequence of 
verifications is made to check the reset state of the header variables. All these 
variables are checked, in sequence, on each rising edge of the clock. If they are 
null then the received value is attributed to that variable. 𝑜𝑜𝑜𝑜𝑖𝑖 signal is used to 
clear all the module’s signals and variables.  

After the header has been received, shown on the right half side of 
Figure 5.4, there is an index incremental shift for the eventual pixels already 
under the averaging filter from their actual position to make room for the new 
input pixel. If the pixel is inside the range between [𝜇𝜇 − 𝜎𝜎…  𝜇𝜇 + 𝜎𝜎], except for 
the first one, which must start with an initial mean value, then it is accumulated 
on the variable 𝑜𝑜𝑁𝑁𝑚𝑚. Otherwise, it resets the counter, cleans the variables and 
starts a new counting, which means that a sharp color contour was detected on 
that area of the image where the pixel was token.  

Additionally, upon a reset, since the filter 𝑁𝑁 with a certain size, depending 
on the size chose value, grows starting from zero until 𝑁𝑁 − 1 it is constantly 
being assessed in order to verify if that size does not exceed its maximum 
value. Should ever this situation happen, the filter maintains the maximum size 
by extracting the older value and inserting the newer received one. 

This sequence of pixels is sent from the CPU host side application, 
column by column which can be seen as the temporal sequence fashion 
streamed by a line sensor to the FPGA in order to be processed, which is 
different from the pixels’ sequence of the standard spatial processing extracted 
from the area sensors or from an image already built. 

In parallel with the above described process 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐_𝑜𝑜𝑁𝑁𝑚𝑚, it runs 
another process called 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐_𝑚𝑚𝑜𝑜𝑜𝑜𝑠𝑠, whose flowchart is shown below in 

Figure 5.5 – Layout of the bidirectional data streaming between FPGA IP module and CPU host 
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Figure 5.6. Upon the 𝑜𝑜𝑁𝑁𝑚𝑚 variable update triggered by the input of each pixel, 
that variable triggers the 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐_𝑚𝑚𝑜𝑜𝑜𝑜𝑠𝑠 process. The 𝑚𝑚𝑜𝑜𝑜𝑜𝑠𝑠 variable is then 
computed by 𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁
  if the module pixels’ 𝑐𝑐𝑜𝑜𝑁𝑁𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜 is active or cleared otherwise. 

 

 

 

 

 

 

 

 

After acquiring the mean, 𝜇𝜇, in the main module, it is calculated the 

variance 𝜎𝜎2 = 𝜇𝜇
𝑁𝑁

 , then standard deviation 𝜎𝜎 = �𝜇𝜇
𝑁𝑁
 using a thirty-part algorithm 

[41].  

5.3.2 Increasing denoising smoothness on darker colors with a polynomial 
function 
As explained on Chapter 3.5, it was developed and introduced 2𝑛𝑛𝑛𝑛-order 

polynomial function to 𝜎𝜎 range of possible pixels’ candidates contributing to the 
𝜇𝜇 average. It was stated that the white noise, because of its equalized Power 
Spectral Density, it turns to be more perceptible in darker colors. The developed 
adjustment function increases the filter size in the time domain hence, 
narrowing the pass-thru filter in the frequencies’ domain.  

 

 

 

 

 

 

 

Figure 5.6 – Process which calculates the mean.  

Figure 5.7 – Sigma vs. pixels values curves: theoretical and desirable.  
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Figure 5.7 shows the 𝜎𝜎 vs. range of pixel values evaluation. In blue, the 

theoretical 𝜎𝜎 = �𝜇𝜇
𝑁𝑁
, which contradicts a correct usage of a larger filter for lower 

pixel values. It feels the need to invert this function to behave properly in 
agreement with the desirable result, that is, the sigma must broaden the range 
of pixels with lower values, restricting it as it progresses to higher values, which 

is shown by the orange curve 𝜎𝜎 = �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑠𝑠𝑎𝑎
𝑁𝑁

− �𝜇𝜇
𝑁𝑁
. 

However, due to the high resolution of the testing images (213 𝑜𝑜𝑠𝑠𝑖𝑖𝑜𝑜 =
 8196 colors, compared with standard image resolutions with 256 colors), the 
developed polynomial had to be adjusted for satisfactory visual results, and has 
a shape shown in Figure 5.8. 

 

 

 

 

 

 

 

The polynomial which was found to be equivalent to the desirable 
function is illustrated in Equation 5.1: 

 

FWC and SMF have both degrees of freedom which are dependent of the 
image sensor, in case of the first parameter and the level of noise it inputs, in 
the latter case. However, as stated above, tests revealed that in the specific 
case of having high resolution images, a much larger filtering coefficient should 
be imposed, hence the green curve of the Figure 5.8, is what was implemented 
after being adjust for the aforementioned best visual results. Additionally, since 
this function is to be computed on FPGA hardware, it must be converted to 
integer numbers. The model applied is shown on Equation 5.2, and the 
members appears in the same order in which the mathematical operations were 
made, towards efficiency and resources optimization. 

 
SMF√𝜇𝜇 137
√𝛮𝛮 125

−
SMF√𝜇𝜇 2257 𝜇𝜇

√𝛮𝛮 107
+

SMF√𝜇𝜇 𝜇𝜇2

√𝛮𝛮 82372323
 

SMF�0.50410−8 �FWC�
𝜇𝜇
𝛮𝛮�

2

− 0.000229�FWC�
𝜇𝜇
𝛮𝛮�

+ 1.036� 

Figure 5.8 – Developed polynomial compared with theoretical and desired curves 

(5.1) 

(5.2) 
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A verification process is also added to the module in order to check if the 
numerator is zero. This is trivial and should not be necessary since there is only 
problems on the division if the denominator is zero. However, problems were 
experienced in the referred situation and that was the reason this process was 
added. Since there are no situations where the denominator can be zero, 
because, as can be verified in Equation 5.2, 𝑁𝑁 can never be zero (its values 
range from 4 to 100), this process only verifies possible cases where 𝜇𝜇 = 0. As 
so, there are 3 members in which divisions applies, each one with a numerator 
and a respective denominator. Those 3 members are the ones that compose 
the 2𝑛𝑛𝑛𝑛-order polynomial function. The checking process is made by verifying if 
the numerator is zero. Should that be the case and it returns zero, otherwise 
computes the division. The flowchart of the process 
𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐ℎ𝑜𝑜𝑐𝑐𝑒𝑒_𝑠𝑠𝑓𝑓_𝑠𝑠𝑁𝑁𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖_𝑠𝑠𝑜𝑜_0 is shown in Figure 5.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.3 Schematics and Synthesis 
The code was developed using the Very High-Speed Integrated Circuit 

Hardware Description Language (VHDL) on the Xilinx Integrated Development 
Environment, Vivado, which is a well-known, well-supported hardware 

Figure 5.9 - 𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐_𝑐𝑐ℎ𝑜𝑜𝑐𝑐𝑒𝑒_𝑠𝑠𝑓𝑓_𝑠𝑠𝑁𝑁𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖_𝑠𝑠𝑜𝑜_0 which verifies if numerators 
are null, due to hardware issues. 
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descriptive language. As a note, hardware descriptive languages do not 
normally compile like software for CPUs/DSPs, which create an object file and 
the linker then translates it to opcodes or instructions for the CPU. A hardware 
descriptive language infers the VHDL user instructions into Configurable Logic 
Blocks (CLBs) or cells of the FPGA, with the best translation it can. These 
blocks are composed by registers or individual flip-flops, which work 
commanded by a clock, and by lookup tables (LUTs) where are implemented 
the combinatorial logic. Blocks are interconnected by programmable routes, 
while the FPGAs Input/Output (I/O) signals are being taken care by special 
blocks. Figure 5.10 shows the layout of an FPGA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 – Layout of an FPGA. 

Figure 5.11- Moving Average module connected to the Xillybus HDL platform. 
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The developed module was connected to a 32-bit FIFO module, as 
shown in Figure 5.11, on the Xillybus HDL platform, covered in Chapter 5.1.  

According to Xillybus recommendations, any developed user’s modules 
should be placed before or after an 8-bit or a 32-bit FIFO. This is because the 
CPU Processing System (PS) and the Programmable Logic (PL) sides have 
different clock domains, hence need some a buffering solution in order not to 
loose data.  

The Xillybus platform has available, besides the FIFOs, a 32-bit audio 
module, an 8-bit System Management bus (SMbus) for lightweight 
communications which is a subset of the serial I2C protocol and, two banks, one 
of 8-bit and one of 32-bit RTL RAM memories. All of these modules are 
connected to the Xillybus core which serves as a bridge between the PS and 
the PL sides using Random Access Memory (RAM) as data exchange payload, 
and in turn, this can be a synchronous or an asynchronous procedure.  

Inside the moving_average_inst VHDL module (the _inst suffix means 
“instance”) as it is called is just a conglomerate of FF’s and combinatorial logic 
and it is a descriptive hardware translation of the VHDL code. Figure 5.12 
shows a glimpse of the referred module. 

 

 

 

 

 

 

 

 

5.3.4 Timing diagram 
On Vivado, the Hardware Description Language (HDL) development 

environment of the Xilinx enterprise, the manufacturer of the SoC IC used in our 
concept-to-chip path Register-Transfer Level (RTL) analysis was made, in order 
to test its functionality. This is where some racing conditions may occur due to 
timing issues, triggered, for example, by the asynchronous functionality of the 
set and reset which is an important consideration for the signaling stability. In 

Figure 5.12 – Arbitrary section of the generated moving_average_inst module. 
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this RTL phase, attributes are generated such Maximum Fanout, Route 
Behavior and Debug Marks insertion points, along with Clocking, Multipliers, 
DSPs, Netlists RAM inferences as well as Cross Domains clocking, which in our 
case reveals of critical importance since the SoC has different clocks, either in 
the CPU and in the FPGA domains. Figure 5.11 shows an implementation 
fragment of one of the detailed testing scenarios shown by the Figure 3.16, of 
the Chapter 3.A.  

After testing the circuit’s functionality by series of simulations, some 
timing adjustments, especially the signaling of the counter resets (shown in red 
circles) revealed to be a critical problem. They are outplaced relative to where 
the true count reset should have been occurred (orange “eye” shapes and 
arrows), as can be seen in Figure 5.13.  

In other words, the circuit behaves as expected because the filter is reset 
on the correct places and in fact, the result outputs averaging values when the 
neighbor pixel falls inside 𝜇𝜇 ± 𝜎𝜎, otherwise it resets the counter and hence 
restarts a new averaging. However, the counter reset flag is misplaced.  

It is suspected this is due to hardware constraints, since these flags, 
which have a period of 3 ns have less than a clock period which is 10 ns. We 
wanted to have results coming out of the module immediately after the first 
pixel, a condition that is verified, however, not all hardware platforms can deal 
with this tide timings and as a consequence they should be tweaked in order to 
meet each brand and model constraints. Pulses behavior due to their sub-clock 
period was not predicted and they should be treated with relaxed timings, that 
is, they should propagate without timing constraints until output. 

 

 

 

 

 

 

 

 

 

Figure 5.13 – Timing diagram fragment of the testing scenario. 
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5.3.5 Implementation 
After Synthesis, it follows the Implementation stage, where the FPGA’s 

blocks are configured according to the VHDL source code translation made on 
the Synthesis stage. There, it is calculated the utilization resources of the PL 
side, shown in the top half of the Figure 5.14, including the power dissipation on 
bottom half of the same figure. It should be mentioned that FPGAs have a high 
energy efficiency despite their specific timing and signal structuring constraints, 
compared to, for example, to 9th generation i7 − 9700 Intel CPU, which has a 
power dissipation of 65 Watt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.6 Bitstream 
A bitstream generation is the FPGA resulting hardware configurable file 

that is to be uploaded upon the operating system boot. This bitstream file, is 
generated after the completion of the simulation, the synthesis and the 
implementation phases and it sets the functional logic and sequential gates, the 
internal routing and maps the external I/O connectivity. Figure 5.15 shows the 
resulting bitstream mapping for the Zynq-7000 SoC.  

Figure 5.14 – On top half, the resources utilization of the FPGA. On bottom half, the power 
dissipation of each one of those resources 



 62 

 

 

 

 

 

 

 

 

 

 

 

 

Every time any change or new functionality needs to be implemented; it 
must pass through the aforementioned phases until the resulting bitstream file 
with the bin extension which must be saved to the SD card to be booted along 
with the operating system. FPGA’s programmable logic is now ready to receive/ 
send data from/to CPU as explained in Section 5.2 through DMA access 
synchronous or asynchronously. 

 

5.4 CPU host applications 
On the CPU side, 2 separate C language developed programs, one 

named streamwrite_32 and the other named streamread_32.  

The foremost opens the image file stored on the SD card, reads the first 
two words, the image’s height and width in order to keep tracking of the number 
of pixels’ lines and columns. It then feeds the FPGA’s 32-bit FIFO with the 
remaining of the header, shown in Figure 5.16, along with the image’s pixels 
information. In order to be processed in FPGA, these images are first 
transposed in MATLAB, that is, lines with columns. This is because the chosen 
moving average filtering is a temporal filter and the lines were acquired from a 
line sensor. In this sense, the sensor acquires one line at each moment, passes 
it to the FPGA and immediately get the next line. The latter program, 

Figure 5.15 – FPGA gate and routing activation of 
the Moving Average algorithm. 
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streamread_32, reads from the command line parameters passed to it, starting 
by the image’s width and height and then stores processed pixels coming from 
the FPGA’s FIFO into a file, again column by column.  

The processed image is transposed again in MATLAB and then 
formatted into a more popular picture file format. 

 

 

 

 

 

Relatively to the streamwrite_32 program, following the already referred 
dimension words, width and height, each of the remaining words are stuffed 
with one null word, so becoming 32-bit and then streamed to the FPGA. This 
stuffing is the most sensible in order to avoid adding unnecessary logic of 
unpacking 2 × 16-bit out of a 32-bit, processing the first 16 LSB’s while holding 
the others 16 MSB’s for the next clock.  

This would make the FPGA’s result exiting at half of the input’s clock 
rate. Since there are only two FIFOs on the supplied Xillybus platform, one of 8-
bit and other of 32-bit, the latter one was picked, even though with half of the 
bandwidth used. Speed is not a critical factor here.  

From the CPU side, 32-bit are sent to the 32-bit sized FIFO (MSB’s are 
null). From these, the same 32-bit are debited but only 16 LSB bits are routed to 
the moving_average_inst module. 

On the other side, streamread_32 receives, at a time, the same 32-bit, 
column by column, but again, only 16 bits have meaningful data. The header, 
which is passed from the FPGA is saved to the image file untouched, i. e, 
without suffer any processing. All the other data is saved to a memory buffer 
and at the end this data suffers a transpose similar to a matrix transpose 
operation, which accordingly to what was already stated, due to the data being 
received column sequenced. 

The CPU side programs streamwrite_32 and streamread_32 only need to 
keep track the images’ sizes and, without any data change, the aforementioned 
program sends pixels’ column sets while the latter program receives them 
processed from the FPGA.  

Figure 5.16 - Image header structure 
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The flowchart represented in Figure 5.17, shows the sequence of 
explained actions taken by the streamwrite_32 C program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should not be necessary an additional flowchart for the FPGA 

Figure 5.17 – Flowchart of the streamwrite_32 C program. 
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processed data, since the sequence of actions are basically the in reverse order 
of those stated in Figure 5.17. 

5.5 Conclusions 
For versatility, online sheer amount of support and the convenience to 

have a CPU and an FPGA in one chip (SoC) a ZedBoard Zynq-7000 was 
chosen in order to develop, test and simulate the algorithms developed in this 
dissertation. However, with some additional work, the same results could have 
been obtained using solely one FPGA chip.  

Another advantage of this board is the utilization of a Linux version, 
making this a fully testing platform. For one side, the CPU is available on the 
same platform which can be programmed with any convenient data feeder and 
collector code in order to support the FPGA’s main algorithms. On the other 
side, from the CPU perspective, the FPGA is an accelerator that can be seen 
analogically as a sound or graphics accelerator, which can be accessed through 
a range of RAM memory addresses.  

This paradigm greatly simplified the development and the testing 
processes, particularly on data transportation between the CPU and the FPGA. 
To sum up and the way the whole process behaves, to the CPU, the FPGA is a 
file which can be written to and read from. To FPGA, data is a stream that 
enters the IP modules, is processed and exits to memory. 

In order to avoid additional programming complexity, MATLAB was used, 
especially on the image transpositions before sent to and after received from 
the testing platform in order to format the image according to a temporal sensor 
reading idiosyncrasy, and also to insert in each “column” (which is read as a 
line) the needed header for the FPGA algorithm. This way, the testing images’ 
format were tailored as a convenient raw processing format. 

