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This dissertation develops new approaches for detection and classification of 

buried radioactive materials. Different spectral transformation methods are proposed to 

effectively suppress noise and to better distinguish signal features in the transformed 

space. The contributions of this dissertation are detailed as follows. 

1) Propose an unsupervised method for buried radioactive material detection. In 

the experiments, the original Reed-Xiaoli (RX) algorithm performs similarly as the gross 

count (GC) method; however, the constrained energy minimization (CEM) method 

performs better if using feature vectors selected from the RX output. Thus, an 

unsupervised method is developed by combining the RX and CEM methods, which can 

efficiently suppress the background noise when applied to the dimensionality-reduced 

data from principle component analysis (PCA). 

2) Propose an approach for buried target detection and classification, which 

applies spectral transformation followed by noise-adjusted PCA (NAPCA). To meet the 

requirement of practical survey mapping, we focus on the circumstance when sensor 
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dwell time is very short. The results show that spectral transformation can alleviate the 

effects from spectral noisy variation and background clutters, while NAPCA, a better 

choice than PCA, can extract key features for the following detection and classification. 

3) Propose a particle swarm optimization (PSO)-based system to automatically 

determine the optimal partition for spectral transformation. Two PSOs are incorporated in 

the system with the outer one being responsible for selecting the optimal number of bins 

and the inner one for optimal bin-widths. The experimental results demonstrate that using 

variable bin-widths is better than a fixed bin-width, and PSO can provide better results 

than the traditional Powell’s method. 

4) Develop parallel implementation schemes for the PSO-based spectral partition 

algorithm. Both cluster and graphics processing units (GPU) implementation are 

designed. The computational burden of serial version has been greatly reduced. The 

experimental results also show that GPU algorithm has similar speedup as cluster-based 

algorithm. 



 

 

 

 

 

 

  

    

   

     

      

 

     

 
 

ACKNOWLEDGEMENTS 

I acknowledge with sincere gratitude the guidance provided by my major advisor 

Dr. Nicolas H. Younan and my dissertation director Dr. Jenny Q. Du. Without their 

invaluable guidance and help, this dissertation could not be materialized. 

I thank my committee members, Dr. Yi Su and Dr. Erdem Topsakal, for their 

guidance and fruitful discussion. I would also like to extend my sincere thanks to Dr. 

Charles Waggoner and Ms. Donna Rogers in the Institute for Clean Energy Technology 

at Mississippi State University for providing the lab data. I would like to acknowledge 

U.S. Army Engineer Research and Development Center at Vicksburg, Mississippi, for 

providing financial support throughout the research. 

Finally, special gratitude goes to my parents and my wife for their support and 

encouragement. 

ii 



 

 

  

  

  

  

  

 

   

   

   

   

    

  

   

   

   

   

   

   

   

   

   

    

   

   

   

     

   

   

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS................................................................................................ ii 

LIST OF TABLES............................................................................................................. vi 

LIST OF FIGURES ......................................................................................................... viii 

CHAPTER 

I. INTRODUCTION .............................................................................................1 

1.1 Background ............................................................................................1 
1.2 Motivation..............................................................................................2 

1.2.1 Unsupervised anomaly detection .....................................................2 
1.2.2 Noise-adjusted principle component analysis..................................2 
1.2.3 Optimized spectral transformation ...................................................3 
1.2.4 Parallel computation for particle swarm optimization.....................3 

1.3 Contribution ...........................................................................................3 

II. EXPERIMENT DATA ......................................................................................5 

2.1 NaI dataset .............................................................................................5 
2.2 Laboratory LaBr dataset ........................................................................8 
2.3 T1 and T2 field datasets.......................................................................10 

III. UNSUPERVISED TARGET DETECTION ...................................................12 

3.1 Introduction..........................................................................................12 
3.2 Proposed Method .................................................................................12 

3.2.1 Classical RX algorithm for anomaly detection..............................12 
3.2.2 Constrained energy minimization algorithm .................................14 

3.3 Experiments .........................................................................................15 
3.4 Conclusion ...........................................................................................20 

IV. NOISE-ADJUSTED PCA FOR SPECTRAL TRANSFORMATION............21 

4.1 Introduction..........................................................................................21 
4.2 Proposed Method .................................................................................22 

iii 



 

 

   

   

   

   

   

   

   

   

   

   

   

   

    

   

   

   

   

   

   

   

   

   

   

   

   

    

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

4.2.1 Spectral transformation based feature extraction...........................22 
4.2.1.1 Spectral Bin Energy (SBE) ................................................23 
4.2.1.2 Spectral Bin Difference (SBD) ..........................................24 
4.2.1.3 Spectral Bin Ratios (SBR) .................................................25 
4.2.1.4 Spectral Comparison Ratios (SCR) ...................................26 

4.2.2 PCA and NAPCA ..........................................................................27 
4.2.3 Target detection and evaluation .....................................................29 

4.3 Experiments .........................................................................................31 
4.3.1 Experiment Using the Entire Dataset.............................................31 
4.3.2 Uncertainty Analysis......................................................................35 
4.3.3 Experiment Using Data Containing Difficult Classes Only ..........40 

4.4 Conclusion ...........................................................................................41 

V. OPTIMIZED SPECTRAL TRANSFORMATION .........................................43 

5.1 Introduction..........................................................................................43 
5.2 Proposed Method .................................................................................45 

5.2.1 Unconstrained PSO........................................................................45 
5.2.2 Constrained PSO............................................................................47 
5.2.3 A simple example ..........................................................................49 
5.2.4 Powell’s direction set method........................................................50 
5.2.5 Uniform bin-width optimization ....................................................50 
5.2.6 PSO searching for variable bin-widths ..........................................51 
5.2.7 PSO searching for the optimal number of bins..............................52 
5.2.8 Overall algorithm with two PSOs ..................................................53 

5.3 Experiments .........................................................................................54 
5.3.1 Data and implementation ...............................................................54 
5.3.2 GC and k-NN using the original data.............................................57 
5.3.3 Uniform bin-width and Powell’s method ......................................58 
5.3.4 Bin optimization using PSO...........................................................58 

5.4 Conclusion ...........................................................................................64 

VI. PARALLEL OPTIMIZATION .......................................................................66 

6.1 Introduction..........................................................................................66 
6.2 Proposed Method .................................................................................68 

6.2.1 Parallel algorithm for one PSO on clusters....................................68 
6.2.2 Parallel algorithm for one PSO on GPU........................................70 

6.2.2.1 Data organization ...............................................................71 
6.2.2.2 Random number generation...............................................71 
6.2.2.3 Overall algorithm of GPU-implemented PSO ...................72 
6.2.2.4 Parallelization design on GPU...........................................73 

6.2.3 Parallel hardware and software......................................................75 
6.3 Experiments .........................................................................................76 

6.3.1 Cluster parallel implementation.....................................................76 
6.3.2 GPU parallel implementation ........................................................80 

iv 



 

 

   

   

   

   

  

6.3.2.1 Running time and speedup versus number of bins ............80 
6.3.2.2 Running time and speedup versus swarm size...................82 

6.4 Conclusion ...........................................................................................84 

VII. CONCLUSION AND FUTURE WORK ........................................................86 

REFERENCES ..................................................................................................................89 

v 



 

 

 

  

  

  

  

  

   
  

    

    

    

    

    

   
  

   

   
  

   
  

   
  

    

     

     

LIST OF TABLES 

TABLE Page 

3.1 The probability of detection and false alarmed rate when the threshold is 
set as 50% maximum value in dataset T1 ..........................................................20 

3.2 The probability of detection and false alarmed rate when the threshold is 
set as 50% maximum value in dataset T2 ..........................................................20 

4.1 Detection and classification accuracy (%) of different methods for the 
entire dataset.......................................................................................................32 

4.2 Classification accuracy (%) of seven target classes ...........................................33 

4.3 Detection and classification accuracy (%) of 0.25 s data...................................34 

4.4 Detection and classification accuracy (%) of 0.1 s data.....................................35 

4.5 F-test for the mean accuracies of the ten methods .............................................39 

4.6 T-test for the mean accuracies of the four groups ..............................................40 

4.7 Detection and classification accuracy (%) of different methods for the 
dataset containing seven difficult classes...........................................................41 

5.1 The performance of GC and original k-NN on the two datasets ........................55 

5.2 The resulting performance when the objective is overall detection 
accuracy..............................................................................................................59 

5.3 The resulting performance when the objective is overall classification 
accuracy..............................................................................................................60 

5.4 The resulting performance when the objective is multi-objective 
function...............................................................................................................61 

5.5 Classification accuracy of DU classes ...............................................................62 

6.1 Accuracy from the best uniform partitions ........................................................78 

6.2 Detection accuracy from parallel PSO-based methods ......................................78 
vi 



 

 

    

    

     

 

6.3 Classification accuracy from parallel PSO-based methods................................79 

6.4 Results of parallel bins selection running time (in second) ...............................82 

6.5 Results of parallel PSO running time (in second) ..............................................84 

vii 



 

 

  

    

    

    

   

    

    

    

    

    

    

    

    

   
  

    

    

    

    

    

     

LIST OF FIGURES 

FIGURE Page 

2.1 Original target (buried 15 cm deep) and background spectra. .............................6 

2.2 Original target (buried 23 cm deep) and background spectra. .............................7 

2.3 Original target (buried 30 cm deep) and background spectra. .............................8 

2.4 Spectra of 36 g target. ..........................................................................................9 

2.5 Spectra of 16 g target. ..........................................................................................9 

2.6 Spectra of 8 g target. ..........................................................................................10 

2.7 T1 data illustration (GC). ...................................................................................10 

2.8 T2 data illustration (GC). ...................................................................................11 

3.1 Target detection for T1 real data. .......................................................................16 

3.2 Target detection for T2 real data. .......................................................................17 

3.3 ROC curve for T1...............................................................................................18 

3.4 ROC curve for T2...............................................................................................19 

4.1 Original target (buried 15 cm deep) and background spectra (1 s dwell 
time). ..................................................................................................................23 

4.2 After applying SBE transform to the spectra in Fig. 4.1....................................24 

4.3 After applying SBD transform to the spectra in Fig. 4.1. ..................................25 

4.4 After applying SBR transform to the spectra in Fig. 4.1....................................26 

4.5 After applying SCR transform to the spectra in Fig. 4.1....................................27 

4.6 Decision boundary determined by training data. ...............................................30 

4.7 Boxplots for 24-fold cross-validation using the entire dataset...........................36 
viii 



 

 

   
  

    

    

     

   

    

  

  

     

    

     

    

     

     

    

    

5.1 Population distribution at different iterations. (a) Iteration = 1. (b) 
Iteration = 25. (c) Iteration = 50. (d) Iteration = 75. ..........................................49 

5.2 The proposed adaptive optimization system. .....................................................52 

5.3 A learning curve for the SCR transform. ...........................................................55 

5.4 Bin boundaries from five PSO runs for SCR. ....................................................56 

5.5 Boxplot of detection accuracy (OD) for the testing data....................................63 

5.6 Boxplot of classification accuracy (OC) for the testing data. ............................63 

5.7 Boxplot of multi-objective function value (0.5 OD + 0.5 OC) of the 
testing data..........................................................................................................64 

6.1 The parallel PSO algorithm diagram..................................................................69 

6.2 The diagram for the GPU-implemented PSO bins selection..............................73 

6.3 The parallel speedup for two objective functions. .............................................77 

6.4 Comparision on OD and OC using the testing data. ..........................................80 

6.5 Speedup performance with different number of bins selected by Cluster .........81 

6.6 Speedup performance with different number of bins selected by GPU.............82 

6.7 Speedup performance with different swarm size for Cluster .............................83 

6.8 Speedup performance with different swarm size for GPU ................................83 

ix 



 

 

 

 

  

   

   

   

    

      

  

    

     

      

   

   

      

    

 

   

  

    

CHAPTER I 

INTRODUCTION 

1.1 Background 

Detection and discrimination of radioactive objects have many important 

applications, such as illicit cargo detection at border crossings [1]-[2], buried target 

detection within battlefields [3], and nuclear threat discrimination from benign sources 

[4]. Several approaches have been developed [4]-[6]. Many of these methods use a 

gamma spectrometer to count the number of emitted gamma photons; detection or 

classification is achieved based on the measurements of these photons at different energy 

levels. It is assumed that the collected energy spectrum is significantly different between 

target and non-target measurements. For instance, one of the most common and simple 

criteria is the gross count (GC) of photons within a certain spectral range [9]. Another 

method involves computing the ratio of an unknown measurement with a known and 

benign measurement, which is referred to as the spectral comparison ratio (SCR) method 

[4][10]. Characteristics of the ratio can help determine whether the unknown 

measurement is similar to that of benign measurement; then target discrimination can be 

achieved. 

Due to low energy counts and strong background clutters, the performance of the 

aforementioned techniques may be poor when a target, e.g., depleted uranium, is buried. 

