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Abstract

There are a lot of optimization needs in the research and design of wireless communica-

tion systems. Many of these optimization problems are Nondeterministic Polynomial (NP)

hard problems and could not be solved well. Many of other non-NP-hard optimization

problems are combinatorial and do not have satisfying solutions either. This dissertation

presents a series of Particle Swarm Optimization (PSO) based search and optimization

algorithms that solve open research and design problems in wireless communications.

These problems are either avoided or solved approximately before.

PSO is a bottom-up approach for optimization problems. It imposes no conditions

on the underlying problem. Its simple formulation makes it easy to implement, apply,

extend and hybridize. The algorithm uses simple operators like adders, and multipliers to

travel through the search space and the process requires just five simple steps. PSO is

also easy to control because it has limited number of parameters and is less sensitive to

parameters than other swarm intelligence algorithms. It is not dependent on initial points

and converges very fast.

Four types of PSO based approaches are proposed targeting four different kinds of

problems in wireless communications. First, we use binary PSO and continuous PSO

together to find optimal compositions of Gaussian derivative pulses to form several UWB

pulses that not only comply with the FCC spectrum mask, but also best exploit the avail-

able spectrum and power. Second, three different PSO based algorithms are developed

to solve the NLOS/LOS channel differentiation, NLOS range error mitigation and multi-



lateration problems respectively. Third, a PSO based search method is proposed to find

optimal orthogonal code sets to reduce the inter carrier interference effects in an fre-

quency redundant OFDM system. Fourth, a PSO based phase optimization technique

is proposed in reducing the PAPR of an frequency redundant OFDM system. The PSO

based approaches are compared with other canonical solutions for these communication

problems and showed superior performance in many aspects. which are confirmed by

analysis and simulation results provided respectively.

Open questions and future works for the dissertation are proposed to serve as a guide

for the future research efforts.
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Chapter 1

General Introduction

1.1 Motivations

There are a lot of optimization needs in the research and designs in wireless communica-

tion filed. These problems are the focus of much active research in order to find efficient

approaches to address them. However, the outcome of the research is still unsatisfactory.

Many of the optimization problems are Nondeterministic Polynomial (NP) hard prob-

lems and could not be solved well. Many of other non-NP-hard optimization problems are

combinatorial and do not have satisfying solutions either. Evolutionary algorithms are

generally more suitable to solve these difficult problems because they are population-

based stochastic approaches. Thus, they can avoid being trapped in a local optimum

and can often find a global optimal solution. Particle Swarm Optimization (PSO) is a

population-based stochastic optimization algorithm modeled after the simulation of the

social behavior of bird flocks. PSO is easy to implement and has been successfully

applied to solve a wide range of optimization problems. Thus, due to its simplicity and

efficiency in navigating large search spaces for optimal solutions, PSO is used in this

research to develop efficient, robust and flexible algorithms to solve a selective set of

1



1.2. OBJECTIVES

difficult problems in the field of wireless communications. One of the urgent problems to

be solved is to fit suitable approaches into different application domains. Innovation and

hybridization of algorithms are also necessary when facing different applications. PSO

has quite a few modifications and is easy to tune to apply on different fields, which also

make it a good choice when solve various problems in wireless communication research.

1.2 Objectives

The primary objectives of this thesis can be summarized as follows:

* To show that many signal processing problems in wireless communication field can

be boiled down to search problems or optimization problems.

* To show that the PSO can be successfully used to solve difficult problems in wire-

less communications and signal processing.

* To develop a black-box tool that can aid researchers to solve similar optimization

problems in wireless communications.

1.3 Methodology

Questions and problems appear in this thesis are among many particle problems the

author has encountered in the research of wireless communications and optimizations.

These problems either have unsatisfactory solutions or have no solutions at all. The

problems of different nature are all reduced to different “non-traditional” optimization prob-

lems.

2



1.4. CONTRIBUTIONS

Algorithms proposed in this thesis are presented and discussed. Experimental results

were then generally obtained in order to show the accuracy and efficiency of the proposed

algorithms.

The most difficult task when developing an optimization algorithm is to test it. In

most cases, it is impossible to perform an analytical proof of the convergence of the

algorithm. Even in the cases where this is possible, the proof usually demonstrates that

the algorithm does find the optimal solution if left to run for an infinite amount of time.

Thus, the validation method used will be of an empirical nature.

The particle swarm extensions developed were also compared with the results ob-

tained in the previous study to validate them as valuable improvements to the algorithm.

1.4 Contributions

In this thesis, we designed algorithms based PSO for four types of problems in wireless

communications.

The first problem we solved is a Ultra Wide Band (UWB) pulse shape design prob-

lem. A binary PSO is used to select the different Gaussian derivative pulses that form

the composite pulse. A continuous PSO is used to obtain the parameters (time duration

and amplitude) for each of the selected pulses. The new composite pulse generated

conforms to the FCC masks and maximizes the power. Using a bottom-up biologically

inspired approach as in particle swarm optimization enables design of signals with arbi-

trary constraints. The speedy convergence and simplicity of the operators used by the

algorithm enables its use in real time.

The second problem we engaged in is the LOS/NLOS wireless channel differentiation

and Non-Line Of Sight (NLOS) range error mitigation in an indoor localization problem.

Multiple metrics derived from this data are fused to identify the NLOS signals. Specifi-

3



1.4. CONTRIBUTIONS

cally, kurtosis, mean excess delay and root mean square delay are used as metrics for

fusion. The fusion strategy is derived using PSO, considering the correlation between

multiple classifiers. An NLOS error mitigation approach is also derived using PSO. The

PSO based algorithm identifies the error mitigation ratio using the training data. Finally,

PSO is used for multilateration to combine measurements from three nodes. We have

compared our strategies to traditionally applied techniques and achieved higher perfor-

mance. Performance is measured in terms of the Bayesian risk function for the NLOS

identification. For locationing the performance is measured in terms of the positioning

error, i.e. distance from the true position. We are able to achieve less than a meter error

when PSO based strategies are used.

The third problem is to design a satisfying set of orthogonal codes for a frequency

redundant OFDM system. By using this codes as spreading sequences, the inter carrier

interference can be greatly reduced. Again, PSO based algorithm provide an adaptive

approach to find a satisfying code for any irregular code length within an reasonable

maximum.

The forth problem we resolve is the reduction of the peak to average power ratio

(PAPR) in a frequency redundant OFDM system. We adopt a two stage approach. At the

first stage, the frequency domain subcarriers are divided into smaller clusters, we apply

random phase rotation and another specific manipulation on clusters of subcarriers. At

the second stage, we propose a novel PSO based phase rotation method in reducing

the PAPR. Extensive simulation tests are conducted to show the superiority of the perfor-

mance of our method. Results show that the PSO method can obtain the lowest PAPR

reduction with acceptable computational complexity.

4



1.5. THESIS OUTLINE

1.5 Thesis Outline

This dissertation is organized as follows.

Chapter 1 (this chapter) has given an introduction to this dissertation. It includes

motivation and objective of the research and explains the methodology adopted and dis-

sertation contributions.

Chapter 2 starts with an introduction to the theory of optimization, followed by a brief

review of certain existing techniques for solving optimization problems. We can not list all

the existing techniques for solving optimization problems. Instead, we list some related

and important techniques to help to understand PSO method.

Chapter 3 presents a detailed description of the particle swarm optimization algorithm.

It also includes a presentation of the numerous key factors in PSO and s brief introduction

of binary PSO algorithm which is used in later chapters.

Chapter 4 proposes a new approach in ultra wide band pulse shape design using

PSO. By using the designed PSO based method, we linearly combine the Gaussian

derivatives creating multiple orthogonal UWB signals. These signals comply with the

jagged FCC mask. The new composite pulse best exploits the bandwidth and energy

within a given spectral mask.

Chapter 5 describes a novel UWB positioning system design using particle swarm

enabled learning techniques. First, a PSO based classification strategy identifies the

NLOS signals from the received signal set. Then we use PSO to mitigate the distance

estimation error due to the NLOS signal. Finally, the PSO is used for the multilateration

problem to locate a position unknown nodes in a sensor network.

Chapter 6 use PSO as an intelligent searching algorithm to find the sub-optimal so-

lution for a code design problem in a frequency redundant OFDM/OFDMA system. By

using PSO to find an short length optimal pseudo orthogonal code, we propose an OFDM

5



1.5. THESIS OUTLINE

transceiver design that employs frequency redundant subcarrier mapping to mitigate fre-

quency selective fading and subcarrier spreading to achieve ICI self cancelation.

Chapter 7 considers the use of a two stage method to reduce the peak to average

power ratio (PAPR) of a frequency redundant OFDM system. At the second stage, a

PSO based method is proposed to search the suboptimal combination of phase factors

for pre-divided subcarrier clusters. The phase rotation factor search of the problem can

be formulated as a discrete optimization and a binary PSO method is applied on it.

Chapter 8 provides a summary of this dissertation and recommendations for future

work.

6



Chapter 2

Optimization Problems and Solutions

Optimization, in the straightforward interpretation, is the process of finding the optimum

value of a given function, the objective function, on a particular domain, possibly with a

number of additional constraints. An optimum can be either a maximum or a minimum

depending on the problem formulation, it is straightforward to turn a minimization problem

into a maximization problem, and vice versa. In the simplest case, optimization means

solving problems in which one seeks to minimize or maximize the objective function by

systematically choosing the values of real or integer variables from within an allowed set.

More generally, it means finding “best available” values of the objective function given a

defined domain, including a variety of different types of objective functions and different

types of domains.

2.1 Introduction

Optimization has its foundations dating back to the days of Newton, Lagrange, Cauchy,

and Leibnitz when differential calculus methods were developed to minimize and maxi-

mize analytical functions. Substantial progress in optimization became more prominent
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in the mid to late twentieth century when digital computers showed promise in offload-

ing analytical problem solving into numerical methods through computer code for faster

evaluations of designs.

The great divide in classification of optimization problems depends on the domain on

which the objective function is defined. In “ordinary” optimization the domain is continu-

ous and the objective function often have at least a first order (partial) derivative. If, on

the other hand, the domain is discrete, the problem is combinatorial and combinatorial

optimization problems are in general much more difficult to solve than “ordinary” opti-

mization problems. In fact, for a large class of problems there exists no known algorithm

to solve such a problem in a reasonable amount of time.

Gradient decent based approaches have been used for optimization as one of the

most popular approaches to solve problems in design and engineering. To find a local

minimum of a function using gradient descent, one takes steps proportional to the nega-

tive of the gradient (or of the approximate gradient) of the function at the current point. If

instead one takes steps proportional to the gradient, one approaches a local maximum

of that function; the procedure is then known as gradient ascent. To use gradient decent,

the objective function should be differentiable. This limit the usefulness of this method.

To further achieve the gradient and subsequent step size, certain restrictions and as-

sumptions need to be made for the underlying objective function. As a result of this, the

function does not represent the realistic scenario precisely any more. Another popular

optimization approach is Linear Programming. Linear programming is a mathematical

method for determining a way to achieve the best outcome (such as maximum profit or

lowest cost) in a given mathematical model for some list of requirements represented as

linear equations. More formally, linear programming is a technique for the optimization

of a linear objective function, subject to linear equality and linear inequality constraints.

The restrictions on objective functions as well as constraints of the target problem also

8
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greatly limit the usefulness of this kind of approaches. One example of those optimiza-

tion problems that are not well solvable by the above two approaches is localization of

an unknown node using three known nodes by multilateration. The problem is formu-

lated as a minimization problem, minimizing the squared error between the estimate of

the unknown node’s position and the known nodes’ positions. For linear programming

approach, the objective function is not linear. Linearize the objective function will bring

big errors that sacrifice the precision of the results. For gradient decent algorithm, the

process involves the inversion of a matrix. The matrix can be singular due to certain posi-

tions of the known nodes, which make intolerable computation delays and inaccuracies.

In the gradient descent approach, as the starting point is randomly chosen, the gradient

descent is likely to stuck at a local optimal because of that.

2.2 Formulation of Optimization Problems

Optimization is the mechanism by which one finds the maximum or minimum value of a

function or process. This mechanism is used in fields such as physics, chemistry, eco-

nomics, and engineering where the goal is to maximize efficiency, production, or some

other measure. Optimization can refer to either minimization or maximization; maximiza-

tion of a function 𝑓 is equivalent to minimization of the opposite of this function, -𝑓 .

Mathematically, a minimization task is generally defined as:

Given 𝑓 : ℝ𝑛 → ℝ

Find 𝑥∗ ∈ ℝ𝑛 such that 𝑓(𝑥∗) ≤ 𝑓(𝑥), ∀𝑥 ∈ ℝ𝑛

Similarly, a maximization task is defined as:

Given 𝑓 : ℝ𝑛 → ℝ

Find 𝑥∗ ∈ ℝ𝑛 such that 𝑓(𝑥∗) ≥ 𝑓(𝑥), ∀𝑥 ∈ ℝ𝑛

The domain ℝ𝑛 is referred to as the search space. Each element of ℝ𝑛 is called a
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candidate solution in the search space, with 𝑥∗ being the optimal solution. The value

𝑛 denotes the number of dimensions of the search space, and thus the number of pa-

rameters involved in the optimization problem. The function 𝑓 is called the objective

function, which maps the search space to the function space. Since a function has only

one output, this function space is usually one-dimensional. The function space is then

mapped to the one-dimensional fitness space, providing a single fitness value for each

set of parameters. This single fitness value determines the optimality of the set of pa-

rameters for the desired task. In most cases, the function space can be directly mapped

to the fitness space. However, the distinction between function space and fitness space

is important in cases such as multi-objective optimization tasks, which include several

objective functions drawing input from the same parameter space [1].

For a known (differentiable) function 𝑓 , calculus can fairly easily provide us with the

minima and maxima of 𝑓 . However, in real-life optimization tasks, this objective function

𝑓 is often not directly known. Instead, the objective function is a “black box” to which we

apply parameters (the candidate solution) and receive an output value. The result of this

evaluation of a candidate solution becomes the solution’s fitness. The final goal of an

optimization task is to find the parameters in the search space that maximize or minimize

this fitness.

In some optimization tasks, called constrained optimization tasks, the elements in a

candidate solution can be subject to certain constraints. The objective function along

with some inequality constraints, and sometimes equality constraints can each be lin-

ear or non-linear functions depending upon the problem to be solved. The side con-

straints provide lower and upper bounds for the variables. If vector 𝑥 is plotted on an 𝑛-

dimensional Cartesian coordinate system with each coordinate axis representing a vari-

able (𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛), the space occupied by the coordinate system is called the search

space or the design space. The objective function 𝑓(𝑥) refers to the location in the design
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space for a specific set of values assigned to the design vector 𝑥. Figure 2.1 represents

a simple single dimensional objective function with four minimums.

Figure 2.1: One dimensional search space

In this search space variable 𝑥 is plotted on the X-axis and the objective function is

plotted on the Y-axis. Points 𝐴, 𝐵 and 𝐷 are local minimums and point 𝐶 is the global

minimum. Figure 2.2 represents a two dimensional objective function with one minimum.

The smallest oval in the objective function contour represents the optimum and its

value increases as the size of the oval increases. A design point 𝐴 (𝑥1, 𝑥2) encapsulates

the variable information. For a 10 dimensional objective function point 𝐴 will have variable

values (𝑥1, 𝑥2, 𝑥3, ..., 𝑥10).

Another class of optimization problems are known as Least-Squares problems, which

are of the form

Given 𝑟: ℝ𝑛 → ℝ𝑚, 𝑛 < 𝑚

11
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Figure 2.2: Contour plot of a 2D objective function

Find 𝑥∗ ∈ ℝ𝑛 for which
∑𝑚

𝑖=1(𝑟𝑖(𝑥))
2 is minimized.

These optimization problems present themselves when there are more non-linear

requirements than there are degrees of freedom. Note that the least-squared problem

can be solved using the same approach as used in the previous definition, by defining

𝑓(𝑥) =
𝑚∑
𝑖=1

(𝑟𝑖(𝑥))
2 (2.1)

and minimizing 𝑓 . In this thesis, we will see such kind of problems.
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Optimization problems defined above mainly can be placed into two subfields: Local

and Global optimization problems.

2.2.1 Local optimization

A local optimizer, 𝑥∗𝐵 , of the region 𝐵, is defined so that

𝑓(𝑥∗𝐵) ≤ 𝑓(𝑥),∀𝑥 ∈ 𝐵 (2.2)

where 𝐵 ∈ 𝑆 ⊆ ℝ𝑛, and 𝑆 denotes the search space. Note that 𝑆 = ℝ𝑛 when dealing

with unconstrained problems. More importantly, note that 𝐵 is a proper subset of 𝑆.

A given search space 𝑆 can contain multiple regions 𝐵𝑖 such that 𝐵𝑖

∩
𝐵𝑗 = ∅ when

𝑖 ∕= 𝑗. It follows that 𝑥∗𝐵𝑖
∕= 𝑥∗𝐵𝑗

, so that the optimizer of each region 𝐵𝑖 is unique. Any of

the 𝑥∗𝐵𝑖
can be considered a minimizer of 𝐵, although they are merely local minimizers.

There is no restriction on the value that the function can assume in the optimizer, so that

𝑓(𝑥∗𝐵𝑖
) = 𝑓(𝑥∗𝐵𝑗

) is allowed. The value 𝑓(𝑥∗𝐵𝑖
) will be called the local minimum.

Most optimization algorithms require a starting point 𝑧0 ∈ 𝑆. A local optimization

algorithm should guarantee that it will be able to find the minimizer 𝑥∗𝐵 of the set 𝐵 if

𝑧0 ∈ 𝐵. Some algorithms satisfy a slightly weaker constraint, namely that they guarantee

a find a minimizer 𝑥∗𝐵𝑖
of some set 𝐵𝑖 not necessarily the one closest to 𝑧0.

Many local optimization algorithms have been proposed. A distinction will be made

between deterministic, analytical algorithms and the stochastic algorithms. The deter-

ministic local optimization algorithms include simple Newton-Raphson algorithms, through

Steep Descent [2] and its many variants, including the Scaled Conjugate Gradient algo-

rithm (SCG) [3] and the quasi-Newton [4] family of algorithms. Some of the better known

algorithms include Fletcher-Reeves (FR), Polar-Ribiere (PR), Davidon-Fletcher-Powell

(DFP), Broyden-Fletcher-Goldfard-Shanno (BFGS) [5]. There is even an algorithm that
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was designed specifically for solving least-suqares problems, known as the Levenberg-

Marquardt (LM) algorithms [2].

2.2.2 Global optimization

The global optimizer, or global minimizer in this context, 𝑥∗, is defined so that

𝑓(𝑥∗) ≤ 𝑓(𝑥),∀𝑥 ∈ 𝑆 (2.3)

where 𝑆 is the search space. For unconstrained problems it is common to choose

𝑆 = ℝ𝑛, where 𝑛 is the dimension of 𝑥. A global optimization algorithm like the local

optimization algorithms describe above, also starts by choosing an initial starting posi-

tion 𝑧0 ∈ 𝑆.

Contrary to the definition above in 2.3, some texts (e.g. [4])define a global optimization

algorithm differently, namely an algorithm that is able to find a (local) minimizer of 𝐵 ⊂ 𝑆,

regardless of the actual position of 𝑧0. These algorithms consists of two processes:

“global” steps and “local” steps. Their local steps are usually the application of a local

minimization algorithm, and their global steps are designed to ensure that the algorithm

will move into a region 𝐵𝑖, from where the “local” step will be able to find the minimizer

of 𝐵𝑖. These methods will be referred to as globally convergent algorithms, meaning

that they are able to converge to a local minimizer regardless of their starting point 𝑧0.

These methods are also capable of finding the global minimizer, given that the starting

position 𝑧0 is chosen correctly. There is no known reliable, general way of doing this,

though. A true global optimization algorithm will find 𝑥∗ regardless of the choice of starting

position 𝑧0. Dixon and Szego have edited two collections of papers on the topic of global

optimization algorithms [6].
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2.3 Classifications of Optimization Problems

Figure 2.3: Classification of optimization problems (partial)

Except the rough classification provided in previous section, optimization problems

can also be classified into various categories according to different measures. Figure

2.3 partially shows the classification. Note that the word “programming” in this figure has

nothing to do with a computer program or algorithm, the definition predates the modern

computer [7].

Different categories may have overlaps to each other. For example, convex program-

ming studies the case when the objective function is convex and the constraints, if any,

form a convex set. This can be viewed as a particular case of nonlinear programming

or as generalization of linear or convex quadratic programming. On the other hand,

nonlinear programming studies the general case in which the objective function or the

constraints or both contain nonlinear parts. This may or may not be a convex program.

We selectively explain some of the classifications here.