As seen in the Chapter 5.3.4 -Timing diagram, it was possible to obtain a 
processing rate of pixel per clock also with a latency of 1 clock. However, since 
these algorithms are relatively low in computational expenditure it is expected to 
obtain such latencies. However, these should increase proportionally for more 
complex processing demands. 

In all, the whole results came up near to what was expected, 
notwithstanding some temporal latency in data processing. However, since 
timing is not an issue, mitigation time to this were not delved.  
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6. General Conclusions 
The objective of this dissertation was initially, to develop a denoising 

algorithm, using an FPGA as processing unit. Afterwards, on a sequence of an 
invitation for an event, it surged a second algorithm which was used as means 
of comparison to the first one. Both solutions would have to be computationally 
simple and speedy, targeting real-time images acquisitions and processing. This 
would require managing all the computations to be strictly in the time domain. 
Therefore, transforms to and from frequency domain would have to be 
excluded. 

The two chosen solutions, whose work resulted in a published paper 
each, were, a Moving Average filter, transcript in the Chapter 3 and a Savitzky-
Golay filter, transcript in Chapter 4. The research done to the state-of-art up 
until to the development decision of the first solution, leaded to conclude that 
quickness would arguably be the one with the required characteristics, that is, 
one of the most, if not the computational simplest and quickest solution. To 
compare its results, the Savitzky-Golay filter was opted. 

Basically, the working principles of each’s one filters are, first, the moving 
average filter builds up an average of adjacent pixel values. The condition for an 
adjacent pixel, to enter on that average is stated in Equation 3.8 and 3.9. The 
number of pixels has a limit which equals to the size of the filter 𝑁𝑁. The filter 
resets or restarts a new averaging buildup when the adjacent pixel is out of the 
range of the referred equations.  

The Savitzky-Golay filter, in turn, instead of being a filter with a constant 
average value, as is the moving average, it is built by adjacent pixels which 
follows a Minimal Mean Square Errors shape adaptative regression. This 
approach reveals better behavior particularly in high frequencies preservation. 

Even though being a simple time-domain filter, the moving average, 
when properly scaled to the resolution of the image that will be applied on, it can 
give comparable results to some other algorithms which require transitions 
between time-space and frequency domains. Additionally, it does an 
outstanding job in preserving the image’s sharp color transitions.  

Before implementing the algorithms in VHDL code, a MATLAB 
pseudorandom generator function was used to add synthetically noise 
variances of 𝜎𝜎2 = 1 × 10−4 and 𝜎𝜎2 = 1 × 10−3 to high-resolution images 
acquired with a high-quality line sensor. Thus, before this acquisition procedure, 
the image may be assumed to be virtually noise free. On Chapter 3, Table 3.1 
show results with these noise variances. 

Considering that the variance 𝜎𝜎2 = 1 × 10−3 generates perceptibly more 
noise to an image than the variance 𝜎𝜎2 = 1 × 10−4 does, the latter was chosen 
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as a reference comparatively to the former for two reasons. First, it is unlikely 
that an high quality sensor such as the one used to capture the testing images 
may generate levels of noise variance that equals 𝜎𝜎2 = 1 × 10−4, even if those 
images where to be acquired by a decade year old sensors found on portable 
cameras and smartphones. Second, it reveals to be a pondered tradeoff 
between the noise-free image and their processed counterparts. This noise 
imputed process was done for both filters’ solutions.  

The column Change, in Table 3.1, shows the percentual differences 
comparison made between MATLAB’s floating-point version, taken as 
reference, and the FPGA fixed-point calculations, including the SNR and 
PeakSNR logarithmic parameters which were meanwhile converted to decimal.  

Floating-point calculations were all done in the value’s range between 
[0. .1], since it holds the most precision scale. That is, the maximum machine 
epsilon floating-point rounding error is 2−52 in a scale of binary values between 
2𝑛𝑛 and 2𝑛𝑛+1, when 𝑠𝑠 = 0. Because this naturally adds the least error to the final 
calculations, comparatively to fixed-point, this was the reason they were chosen 
as reference. Meanwhile, because fixed-point calculations cannot be done in 
this range, since it would result in zero, those remained in the range [0. .10 ×
103], as already stated.  

It can be verified that 𝜎𝜎2 = 1 × 10−4 tests reveal better results than 𝜎𝜎2 =
1 × 10−3, with the highest values being at 𝑁𝑁 = 9 and 𝑃𝑃𝑀𝑀𝑆𝑆 = 50, while the lowest 
being at 𝑁𝑁 = 16 and 𝑃𝑃𝑀𝑀𝑆𝑆 = 100. SNR and PeakSNR depend inversely on MSE 
as given by Equations 3.1, 3.2 and 3.3, and Global Similarity follows, as well, 
this trend. The lower the MSE, the better the SNR and better the match 
between the Similarity of the original and the processed images. 

In general, a noise variance of 𝜎𝜎2 = 1 × 10−4 have better results when 
done with 𝑃𝑃𝑀𝑀𝑆𝑆 = 50 signaled filters. Likewise, the range of 𝑁𝑁 between 4 and 25, 
have progressive degrading results among the same value of SMF. The 
exception to this is for 𝑁𝑁 = 25, which accomplishes better outcomes for fixed-
point in both SMF's fixed- and floating-point results. Image’s results reveal that 
progressive higher quality is achieved with 𝑁𝑁 = 16 and 𝑃𝑃𝑀𝑀𝑆𝑆 = 100.  

For 𝑁𝑁 = 25, images show some adjacent color blurring, resembling 
pixeled blocks and thus start to lose quality. With 𝑃𝑃𝑀𝑀𝑆𝑆𝑜𝑜 = 50, SNR’s magnitude 
orders of 31 𝑖𝑖𝑑𝑑 and PeakSNR’s of 37 𝑖𝑖𝑑𝑑 seem acceptable for this level of noise 
variance of 𝜎𝜎2 = 1 × 10−4, whilst with 𝑃𝑃𝑀𝑀𝑆𝑆𝑜𝑜 = 100, lower SNR’s of 28 or 29 𝑖𝑖𝑑𝑑 
and PeakSNR’s of 35 𝑖𝑖𝑑𝑑 seem fair, because within the same 𝑁𝑁 frame size 
filtering, the higher the SMF the more the high-range frequencies which are 
wiped out along with the noise. This is even more perceptible in these frequency 
ranges due to loss of the image detail. However, visually, it looks like there is an 
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additional noise reduction, in the latter SMFs. Not withstand, image degrades 
because information details are also lost. On the limit, a very high SMF would 
lead to an image built with only contour patches.  

We have made an additional comparison test, which consisted in a 
simple moving average image noise reduction, without sharp color detection 
and it was obtained SNR values between 26 and 19 𝑖𝑖𝑑𝑑, hence significantly 
lower than those of our interest. It is also noticeable that floating-point results 
are consistent with fixed-point ones.  

The differences between both are minor but suffice to conclude that the 
floating-point, due to a higher precision, generate better results. In relation to 
𝜎𝜎2 = 1 × 10−3, the best values are obtained when 𝑁𝑁 = 4 and 𝑃𝑃𝑀𝑀𝑆𝑆 = 100. There 
is, however, a significant difference: while better SNR results are obtained with 
𝑃𝑃𝑀𝑀𝑆𝑆 = 50 rather than with 𝑃𝑃𝑀𝑀𝑆𝑆 = 100 for a variance of 𝜎𝜎2 = 1 × 10−4, which 
accounts with differences between 2 and 3 𝑖𝑖𝑑𝑑, relatively to 𝜎𝜎2 = 1 × 10−3, they 
are practically the same, around 𝑃𝑃𝑁𝑁𝑚𝑚 = 24 𝑖𝑖𝑑𝑑. Considering that 𝜎𝜎2 = 1 × 10−3 
generates perceptible noisier images, this is an acceptable result. 

The most meaningful conclusion here is that it is possible to make 
calculations in a simple fixed-point notation without any visible difference 
compared to a more computationally expensive floating-point counterpart, once 
a relative high pixel bit depth is chosen, which makes the chosen platform very 
suitable for this type of processing. 

Our tests were made with images containing pixels with 10 × 103 colour 
tones, i.e., a little over 213 = 8192 shades. This further reduces roundoff errors 
to a level of precision of 1

10 ×103
= 1 × 10−4, due to the fact that calculations 

made in fixed-point always ditch the rational part by flooring down the result to 
the immediate lower integer available.  

Additionally, attention must be given to the whole mathematical 
operation, tracking specifically where divisions and square roots occur. It is 
needed to exert some effort to reduce to the minimum the number of square 
roots and divisions operations. The developed algorithm has a maximum of one 
square root and a maximum of one division operation. It is a necessary task 
since round offs only occur on these math operations.  

There is yet another feature that needs to be treated properly. A noise 
contaminated image is more noticeable at darker colors or shades than lighter 
ones and this deserves special care. A non-linear smoothing filtering function 
must be adjusted and multiplied by 𝜎𝜎, letting darker color shades have more 
filtering tolerance than the lighter ones. 

A quick note on the results: the sparse difference between the 
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measurement parameters does not quite really translates the visual perception 
of the processed denoised results. Furthermore, the different filter sizes and the 
multiplicative sigma factor can make a huge contribution when the image has a 
large solid patch shades to be processed.  

Comparatively with a moving average filter, the Savitzky-Golay filter 
generally gives better results as can be seen in Table 4.1, in 4.A-Appendix. 
several degrees of freedom to be exploit, and it is important to say that, due to 
the polynomial nature of the Savitzky-Golay filters, each new derivative can 
reveal further information not immediately seen in the data being smoothed. 
This is a characteristic not directly comparable with a constant average value 
filter such as the moving average filter. It is possible to infer from the resultant 
figures, that the best results are achieved by S-G filters, those on the left 
columns. 

The final inferences can be the result of some biased comparison 
decisions. It should be said that some of these tests were done using as source, 
computerized generated synthetic images, which can, most of the time, 
resemble real-world pictures due to its tradeoff in smooth color changes and 
sharp color transitions.  

Comparison between floating- and fixed-point calculations present a 
minimal gap due to the use of 64-bit registers. This is possible because the 
registers are much larger than the images bit depth resolutions and this way it is 
possible to reduce the round-off errors. Consequently, as a rule of thumb, the 
chosen registers’ sizes which make possible these computations should be, at 
least, the quadruple of the highest bit-depth size of the picture rounded up to the 
nearest multiple of 8. In this case, the 13-bit depth images used for the tests 
were round up to 16-bit and all the math done on 64-bit registers. 

An inverse scaling polynomial function of low order degree was created, 
modeled and adjusted as a post-filter to the application of the S-G filters to 
further smooth the noise in darker colors relatively to the lightest ones, because 
the noise is more perceptive in dark tones. 

This work shows promising results on low power, low complexity, high 
portability, FPGAs utilization for real-time signal processing. 

For future works, we aim to make use of a more challenging approach in 
frequency domain, including Discrete Cosines (DCT), Fourier and Wavelet 
transforms. This was one also of the reasons to include it as a reference on 
Section 3.2.  
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A Appendices  
 

NOTE: Some code was commented because does not relate with the code that is active, either in 
functionality or testing conditions or both. 
 