Under such circumstance, it is important to develop algorithms that can effectively 

suppress noise and background interference. In this dissertation, we present several 
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advanced statistical signal processing methods for the detection of buried radioactive 

materials; these methods can also classify targets buried at different depths even when 

benign radioactive materials are present. 

1.2 Motivation 

1.2.1 Unsupervised anomaly detection 

In practical applications, the spectra of target and non-target may be unknown. 

The classical anomaly detection methods are well suited for this situation. The Reed-

Xiaoli (RX) algorithm is based on exploiting the difference between a spectral signature 

and its neighbors. The distance measure is the Mahalanobis distance. Another advanced 

method is to combine the RX algorithm with the constrained energy minimization (CEM) 

method. The CEM is a supervised method requiring target spectrum, which can be 

obtained by selection of the RX output. The CEM performance may be improved by 

using the data from principle component analysis (PCA)-based dimensionality reduction. 

1.2.2 Noise-adjusted principle component analysis 

We are more interested in the features in an energy spectrum curve rather than 

GC. Spectral transformation may help feature extraction. We will investigate three 

spectral transformation methods, including spectral bin energy (SBE), spectral bin ratio 

(SBR), and SCR, which can normalize the contribution from background and eliminate 

the trivial variation from noise. In addition, PCA and noise-adjusted PCA (NAPCA) have 

the capability of suppressing noise. The difference is NAPCA ranks the PCs by signal-to-

noise ratio (SNR) while PCA ranks them by variance. We will investigate the effects of 

these methods. 
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1.2.3 Optimized spectral transformation 

Since an energy spectrum is usually sparse, we need to combine certain energy 

channels to gather enough information for feature selection. However, how to partition a 

spectrum into a number of windows or bins is a challenging problem. A good partition 

will lead to improved detection and classification accuracy, but inappropriate partition 

may result in even worse accuracy than without partition. For simplicity purpose, it is 

assumed that bin partition is non-overlapping and for all the channels. Thus, the number 

of bins and their bin-widths need to be optimized. An adaptive optimization system using 

particle swarm optimization (PSO) will help to determine both the optimal number of 

bins and the corresponding bin-widths simultaneously. 

1.2.4 Parallel computation for particle swarm optimization 

With modem computational facilities, such as massively parallel processors, the 

computing time of the PSO algorithm can be greatly reduced. A parallel PSO algorithm 

distributes computational burden to parallel running processing units such that the 

algorithm is executed in a timely manner. Compared to the serial version, the parallel 

PSO can greatly enhance the training speed of the adaptive optimization system. 

1.3 Contribution 

The specific contributions in this dissertation are summarized as below: 

1. Assess the classical anomaly detection methods on buried radioactive 

material detection. The original RX algorithm performs similarly as the 

GC method. However, the CEM method performs better if using feature 

vectors selected from the RX output. This unsupervised method can 
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suppress the background noise by using the dimensionality-reduced data 

from PCA. 

2. Propose an approach for buried target detection and classification, which 

applies spectral transformation followed by NAPCA. To meet the 

requirement of practical survey mapping, we focus on the circumstance 

when sensor dwell time is very short. The results show that spectral 

transformation can alleviate the effects from spectral noisy variation and 

background clutters, while NAPCA, a better choice than PCA, can extract 

key features for the following detection and classification. 

3. Propose an adaptive optimization system with PSO to automatically 

determine the optimal number of bins and the corresponding optimal 

varied bin-widths for energy spectral transformation. Two PSOs are 

incorporated in the system with the outer one being responsible for 

selecting the optimal number of bins and the inner one for optimal bin-

widths. The experimental results demonstrate that using variable bin-

widths is better than a fixed bin-width, and PSO can provide better results 

than the traditional Powell’s method. 

4. Develop parallel implementation schemes for the PSO-based bin partition 

algorithm. Both cluster and graphics processing units (GPU) 

implementations are designed for parallel PSO-based spectral 

transformation. The computational burden of serial version has been 

greatly reduced. The experimental results show that GPU has similar 

speedup as cluster-based algorithm. 
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CHAPTER II 

EXPERIMENT DATA 

This research focuses on the analysis of data collected by gamma ray 

spectrometers. In this chapter, we introduce both the laboratory data and real field data 

used in the experiments. 

2.1 NaI dataset 

Sodium iodide (NaI) is by far the most widely used material for scintillators. It is 

available in a single crystal form or a more rugged polycrystalline form (used in high 

vibration environments, e.g., wireline logging in the oil industry). It also has other 

applications including nuclear medicine, basic research, environmental monitoring, and 

aerial surveys [85]. Some researchers use NaI scintillator for portal monitors applications. 

Experimental data and computer simulations are presented for gamma-ray detection for 

homeland security applications at international borders [1][2][5]. In our studies, 

laboratory data was collected using a cm NaI scintillation detector. The 

measured spectra covered the energy range from 0 keV to 2160.0 keV. The target was 

depleted uranium with 4.3 kg mass. The background consisted of construction sand. 

Natural ore was also present, considered a benign material. 

Figs. 2.1-2.3 show example spectra of targets buried at 15cm, 23cm, and 30cm 

depth, respectively. Counting time was changed from 1 s, 0.5 s, 0.25 s, to 0.1 s. We can 

see that as the depth is increased and counting time is decreased, the features around 

768keV and 1001keV disappear, and the difference between the target spectrum and 

10 10 40 

5 



 

 

    

  

 

   
   
 

   
   

  

 
  

background spectrum become insignificant. Therefore, detection of buried targets from 

the data collected with short counting time is a very difficult task. 

(a) 15 cm depth and 1 s dwell time (b)  15 cm depth and 0.5 s dwell time 

(c) 15 cm depth and 0.25 s dwell time (d) 15 cm depth and 0.1 s dwell time 

Figure 2.1 Original target (buried 15 cm deep) and background spectra. 
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(a) 23 cm depth and 1 s dwell time (b)  23 cm depth and 0.5 s dwell time 

(c) 23 cm depth and 0.25 s dwell time (d) 23 cm depth and 0.1 s dwell time 

Figure 2.2 Original target (buried 23 cm deep) and background spectra. 
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(a) 30 cm depth and 1 s dwell time (b)  30 cm depth and 0.5 s dwell time 

(c) 30 cm depth and 0.25 s dwell time (d) 30 cm depth and 0.1 s dwell time 

Figure 2.3 Original target (buried 30 cm deep) and background spectra. 

2.2 Laboratory LaBr dataset 

Lanthanum bromide (LaBr) scintillators offer improved energy resolution than 

NaI scintillators and excellent temperature characteristics. Due to its high resolution, 

LaBr scintillators perform well in the recent gamma spectroscopy-based detection and 

identification systems used in the homeland security market. In our study, a dataset was 

collected from 21.1 to 1516.8 keV with 127 channels by an LaBr scintillator. It consisted 

of ten classes with different mass of 8, 16 and 36 g, different depths of 0, 15 and 30 cm, 

and background (i.e., construction sand). Each class had 50 measurements with 10 s 

counting period. The calibration source is Cs-137, yielding significant peaks at 33 keV 

and 662 keV. 
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Figs. 2.4-2.6 show example spectra of 32 g, 16g, and 8 g targets, respectively. 

When targets are buried 30cm deep, their spectra are quite similar to those of 

background. 

(a) Buried at 0 cm (b) Buried at 30 cm 

Figure 2.4 Spectra of 36 g target. 

(a) Buried at 0 cm (b) Buried at 30 cm 

Figure 2.5 Spectra of 16 g target. 
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(a) Buried at 0 cm (b) Buried at 30 cm 

Figure 2.6 Spectra of 8 g target. 

2.3 T1 and T2 field datasets 

Two datasets T1 and T2 used in our experiment were collected from a real field 

with an NaI scintillation detector. T1 dataset consists of 128 channels while T2 has 1024 

channels. In Figs. 2.7-2.8, these datasets are displayed in color based on GC, where a red 

pixel represents a potential target and a blue pixel represents background area. 

Figure 2.7 T1 data illustration (GC). 
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  Figure 2.8 T2 data illustration (GC). 
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CHAPTER III 

UNSUPERVISED TARGET DETECTION 

3.1 Introduction 

Matched filter methods play an important role in target detection. These 

algorithms are of interest because: (1) they can outperform other existing algorithms due 

to their capability of background suppression; (2) they are suitable to radioactive 

materials detection in an unknown circumstance since they require least prior 

information. An example is the constrained energy minimization (CEM) filter, which has 

good merit on maximizing the target signature response while suppressing the undesired 

background signature response [13],[14]-[18]. The idea was first derived from the 

minimum variance distortionless response (MVDR) beamformer in array processing 

[15],[16] and was later used in chemical remote sensing [17]. 

The well-known RX algorithm [11],[12] is a detector for anomaly detection. It is 

originally developed for multispectral imagery by Reed and Yu in 1993 [19]. The RX-

algorithm is based on exploiting the difference between the spectral signatures and its 

neighbors. It actually is a matched filter in an unsupervised fashion. 

3.2 Proposed Method 

3.2.1 Classical RX algorithm for anomaly detection 

In the conventional RX-algorithm, a nonstationary local mean is subtracted from 

each spectral pixel within a fixed window. The local mean is obtained by sliding a double 

12 



 

 

 

      

     

     

      

 

   

   

       

     

 

  

     

    

   

   

    

    

      

   

     

  

       

 

concentric window, which consists of a small inner window centered within a larger outer 

window over each pixel in an image, and the mean is calculated from the spectral pixels 

falling between the inner and the outer window. The size of the inner window is usually 

assumed to be the size of the target of interest. The residual signal after mean subtraction 

is assumed to approximate a zero-mean Gaussian random process. Let each input signal 

vector be denoted by T
nxxx ],...,,[ 21x . A two-hypothesis test is formulated as 

nx:0H

nsx aH :1

(3.1) 

(3.2) 

where n is noise vector represents the background noise process. And s is feature signal 

represents the anomaly signal. a is constant which larger than 0 under hypothesis 1H and 

equals to 0 under 0H . 

The target signature and background covariance are assumed to be unknown. This 

model assumes that the data come from two normal probability density functions with the 

same covariance matrix but different means [61]. Under 0H , the data (background 

clutter) are modeled as ),( bN C0 , and under 1H the data are modeled as ),( bN Cs . It 

should be noticed that an important assumption in the RX-algorithm is that the 

background and target have the same covariance matrix. Generally, this is not a valid 

model if a particular target structure is to be detected. A more appropriate model would 

have two different covariance structures — one for anomaly (which could be target or 

background clutter) and one for background. However, the covariance structure for the 

anomaly cannot be estimated in reality, since the statistical structure of the anomaly 

signals cannot be defined. Therefore, the same covariance structure for anomaly and 

background is adopted. The basic RX algorithm is the benchmark anomaly detection 

algorithm and is can be written as below: 
13 



 

 

 

 

 

 

      

 

 

 

T 1wRX  (x  μ) R (x  μ)  (3.3) 

where R is the background covariance matrix estimated from the surrounding 

background data, andμ  is the estimated background clutter sample mean [62]. A 

threshold η is to be assigned such that detection can be achieved on the RX output. 

3.2.2 Constrained energy minimization algorithm 

The key to the CEM algorithm is to determine a weight vector w  w1, w2 ,wk T 

that suppresses the unknown and undesired background data while enhancing that of the 

known target signature vector d. The CEM operator is defined by two constraints. The 

first constraint is to minimize the total output energy. The energy of an individual signal 

summed across the energy range can be represented by a scalar value yi . 

l 

y  w r i=1,2,...,q (3.4)i k ik 
k1 

where w is the vector of weights and q is the total number of pixels, and rik is the energy 

counts recorded in the k-th channel for the ith signal vector. The formula can be rewritten 

as vector notation: 

yi  wT ri  (3.5) 

The second constraint is that when applied to the target spectrum, yi  wT d  1 . 

This constrained minimization problem can be solved and the CEM detector is  

T 1d R
  (3.6)wCEM T 1(d R d) 

where R is the covariance matrix of the pixel vectors. A threshold   is required to 

complete target detection [13]. 
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3.3 Experiments 

We implemented the popular method GC as benchmark method as shown in Figs. 

2.7-2.8. The CEM method was employed to compare with GC. However, CEM is a 

supervised method; how to choose the feature vector d is challenging. Here, we applied 

an unsupervised method, such as the RX algorithm, to choose the top 10 vectors with the 

largest outputs, and calculated their mean as the d for the CEM. We also applied PCA to 

reduce data dimensionality (only the first two PCs were used), followed by the RX and 

CEM-based target detection. 

Figs. 3.1-3.2 show the detection maps for T1 and T2 datasets. Compared to Figs. 