15



2.3. CLASSIFICATIONS OF OPTIMIZATION PROBLEMS

2.3.1 Convex and Non-convex Optimization Problems

As shown in Figure 2.3, optimization problems are classified as either convex or non-

convex based on whether the domain and the cost function are both convex or not. The

domain is convex if a straight line between any two points 𝑥1 and 𝑥2 in the domain is

also part of the domain, and the cost function is convex if its value at any point along

the straight line between any two points 𝑥1 and 𝑥2 in the domain has an upper bound in

the chord through (𝑥1; 𝑓(𝑥1)) and (𝑥2; 𝑓(𝑥2)). See Figure 2.4 and 2.5 for examples of the

convexity criterion for domain and function, respectively.

Figure 2.4: Examples of a convex (left) and a non-convex domain (right)

More precisely stated, the criteria for convexity are: given two points 𝑥1, 𝑥2 ∈ 𝑆,

𝜆 ∈ [0, 1], the domain 𝑆 is convex if and only if

𝜆𝑥1 + (1− 𝜆)𝑥2 ∈ 𝑆, (2.4)

and the objective function is convex if and only if

𝑓(𝜆𝑥1 + (1− 𝜆)𝑥2) ≤ 𝜆𝑓(𝑥1) + (1− 𝜆)𝑓(𝑥2). (2.5)
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Figure 2.5: Examples of a non-convex function (left) and a convex function
(right). The solid line, 𝑓 , is the function 𝑓(𝜆𝑥1 + (1− 𝜆)𝑥2) and the
dashed line is the convexity criteria 𝜆𝑓(𝑥1) + (1− 𝜆)𝑓(𝑥2).

If both the domain and the function are convex the problem is said to be convex and in

this case a local minimum is also a global minimum. This is a nice property which means

that the problem can be solved by powerful standard methods.

2.3.2 Continuous and Combinatorial Optimization Problems

In “ordinary” optimization the domain is continuous and the objective function often have

at least a first order (partial) derivative. If, on the other hand, the domain is discrete,

the problem is combinatorial. Combinatorial optimization problems are in general much

more difficult to solve than “ordinary” optimization problems. In fact, for a large class

of problems there exists no known algorithm to solve such a problem in a reasonable

amount of time.

Continuous optimization requires the domain to be continuous, 𝑆 ∈ ℝ𝑛, and the objec-

tive function, 𝑓 to be defined on the whole of 𝑆. Furthermore, the partial first derivatives
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∂𝑓(𝑥)/∂𝑥𝑖 of 𝑓 , and thus the gradient vector

∇𝑓(𝑥) =

⎛⎜⎜⎜⎜⎝
∂𝑓
∂𝑥1

(𝑥)

...

∂𝑓
∂𝑥𝑛

(𝑥)

⎞⎟⎟⎟⎟⎠ (2.6)

are assumed to exist. This kind of problems are usually solved by standard differential

optimization methods

If the domain 𝑆 is discrete rather than continuous, the problem instance (𝑆; 𝑓 ) is a

combinatorial problem. Given 𝑆 ∈ ℤ𝑛 one finds that much of the discussion from the

previous section still holds, but with the considerable difference that no derivatives of 𝑓

exists.

The definition of global optimum 2.3 is still valid and by defining a neighborhood struc-

ture 𝐵 the definition of local minima in 2.2 holds without change.Given a point 𝑥𝑖 ∈ 𝑆 , the

neighborhood structure 𝐵(𝑥𝑖) defines a set 𝑆𝑖 ∈ 𝑆 of points that in some sense is close to

𝑥𝑖. A reasonable restriction on the neighborhood is to assume that 𝑥𝑗 ∈ 𝑆𝑖 ⇐⇒ 𝑥𝑖 ∈ 𝑆𝑗.

Finally, 𝑥∗ is used to denote the set of globally minimal solutions, since there may be

several points in 𝑆 that have the same (minimal) cost.

The classification of combinatorial optimization problems, which is completely differ-

ent from that of continuous problems, is based on the computational time needed to

solve a problems as the size grows. A distinction is made between problems which has

a solution time, with respect to the best known algorithm, that is a polynomial function

of the problem size and those which require a super-polynomial, e.g. any function that

grows faster than a polynomial, execution time in terms of their size. The term expo-

nential is often used to describe the growth rate rather than super-polynomial but it is

somewhat misleading since the concept includes growth rates such as 𝑎𝑛 where 𝑎 > 1,
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𝑛𝑛 and 𝑛!. The two kinds are referred to as belonging to the class of polynomial (P) and

non-polynomial (NP) problems, respectively [8].

It is important to understand the implication of a non-polynomial problem in terms of

solution time. Such a problem dwarfs Moore’s Law [9], and the optimistic view that in a

couple of years we will have computers “fast enough” falls flat to the floor. Not even the

popular concept of computing clusters have much impact on an NP problem.

Except the major classifications of optimization problems explained above and list in

Figure 2.3, there are other categories too. For example, if some or all of the variables in

the vector are restricted to take on only integer (or discrete) values, the problem is called

an integer-programming problem. Real-valued programming problems are those where

the variables are permitted to take any real value. In addition to these classifications,

an objective function can be unimodal or multimodal. Unimodal objective functions are

those that contain a single optimum while multimodal objective functions contain multiple

optimums. A real design situation more often encompasses more than one of the above

features into the design objective(s). For example, an aircraft wing design could have two

objectives (multi-objective problem), one being simple linear and the other being highly

non-linear, multimodal and multidimensional. Such problems are more difficult to solve

than single unimodal objective problems.

2.4 Solutions of Optimization Problems

2.4.1 Analytical Methods

Methods to solve design optimization problems in various categories require different

approaches and techniques [10][11] [12]. Analytical methods use classical differential

calculus theory and calculus of variations where the extremes of a function 𝑓(𝑥) are
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obtained by finding the values of 𝑥 that cause the derivatives of 𝑓(𝑥) to vanish. These

methods can be used to find unconstrained maximums and minimums of an objective

function with several variables, with the assumption that the search space is continuous

and functions are twice differentiable.

For a problem with both convex domain and a convex function there are gradient

searching algorithms, utilizing the fact that any local optimum is also the global optimum,

which traverses the domain in the direction of steepest descent, −∇𝑓(𝑥). The search

is complicated by the fact stated before, that even though −∇𝑓(𝑥) = 0 is a necessary

condition it is not a sufficient condition and more elaborate schemes are necessary. Gra-

dient search algorithms are common. The search is often based on Newton’s method

that uses a search direction given by 𝐻−1(𝑥)∇𝑓(𝑥), where 𝐻 is the Hessian matrix with

elements which are the second partial derivatives of 𝑓(𝑥) [13].

A large class of convex problems, linear programs (LP), stated in canonical form as

min
𝑥
𝑐𝑇𝑥 (2.7)

subject to

𝐴𝑥 = 𝑏𝑥 ≥ 0 (2.8)

can be solved by e.g. the simplex method [14]. For other problems with quadratic

cost functions, non-linear constraints etc., there are a number of solvers available, ex-

amples of which include Interior Point methods [15],Quadratic and Cubic interpolation

methods[16], Augmented Lagrange Multiplier method, Method of Feasible Directions,

Modified Method of Feasible Directions and the Generalized Reduced Gradient Method

[17].
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2.4.2 Numerical Methods

If the problem is non-convex, the difficulty is severely increased and one can not expect

to find a certain local minimum, in particular the global minimum.

For example, combinatorial optimization problems are inherently much harder than

continuous problems with a worst case corresponding to a full enumeration (exhaustive

search) of all possible solutions. A full search can quickly become intractable no matter

how much computing force is used, if the problem grows super-polynomially with size.

It is quite reasonable to give up the requirement of an optimal solution in exchange for

an algorithm that presents a good approximative solution in polynomial time. The al-

gorithms that are true optimization algorithms include exhaustive search and branch and

bound whereas the approximation algorithms include meta-heuristic methods and heuris-

tic methods, particularly evolutionary algorithms. Generally, all evolutionary algorithms

work as follows: a population of individuals is initialized where each individual represents

a potential solution to the problem at hand. The quality of each solution is evaluated

using a fitness function. A selection process is applied during each iteration of an evo-

lutionary algorithm in order to form a new population. The selection process is biased

toward the fitter individuals to ensure that they will be part of the new population. Individ-

uals are altered using unary transformation (mutation) and higher order transformation

(crossover). This procedure is repeated until convergence is reached. The best solution

found is expected to be a near-optimum solution. Examples of evolutionary algorithms

are Genetic Algorithms (GA), Simulated Annealing (SA), Ant Colony Optimization (ACO),

and Particle Swarm Optimization (PSO)[1][18]. These evolutionary methods have some

natural advantages over traditional methods:

* PAPR They can handle mixed continuous-discrete variables, and discontinuous and

nonconvex design spaces. Use of numerical methods can either be computationally
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very expensive or return incorrect values (i.e. get trapped in local minimums).

* PAPR They can easily be adjusted to the problem at hand. Almost any aspect of

the algorithm may be changed and customized

* Traditional methods of optimization are not robust to dynamic changes in problem

the environment and often require a complete restart in order to provide a solution

(e.g., dynamic programming). In contrast, evolutionary algorithms can be used to

adapt solutions to changing circumstance.

* They can also be combined with more traditional optimization techniques. This

may be as simple as the use of a gradient minimization used after primary search

with an evolutionary algorithm, or it may involve simultaneous application of other

algorithms.

* They have the ability to address problems for which there are no human experts.

Although human expertise should be used when it is available, it often proves less

than adequate for automating problem-solving routines.

One thing we need to emphasize here is that evolutionary algorithms rely on the

communication scheme among the population members to reach the global opti-

mum. It is like normal numerical methods execute with multiple initial points in the

search space simultaneously. However, without communication frame and learning

ability, parallel execution of numerical methods still can not compete with evolu-

tionary algorithms. To certain extent, we can say evolutionary algorithms are more

efficient for reaching the global optimum than numerical methods.
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2.5 Summary

This chapter provided a short overview of optimization and certain optimization methods.

We explain where PSO belongs to and what kind of optimization problems that PSO

might be good for in this chapter. Starting from next chapter, we will shift our attention

to the real focus of this dissertation, the PSO algorithm and its various applications in

wireless communications and signal processing.
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Chapter 3

Particle Swarm Optimization

Alternative approaches need to be find to achieve satisfying solutions to the problems

that afore-mentioned approaches can not achieve. One such approach is Particle Swarm

Optimization (PSO) [1]. PSO is a method for doing numerical optimization without explicit

knowledge of the gradient of the problem to be optimized. It was originally intended for

simulating social behavior, but the algorithm was simplified and it was realized that the

particles were actually performing optimization.

PSO optimizes a problem by maintaining a population of candidate solutions called

particles and moving these particles around in the search-space according to simple

formulae. The movements of the particles are guided by the best found positions in the

search-space, which are continually being updated as better positions are found by the

particles. The main advantages of the algorithm are summarized as follows:

1. The bottom-up approach, impose no conditions on the underlying problem.

2. Simple formulation making it easy to implement, apply, extend and hybridize. There

are few parameters to adjust. The operations are just adding and multiplication.

3. It uses a relatively small population, usually the particle number is less than 50.
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4. Perfectly fit for decentralized processing, each particle is independent. Swarms can

run in parallel.

These advantages have given it increasing popularity in the field of numeric optimiza-

tion since it was created in 1995. It can be applied, in the areas of system design, multi-

objective optimization, classification, pattern recognition, system modeling, scheduling,

planning, signal processing, robotic applications, decision making, simulation and iden-

tification. Thus far it has been applied to such difficult problems as feature selection,

neural network training, reactive power and voltage control, end milling and ingredient

mix optimization.

3.1 Swarm Intelligence

Since PSO belong to a bigger family of swarm intelligence approaches. In this section,

we briefly introduce swarm intelligence.

The concept of Swarm Intelligence (SI) was first used in the field of cellular robotic

systems by Beni, Hackwood and Wan [19][20]. In this context, simple agents occupied

one- or two-dimensional grid environments and self organized through closest neighbor

interactions.

SI could be defined as any attempt to design algorithms or distributed problem-solving

devices whose behavior emerges from the social interaction between local neighbors.

The word swarm loosely describes a collection of interactive individuals. The classical

example of a swarm is bees swarming around their hive; nevertheless the metaphor

can easily be extended to any other system with a similar architecture. As ant colonies

can be thought of as a swarm whose individuals are ants, so can a flock of birds. The

concept of swarm can be extended to an even more general one: that of any type of
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collective behavior. Thus, a swarm might occur in high-dimensional cognitive spaces,

where collision is no longer a concern and could simply mean agreement.

In 1999, Bonabeau, Dorigo and Theraulaz noted that the term “swarm intelligence”

and extends that definition [21]. SI includes the study of collective behaviors in nature,

such as nest building, foraging, and item sorting in insect societies, and swarming, flock-

ing, herding, and schooling behaviors in vertebrates. On the other hand, from an engi-

neering point of view, it refers to the bottom-up design of distributed systems that display

forms of useful and/or interesting behavior at the global level as a result of the actions

of a number of units interacting with one another and with their environment at the local

level.

In recent years, SI design has been applied to a wide variety of problems in combina-

torial and continuous optimization, telecommunications, robotics, etc., often with excel-

lent results. Two of the most popular and successful examples of the SI approach are Ant

Colony Optimization (ACO) [22] and Particle Swarm Optimization (PSO) [1] [18]. ACO

takes inspiration from the pheromone-mediated ability of ant colonies to find shortest

paths between their nest and sources of food to define a metaheuristic for combinato-

rial optimization based on the use of ant-like agents and stigmergic communication of

artificial pheromone information. PSO translates the flocking behavior of birds into a

framework based on information-sharing particle-like agents to find extremal points in

optimization problems.
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3.2 Particle Swarm Optimization

3.2.1 Basic Particle Swarm Optimization

This section presents a brief introduction to basic PSO algorithms. The first PSO program

was a graphical simulation of a bird flock [23][24]. In this simulation, a point on the screen

was defined as food, called the “cornfield vector ” [1]; the idea was for birds to find food

through social learning, by observing the behavior of nearby birds, who seemed near the

food source. The optimization potential was realized in the initial experiments and the

algorithm was modified to incorporate topological rather than Euclidean neighborhoods

and multidimensional search was attempted successfully [25][26].

In PSO a number of simple entities - the particles - are placed in the search space of

some problem or function, and each evaluates the objective function at its current loca-

tion. Each particle then determines its movement through the search space by combining

some aspect of the history of its own current and best (best-fitness) locations with those

of one or more members of the swarm, with some random perturbations. The next iter-

ation takes place after all particles have been moved. Eventually the swarm as a whole,

like a flock of birds collectively foraging for food, is likely to move close to an optimum of

the fitness function.

Each individual in the particle swarm is composed of three 𝐷 - dimensional vectors,

where 𝐷 is the dimensionality of the search space. For the 𝑖𝑡ℎ particle, these are the

current position 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋅ ⋅ ⋅ , 𝑥𝑖𝐷), the previous best position 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, ⋅ ⋅ ⋅ , 𝑝𝑖𝐷),
and the velocity 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, ⋅ ⋅ ⋅ , 𝑣𝑖𝐷).

The current position𝑋𝑖 can be considered as a set of coordinates describing a point in

space. On each iteration of the algorithm, the current position is evaluated as a problem

solution. If that position is better than any that has been found so far, then the coordinates
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are stored in the second vector, 𝑃𝑖. The value of the best function result so far is stored in

a variable that can be called pbest (for “previous best), for comparison on later iterations.

The objective, of course, is to keep finding better positions and updating 𝑃𝑖 and pbest.

New points are chosen by adding 𝑉𝑖 coordinates to 𝑋𝑖, and the algorithm operates by

adjusting 𝑉𝑖, which can effectively be seen as a step size.

The particle swarm is more than just a collection of particles. A particle by itself has

almost no power to solve any problem; progress occurs only when the particles interact.

Problem solving is a population-wide phenomenon, emerging from the individual be-

haviors of the particles through their interactions. In any case, populations are organized

according to some sort of communication structure or topology, often thought of as a

social network. The topology typically consists of bidirectional edges connecting pairs of

particles, so that if 𝑗 is in 𝑖s neighborhood, 𝑖 is also in 𝑗 s. Each particle communicates

with some other particles and is affected by the best point found by any member of its

topological neighborhood. This is just the vector 𝑃𝑖 for that best neighbor, which we will

denote with 𝑃𝑔. The potential kinds of population “social networks” are hugely varied, but

in practice certain types have been used more frequently.

In the particle swarm optimization process, the velocity of each particle is iteratively

adjusted so that the particle stochastically oscillates around 𝑃𝑖 and 𝑃𝑔 locations.

The original process for implementing PSO is as follows:

1. Initialize a population of particles with random positions and velocities. Initialize 𝑃𝑖

and 𝑝𝑏𝑒𝑠𝑡𝑖 respectively to the starting position and fitness.

2. For each particle, evaluate the fitness function of the position 𝑋𝑖

3. Compare the particle’s fitness with 𝑝𝑏𝑒𝑠𝑡𝑖. If the current value is better, copy it to

𝑝𝑏𝑒𝑠𝑡𝑖 and set 𝑃𝑖 equal to the current position 𝑋𝑖.

28



3.2. PARTICLE SWARM OPTIMIZATION

4. Identify the most successful particle in the neighborhood and assign its index to the

variable 𝑔.

5. Change the velocity and position of the particle according to equation 3.1 and 3.2,

respectively:

𝑉
(𝑡+1)
𝑖 = 𝜔 × 𝑉

(𝑡)
𝑖 + 𝜓1 × (𝑃𝑖 −𝑋𝑖) + 𝜓2 × (𝑃𝑔 −𝑋𝑖) (3.1)

𝑋
(𝑡+1)
𝑖𝑑 = 𝑋

(𝑡)
𝑖𝑑 + 𝑉

(𝑡+1)
𝑖𝑑 (3.2)

6. Loop to step 2 until a criterion is met, usually a sufficiently good fitness or a maxi-

mum number of iterations.

The acceleration constants 𝜓1 and 𝜓2 in equation 3.1 represent the weighting of the

stochastic acceleration terms that pull each particle around 𝑃𝑖 and 𝑃𝑔. Adjustment of

these variables alters the relative effect of the particle’s previous best and the neighbor-

hood one. Higher values result in abrupt movement toward or past target regions.

Figure 3.1 shows each component of the velocity term 𝑉𝑖 in vector form, and the

resulting position, 𝑋𝑖 (updated), for the 𝑖𝑡ℎ particle. Note that the inertia coefficient 𝜔

is used to scale the previous velocity term, normally to reduce the “momentum” of the

particle.

The pseudo-code for implementing PSO is shown in Algorithm 1.

Table 3.1: Key terms used in PSO
Term Explanation

fitness A number representing goodness of a given solution
swarm The entire collection of agents or particles
position Particle’s coordinates which represent solution to the problem
pbest Best fitness returned for a specific particle
gbest Best fitness returned for the entire system
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Figure 3.1: Visualization of PSO, components as vectors

3.2.2 Key Factors of Particle Swarm Optimization

Swarm Size

The swarm size selected is problem dependent. Swarm sizes ranging from 20 to 50 are

the most common. It was learned early on that PSO needed smaller populations than

other evolutionary algorithms to reach high quality solutions.

Velocity Bound

To prevent explosion, in the original version, the particles’ velocities were clamped to a

maximum velocity 𝑉𝑚𝑎𝑥. If the velocity exceeded 𝑉𝑚𝑎𝑥 in any coordinate, it was truncated

to that value. 𝑉𝑚𝑎𝑥 was therefore an important parameter. If it was too high, particles
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Algorithm 1 Algorithm PSO
for 𝑡 = 1 to the maximum number of particle generations do

for 𝑖 = 1 to the population size do
for 𝑑 = 1 to the dimensionality of the fitness function do

// Apply the velocity update equation:
𝑉

(𝑡+1)
𝑖𝑑 = 𝜔 × 𝑉

(𝑡)
𝑖𝑑 + 𝜓1 × (𝑃𝑖𝑑 −𝑋𝑖𝑑) + 𝜓2 × (𝑃𝑔𝑑 −𝑋𝑖𝑑)

// where 𝑃𝑖 is the best position visited so far by 𝑋𝑖

// and 𝑃𝑔 is the best position visited so far by any particle;
// Update Position:
𝑋

(𝑡+1)
𝑖𝑑 = 𝑋

(𝑡)
𝑖𝑑 + 𝑉

(𝑡+1)
𝑖𝑑

end for
// Compute fitness of 𝑋(𝑡+1)

𝑖

// If needed, update historical information regarding 𝑃𝑖 and 𝑃𝑔

end for
// Terminate if 𝑃𝑔 meets problem requirements

end for

could fly past good solutions. If 𝑉𝑚𝑎𝑥 was too small, particles explored too slowly, and

good solutions could not be found. Therefore, particles could become trapped in local

optima. Early experience with the acceleration constants 𝜓1 and 𝜓2 concluded it was

possible to set them to 2.0 for almost all applications. 𝑉𝑚𝑎𝑥 was the only parameter that

needed to be adjusted. It was however noted that the optimal setting of this parameter

was dependent on the problem.