A.1 Moving average FPGA source code 
 

1 library ieee; 
2 use ieee.std_logic_1164.all; 
3 use ieee.std_logic_unsigned.all; 
4 use ieee.numeric_std.all; 
5 
6 library work; 
7 use work.pkg_math.all; 
8 
9 
10 -- Uncomment the following library declaration if instantiating any Xilinx leaf cells in this code. 
11 --library UNISIM; 
12 --use UNISIM.VComponents.all; 
13 entity mov_avg_thesis is 
14 generic ( 
15 COUNTER_DEPTH:integer := 7; --counter will need to count until 100 for N maximum number for averaging, 
hence 2^7=128 which is enough 
16 G_DATA_W :integer := 16 
17 ); 
18 
19 port ( 
20 clk :in std_logic; 
21 rst :in std_logic; 
22 en :in std_logic; 
23 o_count :buffer std_logic; 
24 iv_data :in std_logic_vector(G_DATA_W-1 downto 0); 
25 o_reg_addr :buffer std_logic_vector(COUNTER_DEPTH-1 downto 0); 
26 o_rst_cnt :buffer std_logic; 
27 o_regN :buffer std_logic_vector(G_DATA_W-1 downto 0); 
28 o_regsigmaCoeff :buffer std_logic_vector(G_DATA_W-1 downto 0); 
29 o_regFWC :buffer std_logic_vector(G_DATA_W-1 downto 0); 
30 o_regcolourRange :buffer std_logic_vector(G_DATA_W-1 downto 0); 
31 o_regnumPasses :buffer std_logic_vector(G_DATA_W-1 downto 0); 
32 o_reg0 :buffer std_logic_vector(G_DATA_W-1 downto 0); 
33 o_reg1 :buffer std_logic_vector(G_DATA_W-1 downto 0); 
34 o_reg2 :buffer std_logic_vector(G_DATA_W-1 downto 0); 
35 o_reg3 :buffer std_logic_vector(G_DATA_W-1 downto 0); 
36 o_reg4 :buffer std_logic_vector(G_DATA_W-1 downto 0); 
37 o_sum :buffer std_logic_vector(G_DATA_W*4-1 downto 0); -- NOTE: for safe we reserve 
inner math operations 
38 o_mean :buffer std_logic_vector(G_DATA_W*4-1 downto 0); -- to 4*data_in size, 
although 2*datata_in would be 
39 o_sqrtMean_x_sigCoeff:buffer std_logic_vector(G_DATA_W*4-1 downto 0); -- suffice 
40 o_sqrtN :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
41 o_num_sigma1 :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
42 o_den_sigma1 :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
43 o_sigma1 :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
44 o_numTMPsigma2 :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
45 o_num_sigma2 :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
46 o_den_sigma2 :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
47 o_sigma2 :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
48 o_meanPow2 :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
49 o_num_sigma3 :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
50 o_den_sigma3 :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
51 o_sigma3 :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
52 o_sigma :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
53 ov_data :out std_logic_vector(G_DATA_W-1 downto 0) 
54 ); 
55 end entity; 
56 
57 
58 
59 architecture mov_avg_thesis_rtl of mov_avg_thesis is 
60 
61 constant REG_SIZE :integer := 2**COUNTER_DEPTH; -- this is the filter size constant. it is set 
for 128 but we will only need 100, which is the maximum filter size 
62 signal start_from :std_logic_vector(COUNTER_DEPTH-1 downto 0); -- connected to the input port 
of the counter. used to start the counter with any arbitrary number 
63 signal reg_addr :std_logic_vector(COUNTER_DEPTH-1 downto 0); -- connected to the output Q 
port of the counter 
64 signal idx_reg_addr :integer range 0 to REG_SIZE-1; -- integer index translator of the 
std_logig_vector of the previous reg_addr 
65 type type_reg_array is array(0 TO REG_SIZE-1) of unsigned(G_DATA_W*4-1 downto 0); -- this is the filter 
size. it is set for 128 registers of 64-bits, but we will only need 100, which is the maximum filter size 
66 signal reg_array :type_reg_array; -- array of registers for filter previously declared 
67 
68 signal s_en :std_logic; 
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69 signal count :std_logic; 
70 signal rst_cnt :std_logic; 
71 
72 signal regN :unsigned(G_DATA_W-1 downto 0); -- reg for storing the filter length N to 
calculate sigma = sqrt(mean) / sqrt(N). because N comes already squared, so possible values are 2, 3, 4, 
5, 6, 7, 8 , 9 and 10, then sigma = sqrt(pixel) / N, 
73 signal regSigmaCoeff :unsigned(G_DATA_W-1 downto 0); -- reg for storing multiplicative sigma 
coefficient. Can be 50 or 100 for testing 
74 signal regFWC :unsigned(G_DATA_W-1 downto 0); 
75 signal regColourRange :unsigned(G_DATA_W-1 downto 0); 
76 signal regNumPasses :unsigned(G_DATA_W-1 downto 0); 
77 
78 signal sum :unsigned(G_DATA_W*4-1 downto 0); -- the accumulator to generate the average 
of the mean 
79 signal mean :unsigned(G_DATA_W*4-1 downto 0); -- by dividing the above sum by N we 
calculate the mean 
80 signal sqrtMean_x_sigCoeff :unsigned(G_DATA_W*4-1 downto 0); -- pre-multiplies mean x sigmaCoeff (for 
efficiency on math operations it will only be needed to make 3 divisions at the end) 
81 signal sqrtN :unsigned(G_DATA_W*4-1 downto 0); -- calculates sqrt of N (for efficiency on 
math operations this is calculated only once) 
82 signal num_sigma1 :unsigned(G_DATA_W*4-1 downto 0); -- numerator for operation 1 
83 signal den_sigma1 :unsigned(G_DATA_W*4-1 downto 0); -- denominator for operation 1 
84 signal sigma1 :unsigned(G_DATA_W*4-1 downto 0); -- result of the operation 1 
85 signal numTMPsigma2 :unsigned(G_DATA_W*4-1 downto 0); -- temporary result for operation 2 
86 signal num_sigma2 :unsigned(G_DATA_W*4-1 downto 0); -- numerator for operation 2 
87 signal den_sigma2 :unsigned(G_DATA_W*4-1 downto 0); -- denominator for operation 2 
88 signal sigma2 :unsigned(G_DATA_W*4-1 downto 0); -- result of the operation 2 
89 signal meanPow2 :unsigned(G_DATA_W*4-1 downto 0); -- mean^2 
90 signal num_sigma3 :unsigned(G_DATA_W*4-1 downto 0); -- numerator for operation 3 
91 signal den_sigma3 :unsigned(G_DATA_W*4-1 downto 0); -- denominator for operation 3 
92 signal sigma3 :unsigned(G_DATA_W*4-1 downto 0); -- result of the operation 3 
93 signal sigma :unsigned(G_DATA_W*4-1 downto 0); -- final result 
94 
95 component counter -- declares the counter to count data_in 
96 --generic(n: natural := 5); 
97 port( 
98 clock: in std_logic; 
99 clear: in std_logic; 
100 count: in std_logic; 
101 start_from: in std_logic_vector(COUNTER_DEPTH-1 downto 0); -- tells from which number to start 
counting from, instead of the usual zero 
102 Q: out std_logic_vector(COUNTER_DEPTH-1 downto 0) -- the out value of the counter 
103 ); 
104 end component; 
105 
106 
107 begin 
108 o_count <= count; -- commands the counter to start counting 
109 o_reg_addr <= reg_addr; -- for debug: watches the value Q of the counter 
110 o_rst_cnt <= rst_cnt; -- reset the clock when outside the moving average mean-sigma or 
mean+sigma (when a sharp image coutour is detected) 
111 o_regN <= std_logic_vector(regN); -- this stores the size of the filter, which is supplied 
in the header of the data_in streamming 
112 o_regsigmaCoeff <= std_logic_vector(regSigmaCoeff); -- this stores the sigma multiplicative 
factor, which is supplied in the header of the data_in streamming 
113 o_regFWC <= std_logic_vector(regFWC); -- this stores the factor wave conversion (num of egenerated 
by each photon) which is rough the same as pixel bith depth, which is supplied in the header of 
the data_in streamming 
114 o_regcolourRange <= std_logic_vector(regColourRange); -- this stores the aka bith depth, which is 
supplied in the header of the data_in streamming 
115 o_regNumPasses <= std_logic_vector(regNumPasses); -- this stores the number of filter passes, which 
is supplied in the header of the data_in streamming 
116 o_reg0 <= std_logic_vector(reg_array(0)(G_DATA_W-1 downto 0)); -- the next 5 registers are 
only for debug watch 
117 o_reg1 <= std_logic_vector(reg_array(1)(G_DATA_W-1 downto 0)); 
118 o_reg2 <= std_logic_vector(reg_array(2)(G_DATA_W-1 downto 0)); 
119 o_reg3 <= std_logic_vector(reg_array(3)(G_DATA_W-1 downto 0)); 
120 o_reg4 <= std_logic_vector(reg_array(4)(G_DATA_W-1 downto 0)); 
121 o_sum <= std_logic_vector(sum); -- all these variables are for inner math calculations 
122 o_mean <= std_logic_vector(mean); 
123 o_sqrtMean_x_sigCoeff <= std_logic_vector(sqrtMean_x_sigCoeff); 
124 o_sqrtN <= std_logic_vector(sqrtN); 
125 o_num_sigma1 <= std_logic_vector(num_sigma1); 
126 o_den_sigma1 <= std_logic_vector(den_sigma1); 
127 o_sigma1 <= std_logic_vector(sigma1); 
128 o_numTMPsigma2 <= std_logic_vector(numTMPsigma2); 
129 o_num_sigma2 <= std_logic_vector(num_sigma2); 
130 o_den_sigma2 <= std_logic_vector(den_sigma2); 
131 o_sigma2 <= std_logic_vector(sigma2); 
132 o_meanPow2 <= std_logic_vector(meanPow2); 
133 o_num_sigma3 <= std_logic_vector(num_sigma3); 
134 o_den_sigma3 <= std_logic_vector(den_sigma3); 
135 o_sigma3 <= std_logic_vector(sigma3); 
136 o_sigma <= std_logic_vector(sigma); 
137 
138 counter_inst : entity work.counter generic map(count_depth => COUNTER_DEPTH) -- instantiate the counter 
139 port map(clock => clk, 
140 clear => rst_cnt, 
141 count => count,--gives order to start counter of the leading edge (the 
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end) of the filter 
142 start_from => start_from, -- tells from which number to start counting 
from, instead of the usual zero 
143 Q => reg_addr); 
144 
145 idx_reg_addr <= conv_integer(reg_addr); -- just convert the Q exit from the counter, which is a 
std_logic_vector to interger, because indexing is made with intger numbers 
146 
147 
148 proc_calc_mean: process(sum) -- this procedure is to be done in parallell by procedure "proc_calc_sum: 
process(clk, rst)" below 
149 begin -- for now, this is only done when the size of the filter, N, is 4. TODO: 
check for other cases, but at 1st analysis, seems 
150 if count = '1' then -- mean <= sum / (idx_reg_addr + frst_rst_made) 
151 mean <= sum / (idx_reg_addr + 1); 
152 else 
153 mean <= (others => '0'); 
154 end if; 
155 end process; 
156 
157 ov_data <= std_logic_vector(mean(G_DATA_W-1 downto 0)); 
158 -- below are the variables that run in parallell with the procedure "proc_calc_sum", below the 
"proc_check_if_numerat_is_0", as well as with the above procedure "proc_calc_mean" 
159 -- it calculates sqrt(mean / (i - M0 + 1)) * (sigmaFactor/FWC*100) * (1.214e-8*FWC^2*mean^2 - 
0.0002290*FWC*mean + 1.096), in which: 
160 -- (i - M0 + 1) is the maximum length of the filter heading at the index i and tailing at M0 
161 -- (sigmaFactor/FWC*100) is the normalized sigma factor (percentage to be scaled in pixel range 
between 0..1) 
162 -- and (1.214e-8*FWC^2*mean^2 - 0.0002290*FWC*mean + 1.096) is the smoothing polynomial equation 
that smooths more in darker colours than in white ones (also normalized) 
163 -- all is rearranged in nominators and denominators to equate all in 1 division and 1 sqrt to increase 
precision 
164 sqrtMean_x_sigCoeff <= x"00000000" & sqrt_Li_Chu(mean(G_DATA_W*2-1 downto 0)) * regSigmaCoeff; -- does 
floor(sqrt_mean) * sigma_coeff (floor is implicit on fixed point FPGA maths) 
165 sqrtN <= x"000000000000" & sqrt_Li_Chu( x"0000" & regN); -- calculates sqrt(N) 
166 num_sigma1 <= x"0089" * sqrtMean_x_sigCoeff(G_DATA_W*3-1 downto 0); -- x"0089"=137; calculates 
the sigma1 numerator member: 137 * sqrtMeanXsigmaCoeff 
167 den_sigma1 <= sqrtN(G_DATA_W*3-1 downto 0) * x"007D"; --x"007D"=125; calculates the sigma1 
denominator member: sqrtN * 125 
168 
169 numTMPsigma2 <= x"08D1" * mean(G_DATA_W*3-1 downto 0); -- x"08D1"=2257; calculates the sigma1 
numerator member: 2257 * mean 
170 num_sigma2 <= numTMPsigma2(G_DATA_W*2-1 downto 0) * sqrtMean_x_sigCoeff(G_DATA_W*2-1 downto 0); 
-- calculates 2257 * mean * sqrtMeanXsigmaCoeff 
171 den_sigma2 <= sqrtN(G_DATA_W*2-1 downto 0) * x"00989680"; --x"989680"=10^7; calculates: sqrtN * 
10^7 
172 
173 meanPow2 <= mean(G_DATA_W*2-1 downto 0) * mean(G_DATA_W*2-1 downto 0); -- calculates mean^2 
174 num_sigma3 <= meanPow2(G_DATA_W*2-1 downto 0) * sqrtMean_x_sigCoeff(G_DATA_W*2-1 downto 0); -- 
x"0089"=137; calculates: mean^2 * sqrtMeanXsigmaCoeff 
175 den_sigma3 <= sqrtN(G_DATA_W*2-1 downto 0) * x"04E8E6E3"; --x"04E8E6E3"=82372323; calclates sqrtN 
* 82372323 
176 
177 -- below sre the variables that run in parallell by procedure "proc_calc_sum: process(clk, rst)" below as 
do the above procedure 
178 proc_check_if_numerat_is_0: process(num_sigma1, num_sigma2, num_sigma3) 
179 begin 
180 if num_sigma1 = to_unsigned(0, num_sigma1'length) then 
181 sigma1 <= (others => '0'); 
182 else 
183 sigma1 <= num_sigma1 / den_sigma1; 
184 end if; 
185 if num_sigma2 = to_unsigned(0, num_sigma2'length) then 
186 sigma2 <= (others => '0'); 
187 else 
188 sigma2 <= num_sigma2 / den_sigma2; 
189 end if; 
190 if num_sigma3 = to_unsigned(0, num_sigma3'length) then 
191 sigma3 <= (others => '0'); 
192 else 
193 sigma3 <= num_sigma3 / den_sigma3; 
194 end if; 
195 end process; 
196 sigma <= sigma1 - sigma2 + sigma3; 
197 
198 
199 proc_calc_sum: process(clk, rst) 
200 begin 
201 
202 if rst = '1' then -- if set, FPGA should expect a stream of data that starts below on 
rising_edge(clk), so reset all 
203 s_en <= '0'; 
204 count <= '0'; 
205 rst_cnt <= '1'; 
206 start_from <= (others => '0'); 
207 regN <= (others => '0'); 
208 regSigmaCoeff <= (others => '0'); 
209 regFWC <= (others => '0'); 
210 regColourRange <= (others => '0'); 
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211 regNumPasses <= (others => '0'); 
212 for i in 0 to REG_SIZE-1 loop 
213 reg_array(i)<= (others => '0'); 
214 end loop; 
215 sum <= (others => '0'); 
216 elsif rising_edge(clk) then 
217 s_en <= en; 
218 
219 if s_en = '1' then -- starts the streaming of word bytes 
220 if regN = to_unsigned(0, regN'length) then -- this is the 1st parameter passed to FPGA, which 
is the size of the filter to convolute with the array of pixels 
221 regN <= unsigned(iv_data); 
222 elsif regSigmaCoeff = to_unsigned(0, regSigmaCoeff'length) then -- the multiplicative sigma 
factor (50 or 100, or other) 
223 regSigmaCoeff <= unsigned(iv_data); 
224 elsif regFWC = to_unsigned(0, regFWC'length) then -- how many electrons are generated by each 
photon (normally the same as the maximum image pixel depth 
225 regFWC <= unsigned(iv_data); 
226 elsif regColourRange = to_unsigned(0, regColourRange'length) then -- maximum color tones 
(normally the same as FWC 
227 regColourRange <= unsigned(iv_data); 
228 elsif regNumPasses = to_unsigned(0, regNumPasses'length) then -- number of passes (convolution 
of several passes generates fiferent filters, from rectangular, triangular and different shapes 
of gaussian 
229 regNumPasses <= unsigned(iv_data); 
230 elsif rst_cnt = '1' then -- since rst_cnt has been '1' from the begining of this streaming, set 
it now to zero, still this clock, to start a new processiong 
231 rst_cnt <= '0'; -- reset clock still on this clock. this is used also when next pixel value 
is (< mean - sigma) or (> mean + sigma) 
232 count <= '1'; -- start the counter 1st word 
233 sum <= x"000000000000" & unsigned(iv_data); -- start already with the 1st value it has 
234 else 
235 for i in 0 to REG_SIZE-2 loop -- this "for loop" is used to shift register the position of 
the input data position to the position + 1 place... 
236 reg_array(i+1) <= reg_array(i); 
237 end loop; 
238 reg_array(0) <= x"000000000000" & unsigned(iv_data); -- ...for then receive the next word 
data in 
239 
240 if (unsigned(iv_data) < mean - sigma or 
241 unsigned(iv_data) > mean + sigma) then -- if this word is outside the moving average 
mean-sigma or mean+sigma (when a sharp image coutour is detected) ... 
242 rst_cnt <= '1'; -- rise the flag 
243 rst_cnt <= '0' after 3 ns; -- drop the flag (this rising and dropping cannot exceed a 
whole clock period 
244 start_from <= (others => '0'); -- put back reset_from = 0, that was forced to stay in the 
value regN - 1, in order to maintain the average 
245 
246 for i in 1 to REG_SIZE-1 loop -- sets all memory ... 
247 reg_array(i) <= (others => '0'); -- ...to zero due to a sharp detection 
248 end loop; 
249 sum <= x"000000000000" & unsigned(iv_data) after 1 ns; -- restart only with this new value 
250 else 
251 sum <= sum + (x"000000000000" & unsigned(iv_data)) - reg_array(conv_integer(o_regN)-1) 
after 1 ns; -- makes moving average until the size of of the filter included 
252 if (regN - 1) = idx_reg_addr then -- if the counter reaches teh filter size, N (actualy 
counter must be equal to N-1 because it starts on 0) 
253 start_from <= reg_addr; -- if reached then keep it there (dont let go higher than N 
254 end if; 
255 end if; 
256 
257 end if; 
258 else 
259 sum <= (others => '0'); 
260 end if; 
261 end if; 
262 
263 end process; 
264 
265 
266 end architecture;  
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A.2 Simulation file of moving average FPGA source code 
 