2.7-2.8, the RX algorithm itself did not offer much advantage. However, when the RX 

and CEM were combined in Fig. 3.1(c), the detection maps were significantly improved 

in terms of background suppression; the performance was further improved if PCA was 

used for dimensionality reduction as a preprocessing step in Figs. 3.1(d) and (e). For the 

T2 dataset, improvement was obvious when using PCA in Figs. 3.2 (d) and (e). 
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(a) RX method with a dual window (b) RX method 
(inner window 7x7, outer window 11x11) (all pixels are used for background estimation) 

 

 

Background

Target

(c) CEM method (d) CEM method after PCA 
(Feature selected by the RX method in (b)) (Feature selected by the RX method in (b)) 

e) CEM method after energy windowing and PCA 
(Feature selected by the RX method in (b)) 

Figure 3.1 Target detection for T1 real data. 
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(a) RX method with a dual window (b) RX method 
(inner window 7x7, outer window 11x11) (all pixels are used for background estimation) 

(c) CEM method (d) CEM method after PCA 
(Feature selected by the RX method in (b)) (Feature selected by the RX method in (b)) 

(e) CEM method after energy windowing and PCA 
(Feature selected by the RX method in (b)) 

Figure 3.2 Target detection for T2 real data. 

Receiver operating characteristics (ROC) curves represent detection probability 

versus false-alarm rates. It could also provide quantitative performance comparison. 

and fP are the corresponding probability of detection and false alarm rate, respectively, 

which can be defined as: 

dP
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where dN is the number of detected target samples, tN is the number of total target 

samples, fN is the number of false alarms, and cN represents the number of detected 

samples. As shown in Figs. 3.3-3.4, the CEM with energy windowing and PCA showed 

significantly improved performance over the other three methods; the CEM method after 

energy windowing and PCA significantly outperformed the conventional RX and CEM 

alone at lower false-alarm rates. 
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Figure 3.3 ROC curve for T1 
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Figure 3.4 ROC curve for T2 

We further set 50% of the maximal output value as the cut-off threshold to test the 

performance of different algorithms on target detection and background suppression. 

Tables 3.1-3.2 list the probability of detection and false alarm rate using the RX, CEM, 

CEM after PCA, and CEM after energy windowing and PCA. For T1 dataset, the false 

alarm rates for RX and CEM were 0.95 and 0.99. But for CEM after taking the PCA or 

energy windowing, the false alarm was decreased to 0.46 and 0.36. This shows our 

algorithm performed well on background suppression. For T2 dataset, CEM method 

could achieve the minimum false alarm rate but its detection probability is also low. But 

for CEM after PCA or energy windowing, false alarm rate is low; in the mean time, their 

probability of detection is higher. 

19 



Table 3.1 The probability of detection and false alarmed rate when the threshold is set 
as 50% maximum value in dataset T1 

RX CEM CEM after PCA CEM after energy 
window and PCA 

dP fP dP fP dP fP dP fP

0.93 0.95 1.00 0.99 1.00 0.46 1.00 0.36 

Table 3.2 The probability of detection and false alarmed rate when the threshold is set 
as 50% maximum value in dataset T2 

RX CEM CEM after PCA CEM after energy 
window and PCA 

dP fP dP fP dP fP dP fP

 

 

  
 

    

        

        

 
 

    

        

        

 

  

  

      

     

   

   

      

   

 

0.75 0.22 0.14 0 0.50 0.07 0.68 0.05 

3.4 Conclusion 

We implement the RX and CEM detection method in T1 and T2 datasets.  CEM is 

a supervised method requiring target signature being known in advance, so we applied an 

unsupervised method, such as the RX algorithm, to choose target feature for the CEM. 

We also applied PCA to reduce data dimensionality, followed by the RX and CEM-based 

target detection. Another way is applying energy windowing to transform the feature 

space. Using the energy-windowing-transformed data, the detection performance was 

significantly improved in terms of better background suppression. The performance 

improvement can be further illustrated using ROC-based quantitative analysis. 
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CHAPTER IV 

NOISE-ADJUSTED PCA FOR SPECTRAL TRANSFORMATION 

4.1 Introduction 

PCA is a popular multivariate statistical technique. It was invented in 1901 by 

Karl Pearson [21]. The goal is to extract the important information from the data and to 

represent it as a set of new orthogonal bases called principal components (PCs). The 

number of PCs should be less than or equal to the number of original data dimension. 

This transformation is defined in such a way that the first principal component has the 

highest variance among all the variables. PCA is a versatile technique and has been used 

widely in signal processing for various applications such as dimensionality reduction, 

data compression, and feature extraction. 

However, it is obvious that both signal and noise can contribute to data variance; 

it is possible for a PC with lower ranking to include more important signal features than a 

PC with higher ranking. In order to deal with this problem, Green et al. [22] developed a 

maximum noise fraction (MNF) transformation based on maximization of SNR, so that 

the transformed principal components are ranked by SNR rather than variance as used in 

a PCA. This MNF transformation was later developed by Lee et al. in [23]. Based on a 

two stage processes which consists of a noise-whitening process and a PCA to achieve 

what the MNF transform does, this new derived transform is referred to as a noise 

adjusted principal components analysis (NAPCA). Since noise variances in different 

bands are whitened by NAPCA prior to PCA, maximizing the noise-whitened data 
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variance results in maximizing SNR. Therefore, NAPCA is essentially equivalent to 

MNF and can be viewed as a variant of MNF. Some researchers found that SNR is a 

better metric than variance to gauge the actual signal information contained in major PCs 

[24]. In this way, a PC with higher ranking always contains more signal information and 

less noise than a PC with lower ranking in NAPCA transformed data. 

4.2 Proposed Method 

4.2.1 Spectral transformation based feature extraction 

Previous methods of radioactive target detection mainly analyze the number of 

gamma-ray counts in certain energy channels or windows [1]-[4],[9],[10]. Such 

deterministic methods have disadvantages. First, the measurement hardware always has 

some degree of variability and uncertainty in the number of counts detected, introducing 

noise to the collected data. Second, when measurements are sparse, it is more difficult to 

observe the features (e.g., peaks) due to counting randomness. In addition, when the 

target is buried, the background has a significant interfering impact on the collected 

spectrum. Fig. 4.1 shows a buried target and background spectra. To deal with such 

practical spectra more efficiently, we deploy statistical approaches in our research; in 

addition to energy windowing or bin partition, the collected spectra are transformed into 

another subspace before applying a statistical detection or classification algorithm such 

that target features become more distinguishable. 
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Figure 4.1 Original target (buried 15 cm deep) and background spectra (1 s dwell 
time). 

4.2.1.1 Spectral Bin Energy (SBE) 

In the spectral bin energy (SBE) transform in Eq. (4.1), the input spectral 

measurements are divided into J bins: 

)(

)()(
jbini

SBE iPjS for Jj ,...2,1 (4.1) 

where P(i) represents the count in the i-th channel. The sum of energy counts within each 

bin is computed, reducing the data dimensionality. Actually, it is the basic energy 

windowing method. This transform is especially useful for spectrum measurements that 

are significantly sparse, such as those measured over very short time periods, because it 

summarizes the information within the spectrum that may not be immediately obvious. It 

also helps smooth out the noise. The spectra after SBE transform are shown in Fig. 4.2. 
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Figure 4.2 After applying SBE transform to the spectra in Fig. 4.1. 

4.2.1.2 Spectral Bin Difference (SBD) 

The spectral bin difference (SBD) transform computes the difference of total 

counts in each bin between a current and a previously measured background spectrum. 

The spectrum is divided into J bins. The SBD transform is defined as 

S (k )  S ( j)  S b  j for j  1,2,...J (4.2)SBD SBE SBE 

bwhere SSBE  and SSBE  are the SBE-transformed known background and observed 

measurements, respectively. Fig. 4.3 illustrates the difference between a background 

measurement and a target measurement. Notice that the SBD-transformed spectrum is 

close to 0 when the measurement is similar to that of background. On the other hand, the 

difference for the target measurement is dramatically dissimilar and more distinguishable 

from the SBD-transformed background measurement. 
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Figure 4.3 After applying SBD transform to the spectra in Fig. 4.1. 

4.2.1.3 Spectral Bin Ratios (SBR) 

Spectral bin ratios (SBR) method transforms the spectrum based on its ratio with 

a previously measured background spectrum. Similar to SBD, the spectrum is divided 

into several bins. The energy within each bin is computed for both the observed spectrum 

and the known background spectrum, and the ratio of these two bins is computed as: 

SSBE  jSSBR  j  b for j 1, 2,, J  (4.3)
SSBE  j 

Fig. 4.4 illustrates a comparison of the ratios of the background measurement and 

the target measurement in Fig. 4.1 using another background measurement (e.g, mean 

measurement of background). Notice that the background ratio is close to 1 across the 

spectrum. This is expected since all background measurements should have a similar 

fraction of energy in each energy bin. On the other hand, the ratio for target measurement 

is different tremendously and easier to be separated from the background ratio. 
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Figure 4.4 After applying SBR transform to the spectra in Fig. 4.1. 

4.2.1.4 Spectral Comparison Ratios (SCR) 

The fourth transform we investigate is the spectral comparison ratios (SCR) 

method [9],[10]. As with the SBD and SBR methods, a previously measured background 

spectrum is required. Both the known background spectrum and observed spectrum are 

divided into J bins. One bin (usually the first bin) is chosen as a reference. The SCR can 

then be computed using the following equation: 

)(
)(
)1()1()1( jS
jS

SSjS SBEb
SBE

b
SBE

SBESCR for Jj ,...3,2 (4.4) 

Given an observed spectral measurement, this method measures how closely the 

spectrum matches that of the background on the basis of ratios. If the observed spectrum 

is very close to the calibrated background measurement, the SCR should be close to 0 

across the spectrum. Otherwise, if the measurement is of the target, the magnitude of the 

SCR should be significantly different from 0. Such differences offer a set of features that 

can be used to better discriminate the target from the background measurements. Fig. 4.5 

shows the resulting spectra in Fig. 4.1 after the SCR transform, where the background 

spectrum is close to 0 while the target spectrum is rapidly changed but unequal to 0. 
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Figure 4.5 After applying SCR transform to the spectra in Fig. 4.1. 

4.2.2 PCA and NAPCA 

PCA ranks PCs in terms of data variance. Consider the observation model 

r  x  n (4.5) 

where r is an energy spectral measurement with data dimensionality L (i.e., the number of 

spectral channels),  x is a signal vector, and n represents the uncorrelated additive noise. 

Let V  v , v ,..., v L   and Λ  diag , ,,L  be the eigenvector and eigenvalue1 2 1 2 

matrices of the data covariance matrix , where v1, v2 ,..., v L are L eigenvectors of size 

L 1 and 1,2 ,,L  are the corresponding L eigenvalues, i.e., 

VT ΣV  Λ (4.6) 

Then, the PC images can be calculated from 

1/2 TrPCA  Λ V (r  m) (4.7) 

where m is the data mean. Assume λ1  λ2 , , λL , the variances of the L PC images of 

the transformed data using rPCA are λ1 ,λ2 , ,λL , respectively. 

NAPCA ranks PCs in terms of SNR. It can be performed with two steps. The first 

step conducts noise-whitening to the original data, and the second step performs the 

ordinary PCA to the noise-whitened data. Since the noise variance is unity in the noise-
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whitened data, the resultant PCs are in the order of SNR. Let Σn  be the noise covariance 

matrix and F be the noise-whitening matrix such that 

FT n F  I (4.8) 

where I is the identity matrix. Transforming  by F, i.e., 

FT  F  n_adj (4.9) 

where Σn_adj  is the covariance matrix with the noise being whitened. Finding a matrix G 

such that 

G T n_adj G  I (4.10) 

Then, the operator for NAPCA can be constructed by 

r  G TFT (r  m) (4.11)NAPCA 

The major difficulty in performing NAPCA is having an accurate noise 

covariance matrix Σn , which is difficult in general. The following method is adopted in 

our research for its simplicity and effectiveness [25].  Let Σ be decomposed as 

  DED (4.12) 

2where D  diag 1 , 2 ,, L  is a diagonal matrix with  l  being the diagonal elements 

of Σ, which is the variance of the l-th original channel, and E is the correlation coefficient 

matrix whose ij-th element represents the correlation coefficient between the i-th and j-th 

Σ1channels. Similarly, in analogy with the decomposition of Σ, its inverse can be also 

decomposed as 

1  D E D (4.13)1 1 1   

2where D 1  diag , ,, L  is a diagonal matrix with  l  being the diagonal
 1 2 

Σ1elements of and E
1  is a matrix similar to E with the diagonal elements being one 

and all the off-diagonal elements being within 1, 1 . It turns out that  l 2  is the reciprocal 
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of a good noise variance estimate of the l-th channel. Therefore, the noise covariance 

2 2 matrix Σ can be estimated by a diagonal matrix Σ  diag , ,, 2 . It is worth n n 1 2 L 

mentioning that data dimensionality may be reduced to J if energy bins are applied in 

spectral transformation. 

4.2.3 Target detection and evaluation 

To extract the primary features from data contaminated by noise and background 

clutter, PCA or NAPCA can be applied to the transformed spectra. The first several PCs 

are kept and used in the detection and classification step. The kNN clustering technique is 

applied to the PCs. For detection, the reduced set of features can be classified into two 

classes, e.g., target and non-target, using the kNN. Fig. 4.6 illustrates an example that 

shows the decision boundary created by the kNN method. In this case, there are a total of 

four background measurements and eight target measurements. The decision boundary 

consists of the points whose average distances to the k nearest target samples and to the k 

nearest background samples are the same. We choose k to be 2 in this example. All the 

test measurements to one side of the decision boundary will be detected as the 

background, and all measurements to the other side will be detected as the target. 