Bound Resetting

Most of the research conducted in PSO searched for the optimal value of the fitness func-

tion in a certain hypercube; it is therefore necessary to somehow enforce the exploration

to remain inside that valid hyperspace. This is usually handled by resetting the particles

within valid bounds whenever necessary.

However, in some situations, bound resetting does more harm than good. The best

way to solve this predicament may be not to use bound checking at all. By modifying

the fitness function as to assign the +∞ value (assuming the optimization problem is
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a minimization one) to non-valid solutions may be a better approach. In this way, the

particle will soon enter valid space.

However, common sense indicates and experience validates the hypothesis that valu-

able time is lost while the particle is wandering through non-valid space. One possible

approach suggested by Vesterstrm and Riget is to evaluate particles outside bounds as

if they were at the nearest boundary point [27]. This idea can reduce convergence time

in certain situations.

Inertia Weight Parameter

Since its introduction, PSO has seen many improvements and applications. Most modi-

fications to the basic PSO are directed towards improving convergence of the PSO and

increasing the diversity of the swarm [28].

The concept of an inertia weight was developed to better control exploration and

exploitation. The aim of inertia weight was to be able to control the exploration and

exploitation mechanism and eliminate the need for Vmax. The inclusion of an inertia

weight in the PSO algorithm was first published in 1998 [29]. Originally, it was linearly

decreased between 0.9 and 0.4 during a run, providing a balance between exploration

(larger steps in the beginning) and exploitation (smaller advancements, resulting in fine

tuning). Its use resulted in fewer iterations on average to attain a suitably good solution.

Experience showed that when using inertia weight the maximum velocity factor 𝑉𝑚𝑎𝑥

could simply be set to the value of the dynamic range of each variable (on each dimen-

sion). This limitation is sometimes necessary to keep the particle from oscillating too fast

around a promising region without adequately exploring it. In this way, there is no longer

the need of a strategy for setting 𝑉𝑚𝑎𝑥.
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3.2.3 Binary Particle Swarm Optimization

The basic PSO algorithms and many derived PSO algorithms are designed in continu-

ous or real-number domains. However, there are applications where the variables are in

discrete space, leading to the use of a discrete binary PSO algorithm. Kennedy and Eber-

hart described a very simple alteration of the canonical algorithm that operates on bit-

strings rather than real numbers [30]. In their version, the velocity 𝑣𝑖𝑑, 𝑣𝑖𝑑 ∈ [−𝑉𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥]

is used as a probability threshold to determine whether 𝑥𝑖𝑑 the 𝑑𝑡ℎ component of 𝑋𝑖

should be evaluated as a zero or a one. They squashed 𝑣𝑖𝑑 in a logistic function

𝑠𝑖𝑔(𝑣𝑖𝑑) =
1

1 + exp(−𝑣𝑖𝑑) (3.3)

then generated a random number 𝜌𝑖𝑑 from a uniform distribution between 𝑈 [0, 1] for each

bit-string site and compared it to 𝑠𝑖𝑔(𝑣𝑖𝑑). If 𝜌𝑖𝑑 was less that the threshold, then 𝑥𝑖𝑑 was

interpreted as 1, otherwise as 0.

For binary PSO, each particle position vector 𝑋𝑖 has a dimension equal to the total

number of features. Each dimension 𝑗 has a binary state, where a value of 1 indicates the

selection of the 𝑗𝑡ℎ feature and a value of 0 means the exclusion of the 𝑗𝑡ℎ feature. At any

iteration step, the number of features that are selected by the binary PSO corresponds

to the number of 1 s in the particle position vector. The number of selected features can

be any value between one and the total number of features in the pool.

Kennedy and Spears compared this binary particle swarm to several kinds of GAs,

using Spears’ multimodal random problem generator [31]. This paradigm allows the cre-

ation of random binary problems with some specified characteristics, e.g., number of

local optima, dimension, etc. In that study, the binary particle swarm was the only algo-

rithm that found the global optimum on every single trial, regardless of problem features.

It also progressed faster than GAs with crossover, mutation, or both, on all problems ex-
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cept the very simplest ones, with low dimension and a small number of local optima; the

mutation-only GA was slightly faster in those cases.

3.3 Summary

In this chapter, the basic PSO and binary PSO are presented. These canonical methods

are the base of the proposed derived PSO algorithms applied to various applications in

wireless communication in later chapters. Particle swarm optimization can be and has

been used across a wide range of applications. Areas where PSO has shown particular

promise include multimodal problems and problems for which there is no specialized

method available or all specialized methods give unsatisfactory results.

Despite its apparent simplicity, the PSO presents formidable challenges to those in-

terested in understanding swarm intelligence through theoretical analysis. So, to date a

fully comprehensive mathematical model of particle swarm optimization is still not avail-

able. In the future, we want to develop a probabilistic framework to analyze the PSO

based algorithms leading to efficient design of the algorithms.
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Chapter 4

UWB Pulse Shape Design Using PSO

Ultra wide-band technology has been proposed as a promising solution for next gener-

ation short range high speed wireless communication systems. Instead of using carrier

frequencies, UWB systems transmit information using trains of short time duration pulses

that spread the energy from the near direct current to a few gigahertz. Due to its ultra

wide bandwidth, UWB devices can cause interferences with other existing narrow band

communication systems. In order to solve this problem, the Federal Communications

Commission (FCC) released the regulations in February 2002 that set the power emis-

sion limits for all kinds of UWB devices. Since UWB is a carrier-free technique, how to

design a UWB pulse shape with its power spectral density (PSD) fulfilling the mandated

spectral masks become a key issue in UWB research. The choice of pulse shape can

also directly affect other aspects of UWB systems, such as the performance in multi-user

interference environments.

Various pulse shapes have been studied in the literature. Gaussian 2𝑛𝑑 derivative

pulse is widely adopted in the investigation of UWB applications [32], but they are not

flexible enough to conform to the FCC spectral masks and must be modified and filtered.

Pulse set based on the modified Hermite polynomials (HP) are orthogonal to one an-

35



other [33], but frequency shifting is necessary for the original and 1𝑠𝑡 order HP pulses

to meet the FCC spectral masks. Higher order HP pulses are susceptible to timing jitter

and noise, and they also need bandpass filters to fit their PSD into the FCC masks [34].

Pulse designed utilizing the ideas of prolate spheroidal (PS) functions can satisfy the

FCC masks [35], but they do not effectively exploit the allowable bandwidth and power.

The orthogonality of both HP pulses and PS pulses is only preserved when each user

is assigned a unique pulse in a perfectly synchronous, multiuser, UWB system without

considering the channel distorting effect and antenna response characterization, ren-

dering it impractical. Pulses based on a linear combination of a set of base waveforms

obtained by differentiation of the Gaussian pulse was introduced in [36][37]. However,

the strategies for selecting the combination and coefficients is random, and the algorithm

designing the solutions is based on the huge number of trial and error iterations. This

makes the results neither determined nor reproducible. In addition, pulses generated 1𝑠𝑡

to 15𝑡ℎ Gaussian derivative pulses are combined. Hardware complexity increases as the

order of the derivative increases.

To accomplish the pulse design, we propose a novel design method using Particle

Swarm Optimization (PSO) algorithm. A binary PSO is used to select the pulses that form

the composite pulse. A continuous PSO is used to obtain the parameters (time duration

and amplitude) for each of the selected pulses. We compare the results achieved by the

PSO to an exhaustive approach employed before. The new composite pulse generated

conforms to the FCC indoor mask and maximizes the power. Multiple orthogonal pulses

are derived from this PSO generated composite signal. This enables us to manage

our network according to different system requirements by switching between signals

(pulses) that sensors use.
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4.1 UWB system models and Gaussian derivative pulses

4.1.1 UWB system models and signal’s PSD

The way of forming UWB signal consists of radiating a train of pulses that are very short

in time (typically a few nanoseconds). The pulses are modulated by the information data

symbols using different modulation schemes which can shape the spectrum of the gen-

erated signal. Further more, in the case of multi-user communications, different pseudo-

noise (PN) codes are assigned to different users. We will use TH-BPSK and TH-PPM

UWB system to evaluate the performance of different pulse shapes. A brief introduction

about the system models is given here.

We consider UWB systems consisting of 𝑁𝑢 active users, transmitting UWB signals

simultaneously through an additive white Gaussian noise (AWGN) channel, where each

user employs time-hopping spread spectrum techniques. For a binary TH-BPSK UWB

system, the signal from the 𝑖𝑡ℎ bit of 𝑘𝑡ℎ user can be represented as:

𝑠
(𝑘)
𝑡𝑟 (𝑡, 𝑖) =

(𝑖+1)𝑁𝑠−1∑
𝑗=𝑖𝑁𝑠

𝑑
(𝑘)
𝑖 p(𝑡− 𝑗𝑇𝑓 − 𝑐

(𝑘)
𝑗 𝑇𝑐) (4.1)

and a typical TH-PPM UWB signal can be written as:

𝑠
(𝑘)
𝑡𝑟 (𝑡, 𝑖) =

(𝑖+1)𝑁𝑠−1∑
𝑗=𝑖𝑁𝑠

p(𝑡− 𝑗𝑇𝑓 − 𝑐
(𝑘)
𝑗 𝑇𝑐 − 𝜖𝑑

(𝑘)
𝑖 ), (4.2)

where p(𝑡) represents the transmitted pulse that we get at the output of transmitter

antenna,𝑁𝑠 is the number of pulses to represent one data bit, 𝑇𝑓 and 𝑇𝑐 are the frame and

the chip duration, respectively. The bit duration 𝑇𝑏 = 𝑁𝑠𝑇𝑓 .
{
𝑐
(𝑘)
𝑗

}
is the distinct TH PN

codes sequence of the 𝑘𝑡ℎ signal, and 𝑐(𝑘)𝑗 ∈ [1, 𝑁ℎ].
{
𝑑
(𝑘)
𝑖

}
is the binary data sequence.

In antipodal TH-BPSK UWB systems, 𝑑(𝑘)𝑖 ∈ {1,−1}. In TH-PPM UWB systems, 𝑑(𝑘)𝑖 ∈
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{0, 1}. 𝜖 is the time offset of binary PPM. Given 𝑇𝑝 the pulse width, the limits 𝑇𝑝 + 𝜖 < 𝑇𝑐

and 𝑁ℎ𝑇𝑐 ≤ 𝑇𝑓 are assumed. Note that a frame is divided into many chips, and the pulse

generated by the 𝑘𝑡ℎ user occupies only one of those.

In order to get the PSD of a TH-PPM signal, we need to relax the hypothesis of an

inconsequential effect of the time shift 𝜖, because the PSD of a PPM signal is hard to

evaluate due to the non-linear nature of PPM modulation. Let us define a new signal 𝑣(𝑡)

as:

𝑣(𝑡) =
𝑁𝑠∑
𝑗=1

p(𝑡− 𝑗𝑇𝑓 − 𝜃𝑗). (4.3)

The power spectrum of 𝑣(𝑡) is:

P𝑣(𝑓) = P(𝑓)
𝑁𝑠∑
𝑚=1

𝑒−𝑗(2𝜋𝑓(𝑚𝑇𝑠+𝜃𝑚)), (4.4)

where 𝑃 (𝑓) is the Fourier transform of 𝑝(𝑡). Then the original UWB TH-PPM signal turns

out to be:

𝑠
(𝑘)
𝑡𝑟 (𝑡, 𝑖) =

(𝑖+1)𝑁𝑠−1∑
𝑗=𝑖𝑁𝑠

𝑣(𝑡− 𝑗𝑇𝑏 − 𝜖𝑑
(𝑘)
𝑖 ). (4.5)

We assume that 𝑑(𝑘)𝑖 is equiprobable to be 0 and 1, the transmitted signal PSD [38] is:

P(𝑃𝑃𝑀)(𝑓) =
∣𝑃𝑣(𝑓)∣2

𝑇𝑏

[
1− ∣𝑊 (𝑓)∣2 + ∣𝑊 (𝑓)∣2

𝑇𝑏

𝑁𝑠∑
𝑛=1

𝛿(𝑓 − 𝑛

𝑇𝑏
)

]
, (4.6)

where

∣𝑊 (𝑓)∣2 = 1

2
(1 + 𝑐𝑜𝑠(2𝜋𝑓𝜖)). (4.7)

The PSD of an antipodal TH-BPSK UWB signal, 𝑃(𝐵𝑃𝑆𝐾)(𝑓) [39], is:
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P(𝐵𝑃𝑆𝐾)(𝑓) =
𝜎2
𝑑

𝑇𝑏
∣P(𝑓)∣2 + 𝜇2

𝑑

𝑇 2
𝑏

𝑁𝑠∑
𝑛=1

∣∣∣∣P(
𝑛

𝑇𝑏
)

∣∣∣∣2 𝛿(𝑓 − 𝑛

𝑇𝑏
), (4.8)

where 𝜎2
𝑑 and 𝜇2

𝑑 are the variance and the mean of 𝑑(𝑘)𝑖 sequences, respectively.

It is clear that the PSD of TH-PPM and TH-BPSK signals both have continuous and

discrete components. However, the discrete spectral spikes will vanish if the information

sequence has a zero mean. We assume this is true. Because the time shift factor 𝜖 in

TH-PPM signal not distinctively affects the interference from UWB signal to co-existing

systems. Then, the PSD of both TH-PPM and TH-BPSK signals are to some extent

linearly proportional to the PSD of the individual pulse.

4.1.2 Gaussian derivative pulses and their PSD

Gaussian pulse has been widely adopted by UWB radar and communication systems

[40]. However, Gaussian pulse has direct current offset, so it can not radiate effectively

via antennas. To avoid this problem, the second derivative of the Gaussian pulse, pro-

posed by Win and Scholtz in [32], has been widely adopted in the investigation of UWB

applications. The Gaussian pulse in our design has the form:

p(𝑡) =
𝐴√
2𝜋𝜎

𝑒−
𝑡2

2𝜎2 =

√
2𝐴

𝛼
𝑒−

2𝜋𝑡2

𝛼2 , (4.9)

where 𝐴 is the amplitude of the pulse and 𝛼 =
√
4𝜋𝜎2 represents a bandwidth scaling

factor. In general, it is accepted that the antenna has the general effect of differentiating

the time waveform presented to it [41]. Since the pulse will pass through the transmitter

and receiver antennas, it is differentiated twice when it comes out of the receiver antenna.

The received signal is given by:
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p′′(𝑡) = 𝐴(
𝑡2√
2𝜋𝜎5

− 1√
2𝜋𝜎3

)𝑒−
𝑡2

2𝜎2 . (4.10)

Similar to the method in [36], we will use Gaussian 1𝑠𝑡 to 16𝑡ℎ derivative pulses as the

base waveforms. The PSD of a waveform can be expressed as:

𝑃𝑆𝐷(𝑓) = ∣P(𝑓)∣2 =
∣∣∣∣∣
∫ + 1

2
𝑇𝑝

− 1
2
𝑇𝑝

p(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑓

∣∣∣∣∣
2

. (4.11)

𝑝𝑜𝑤𝑒𝑟 =

∫
𝑓

∣P(𝑓)∣2𝑑𝑓 (4.12)

Figure 4.1 shows the amplitude normalized Gaussian 1𝑠𝑡 to 16𝑡ℎ order derivative wave-

forms.

Figure 4.1: Amplitude normalized Gaussian 1𝑠𝑡 to 16𝑡ℎ derivative pulses

In Figure 4.2 and 4.3, we have generated and depicted the Gaussian second deriva-

tive and its PSD respectively.

40



4.1. UWB SYSTEM MODELS AND GAUSSIAN DERIVATIVE PULSES

Figure 4.2: Amplitude normalized Gaussian second-derivative pulse

Figure 4.3: Power spectral density of amplitude normalized Gaussian
second-derivative pulse

41



4.1. UWB SYSTEM MODELS AND GAUSSIAN DERIVATIVE PULSES

Since 𝜎 is a bandwidth scaling factor, the pulse PSD is closely related to it. The

bandwidth of the pulse is approximately 1/(pulse duration), which is the same as the

bandwidth of pulse PSD. Figure 4.4 and 4.5 demonstrate how 𝜎 affects the pulse dura-

tion in the time domain and their PSD in the frequency domain for a Gaussian second

derivative pulse. From the two figures, we can see that the bigger 𝜎 value, the wider the

pulse and the narrower the PSD. If the pulse is too wide in the time domain, the PSD

of the pulse will be very narrow in the frequency domain, which makes the pulse not a

good choice for fitting in the FCC mask. On the other hand, if the pulse is very narrow

in the time domain, a very high precision pulse generator and high speed D/A and A/D

converters are required. This trade off must be properly considered in the pulse design.

Figure 4.4: Gaussian second-derivatives with different 𝜎 values

Our design method is to combine several Gaussian derivatives to form a single pulse,

whose PSD will effectively exploit the allowable bandwidth and power. Here, we show

the PSD of different Gaussian derivatives. Figure ?? is similar to Fig. 7 in [36] with a
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Figure 4.5: Power spectral density of Gaussian second-derivatives with
different 𝜎 values

different set of parameters.

In [42], it has shown that as the order of the derivative pulse increases, the energy

is moving to higher frequencies. By choosing the order of the derivative and a suitable

pulse width, a pulse that satisfies the FCC mask can be found. In our design, we try

to identify a suitable waveform by combining several Gaussian derivative pulses not in a

random fasion as in [36], but in a systematic way to form one pulse that can make best

utilization of the FCC indoor spectral mask.

Table 4.1 shows the mathematical expressions of Gaussian 1𝑠𝑡-6𝑡ℎ derivatives. Fig-

ure 4.7 shows the time and frequency domain representation of Gaussian 1𝑠𝑡-6𝑡ℎ order

derivative pulses. The pulses are optimized individually by exhaustively searching for

optimal (𝐴,𝛼). The corresponding power values for these pulses are given in Table 4.2.

The best performing pulse is the 5th derivative pulse with a total power value of 243.77
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Table 4.1: Generation of Gaussian 1𝑠𝑡 - 6𝑡ℎ Derivative
Gaussian Pulses Expressions

1𝑠𝑡 Derivative 4𝜋𝑡𝑒−
2𝜋𝑡2

𝛼2 /𝛼2

2𝑛𝑑 Derivative (−4𝜋(−𝛼2 + 4𝜋𝑡2)𝑒−
2𝜋𝑡2

𝛼2 )/𝛼4

3𝑟𝑑 Derivative (16𝜋2𝑡(−3𝛼2 + 4𝜋𝑡2)𝑒−
2𝜋𝑡2

𝛼2 )/𝛼6

4𝑡ℎ Derivative (−16𝜋2(3𝛼4 − 24𝜋𝑡2𝛼2 + 16𝜋2𝑡4)𝑒−
2𝜋𝑡2

𝛼2 )/𝛼8

5𝑡ℎ Derivative (64𝜋3𝑡(15𝛼4 − 40𝜋𝑡2𝛼2 + 16𝜋2𝑡4)𝑒−
2𝜋𝑡2

𝛼2 )/𝛼10

6𝑡ℎ Derivative (64𝜋3(−15𝛼6 + 180𝜋𝑡2𝛼4 − 240𝜋2𝑡4𝛼2 + 64𝜋3𝑡6)𝑒−
2𝜋𝑡2

𝛼2 )/𝛼12

Figure 4.6: PSD of the Different Derivatives of the Gaussian Pulse

𝜇𝑊 . Optimal linear combination of pulses, however, require search through these param-

eters for all pulses jointly. The problem gains complexity even for the case of 2 pulses

due to continuous nature of 𝐴 and 𝛼. Decision making involves selecting the order of the

derivative for the combination as well. A PSO algorithm is used in this paper to solve this

problem. The algorithm arrives at the optimal order of derivatives of the pulses and the

parameters for each of the derivative.