1 library ieee; 
2 use ieee.std_logic_1164.all; 
3 use ieee.std_logic_unsigned.ALL; 
4 use ieee.numeric_std.ALL; 
5 
6 entity tb_mov_avg_thesis is 
7 generic ( 
8 G_DATA_W :integer := 16; 
9 COUNTER_DEPTH :integer := 7 --counter will need to count until 100 for N maximum number for 
averaging, hence 2^7=128 which is enough 
10 ); 
11 end entity; 
12 
13 architecture tb_mov_avg_thesis_rtl of tb_mov_avg_thesis is 
14 signal clk :std_logic := '0'; 
15 signal rst :std_logic := '0'; 
16 signal en :std_logic := '0'; 
17 signal DataEn :std_logic := '0'; 
18 signal DataEn_reg1 :std_logic := '0'; 
19 signal DataEn_reg2 :std_logic := '0'; 
20 signal DataEn_reg3 :std_logic := '0'; 
21 signal DataEn_reg4 :std_logic := '0'; 
22 signal DataEn_reg5 :std_logic := '0'; 
23 signal o_count :std_logic; 
24 signal DataIn :std_logic_vector(G_DATA_W-1 downto 0); 
25 signal o_reg_addr :std_logic_vector(COUNTER_DEPTH-1 downto 0); 
26 signal o_rst_cnt :std_logic; 
27 --signal o_can_reset :std_logic; 
28 --signal o_frst_rst_made :std_logic; 
29 signal o_regN :std_logic_vector(G_DATA_W-1 downto 0); 
30 signal o_regSigmaCoeff :std_logic_vector(G_DATA_W-1 downto 0); 
31 signal o_regFWC :std_logic_vector(G_DATA_W-1 downto 0); 
32 signal o_regColourRange :std_logic_vector(G_DATA_W-1 downto 0); 
33 signal o_regnumPasses :std_logic_vector(G_DATA_W-1 downto 0); 
34 signal o_reg0 :std_logic_vector(G_DATA_W-1 downto 0); 
35 signal o_reg1 :std_logic_vector(G_DATA_W-1 downto 0); 
36 signal o_reg2 :std_logic_vector(G_DATA_W-1 downto 0); 
37 signal o_reg3 :std_logic_vector(G_DATA_W-1 downto 0); 
38 signal o_reg4 :std_logic_vector(G_DATA_W-1 downto 0); 
39 signal o_sum :std_logic_vector(G_DATA_W*4-1 downto 0); 
40 signal o_mean :std_logic_vector(G_DATA_W*4-1 downto 0); 
41 signal o_sqrtMean_x_sigCoeff:std_logic_vector(G_DATA_W*4-1 downto 0); 
42 signal o_sqrtN :std_logic_vector(G_DATA_W*4-1 downto 0); 
43 signal o_num_sigma1 :std_logic_vector(G_DATA_W*4-1 downto 0); 
44 signal o_den_sigma1 :std_logic_vector(G_DATA_W*4-1 downto 0); 
45 signal o_sigma1 :std_logic_vector(G_DATA_W*4-1 downto 0); 
46 signal o_numTMPsigma2 :std_logic_vector(G_DATA_W*4-1 downto 0); 
47 signal o_num_sigma2 :std_logic_vector(G_DATA_W*4-1 downto 0); 
48 signal o_den_sigma2 :std_logic_vector(G_DATA_W*4-1 downto 0); 
49 signal o_sigma2 :std_logic_vector(G_DATA_W*4-1 downto 0); 
50 signal o_meanPow2 :std_logic_vector(G_DATA_W*4-1 downto 0); 
51 signal o_num_sigma3 :std_logic_vector(G_DATA_W*4-1 downto 0); 
52 signal o_den_sigma3 :std_logic_vector(G_DATA_W*4-1 downto 0); 
53 signal o_sigma3 :std_logic_vector(G_DATA_W*4-1 downto 0); 
54 signal o_sigma :std_logic_vector(G_DATA_W*4-1 downto 0); 
55 signal DataOut :std_logic_vector(G_DATA_W-1 downto 0); 
56 -- for ReadDataFromFile and WriteDataToFile 
57 signal eof :std_logic := '0'; 
58 signal eof_reg1 :std_logic := '0'; 
59 signal eof_reg2 :std_logic := '0'; 
60 
61 signal o_fifo_DataOut :std_logic_vector(G_DATA_W*2-1 downto 0); --user_r_read_32_data, 
62 signal o_full :std_logic := '0'; --user_w_write_32_full, 
63 signal o_empty :std_logic := '1'; --user_r_read_32_empty 
64 
65 constant ClkGenConst :time := 10 ns; 
66 
67 begin 
68 -------------------------------------------------------------------------------------------------------------- 
69 read_data_inst: entity work.read_data_from_file 
70 generic map ( 
71 G_FILE_NAME => 
"C:\Users\rj\Xilinx\RJa\Projects_HDL\project_2\project_2.srcs\sources_1\bd\design_1\hdl\simulation\mov_a 
vg_thesis/xn3508_in.dat", 
72 
--"D:\RJa\Projects_HDL\project_2\project_2.srcs\sources_1\bd\design_1\hdl\simulation\mov_ 
avg_thesis/xn3508_in.dat", -- :string := "DataIn.dat"; 
73 G_DATA_W => G_DATA_W -- :integer := 16 
74 ) 
75 port map ( 
76 clk => clk, -- :in std_logic; 
77 en => en, -- :in std_logic; 
78 o_data_en => DataEn, -- :out std_logic; 
79 ov_data => DataIn, -- :out std_logic_vector(G_DATA_W-1 downto 0); 
80 o_eof => eof -- :out std_logic 
81 ); 
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82 
------------------------------------------------------------------------------------------------------------ 
83 mov_avg_inst: entity work.mov_avg_thesis 
84 generic map ( 
85 G_DATA_W => G_DATA_W 
86 ) 
87 port map ( 
88 clk => clk, -- :in std_logic; 
89 rst => rst, -- :in std_logic; 
90 en => en, --DataEn, -- :in std_logic; 
91 o_count => o_count, -- :buffer std_logic; 
92 iv_data => DataIn, -- :in std_logic_vector(G_DATA_W-1 downto 0); 
93 o_reg_addr => o_reg_addr, -- :buffer std_logic_vector(COUNTER_DEPTH-1 downto 0); 
94 o_rst_cnt => o_rst_cnt, -- :buffer std_logic; 
95 o_regN => o_regN, -- :buffer std_logic_vector(G_DATA_W-1 downto 0); 
96 o_regSigmaCoeff => o_regSigmaCoeff, -- :buffer std_logic_vector(G_DATA_W-1 downto 0); 
97 o_regFWC => o_regFWC, -- :buffer std_logic_vector(G_DATA_W-1 downto 0); 
98 o_regColourRange => o_regColourRange,-- :buffer std_logic_vector(G_DATA_W-1 downto 0); 
99 o_regNumPasses => o_regNumPasses, -- :buffer std_logic_vector(G_DATA_W-1 downto 0); 
100 o_reg0 => o_reg0, -- :buffer std_logic_vector(G_DATA_W-1 downto 0); 
101 o_reg1 => o_reg1, -- :buffer std_logic_vector(G_DATA_W-1 downto 0); 
102 o_reg2 => o_reg2, -- :buffer std_logic_vector(G_DATA_W-1 downto 0); 
103 o_reg3 => o_reg3, -- :buffer std_logic_vector(G_DATA_W-1 downto 0); 
104 o_reg4 => o_reg4, -- :buffer std_logic_vector(G_DATA_W-1 downto 0); 
105 o_sum => o_sum, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); -- NOTE: for 
safe we reserve inner math operations to 
106 o_mean => o_mean, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); -- 
4*data_in size, although 2*datata_in would be 
107 o_sqrtMean_x_sigCoeff => o_sqrtMean_x_sigCoeff,--:buffer std_logic_vector(G_DATA_W*4-1 downto 0); -- 
suffice 
108 o_sqrtN => o_sqrtN, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
109 o_num_sigma1 => o_num_sigma1, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
110 o_den_sigma1 => o_den_sigma1, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
111 o_sigma1 => o_sigma1, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
112 o_numTMPsigma2 => o_numTMPsigma2, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
113 o_num_sigma2 => o_num_sigma2, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
114 o_den_sigma2 => o_den_sigma2, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
115 o_sigma2 => o_sigma2, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
116 o_meanPow2 => o_meanPow2, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
117 o_num_sigma3 => o_num_sigma3, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
118 o_den_sigma3 => o_den_sigma3, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
119 o_sigma3 => o_sigma3, -- :buffer std_logic_vector(G_DATA_W*4-1 downto 0); 
120 o_sigma => o_sigma, -- :buffer std_logic _vector(G_DATA_W*4-1 downto 0); 
121 ov_data => DataOut -- :out std_logic_vector(G_DATA_W-1 downto 0) 
122 ); 
123 
124 -- 32-bit loopback 
125 fifo_32_inst : entity work.fifo_32x512 
126 port map( 
127 clk => clk, --bus_clk, -- :in std_logic; 
128 srst => rst, --reset_32, -- :in std_logic; 
129 din => x"0000" & DataOut, --user_w_write_32_data, -- :in std_logic_vector(31 downto 0); 
130 wr_en => DataEn_reg4, --user_w_write_32_wren, -- :in std_logic; 
131 rd_en => o_count, --o_count, --user_r_read_32_rden, -- :in std_logic; 
132 dout => o_fifo_DataOut, --user_r_read_32_data, -- :out std_logic_vector(31 downto 0); 
133 full => o_full, --user_w_write_32_full, -- :out std_logic; 
134 empty => o_empty --user_r_read_32_empty -- :out std_logic; 
135 ); 
136 --reset_32 <= not (user_w_write_32_open or user_r_read_32_open); 
137 --user_r_read_32_eof <= '0'; 
138 
139 ------------------------------------------------------------------------------------------------------------ 
140 write_data_inst: entity work.write_data_to_file 
141 generic map ( 
142 G_FILE_NAME => 
"C:\Users\rj\Xilinx\RJa\Projects_HDL\project_2\project_2.srcs\sources_1\bd\design_1\hdl\simulation\mov_a 
vg_thesis/xn3508_out.dat", 
143 
--"D:\RJa\Projects_HDL\project_2\project_2.srcs\sources_1\bd\design_1\hdl\simulation\mov_ 
avg_thesis/xn3508_out.dat", -- :string := "DataOut.dat"; 
144 G_DATA_W => G_DATA_W -- :integer := 16 
145 ) 
146 port map ( 
147 clk => clk, -- :in std_logic; 
148 en => o_count, --DataEn_reg2, -- :in std_logic; 
149 iv_data => DataOut, -- :out std_logic; 
150 i_eod => eof_reg1, -- :out std_logic_vector(G_DATA_W-1 downto 0); 
151 o_eof => open -- :out std_logic 
152 ); 
153 
------------------------------------------------------------------------------------------------------------ 
154 clock_generator: process 
155 begin 
156 clk <= '0' after ClkGenConst, '1' after 2*ClkGenConst; 
157 wait for 2*ClkGenConst; 
158 end process; 
159 ------------------------------------------------------------------------------------------------------------ 
160 rst <= '1', '0' after 100 ns; 
161 
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------------------------------------------------------------------------------------------------------------ 
162 en_proc: process 
163 begin 
164 en <= '0'; 
165 wait until rst = '0'; 
166 wait until rising_edge(clk); 
167 wait for 35 ns; 
168 en <= '1'; 
169 wait until eof = '1'; 
170 en <= '0'; 
171 --wait until o_empty = '1'; 
172 wait; 
173 end process; 
174 
------------------------------------------------------------------------------------------------------------ 
175 delay_en_for_write: process(clk) 
176 begin 
177 if rising_edge(clk) then 
178 DataEn_reg1 <= DataEn; 
179 DataEn_reg2 <= DataEn_reg1; 
180 DataEn_reg3 <= DataEn_reg2; 
181 DataEn_reg4 <= DataEn_reg3; 
182 DataEn_reg5 <= DataEn_reg4; 
183 eof_reg1 <= eof; 
184 eof_reg2 <= eof_reg1; 
185 end if; 
186 end process; 
 
 

A.3 CPU side C source code 
A.3.3 Streamread.c 

 
1 #include <stdio.h> 
2 #include <unistd.h> 
3 #include <stdlib.h> 
4 #include <errno.h> 
5 #include <sys/types.h> 
6 #include <sys/stat.h> 
7 #include <fcntl.h> 
8 
9 /* streamread.c -- Demonstrate read from a Xillybus FIFO. 
10 
11 This simple command-line application is given one argument: The device 
12 file to read from. The read data is sent to standard output. 
13 
14 This program has no advantage over the classic UNIX 'cat' command. It was 
15 written merely to demonstrate the coding technique. 
16 
17 We don't use allread() here (see memread.c), because if less than the 
18 desired number of bytes arrives, they should be handled immediately. 
19 
20 See http://www.xillybus.com/doc/ for usage examples an information. 
21 
22 */ 
23 
24 void allwrite(int fd, unsigned char *buf, int len); 
25 
26 int main(int argc, char *argv[]) { 
27 
28 int fd, rc; 
29 unsigned char buf[128]; 
30 
31 
32 if (argc!=2) { 
33 fprintf(stderr, "Usage: %s devfile\n", argv[0]); 
34 exit(1); 
35 } 
36 
37 fd = open(argv[1], O_RDONLY); 
38 
39 if (fd < 0) { 
40 if (errno == ENODEV) 
41 fprintf(stderr, "(Maybe %s a write-only file?)\n", argv[1]); 
42 
43 perror("Failed to open devfile"); 
44 exit(1); 
45 } 
46 
47 while (1) { 
48 rc = read(fd, buf, sizeof(buf)); 
49 
50 if ((rc < 0) && (errno == EINTR)) 
51 continue; 
52 
53 if (rc < 0) { 
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54 perror("allread() failed to read"); 
55 exit(1); 
56 } 
57 
58 if (rc == 0) { 
59 fprintf(stderr, "Reached read EOF.\n"); 
60 exit(0); 
61 } 
62 
63 // Write all data to standard output = file descriptor 1 
64 // rc contains the number of bytes that were read. 
65 
66 allwrite(1, buf, rc); 
67 } 
68 } 
69 
70 /* 
71 Plain write() may not write all bytes requested in the buffer, so 
72 allwrite() loops until all data was indeed written, or exits in 
73 case of failure, except for EINTR. The way the EINTR condition is 
74 handled is the standard way of making sure the process can be suspended 
75 with CTRL-Z and then continue running properly. 
76 
77 The function has no return value, because it always succeeds (or exits 
78 instead of returning). 
79 
80 The function doesn't expect to reach EOF either. 
81 */ 
82 
83 void allwrite(int fd, unsigned char *buf, int len) { 
84 int sent = 0; 
85 int rc; 
86 
87 while (sent < len) { 
88 rc = write(fd, buf + sent, len - sent); 
89 
90 if ((rc < 0) && (errno == EINTR)) 
91 continue; 
92 
93 if (rc < 0) { 
94 perror("allwrite() failed to write"); 
95 exit(1); 
96 } 
97 
98 if (rc == 0) { 
99 fprintf(stderr, "Reached write EOF (?!)\n"); 
100 exit(1); 
101 } 
102 
103 sent += rc; 
104 } 
105 } 
 

A.3.4 Streamwrite.c 
 

1 #include <stdio.h> 
2 #include <unistd.h> 
3 #include <stdlib.h> 
4 #include <errno.h> 
5 #include <sys/types.h> 
6 #include <sys/stat.h> 
7 #include <fcntl.h> 
8 #include <termio.h> 
9 #include <signal.h> 
10 
11 /* streamwrite.c -- Demonstrate write to a Xillybus FIFO 
12 
13 This simple command-line application is given one argument: The device 
14 file to write to. The data is read from standard input. 
15 
16 This program can't be substituted by UNIX' 'cat', because the latter works 
17 at line-by-line basis. 
18 
19 See http://www.xillybus.com/doc/ for usage examples an information. 
20 
21 */ 
22 
23 void allwrite(int fd, unsigned char *buf, int len); 
24 void config_console(); 
25 
26 int main(int argc, char *argv[]) { 
27 
28 int fd, rc; 
29 unsigned char buf[128]; 
30 
31 if (argc!=2) { 
32 fprintf(stderr, "Usage: %s devfile\n", argv[0]); 
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33 exit(1); 
34 } 
35 
36 fd = open(argv[1], O_WRONLY); 
37 
38 if (fd < 0) { 
39 if (errno == ENODEV) 
40 fprintf(stderr, "(Maybe %s a read-only file?)\n", argv[1]); 
41 
42 perror("Failed to open devfile"); 
43 exit(1); 
44 } 
45 
46 config_console(); // Configure standard input not to wait for CR 
47 
48 while (1) { // this loop only ends if Ctrl+C pressed 
49 rc = read(0, buf, sizeof(buf)); // Read from standard input = file descriptor 0 
50 
51 if ((rc < 0) && (errno == EINTR)) 
52 continue; 
53 
54 if (rc < 0) { 
55 perror("allread() failed to read"); 
56 exit(1); 
57 } 
58 
59 if (rc == 0) { 
60 fprintf(stderr, "Reached read EOF.\n"); 
61 exit(0); 
62 } 
63 
64 allwrite(fd, buf, rc); 
65 } 
66 } 
67 
68 /* 
69 Plain write() may not write all bytes requested in the buffer, so 
70 allwrite() loops until all data was indeed written, or exits in 
71 case of failure, except for EINTR. The way the EINTR condition is 
72 handled is the standard way of making sure the process can be suspended 
73 with CTRL-Z and then continue running properly. 
74 
75 The function has no return value, because it always succeeds (or exits 
76 instead of returning). 
77 
78 The function doesn't expect to reach EOF either. 
79 */ 
80 
81 void allwrite(int fd, unsigned char *buf, int len) { 
82 int sent = 0; 
83 int rc; 
84 
85 while (sent < len) { 
86 rc = write(fd, buf + sent, len - sent); 
87 
88 if ((rc < 0) && (errno == EINTR)) 
89 continue; 
90 
91 if (rc < 0) { 
92 perror("allwrite() failed to write"); 
93 exit(1); 
94 } 
95 
96 if (rc == 0) { 
97 fprintf(stderr, "Reached write EOF (?!)\n"); 
98 exit(1); 
99 } 
100 
101 sent += rc; 
102 } 
103 } 
104 
105 /* config_console() does some good-old-UNIX vodoo standard input, so that 
106 read() won't wait for a carriage-return to get data. It also catches 
107 CTRL-C and other nasty stuff so it can return the terminal interface to 
108 what is was before. In short, a lot of mumbo-jumbo, with nothing relevant 
109 to Xillybus. 
110 */ 
111 
112 void config_console() { 
113 struct termio console_attributes; 
114 
115 if (ioctl(0, TCGETA, &console_attributes) != -1) { 
116 // If we got here, we're reading from console 
117 
118 console_attributes.c_lflag &= ~ICANON; // Turn off canonical mode 
119 console_attributes.c_cc[VMIN] = 1; // One character at least 
120 console_attributes.c_cc[VTIME] = 0; // No timeouts 
121 
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122 if (ioctl(0, TCSETAF, &console_attributes) == -1) 
123 fprintf(stderr, "Warning: Failed to set console to char-by-char\n"); 
124 } 
125 } 
126 
 

A.3.5 MATLAB scrips and source C code  
 
 

A.3.5.1 NoiseAndHistograms.m 
 

1 delete(findall(0, 'Type', 'figure')); 
 

2 FWC = 10e3; % Coefficient (or Factor) of the Wavelength Conversion in electrons (accepted value is 10000 e-)  
 

3 img_original = imread('img_MartinPattern.png');  
4 img_original = double(img_original(:, :, 1)); 
5 img_original = img_original/max(max(img_original)); % multiply by the maximum value of electrons 

 
6 var = 0.001; 

 
7 img_noisy=imnoise(img_original, 'gaussian', 0, var); 