Similarly, multiple-class classification is achieved with multiple boundaries. 
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Figure 4.6 Decision boundary determined by training data. 

Detection performance is quantified with target detection (TD) accuracy, non-

target detection (NTD) accuracy, and overall detection (OD) accuracy. In addition, 

targets buried at different depth can be considered as different classes, and classification 

accuracy can be quantified using target classification (TC) accuracy and overall 

classification (OC) accuracy. The five metrics are defined as: 

samples target ofnumber 
samples  target detected accurately ofnumber TD

samplesnontarget  ofnumber 
samplesnontarget   detected accurately ofnumber NTD

samples overall ofnumber 
samples  detected  accurately ofnumber OD

samples target ofnumber 
samples  target classified accurately ofnumber TC

samples overall ofnumber 
samples  classified accurately ofnumber OC

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

The T-fold cross-validation divided the original samples into T subsamples. Of the 

T subsamples, a single subsample was taken for validation and the remaining T − 1 

subsamples were used as training data. The cross-validation process was then repeated T 

30 



 

 

     

     

   

 

  

  

 

    

      

   

    

     

 
  

times, with each of the T subsamples used exactly once as the validation data. The T 

results from the folds were averaged to produce a single estimation. All samples were 

used for both training and validation, and each sample was used for validation exactly 

once. 

4.3 Experiments 

4.3.1 Experiment Using the Entire Dataset 

kNN (k = 4) was applied for T-fold cross-validation (T = 24). The T-fold cross-

validation divided the original samples into T subsamples. Of the T subsamples, a single 

subsample was taken for validation and the remaining T − 1 subsamples were used as 

training data. The cross-validation process was then repeated T times, with each of the T 

subsamples used exactly once as the validation data. The T results from the folds were 

averaged to produce a single estimation. All samples were used for both training and 

validation, and each sample was used for validation exactly once. 
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Table 4.1 Detection and classification accuracy (%) of different methods for the entire 
dataset 

Methods TD NTD OD TC OC 

GC 83.7 63.5 77.6 80.3 63.8 

SBE 91.6 83.3 89.1 81.8 75.5 

SBR 90.5 40.3 75.4 69.0 54.6 

SCR 89.3 69.4 83.3 77.4 70.4 

SBE-PCA 93.5 88.9 92.1 72.6 71.3 

SBR-PCA 73.8 62.5 70.4 48.8 41.7 

SCR-PCA 89.3 73.6 84.6 64.9 61.7 

SBE-NAPCA 94.3 88.3 92.5 87.1 77.0 

SBR-NAPCA 93.9 87.3 91.9 87.1 76.7 

SCR-NAPCA 93.2 77.8 88.6 81.6 75.7 

Table 4.1 tabulates the average detection accuracy of cross-validation by 

considering all the seven target classes as a single class and all the three non-target 

classes as the other. The NAPCA-based methods provided higher detection accuracy than 

the PCA-based methods. In particular, the three spectral transformation methods in 

conjunction with NAPCA could improve the performance of the methods applied on the 

original data. For instance, the SBR transform could not improve the performance if 

using PCA; however, it could result in significant improvement with NAPCA. As for the 

SCR method, the overall classification accuracy was lower than the NAPCA-based 

method, but similar to the PCA-based method; with PCA (i.e., SCR-PCA), the overall 

detection accuracy was increased from 83.3% to 84.6%; if NAPCA was employed (i.e., 
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SCR-NAPCA), it was further increased to 88.6%. The GC method generally yielded low 

accuracy. 

Table 4.2 Classification accuracy (%) of seven target classes 

15cm 23cm 30cm 45cm 60cm 75cm 90cm 

GC 100.0 100.0 100.0 95.2 23.8 47.6 95.2 

SBE 100.0 77.3 54.5 90.9 50.0 100.0 100.0 

SBR 100.0 79.2 79.2 54.2 12.5 87.5 70.8 

SCR 100.0 70.8 79.2 83.3 37.5 95.8 75.0 

SBE-PCA 83.3 45.8 33.3 91.7 54.2 100.0 100.0 

SBR-PCA 91.7 50.0 87.5 20.8 12.5 62.5 16.7 

SCR-PCA 87.5 37.5 66.7 54.2 50.0 100.0 58.3 

SBE-NAPCA 95.0 95.0 75.0 100.0 50.0 95.0 100.0 

SBR-NAPCA 95.2 95.2 76.2 100.0 47.6 95.2 100.0 

SCR-NAPCA 90.5 61.9 66.7 95.2 66.7 100.0 90.5 

Classification was also conducted where targets buried at different depths were 

considered different classes. As shown in Table 4.1, NAPCA with SBE provided the 

highest target classification accuracy (i.e., 87.1%) when classifying the target buried at 

seven different depths and the highest overall classification accuracy (i.e., 77.0%) when 

classifying all the ten classes including natural ore and background. 

The detailed classification results of the seven target classes are listed in Table 4.2 

(corresponding to the TC in Table I). The 60 cm DU was difficult to be classified because 

the spectra were close to those of the natural ore buried 45 cm and 75 cm deep. 
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Interestingly, the four methods applied on the original data (i.e., GC, SBE, SBR, SCR) 

could provide 100% accuracy for 15 cm DU, while the NAPCA-based methods yielded 

better results for all the classes. This means the NAPCA-generated feature space is 

optimal in terms of all the classes but may not for a specific class. 

Table 4.3 Detection and classification accuracy (%) of 0.25 s data 

Methods TD NTD OD TC OC 

GC 83.3 55.6 75.0 73.8 60.0 

SBE 85.7 75.0 82.5 71.4 67.5 

SBR 88.1 11.1 65.0 47.6 33.3 

SCR 82.1 50.0 72.5 57.1 47.5 

SBE-PCA 90.5 83.3 88.3 76.2 66.7 

SBR-PCA 78.6 50.0 70.0 45.2 41.7 

SCR-PCA 78.6 72.2 76.7 50.0 48.3 

SBE-NAPCA 92.9 88.9 91.7 78.6 70.0 

SBR-NAPCA 92.9 88.9 91.7 78.6 70.0 

SCR-NAPCA 85.7 77.8 83.3 76.2 73.3 

The accuracy for 0.25 s and 0.1 s data were presented in Table 4.3 and 4.4, 

respectively. For 0.25 s data, two NAPCA-based methods could provide 90% overall 

detection accuracy and 70% overall classification accuracy. For 0.1 s data, using 

NAPCA, the overall detection accuracy could be above 80%; however, the target 

classification and the overall classification accuracy were only around 60% and 50%, 
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respectively, due to low energy counts when sensor dwell time was as short as 0.1 s. In 

this case, the GC method seemed to be quite stable. 

Table 4.4 Detection and classification accuracy (%) of 0.1 s data 

Methods TD NTD OD TC OC 

GC 78.6 66.7 75.0 71.4 50.0 

SBE 81.0 44.4 70.0 54.8 50.0 

SBR 92.9 22.2 71.7 31.0 26.7 

SCR 88.1 22.2 68.3 40.5 33.3 

SBE-PCA 81.0 50.0 71.7 47.6 45.0 

SBR-PCA 71.4 44.4 63.3 35.7 33.3 

SCR-PCA 81.0 44.4 70.0 57.1 51.7 

SBE-NAPCA 85.7 86.7 86.0 62.9 50.0 

SBR-NAPCA 85.7 86.7 86.0 62.9 50.0 

SCR-NAPCA 82.9 80.0 82.0 60.0 50.0 

4.3.2 Uncertainty Analysis 

Tables 4.5-4.7 show the average accuracy in the 24-fold cross-validations. In 

order to better describe the accuracy statistics when using different training and test 

samples, boxplots were generated in Fig. 4.7 showing the mean and standard deviation 

for each method (corresponding to Table 4.5). From Fig. 4.7(a), we can see that GC and 

SBR-PCA were worse than other six methods; SBE-NAPCA and SBR-NAPCA were the 

best because the mean accuracy was among the largest and the standard deviation was the 
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smallest. Similarly, in Fig. 4.7(b)-(e), SBE-NAPCA, SBR-NAPCA, and SCR-NAPCA 

were better than their counterparts, and ranked among the best methods. 

(a) Target Detection (TD) Accuracy 

(b) Non-target Detection (NTD) Accuracy 

Figure 4.7 Boxplots for 24-fold cross-validation using the entire dataset. 
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(c) Overall Detection (OD) Accuracy 

(d) Classification Accuracy of Seven Target Classes (TC) 

Figure 4.7 (continued) 
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(e) Overall Classification Accuracy of Ten Classes (OC) 

Figure 4.7 (continued) 

The ANOVA (analysis of variance) F-test was employed to quantify the 

statistically significant difference between the mean accuracies of the ten methods 

(denoted as i, i = 1, …, 10) with the hypothesis test being formulated as 

10210 ...  :H

:1H not all the i are equal (4.19) 

The results are shown in Table 4.5 with significance level being set to be α = 0.05 

as usual. We can see that all the P values are less than 0.0001, much smaller than α = 

0.05, indicating that H0 is rejected. This means there really exist significant differences 

among the mean accuracies of the ten methods. Based on the F values, Table 4.5 also 

indicates that performance discrepancy is the most obvious for OC and the least obvious 
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for TD, which is the same as illustrated in Fig. 4.7. Here, error degree of freedom is 230, 

treatment degree of freedom is 9, and total degree of freedom is 239. 

Table 4.5 F-test for the mean accuracies of the ten methods 

TD NTD OD TC OC 

F Value 8.8835 13.3817 13.1613 15.2013 22.3821 

P Value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

T-test was also used to analyze the significance of performance discrepancy 

between different groups: group1 (G1) {GC}; group2 (G2): {SBE, SBR, SCR}, group3 

(G3): {SBE-PCA, SBR-PCA, SCR-PCA}, group4 (G4): {SBE-NAPCA, SBR-NAPCA, 

SCR-NAPCA}. The Gi-Gj test is 

ji mmH  :0

ji mmH   :1 (4.20) 

where mi is the mean accuracy of Gi (i = 1, 2, 3, 4). The significance level being set to be 

α = 0.05 as usual. Small samples inferences for two samples are considered. The degree 

of freedom equals the sum of populations of two samples minus 2. If the P value is 

smaller than α = 0.05, H0 is rejected which means there exists material difference 

between the performance of the two groups under test. The t-test results were shown in 

Table 4.6 where the P-values less than α = 0.05 were highlighted. As we can see, in all 

the tests related to the NAPCA group G4, the significance was very obvious. For instance, 

the test between G2 and G4 showed that all the accuracies except TC demonstrated great 

improvement, which means applying NAPCA was better than the original ones; the test 
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between G3 and G4 also showed great improvement except NTD, which means NAPCA 

was a better choice than PCA. 

Table 4.6 T-test for the mean accuracies of the four groups 

TD NTD OD TC OC 

G1-G2 T Value 2.4381 0.0340 1.2705 1.1516 0.7784 

P Value 0.0187 0.9730 0.2103 0.2554 0.4403 

G1-G3 T Value 0.4810 1.3129 1.1242 4.2020 1.3643 

P Value 0.6328 0.1957 0.2668 0.0001 0.1791 

G1-G4 T Value 3.7721 2.6538 4.1059 1.3817 4.2150 

P Value 0.0005 0.0109 0.0002 0.1737 0.0001 

G2-G3 T Value 1.3408 1.3167 0.0167 2.7425 1.7053 

P Value 0.1866 0.1945 0.9868 0.0087 0.0949 

G2-G4 T Value 1.3974 2.7160 2.8236 2.1044 2.4557 

P Value 0.1690 0.0093 0.0070 0.0408 0.0179 

G3-G4 T Value 2.3041 1.3689 2.4237 4.7176 4.0286 

P Value 0.0258 0.1777 0.0194 0.0001 0.0002 

4.3.3 Experiment Using Data Containing Difficult Classes Only 

This experiment was conducted when the three easy classes: DU buried 15 cm, 23 

cm, and 30 cm deep, were removed. Table 4.6 lists the average detection accuracy of 

cross-validation, where NAPCA could improve the performance of SBE, SBR, and SCR 

while PCA did not necessarily bring about improvement. Table 4.7 also lists the average 
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classification accuracy for the seven classes (with four target classes), where NAPCA-

based methods were among the best. 