44



4.2. PULSE SHAPE DESIGN USING PARTICLE SWARM OPTIMIZATION

Figure 4.7: Individually Optimized 1𝑠𝑡 to 6𝑡ℎ Derivatives of Gaussian Pulse

Table 4.2: Correlation Between Multiple Classifiers
Pulse 𝛼 (ns) 𝐴 (v) Power 𝜇𝑊

1𝑠𝑡 Derivative 1.995 ⋅ 10−9 0.832 24.87
2𝑛𝑑 Derivative 1 ⋅ 10−10 4.216 18.718
3𝑟𝑑 Derivative 1.375 ⋅ 10−10 6.16 63.938
4𝑡ℎ Derivative 1.625 ⋅ 10−10 11.52 209.79
5𝑡ℎ Derivative 2.125 ⋅ 10−10 9.88 243.77
6𝑡ℎ Derivative 2.5 ⋅ 10−10 8 156.37

4.2 Pulse Shape Design Using Particle Swarm Optimiza-

tion

The UWB pulse shape design involves selection of pulses from 1𝑠𝑡 to 6𝑡ℎ derivative of the

Gaussian pulse. Let us define a 6 bit binary vector given by

{𝑏1, 𝑏2, ⋅ ⋅ ⋅ , 𝑏6}, (4.13)

where 𝑏𝑖 = 1 implies that 𝑖𝑡ℎ derivative is used. There are two parameters that need to

be designed for each selected pulse. To simultaneously achieve the pulse selection and
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the parameter values for the selected pulses, we define a vector of continuous values of

length 12. The vector is decoded as follows. The first 6 give the 𝛼 values, the next 6 give

the 𝐴 values for the six pulses. The continuous vector is denoted by

𝑐 = {𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼6, 𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎6}, (4.14)

where [𝛼𝑖, 𝑎𝑖] give the time duration and the amplitude for the 𝑖𝑡ℎ derivative. The final

pulse from this is derived using

p(𝑡) =
6∑

𝑖=1

𝑏𝑖 × p𝑖(𝑡, 𝑐𝑖, 𝑐𝑖+6) (4.15)

The objective of the algorithm is to maximize 4.12 without violating the FCC mask.

The PSO formulae define each particle as a potential solution to a problem in a 𝐷-

dimensional space. Hence the 𝑖𝑡ℎ particle represented as

𝑋𝑞 = {𝑥𝑞1, 𝑥𝑞2, ⋅ ⋅ ⋅ , 𝑥𝑞𝐷}, (4.16)

where 𝐷 is the dimension number. There are total of 𝐷 = 18 dimensions in this prob-

lem based on 4.13 and 4.14 where 𝑥s in the particle replace the 𝑏s and 𝑐s respec-

tively. Each particle also maintains a memory (𝑝𝑏𝑒𝑠𝑡) of its previous best position, 𝑃𝑖𝑑 =

(𝑝𝑖1, 𝑝𝑖2, ⋅ ⋅ ⋅ , 𝑝𝑖𝐷) and a velocity along each dimension represented as 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, ⋅ ⋅ ⋅ , 𝑣𝑖𝐷)
The global best (𝑔𝑏𝑒𝑠𝑡) particle is denoted by 𝑃𝑔𝑑 = (𝑝𝑔1, 𝑝𝑔2, ⋅ ⋅ ⋅ , 𝑝𝑔𝐷) [43]. Given the par-

ticle the signal is constructed using 4.15. The PSD of the signal is calculated using 4.11.

The performance of this particle is evaluated using the following conditional expression:

𝐹 =

⎧⎨⎩
𝑝𝑜𝑤𝑒𝑟 if P(𝑓) < Mask(𝑓)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.17)
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where power is given by 4.12. 5.10 is one of the penalty functions available to handle

the constraints on an optimization problem [44]. The step nature of the above objective

function induces discontinuity limiting the ability to design a gradient based approach for

optimization. In each generation, the 𝑝𝑏𝑒𝑠𝑡 vector of the particle with the best fitness in

the local neighborhood, designated as 𝑔𝑏𝑒𝑠𝑡, and the 𝑝𝑏𝑒𝑠𝑡 vector of the current particle

are combined to adjust the velocity along each dimension given by

𝑉
(𝑡+1)
𝑖𝑑 = 𝜔 × 𝑉

(𝑡)
𝑖𝑑 + 𝜓1 × (𝑃𝑖𝑑 −𝑋𝑖𝑑) + 𝜓2 × (𝑃𝑔𝑑 −𝑋𝑖𝑑). (4.18)

The portion of the adjustment to the velocity influenced by the individual’s own 𝑝𝑏𝑒𝑠𝑡

position is considered as the cognition component, and the portion influenced by 𝑔𝑏𝑒𝑠𝑡 is

the social component. Constants 𝜓1 and 𝜓2 determine the relative influence of the social

and the cognition components, and are often both set to the same value to give each

component (the cognition and the social learning rates) equal weight.

The velocity is then used to compute a new position for the particle. The position

update for the continuous part of the particle is given by

𝑋
(𝑡+1)
𝑖𝑑 = 𝑋

(𝑡)
𝑖𝑑 + 𝑉

(𝑡+1)
𝑖𝑑 . (4.19)

For position update of the binary component of the particle, first the velocity is trans-

formed into a [0, 1] interval using the sigmoid function given by

𝑠𝑖𝑔𝑖𝑑(𝑉𝑖𝑑) =
1

1 + 𝑒−𝑉𝑖𝑑
, (4.20)

where 𝑉𝑖𝑑 is the velocity of the 𝑖𝑡ℎ particle’s 𝑑𝑡ℎ dimension. A random number is generated

using a uniform distribution, which is compared to the value generated from the sigmoid
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function, and a decision is made about the 𝑋𝑖𝑑 from

𝑋𝑖𝑑 = 𝑢(𝑠𝑖𝑔𝑖𝑑 − 𝑈 [0, 1]) (4.21)

where 𝑢 is a unit function. The decision regarding 𝑋𝑖𝑑 is probabilistic.

4.3 Results and discussions

We ran the PSO algorithm with 30 particles and for 1000 iterations. Multiple runs of

algorithm converged to two competent designs. In the first two rows of Table 4.3, the

two composite pulses that occupy the full band, achieved using PSO are presented.

The two pulses are also shown in Figure 4.8 and Figure 4.9, respectively. The power

values achieved by the two pulses are 362.89 𝜇𝑊 and 369.44 𝜇𝑊 . The percentage of

the achieved power to total power available within the spectrum (550 𝜇𝑊 ) is 65.9% and

67.1% respectively. Figure 4.12 shows the convergence of the PSO to a solution. The

PSO algorithm converges to a solution within 700- 800 iterations. The algorithm uses

simple add and multiply operators to search through the space and arrive at solutions as

presented in 4.18 and 4.19.

4.3.1 Bit Error Rate Performance of PSO designed signal

According to Shannons theory, the channel capacity of an Additive White Gaussian Noise

(AWGN) channel is:

𝐶 = 𝐵 log2(1 + 𝑆𝑁𝑅) (4.22)

The beauty of the new designed pulses is that, in theory, given a specific bandwidth

B for the UWB signal, our designed pulse can provide more power than other pulses,
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Table 4.3: Power/Parameter Values for Pulses Achieved Using Particle Swarm
Optimization

Signal Derivatives
Used

𝐴 (v) 𝛼 (ns) Power 𝜇𝑊

A 1, 5, 6 [0.80904,
11.3402,
4.350]

[1.969, 0.1809, 0.3070] 362.89

B 1, 3, 4, 6 [0.80904,
5.3128,
14.2475,
6.6191]

[1.969, 0.1, 0.1635, 0.1] 369.44

C 1 [0.80904] [1.969] 25.34
D 3, 4, 6 [5.3128,

14.2475,
6.6191]

[0.1, 0.1635, 0.1] 344.10

which means we will have a better SNR value at the receiver, thus we can provide either

higher data rate “𝐶” or at the same “𝐶” but with less BER at a fixed noise level. This

is demonstrated in the bit error rate plot in Figure 4.13 as we compare the average

BER performance for the PSO generated pulse and the optimized 5𝑡ℎ derivative pulse

presented in Table 4.3. The simulations are carried out using a TH-PPM modulation

scheme presented in previous section. The parameters used for simulation are given in

Table 4.4. Since the two pulses designed used different power we normalize the signal

to noise ratio (SNR) for fair comparisons. The average BER is plotted against normalized

SNR in Figure 4.13. As we can see the composite pulse designed using PSO achieves

lower average BER. The enhanced performance in terms of BER lets us do the trade-offs

as per the Shannons theory.

The most important benefit of the proposed system lies in the ability to generate or-

thogonal pulses within the FCC mask. Using a bottom-up biologically inspired approach

as in particle swarm optimization enables design of signals with arbitrary constraints.

The speedy convergence and simplicity of the operators used by the algorithm enables
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Figure 4.8: Pulse ‘A’ and its PSD Achieved using Particle Swarm Optimization
Algorithm

Table 4.4: UWB System Simulation Parameters
Parameter Notation Value

Chip Width (ns) 𝑇𝑐 2
Frame Width (ns) 𝑇𝑓 32

Number of Chips Per Frame 𝑁𝑐 16
Repetition Code Length 𝑁𝑠 4

its use in real time. An interesting feature of the design method is that since the pulses

are linearly combined by different Gaussian derivative pulses, by using only a part of the

pulses in the combination we can also design pulses that can be considered orthogonal

due to their frequency separation. Figure 4.8 and Figure 4.9 show two alternative de-

signs that can be derived from the composite pulse design achieved by the PSO. Table

4.5 gives the power values of this pulse in the two frequency bands. The signal ‘C’ uses

only the first derivative pulse from the composite pulse designed by the PSO. The pulse

optimally occupies the 0-960 MHz band. The total power in this signal as given in Table

4.3 is 25.34 out of which 25.3324 is contained in the 0-960 MHz band. The signal ‘D’ only

uses the 3, 4, 6 out of the second composite pulse presented in Table 4.3. The pulse has

most of the power concentrated in the second band i.e., 960MHz - 10.6 GHz and has
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Figure 4.9: Pulse ‘B’ and its PSD Achieved using Particle Swarm Optimization
Algorithm

only 6.5 × 10−5𝜇𝑊which is hardly detectable and would not cause any interference with

the first signal in case both are used simultaneously.

Table 4.5: Orthogonality of Signals Generated by PSO in Frequency Domain
Signal Power in 0-960 MHz (𝜇𝑊 ) Power in 960 MHz - 10.6 GHz (𝜇𝑊 )

A 25.3324 0.0076
B 0.000065073 344.10
C 25.3324 337.5576
D 25.3324 344.1076

4.4 Summary

In this chapter we presented a PSO algorithm to linearly combine the Gaussian deriva-

tives creating multiple orthogonal UWB signals. These signals comply with the jagged

FCC mask. The new composite pulse exploits the bandwidth and energy within a given

spectral mask. The pulses generated by the PSO algorithm achieve 65% spectrum ef-

ficiency. In future work we intend to incorporate the number of orthogonal pulses as an

objective function for evaluating the composite pulse in addition to the objective function
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Figure 4.10: Pulse ‘C’ and its PSD Achieved using Particle Swarm
Optimization Algorithm

5.10. The algorithm will also be utilized to generate signals for submasks created with

the FCC mask.
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Figure 4.11: Pulse ‘D’ and its PSD Achieved using Particle Swarm
Optimization Algorithm

Figure 4.12: Convergence of the PSO
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Figure 4.13: Bit error probability comparisons for optimized 5 derivative pulse
and the PSO generated pulse ‘B’
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Chapter 5

PSO Based Localization System

In this chapter, an adaptive learning algorithm is developed using particle swarm to iden-

tify and mitigate the non-line of sight (NLOS) signals in ranging measurements. Training

data is generated using the IEEE 802.15.4a UWB channel model for different conditions.

Multiple metrics derived from this data are fused to identify the NLOS signals. Specifi-

cally, kurtosis, mean excess delay and root mean square delay are used as metrics for

fusion. The fusion strategy is derived using PSO, considering the correlation between

multiple classifiers. We compare the fusion methodology achieved by PSO for the corre-

lated data set to the likelihood ratio based fusion methodology assuming independence.

This work also presents an NLOS mitigation approach derived using PSO. A scalar called

“error mitigation ratio (EMR)” is defined. The EMR transforms a NLOS measurement into

an equivalent LOS measurement. The PSO identifies the EMR using the training data.

Application of PSO generated EMR enhances the positioning accuracy and is demon-

strated in this chapter for indoor wireless channel. This mitigation approach enables us

to arrive at a position for the unknown node even when one of the measurements is iden-

tified as NLOS. Finally, PSO is used for multilateration to combine measurements from

three nodes. Comparisons are done with the linearized least square method.
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The market demand for location-aware sensor network is continuously growing. A

wide range of applications such as object tracking, environmental monitoring, warehouse

inventory, vehicle network, building security and health care systems all require accurate

locationing systems. Many of these applications are at indoor or underground environ-

ments where GPS systems can not work. The design of such location-aware networks

typically requires the capability of peer-to-peer range or distance measurements. Ultra-

wideband (UWB) technology is a promising solution for precision ranging due to its fine

time resolution to resolve multipath fading. The IEEE 802.15.4a Task Group has devel-

oped a UWB based physical layer standard for short-range networks with a precision

ranging capability [32],[?],[45].

5.1 UWB LOS/NLOS Identification Classifiers

5.1.1 UWB Channel Model

The impulse response of IEEE 802.15.4a channel model can be represented as the sum

of the contributions of the different multipath components (MPC):

ℎ(𝑡, 𝜏) =
𝑁∑
𝑖=1

𝑎𝑖(𝑡)𝛿(𝜏 − 𝜏𝑖) = 𝑎𝐷𝑃 (𝑡)𝛿(𝜏 − 𝜏𝐷𝑃 ) +
𝑁∑
𝑖=1

𝑎𝑖(𝑡)𝛿(𝜏 − 𝜏𝑖) (5.1)

where 𝑎𝐷𝑃 = 𝑎1(𝑡), 𝜏𝐷𝑃 = 𝜏1 represent the amplitude and delay of the direct path MPC,

𝑁 is the total number of the MPCs. ℎ(𝑡, 𝜏) can usually be simplified as ℎ(𝑡).

In this work, we first collect 100,000 samples of CIR h(t) as training data by running

IEEE 802.15.4a channel model. Then we extract different metrics from the received

MPCs forming the training data. These metrics enable us to classify the signals as

NLOS and LOS signals. We choose kurtosis, mean excess delay and RMS delay as
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our LOS/NLOS identification classifiers.

5.1.2 Multiple Identification Classifiers

The first classifier is the kurtosis of CIR. The kurtosis is defined as the ratio of the fourth

order moment of the data to the square of the second order moment (i.e., the variance)

of the data [46]. The kurtosis of a CIR ℎ(𝑡) can be written as:

𝜅 =
E[(∣ℎ(𝑡)− 𝜇∣ℎ(𝑡)∣∣4)]
E[(∣ℎ(𝑡)− 𝜇∣ℎ(𝑡)∣∣2)]2 (5.2)

Since the kurtosis is the degree of peakness of a distribution and CIR of LOS channel

tends to be less dispersive than NLOS channel, we can use the kurtosis as one classi-

fier. NLOS signals tend to have much higher values of delay-spread statistics [47]. The

second and the third classifiers are the mean excess delay and the RMS delay spread.

The mean excess delay of ℎ(𝑡) is defined as:

𝜏𝑚 =

∫∞
−∞ 𝑡∣ℎ(𝑡)∣2𝑑𝑡∫∞
−∞ ∣ℎ(𝑡)∣2𝑑𝑡 , (5.3)

and the RMS delay spread is defined as:

𝜏𝑟𝑚𝑠 =

∫∞
−∞(𝑡− 𝜏𝑚)

2∣ℎ(𝑡)∣2𝑑𝑡∫∞
−∞ ∣ℎ(𝑡)∣2𝑑𝑡 (5.4)

In [46]the authors showed that probability density functions of all the three statistics

for the sample realizations of the different IEEE 802.15.4a channels (Residential, Indoor,

Outdoor, Industrial). These are modeled by log-normal PDFs. Figure 5.1 and Figure

5.2 show all the 3 classifiers for different IEEE 802.15.4a CIRs, we compare the LOS

and NLOS channel statistics in the same scenario in these figures, respectively. Tradi-
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Figure 5.1: IEEE 802.15.4a Channel Model: Channel 1 vs. Channel 2
(Residential) and Channel 3 vs. Channel 4 (Indoor)

tionally, the design of a classification system is to empirically choose a single classifier

through experimental evaluation of a number of different ones. The parameters of the

selected classifiers are then optimized so that the specified performance is met. Single

classifier systems have limited performance. For certain classification problems, this sin-

gle classifier design approach may fail to meet the desired performance. For example,

if we want to use kurtosis to distinguish CM5 and CM6 as shown in Table III in [46],

the identification rates are only 66.3% and 71.4%, respectively. In the following subsec-

tions we present a new fusion methodology that fuses the three classifiers to get better

classification/identification performance.

5.1.3 LOS/NLOS Identification Using PSO Based Fusion of Classi-

fiers

The LOS/NLOS identification problem can be considered as a binary hypothesis-testing

problem, by acquiring the kurtosis, mean excess delay and RMS delay as statistics of the

CIRs. The two hypothesis are:
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Figure 5.2: IEEE 802.15.4a Channel Model: Channel 5 vs. Channel 6
(Outdoor) and Channel 7 vs. Channel 8 (Industrial)

𝐻0 : 𝐿𝑂𝑆 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 (5.5)

𝐻1 : 𝑁𝐿𝑂𝑆 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 (5.6)

There are two errors in this hypothesis testing problem, known as probability of false

LOS (𝑃𝐹𝐿) and probability of false NLOS (𝑃𝐹𝑁 ). The probability of false LOS is the

detection of the LOS when actually NLOS is present. Similarly, probability of false NLOS

is the identification of an LOS signal as an NLOS. In order to formulate the problem, it is

assumed that the prior probabilities of encountering a LOS channel or a NLOS channel

are the same. Also, we define the cost of false LOS detection 𝐶𝐹𝐿 and the cost of false

NLOS detection 𝐶𝐹𝑁 . These are incorporated into a performance function for evaluating

the fusion methodology. The Bayesian cost (error), which we intends to minimize, is

𝑅 = 𝐶𝐹𝐿 × 𝑃 (𝐻0)× 𝑃𝐹𝐿 + 𝐶𝐹𝑁 × 𝑃 (𝐻1)× 𝑃𝐹𝑁 , (5.7)
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where 𝐶𝐹𝐿 + 𝐶𝐹𝑁 = 𝑐 and 𝑐 is a constant. Here we assume 𝑐 = 2.

5.1.4 Likelihood Ratio Test (LRT) Assuming Independence

A likelihood ratio test can be applied to each metric determining the presence of LOS/

NLOS. This method works the best if the likelihood probability density models are avail-

able for each of the models. In absence of such models, the models can be estimated

using the training data. Authors of [46] estimate the conditional density models for each

of the metric to the lognormal distribution. We employ the same procedure and estimate

the parameters for the lognormal distribution for each of the channels data:

The parameters for the lognormal distribution for each channel are not given here for

the sake of brevity. The joint likelihood ratio test, given values 𝜅, 𝜏𝑟𝑚𝑠, 𝜏𝑚 for a particular

observation of CIR, can be applied as in

𝑃 (𝜅, 𝜏𝑟𝑚𝑠, 𝜏𝑚∣𝐻1)

𝑃 (𝜅, 𝜏𝑟𝑚𝑠, 𝜏𝑚∣𝐻0)

𝑁𝐿𝑂𝑆

≷
𝐿𝑂𝑆

𝐶𝐹𝑁 × 𝑃𝐻1

𝐶𝐹𝐿 × 𝑃𝐻0

(5.8)

Assuming independence for the three observations and equal possibility of NLOS

channel and LOS channel, the LRT can be simplified, as in

𝑃 (𝜅∣𝐻1)

𝑃 (𝜅∣𝐻0)
× 𝑃 (𝜏𝑟𝑚𝑠∣𝐻1)

𝑃 (𝜏𝑟𝑚𝑠∣𝐻0)
× 𝑃 (𝜏𝑚∣𝐻1)

𝑃 (𝜏𝑚∣𝐻0)

𝑁𝐿𝑂𝑆

≷
𝐿𝑂𝑆

𝐶𝐹𝑁

𝑐− 𝐶𝐹𝑁

(5.9)

Note that the three metrics are highly correlated. The pearson correlation factors is

given in Table 5.1.