 
8 f1=figure('Name', 'img original', 'NumberTitle', 'off'); imshow(img_original) 
9 f1.OuterPosition = [1 1805 1375 573]; 
10 f2=figure('Name', sprintf('noisy variance=%g%%', var*100), 'NumberTitle', 'off'); imshow(img_noisy) 
11 f2.OuterPosition = [265 1805 1375 573]; 

 
12 col=1900;%col=4014; 

 
13 f=figure('Name', 'histogram original img', 'NumberTitle', 'off');  
14 f.OuterPosition = [1922 1735 341 493]; 
15 h_img_original=histogram(img_original(:,col) * FWC, 'Normalization', 'count'); 
16 f=figure('Name', sprintf('histogram noisy variance=%g%%, col=%d', var*100, col), 'NumberTitle', 'off');  
17 f.OuterPosition = [1922 1201 341 493]; 
18 h_img_noisy=histogram(img_noisy(:,col) * FWC, 'Normalization', 'count'); 

 
19 figure('Name', sprintf('img 0.1%% noisy: col=%d', col), 'NumberTitle', 'off');  
20 img_noisy=histogram(img_noisy(:,col), 'Normalization', 'count') 
21 SNR_MovingAverage(img_noisy, img_original,  [1,2,3,4,5,6,7,8,9].^2, [50, 100], FWC, [0 FWC], 1, col) 

 
22 return 
 

A.3.5.2 SNR_MovingAverage.m 
1 %============================================================================================================== 
2 % USAGE: [out, var] = SNR_Martin(noisy_image; original_image (clean image for comparison); sigmaCoeff=1,2,3;  
3 % FWD=10000e-; colourRange=[0 2^16]; numPasses=1,2,3,4,...); 
4 %================================================================================================================ 
5 % read first the noisy and the original images to the Workspace: 
6 % im = imread('img.pgm'); the clean image for comparison 
7 % im_noisy001 = imread('img_noisy001.pgm'); then noisy image for processing 
8 % the rest of parameters are: 
9 % filterLength = [1,2,3,4,5,6,7,8,9].^2; array of moving average filters of several lengths. the more lengthy, 

the more effective but also more blurry the picture  
10 % sigmaCoeff = [1, 3]; (standard deviation, sigma, that restricts the noise variance for about 68% if 1xsigma or 

is more noise permissive about 99% if 3xsigma 
11 % FWC = Coefficient (or Factor) of the Wavelength Conversion in electrons (accepted value is 10000 e-)  
12 % colourRange = [0 1]; pictures range of colors 
13 % numPasses = 1; number of passes that filter executes over image  
14 % col = number of the column to plot a profile  
15 % EXAMPLE: SNR_Martin_MovingAverage(im_noisy001, im,  [1,2,3,4,5,6,7,8,9].^2, [1, 3], [0 1], 10000, 1, col) 
16 %        SNR_Martin_MovingAverage(img0001_noisy, img_original,  [1,2,3,4,5,6,7,8,9].^2, [50, 100],  FWC, [0 FWC],     

1,         num columns to plot for profile) 
17 function SNR_MovingAverage (imNoisy,      imOriginal,    filterLength,           sigmaCoeff, FWC, colourRange, 

numPasses, col) 
18      
19 %     delete(findall(0, 'Type', 'figure')); % delete all figure. we want to start clean 
20     mp = get(0,'monitorpositions'); %get the starting positions and the length of all monitors attached (this is 

for a multimonitor scenario) 
21      
22     attr = whos ('imNoisy'); % used to get image size (attr.size(1) is the height and attr.size(2) is the width) 
23     imgsz = attr.size(1) * attr.size(2); %get the size of the image to be processed 
24   
25 % ===============================================================================================================     
26 % this switch both images arguments to normalize double precision 
27 % =============================================================================================================== 
28     if attr.class ~= 'double' 
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29         imOriginal = double(imOriginal);% swithch to double... 
30         imOriginal = imOriginal / max(max(imOriginal)); % ...and normalize it to to increase the precision 
31         imNoisy = double(imNoisy);% swithch to double... 
32         imNoisy = imNoisy / max( max(imNoisy));     % switch to double precision and normalize it to get accurate 

results 
33     end  
34      
35     noise = sqrt(  abs( mean(mean(imNoisy.^2)) - mean(mean(imNoisy))^2 )  * imgsz/(imgsz-1)); %supplied by 

Ricardo Sousa, but Martin noticed the mean doesnt make sense, due to the various colours of the image 
36      
37     
38 %==========================================================================================================     
39 % this first nested for, for..end, end is for the variance with respect to the ROWS (comparison between ROWS in 

the same COLUMN) 
40 %=============================================================================================================== 
41 %     lnMean  = imNoisy(1,:);                   %  line of means 
42 %     imVar  = variance_factor * sqrt( imNoisy(:, :)); % matrix of variances.   
43 %     imN = ones(1,attr.size(2));   % vector of number of pixels processed for this average. will reset (N = 1, 

due to MATLAB indexing) if a new average counting 
44   
45     initialmagnification = 250; %zoom the picture to show  
46      
47 %=============================================================================================================     
48 % this creates a noisy piecewise function composed by 2 heavisides and a sin 
49 %============================================================================================================= 
50     t = -5:0.01:10; % independent variable 
51     rng default %initiate random generator 
52     a1 = find(t>=-5 & t<-2); % independent var for one Heaviside 
53     a2 = find(t>=-2 & t<4); % independent var for another Heaviside 
54     a3 = find(t>=4); % independent var for sin function 
55     x(a1) = (heaviside(t(a1))-heaviside(t(a1)-3)); %it is composed by 2 step heavisides (kind of stairs) and a 

sin wave 
56     x(a2) = heaviside(t(a2))-heaviside(t(a2)-3) + 1; % another heaviside 
57     x(a3) = sin(t(a3)) + 1.2; % raise sin() on YY' axis to not get negative numbers (we want sin above 0 
58     xn = x + 0.25*rand(size(t)); %create a squared step with noise 
59   
60 % =============================================================================================================== 
61 % this is a figure to compare lines with filters of several lengths. it takes a column from both images and 

compares the efficiency of the moving average algorithm using 3 methods: 
62 % y1 = 'Simple moving average without regarding to sharp edge detection'; 
63 % y2 = 'Enterprises''s given algorithm: moving average with sharp edge detection'; 
64 % =============================================================================================================== 
65     % use a image's column of data to apply the filters and watch how they behave   
66     t = 200 : 750; %size(imNoisy); % size() returns a brackets array of Lines By Columns, but if the brakets 

aren't used then the parameter Lines is choosed 
67     x = imOriginal(t, 1137)';%2713)'; %3508)'; % we select any column of the original image 
68     xn = imNoisy(t, 1137)';%2713)'; %3508)'; % and the same column and the noisy image column ot compre wih  
69      
70     y1 = 'Simple moving average'; % we will use the simple moving average wihtout reagard to the sharp colour 

detection 
71     y2 = 'Moving average with sharp edge floating-point'; % and for comparison with the sharp egde detection 
72     y3 = 'Moving average with sharp edge fixed-point'; 
73      
74     szFilterLength  = length(filterLength); % take the length of the array of the filter's number of points 

(might be 10 or more filters of increasing number of point to choos ethe best efficiency) 
75     szSigmaCoeff = length(sigmaCoeff); % take the length of the standard deviation, 1xsigma (~68%), or 3xsigma 

(~99%)   
76     for i = 1 : szFilterLength % run the array of the several length filters for all the column 
77         filter = (1/filterLength(i))*ones(1,filterLength(i)); % press F1 on help for 'filter' for the meaning of 

B... 
78 %         A = 1;% ...and A 
79         for j = 1 : szSigmaCoeff % does this for all sigmas (for ex. if sigmas are [1 3], does for 1xsigma and 

for 3xsigma) 
80             eval(['[' sprintf('y1_%gx%g', filterLength(i), sigmaCoeff(j)) ', ' ... 
81                       sprintf('y2_%gx%g', filterLength(i), sigmaCoeff(j)) ', ' ... 
82                       sprintf('y3_%gx%g', filterLength(i), sigmaCoeff(j)) ']' '= myfilter_matlab(filter, xn, 

sigmaCoeff(j), FWC, numPasses);']); 
83                    
84             % uncomment below, if ever needed to scale up from [0.0..1.0] to [0..FWC] 
85 %             eval([ sprintf('y1_%gx%g', filterLength(i), sigmaCoeff(j)) '= FWC *' sprintf('y1_%gx%g', 

filterLength(i), sigmaCoeff(j)) ';']); 
86 %             eval([ sprintf('y2_%gx%g', filterLength(i), sigmaCoeff(j)) '= FWC *' sprintf('y2_%gx%g', 

filterLength(i), sigmaCoeff(j)) ';']); 
87         end 
88     end 
89   
90     
91     cc=hsv(9); %get the colours to plot the curves. the  Hue-saturation-value color map to plot each curve   
92      
93 % ===============================================================================================================     
94 % this is a figure to compare lines with filters of several lengths for y1 = 'Simple moving average without 

regarding to sharp edge detection';  
95 % we will use the simple moving average wihtout reagard to the sharp colour detection 
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96 % ==============================================================================================================         
97     figure('Name', y1,  'NumberTitle', 'off'); % create a figure frame to plot all curves for y2 (w/o sharp 

detection) 
98     set(gcf,'position',[mp(1,1) mp(1,2)+mp(1,4)*0.6 mp(1,3) mp(1,4)*0.45]); % set the position of the frame 
99     set(gca,'Position',[.03 .06 .95 .93], 'box','on'); % set the position of the axes 
100     hold on 
101     ax = gca; 
102     plot(t, x* FWC, 'Color', ax.ColorOrder(1,:), 'LineStyle', '-'); % plots 'original signal w/o noise', '-' 

means normal solid line 
103     plot(t, xn* FWC, 'Color', ax.ColorOrder(1,:), 'LineStyle', ':'); % plots 'signal w/ random noise', ':' means 

dotted line 
104     for i = 2 : szFilterLength %for each moving average window size 
105         for j = 1 : szSigmaCoeff %for each sigma 
106             if j==1,  plotTrace = '-';    else,    plotTrace =':';   end % sets the line type to be ploted, if 

solid or if dotted  
107             yy = eval(sprintf('y1_%dx%d', filterLength(i), sigmaCoeff(j))), 'LineStyle', plotTrace, 'Color', 

cc(i-1,:); 
108             plot(t, yy * FWC); 
109         end 
110     end 
111     hold off 
112     legend( 'original signal w/o noise', 'signal w/ random noise', ...  
113             sprintf('MA filter sz=%d, sigma=%d', filterLength(2), sigmaCoeff(1)), sprintf('MA filter sz=%d, 

sigma=%d', filterLength(2), sigmaCoeff(2)), ... 
114             sprintf('MA filter sz=%d, sigma=%d', filterLength(3), sigmaCoeff(1)), sprintf('MA filter sz=%d, 

sigma=%d', filterLength(3), sigmaCoeff(2)), ... 
115             sprintf('MA filter sz=%d, sigma=%d', filterLength(4), sigmaCoeff(1)), sprintf('MA filter sz=%d, 

sigma=%d', filterLength(4), sigmaCoeff(2)), ... 
116             sprintf('MA filter sz=%d, sigma=%d', filterLength(5), sigmaCoeff(1)), sprintf('MA filter sz=%d, 

sigma=%d', filterLength(5), sigmaCoeff(2)), ... 
117             sprintf('MA filter sz=%d, sigma=%d', filterLength(6), sigmaCoeff(1)), sprintf('MA filter sz=%d, 

sigma=%d', filterLength(6), sigmaCoeff(2)), ... 
118             sprintf('MA filter sz=%d, sigma=%d', filterLength(7), sigmaCoeff(1)), sprintf('MA filter sz=%d, 

sigma=%d', filterLength(7), sigmaCoeff(2)), ... 
119             sprintf('MA filter sz=%d, sigma=%d', filterLength(8), sigmaCoeff(1)), sprintf('MA filter sz=%d, 

sigma=%d', filterLength(8), sigmaCoeff(2)), ... 
120             sprintf('MA filter sz=%d, sigma=%d', filterLength(9), sigmaCoeff(1)), sprintf('MA filter sz=%d, 

sigma=%d', filterLength(9), sigmaCoeff(2))); 
121     xlabel('length (pixels)'); 
122     ylabel('colour depth  (0 is the darkest,  10e3 is the lighter )');     
123     
124 % ==============================================================================================================     
125 % this is a figure to compare lines with filters of several lengths for y2 = 'Enterprises's given algorithm: 

moving average with sharp edge detection'; % and for comparison with the sharp egde detection 
126 % ==============================================================================================================                 
127     figure('Name', sprintf('%s, sigma factor: [%d, %d] FWC: %g, num passes: %d', y2, sigmaCoeff, FWC, numPasses),  

'NumberTitle', 'off'); % creates a frame window to plot all curves for y3 (with sharp detection) 
128     set(gcf,'position',[mp(1,1) mp(1,2) mp(1,3) mp(1,4)*0.4]); % set the position of the frame 
129     set(gca,'Position',[.03 .07 .95 .92], 'box','on'); % set the position of the window with all curves  
130     hold on 
131     ax = gca; 
132     plot(t, x* FWC, 'Color', ax.ColorOrder(1,:), 'LineStyle', '-'); % plots 'original signal w/o noise', '-' 

means normal solid line (TAKE OUT "* FWC" of "x * FWC" 2nd parameter, THE MULTIPLICATIVE SCALE PLOTED LINE IF 
LINE BETWEEN [0..1]) 

133     plot(t, x* FWC, 'Color', ax.ColorOrder(1,:), 'LineStyle', ':'); % plots 'signal w/ random noise', ':' means 
dotted line (TAKE OUT "* FWC" of "xn * FWC" 2nd parameter, THE MULTIPLICATIVE SCALE PLOTED LINE IF LINE BETWEEN 
[0..1]) 

134     for i = 2 : szFilterLength % for each moving average window size 
135         for j = 1 : szSigmaCoeff % for each sigma 
136             if j==1,  plotTrace = '-'; else,  plotTrace =':'; end % chooses between solid (for sigma=1) or dotted 

line (for sigma=3)  
137             yy = eval(sprintf('y3_%dx%d', filterLength(i), sigmaCoeff(j))), 'LineStyle', plotTrace, 'Color', 

cc(i-1,:); 
138              plot(t, yy * FWC); 
139         end 
140     end 
141     hold off 
142     legend( 'original signal w/o noise', 'signal w/ random noise', ...  
143             sprintf('S-G filter sz=%d, order=2', filterLength(2)), sprintf('S-G filter sz=%d, order=4', 

filterLength(2)), ... 
144             sprintf('S-G filter sz=%d, order=2', filterLength(3)), sprintf('S-G filter sz=%d, order=4', 

filterLength(3)), ... 
145             sprintf('S-G filter sz=%d, order=2', filterLength(4)), sprintf('S-G filter sz=%d, order=4', 

filterLength(4)), ... 
146             sprintf('S-G filter sz=%d, order=2', filterLength(5)), sprintf('S-G filter sz=%d, order=4', 

filterLength(5)), ... 
147             sprintf('S-G filter sz=%d, order=2', filterLength(6)), sprintf('S-G filter sz=%d, order=4', 

filterLength(6)), ... 
148             sprintf('S-G filter sz=%d, order=2', filterLength(7)), sprintf('S-G filter sz=%d, order=4', 

filterLength(7)), ... 
149             sprintf('S-G filter sz=%d, order=2', filterLength(8)), sprintf('S-G filter sz=%d, order=4', 

filterLength(8)), ... 
150             sprintf('S-G filter sz=%d, order=2', filterLength(9)), sprintf('S-G filter sz=%d, order=4', 

filterLength(9)));         
151     xlabel('length (pixels)'); 
152     ylabel('colour depth  (0 is the darkest,  10e3 is the lighter )'); 
153 return;         
154 %     figure('Name', 'Original Image',  'NumberTitle', 'off');  % figure frame for the original image 
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155 %     imshow(imOriginal,  'Border', 'tight', 'DisplayRange', colourRange, 'InitialMagnification', 
initialmagnification); % show the original image 

156 %     figure('Name', 'Noisy Image',  'NumberTitle', 'off');  % figure frame for the noisy image 
157 %     imshow(imNoisy,  'Border', 'tight', 'DisplayRange', colourRange, 'InitialMagnification', 

initialmagnification);% show the noisy image 
158       
159   
160     filter = (1/filterLength(2))*ones(1,filterLength(2)); 
161     [imDenoised_04x1_SMA, noise_04x1_SMA, mse_04x1_SMA, peaksnr_04x1_SMA, snr_04x1_SMA, global_sim_04x1_SMA, ~,  

... 
162      imDenoised_04x1_FlP, noise_04x1_FlP, mse_04x1_FlP, peaksnr_04x1_FlP, snr_04x1_FlP, global_sim_04x1_FlP, ~,  