Table 4.7 Detection and classification accuracy (%) of different methods for the 
dataset containing seven difficult classes 

Methods TD NTD OD TC OC 

GC 75.0 66.7 71.4 69.8 51.2 

SBE 85.9 84.1 85.1 85.9 72.8 

SBR 83.3 41.7 65.5 63.5 45.8 

SCR 81.3 72.2 77.4 72.9 66.1 

SBE-PCA 87.5 81.9 85.1 85.4 73.2 

SBR-PCA 56.3 63.9 59.5 22.9 23.2 

SCR-PCA 83.3 77.8 81.0 64.6 61.9 

SBE-NAPCA 89.1 84.1 87.0 87.0 73.9 

SBR-NAPCA 86.5 83.3 85.1 84.4 71.4 

SCR-NAPCA 85.4 80.6 83.3 83.3 67.9 

4.4 Conclusion 

In this chapter, we propose an approach for buried depleted uranium detection and 

classification, which applies spectral transformation followed by PCA or NAPCA. To 

meet the requirement of practical survey mapping, we focus on the circumstance when 

sensor dwell time is very short (i.e., less than 1 s). In this case, the gamma spectroscopy 

collected by an NaI detector can be sparse, random, and dominated by energy counts 
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from the background. We believe an appropriate spectral transform can alleviate the 

effects from spectral noisy variation and background clutters, while NAPCA, a better 

choice than PCA, can extract major features for the following detection and 

classification. Thus, it can generally improve the target detection and classification 

performance after a certain spectral transform is applied. 

For SBR and SCR, a known background measurement is needed. For real field 

data, background may be changed with geolocation. Under such circumstance, SBR and 

SCR should be applied locally by using a local background measurement. Even for the 

data collected at the same location (e.g., the lab data), the background measurement is 

changed with time due to counting uncertainty when sensor dwell time is very short. This 

is why a background measurement normalized by another background measurement 

using SBR or SCR is not a constant 1 or 0. Such variation shows the importance of 

employing a statistical approach (e.g., PCA and NAPCA) instead of the traditional 

deterministic approach. It also motivates us to employ a multi-dimensional approach, 

where all the energy channels/bins are explored simultaneously for decision-making 

rather than a single or a few channels only. 

It is worth mentioning that the performance of all the three spectral transforms is 

varied with the bin-width selection. How to automatically select an optimal bin-width for 

each transform is under investigation. However, using the NAPCA-transformed data, 

these three spectral transforms generally can provide better detection and classification 

than other methods, such as GC, applied on the original data. 

42 



 

 

 

  

  

   

   

 

         

       

  

     

    

      

         

   

  

 

    

      

  

      

CHAPTER V 

OPTIMIZED SPECTRAL TRANSFORMATION 

5.1 Introduction 

In this chapter, we will apply Particle swarm optimization (PSO) to search for the 

optimal number of bins and bin-widths in spectral transformation. PSO is an evolutionary 

computation technique proposed and developed by Kennedy and Eberhart [27]-[31].The 

PSO uses a simple mechanism that mimics swarm behavior in birds flocking and fish 

schooling to guide the particles to search for global optimal solutions. It is proved to be a 

very efficient optimization algorithm by searching the entire problem space. 

Because PSO is easy to implement, it has been widely used in many engineering 

optimization problems and proved to be a very efficient optimization algorithm [32]-[37]. 

Huang et al. [38] proposed a method that embeds the sequential search into the evolution 

optimization of PSO and genetic algorithm (GA) for better ability of the fine tune in local 

search space and thus behaves well in both global and local situations. Monteiro et al. 

[39] proposed a method for feature selection algorithm based on particle swarm 

optimization for processing remotely acquired hyperspectral data. Their method utilizing 

two swarms of particles in order to optimize simultaneously a desired performance 

criterion and the number of selected features. Gao et al. [40] presented a new method for 

hyperspectral image classification. It combines support vector machine (SVM), PSO and 

GA together. Its aim is to improve the classification accuracy and reduce the computation 

consumption based on heuristic algorithms. 
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Besides the standard PSO, theoretical studies and performance improvements of 

the algorithm have been merged. The inertia weight was introduced by Shi and 

Eberhart [27]. They proposed an linearly decreasing with iterations. Fuzzy adaptive 

was proposed in [41], and a random version setting to 0.5 + rand(.)/2 was 

experimented in [42] for dynamic system optimization, where rand(.) denotes a uniform 

random variable within [0, 1]. In addition to the inertia weight and the constriction factor, 

the acceleration coefficients 1c and 2c are also important role in PSO. Kennedy and 

Eberhart [27] suggested a fixed value of 2.0 while Clerc [59] suggests using the constant 

1c and 2c which equals to 1.49445. Ratnaweera et al. [58] proposed a PSO algorithm 

with linearly time-varying acceleration coefficients (HPSO-TVAC). The idea of this 

algorithm is setting a larger 1c and a smaller 2c at the beginning and they were gradually 

reversed during the search. 

Another active research trend in PSO is hybrid PSO, which combines PSO with 

other evolutionary paradigms. Angeline [42] first introduced into PSO a selection 

operation similar to that in a GA. The method of hybridization of GA and PSO has been 

used in for recurrent artificial neural network design [43]. In addition to the normal GA 

operators, e.g., selection [42], crossover [45], and mutation [46], other techniques such as 

local search [47] and even differential evolution [48] method have been employed to 

combine with PSO. Cooperative approach, self-organizing hierarchical technique, 

deflection, stretching, and repulsion techniques [49] have also studied to combine with 

traditional PSO to enhance performance. In the area of biology, some researchers 

introduced niche [50] and speciation [51] techniques into PSO to prevent the swarm from 

crowding too closely and to explore more optimal solutions compared without this 

technique. 
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In addition to study on parameter selection, PSO topological structures are also 

widely researched on. The LPSO with a ring topological structure and the von Neumann 

topological structure PSO (VPSO) have been proposed by Kennedy and Mendes 

[52],[53] to enhance the system’s performance in solving multimodal problems. Further, 

dynamically changing neighborhood structures have been proposed by Hu and Eberhart 

[54] and Liang and Suganthan [55] to overcome the deficiency of unchanged neighbor 

range. Moreover, in the “fully informed particle swarm” (FIPS) algorithm [56], the 

information of the entire neighborhood is used to guide the particles. The CLPSO [57] 

lets the particle use different pBest’s to update steps of particles for improved 

performance in multimodal applications. 

5.2 Proposed Method 

5.2.1 Unconstrained PSO 

The update of particles is accomplished by the equation (5.1) which calculates the 

new velocity for each particles based on the previous velocity ( idV ), the particle’s 

location ( idp or pBest) which is best for the objective function and the particle’s location 

among the neighborhood ( ldp or pBest) or globally ( or gBest) that is best for the 

objective function. These particles are all potential solutions 

gdp

and therefore equation (5.2) 

is used to update their locations in the solution space. There are two random numbers 

and 2c are independently generated. And the inertia weight is used as the scalar of 

previous velocity idV which provides improved performance in various applications. 

1c

)(())(() 21 idgdidididid xprandcxprandcVV (5.1) 

ididid Vxx (5.2) 

The detailed PSO algorithm is as follows: 
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1. Generate a population of particles with random positions and velocities in 

the problem space. 

2. Evaluate each particle for the optimization fitness function. 

3. Compare each of the fitness function values with particle’s pBest value. If 

its fitness function value is better than pBest, then repalce the current 

particle fitness function value by the current fitness value. And set the 

pBest location by the current particle’s location. 

4. Compare fitness values of all the pBest in the population with the previous 

gBest value. If the current gBest is better than the previous gBest value, 

then replace the gBest value with the current gBest value and their 

locations. 

5. Change the velocity and position of the particle according to equation 

(5.1) and (5.2) separately. 

6. Loop to step 2 until certain criterion is met, usually a sufficiently good 

fitness value or a maximum number of iterations has finished. 

Here the particle’s velocity on each dimension has been restricted by a maximum 

velocity maxV . If the velocity on any dimension has exceed the maximum velocity which 

is user defined parameter, then that dimension’s velocity is set to maxV or − maxV . On the 

view of the role of maxV , larger value give the ability of particles to search globally while 

smaller value make the particles search in neighborhood. Here we use the dynamic range 

as the maxV . 

The learning constants, 1c and 2c in equation (5.1), scale the weight of stochastic 

acceleration of each particle towards the pBest and gBest. Therefore, the setting of these 

acceleration constants controls the steps of particles to the pBest and gBest. Large values 
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may lead the particles move past the target area, while small values may make the 

particles wander around the target area before it reached to. Early experiments have set 

the constants 1c and 2c to 2.0 for almost all applications. But later research have been 

done showing the proper choice of constraint factor may affect the convergence of 

particle swarm problem. Clerc [59] suggests using the constant 1c and 2c which equals 

to 1.49445. 

The population size selection is another problem but not much important. And 

usually population size is between 20 to 50. It was realized that smaller population is 

common for PSO since the smaller burden that population brings for computation. 

The use of inertia weight in equations (5.1) has provided an improved role in most 

applications. In original paper [27], the inertia weights decrease linearly from 0.9 to 0.4 

during all the iterations. And it effects the exploration of particles globally or locally. 

Larger value also brings the quick convergence for fitness function on average. A slight 

change made for inertia weight for fitting the need of tracking and optimizing the 

dynamic systems [42]. The weight in equation (5.1) was set to [rand(.)/2.0 + 0.5]. It 

ranges between 0.5 and 1.0 but with a mean value of 0.75. 

5.2.2 Constrained PSO 

The original PSO focuses on unconstrained optimization problems. Various 

constrained PSO algorithms were developed to facilitate constrained optimization 

processes [60]. In order to handle constrained problems, the original PSO needs to be 

modified. The most straightforward modification is to keep the feasible solutions from 

multiple solutions, which is the one adopted in this research. Thus, all the particles fly 
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through the entire problem space, but only the feasible solutions are tracked and updated 

in PSO. 

In order to facilitate this process, all the particles need to be initialized by feasible 

solutions. The detailed steps are shown below. Two main modifications have been made 

to the original PSO. First change is in the initialization process, particles are randomly 

produced until all the particle populations meet the constraints. Second change is in the 

update of pBest; only those particles in the feasible space are used to update pBest. 

1. Generate a population of particles with random positions and velocities in 

the feasible space 

2. Evaluate each particle for the optimization fitness function. 

3. Compare each of the fitness function values with particle’s pBest value. If 

its fitness function value is better than pBest and if this particle is in the 

feasible space, then repalce the current particle fitness function value by 

the current fitness value. And set the pBest location by the current 

particle’s location. 

4. Compare fitness values of all the pBest in the population with the previous 

gBest value. If the current gBest is better than the previous gBest value, 

then replace the gBest value with the current gBest value and their 

locations. 

5. Change the velocity and position of the particle according to equation 

(5.1) and (5.2) separately. 

6. Loop to step 2) until certain criterion is met, usually a sufficiently good 

fitness value or a maximum number of iterations has finished. 
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This constrained PSO costs a lot of time in the initialization step because the 

feasible space is small when data dimensionality is large. Many random generations must 

be created before the constraints are relaxed for all the initial particles. 

5.2.3 A simple example 

In the process of PSO, a large population of particles moves across the solution 

space. Their update is based on the pBest and gBest. To illustrate swarm movement, an 

unconstrained PSO was implemented on a sphere function: 

2
2

2
1 )()()( rxrxxf (5.3) 
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Figure 5.1 Population distribution at different iterations. (a) Iteration = 1. (b) Iteration 
= 25. (c) Iteration = 50. (d) Iteration = 75. 
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We set the value of r to be 5 in equation (5.3), so the optimum solution for the 

objective function is x1, x2   [5, 5] . 20 particles were randomly initialized and 100 

iterations were executed. The population distributions in various generations were 

observed, as shown in Fig. 5.1. From the four subfigures, we could see that the initial 

particles were spread sparsely in the whole problem space at iteration 1. Then the 

particles started to be pulled by the updating procedure to the optimal fitness value 

regions from iteration 25 to iteration 75. Finally, all the particles were gathered at the 

optimum point. 

5.2.4 Powell’s direction set method 

The Powell’s method [86] is an optimization method that is suitable to find the 

optimum solution that is not far away from the starting searching point when the 

derivative is difficult to compute. It minimizes along one direction after another. In each 

iteration, a one-dimensional minimization method (e.g., the Brent’s method) is employed. 

The goal is to minimize the objective function through a set of linear, dependent, and 

conjugate directions. However, this optimization method is easily to converge to local 

minima, particularly when the objective function is multi-dimensional. In practical 

applications, a number of initial values can be tried to find a better solution. However, it 

is still difficult to find a global optimal solution. 

5.2.5 Uniform bin-width optimization 

As mentioned earlier, each channel is partitioned into one and only one bin. Thus, 

we first consider the simplest situation where all the bins in the four transforms in 

Chapter IV have uniform widths. Then, our goal is to optimize the number of bins that 

can offer the optimal fitness value for the data. We can use the exhaustive method to 
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search all the possible number of bins and select the best results with the corresponding 

bin-width. This approach is mainly for comparison purpose. 