5.1.5 Correlated Decision Level Fusion Using PSO

In decision level fusion, each classifier applies a threshold on its metric and provides the

ensuing decision to the fusion engine. Different classifiers have different thresholds. If a
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Table 5.1: Correlation Between Different Metrics for Different Channels
Channel Type 𝜅, 𝜏𝑟𝑚𝑠 𝜏𝑟𝑚𝑠, 𝜏𝑚 𝜅, 𝜏𝑚

CM 1 (Residential LOS) -0.0859 0.6763 -0.446
CM 2 (Residential NLOS) -0.20954 0.63955 -0.5281

CM 3 (Indoor LOS) -0.0839 0.71932 -0.33084
CM 4 (Indoor NLOS) 0.06739 0.513283 -0.34728
CM 5 (Outdoor LOS) -0.02282 0.5923 -0.37269

CM 6 (Outdoor NLOS) 0.0341 0.60434 -0.28427

metric exceeds this threshold, the LOS hypothesis is rejected. If the metric falls below the

threshold, the LOS hypothesis is accepted. This decision process using the threshold,𝜆𝑖,

for classifier 𝑖 can be summarized as,

𝑢𝑖 =

⎧⎨⎩
1 𝑥𝑖 ≥ 𝜆𝑖

0 𝑥𝑖 < 𝜆𝑖

(5.10)

Let [𝑈 ] = [𝑢𝜅, 𝑢𝜏𝑟𝑚𝑠 , 𝑢𝜏𝑚 ] be the binary vector of decisions generated by multiple classi-

fiers based on decision thresholds [𝜆𝜅, 𝜆𝜏𝑟𝑚𝑠 , 𝜆𝜏𝑚 ], These decisions can then be combined

using a fusion rule of the form . For more detailed description of the formation of the fu-

sion rule, reader is referred to [48].

There two errors in this hypothesis testing problem, known as probability of false LOS

(𝑃𝐹𝐿) and probability of false NLOS (𝑃𝐹𝑁 ) and are denoted as,

𝑃𝐹𝐿 = 𝑃 (𝑢𝑓 = 1∣𝐻0), (5.11)

𝑃𝐹𝑁 = 𝑃 (𝑢𝑓 = 0∣𝐻1). (5.12)

where 𝑢𝑓 is the final decision rendered by the fusion engine based on the decisions output

by the individual classifiers. The goal is to minimize these errors. The error probabilities

(𝑃𝐹𝐿, 𝑃𝐹𝑁 ) of the fused system are
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𝑃𝐹𝑁 =
𝑙−1∑
𝑖=0

𝑑𝑖 × 𝑃 (𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑛∣𝐻0) (5.13)

and

𝑃𝐹𝐿 =
𝑙−1∑
𝑖=0

(1− 𝑑𝑖)× 𝑃 (𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑛∣𝐻0) (5.14)

Let us assume that the classifiers decision thresholds are fixed at [𝜆𝜅, 𝜆𝜏𝑟𝑚𝑠 , 𝜆𝜏𝑚 ].

Hence, 5.13 and 5.14 require the calculation of joint probabilities. The number of combi-

nations of individual classifier decisions 𝑛 determines the number of joint probabilities 𝑙

that need to be estimated:

𝑙 = 2𝑛 (5.15)

The performance of decision level fusion depends on design of the thresholds and fusion

rule. The optimal design of fusion rule and thresholds for each individual classifier is

considered in [46]. A particle swarm optimization based (PSO) algorithm is designed in

[46] to optimize the thresholds and fusion rule given the training data. A hybrid of binary

and continuous PSO is used to achieve the fusion strategy. We employ this algorithm on

the training data to achieve the thresholds and the fusion rule. The resultant configuration

is applied to testing data.

The results are presented for the PSO based strategy for the three different scenarios

in Table 5.2. The LRT based approach is presented in Table 5.3. Highest performance

benefits are achieved in the residential scenario. From Figure 5.1 one can see that

the overlap between the two channels is higher in the residential scenario. A better

detection performance in this scenario is hard to achieve. Error is calculated using 5.7.

We achieve close to 13% performance benefit by using a PSO based fusion strategy.

Similar performance benefits are observed in other scenarios as well.
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Table 5.2: LOS/NLOS Identification Rate Using Correlated Decision Fusion
Strategy

Channel Type LRT ERROR
CM 1 (Residential LOS) 87.176

CM 2 (Residential NLOS) 83.238 0.14793
CM 3 (Indoor LOS) 99.962

CM 4 (Indoor NLOS) 99.892 0.00073
CM 5 (Outdoor LOS) 97.177

CM 6 (Outdoor NLOS) 93.256 0.04783

Table 5.3: LOS/NLOS Identification Rate Using Data Level Likelihood Ratio
Test Assuming Independence

Channel Type LRT ERROR
CM 1 (Residential LOS) 79.23

CM 2 (Residential NLOS) 86.07 0.1735
CM 3 (Indoor LOS) 99.99

CM 4 (Indoor NLOS) 99.5 0.003
CM 5 (Outdoor LOS) 96.36

CM 6 (Outdoor NLOS) 93.51 0.05066

5.2 PSO Based NLOS Error Mitigation and Multilatera-

tion

UWB sensor networks are a promising solution for ranging in short-range environments,

such as underground and indoor where GPS does not work. Due to severe multipath

conditions in these environments, estimation of time of arrivals) of UWB signals results

in random and sometimes large errors. The signals that go through LOS channels cause

small random errors and the signals that go through NLOS channels will have large

positive errors. We build an UWB ranging simulation system using Matlab to collect the

ranging information to serve for our NLOS mitigation technique and different positioning

algorithms between transmitter Tx and receiver Rx [49], [50]. Naturally one expects an

increase in the distance measurement error with the increase of distance between Tx

63



5.2. PSO BASED NLOS ERROR MITIGATION AND MULTILATERATION

(transmitter) and Rx (Receiver), so we modify the IEEE model according to empirical

measurement results from [51].

5.2.1 UWB NLOS Range Error Modeling

Following the impulse response of IEEE 802.15.4a channel model in 5.1, the TOA of the

received signal is given by:

⎧⎨⎩
𝜏𝑇𝑂𝐹 = 𝜏1 + 𝜏𝑛 𝐿𝑂𝑆

𝜏𝑇𝑂𝐹 = 𝜏1 + 𝜏𝑛 + 𝜏𝑐 𝑁𝐿𝑂𝑆

(5.16)

where 𝜏𝑛 is the measurement error caused by noise. Its value can be either positive

or negative, modeled as Additive White Gaussian Noise (AWGN). 𝜏𝑐 is the extra time

that the first MPC takes to go through the NLOS channel, which is modeled in the IEEE

802.15.4a channel model report [49] as:

𝜏𝑐 = (
1√
2Λ

× 𝑟𝑛1)
2 + (

1√
2Λ

× 𝑟𝑛2)
2 (5.17)

where Λ is the cluster arrival rate. The report lists 4 types of NLOS channels, each has

a unique value for Λ. 𝑟𝑛1 and 𝑟𝑛2 are random numbers between 0 and 1. Since 𝜏𝑐 does

not employ the measurement errors dependence on Tx and Rx distance, we modify it

according to [51] as below

𝜏𝑐 =
[
(

1√
2Λ

× 𝑟𝑛1)
2 + (

1√
2Λ

× 𝑟𝑛2)
2
]
log(1 + c𝜏1), (5.18)

where c is speed of light, 𝑑 = c𝜏1 is the actual distance between TX and Rx. can be

define as the NLOS ranging error, its value is always positive. After the modification to the

channel model, the range estimates are more close to the real empirical measurement
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results. The NLOS ranges then can be describe as:

𝑑𝑁𝐿𝑂𝑆 = 𝑑+ 𝜀𝑁𝐿 + 𝜀𝑛 (5.19)

where 𝜀𝑛 is the ranging error caused by noise.

5.2.2 PSO enabled NLOS Error Mitigation Technique

There are a wide variety of algorithms that can used to calculate the position of an un-

known location node from the range measurements between the target node and some

known neighbor nodes. However, they all severely suffer from the NLOS range errors

we mentioned above. After we identify the NLOS signals, there are two ways of using

the NLOS ranges. One is to discard them. The other is to mitigate the NLOS errors first

and use them in positioning algorithms. In absence of enough LOS ranges it becomes

paramount to use the NLOS ranges as well.

The problem now deduces in mitigating the NLOS range 𝑑𝑁𝐿𝑂𝑆 and use it to estimate

the real distance 𝑑. Specifically the NLOS range measurement can be transformed into

its equivalent LOS measurement. In absence of a closed form solution for this transfor-

mation, we learn this transformation from training data. We define an “error mitigation

ratio” (EMR) 𝑟 between the NLOS ranges 𝑑𝑁𝐿𝑂𝑆 and real distance as below:

𝑟𝑖 = 𝑑𝑖/𝑑𝑁𝐿𝑂𝑆𝑖, (5.20)

𝑟 = argmin𝐹 (𝑟𝑖) (5.21)
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𝐹 (𝑟𝑖) =
𝑛∑

𝑖=1

(𝑟𝑖 × 𝑑𝑁𝐿𝑂𝑆𝑖 − 𝑑𝑖)
2. (5.22)

Thus NLOS mitigation problem becomes a minimization problem. We use PSO to

find the EMR 𝑟 for different 𝑑𝑁𝐿𝑂𝑆 values. The results in Figure 5.3 show that at different

𝑑𝑁𝐿𝑂𝑆 range, the optimized ratio (found by PSO) value 𝑟 is different. We also show the

mean ratio value which average the 𝑟 value across all the NLOS distances and PSO find

sub-optimal 𝑟 value for 4-16 meter NLOS distance. The different empirical 𝑟 values we

get from our training data enable us to find the find the error mitigated 𝑑𝑚 value for the

𝑑𝑁𝐿𝑂𝑆 results given by

𝑑𝑚 = 𝑟 × 𝑑𝑁𝐿𝑂𝑆. (5.23)

In our positioning algorithm, we assume we have only 2 LOS ranges and one NLOS

range. 𝑑𝑚 has to be used along with the 2 LOS ranges to locate the nodes in a 2-D

space.

5.2.3 PSO Based Multilateration Positioning Algorithm

We use PSO based multilateration in our positioning procedure. Multilateration is a sim-

ple positioning technique, but the specific mathematics of its implementation vary widely.

The idea of multilateration algorithm is to use the Cartesian positions of 𝑛 known nodes

𝑏𝑖 = (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 and their measured ranges to the target node 𝑑𝑖 to determine

the unknown position of the target node 𝑠 = (𝑥, 𝑦).

If those ranges are absolutely precise, the true position of the target node should be

at the intersection of all the spheres whose centers are the coordinates of the beacons

and radius are the ranges between the beacons and the target node (as shown in Figure
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Figure 5.3: Empirical 𝑟 values vs. measured NLOS distance

5.4 ‘A’, ‘B’and ‘C’ are nodes whose positions are known). However, since the accuracy of

range estimation is affected by noise and the NLOS transmission channel, the spheres

will not always give a conclusive single intersection point. The basic multilateration al-

gorithm finds the best estimate of the true position 𝑠(𝑥, 𝑦) by minimizing the sum of the

squared errors between the measured ranges and the predicted distance as:

𝑠 = argmin𝐸(𝑠)
𝑠

, (5.24)
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𝐸(𝑠) =
𝑛∑

𝑖=1

(∥𝑠− 𝑏𝑖∥ − 𝑑𝑖)
2. (5.25)

Particle swarm solves this problem efficiently. The fitness function for PSO is 𝐸(𝑠), in

another form:

𝑓(𝑥, 𝑦) =
𝑛∑

𝑖=1

(
√

(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 − 𝑑𝑖)
2 (5.26)

Figure 5.4: NLOS error mitigation in multilateration positioning

The swarm search space is the two dimensional position of the unknown node 𝑠 =

(𝑥, 𝑦) which has the least error 𝑓(𝑥, 𝑦). The 𝑑𝑖’s are the range measurements from each
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Figure 5.5: Positioning error comparison between w/o NLOS error mitigation

of the known nodes. When an measurement is identified as a signal coming from a

NLOS path using the algorithm presented in section 5.2.1, the range measurement is

transformed using the error mitigation ratio. This process is illustrated in the Figure 5.4.

It is the zoomed version of Figure 5.5 and shows that when NLOS error mitigated range

(shown as “modified NLOS range”) in the figure is used in 5.26, the “location error” is

greatly reduced.

In order to test the performance of the NLOS error mitigation technique and the PSO

based multilateration method, we consider a room (Indoor scenario) of size 40m x 40m.

The center of the room is assumed to be the origin and the target node is assumed to be
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at this position, i.e., at [𝑥, 𝑦] = (0, 0) m. The nodes whose positions are known are ran-

domly scattered around the room, at distances of 4 m to 10 m from the target. The resul-

tant measured NLOS ranges are distributed from 4 m to 16 m.We compare four different

approaches. First, we use the EMR value found by PSO and the PSO based multilat-

eration approach (PSO MTLR, PSO-ratio). In the second approach a simple mean ratio

value (calculated in each range bin) in the NLOS error mitigation procedure is adopted

along with the PSO based multilateration (PSO MTLR, mean-ratio). The third approach

and fourth approach employ linearized least square method with the two different ratios.

Figure 5.6: The average positioning error comparison between PSO based
multilateration and linear least square multilateration algorithm with
mean 𝑟 value and PSO find sub-optimal 𝑟 value
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We ran a Monte Carlo simulation for 10,000 cases. The results presented in Figure

5.6 show that using 𝑟 for NLOS error mitigation found by PSO, combined with our PSO

based multilateration algorithm, the average location error drops significantly to a value

less than 1 meter. Traditionally it is difficult to estimate the position of the unknown

node with one NLOS and 2 LOS measurements. Usually on encountering an NLOS

measurement, more measurements are collected causing delays and/or higher energy

utilization. With the swarm based learning approaches presented in this work we are

able to achieve a accuracy of 1m by transforming the measurement. The linearized least

square approach is highly sensitive to the ratio used. The ratio found by the PSO gives

better results than the mean ratio in this case. This demonstrates the efficacy of the PSO

algorithm.

Greater advantages are found for the ratio if LLS approach is used. A single step LLS

is used to solve the multilateration problem. This is computationally less expensive than

PSO based multilateration (which is iterative). The use of PSO defined ratio brings the

performance of LLS closer to the PSO based multilateration approaches. Thus the PSO

based ratio lets us use the computationally simple LLS technique.

5.3 Summary

In this Chapter, we presented a novel UWB positioning system design using particle

swarm enabled learning techniques. First a classification strategy is developed using the

particle swarm optimization technique. The classification strategy identifies the NLOS

signals from the received signal set. Then a PSO based strategy is developed to mitigate

the error due to the NLOS signal. Specifically a ratio is achieved using PSO that trans-

forms the NLOS measurement into its equivalent LOS measurement. Finally, the PSO

is used for the multilateration problem, which combines the measurements from three
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different nodes. We have compared our strategies to traditionally applied techniques

and achieved higher performance. Performance is measured in terms of the Bayesian

risk function for the NLOS identification. For locationing the performance is measured in

terms of the positioning error, i.e. distance from the true position. We are able to achieve

less than a meter error when PSO based strategies are used.
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Chapter 6

PSO Based Signal Processing for

OFDM Systems

PSO can be used in a wide series of applications. In this chapter, we use PSO as

an intelligent searching algorithm to find the optimal or sub-optimal solution for a code

design problem in a frequency redundant OFDM/OFDMA system. Two of the major chal-

lenges facing OFDM/OFDMA systems are their sensitivity to frequency selective fading

and Inter Carrier Interference (ICI) due to Carrier Frequency Offset (CFO) or Doppler

shift, especially when the subcarrier spacing becomes smaller. By using PSO to find

an optimal code for our design, we propose an OFDM transceiver design that employs

frequency redundant subcarrier mapping to mitigate frequency selective fading and sub-

carrier spreading to achieve ICI self cancelation. Both our theoretical analysis and simu-

lation show that such a code-spread-interleaved-redundant OFDM system design offers

significant (over 10 dB) improvement in Carrier to Interference Ratio (CIR) and robust Bit

Error Rate (BER) performance in different channel conditions.
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6.1 Introduction

Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division

Multiple Access (OFDMA) are widely adopted in current communication systems for its

high spectrum efficiency and easy implementation [52][53]. One of the recent advance-

ments in OFDM/OFDMA system design is the increasing subcarriers density (reduce the

subcarrier spacing) in order to minimize the cyclic prefix (CP) overhead.

Reduced sub-carrier spacing not only increases the transceiver complexity, more im-

portantly, it makes an OFDM system more susceptible to frequency selective fading and

ICI, which is caused by CFO or Doppler effect.

Adding frequency diversity in an OFDM design is an effective way of mitigating the

effect of frequency-selective fading. This is generally achieved by subcarrier redundancy,

or channel coding. Most popular coding schemes are convolutional codes, Turbo codes

and low density parity check (LDPC) codes.

To reduce ICI, we can minimize CFO by using accurate and stable local reference

clocks, or implementing phase-lock-loops (PLLs) or frequency tracking between two com-

municating nodes. Unfortunately, neither of these solutions are viable in many systems

due to the cost, power, complexity constraints, or upper layer protocols which do not

support continuous transmission.

Mitigating ICI in digital domain is desirable for many reasons and there have been

research work published in recent years. [54] gives a comprehensive overview of the

commonly used ICI mitigation techniques. Generally all these techniques fall into three

categories: i) frequency domain equalization (FDE); ii) time domain windowing and iii)

subcarrier self-cancelation. In FDE, the CFO is first estimated using training symbols

and then equalized in frequency domain (after FFT) at the receiver side [55][56]. FDE

minimizes ICI by compensating for CFO and thus requires an accurate CFO estimation,
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which is difficult to achieve when the received signal to noise ration (SNR) is low. Also

the computation complexity is high in generating the correction matrix. Time domain win-

dowing refers to techniques which use Nyquist windows other than rectangular window

(e.g., Hanning window) and reduce energy leakage between subcarriers in the transmit-

ted symbols. These windowing methods have poor performance with respect to additive

channel noise [57, 54]. It also reduces the effective length of the CP and thus results in

increased inter-symbol-interference (ISI). The third type is the ICI self-cancelation. Zhao

et al. proposed in [58, 59] to map the same data onto an adjacent pair of subcarriers with

opposite polarities and as a result, interference to other subcarriers from these subcarrier

pair cancel each other.

Here we propose an OFDM/OFDMA design which offers not only ICI self-cancelation

but frequency diversity as well. The key features we proposed are the interleaved re-

dundant subcarriers mapping and subcarriers spreading with orthogonal codes. We use

PSO to find an set of optimal codes for this application. We provide both theoretical

analysis and numerical results on the system performance. In our simulations, the pro-

posed designs demonstrate robust performance in both additive white Gaussian noise

(AWGN) channels and dispersive channels. The spreading scheme improves Carrier-to-

Interference-Ratio (CIR) by over 10 dB, and significantly lowers the bit error rate (BER).

6.2 OFDM System Model

Figure 6.1 shows the block diagram of the proposed transmitter and receiver structure.

Compared to a conventional OFDM transmitter and receiver, the key components of our

design are the redundant subcarrier mapping, spreading and de-spreading blocks.

In a conventional transmitter, data to be transmitted are read in blocks. Each data

block can be represented by a size-𝑀 vector, A ∈ ℂ𝑚, A = [𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑚], where 𝑎𝑚 is
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Figure 6.1: Block Diagram of the Proposed OFDM System

a complex number representing a modulation alphabet based on a particular modulation

scheme for the 𝑚th subcarrier (e.g., QPSK, QAM and etc.). A mapping function, 𝒫(⋅),
maps input data symbols in A to a size 𝑁 vector, S = [𝑆1, 𝑆2, ⋅ ⋅ ⋅ , 𝑆𝑁 ].

S = 𝒫(A),

𝑁 is the number of subcarriers in an OFDM symbol. 𝒫(⋅) can be 1-to-1 mapping, which

maximize spectrum efficiency, or 1-to-many. In practice, however, the mapping block also

carries out pilot insertion as well as null-tone insertion in the guard band and at DC.

S is also referred to as the frequency domain symbol block. It is then transformed to
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a time domain sequence, s(t), via the inverse fast Fourier transform (IFFT) given by

𝑠(𝑡) = ℱ−1(S) =
𝑁−1∑
𝑘=0

𝑆𝑘𝑒
𝑗 2𝜋𝑘𝑡

𝑇 , (6.1)

where 𝑆𝑘 is the frequency-domain symbol for the 𝑘th subcarrier, and ℱ(⋅) denotes the

FFT operation. Cyclic prefix (CP) is added to each output time domain sequence before

it is transmitted.

The received time-domain signal, r, is given by

𝑟(𝑡) = ℎ(𝑡)⊗ 𝑠(𝑡)𝑒−2𝜋𝑗Δ𝑓(𝑡)𝑡 + 𝜈(𝑡), (6.2)

where ℎ(𝑡) is the channel impulse response, ⊗ denotes linear convolution and 𝜈(𝑡) is the

additive noise. The equivalent expression in frequency domain is

R = H ⋅ (W × S) + 𝜂, (6.3)

where H, the channel frequency response matrix, is a diagonal matrix and its diagonal

element, 𝐻𝑘,𝑘, represents the response of the 𝑘th subcarrier, where ∣𝐻𝑘,𝑘∣ is the gain

and ∠𝐻𝑘,𝑘 the phase delay. 𝜂 is noise spectrum power, W ∈ ℂ𝑁𝑥𝑁 is the ICI coefficient

matrix. More details will be given in 6.2.1.