... 
163      imDenoised_04x1_FxP, noise_04x1_FxP, mse_04x1_FxP, peaksnr_04x1_FxP, snr_04x1_FxP, global_sim_04x1_FxP, ~  

... 
164     ] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(1), FWC, imNoisy, noise, imOriginal, colourRange, 

initialmagnification, numPasses, [1 1805-151 1375 573]);     
165 %    f=figure('Name', sprintf('imDenoised: filter=4pts sigma=%d col=%d', sigmaCoeff(1), col), 'NumberTitle', 

'off');  
166     f.OuterPosition = [2264 1735 341 493]; 
167 %    h_imDenoised_04x1=histogram(imDenoised_04x1_FxP(:,col) * FWC, 'Normalization', 'count'); 
168   
169     filter = (1/filterLength(2))*ones(1,filterLength(2)); 
170     [imDenoised_04x3_SMA, noise_04x3_SMA, mse_04x3_SMA, peaksnr_04x3_SMA, snr_04x3_SMA, global_sim_04x3_SMA, ~,  

... 
171      imDenoised_04x3_FlP, noise_04x3_FlP, mse_04x3_FlP, peaksnr_04x3_FlP, snr_04x3_FlP, global_sim_04x3_FlP, ~,  

... 
172      imDenoised_04x3_FxP, noise_04x3_FxP, mse_04x3_FxP, peaksnr_04x3_FxP, snr_04x3_FxP, global_sim_04x3_FxP, ~  

... 
173     ] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(2), FWC, imNoisy, noise, imOriginal, colourRange, 

initialmagnification, numPasses, [546 1805-151 1375 573]); 
174 %    f=figure('Name', sprintf('imDenoised: filter=4pts sigma=%d, col=%d', sigmaCoeff(2), col), 'NumberTitle', 

'off');  
175     f.OuterPosition = [2264 1201 341 493]; 
176 %    h_imDenoised_04x3=histogram(imDenoised_04x3_FxP(:,col) * FWC, 'Normalization', 'count'); 
177   
178     filter = (1/filterLength(3))*ones(1,filterLength(3)); 
179     [imDenoised_09x1_SMA, noise_09x1_SMA, mse_09x1_SMA, peaksnr_09x1_SMA, snr_09x1_SMA, global_sim_09x1_SMA, ~,  

... 
180      imDenoised_09x1_FlP, noise_09x1_FlP, mse_09x1_FlP, peaksnr_09x1_FlP, snr_09x1_FlP, global_sim_09x1_FlP, ~,  

... 
181      imDenoised_09x1_FxP, noise_09x1_FxP, mse_09x1_FxP, peaksnr_09x1_FxP, snr_09x1_FxP, global_sim_09x1_FxP, ~  

... 
182     ] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(1), FWC, imNoisy, noise, imOriginal, colourRange, 

initialmagnification, numPasses, [1 1805-302 1375 573]); 
183 %    f=figure('Name', sprintf('imDenoised: filter=9pts, sigma=%d, col=%d', sigmaCoeff(1), col), 'NumberTitle', 

'off');  
184     f.OuterPosition = [2607 1735 341 493];     
185  %   h_imDenoised_09x1=histogram(imDenoised_09x1_FxP(:,col) * FWC, 'Normalization', 'count'); 
186   
187     filter = (1/filterLength(3))*ones(1,filterLength(3)); 
188     [imDenoised_09x3_SMA, noise_09x3_SMA, mse_09x3_SMA, peaksnr_09x3_SMA, snr_09x3_SMA, global_sim_09x3_SMA, ~,  

... 
189      imDenoised_09x3_FlP, noise_09x3_FlP, mse_09x3_FlP, peaksnr_09x3_FlP, snr_09x3_FlP, global_sim_09x3_FlP, ~,  

... 
190      imDenoised_09x3_FxP, noise_09x3_FxP, mse_09x3_FxP, peaksnr_09x3_FxP, snr_09x3_FxP, global_sim_09x3_FxP, ~  

... 
191     ] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(2), FWC, imNoisy, noise, imOriginal, colourRange, 

initialmagnification, numPasses, [546 1805-302 1375 573]); 
192 %    f=figure('Name', sprintf('imDenoised: filter=9pts, sigma=%d, col=%d', sigmaCoeff(2), col), 'NumberTitle', 

'off');  
193     f.OuterPosition = [2607 1201 341 493]; 
194 %    h_imDenoised_09x3=histogram(imDenoised_09x3_FxP(:,col) * FWC, 'Normalization', 'count'); 
195      
196     filter = (1/filterLength(4))*ones(1,filterLength(4)); 
197     [imDenoised_16x1_SMA, noise_16x1_SMA, mse_16x1_SMA, peaksnr_16x1_SMA, snr_16x1_SMA, global_sim_16x1_SMA, ~,  

... 
198      imDenoised_16x1_FlP, noise_16x1_FlP, mse_16x1_FlP, peaksnr_16x1_FlP, snr_16x1_FlP, global_sim_16x1_FlP, ~,  

... 
199      imDenoised_16x1_FxP, noise_16x1_FxP, mse_16x1_FxP, peaksnr_16x1_FxP, snr_16x1_FxP, global_sim_16x1_FxP, ~  

... 
200     ] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(1), FWC, imNoisy, noise, imOriginal, colourRange, 

initialmagnification, numPasses, [1 1805-453 1375 573]); 
201 %    f=figure('Name', sprintf('imDenoised: filter=16pts, sigma=%d, col=%d', sigmaCoeff(1), col), 'NumberTitle', 

'off');  
202     f.OuterPosition = [2949 1735 341 493]; 
203 %    h_imDenoised_16x1=histogram(imDenoised_16x1_FxP(:,col) * FWC, 'Normalization', 'count'); 
204   
205     filter = (1/filterLength(4))*ones(1,filterLength(4)); 
206     [imDenoised_16x3_SMA, noise_16x3_SMA, mse_16x3_SMA, peaksnr_16x3_SMA, snr_16x3_SMA, global_sim_16x3_SMA, ~,  

... 
207      imDenoised_16x3_FlP, noise_16x3_FlP, mse_16x3_FlP, peaksnr_16x3_FlP, snr_16x3_FlP, global_sim_16x3_FlP, ~,  

... 
208      imDenoised_16x3_FxP, noise_16x3_FxP, mse_16x3_FxP, peaksnr_16x3_FxP, snr_16x3_FxP, global_sim_16x3_FxP, ~  

... 
209     ] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(2), FWC, imNoisy, noise, imOriginal, colourRange, 

initialmagnification, numPasses, [546 1805-453 1375 573]); 
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210 %    f=figure('Name', sprintf('imDenoised: filter=16pts, sigma=%d, col=%d', sigmaCoeff(2), col), 'NumberTitle', 
'off');  

211     f.OuterPosition = [2949 1201 341 493]; 
212 %    h_imDenoised_16x3=histogram(imDenoised_16x3_FxP(:,col) * FWC, 'Normalization', 'count'); 
213   
214     filter = (1/filterLength(5))*ones(1,filterLength(5)); 
215     [imDenoised_25x1_SMA, noise_25x1_SMA, mse_25x1_SMA, peaksnr_25x1_SMA, snr_25x1_SMA, global_sim_25x1_SMA, ~,  

... 
216      imDenoised_25x1_FlP, noise_25x1_FlP, mse_25x1_FlP, peaksnr_25x1_FlP, snr_25x1_FlP, global_sim_25x1_FlP, ~,  

... 
217      imDenoised_25x1_FxP, noise_25x1_FxP, mse_25x1_FxP, peaksnr_25x1_FxP, snr_25x1_FxP, global_sim_25x1_FxP, ~  

... 
218     ] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(1), FWC, imNoisy, noise, imOriginal, colourRange, 

initialmagnification, numPasses, [1 1805-604 1375 573]); 
219 %    f=figure('Name', sprintf('imDenoised: filter=25pts, sigma=%d, col=%d', sigmaCoeff(1), col), 'NumberTitle', 

'off');  
220     f.OuterPosition = [3260 1735 341 493]; 
221 %    h_imDenoised_25x1=histogram(imDenoised_25x1_FxP(:,col) * FWC, 'Normalization', 'count'); 
222   
223     filter = (1/filterLength(5))*ones(1,filterLength(5)); 
224     [imDenoised_25x3_SMA, noise_25x3_SMA, mse_25x3_SMA, peaksnr_25x3_SMA, snr_25x3_SMA, global_sim_25x3_SMA, ~,  

... 
225      imDenoised_25x3_FlP, noise_25x3_FlP, mse_25x3_FlP, peaksnr_25x3_FlP, snr_25x3_FlP, global_sim_25x3_FlP, ~,  

... 
226      imDenoised_25x3_FxP, noise_25x3_FxP, mse_25x3_FxP, peaksnr_25x3_FxP, snr_25x3_FxP, global_sim_25x3_FxP, ~  

... 
227     ] = calculateNoiseAndShowImage(filter, attr, sigmaCoeff(2), FWC, imNoisy, noise, imOriginal, colourRange, 

initialmagnification, numPasses, [546 1805-604 1375 573]); 
228 %    f=figure('Name', sprintf('imDenoised: filter=25pts, sigma=%d, col=%d', sigmaCoeff(2), col), 'NumberTitle', 

'off');  
229     f.OuterPosition = [3260 1201 341 493]; 
230 %    h_imDenoised_25x3=histogram(imDenoised_25x3_FxP(:,col) * FWC, 'Normalization', 'count'); 
231      
232      
233 % ======================  COMPARISON BETWEEN NOISY AND ORIGINAL ===========================================         
234     
235   
236 %     mse = immse(imNoisy, imOriginalforCompar);                                       % immse(A,ref) calculates 

the mean-squared error (MSE = 1/N * Sum(Yhat-Y)^2)  
237 %     [peaksnr, snr] = psnr(imNoisy, imOriginalforCompar);                             % SNR = 10 * log10(Y^2 / 

MSE);    PSNR = 10 * log10( MaxPixelRes^2 / MSE) 
238 %      str = sprintf('noisy image, noise=%g', noise);     % puts these measurements in the a string ... 
239 %      subplot('Position', [0, 0.5, 0.5, 0.5]); 
240 %     figure('Name', str,  'NumberTitle', 'off', 'Position', [1 ssz(4)*2/3 ssz(4)/2 ssz(4)/3]);                                      

%  .. to put as title in the denoised image to show 
241 %      imshow(imNoisy,  'Border', 'tight', 'DisplayRange', range);                      % show the denoise image 
242 %      title(str); 
243 %      
244 %     [global_sim, local_sim] = ssim(imNoisy, imOriginalforCompar);                    % ssim(A,ref) computes the 

Structural Similarity Index (SSIM). The returning values,  
245 %     str = sprintf('noisy image, Structural similarity, global=%g', global_sim);      %   global_sim, a unique 

value, is the average and the local_sim, an array,  
246 %     subplot('Position', [0.5, 1/3, 0.5, 0.5]); 
247 %     figure('Name', str,  'NumberTitle', 'off', 'Position', [ssz(4)/2 ssz(4)*2/3 ssz(4)/2 ssz(4)/3]);                                      

%   is the individual values. the more white (near to 1), the more similar 
248 %     imshow(local_sim,  'Border', 'tight', 'DisplayRange', range);                    % show the image 
249 %     title('Original'); 
250      
251      
252 %      S = mean(mean(double(imOriginalforCompar) .^ 2));                              % signal power 
253 %      MSE = mean(mean( (double(imOriginalforCompar) - double(imNoisy)) .^ 2 )); 
254 %      SNR = 10 * log10(  mean(mean(double(imNoisy) .^ 2))  / MSE  ); 
255 %      PeakSNR = 10 * log10( range(2)^2 / MSE ); 
256     
257     return 
258 end 
259   
260 %% 
261 function [imDenoised_SMA, noise_SMA, mse_SMA, peaksnr_SMA, snr_SMA, global_sim_SMA,  local_sim_SMA, ...  % SMA = 

Simple Moving Average 
262           imDenoised_FlP, noise_FlP, mse_FlP, peaksnr_FlP, snr_FlP, global_sim_FlP,  local_sim_FlP, ...  % FlP = 

Floating-Point 
263           imDenoised_FxP, noise_FxP, mse_FxP, peaksnr_FxP, snr_FxP, global_sim_FxP,  local_sim_FxP] = ...% FxP = 

Fixed-Point 
264          calculateNoiseAndShowImage(filter, attr, sigmaCoeff, FWC, imNoisy, noiseOriginal,  imOriginal, range, 

initialmagnification, numPasses, figPos) 
265 %FWC=100; 
266     imgsz = attr.size(1) * attr.size(2); %get the image size 
267     [~, filterSize] = size(filter);%take size of the filter window to convolute with the image pixels 
268     imDenoised_SMA = zeros(attr.size(1), attr.size(2)); 
269     imDenoised_FlP = zeros(attr.size(1), attr.size(2)); 
270     imDenoised_FxP = zeros(attr.size(1), attr.size(2)); 
271      
272     parfor i=1 : attr.size(2)  % loop for each column. on each loop, a whole column is being treated 
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273         imNoisyTemp = imNoisy(:, i)'; % we need the column in the form of a line, hence the transpose 
274         [Temp1, Temp2, Temp3] = myfilter(filter, imNoisyTemp, sigmaCoeff,    FWC, numPasses); % this is where the 

moving average is working 
275         imDenoised_SMA(:, i) = Temp1'; % get the line back to a column and insert it on the image 
276         imDenoised_FlP(:, i) = Temp2'; % same as above but for floating-point 
277         imDenoised_FxP(:, i) = Temp3'; % same as above but for fixed-point 
278     end 
279      
280     noise_SMA = sqrt(  abs(mean(mean(imDenoised_SMA.^2)) - mean(mean(imDenoised_SMA))^2 ) * imgsz/(imgsz-1)); 
281     noise_FlP = sqrt(  abs(mean(mean(imDenoised_FlP.^2)) - mean(mean(imDenoised_FlP))^2 ) * imgsz/(imgsz-1)); 
282     noise_FxP = sqrt(  abs(mean(mean(imDenoised_FxP.^2)) - mean(mean(imDenoised_FxP))^2 ) * imgsz/(imgsz-1)); 
283      
284     mse_SMA = immse(imDenoised_SMA,         imOriginal); % immse(A,ref) calculates the mean-squared error (MSE) 
285     mse_FlP = immse(imDenoised_FlP,         imOriginal);      
286     mse_FxP = immse(imDenoised_FxP / FWC,   imOriginal); % Fixed point must be restore back (/ FWC) to the range 

[0..1] as the original image  
287      
288     [peaksnr_SMA, snr_SMA] = psnr(imDenoised_SMA,         imOriginal); % psnr(A,ref) calculates peak signal-to-

noise ratio 
289     [peaksnr_FlP, snr_FlP] = psnr(imDenoised_FlP,         imOriginal);   
290     [peaksnr_FxP, snr_FxP] = psnr(imDenoised_FxP / FWC,   imOriginal); % Fixed point must be restore back (/ FWC) 

to the range [0..1] as the original image   
291      
292     [global_sim_SMA, local_sim_SMA] = ssim(imDenoised_SMA      ,   imOriginal); % ssim(A,ref) computes the 

Structural Similarity Index (SSIM). Global is a unique  
293     [global_sim_FlP, local_sim_FlP] = ssim(imDenoised_FlP      ,   imOriginal); %  ... variable and Local, a 

pixel per pixel comparison (differential image).   
294     [global_sim_FxP, local_sim_FxP] = ssim(imDenoised_FxP / FWC,   imOriginal); % Fixed point must be restore 

back (/ FWC) to the range [0..1] as the original image  
295          
296      
297     str1 = sprintf('SimpMovAvg: 

P=%d,W=%g,S=%g,mse=%.6g,SNR=%.5f,peakSNR=%.5f,globalSim=%.6g,noise=%.6g,originalNoise=%.5f', ... 
298                   numPasses, filterSize, sigmaCoeff, mse_SMA, snr_SMA, peaksnr_SMA, global_sim_SMA*100, 

noise_SMA, noiseOriginal);  %   global_sim, a unique value, is the average and the local_sim, an array,  
299     str2 = sprintf('Float Point: 

P=%d,W=%g,S=%g,mse=%.6g,SNR=%.5f,peakSNR=%.5f,globalSim=%.6g,noise=%.6g,originalNoise=%.5f', ... 
300                   numPasses, filterSize, sigmaCoeff, mse_FlP, snr_FlP, peaksnr_FlP, global_sim_FlP*100, 

noise_FlP, noiseOriginal)  %   global_sim, a unique value, is the average and the local_sim, an array,  
301     str3 = sprintf('Fixed Point: 