5.2.6 PSO searching for variable bin-widths 

Different from the Powell’s method, PSO has much better global optimum 

searching ability. This is because the PSO algorithm can perform optimization in a multi-

dimensional searching space. PSO searches the solution space by starting from randomly 

distributed particles like swarm. Here, possible solutions are called particles, and 

recursive solution update is called velocity. It is very similar to other evolutionary 

computation algorithms, but has relatively fast convergence. It shares some 

characteristics with evolutionary techniques:  1) it uses a large size of random particles as 

initials; 2) the optimum objective function value is determined by iteratively updating the 

generations; and 3) evolution adaptation uses the previous generations, and particles are 

flown through the problem space following the current best solution. 

Assume J bins are to be searched and M particles are randomly initialized. Let a 

particle xid of size (J−1)×1 include channel indices c'1 ,c'2 ,,c' J 1 selected as bin 

boundaries, and let vid be the update for selected channel indices. In addition, the 

historically best local solution for a particle is pid, and the historically best global solution 

among all the M particles is pgd. The detailed recursion can be expressed by Eqs. (5.3) 

and (5.4). It calculates the new update for each particle based on the previous update vid, 

pid that it has reached so far so best for the objective function, and pgd that has reached so 

far so best for the objective function. In Eq. (5.3), two random numbers ρ1 and ρ2 are 

independently generated; r1 and r2 represent two random numbers, which controls the 

contributions from local and global best solutions; and the inertia weight w is used as the 
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scalar of previous velocity vid which provides improved convergence performance in 

various applications [8]. 
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Figure 5.2 The proposed adaptive optimization system. 

)()( 2211 idgdidididid rrw xpxpvv (5.4) 

ididid vxx (5.5) 

After convergence, it is needed to round off the solutions to adapt the continuous 

PSO to a discrete form because the channel indices are discrete values. 

5.2.7 PSO searching for the optimal number of bins 

If the optimal number of bins is known, we can search for variable bin-widths 

using the technique described above. Unfortunately, it is difficult to decide the optimal 

number of bins for a given dataset. Here, we propose an adaptive system to searching for 

the optimal number of bins and varied bin-widths simultaneously. As shown in Fig. 6, 
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two different optimization processes are incorporated in this system. The inner PSO (in 

the dashed-line box) searches the optimal varied bin-widths with a certain number of 

bins, which is one of the particles in the outer PSO (the loop on the left side of Fig. 6). 

After the inner PSO is converged, the outer PSO updates its particles based on the 

solutions corresponding to bin-widths produced by the inner one. Once the particles in 

the outer PSO are updated, the entire process of the inner PSO is executed again. The 

stopping criterion can be chosen as: the change of the best solution (i.e., gid) between two 

consecutive iterations is less than a threshold, or gid does not change after a certain 

number of iterations. Here, we terminate the iterations for the inner PSO if gid does not 

change after 200 iterations, 100 iterations for the outer PSO. Particles in the inner PSO 

are multi-dimensional vectors, requiring more iterations for convergence. 

Note that the same PSO algorithm in Section III. D is used to search for the 

optimal number of bins, except that the vectors in Eqs. (5.4) and (5.5) are scalars now; 

specifically, xid represents a possible solution for the number of bins J, and vid is the 

update for the value of J in each iteration. 

5.2.8 Overall algorithm with two PSOs 

To summarize, the automatic searching algorithm using two PSOs can be 

described as follows. 

1) Randomly initial M particles, say, M =20, for the outer PSO, denoted as 

outer,k M 
k 1 , respectively. Set k =0.xid 

outer,k2) Let k = k+ 1, for the specific number of bins represented by xid , randomly 

inner, j outer,kinitial M particles for the inner PSO denoted asx M
j1 , and each includes ( xid −1)id 
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boundary channel indices for partition. In each iteration, run the following steps for the 

inner PSO update. 

2.1) For each inner particle, evaluate the selected objective function. 

2.2) Determine the global best particle pgd. 

2.3) For each particle, determine its historically local best solution pid. 

2.4) Use Eqs. (10) and (11) to update all the inner particles. 

2.5) Repeat steps 2.1)-2.4) until convergence. Keep the pgd as the partition 

corresponding to kouter
idx , . 

3) If k < M, go to Step 2). If k = M, check if the outer PSO is converged. If yes, 

terminate the algorithm; the pgd is the optimal number of bins and its corresponding 

partition found by the inner PSO is the optimal bin-widths. Otherwise, run the following 

steps for the outer PSO. 

3.1) For each outer particle, retrieve the objective function based on the 

corresponding bin partitions found by the inner PSO. 

3.2)   Determine the global best particle pgd. 

3.3)   For each outer particle, determine its historically local best solution pid. 

3.4)   Use Eqs. (10)-(11) to update all the outer particles. 

3.5)  Set k =0 and go to Step 2). 

5.3 Experiments 

5.3.1 Data and implementation 

Laboratory data was collected using a cm sodium iodide (NaI) 

scintillation detector. The measured spectra covered the energy range from 0 keV to 

2160.0 keV with 1011 channels. The target has a cylindrical shape with 4.3 kg mass. The 

10 10 40 
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background consisted of construction sand. Natural ore was considered a benign material, 

scattered in a liter-size plastic bag. The distance between the detector and sand surface 

was about 15cm. The detector was above the center of the target and ore, which were 

parallel to the detector cart. 

The target was buried at 15 cm, 23 cm, 30 cm, 45 cm, 60 cm, 75 cm, and 90 cm. 

Natural ore was buried at 45 cm and 75 cm depth. For each class, 24 samples were taken 

evenly by four different dwell times: 1 s, 0.5 s, 0.25 s, to 0.1 s. In the experiment, all the 

measurements were normalized into equivalent 1 s dwell time. 

Table 5.1 The performance of GC and original k-NN on the two datasets 

Training Data Testing Data 

OD OC OD OC 

GC 0.833 0.608 0.667 0.550 

Original 0.875 0.792 0.850 0.767 

Figure 5.3 A learning curve for the SCR transform. 
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(a) SCR (OD) 

(b) SCR (OC) 

Figure 5.4 Bin boundaries from five PSO runs for SCR. 

56 



 

 

 
     

 
 

 

  

     

    

   

   

     

   

 

  

       

      

(C) SCR (0.5OD + 0.5OC) 

Figure 5.4 (continued) 

The lab data were divided into two parts with equal size. Each part contained 120 

samples. Within the 120 samples, each class had 12 samples; among the 12 samples, each 

dwell time had 3 samples. We treated the first part of the data as training data and used 

for system training purpose, and the second part were for testing. 1-NN with 3-fold cross 

validation was applied for detection and classification in both training and testing 

process. OD was calculated when all the seven target classes were treated as a single 

class and natural ore and background as the other, while OC was computed when the ten 

classes were considered as individual classes. 

5.3.2 GC and k-NN using the original data 

For comparison purpose, Table 5.1 shows the performance of GC and k-NN using 

the original data without spectral transformation on the training data and testing data. On 
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the testing data, GC yielded OD = 0.667 and OC = 0.550, while k-NN provided OD = 

0.850 and OC = 0.767, better than GC. 

5.3.3 Uniform bin-width and Powell’s method 

For bin partition, first we considered the simplest situation where all the bins in 

the aforementioned transforms had uniform bin-widths. If the bin-width is the same for 

all the bins, then exhaustive search is doable to select the optimal number of bins. The 

optimal number of bins was searched using the training data, then applied for the testing 

data. Similarly, Powell’s method and PSO system were trained with the training data, 

then tested on the testing data. Their results with the three objects are tabulated in Tables 

5.2, 5.3 and 5.4. 

5.3.4 Bin optimization using PSO 

For the PSO method, an example of learning curve is plotted in Fig. 5.3, where 

we can see the increase of the objective function with the number of iterations. The bin 

partition results (i.e., bin boundaries) from five runs for SCR are illustrated in Fig. 5.4. 

Each run may yield different partitions, and the one marked in ○ is the one providing the 

best objective function among the five. In Fig. 5.4(a), two partitions provided the same 

OD values for the training data. Due to the problem complexity, there may exist many 

local and global optima. Partitions are changed with the objective function; and they are 

also changed with transforms (and classifier employed). 
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Table 5.2 The resulting performance when the objective is overall detection accuracy 

Training Data Testing Data 

OD OC OD OC 

Uniform SCR 0.892 0.792 0.833 0.742 

Uniform SBE 0.942 0.875 0.858 0.800 

Uniform SBD 0.942 0.867 0.875 0.792 

Uniform SBR 0.958 0.833 0.912 0.825 

Varied SCR (Powell) 0.858 0.732 0.827 0.737 

Varied SBE (Powell) 0.938 0.852 0.875 0.810 

Varied SBD (Powell) 0.932 0.847 0.872 0.787 

Varied SBR (Powell) 0.915 0.775 0.870 0.768 

Varied SCR (PSO) 0.986 0.863 0.880 0.780 

Varied SBE (PSO) 0.997 0.887 0.902 0.828 

Varied SBD (PSO) 0.993 0.893 0.897 0.828 

Varied SBR (PSO) 1.000 0.908 0.950 0.841 

The OD and OC results are shown in Tables 5.2, 5.3, and 5.4. Since five repeated 

runs were implemented, the mean values were presented in the tables. Table 5.2 

summarized OD when OD was the objective. For the four spectral transforms, the 

uniform bin-width provided moderate OD because it fixed all bin-widths to the same and 

could not divide the spectrum adaptively based on energy peaks or features. However, the 

varied bin-width optimization would adjust the optimal number of bins and their 

corresponding widths so that an energy window could adaptively capture the interest 

energy peaks and combine them together. As the consequence, OD was improved. 

Comparing the results of Powell’s method with that of PSO, the four spectral transforms 

had all increased their OD. SBR provided the best result with 100% OD for the training 

corresponding bin data and 95% for the testing data. OC was derived with the same 
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partitions. Compared to GC and the case using the original spectra in Table 5.1, bin 

partitioning did improve the overall detection and classification performance. 

Table 5.3 The resulting performance when the objective is overall classification 
accuracy 

Training Data Testing Data 

OD OC OD OC 

Uniform SCR 0.858 0.800 0.800 0.725 

Uniform SBE 0.930 0.875 0.890 0.825 

Uniform SBD 0.930 0.875 0.890 0.825 

Uniform SBR 0.942 0.850 0.925 0.825 

Varied SCR (Powell) 0.848 0.750 0.820 0.733 

Varied SBE (Powell) 0.923 0.847 0.898 0.841 

Varied SBD (Powell) 0.927 0.850 0.893 0.828 

Varied SBR (Powell) 0.920 0.803 0.907 0.797 

Varied SCR (PSO) 0.978 0.947 0.890 0.793 

Varied SBE (PSO) 0.971 0.963 0.900 0.842 

Varied SBD (PSO) 0.975 0.963 0.900 0.850 

Varied SBR (PSO) 0.998 0.991 0.937 0.848 

Table 5.3 summarized OC when OC was the objective. The varied bin-width PSO 

still provided a higher accuracy than the exhaustively searched uniform bin-width. Again, 

OD was derived with the corresponding bin parameters. Comparing Table 5.2 and 5.3, 

we can see that both our optimization methods enhanced the desired accuracy function 

because it was our criterion function in the optimization process. This is why the OD in 

Table 5.2 is larger than the counterpart in Table 5.3, and OC in Table 5.3 is larger than 
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that in Table 5.2. PSO still could achieve better results comparing with the Powell’s 

method and the uniform partition. 

Table 5.4 The resulting performance when the objective is multi-objective function 

Training Data Testing Data 

OD OC 0.5OD + 0.5OC OD OC 0.5OD + 0.5OC 

Uniform SCR 0.892 0.792 0.842 0.8330.742 0.788 

Uniform SBE 0.942 0.875 0.908 0.8580.800 0.829 

Uniform SBD 0.942 0.875 0.908 0.8580.800 0.829 

Uniform SBR 0.958 0.833 0.896 0.9170.825 0.871 

Varied SCR (Powell) 0.872 0.773 0.822 0.8310.743 0.787 

Varied SBE (Powell) 0.925 0.855 0.890 0.8910.811 0.852 

Varied SBD (Powell) 0.928 0.848 0.888 0.9040.825 0.864 

Varied SBR (Powell) 0.918 0.806 0.862 0.8800.793 0.836 

Varied SCR (PSO) 0.983 0.935 0.959 0.8930.792 0.843 

Varied SBE (PSO) 0.985 0.958 0.972 0.9100.848 0.879 

Varied SBD (PSO) 0.983 0.964 0.974 0.9060.844 0.875 

Varied SBR (PSO) 1.000 0.993 0.997 0.9500.858 0.904 

Table 5.4 summarized the multi-objective function values, retrieved OD and OC, 

when the multi-objective function was the searching criterion. Compared with the results 

in Tables 5.2 and 5.3, we notice that OD values were close to those when OD was the 

single objective to be optimized; similarly, OC values were close to those when OC was 

the single objective. But both criterions would come to a balance comparing the results 

when they were set as single criterion functions. Again, PSO still outperforms the 

Powell’s method in optimization of multi-objective function for the four spectral 

transforms. 
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Table 5.5 Classification accuracy of DU classes 

15 23 30 45 60 75 90 

GC 100.0 100.0 100.0 91.7 16.7 16.7 75.0 

Original 100.0 100.0 100.0 83.3 33.3 83.3 83.3 

Uniform SCR 100.0 100.0 100.0 100.0 33.3 91.7 41.7 

Uniform SBE 100.0 100.0 100.0 100.0 33.3 66.7 100.0 

Uniform SBD 100.0 100.0 100.0 100.0 33.3 66.7 100.0 

Uniform SBR 100.0 100.0 100.0 83.3 33.3 91.7 83.3 

Varied SCR (Powell) 100.0 95.0 100.0 88.3 43.3 93.3 33.3 

Varied SBE (Powell) 100.0 100.0 100.0 98.3 35.0 85.0 100.0 

Varied SBD (Powell) 100.0 100.0 100.0 100.0 37.5 100.0 100.0 

Varied SBR (Powell) 100.0 100.0 100.0 81.7 38.3 96.7 86.7 

Varied SCR (PSO) 100.0 100.0 100.0 90.0 71.7 91.7 60.0 

Varied SBE (PSO) 100.0 100.0 100.0 98.3 50.0 85.0 100.0 

Varied SBD (PSO) 100.0 100.0 100.0 100.0 44.4 88.9 100.0 

Varied SBR (PSO) 100.0 100.0 100.0 100.0 58.3 91.7 91.7 

The mean values of five runs were presented in the tables. To better show the 

performance statistics, boxplots with the information of mean and standard deviation 

were drawn in Figs. 5.5-5.7. They further confirmed that the multi-objective PSO 

(denoted as “OD/OC’) provided comparable performance to the one optimized by a 

single-objective PSO (denoted as “OD” or “OC”). However, as shown in Fig. 5.7, the 

multi-objective PSO provided a better joint performance. 