The OFDM receiver reverses the processes occurred in the transmitter by performing

the CP removal, and FFT on the received signal to produce received frequency domain

symbols, R, which is de-mapped to generate the received data symbol, V. This pro-

cesses can be expressed as

V = 𝒫−1(R) = 𝒫−1(ℱ(r)) = 𝒫−1(R)

= 𝒫−1(H ⋅ (W × S) + 𝜂),

(6.4)
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6.2.1 Inter Carrier Interference

The severity of ICI is represented by the ICI coefficient matrix, W. 𝑊𝑚,𝑘 quantifies the

interference from the 𝑘th subcarrier to the 𝑚th subcarrier. In CFO free system, Δ𝑓 = 0

and W is an identity matrix. (6.3) can be simplified to

𝑅𝑘 = 𝐻𝑘,𝑘𝑆𝑘 + 𝜂𝑘. (6.5)

(6.5) indicates that the received signal at 𝑘th subcarrier is only dependent on the trans-

mitted signal 𝑆𝑘, plus the noise 𝜂𝑘 and therefore is ICI free. However, the presence of

CFO or Doppler effect disturbs the orthogonality between subcarriers. This is reflected

in W. For a given CFO, Δ𝑓 , 𝜖 = Δ𝑓
𝑓𝑠

is the normalized CFO wrt the subcarrier spacing,

𝑓𝑠, we have [58, 54]

𝑊𝑘,𝑚 =
sin[𝜋(𝑚− 𝑘 + 𝜖)]

𝜋(𝑚− 𝑘 + 𝜖)
𝑒−𝑗𝜋(𝑚−𝑘+𝜖), (6.6)

and the received signal on 𝑘th subcarrier becomes

𝑅𝑘 ≈ 𝐻𝑘

𝑁−1∑
𝑛=0

𝑊𝑛,𝑘𝑆𝑛 + 𝜂𝑘

= 𝐻𝑘𝑊𝑘,𝑘𝑆𝑘 +𝐻𝑘

𝑁−1∑
𝑚=0,𝑚 ∕=𝑘

𝑊𝑘,𝑚𝑆𝑚 + 𝜂𝑘.

(6.7)

The first term in (6.7) is the received power from the signal subcarrier, the second

term is the total interference from all other subcarriers. Clearly ICI is a function of 𝜖. As

𝜖 grows, the power from the signal tone decreases and the interference from individual

tones as well as the total interference increases as shown in Figure 6.2. 𝑊𝑛,𝑘 is only

a function of (𝑛 − 𝑘) and therefore can be simplified as 𝑊𝑛−𝑘, e.g, 𝑊0 ≡ 𝑊𝑘,𝑘. ICI is
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quantified with carrier to interference ratio (CIR) to quantify ICI, defined as

𝐶𝐼𝑅(𝜖) = 𝐸

⎡⎣∣∣∣∣∣ 𝑊0

𝐸[
∑𝑁−1

𝑚=0,𝑚∕=𝑘𝑊𝑘−𝑚𝑎𝑚]

∣∣∣∣∣
2
⎤⎦ , (6.8)

where 𝐸[⋅] is the expectation over all subcarriers and input symbols. Figure 6.2 shows

that at 𝜖 = −0.3, 𝐶𝐼𝑅 approaches 0 dB. Clearly, CFO induced ICI can be the system

performance bottleneck and must be dealt with.
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Figure 6.2: ICI Coefficients vs CFO
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6.2.2 OFDM Systems with Frequency Diversity

The coherent bandwidth in most of the wireless channels is much greater than the

subcarrier-spacing and therefore each subcarrier is subject to deep fading. Frequency

diversity is introduced in OFDM systems to mitigate this. An easy and convenient way of

providing such frequency diversity is to map each input symbol, 𝑎𝑚, to 𝑙 > 1 subcarriers,

i.e.,

𝑆𝑘 = 𝑎𝑚, ∀𝑘 ∈ 𝔖𝑚 = {𝑘1, 𝑘2, ⋅ ⋅ ⋅ , 𝑘𝐿}.

𝐿 is the degree of frequency diversity, and 𝔖𝑚 is the set of subcarriers assigned to 𝑎𝑚,

referred hereafter as the 𝑚th subcarrier group. To maximize the frequency diversity, it

is essential that the subcarriers assigned to the same input data are spread across the

entire band. This can be achieved when an “interleaving subcarrier mapping” scheme is

used. For example, assuming size-𝑀 inputs vector, a diversity degree of 𝐿 and omit all

non-data tones, a mapping function would look as follows:

S = 𝒫(A) = [𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑚︸ ︷︷ ︸
1st set

, 𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑚,︸ ︷︷ ︸
2nd set

⋅ ⋅ ⋅ , 𝑎1 ⋅ ⋅ ⋅ 𝑎𝑚︸ ︷︷ ︸
𝐿th set

], (6.9)

The mapping function given in (7.9) maps 𝑀 inputs to 𝐿 ×𝑀 subcarriers. The 𝑚th

input, 𝑎𝑚 is mapped to 𝐿 subcarriers, {𝑎𝑚, 𝑎𝑀+𝑚, 𝑎2𝑀+𝑚 ⋅ ⋅ ⋅ , 𝑎(𝐿−1)𝑀+𝑚}. Subcarriers

in the same group have a minimum separation of 𝑀 subcarriers spacing. We call this

subcarrier mapping scheme “interleaved redundant subcarrier” since the subcarriers for

different input symbols interleave with each others.

The corresponding receiver combines power from subcarriers that are mapped to the

same input symbols. (6.4) is rewritten as

𝑉𝑚 = 𝒫−1(R) =
∑
𝑘∈𝔖𝑚

𝑔𝑘𝑅𝑘, (6.10)
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where 𝑔𝑘 is the combining weight defined by the combining scheme. Two most commonly

used schemes are equal gain combining (EGC) and maximum ratio combining (MRC).

EGC is simpler and in many cases sufficiently effective but MRC offers better perfor-

mance in frequency selective channels [60]. The combination of redundant-mapping and

combining processes effectively mitigate the frequency selective fading as it guarantees

the combined SNR for a given input 𝑎𝑚 remains acceptable when deep fading occurs on

just one or a few subcarriers assigned to it.

With redundant subcarrier, CIR becomes the ratio of the total power of signal sub-

carriers for the same input symbol to the total power from the interfering subcarriers.

Compared to an OFDM design without subcarrier redundancy, the “interleaved redun-

dant subcarrier” mapping scheme described above offers no CIR improvement. The

mathematic proof is relatively simple and will not be given here. Intuitively, we can see

that both the total signal power and the total interference power increase proportionally

to the diversity degree 𝐿.

6.2.3 OFDM with Spread Redundant Subcarrier

To improve the ICI performance in an OFDM system with subcarrier redundancy, we pro-

pose a subcarrier spreading scheme which extends the “interleaved redundant subcar-

rier” design discussed above but offers ICI cancelation and significant CIR improvement.

The block diagram is shown in Figure 6.1 and details of the design are as follows:

The transmitter first maps 𝑀 input alphabets, A, to 𝑁 subcarriers as given in (7.9).

However, instead of taking S directly as the IFFT input, a spreading operation is first

carried out on 𝑆. The spreading operation is defined as
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S′ = 𝒬(S) = C ⋅ S

=

⎡⎢⎣𝑐1𝑎1, 𝑐2𝑎2 ⋅ ⋅ ⋅ , 𝑐𝑀𝑎𝑀︸ ︷︷ ︸
1st set

, ⋅ ⋅ ⋅ , 𝑐𝐿𝑀−𝐿+1𝑎1 ⋅ ⋅ ⋅ , 𝑐𝐿𝑀𝑎𝑀︸ ︷︷ ︸
𝐿th set

⎤⎥⎦ , (6.11)

where C is a length-𝐿𝑀 spreading sequence. We can reformat C into an 𝐿 ×𝑀 ma-

trix and each row vector in this spreading matrix, 𝒞𝑅
𝑚 = [𝑐𝑚, 𝑐𝑀+𝑚 ⋅ ⋅ ⋅ , 𝑐𝐿𝑀−𝐿+𝑚] is the

spreading vector corresponding to a subcarrier group. If we design C such that all row

vectors, 𝒞𝑅
𝑚, are chosen from a set of length-𝐿 orthogonal codes, 𝑂𝐿, ICI self-cancelation

can be achieved as shown in Section 6.3. Fig. shows the OFDM system with Spread

Redundant Subcarrier.

The proposed spreading scheme does not specify the orthogonal codes that can or

should be used. For example, Walsh codes based on Hadamard matrix can be used as

spreading vectors. A length-4 Hadamard matrix is given as

ℍ4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and each row vector is a length-4 Walsh code, denoted as 𝕎1

4 to 𝕎4
4.

When the number of subcarrier groups, 𝑀 is greater than the total number of length-

𝐿 orthogonal vectors available (which is generally the case), it is necessary to reuse

the spreading vectors, i.e., the same spreading vector is applied to multiple subcarrier

groups. Two subcarrier groups are orthogonal (𝔖𝑖 ⊥ 𝔖𝑗) if their spreading vectors are

orthogonal, or compatible (𝔖𝑖 ∥ 𝔖𝑗) if they share the same orthogonal code. To maximize
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Figure 6.3: OFDM with spread redundant subcarrier

ICI cancelation, the compatible subcarrier groups should be separated far apart.

Correspondingly in the receiver, the received symbols R needs to be de-spread be-

fore combined. The output after combining is given as:

𝑉𝑚 = 𝒫−1(R′) =
∑
𝑘∈𝔖𝑚

𝑔𝑘𝑅
′
𝑘 =

∑
𝑘∈𝔖𝑚

𝑔𝑘𝑄
−1(𝑅′

𝑘). (6.12)

𝒬−1(⋅) denotes the de-spreading function. When Walsh codes are used as spreading

vectors, 𝒬−1(⋅) = 𝒬(⋅).

83



6.2. OFDM SYSTEM MODEL

Table 6.1: Barker Codes
Length Codes

2 +1 -1 — +1 +1
3 +1 +1 -1
4 +1 +1 -1 +1 — +1 +1 +1 -1
5 +1 +1 +1 -1 +1
7 +1 +1 +1 -1 -1 +1 -1
11 +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1
13 +1 +1 +1 +1 +1 -1 -1 +1 +1 -1 +1 -1 +1

6.2.4 Orthogonal Code Design Using PSO

The selection of the orthogonal codes is critical in our design since we need codes that

have maximum autocorrelation and minimum cross-correlation to combat with the ICI. In

this design, for code length 2𝑛(𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ ), Walsh-Hadamard codes are the optimal

choices thanks to their perfect autocross-correlation properties. However, for certain

applications in this scheme, the orthogonal codes need to have ”irregular” length (e.g. no

equal to 2𝑛). For finite length codes especially “irregular” short length orthogonal codes,

there are no perfect candidates available. We develop a group of cyclic Baker codes that

can serve for our application. A Barker code is a sequence of N binary values of +1 and

-1, aj for j=1,...,N, such that

∣
𝑁−𝑣∑
𝑗=1

ajaj+v∣ ≤ 1 (6.13)

for all 1 ≤ 𝑣 < 𝑁 [61].

A Barker code has a maximum autocorrelation of 1 (when codes are not aligned).

There are Barker codes of lengths 2, 3, 4, 5, 7, 11, and 13, and it is conjectured that no

longer Barker codes exist. A list of known Barker codes is given in Table 6.1

Considering the low autocorrelation side lobes that Barker codes have, simply by

cyclically shifting the Barker code, we can get code groups of length 3, 5, 7, etc. For

example, we can get a group of 7 codes by shifting length 7 Barker code one bit a time.
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Although they are not orthogonal to each other, their cross correlations are always 1 while

their autocorrelations are always 7. These codes partially satisfy the requirements in our

design. However, the length 6 codes are still not available. We resort to generalized

Baker code for solutions. A generalized Barker code is a finite sequence ar of complex

numbers having absolute value 1, and possessing a correlation function 𝐶(𝜏) satisfying

the constraint ∣𝐶(𝜏)∣ ≤ 1, 𝜏 ∕= 0 [62].

Walsh codes are available for 𝐿 = 2𝑘. All Walsh codes have only +1 and −1 as

elements. This allows very simple implementation for the spreading and de-spreading

operations. It is, however, not required for the coefficients to be real. By extending co-

efficients to complex numbers with absolute value of 1, we can find orthogonal codes for

any 𝐿 while preserving the transmission spectrum. For example, a set of 𝐿 sequences

{𝔽0
𝐿,𝔽1

𝐿, ⋅ ⋅ ⋅ ,𝔽𝐿−1
𝐿 } form the orthonormal basis and can be used as spreading vectors.

Each vector, 𝔽𝑘
𝐿, is defined by a Fourier series given as 𝔽𝑘

𝐿 = [1, 𝑒
2𝜋𝑘
𝐿 , 𝑒

4𝜋𝑘
𝐿 , ⋅ ⋅ ⋅ 𝑒 2𝜋𝑘(𝐿−1)

𝐿 ].

Cyclic orthogonal sequences can also be generated that are mutually orthogonal [62].

Here, the problem boils down to given a fixed value of 𝐿, find the right set of 𝔽𝑘
𝐿 (not nec-

essarily Fourier series based) that have the lowest cross-correlation among themselves.

Note that a set of 𝐿 sequences {𝔽0
𝐿,𝔽1

𝐿, ⋅ ⋅ ⋅ ,𝔽𝐿−1
𝐿 } with each element having the ab-

solute value of 1 has infinite possibilities. The searching space can be considered as

continuous, but we are looking for a set of discrete numbers as the solution inside of it.

Due to the prohibitive time needed to find a solution using exhaustive search, we have

to concentrate our efforts on methods that provide approximate solutions and also can

finish the search in reasonable time. Although this is not a real-time searching problem,

as far as the author know, there is no reported tangible method to solve the problem

satisfactorily. Therefore, we can design a specific PSO approach for this problem.

As we have explained before, resembling the social behavior of a swarm of bees

to search the location with the most flowers in a field, the optimization procedure of
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Figure 6.4: PSO algorithm flowchart
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PSO is based on a population of particles which fly in the solution space with velocity

dynamically adjusted according to its own flying experience and the flying experience of

the best among the swarm.

Figure 6.4 shows the flow chart of a PSO algorithm. During the PSO process, each

potential solution is represented as a particle. In this application, a particle with a position

vector 𝑋𝑞 represent a vector 𝔽𝑘
𝐿. There are total 𝐿 dimensions. Each particle also main-

tains a memory (𝑝𝑏𝑒𝑠𝑡) of its previous best position, 𝑃𝑖𝑑 = (𝑝𝑖1, 𝑝𝑖2, ⋅ ⋅ ⋅ , 𝑝𝑖𝐿) and a velocity

along each dimension represented as 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, ⋅ ⋅ ⋅ , 𝑣𝑖𝐿). The global best (𝑔𝑏𝑒𝑠𝑡) par-

ticle is denoted by 𝑃𝑔𝑑 = (𝑝𝑔1, 𝑝𝑔2, ⋅ ⋅ ⋅ , 𝑝𝑔𝐿). The fitness function of this problem is the

sum of cross-correlation of one vector with all the other vectors in the candidate set.

PSO algorithms run and give us an satisfied result. Table 6.2 lists a set of cyclic

orthogonal codes of length-6 found by PSO.

Table 6.2: Length-6 Cyclic Orthogonal Code
Code Index 1 2 3 4 5 6

𝔹1
6 +1 𝑒𝑗2𝜋/6 -1 +1 −𝑒𝑗2𝜋/6 -1

𝔹2
6 𝑒𝑗2𝜋/6 -1 +1 −𝑒𝑗2𝜋/6 -1 -1

𝔹3
6 -1 +1 −𝑒𝑗2𝜋/6 -1 -1 −𝑒𝑗2𝜋/6

𝔹4
6 +1 −𝑒𝑗2𝜋/6 -1 -1 −𝑒𝑗2𝜋/6 +1

𝔹5
6 −𝑒𝑗2𝜋/6 -1 -1 −𝑒𝑗2𝜋/6 +1 -1

𝔹6
6 -1 -1 −𝑒𝑗2𝜋/6 +1 -1 𝑒𝑗2𝜋/6

When perfect orthogonal codes are unavailable or difficult to generate, quasi-orthogonal

codes (QOC) can also be used. Due to the non-zero cross-correlation sidelobe, QOC

generally offers less ICI cancelation.
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6.3 Analysis on Effectiveness of ICI-Cancelation

We now show the ICI cancelation in the proposed spread redundant carrier design. For

clarity of the analysis, we ignore the pilot and null tones insertion and use the simple

mapping defined in (7.9).

Combines (6.7), (6.11) and (6.12), the output of the combining stage at the receiver

can be expressed as

𝑉𝑚 =
∑
𝑘∈𝔖𝑚

𝑔𝑘𝑐𝑘𝑅𝑘

=
∑
𝑘∈𝔖𝑚

𝑔𝑘𝑐𝑘
(
ℎ𝑘

𝑁−1∑
𝑛=0

𝑊𝑛,𝑘𝑐𝑛𝑆𝑛 + 𝜂𝑘
)

=
∑
𝑘∈𝔖𝑚

𝑔𝑘ℎ𝑘𝑊0𝑐𝑘𝑐𝑘𝑆𝑘 +
∑
𝑘∈𝔖𝑚

𝑔𝑘𝑐𝑘ℎ𝑘

𝑁−1∑
𝑛=0,𝑛∕=𝑘

𝑊𝑛,𝑘𝑐𝑛𝑆𝑛

+
∑
𝑘∈𝔖𝑚

𝑔𝑘𝑐𝑘𝜂𝑘

=𝑊0𝑎𝑚
∑
𝑘∈𝔖𝑚

𝑔𝑘ℎ𝑘 +
∑
𝑘∈𝔖𝑚

𝑔𝑘𝑐𝑘ℎ𝑘

𝑁−1∑
𝑛=0,𝑛∕=𝑘

𝑊𝑛,𝑘𝑐𝑛𝑆𝑛

+
∑
𝑘∈𝔖𝑚

𝑔𝑘𝑐𝑘𝜂𝑘.

(6.14)

The first term in (6.14) describes the power from the transmitted signal subcarrier and

the second term the interfering subcarriers. The third term is from the additive noise and

its total power remain unchanged with or without de-spreading, i.e., 𝐸[
∑

𝑘∈𝔖𝑚
𝑔𝑘𝜂𝑘] =

𝐸[
∑

𝑘∈𝔖𝑚
𝑔𝑘𝑐𝑘𝜂𝑘] given ∣𝑐𝑘∣ ≡ 1.

For the clarity in the following analysis, we further assume AWGN channels (ℎ𝑘 = ℎ),

and EGC (𝑔𝑘 = 1) in the receiver. The first term (signal carrier) in (6.14) is simplified to

𝑍𝑚 = ℎ𝑊0

∑
𝑘∈𝔖𝑚

𝑐𝑘𝑐𝑘𝑆𝑘 = ℎ𝑊0

∑
𝑘∈𝔖𝑚

𝑆𝑘 = ℎ𝐿𝑊0𝑎𝑚, (6.15)
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unchanged from the original non-spreading design. The interference term, however, be-

comes

𝐼𝑚 =ℎ
∑
𝑘∈𝔖𝑚

𝑐𝑘

𝑁−1∑
𝑛=0,𝑛∕=𝑘

𝑊𝑛−𝑘𝑐𝑛𝑆𝑛

=ℎ
∑
𝑘∈𝔖𝑚

𝑐𝑘

( ∑
𝑛∈𝔖𝑝,𝔖𝑝∥𝔖𝑚

𝑊𝑛−𝑘𝑐𝑛𝑎𝑝 +
∑

𝑛∈𝔖𝑝,𝔖𝑝⊥𝔖𝑚

𝑊𝑛−𝑘𝑐𝑛𝑎𝑝

)
=ℎ

∑
𝑘∈𝔖𝑚

𝑐𝑘
∑

𝑛∈𝔖𝑝,𝔖𝑝∥𝔖𝑚

𝑊𝑛−𝑘𝑐𝑛𝑎𝑝 +ℎ
∑
𝑘∈𝔖𝑚

𝑐𝑘
∑

𝑛∈𝔖𝑝,𝔖𝑝⊥𝔖𝑚

𝑊𝑛−𝑘𝑐𝑛𝑎𝑝

(6.16)

Rewrite the first term in (6.16) as

ℎ
∑
𝑘∈𝔖𝑚

𝑐𝑘
∑

𝑛∈𝔖𝑝,𝔖𝑝∥𝔖𝑚

𝑊𝑛−𝑘𝑐𝑛𝑎𝑝

=ℎ
𝐿∑

𝑙=1;𝔖𝑝∥𝔖𝑚

𝑐𝑚+𝑙𝑐𝑝+𝑙𝑊𝑚−𝑝𝑎𝑝 + ℎ
∑
𝑗 ∕=0

𝐿∑
𝑙=1;𝔖𝑝∥𝔖𝑚

𝑐𝑚+𝑗𝐿+𝑙𝑐𝑝+𝑙𝑊𝑗𝐿+𝑚−𝑝𝑎𝑝

≈ℎ𝐿
∑

𝑝;𝔖𝑝∥𝔖𝑚

𝑊𝑚−𝑝𝑎𝑝.