P=%d,W=%g,S=%g,mse=%.6g,SNR=%.5f,peakSNR=%.5f,globalSim=%.6g,noise=%.6g,originalNoise=%.5f', ... 
302                   numPasses, filterSize, sigmaCoeff, mse_FxP, snr_FxP, peaksnr_FxP, global_sim_FxP*100, 

noise_FxP, noiseOriginal)  %   global_sim, a unique value, is the average and the local_sim, an array,  
303     newline 
304      
305 %     f=figure('Name', str1,  'NumberTitle', 'off');  % show the denoise image 
306 %     imshow(imDenoised_SMA,  'Border', 'tight', 'DisplayRange', [0 1], 'InitialMagnification', 

initialmagnification); % show the denoise image 
307 %     f.OuterPosition = [figPos(1) figPos(2) figPos(3) figPos(4)];   
308     f=figure('Name', str2,  'NumberTitle', 'off');  % show the denoise image 
309     imshow(imDenoised_FlP,  'Border', 'tight', 'DisplayRange', [0 1], 'InitialMagnification', 

initialmagnification); % show the denoise image 
310     f.OuterPosition = [figPos(1) figPos(2)-25 figPos(3) figPos(4)]; 
311     f=figure('Name', str3,  'NumberTitle', 'off');  % show the denoise image 
312     imshow(imDenoised_FxP,  'Border', 'tight', 'DisplayRange', [0 FWC], 'InitialMagnification', 

initialmagnification); % show the denoise image 
313     f.OuterPosition = [figPos(1) figPos(2)-50 figPos(3) figPos(4)]; 
314 end    
315   
316 % This function is implemented in a mex file "myfilter.mexmaci64" for spped up 
317 function [vecY1, vecY2, vecY3] = myfilter_matlab (filter, vecX, sigma_coeff, FWC, numPasses)%, sharp_detect ) 
318     %, vecY4, vecY5, vecY6] = myfilter_matlab (filter, vecX, sigma_coeff, FWC, numPasses)%, sharp_detect ) 
319      
320 %     mwSize i, j, n, M0; 
321 %     double N, colorScale1, colorScale2, colorScale3; 
322     sf2 = sigma_coeff^2; 
323     f = 1.0; % this is a multiplicative scaling factor to stretch the maximum bit range of Digital Numbers used 

in integer calculations nature of FPGA's. Due to integer floor division and sqrt rounding results from math 
FPGA'a operations, this factor can be used as a "smoothing agent" since this can improve accuracy by a factor of 
1/f^3 (see below the function used to calculate vecY3[]) 

324      
325     if (numPasses >= 2)  
326         backup = vecX; 
327     end 
328     
329     %% 
330     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
331     % simple moving average without regarding to sharp edge detection 
332     % works like this: the pixel(i) gets the value of the Mean of all pixels under filter over the source vector 
333     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
334     [~, sizeFilter] = size(filter); % get the filter width, this will be the size of the filter to convolute with 

the image X 
335     [~, lenX] = size(vecX); 
336     vecY1 = vecX; % initialize output 
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337     vecY2 =  vecX; % initialize output 
338     vecY3 =  vecX; % initialize output 
339     for j=sizeFilter : lenX % loop for the whole vector 
340         vecY1(j) = mean(vecX(j-sizeFilter+1:j)); % simply make the average of the window filter size 
341     end 
342     if sizeFilter >2 
343         if (sizeFilter==4 || sizeFilter==16 || sizeFilter==36 || sizeFilter==64 || sizeFilter==100) 
344             vecY3 = sgolayfilt(vecX,6,2+sizeFilter+1); 
345         else 
346             vecY3 = sgolayfilt(vecX,6,2+sizeFilter); 
347         end 
348     end   
349      
350     %% 
351     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
352     % Enterprise's given algorithm: moving average with sharp edge detection 
353     % works the same way as the above simple moving average, but if a sharp change in color is detected, outside 

[pixel(n-1)-sigma..[pixel(n-1)+sigma] restart pixel counting for a new growing filter until the specified size 
354     % Algorithm is: if [pixel(n-1)-sigma <= pixel(n) <= [pixel(n-1)+sigma] then make average, else start a new 

counting (reset average), being sigma = sqrt(pixel) / sqrt(N);  
355     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
356     [~, lenX] = size(vecX); % get the picture height 
357     [~, sizeFilter] = size(filter); % get the filter width, this will be the size of the filter to convolve with 

the image X 
358     
359     for n = 1 : numPasses % number of passes means the number of filter auto-convolutions. so, if numPasses=1, 

filter is a unit step. if 2, filter is triangular, if 3, a Gaussian shape and so on 
360         vecY2 = zeros(1, lenX);% initialize output (the length of the image rows, temporal noise) 
361         M0 = 1;% M0 is the beginning index of the filter,  so start now by initializing it  
362         for i = 1 : lenX %do it for the whole number of the image's rows (temporal noise) 
363   
364             if i == M0 % the beginning of the filter (M0) has the same index as the one being processed (i) 
365                 vecY2(i) = vecX(i); % get the same value of the source vector 
366             else % or the filter is growing in size while maintaining the average, so, the beginning position 

maintains the same 
367                 if i - M0 >= sizeFilter % dont let the filter size grow up more than size of it was requested  
368                     M0 = M0 + 1; % if it does, just move the initial index position forward, maintaining its size 

as moving occurs 
369                 end 
370                  
371                 % since dark colors are noise noticeable, we need more smoothing on these colors, so let's use 

functions for it  
372                 %colourScale = exp(-3e-4 * vecY2[i-1]);  // concave smooth function - inverse exponential smooth 

function (smooths the noise on all range of colours inverse exponential, meaning lighter colours get less 
smoothing, and reverse otherwise) -> to make tests between 3e-4 (more decay) until 1e-4 (less decay)  

373                 colourScale = 1.214e-8*FWC^2*vecY2(i-1)^2 - 0.0002290*FWC*vecY2(i-1) + 1.096; % polynomial 2nd 
degree 

374                 %colourScale = 2/(exp(0.0004*vecY2[i-1]+0.05)+exp(-(0.0004*vecY2[i-1]+0.05))); // sec hyperbolic 
smooth function (factor multiplying vecY2[i-1] scales the function, the smaller the spreaded the function. the 
plus factor displaces the function) 

375                 %colourScale = 2/(exp(0.0005*vecY2[i-1]+0.88)-exp(-(0.0005*vecY2[i-1]+0.88))); // cosec 
hyperbolic smooth function (factor multiplying vecY2[i-1] scales the function, the smaller the spreaded the 
function. the plus factor displaces the function) 

376                 %colourScale = (-1e-4 * vecY2[i-1] + 1); // linear smooth function, negative inclination- 
(smooths the noise on all range of colours linearly negatively)   

377                 %colourScale = (-1e-8 * pow(vecY2[i-1], 2) + 1); // convex smooth function, inverted - inverted 
parabola smooth  

378                 %colourScale = 1-1/(exp((-vecY2[i-1]+FWC/2)/(0.1*FWC)) + 1); // logistic sigmoid smooth function, 
mirrored around 0.5*FWD- mirrored sigmoid smooth 

379                  
380                 % now, calculate sigma, given that sigma = sqrt(mean) / sqrt(N), and check if [pixel(n-1)-sigma 

<= pixel(n) <= [pixel(n-1)+sigma] 
381                 vecY2(i) = sqrt(vecY2(i-1) / (i - M0 + 1)) * (sigma_coeff/FWC*100) * colourScale; % this is sigma 

= sqrt(mean) / sqrt(N) 
382                  
383                 if vecX(i) < vecY2(i-1) - vecY2(i) || ... % if this pixel is outside interval [mean-

sigma..mean+sigma] 
384                    vecX(i) > vecY2(i-1) + vecY2(i)  
385                     vecY2(i) = vecX(i);%restart a new moving average (picture edge detection) 
386                     M0 = i; 
387                 else % else, the pixel is inside the interval, include this pixel to contribute to the mean 
388                     vecY2(i) = mean(vecX(M0 : i)); % make average accounting with all pixels under the filter  
389 %                     lf = length(vecX(M0 : i));  
390 %                     if lf >= 4 
391 %                         vecY5(i) = sgolayfilt(vecX,2,lf); 
392 %                     else 
393 %                         vecY5(i) = vecY2(i); 
394 %                     end 
395                 end 
396   
397             end 
398         end 
399          
400         if numPasses >= 2 % if more than 1 pass... 
401             vecX = vecY2; % ... then use this processed vector as a source for the next pass 
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402         end 
403     end 
404      
405 return; 
406   
407     if (numPasses >= 2)  
408         vecX = backup; 
409     end 
410     for i = 1 : lenX  % fixed-point numbers cannot be calculated within [0..1]. must be calculated in... 
411         vecX(i) = round(vecX(i) * FWC); %  ... a much greater range, say [0..FWC], being FWC=10000. round here is 

used as if Matlab has passed this vector  
412     end 
413     for n = 1 : numPasses % number of passes means the number of filter auto-convolutions. so, if numPasses=1, 

filter is a unit step. if 2, filter is triangular, if 3, a Gaussian shape and so on 
414         vecY3 = zeros(1, lenX);% initialize output (the length of the image rows, temporal noise) 
415         M0 = 1;% M0 is the beginning index of the filter,  so start now by initializing it  
416         for i = 1 : lenX %do it for the whole number of the image's rows (temporal noise) 
417   
418             if i == M0 % the beginning of the filter (M0) has the same index as the one being processed (i) 
419                 vecY3(i) = floor(vecX(i)); % get the same value of the source vector 
420             else % or the filter is growing in size while maintaining the average, so, the beginning position 

maintains the same 
421                 if i - M0 >= sizeFilter % dont let the filter size grow up more than size of it was requested  
422                     M0 = M0 + 1; % if it does, just move the initial index position forward, maintaining its size 

as moving occurs 
423                 end 
424                  
425                 N = i - M0 + 1; 
426                  
427                 % since dark colors are noise noticeable, we need more smoothing on these colors, so let's use 

functions for it  
428                 %colourScale = exp(-3e-4 * vecY2[i-1]);  // concave smooth function - inverse exponential smooth 

function (smooths the noise on all range of colours inverse exponential, meaning lighter colours get less 
smoothing, and reverse otherwise) -> to make tests between 3e-4 (more decay) until 1e-4 (less decay)  

429 %colourScale = 1.214e-8*vecY2(i-1)^2 - 0.0002257*vecY2(i-1) + 1.096; % polynomial 2nd degree 
430                 %colourScale = 2/(exp(0.0004*vecY2[i-1]+0.05)+exp(-(0.0004*vecY2[i-1]+0.05))); // sec hyperbolic 

smooth function (factor multiplying vecY2[i-1] scales the function, the smaller the spreaded the function. the 
plus factor displaces the function) 

431                 %colourScale = 2/(exp(0.0005*vecY2[i-1]+0.88)-exp(-(0.0005*vecY2[i-1]+0.88))); // cosec 
hyperbolic smooth function (factor multiplying vecY2[i-1] scales the function, the smaller the spreaded the 
function. the plus factor displaces the function) 

432                 %colourScale = (-1e-4 * vecY2[i-1] + 1); // linear smooth function, negative inclination- 
(smooths the noise on all range of colours linearly negatively)   

433                 %colourScale = (-1e-8 * pow(vecY2[i-1], 2) + 1); // convex smooth function, inverted - inverted 
parabola smooth  

434                 %colourScale = 1-1/(exp((-vecY2[i-1]+FWC/2)/(0.1*FWC)) + 1); // logistic sigmoid smooth function, 
mirrored around 0.5*FWD- mirrored sigmoid smooth 

435                  
436                 % now, calculate sigma, given that sigma = sqrt(mean) / sqrt(N), and check if [pixel(n-1)-sigma 

<= pixel(n) <= [pixel(n-1)+sigma] 
437 %vecY2(i) = sqrt(vecY2(i-1) / (i - M0 + 1)) * sigma_coeff * colourScale; % this is sigma = sqrt(mean) / sqrt(N) 
438                  vecY3(i) = floor(sqrt( floor( ... 
439                                              sf2 * vecY3(i-1) * (82811418643602098467373056.0*(f^2)-

17302750793234380800000.0*f*vecY3(i-1)+917272465632599875.0*(vecY3(i-1)^2))^2 ... 
440                                                                                                                         

/ ... 
441                                                                                             

(5708990770823839524233143877797980545530986496000000.0*(f^3)*N) ... 
442                                             ) ... 
443                                       ) ... 
444                                  ); 
445                                   
446                 if vecX(i) < vecY3(i-1) - vecY3(i) || ... % if this pixel is outside interval [mean-

sigma..mean+sigma] 
447                    vecX(i) > vecY3(i-1) + vecY3(i)  
448                     vecY3(i) = floor(vecX(i));%restart a new moving average (picture edge detection) 
449                     M0 = i; 
450                 else % else, the pixel is inside the interval, include this pixel to contribute to the mean 
451                     vecY3(i) = mean(vecX(M0 : i)); % make average accounting with all pixels under the filter  
452                      
453                 end 
454   
455             end 
456         end 
457   
458         if numPasses >= 2 % if more than 1 pass... 
459             vecX = vecY3; % ... then use this processed vector as a source for the next pass 
460         end 
461     end 
462      
463 end 
464 %% 
465 % ======================RESET THE IMAGE'S RESOLUTION BACK TO THE ORIGINAL=================================== 
466 function imOut = resetImageResolution(imIn, attr) 
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467     imOut = imIn;     
468     if strcmp(attr.class,  'uint8')    
469         imOut    = uint8(round(imIn)); 
470     elseif strcmp(attr.class,  'uint16') 
471         imOut    = uint16(round(imIn)); 
472     elseif strcmp(attr.class,  'uint32') 
473         imOut    = uint32(round(imIn)); 
474     elseif strcmp(attr.class,  'uint64') 
475         imOut    = uint64(round(imIn)); 
476     end     
477 End 

 

A.3.5.3 myfilter.c (used to speed up MATLAB scripts) 
2 /*========================================================== 
3  * myfiltert.c - a MAC executable that is to be called by SNR_Martin_MovingAverage.m 
4  * 
5  * Given an array of values as an arguments, it returns 2 arrays:  
6  * one, is a simple moving average filtering of the input argument  
7  * and the second is also a moving average filtering but sharp colour  
8  * transitions detection. It speeds up greatly the calculations in  
9  * relation to the same implementation done inside the script  
10  * SNR_Martin_MovingAverage.m 
11  * 
12  * The calling syntax is: 
13  * 
14  *      [array1, array2] = arrayProduct(filter, inputArray, sigmaFactor, FWC, numPasses) 
15  * array1 = simple moving average of 'inputArray' convoluted with the 'filter' 
16  * array2 = moving average with colour sharp detection of 'inputArray' convoluted with the 'filter' 
17  * filter = to convolute with 'inputArray' 
18  * sigmaCoeff = tolerance of the moving average operation 
19  * numPasses = number of convolution passes of 'inputArray' with 'filter' 
20  * 
21  * This is a MEX-file for MATLAB. 
22  * Copyright kykaku for Master Thesis. 
23  * 
24  *========================================================*/ 
25 #include <string.h> // for memcpy() 
26 // #include "engine.h" 
27 #include <math.h> 
28 #include "mex.h" 
29 /*========================================================*/ 
30 void mean(double *dest, double *ptrIniVec, double *ptrEndVec) 
31 { 
32     double *ptr = ptrIniVec; 
33     *dest = 0; 
34      
35     for (ptr = ptrIniVec; ptr <= ptrEndVec; ptr++) { 
36         *dest += *ptr; 
37     } 
38     *dest /= (ptrEndVec-ptrIniVec+1); 
39 } 
40 void mean_integer(double *dest, double *ptrIniVec, double *ptrEndVec) //same as above but results return number 

integer part only by floor(). this is to simulate FPGA's calculations 
41 { 
42     double *ptr = ptrIniVec; 
43     *dest = 0; 
44      
45     for (ptr = ptrIniVec; ptr <= ptrEndVec; ptr++) { 
46         *dest += *ptr; 
47     } 
48     *dest = floor(*dest / (ptrEndVec-ptrIniVec+1)); 
49 } 
50   
51 /*===============================================================================================================

==============================================*/ 
52 // The computational routine  
53 void myfilter(  double *filter, size_t lenfilter, // filter size and filter length  
54                 double *vecX, size_t lenvecX, double sigmaFactor, double FWC, size_t numPasses, // src vector, 

length, and parameters: sigmaFactior 
55                 double *vecY1, double *vecY2, double *vecY3)//, // destination vectors: vecY1 (simple mov 

average) vecY2 (mov avg w/ edge detection) vecY3 (sama as vecY2 but on fixed point to simulate FPGA calculations) 
56                 //double *vecY4, double *vecY5, double *vecY6) // destination vectors: vecY4 (savitzky-golay 

filter) vecY5 (s-g w/ edge detection) vecY6 (sama as vecY5 but on fixed point to simulate FPGA calculations) 
57 { 
58     mwSize i, j, n, M0; 
59     double N, colorScale; 
60     double sf2 = pow(sigmaFactor, 2); 
61     double f = 1.0; // this is a multiplicative scaling factor to stretch the maximum bit range of Digital 