Table 5.5 showed the classification accuracy (OC) of DU classes at different 

depth for testing data (with the multi-objective), where PSO-based approaches performed 

the best. 
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Figure 5.5 Boxplot of detection accuracy (OD) for the testing data. 

Figure 5.6 Boxplot of classification accuracy (OC) for the testing data. 
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Figure 5.7 Boxplot of multi-objective function value (0.5 OD + 0.5 OC) of the testing 
data. 

5.4 Conclusion 

We propose a PSO-based adaptive optimization system to automatically 

determine the optimal number of bins and the corresponding optimal varied bin-widths 

for energy spectral transformation. Two PSOs are incorporated in the system with outer 

one being responsible for selecting the optimal number of bins while the inner one being 

in charge of searching for the optimal bin-widths. In our research, the overall detection 

accuracy and overall classification accuracy are the searching objectives. We can set 

them separately as the criterion function in the optimization process. To achieve high 

detection and classification accuracy, we propose a multi-objective PSO, which can well 

balance the detection and classification performance when both are of great concern in 

practical applications. From the optimization results, using variable bin-widths is better 

than fixed bin-width; PSO can provide better results than the Powell’s method. 
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When analyzing an entire energy spectral curve, the data dimensionality is very 

high, which equals the number of energy channels. One of practical difficulties is the lack 

of enough training samples when implementing many traditional statistical methods, such 

as the maximum likelihood classifier. The proposed spectral partitioning approach can 

reduce the data dimensionality, thereby alleviating the requirement of a large training set. 

Our PSO-based searching system can be generalized to any detection or classification 

method. 

However, due to the complexity of an objective function, the results are generally 

multimodal, exhibiting multiple local (and global) optima. Thus, multiple runs are 

required to find the best solution. Fortunately, with high performance computing facilities 

available, PSO can be easily implemented in parallel to reduce computing time. 
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CHAPTER VI 

PARALLEL OPTIMIZATION 

6.1 Introduction 

PSO is a probabilistic searching algorithm based on a simplified social model. It 

has many attractive characters such as easy implementation. However, it is usually time-

consuming when the problem space is high-dimensional. Fortunately, its basic structure 

is very suitable to parallel computation. Most parallel implementations of PSO algorithms 

are based on synchronous implementation [63],[63],[70] where all particles are evaluated 

within an iteration before the next design iteration is started. In such an implementation, 

all particles are sent to parallel computing nodes, and the algorithm waits for all the 

results from each computing node for analyses before entering to the next iteration. The 

problem is that it is nearly impossible to keep all processors working towards the end of 

each iteration. There are three reasons that would cause some of the processors being idle 

towards the end of iteration [65]: 1) having a swarm size that is not an integer multiple of 

the number of processors; 2) a heterogenous distributed computing environment 

including processors with varying computational speed; 3) using a numerical simulation 

to evaluate each design point, where the required simulation time depends on the design 

point being analyzed. The influence of having idle processors is reduction on speedup 

when more processors are needed. 

Another type of parallel PSO is based on asynchronous parallel implementation 

where particles in the next design iteration are analyzed before the current design 
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iteration is completed. In this way, no idle processors exist as the system evolves from 

current iteration to the next. The key to implementing an asynchronous parallel PSO 

algorithm is to divide the update of parameters associated with each point and those 

associated with the swarm as a whole. These update parameters include the inertia value, 

and the swarm and point histories. For the synchronous algorithm, all the update is 

performed at the end of each iteration. For the asynchronous algorithm, each particle is 

updated after its own iteration is completed. The swarm update action is done at the end 

of each iteration. The update actions in the algorithm, such as the velocity, the craziness 

operator, the dynamic reduction of the inertia value, need to be taken care of [66]. 

The fitness function in a PSO system should be as simple as possible to avoid 

large computational burden. Sometimes, we need to set the fitness function the one which 

provides the highest classification accuracy; this criterion function has to be selected 

based on small computation burden because classification needs to be conducted in each 

iteration. It is computationally prohibitive if the selected classifier, for example, support 

vector machine (SVM) [68], is very expensive with training and test. Here, we apply the 

k-NN which is a simple but effective classification method. 

Although PSO algorithms present attractive global optima searching properties, 

they are plagued by high computational cost as measured by running time. It is natural to 

implement parallel computing for such an optimization system. Clusters are commonly 

used nowadays for high performance computing purpose. Venter et al. [65] developed an 

approach for parallel PSO to reduce the elapsed time, making use of coarse-grained 

parallelization to evaluate the design points. It utilized the interval time of receiving and 

sending by asynchronous parallel PSO algorithm that greatly improves the parallel 

efficiency. Lou et al. [69] proposed a multi-objective model of reactive power 
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optimization (RPO). It takes account of power loss minimization, voltage stability margin 

maximization, and high service quality. Jin et al. [71] proposed a method that combines 

both the PSO and the finite-difference time-domain (FDTD) to achieve the optimum 

antenna satisfying a certain design criterion. The above parallel implementations of PSO 

result in great improvement in different applications. 

Recently, graphics computing units (GPUs) are attracting more and more 

attention in engineering and science area due to its portability and low-cost. GPUs are 

first invented for graphics acceleration but it has been explored its computational power 

on general purpose computing [88]. GPU has already been successfully used in many 

computation fields, such as computer vision problems [89], Voronoi diagrams [90], 

neural network computation [91], and so on. It has also been applied to hyperspectral 

image analysis, e.g., detection, classification, and unmixing [92][93]. In this chapter, we 

will present GPU implementation for the PSO-based spectral optimization algorithm, and 

compare its performance with that of the cluster implementation. 

6.2 Proposed Method 

6.2.1 Parallel algorithm for one PSO on clusters 

The synchronous parallel PSO algorithms are implemented. The parallel 

implementation used here is based on the Message Passing Interface (MPI) to provide a 

master-slave implementation , where one processor is used as the master processor, and 

all remaining processors are used as slave processors. The master processor is to collect 

data, determine the global update, and control the communication with the slave 

processors. The parallel implementation starts with the slave processors initiating 
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themselves with random particle positions on their local temporary working memory. 

Within this working memory, the analysis is setup and conducted for the current particle. 
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Figure 6.1 The parallel PSO algorithm diagram 

Once the analysis is completed, the objective function and locations are sent back 

to the master processor. The master processor checks the global optimal among the 
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results from all other slaves and sends locations of current global optimum to the slave 

processors. This process is repeated until stopping criterion is met. The major characters 

of synchronous implementations are: 

1. The synchronous algorithm performs all the particles and swarm updates 

at the end of each iteration. 

2. The synchronous algorithm waits until all points are analyzed before 

updating and starting the next iteration. 

The parallel PSO algorithm is illustrated by the flow chart in Fig. 6.1, where k 

represents the k-th iteration, n
kx is the position vector of particle n in the k-th iteration, Pn 

represents the n-th particle , and f(●) is a fitness function 

6.2.2 Parallel algorithm for one PSO on GPU 

The GPU comes with the shared memory architecture. As all processors of the 

GPU can share data within a global address space, it fits the data parallelism very well. 

To achieve satisfied parallel performance, the data throughput is very critical in GPU 

parallel algorithm design, which means enough data and computation should be designed 

ahead to feed into the GPU to take advantage of its computing power. Many previous 

work shows that it can achieve excellent speedup performance only when the data size is 

increased to thousands. As it uses the share memory model, the major bottleneck is 

memory communication between the host and device; unnecessary data transfer between 

host and device should be avoided. After all, two key rules should be followed in the 

parallel algorithm design stage: 1) reduce the communication between host and device, 

and 2) parallel data size as large as possible. 
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In this chapter, our purpose is to accelerate the running speed of optimal bins 

using PSO searching method on GPU; meanwhile, optimization performance of the GPU-

implemented PSO should not be deteriorated. By exploring the full power of the parallel 

computing ability of GPU, we expect the implementation can solve the global 

optimization problem for high-dimensional data with large swarm population. 

6.2.2.1 Data organization 

In PSO, the information of position and velocity for all the particles is stored in 

the global memory of GPU chips. One-dimensional arrays are used for storing 

parameters, including xid (position), vid (velocity), pid (pbest) and pgd (gbest) fitness values 

for all the particles. Here, we assume the dimension of the problem is D (equal to the 

number of bins), and the swarm population is N. So an array of length DN is used to 

represent each swarm by storing all the positions’ velocity values. The pbest fitness 

values are stored on an array of length D. 

6.2.2.2 Random number generation 

In the process of optimization, PSO requires random numbers for velocity 

updating. Three random numbers are needed during each iteration. One is for the inertia 

weight and two are for the learning rates. As the absence of high precision integer 

arithmetic, generating random numbers in GPUs is not easy. Thus, we generate random 

numbers on CPU first and then transfer these numbers to the global memory of GPU. 

However, the data transportation between GPU and CPU is quite time consuming. If we 

generate random numbers on CPU for each iteration and then transfer them to GPU, the 

speedup performance will be degraded. In order to reduce the communication time 

between CPU and GPU as much as possible, we would transfer the random numbers in 
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advance. First, we generate T random numbers on CPU before running PSO where T is 

large enough for need in the predefined iterations. Then they are transported to GPU 

global memory and stored in an array R. When it comes to the update of the velocity, we 

just pass three random numbers from R instead of transporting three times of Max 

Iterations random numbers from CPU to GPU. The running speed can be obviously 

improved by using this technique. 

6.2.2.3 Overall algorithm of GPU-implemented PSO 

The main steps illustrated in Fig. 6.2 for GPU-implemented PSO can be described 

as below. Here, we set the maximum number of iterations as the stopping criterion for the 

optimization process. 

1. Initialize the positions and velocities of all particles. 

2. Transfer these data from CPU to GPU’s global memory. 

3. for i =1 to Max Iteration do 

Compute fitness values of all particles 

Update pid and pgd of each particle 

Update pgd and pgd position for all the particles 

Update vid and xid of each particle 

end for 

4. Transfer results data back to CPU and output. 
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Print out results  

Generate random 
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Figure 6.2 The diagram for the GPU-implemented PSO bins selection 

6.2.2.4 Parallelization design on GPU 

The difference between the implementation on CPU and a GPU kernel is that the 

kernel function of GPU is designed for single-instruction, multiple-data (SIMD) 

parallelized computing. So we design the parallelization methods for all the sub-

processes in PSO. 

1. Compute Fitness Values: Fitness values calculation is the most important 

task in the entire process, where the computation intensity is determined 

by the number of particles and the size of each particle. It should be 

carefully designed for parallelization so as to improve the overall 
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efficiency of the algorithm. The steps for fitness value calculation are 

shown as follows. 

a. Set the block size and grid size with the number of threads equal to 

the number of particles N. 

b. Load the position data of each particle from global memory to 

local memory of each thread. 

c. Apply arithmetical operations to each thread for fitness function in 

parallel. 

d. Store the final fitness values of all particles to an array. 

2. Update pid and pgd : After the fitness values are computed, each particle 

may result in a better value than ever before in its history and new global 

best particles may be found. So pid and pgd must be updated according to 

the current information of the particles. The updating of pid can be done as 

follows: 

a. Transfer pid position, pid fitness from global to shared memory of 

each block. 

b. Map each thread to each particle. 

c. If fitness value of any thread is better than its pid fitness, then the 

new fitness value replaces the old one 

for each dimension D do 

Store the position to pid 

end for 

end if. 
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2. The update of gbest is different from that of pbest. Its parallel 

implementation is shown as below: 

a. Transfer pid fitness data from global to shared memory. 

b. Apply the reduction on each block for minimum element; 

Store the minimum elements of each block to one array. 

c. Apply the reduction again for the array we got in step b. 

d. Update pgd fitness and pgd position by one thread. 