(6.17)

The approximation is based on 𝑊𝑚−𝑝 ≫ 𝑊𝑗𝐿+𝑚−𝑝, i.e., interference coefficient from sub-

carriers far away is negligible in the overall interference. Similarly, the second term in

(6.16) can be approximated to

ℎ
∑
𝑘∈𝔖𝑚

𝑐𝑘
∑

𝑛∈𝔖𝑝,𝔖𝑝⊥𝔖𝑚

𝑊𝑛−𝑘𝑐𝑛𝑎𝑝

=ℎ
𝐿∑

𝑙=1;𝔖𝑝⊥𝔖𝑚

𝑐𝑚+𝑙𝑐𝑝+𝑙𝑊𝑚−𝑝𝑎𝑝 + ℎ
∑
𝑗 ∕=0

𝐿∑
𝑙=1;𝔖𝑝⊥𝔖𝑚

𝑐𝑚+𝑗𝐿+𝑙𝑐𝑝+𝑙𝑊𝑗𝐿+𝑚−𝑝𝑎𝑝

=ℎ
∑
𝑗 ∕=0

𝐿∑
𝑙=1;𝔖𝑝⊥𝔖𝑚

𝑐𝑚+𝑗𝐿+𝑙𝑐𝑝+𝑙𝑊𝑗𝐿+𝑚−𝑝𝑎𝑝

≪ℎ𝐿
∑

𝑝;𝔖𝑝∥𝔖𝑚

𝑊𝑚−𝑝𝑎𝑝.

(6.18)
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Therefore we have

𝐼𝑚 ≈ ℎ𝐿
∑

𝑝;𝔖𝑝∥𝔖𝑚

𝑊𝑚−𝑝𝑎𝑝, (6.19)

and

𝐶𝐼𝑅𝑚 = 𝐸

∣∣∣∣𝑍𝑚

𝐼𝑚

∣∣∣∣2 ≈
∣∣∣∣∣∣ 𝑊0

𝐸
[∑

𝑝;𝔖𝑝∥𝔖𝑚
𝑊𝑚−𝑝

]
∣∣∣∣∣∣
2

. (6.20)

The above equation shows that at the 𝑚th symbol, the majority of interference comes

from subcarriers in its compatible subcarrier groups. The larger the diversity degree, the

higher the ICI. If all groups are mutually orthogonal, i.e., where each subcarrier group

is assigned a unique orthogonal code, the overall CIR can be very high. Such a design

would, however, be very spectrum inefficient and is hardly seen in practice.

The analysis for frequency selective fading channel, or MRC is more complicated

and less insightful but can be carried out similarly. Due to the variable channel gain ℎ𝑘

at different subcarriers, the orthogonal groups are no longer perfectly orthogonal to the

signal subcarrier group and therefore will have higher residual interference energy. As

results, we can expect degraded CIR compared to AWGN channels.

Figure 6.5 plots the calculated CIRs based on (6.20) for several different spreading

schemes in flat fading scenario, with the CFO, 𝜖, ranges from 0 up to 0.3. The total number

of subcarriers, 𝑀 , is 256. The CIR of “interleaved redundant subcarrier” with diversity

degree of 4, 6 and 8 are identical and plotted as the baseline. For “spread redundant

subcarrier” with diversity of 4 and 8, we use Walsh codes 𝕎4 and 𝕎8 respectively. For

diversity of 6, we use truncated 𝕎8, i.e., all 8 codes are truncated to 6 bits.

All spreading-based design offers significant CIR improvement, with the highest CIR

improvement, close to 30 dB, achieved with 𝐿 = 8. Figure 6.5 shows that the diversity

degree, 𝐿, directly affect the CIR, as it determines the spacing between compatible sub-

carriers. Figure 6.5 shows that CIR is 10 dB higher when 𝐿 increases from 4 to 8. Using
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quasi-orthogonal codes (𝐿 = 6) suffers little degradation.
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Figure 6.5: Theoretical Calculation of CIR for Different Schemes

6.4 Performance Evaluation

To evaluate the effectiveness of different spreading schemes, we implement several

OFDM transceivers with different redundancy and spreading schemes and simulate their

BER performance. The simulation is set up as follows: the center frequency of the OFDM

systems is 2.4GHz and the signal bandwidth is 20MHz. Of a total of 256 subcarriers, we

allocate at least 32 subcarriers as null tones in the guard band. DC tone is nulled as well.

There are also 12 pilot tones evenly distributed and modulated with random generated
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symbols. Each tone is QPSK modulated and input symbols are randomly generated.

During the simulation, we sweep 𝜖 from 0 to 0.3.

0.05 0.1 0.15 0.2 0.25 0.3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Normalized Carrier Frequency Offset ε

B
E

R

 

 

No Spreading L=4 or 6 or 8
Walsh Code L=4
Alternating Orthogonal Code L=6
Trunked Walsh Code  L=6
Walsh Code L=8
Cyclic Orthogonal Code L=6

Figure 6.6: BER of the OFDM system vs. CFO in flat fading channels

Our first set of simulations are carried out using flat fading channels and the results

are given in Figure 6.6. To observe the effect of our proposed frequency spreading

scheme on system BER performance, no additive noise is added to the channel. Our

simulation shows that when spreading is not applied, system BER is insensitive to the

diversity degree, as predicted by our analysis. Note that since the simulations use noise

free channel, the frequency diversity gain after combining is not reflected in the BER.

For both 𝐿 = 4 and 𝐿 = 8, Walsh codes are used as spreading vectors. For 𝐿 = 6,
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we compare three different spreading schemes: i) truncated Walsh codes, ii) alternat-

ing orthogonal codes and iii) length-6 cyclic orthogonal codes. In the first scheme, we

truncate all 𝑊8 to length-6 vectors. The truncation causes the spreading vectors to be

quasi-orthogonal instead perfectly orthogonal to each other and as consequences, re-

sults in higher residual ICI. The alternating orthogonal codes scheme uses only one pair

of length-6 orthogonal codes (e.g., [1, 1, 1, 1, 1, 1] and [1, 1, 1,−1,−1,−1]) and apply them

on adjacent channels. Such arrangement results in half of the total subcarrier groups to

be orthogonal to the other half of the groups, but compatible to each other within the two

halves. In the third schemes, 𝔹6 listed in Table 6.2 are used as spreading vectors.

The simulation shows that the second scheme has the worst BER of the three, even

worse than the 𝐿 = 4 case. This shows that even though quasi-orthogonal suffers slight

performance degradation, the CIR gain is more directly affected by the separation of the

compatible groups. Even though the second scheme uses a set of 6 QOC as spreading

vectors, it has much better performance than the first one. As expected, the third scheme,

which uses 6 truly orthogonal spreading vectors, offers the best BER performance.

Significant spreading gain can be observed in Figure 6.6. For example, to achieve

BER of 10−3 and better, the maximum CFO tolerable is 𝜖 = 0.11 without spreading. With

spreading, the tolerable CFO goes up to 0.2 for 𝐿 = 4 and up to 0.25 when 𝐿 = 8.

We also compare the spreading gain in frequency selective fading channels. The

channels we use are generated from indoor, non-line-of-sight IEEE 802.15.4 channel

models. From the results shown in Figure 6.7, we can see that all scheme suffer perfor-

mance loss. The spreading gain is still significant but reduced. This is attributed to the

fact that the orthogonality is not maintained any more when the gain of each subcarrier

is different. The gain is still directly related to the diversity degree.

Both Figure 6.6 and 6.7 show high spreading gain in the low CFO regime and it slowly

reduces as 𝜖 grows and in both cases, approaches 0 when 𝜖 > 0.3.
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Figure 6.7: BER of the OFDM system vs. CFO in indoor NLOS channels
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In addition to OFDM systems, we simulate the performance in OFDMA systems. A

total of 256 subcarriers are assigned to multiple users. Each user has an independent

clock with CFO randomly distributed within [− 𝜖
2
, 𝜖
2
]. Simulation results shows similar BER

improvement.

6.5 Summary

This chapter proposed an ICI cancelation scheme for OFDM/OFDMA systems, which

spreads the redundant data subcarriers with orthogonal or quasi-orthogonal codes. We

use PSO to find a set of orthogonal code for this design which works perfectly. We have

to emphasize the benefit of using PSO here again, since this design provides us with

good codes in very short time. We also present design details of both the transmitter and

receiver and analysis on the spreading gain in terms of CIR improvement. Theoretical

analysis and simulations are given in the chapter as well. The numerical results confirm

that for a given BER requirement, designs using the proposed ICI cancelation scheme

are twice or more tolerant to carrier frequency offset.
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Chapter 7

PSO Based PAPR Reduction Method

This chapter considers the use of a two stage method to reduce the peak to average

power ratio (PAPR) of a frequency redundant OFDM system. At the first stage, the

subcarriers are divided into smaller clusters, we apply random phase rotation and an-

other specific manipulation on clusters of subcarriers. At the second stage, we treat

each cluster of subcarriers as a group and propose a PSO phase optimization technique

in reducing the PAPR. The conventional selective mapping (SLM) and partial transmit

sequence (PTS) technique are highly successful in PAPR reduction for OFDM signals.

However, both methods need to find the optimal phase factors, which is a complex, non-

linear optimization problem. The considerable computational complexity for the required

search through a high-dimensional vector space is problematic for practical implementa-

tion. Moreover, the conventional PTS requires an exhaustive search from all combina-

tions of allowed phase factors. It turns out that search complexity increases exponentially

with the number of subblocks. To reduce the search complexity while still improving the

PAPR statistics, stochastic search techniques have recently been proposed [63]-[64].

They can obtain the desirable PAPR reduction with low computational complexity. In our

method, at the second stage, PSO is used to search for phase factors that reduce both

96



7.1. INTRODUCTION

the PAPR statistics and the computational load.

7.1 Introduction

OFDM is an attractive technique for achieving high data rate while combating with the

frequency selective fading channel. However, it is well known that uncoded OFDM does

not provide any frequency diversity. Adding frequency diversity by modulating the same

information bit on multiple interleaved subcarriers is an effective way to further mitigate

the effect of frequency-selective fading as well as an enhancement to the system signal

to noise ratio (SNR), which leads to a more robust system.

One of the major disadvantages of OFDM systems, especially for the frequency re-

dundant design, is the high peak-to-average power ratio (PAPR) of the transmitted sig-

nals, which requires expensive high power amplifier with a large linear range. Fig. 7.1

show the concepts of how PAPR problem is created in a simple OFDM system.

Figure 7.1: A simple example of PAPR problem
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In addition, large PAPR also demands AD converters with large dynamic ranges. In

order to reduce the PAPR, a number of approaches have been proposed [65][66]. De-

terministic method such as clipping the OFDM signal before amplification is the most

intuitive and basic method that limits the PAPR within a given threshold. However, this

method causes performance degradation and creates out-of-band radiation [67]. In com-

parison, probabilistic schemes statistically improve the characteristics of the PAPR distri-

bution without signal distortion. Selective mapping (SLM) and partial transmit sequence

(PTS) belong to this category. Conventional SLM pre-generates a number of statistically

independent sequences from the same data, and chooses the one with the lowest PAPR

to send out [68]. PTS divides the subcarriers into a set of disjoint subblocks or continuous

clusters, each subblock or cluster of subcarriers is multiplied by different phase factors,

the subblocks/clusters are then added to form the different OFDM symbols. The phase

factor that generates the time domain OFDM signal which has the lowest PAPR is chosen

for transmission [69]. Both SLM and PTS techniques can be considered as multiple sig-

nal representation methods, one favorable OFDM symbol is selected from a very large

set of statistically independent symbols. For both techniques, a large amount of IFFT

calculation and complex multiplication with phase sequences are required, in proportion

to the number and length of the phase sequences used. For example, optimally PTS may

require an exhaustive search over all the possible phase factor combinations, whose al-

gorithm complexity is exponential. Then for an OFDM system that has significantly large

number of subcarriers, the required computational load and hardware complexity can

become prohibitively high.

In this chapter, we propose a two stage PAPR reduction method. At the first stage,

we apply phase rotation on one set of the cluster of subcarriers and map it strategically

on the OFDM subcarriers. At the second stage, we treat each cluster of subcarriers as

a group and use a method simil ar to SLM to generate the favorable OFDM symbol for

98



7.2. PAPR PROBLEM AND CONVENTIONAL SLM AND PTS

transmission.

7.2 PAPR Problem and Conventional SLM and PTS

An OFDM transmitter reads in data to be transmitted in blocks. Each data block can be

represented by a size-𝑄 vector, A = [𝑎0, 𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑄−1], where 𝑎𝑖, (0 ≤ 𝑖 ≤ 𝑄 − 1) is a

complex number representing a modulation alphabet based on a particular modulation

scheme (e.g., PSK, QAM, etc.). A mapping function, 𝒫(⋅), maps input data in A to a

size-𝑁 vector, S = [𝑆0, 𝑆1, ⋅ ⋅ ⋅ , 𝑆𝑁−1].

S = 𝒫(A), (7.1)

where 𝑁 is the number of subcarriers in an OFDM symbol. In a conventional OFDM

system, there is no subcarrier redundancy, so we have 𝑁 = 𝑄, 𝑆𝑖 = 𝑎𝑖 (0 ≤ 𝑖 ≤ 𝑁−1). S

is referred as frequency domain symbol. The time domain OFDM signal 𝑠(𝑡) is obtained

by the inverse fast Fourier transform (IFFT) given by:

𝑠(𝑡) = ℱ−1(S) =
1√
𝑁

𝑁−1∑
𝑘=0

𝑆𝑘 ⋅ 𝑒𝑗 2𝜋𝑘𝑡
𝑇 , 0 ≤ 𝑡 ≤ 𝑇, (7.2)

where 𝑇 is the OFDM signal duration. In practice, a cyclic prefix (CP) is added to the

signal 𝑠(𝑡) in order to avoid the inter-symbol interference (ISI) that occurs in multipath

channels. Since the CP does not impact the PAPR, we ignore it [70]. Because of central

limit theorem and the fact that IFFT is a linear operation, the transmitted OFDM signal

𝑠(𝑡) follows complex Gaussian distribution when the number of subcarriers 𝑁 is large.

99



7.2. PAPR PROBLEM AND CONVENTIONAL SLM AND PTS

The PAPR of OFDM is given by:

𝑃𝐴𝑃𝑅(𝑠(𝑡)) =
max ∣𝑠(𝑡)∣2
E{∣𝑠(𝑡)∣2} (7.3)

where E{⋅} denotes the expectation or a statistical average operator. In the literature, the

complementary cumulative distribution function (CCDF) is used to evaluate the PAPR

reduction performance. The CCDF of the PAPR is given in [66] as

Pr(𝑃𝐴𝑃𝑅 > 𝑃𝐴𝑃𝑅0) = 1− (1− 𝑒−𝑃𝐴𝑃𝑅0)𝑁 (7.4)

7.2.1 Selective Mapping Scheme

SLM is a simple PAPR suppression method for OFDM signals. In the classical SLM

technique, frequency domain symbol block S is multiplied element by element with 𝑈

phase rotation vectors (also know as scrambling sequences) 𝑟(𝑢) = [𝑒𝑗𝜙
(𝑢)
0 , ⋅ ⋅ ⋅ , 𝑒𝑗𝜙(𝑢)

𝑁−1 ],

(𝑢 = 1, ..., 𝑈), resulting in a set of 𝑈 different sequences with each entry being

𝑆
(𝑢)
𝑘 = 𝑆𝑘𝑒

𝑗𝜙
(𝑢)
𝑘 , 𝑘 = 0, 1, ⋅ ⋅ ⋅ , 𝑁 − 1. (7.5)

All 𝑈 sequences are usually oversampled by a factor 𝐿 [65] and then transformed into

the time domain by IFFT. The time domain sequence with the lowest PAPR is selected for

transmission. Consequently, the SLM technique is required to perform 𝑈 IFFT operations

to generate these 𝑈 candidates at the transmitter. Since the number of information bits

𝑘 = 𝑁 , the explicit side information bits about the selected phase rotation vectors should

be transmitted reliably such that the original codeword S can be recovered at the receiver.

The performance of PAPR reduction in SLM strongly depends on the number and the

selection of the phase rotation vectors.
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Figure 7.2: Selective mapping approach

In the SLM implementation shown in Fig. 7.2, 𝑈 transmit sequences are produced by

multiplying the information sequence by 𝑈 random sequences of length 𝑁 . If the CCDF

of the original sequence is Pr(𝑃𝐴𝑃𝑅 > 𝑃𝐴𝑃𝑅0), then, the CCDF of the best of the 𝑈

sequences will be [Pr(𝑃𝐴𝑃𝑅 > 𝑃𝐴𝑃𝑅0)]
𝑈 . Thus, in theory, the probability of the PAPR

exceeding some threshold can be made as small as possible at the expense of added

complexity (i.e., additional IFFTs).

7.2.2 Partial Transmit Sequence Scheme

PTS method [69] divides the input frequency domain symbol S into 𝑀 disjoint subblocks

or clusters consisting of a contiguous set of subcarriers, {S̄𝑚∣𝑚 = 0, 1, ⋅ ⋅ ⋅ ,𝑀 − 1}. After

zero padding at corresponding positions, each subblock S̄𝑚 becomes a length-𝑁 vec-

tor, S̄𝑚 = [𝑆𝑚,0, 𝑆𝑚,1, ⋅ ⋅ ⋅ , 𝑆𝑚,𝑁−1] satisfy that S =
∑𝑀−1

𝑚=0 S̄𝑚 and 𝑆𝑖,𝑛 ⋅ 𝑆𝑗,𝑛 = 0 (𝑛 =

0, 1, ⋅ ⋅ ⋅ , 𝑁 − 1) when 𝑖 ∕= 𝑗, (𝑖, 𝑗 ∈ {0, ⋅ ⋅ ⋅ ,𝑀 − 1}). Through this process, the original
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Figure 7.3: Partial transmit sequence approach

vector S turns to a 𝑀 × 𝑁 matrix. Let the partial transmit sequence 𝑠𝑚 of length-𝑁 be

the IFFT of the subblock S̄𝑚, we have the time domain transmitted sequence:

s = IFFT(S) =
𝑀−1∑
𝑚=0

s𝑚. (7.6)

Applying phase factors to subblocks/clusters allows optimization of combining partial

transmit sequences. The combined sequence is:

s = IFFT(
𝑀−1∑
𝑚=0

𝑏𝑚S̄𝑚) =
𝑀−1∑
𝑚=0

𝑏𝑚s𝑚 (7.7)

where {𝑏𝑚 = 𝑒𝑗𝜙𝑚 , 𝑚 = 0, ⋅ ⋅ ⋅ ,𝑀 − 1} is the phase rotation factor, each factor is applied

to one subblock/cluster. Assume 𝜙𝑚 ∈ {2𝜋𝜔/𝑊, 𝜔 = 0, ⋅ ⋅ ⋅ ,𝑊 − 1}, then there will be

𝑊𝑀 possible unique sets of phase factors to choose from. One selection approach is that

we exhaustively try all the possible phase rotation factors and choose the sequence gen-
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erated with the lowest PAPR, but the computational complexity of this method increase

exponentially 𝑀 . Another much simpler approach is to randomly generate 𝑈 phase rota-

tion vectors 𝑏(𝑢) = [𝑏
(𝑢)
1 , ⋅ ⋅ ⋅ , 𝑏(𝑢)𝑀 ] (𝑢 = 1, ⋅ ⋅ ⋅ , 𝑈) to apply on S̄𝑚 and choose s(𝑢) with the

lowest PAPR. A PTS transmitter is shown in Fig. 7.3.