Numbers used in integer calculations nature of FPGA's. Due to integer floor division and sqrt rounding results 
from math FPGA'a operations, this factor can be used as a "smoothing agent" since this can improve accuracy by a 
factor of 1/f^3 (see below the function used to calculate vecY3[]) 

62     double* backup = (double*) malloc(sizeof(double)*lenvecX); // allocate space for original backup 
63     memcpy((void *)backup, (void *)vecX, sizeof(double)*lenvecX); // 1st save a copy of the original, because it 

might be overwriten if numpasses > 1 
64      
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65      
66 // 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

67 // %     % simple moving average without regarding to sharp edge detection (this is calculated in the range 
[0..1] 

68 // %     % works like this: the pixel(i) gets the value of the Mean of all pixels under filter over the source 
vector 

69 // 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

70     memcpy((void *)vecY1, (void *)vecX, sizeof(double)*lenvecX); // initialize output  
71     for (j = lenfilter-1; j < lenvecX; j++) {// loop for the whole vector  
72         mean( &vecY1[j], vecX + (j - lenfilter + 1), vecX + j ); // simply make the average of the window filter 

size  
73     } 
74      
75 // 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

76 // %     % Enterprise given algorithm: moving average with sharp edge detection (this is the floating-point 
version calculated within range [0..1]) 

77 // %     % works the same way as the above simple moving average, but if a sharp change in colour is detected, 
outside [pixel(n-1)-sigma..[pixel(n-1)+sigma] restart pixel counting for a new growing filter until the specified 
size 

78 // %     % Algorithm is: if [pixel(n-1)-sigma <= pixel(n) <= [pixel(n-1)+sigma] then make average, else start a 
new counting (reset average), being sigma = sqrt(pixel) / sqrt(N);  

79 // 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

80     for (n = 0; n < numPasses; n++) { // number of passes means the number of filter auto-convolutions. so, if 
numPasses=1, filter is a unit step. if 2, filter is triangular, if 3, a Gaussian shape and so on 

81         memset(vecY2, 0, sizeof(double)*lenvecX); // initialize output (the length of the image rows, temporal 
noise) 

82         M0 = 0; // M0 is the beginning index of the filter,  so start now by initializing it  
83          
84         for (i = 0; i < lenvecX; i++) { // run for this whole row (temporal noise) 
85             if (i == M0) { // if the beginning (M0) and the end (i) of the filter match 
86                 vecY2[i] = vecX[i]; // get the same value of the source vector 
87             } else { // else, if the filter is growing (maintaining the average), the beginning (M0) doesn't move 

while the end of the filtar (i) keeps moving 
88                 if (i - M0 >= lenfilter) { // dont let the filter size grow up more than size of it was requested  
89                     M0 += 1; // if it does, just move the initial index position forward, maintaining its size as 

moving occurs 
90                 } 
91                  
92                 // since dark colors are noise noticeable, we need more smoothing on these colors, so let's use 

functions for it.  
93                 // FWC must be joined to each members which figures vecY2[i-1] in the same degree (linear, 

squared, ...) to scale this function between [0..1] 
94                 // polynomial 2nd degree is already scaled. check all the others 
95                 //colorScale = exp(-3e-4*FWC*vecY2[i-1]);  // concave smooth function - inverse exponential 

smooth function (smooths the noise on all range of colours inverse exponential, meaning lighter colours get less 
smoothing, and reverse otherwise) -> to make tests between 3e-4 (more decay) until 1e-4 (less decay)  

96                 colorScale = 1.214e-8*pow(FWC,2)*pow(vecY2[i-1],2) - 0.0002290*FWC*vecY2[i-1] + 1.096; // 
polynomial 2nd degree.  

97                 //colorScale = 2/(exp(0.0004*FWC*vecY2[i-1]+0.05) + exp(-(0.0004*FWC*vecY2[i-1]+0.05))); // sec 
hyperbolic smooth function (factor multiplying vecY2[i-1] scales the function, the smaller the spreaded the 
function. the plus factor displaces the function) 

98                 //colorScale = 2/(exp(0.0005*FWC*vecY2[i-1]+0.88) - exp(-(0.0005*FWC*vecY2[i-1]+0.88))); // cosec 
hyperbolic smooth function (factor multiplying vecY2[i-1] scales the function, the smaller the spreaded the 
function. the plus factor displaces the function) 

99                 //colorScale = -1e-4*FWC*vecY2[i-1] + 1; // negative inclination linear smoothing function, - 
(smooths the noise out linearly negative)   

100                 //colorScale = (-1e-8*pow(FWC,2)*pow(vecY2[i-1],2) + 1); // convex smooth function, inverted - 
inverted parabola smooth  

101                 //colorScale = 1-1/(exp((-FWC*vecY2[i-1]+FWC/2)/(0.1*FWC)) + 1); // logistic sigmoid smooth 
function, mirrored around 0.5*FWD- mirrored sigmoid smooth 

102                          
103                 // now, calculate sigma*sigmaCoeff, given that sigma = sqrt(pixel) / sqrt(N), and check if 

[pixel(n-1)-sigma <= pixel(n) <= [pixel(n-1)+sigma] 
104                 vecY2[i] = sqrt(vecY2[i-1] / (i - M0 + 1)) * (sigmaFactor/FWC*100) * colorScale; // this is sigma 

= sqrt(pixel / N) times the desired sigma factor (if we want more or less smoothing) times the color scale 
function 

105                                                                                                 // 
(sigmaFactor/FWC*100) needs to be adjusted in percentage (divide by FWC, then multiplied for 100) 

106                 if (vecX[i] < vecY2[i-1] - vecY2[i] ||  // if this pixel is outside interval [pixel-
sigma..pixel+sigma] 

107                     vecX[i] > vecY2[i-1] + vecY2[i]) { 
108                     vecY2[i] = vecX[i]; // restart a new moving average (picture edge detection) 
109                     M0 = i; 
110                 } else { // else, the pixel is inside the interval, include this pixel to contribute to the mean 
111                     mean( &vecY2[i], vecX + M0,  vecX + i ); // make average accounting with all pixels under the 

filter  
112                 } 
113   
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114             } 
115         } 
116         
117         if (numPasses > 1)  
118             memcpy(vecX,  vecY2, sizeof(double)*lenvecX); // use this processed vector as a source for the next 

pass  
119     } 
120      
121      
122      
123 //  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

124 // %     % Enterprise given algorithm: moving average with sharp edge detection (fixed point version of the above 
to simulate FPGA's calculations where it will be implemented) 

125 // %     %  fixed-point cannot be calculated within [0..1]. must be calculated in a much bigger range, say 
[0..FWC], being FWC=10000 in this case 

126 //  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

127     if (numPasses > 1) 
128         memcpy((void *)vecX, (void *)backup, sizeof(double)*lenvecX); 
129      
130     for (i = 0; i < lenvecX; i++) { // fixed-point numbers cannot be calculated within [0..1]. must be calculated 

in... 
131         vecX[i] = round(vecX[i] * FWC); //  ... a much greater range, say [0..FWC], being FWC=10000. round here 

is used as if Matlab has passed this vector  
132     } 
133     for (n = 0; n < numPasses; n++) { // number of passes means the number of filter auto-convolutions. so, if 

numPasses=1, filter is a unit step. if 2, filter is triangular, if 3, a Gaussian shape and so on 
134         memset(vecY3, 0, sizeof(double)*lenvecX); // initialize output (the length of the image rows, temporal 

noise) 
135         M0 = 0; // M0 is the beginning index of the filter,  so start now by initializing it 
136          
137         for (i = 0; i < lenvecX; i++) { // run for this whole row (temporal noise) 
138             if (i == M0) { // if the beginning (M0) and the end (i) of the filter match 
139                 vecY3[i] = floor(vecX[i]); // get the same value of the source vector 
140             } else { // else, if the filter is growing (maintaining the average), the beginning (M0) doesn't move 

while the end of the filtar (i) keeps moving 
141                 if (i - M0 >= lenfilter) { // dont let the filter size grow up more than size of it was requested 
142                     M0 += 1; // if it does, just move the initial index position forward, maintaining its size as 

moving occurs 
143                 } 
144                  
145                 N = i - (double)M0 + 1; 
146                  
147                 // this is the same function as the above  vecY2[i] = sqrt(vecY2[i-1] / (i - M0 + 1)) * 

(sigmaFactor/FWC*100) * colorScale, but properly formated for fixed-point calculations  
148                 //  generation of this function was made with algebric manipulation to reduce all to 1 sqrt and 1 

division for better precision on fixed-point, and having the above function as starting point 
149                 //  the coefficients were get with the help of MATLAB 
150                 vecY3[i] = floor(sqrt( floor(  
151                                              sf2 * vecY3[i-1] * pow(82811418643602098467373056.0*pow(f,2)-

17302750793234380800000.0*f*vecY3[i-1]+917272465632599875.0*pow(vecY3[i-1],2) , 2) 
152                                                                                                                         

/ 
153                                                                                             

(5708990770823839524233143877797980545530986496000000.0*pow(f,3)*N) 
154                                             ) 
155                                       ) 
156                                  ); 
157                  
158                  
159                 if (vecX[i] < vecY3[i-1] - vecY3[i] ||  // if this pixel is outside interval [pixel-

sigma..pixel+sigma] 
160                     vecX[i] > vecY3[i-1] + vecY3[i]) { 
161                     vecY3[i] = floor(vecX[i]); // restart a new moving average (picture edge detection) 
162                     M0 = i; 
163                 } else { // else, the pixel is inside the interval, include this pixel to contribute to the mean 
164                     mean_integer( &vecY3[i], vecX + M0,  vecX + i ); // make average accounting with all pixels 

under the filter 
165                 } 
166             } 
167         } 
168          
169         if (numPasses > 1)   
170             memcpy(vecX,  vecY3, sizeof(double)*lenvecX); // then use this processed vector as a source for the 

next pass 
171     } 
172      
173 //  if (numPasses > 1) 
174         memcpy((void *)vecX, (void *)backup, sizeof(double)*lenvecX); // restore back the original vector 
175 } 
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176   
177 // The gateway function  
178 void mexFunction( int nlhs, mxArray *plhs[], 
179                   int nrhs, const mxArray *prhs[]) 
180 { 
181     double *filter;      // input: filter vector  
182     size_t lenfilter;    // input: size of the filter  
183     double *vecX;        // input: source vector  
184     size_t lenvecX;      // input: size of source vector  
185     double sigmaFactor;  // input: sigma smoother factor             
186     double FWC;          // input: FWC (highest digital number of the image) or (Coefficient (or Factor) of the 

Wavelength Conversion in electrons, accepted value is 10000 e-)  
187     size_t numPasses;    // input: number of passes to convolve filters 
188     double *vecY1;       // output: vector (Moving Average filtering without sharp detection) 
189     double *vecY2;       // output: vector (Moving Average filtering with sharp edge detection, floating-point)  
190     double *vecY3;       // output: vector (Moving Average filtering with sharp edge detection, fixed-point to 

simulate FPGA) 
191     double *vecY4;       // output: vector (Savitzky-Golay filtering) 
192     double *vecY5;       // output: vector (Savitzky-Golay filtering with sharp edge detection)  
193     double *vecY6;       // output: vector (Savitzky-Golay filtering with sharp edge detection, fixed-point to 

simulate FPGA) 
194      
195     if(nrhs!=5) { // check for proper number of input arguments  
196         mexErrMsgIdAndTxt("MyToolbox:myfilter:nrhs","Msg from myfilter.c: 5 inputs required: *filter, *source, 

sigma_coeff, FWC and numPasses"); 
197     } 
198     if(nlhs!=3) { // check for output parameters (3 Moving Average: simple, floating-point and fixed-point and 3 

Savitzky-Golay: simple, floating-point and fixed-point) 
199         mexErrMsgIdAndTxt("MyToolbox:myfilter:nlhs","Msg from myfilter.c: 3 outputs required."); 
200     } 
201        
202     if( !mxIsDouble(prhs[0]) || mxIsComplex(prhs[0])) { // make sure the 1st input argument is type double  
203         mexErrMsgIdAndTxt("MyToolbox:myfilter:notDouble","Msg from myfilter.c: Input filter vector must be type 

double."); 
204     } 
205     if(mxGetM(prhs[0])!=1) { // check that number of rows in 1st input argument is 1  
206         mexErrMsgIdAndTxt("MyToolbox:myfilter:notRowVector","Msg from myfilter.c: 1st input argument, filter, 

must be a row vector."); 
207     } 
208      
209     if( !mxIsDouble(prhs[1]) || mxIsComplex(prhs[1])) { // make sure the 2nd input argument is type double  
210         mexErrMsgIdAndTxt("MyToolbox:myfilter:notDouble","Msg from myfilter.c: Input source vector must be type 

double."); 
211     } 
212     if(mxGetM(prhs[1])!=1) { // check that number of rows in 2nd input argument is 1  
213         mexErrMsgIdAndTxt("MyToolbox:myfilter:notRowVector","Msg from myfilter.c: 2nd input argument, source 

vector, must be a row vector."); 
214     } 
215     if( !mxIsDouble(prhs[2]) || mxIsComplex(prhs[2]) ||  mxGetNumberOfElements(prhs[2])!=1 ) { // make sure the 

3rd input argument is scalar  
216         mexErrMsgIdAndTxt("MyToolbox:myfilter:notScalar","Msg from myfilter.c: Input source length must be a 

scalar."); 
217     } 
218     if( !mxIsDouble(prhs[3]) || mxIsComplex(prhs[3]) ||  mxGetNumberOfElements(prhs[3])!=1 ) { // make sure the 

4th input argument is scalar  
219         mexErrMsgIdAndTxt("MyToolbox:myfilter:notScalar","Msg from myfilter.c: Input sigmaFactor length must be a 

scalar."); 
220     } 
221     if( !mxIsDouble(prhs[4]) || mxIsComplex(prhs[4]) ||  mxGetNumberOfElements(prhs[4])!=1 ) { // make sure the 

5th input argument is scalar  
222         mexErrMsgIdAndTxt("MyToolbox:myfilter:notScalar","Msg from myfilter.c: Input source length must be a 

scalar."); 
223     } 
224      
225      
226     filter = mxGetPr(prhs[0]);  // create a pointer to the real data in the input filter   
227     lenfilter = mxGetN(prhs[0]);// get the dimensions of the input filter matrix filter 
228     vecX = mxGetPr(prhs[1]);    // create a pointer to the real data in the input source   
229     lenvecX = mxGetN(prhs[1]);  // get the value of the scalar nlenvecX input   
230     sigmaFactor = mxGetScalar(prhs[2]); // get the value of the scalar sigma_coeff input   
231     FWC = mxGetScalar(prhs[3]); // get the value of the scalar FWC input   
232     numPasses = mxGetScalar(prhs[4]); // get the value of the scalar numPasses input   
233   
234     plhs[0] = mxCreateDoubleMatrix(1,(mwSize)lenvecX,mxREAL); // create the output vector for Simple moving 

average (numRows, numCols, realVals) 
235     vecY1 = mxGetPr(plhs[0]);   // get a pointer to the real data in the output vecY1 
236     plhs[1] = mxCreateDoubleMatrix(1,(mwSize)lenvecX,mxREAL); // create the output vector (Moving average 

floating-point with sharp edge detection) 
237     vecY2 = mxGetPr(plhs[1]);   // get a pointer to the real data in the output vecY2 
238     plhs[2] = mxCreateDoubleMatrix(1,(mwSize)lenvecX,mxREAL); // create the output vector (Moving average fixed-

point with sharp edge detection) 
239     vecY3 = mxGetPr(plhs[2]);     // get a pointer to the real data in the output vecY2 
240 /*     
241     plhs[3] = mxCreateDoubleMatrix(1,(mwSize)lenvecX,mxREAL); // create the output vector for Savitzky-Golay 

filter(numRows, numCols, realVals) 
242     vecY4 = mxGetPr(plhs[3]);   // get a pointer to the real data in the output vecY1 
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243     plhs[4] = mxCreateDoubleMatrix(1,(mwSize)lenvecX,mxREAL); // create the output vector (Savitzky-Golay 
floating-point with sharp edge detection) 

244     vecY5 = mxGetPr(plhs[4]);   // get a pointer to the real data in the output vecY2 
245     plhs[5] = mxCreateDoubleMatrix(1,(mwSize)lenvecX,mxREAL); // create the output vector (Savitzky-Golay fixed-

point with sharp edge detection) 
246     vecY6 = mxGetPr(plhs[5]);     // get a pointer to the real data in the output vecY2 
247  */    
248     myfilter(filter, (mwSize) lenfilter, vecX, (mwSize) lenvecX, sigmaFactor, FWC, numPasses, vecY1, vecY2, 

vecY3);//, vecY4, vecY5, vecY6); // call the computational routine 
249 } 
250  
251  
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