3. Update Velocity and Position: After the pid and pgd position of all the 

particles have been updated, the velocities and positions should also be 

updated according to Eqs. (5.4) and (5.5), respectively. The update is 

critical in the whole algorithm which makes use of the new information 

provided by pid and pgd. 

a. Map each thread to each particle. 

b. for each dimension D do 

Transfer the pid and pgd, particles’ position and random number 

to share memory of each block 

Update each particle on dimension D 

end for. 

6.2.3 Parallel hardware and software 

In our study, we use a 2048 core cluster composed of 512 Sun Microsystems 

SunFire X2200 M2 servers, each with two dual-core AMD Opteron 2218 processors 

(2.6GHz) and 8 GB of memory. All of the computing nodes are diskless. The system uses 
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gigabit ethernet to connect the 32 nodes in each rack together, and 10 GbE to connect the 

16 racks to one another. 

The CPU machine used in the experiments is an Intel Pentium4 3.40 GHz with 

Hyper thread and 2 GB of memory. The GPU is NVIDIA’s GeForce GTX285 that has 

240 cores with 1 GB memory. 

The parallel algorithms on the cluster are implemented in the C++ with the 

message passing interface (MPI) and EIGN library. The GPU versions are implemented 

in the CUDA. 

6.3 Experiments 

6.3.1 Cluster parallel implementation 

Laboratory data was collected using a cm sodium iodide (NaI) 

scintillation detector. The measured spectra covered the energy range from 0 keV to 

2160.0 keV with 1011 channels. The target was buried at 15 cm, 23 cm, 30 cm, 45 cm, 60 

cm, 75 cm, and 90 cm. Natural ore was buried at 45 cm and 75 cm depth. For each class, 

24 samples were taken evenly by four different dwell times: 1 s, 0.5 s, 0.25 s, to 0.1 s. In 

the experiment, all the measurements were normalized into equivalent 1 s dwell time. 

The lab data were divided into two parts with equal size. Each part contained 120 

samples. Within the 120 samples, each class had 12 samples; among the 12 samples, each 

dwell time had 3 samples. We treated the first part of the data as training data and the 

second part were for testing. 1-NN with 3-fold cross validation was applied for detection 

and classification in both training and testing process. 

10 10 40 
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(a) OD 

(b) OC 

Figure 6.3 The parallel speedup for two objective functions. 
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Table 6.1 Accuracy from the best uniform partitions 

Training Data Testing Data 

SCR SBE SBD SBR SCR SBE SBD SBR 

OD 89.2 94.2 94.2 95.8 83.3 85.8 87.5 91.2 

OC 80.0 87.5 87.5 85.0 72.5 82.5 82.5 82.5 

Table 6.2 Detection accuracy from parallel PSO-based methods 

Training Data Testing Data 

Number of 
Processors 

SCR SBE SBD SBR SCR SBE SBD SBR 

1 96.7 99.2 99.2 100.0 85.8 90.8 94.2 93.3 

4 97.5 98.3 99.2 100.0 81.7 87.5 91.7 90.0 

8 97.5 99.2 99.2 100.0 90.0 93.3 92.5 91.7 

16 97.5 99.2 98.3 100.0 89.2 90.8 89.2 94.2 

32 96.7 99.2 99.2 100.0 78.3 91.7 90.8 70.0 

Average 97.2 99.0 99.0 100.0 85.0 90.8 91.7 87.8 

The spectral transforms employed the PSO to automatically determine the varied 

bin-widths. Different numbers of bins were exhausted from 3 to 20. Fig. 6.3shows the 

parallel speedup of different number of processors. As the number increases, the 

computational burden was distributed and running time was decreased. For the four 

different spectral transforms, the speedups were almost the same. The objective function 

did not affect the speedup. 
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Table 6.3 Classification accuracy from parallel PSO-based methods 

Training Data Testing Data 

Number of 
Processors 

SCR SBE SBD SBR SCR SBE SBD SBR 

1 90.0 95.0 95.0 98.3 72.5 82.5 85.0 88.3 

4 90.0 96.7 94.2 97.5 78.3 84.2 82.5 86.7 

8 90.8 94.2 95.0 97.5 80.8 80.0 83.3 85.8 

16 90.0 95.0 96.7 97.5 74.2 84.2 83.3 85.8 

32 88.3 94.2 94.2 96.7 76.7 84.2 85.0 82.5 

Average 89.8 95.0 95.0 97.5 76.5 83.0 83.8 85.8 

The gross count (GC) yielded OD = 0.667 and OC = 0.550, while original data 

provided OD = 0.850 and OC = 0.767, better than GC. Table 6.1 lists the accuracy values 

from the best uniform partitions with fixed bin-widths. Tables 6.2 and 6.3 tabulate the 

detection and classification accuracy for the four transforms after parallel PSO-based bin 

partitions, which are better than those in Table 6.1. Note that when the number of 

processors is 1, it is the serial version. Fig. 6.4 illustrates the OD and OC values for the 

testing data, which clearly shows the improvement from the use of bin optimization. 
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Figure 6.4 Comparision on OD and OC using the testing data. 

6.3.2 GPU parallel implementation 

As the four transformation methods are similar in the parallel implementation, we 

only implement the SCR with objective of OC. In this experiment, we set the number of 

particle swarm size of 300 to fully explore the computational power of GPU. The 

maximum iteration was set as 500 which was large enough in this case. The average 

running time in the cluster and GPU is shown in Table 6.4, and the speedup comparison 

of both parallel computing is shown in Figs. 6.5 and 6.6. From these results, we can see 

that the GPU achieved slightly better performance than the cluster with 32 cores. 

6.3.2.1 Running time and speedup versus number of bins 

Now we fixed the swarm population to a constant value but vary the number of 

bins to be selected. Analysis about the relationship between running time (as well as 

speedup) and the number of bins was conducted. The parallel PSO was run for five times, 

and the average results are shown in Table 6.4 (N=300, Iter=500). 
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As seen from Fig. 6.5, the speedup of the cluster system has not been affected 

much by the number of bins selected, or particle dimension. But from Fig. 6.6 of the 

speedup of GPU, the accelerations were decreased as the number of bins being increased. 

This is because when the number of bins is increased, it directly leads to the increase of 

particle dimension, which greatly degraded the speedup performance of GPU. 

Table 6.4 further shows that the computation time all increased but that of GPU 

increased much in proportion compared with the serial algorithm. In other words, we 

could say the cluster has fast computation speed and speedy data transfer mechanism, 

thus the increase of particle dimension does not induce more computational burden. 

Figure 6.5 Speedup performance with different number of bins selected by Cluster 
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Figure 6.6 Speedup performance with different number of bins selected by GPU 

Table 6.4 Results of parallel bins selection running time (in second) 

Number of selected bins 5 10 15 20 25 

1 processor 143.566 170.099 188.708 224.557 250.203 

4 processor 51.380 62.589 71.810 82.737 92.248 

8 processor 22.374 26.940 31.996 36.443 40.193 

16 processor 10.433 12.905 14.917 16.762 18.812 

32 processor 5.660 6.882 7.606 8.678 9.725 

GPU 5.205 6.810 9.113 11.901 13.870 

6.3.2.2 Running time and speedup versus swarm size 

Now we fixed the number of bins and explored the effect of swarm size on the 

parallel performance. Corresponding analysis of running time on different swarm size 

was performed. The parallel PSO was run for five times, and the average results are 

shown in Table 6.5 (Dimension=25, Iter=500). 
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Figure 6.7 Speedup performance with different swarm size for Cluster 

Figure 6.8 Speedup performance with different swarm size for GPU 

As we can see from Fig. 6.7, the speedup of the cluster system was largely 

affected by the parameter of swarm size in PSO, especially when the number of 

processors was increased. This illustrates that as the swarm size allocated on each 

processor was decreased, the overhead between the processors became dominant and thus 

reduced the related speedup. From Fig. 6.8 about the speedup of GPU, the acceleration 
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was also decreased as the swarm size being reduced, which is again due to the 

communication overhead between the host and device. This can be shown by the fact that 

the size of 100 has worse speedup than the size of 300. 

The detailed running time of GPU is shown in Table 6.5. Although the decrease of 

swarm size brought down directly the computational intensity, the performance was also 

affected due to the fact that the proportion of the communication overhead was enlarged 

in the entire computation process. 

Table 6.5 Results of parallel PSO running time (in second) 

Swarm size 300 200 100 

1 processor 270.203 115.235 77.866 

4 processor 92.248 64.091 25.953 

8 processor 40.193 26.037 12.801 

16 processor 18.812 12.375 6.773 

32 processor 9.725 5.796 2.988 

GPU 13.870 8.912 7.903 

6.4 Conclusion 

We proposed a PSO-based optimization method for automatic bin partition to 

mitigate the impact from sparseness and randomness in an energy spectrum. The 

experiment shows that spectral transformation using PSO-selected bins can provide better 

results than the best uniform partition. In this chapter, a parallel PSO algorithm is 

developed, which can significantly reduce running time while maintaining the overall 

detection and classification accuracy. Since parallel computation is an appropriate 

approach to reduce the computation burden of the PSO-based searching process, the 

parallel implementation on cluster for optimal bin partition is effective in reducing the 
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workload of the search algorithm. The speedup performance and resulting detection and 

classification performance are investigated. Corresponding results show that the speedup 

is almost linear with the number of processors involved in the PSO searching process. 

We also proposed GPU parallel implementation. The GPU facility is currently 

popular in scientific computing. The experimental results show that GPU implementation 

has high scalability and is comparable to cluster implementation. In addition, we notice 

that the running time and swarm population size take an approximately linear 

relationship, which is also true for running time and dimension. However, the swarm size 

has a major impact on the speedup performance; to fully explore the power of GPU, a 

large size of swarm should be adopted. 
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

In this research, new methods have been developed to achieve detection and 

classification of buried radioactive materials. We have developed effective spectral 

transformation methods for this purpose. The transformation has been successfully 

suppressed the variation of noise introduced by the collecting equipments and enforce the 

feature in the new transformed spectral space. In this chapter, specific conclusions can be 

drawn in the following aspects: 

1) We have introduced the anomaly detection methods to the detection of buried 

radioactive materials. Finding a way to detect the illicit sources is not an easy problem 

under the assumption that there is no predefined ground true sample. The classic RX has 

been employed to search the possible anomaly samples and they are used in conjunction 

with CEM for final decision. This unsupervised system can suppress the background 

noise by using the dimensionality-reduced data from energy windowing and PCA. 

2) We improve the performance of buried target detection and classification by 

using NAPCA. A spectral transform was firstly used to alleviate the effects from spectral 

noisy variation and background clutters; then NAPCA, a better choice than PCA, can 

extract key target features from the spectrally-transformed data, thereby further 

improving the detection and classification performance. 

3) In spectral transformation, uniform energy windowing is usually used. 

However, uniform partition often could not provide the best performance. In this 
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dissertation, we propose an adaptive optimization system with evolutionary algorithm 

like PSO to automatically determine the optimal number of bins and the corresponding 

optimal varied bin-widths for energy spectral transformation. In order to fulfill this 

purpose, we propose that two PSOs are incorporated in the system with the outer one 

being responsible for selecting the optimal number of bins and the inner one for optimal 

bin-widths. The experimental results demonstrate that using variable bin-widths is better 

than a fixed bin-width, and PSO can provide better results than the traditional Powell’s 

method. 

4) Due to the computational cost of evolutionary algorithm like PSO, we propose 

the parallel implementation scheme for the PSO-based bin partition algorithm. The 

master and slave model is used in this implementation. It can greatly reduce the time of 

training process. The graphics processing units (GPU) application in engineering is more 

popular in these years. Their portability and efficiency are being emphasized by more and 

more people. In this dissertation, the implementation for parallel PSO-based spectral 

transformation has been experimented. The computational burden of serial version has 

been greatly reduced. The experimental results show that the GPU algorithm has similar 

speedup as the cluster-based algorithm. 

In this research, both detection and classification accuracy are our most concerns. 

We have done some work on the evaluation of multi-objective optimization by using the 

weighted method. However, a more sophisticated method should be developed to 

improve multi-objective optimization. Some researchers have investigated the ability of 

PSO to detect Pareto Optimal points and to capture the shape of the Pareto Front. The 

future work in our research is to develop Pareto-based multi-objective method for energy 

window optimization. 
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We will also concern with another existing problem in the future work. An energy 

spectrum is nonlinearly correlated with the mass and depth of buried materials. Although 

we explored using a traditional back-propagation neural network, the mass/depth 

prediction accuracy did not meet our expectation. The performance could be improved by 

more advanced neural networks. 
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