7.3 Frequency Redundant OFDM System

The OFDM system we consider here is a frequency redundant system, which utilizes the

frequency diversity across OFDM subcarriers. Since the coherent bandwidth in most of

the wireless channels is much greater than the subcarrier-spacing and therefore each

subcarrier is subject to deep fading. Frequency diversity is introduced in OFDM systems

to mitigate this. An easy and convenient way to provide such frequency diversity is to

map each input symbol, 𝑎𝑛, to multiple subcarriers [71],

𝑆𝑘 = 𝑎𝑛, ∀𝑘 ∈ 𝔖𝑛 = {𝑘0, 𝑘2, ⋅ ⋅ ⋅ , 𝑘𝐷−1}. (7.8)

𝐷 is the degree of frequency diversity, and 𝔖𝑛 is the set of subcarriers assigned to 𝑎𝑛. To

maximize the frequency diversity, it is essential that the subcarriers assigned to the same

input data are spread across the entire band. This can be achieved when an interleaving

subcarrier mapping scheme is used. In a generic OFDM system which has no non-data

subcarriers, for a size-𝑄 input vector, a mapping function would be as follows:

S = 𝒫(A) =[𝑎0, ⋅ ⋅ ⋅ , 𝑎𝑄−1︸ ︷︷ ︸
1st set

, 𝑎0, ⋅ ⋅ ⋅ , 𝑎𝑄−1,︸ ︷︷ ︸
2nd set

⋅ ⋅ ⋅ , 𝑎0 ⋅ ⋅ ⋅ 𝑎𝑄−1︸ ︷︷ ︸
𝐷th set

]

=[Ŝ1, Ŝ2, ⋅ ⋅ ⋅ , Ŝ𝐷]

(7.9)
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where Ŝ𝑖, (1 ≤ 𝑖 ≤ 𝐷) stands for the 𝑖th subcarrier cluster. The mapping function given

in (7.9) maps 𝑄 inputs to 𝐷 × 𝑄 = 𝑁 subcarriers. The 𝑞th input 𝑎𝑞−1 is mapped to 𝐷

subcarriers, {𝑘0 = 𝑞 − 1, ⋅ ⋅ ⋅ , 𝑘𝐷−1 = (𝐷 − 1)𝑄 + 𝑞 − 1}. Subcarriers carrying the same

data have a minimum separation of 𝑄 subcarriers spacing. The advantage of this design

is that it make use of the frequency diversity to mitigate the effects from the frequency

selective channel, when transmitted signals on some frequency band are affected by the

channel and can not be detected, signals on other spectrum bands can still be received

by the receiver correctly.

Another obvious advantage of frequency diversity for an OFDM system is the improve-

ment of the system BER due to the signal diversity gain. With redundant subcarrier, sig-

nal to noise ratio (SNR) becomes the ratio of the total power of signal subcarriers for the

same input symbol to the noise. Assuming the simplest additive white Gaussian noise

channel and equal gain combining receiver, the SNR is 𝐷 times of the non-frequency

redundant system.

Except for the above advantages and the trade off between robustness and the data

rate loss, there is a disadvantage of this frequency redundant OFDM system - its high

PAPR. From the probability perspective, if there are 𝐷 sets of subcarriers carrying the

same data, the probability of having a high peak in time domain is much higher due to

the dependency of the signal in frequency domain [65].

Generally, for this frequency redundant OFDM system, the time domain baseband

signal can be written as in (7.2). By sampling the above signal 𝑠(𝑡) with sampling interval
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Δ𝑡 = 𝑇𝑠/𝑁 , we get discrete time domain signal as

𝑠(𝑛) =
1√
𝑁

𝑁−1∑
𝑘=0

𝑆𝑘 ⋅ 𝑒𝑗 2𝜋𝑘𝑛
𝑁 =

1√
𝑁

𝑄−1∑
𝑞=0

𝑎𝑞

𝐷−1∑
𝑑=0

𝑒𝑗
2𝜋𝑛(𝑑𝑄+𝑞)

𝑁

=
1√
𝑁

𝑄−1∑
𝑞=0

𝑎𝑞 ⋅ 𝑒𝑗
2𝜋𝑛𝑞
𝑁

︸ ︷︷ ︸
𝑠(𝑛)

𝐷−1∑
𝑑=0

𝑒𝑗
2𝜋𝑛𝑑𝑄

𝑁︸ ︷︷ ︸
𝜁

.
(7.10)

We can see how redundancy affects the OFDM signal’s PAPR from this equation. 1√
𝑁
𝑠(𝑛)

is the scaled periodic extension of the IFFT of 𝑆𝑖 and 𝜁𝐷 is the IFFT of a length-𝑁 vector

[1, 0, ⋅ ⋅ ⋅ , 0︸ ︷︷ ︸
𝑄−1

, ⋅ ⋅ ⋅ , 1, 0, ⋅ ⋅ ⋅ , 0︸ ︷︷ ︸
𝑄−1

]. Fig. 7.4 shows one example of the amplitude of 𝜁. We can

see that due to the dependency of the subcarriers, 𝜁 periodically raise the amplitude of

𝑠(𝑛). Clearly this subcarrier dependency affects the PAPR of the OFDM signal. In the fol-

lowing section, we propose a two stage phase rotation method to change the probabilistic

behavior of the PAPR of this design.
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Figure 7.4: Amplitude of 𝜁 (N=128, D=4, Q=32)
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7.4 A Two Stage PAPR Reduction Method

We propose a two stage PAPR reduction method. As shown in Fig. 7.5, after the modula-

tion, we have a vector of length-𝑄. This is a set in (7.9), that carry one time of the original

input data. Due to the frequency redundancy in our design, the same set of input data

will be mapped on 𝐷 clusters of subcarriers to compose the length-𝑁 OFDM symbol.

7.4.1 The First Stage

In our PAPR reduction method, we first apply the phase rotation on this subblock before

mapping it on the𝐷 subcarrier clusters. In this case, the chosen phase rotation vector 𝑝(𝑢)

only needs to have 𝑄 components. The phase rotation sequence is generated using the

unit-magnitude complex number. For convenience, binary ({±1}) or quaternary elements

({±1,±𝑗} or {±√
2± 𝑗

√
2}) are usually used for elements of 𝑝(𝑢).

Figure 7.5: Block diagram of the proposed design
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Different subcarrier clusters contain the same information, hence, in order to avoid

accumulated components of particular phase which might produce excessive peak power

signal in time domain, we use a simple alternative signal allocation method. We convert

one of the adjacent clusters to the conjugate of themselves (Ŝ𝑑, Ŝ𝑑+1 = −Ŝ∗
𝑑+1). By

doing this, the phase difference between two adjacent clusters varies with respect to the

original input data symbols themselves. Thus, the dependency between the different

clusters reduced.

After this stage, the input frequency symbol S in (7.9) turns to

S̃(𝑢) = 𝑝(𝑢)⋅[Ŝ1,−Ŝ∗
2, ⋅ ⋅ ⋅ , Ŝ𝐷−1,−Ŝ∗

𝐷

]
. (7.11)

7.4.2 The Second Stage

Then we enter the second stage. At this stage, we need to treat each cluster as a group

and rotate every cluster by one rotation factor. Now S̃(𝑢) can be expressed as

S̃(𝑢) = 𝑝(𝑢)⋅[Ŝ1 ⋅ 𝑏(𝑢)1 ,−Ŝ∗
2 ⋅ 𝑏(𝑢)2 , ⋅ ⋅ ⋅ , Ŝ𝐷−1 ⋅ 𝑏(𝑢)𝐷−1,−Ŝ∗

𝐷 ⋅ 𝑏(𝑢)𝐷

]
. (7.12)

After choose the rotation factors, in order to obtain an improved approximation of the

true PAPR in the discrete-time signal, we need oversample the candidate signals. An

oversampling rate of 𝐿 for the system can be achieved by inserting (𝐿 − 1) ⋅ 𝑁 zeros in

the middle of the encoded symbol vectors. Thus, S̃(𝑢) becomes

S̃(𝑢) =𝑝(𝑢) ⋅ [Ŝ1 ⋅ 𝑏(𝑢)1 ,−Ŝ∗
2 ⋅ 𝑏(𝑢)2 , ⋅ ⋅ ⋅ ,−Ŝ∗

𝐷/2 ⋅ 𝑏(𝑢)𝐷/2, 0, ⋅ ⋅ ⋅ , 0︸ ︷︷ ︸
(L−1)⋅N

,

Ŝ𝐷/2+1 ⋅ 𝑏(𝑢)𝐷/2+1, ⋅ ⋅ ⋅ , Ŝ𝐷−1 ⋅ 𝑏(𝑢)𝐷−1,−Ŝ∗
𝐷 ⋅ 𝑏(𝑢)𝐷

]
.

(7.13)
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To generate signal representations, we get the time-domain signal by using IFFT on

S̃(𝑢)

s̃(𝑢) = IFFT(S̃(𝑢)). (7.14)

Then the selecting can be mathematically expressed as

s̆ = argmin{𝑃𝐴𝑃𝑅(s̃(𝑢))} (7.15)

Finally, the transmitter selects the most favorable time domain signal s̆ with the lowest

PAPR for transmission.

Note that during this stage, the phase rotation factors 𝐵(𝑢) = [𝑏
(𝑢)
1 , 𝑏

(𝑢)
2 , ⋅ ⋅ ⋅ , 𝑏(𝑢)𝐷 ] can

be chosen freely within [0, 2𝜋). Traditionally, the selection of the phase rotation factors

is limited to a set with finite number of elements to reduce the search complexity. The

best phase rotation factor set among the available sets that minimizes the PAPR can be

obtained from an exhaustive simulation of all possible combinations.

However, since we are choosing discrete numbers in a continuous space, in theory,

there is unlimited number of possibilities to get an arbitrary point in the space. This

resembles the analog to digital conversion in signal processing, the smaller the resolution

is, the more candidate points we can get, thus the more possible combinations exist. In

other words, 𝑏(𝑢)𝑖 = 𝑒𝑗𝜙
(𝑢)
𝑖 , and 𝜙(𝑢)

𝑖 = 2𝜋/𝑊 , 𝑖 = (0, 1, ⋅ ⋅ ⋅ , 𝐷−1) and 𝑊 can be an arbitrary

large integer.

The optimization problem of PAPR at this stage can be considered as a combinatorial

optimization problem. In other words, the objective function 7.16 is to minimize the PAPR

of the transmitted OFDM signals.

To minimize

𝑓(𝐵) = argmin{𝑃𝐴𝑃𝑅(s̃(𝑢))} (7.16)
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Subject to

𝑏𝑚 = {𝑒𝑗𝜙𝑚} (7.17)

where 𝜙𝑚 ∈ {2𝜋𝑘
𝑊

∣𝑘 = 0, 1, ⋅ ⋅ ⋅ ,𝑊 − 1}.

We propose a PSO based algorithm here to achieve better PAPR reduction with low

complexity. The original PSO algorithm was designed for a problem with continuous pa-

rameters. Since the optimization parameters (rotation factors) are discrete, another way

to tackle discrete parameters is to apply the PSO algorithm modified for binary parame-

ters - Binary PSO (we already introduced in Chapter 3).

The transformation function is a sigmoid limiting function as in equation (3.2), we

rewrite it here:

𝑠𝑖𝑔(𝑣𝑖𝑑) =
1

1 + exp(−𝑣𝑖𝑑) (7.18)

whose range is (0, 1). A random number uniformly distributed over [0, 1] is generated to

be compared with 𝑠𝑖𝑔(𝑣𝑖𝑑), the location 𝑥𝑖𝑑 is updated by the following formula:

𝑥𝑖𝑑 =

⎧⎨⎩
1 𝑟𝑎𝑛𝑑𝑜𝑚 < 𝑠𝑖𝑔(𝑣𝑖𝑑)

0 𝑒𝑙𝑠𝑒

(7.19)

Other than above, the rest of Binary PSO is the same as the canonical PSO. Suppose

the range of parameter ∣𝑣𝑖𝑑∣ is [0, 𝑛], then the change probability of particle 𝑖 is defined as

𝑠𝑤𝑎𝑝(𝑣𝑖𝑑) =
∣𝑣𝑖𝑑∣
𝑛

(7.20)

which is constrained to the interval [0, 1]. A random number 𝜌𝑖𝑑 uniformly distributed

over [0, 1] is generated to be compared with 𝑠𝑤𝑎𝑝(𝑣𝑖𝑑) , if 𝜌𝑖𝑑 < 𝑠𝑤𝑎𝑝(𝑣𝑖𝑑) , then the

value of particle 𝑖 is changed with the value of global best location in corresponding

position, as shown in Figure 7.6. Therefore, in the update process, the solution will
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always approaches to the global optimum solution.

Figure 7.6: Particle position update in Binary PSO

For our problem, during the PSO process, for a 𝐷-dimensional optimization, the po-

sition and velocity of the 𝑖𝑡ℎ particle can be represented as 𝐵(𝑖) = [𝑏
(𝑖)
1 , 𝑏

(𝑖)
2 , ⋅ ⋅ ⋅ , 𝑏(𝑖)𝐷 ] and

𝑉𝑖 = 𝑉𝑖,1, 𝑉𝑖,2, ⋅ ⋅ ⋅ , 𝑉𝑖,𝐷, respectively. Each particle has its own best position correspond-

ing to the individual best objective value obtained do far. The global best (𝑔𝑏𝑒𝑠𝑡) particle

represents the best particle found so far in the entire swarm. The velocity updating fol-

lows equation (3.1) and the new position for particle 𝑖 is computed according to equation

(3.2). The populations of particles are then moved according to the new velocities and

locations and tend to cluster together from different directions. Thus, the evaluation of

each associate fitness of the new population of particles begins again. The algorithm

runs through these processes iteratively until it stops. The termination criteria can be

either a predefined PAPR threshold or a preset PSO iteration number.

We can see that compared with SLM and PTS, this scheme rotates the subcarriers
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twice in two stages instead of only one conventionally. The increased freedom of rota-

tion can further randomize the phase of different subcarriers. The PSO-assisted second

stage exploits heuristics to search the optimal combination of phase factors with low com-

plexity. After the two phase rotation stages, the subcarrier clusters are then mapped in

cascade to form the length-𝑁 OFDM symbol.

7.5 Simulation Results

We conduct a series of simulations to evaluate the proposed scheme on its PAPR reduc-

tion performance. The simulation system is set up as follows: the QPSK modulation is

used, number of subcarriers 𝑁 span from 128 to 2048, the OFDM signal is oversampled

by a factor of 𝐿 = 4. In order to generate the complementary cumulative distribution

function (CCDF) of the PAPR, 10000 random OFDM frames have been generated. For

PSO, we use 20 particles and iteration number is 30 times.

For simplicity, the elements of the phase sequence 𝑝(𝑢) in traditional SLM and 𝑏(𝑢)

in traditional PTS are randomly chosen from set {±1,±𝑗}. We ignore the cyclic prefix

and pilots in the OFDM subcarriers. The frequency diversity 𝐷 is assigned by 4 and 8,

respectively. We run the regular OFDM systems with same number of subcarriers which

have no frequency redundancy to compare with our frequency redundant designs. We

also compare with the so called “Optimal PTS” (OPTS) technique, but within a limited set

of {±1,±𝑗,±𝜋
2
,±1𝜋

4
± 3𝜋

4
}. The OPTS technique requires an exhaustive search over all

the combinations of the allowed phase factors. However, in our PSO-based method, we

use the set of {±1,±𝑗,±𝜋
2
,±1𝜋

4
± 3𝜋

4
,±1𝜋

8
,±3𝜋

8
, ⋅ ⋅ ⋅ ,±15𝜋

16
} as the candidates for phase

rotation factors.

Fig. 7.7 through Fig. 7.14 show the CCDF of PAPR for different methods. It can be

seen that the PAPR of the original redundant OFDM signal is the largest which match our
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Figure 7.7: Comparison of PAPR reduction performance, subcarrier number N
= 128 redundant degree D = 4
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Figure 7.8: Comparison of PAPR reduction performance, subcarrier number N
= 128 redundant degree D = 8
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Figure 7.9: Comparison of PAPR reduction performance, subcarrier number N
= 256 redundant degree D = 4
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Figure 7.10: Comparison of PAPR reduction performance, subcarrier number
N = 256 redundant degree D = 8
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Figure 7.11: Comparison of PAPR reduction performance, subcarrier number
N = 1024 redundant Degree D = 4,
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Figure 7.12: Comparison of PAPR reduction performance, subcarrier number
N = 1024 redundant degree D = 8,
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Figure 7.13: Comparison of PAPR reduction performance, subcarrier number
N = 2048 redundant degree D = 4
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Figure 7.14: Comparison of PAPR reduction performance, subcarrier number
N = 2048 redundant degree D = 8
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guess based on the theory. We also simulate regular OFDM systems with same num-

ber of subcarriers, which have no frequency redundancy to compare with our frequency

redundant designs. These figures verify that redundancy does affect the PAPR greatly.

In Fig. 7.7, for example, the performance of different techniques are shown, to com-

pare the performance of PAPR reduction with proposed technique. Note that traditional

PTS and SLM use 16 time random choose, which means 𝑈 = 16. After 16 random gen-

erations, they pick the signal which has the lowest PAPR to send out. We can see that

when 𝑃𝑟(𝑃𝐴𝑃𝑅 > 𝑃𝐴𝑃𝑅0) = 10−4, the 𝑃𝐴𝑃𝑅0 of OFDM with redundant degree of 4

is 16.7dB, PTS with 𝑀 = 16 is 12.3dB, PTS with 𝑀 = 32 is 11.7dB and OPTS is 9.2dB

with 𝑀 = 16 and factor number 16 ({±1,±𝑗,±𝜋
2
,±1𝜋

4
± 3𝜋

4
}). , and PSO-based method

is 8.8dB. It is evident that the PSO-based method can provide the better performance of

PAPR reduction.

We know that the OPTS need 216 = 65536 times of IFFT operations which is pro-

hibitively expensive to get a good result, meanwhile our PSO based method are using a

much larger set to get the rotation factor {±1,±𝑗,±𝜋
2
,±1𝜋

4
± 3𝜋

4
,±1𝜋

8
,±3𝜋

8
, ⋅ ⋅ ⋅ ,±15𝜋

16
}. This

is almost impossible for OPTS to use since it needs 232 = 4294967296 IFFT operations to

exhaustively cover the whole set. However, our propose approach still get a better result.

In the following figures, we can find some trends:

* PAPR grows with subcarrier number. When N = 2048, the redundant OFDM (re-

dundant degree = 8) has a PAPR of more than 20dB.

* PAPR also grows with the redundant degree, the higher the redundant degree, the

bigger the PAPR which matches our previous analysis.

* In all cases, our proposed PSO-based method performs closely but better than the

OPTS methods, which shows our methods advantage.
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* Due to the low complexity of PSO methods, when the rotation factor set is big and

number of subblock is big, when it is prohibitively expensive to do an exhaustive

search, PSO-method can still render a good result.

7.6 Summary

In this chapter, a PSO based PAPR reduction method for frequency redundant OFDM

system is proposed to search the suboptimal combination of phase factors to reduce the

complexity. We formulate the phase rotation factor search of the problem as a discrete

optimization problem with bound constraints and design a binary PSO based algorithm

for it. Simulation results demonstrate that the performance of the proposed method has

slightly better performance compared to that of OPTS. However, the complexity of the

proposed method was remarkably lower than that of OPTS. In one word, it can achieve

the good tradeoff between PAPR performance and complexity compared with the con-

ventional PTS techniques.
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Chapter 8

Conclusions and Future Work

Research is an iterative process very similar to the one modeled by the particle swarm.

Researchers keep testing ideas based on their previous successes and the successes

observed in other researchers in the area. The work in this dissertation is no exception.

8.1 Concluding Remarks

In this dissertation we developed particle swarm optimization based methods for prob-

lems in wireless communication area. The aim is to provide intelligent tools to the sys-

tem designers to apply to real world problems. The PSO based algorithms we designed

provide a comprehensive treatment to the problems encountered in wireless commu-

nications. They are adaptable and can be applied to different problem structures and

problem types. Particle swarm optimization can be and has been used across a wide

range of applications by many other researchers in the world. Areas where PSOs have

shown particular promise include multimodal problems and problems for which there is

no specialized method available or all specialized methods give unsatisfactory results.

From the data of 2010, in the IEEE Xplore database There are around 4500 papers (286
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of which are journal papers) can be classified as applications of PSO, although many of

these also involve the customization or extension of the method to best suit the specific

application of interest.

To sum up the advantages of PSO, we list its three attracting feathers here:

Simplicity The particle swarm optimization algorithm uses simple operators like adds,

and multipliers to travel through the search space. The algorithm structure only

requires just five simple steps;

Independence from the objective function The swarm treats the objective function as

a black-box. It queries the objective function to estimate the performance of each

particle in the swarm. This clear separation from the objective function, enables the

swarm to be used for a variety of problems without any additional steps;

Easy control PSO has limited number of parameters. In the basic PSO, only the size

of the population, two inertial coefficients and the bound of the velocity need to be

fixed before running a PSO. Also, PSO is less sensitive to parameters. PSO is

also less dependent on initial points. Contradict to some other methods, randomly

picked initial positions can still lead to convergence for PSO.

PSO algorithms have been applied to optimization problems ranging from classical

problems such as scheduling, the traveling salesman problem, neural network training,

and task assignment, to highly specialized applications such as reactive power and volt-

age control, biomedical image registration, and even music composition. Our work can

be categorized into highly specialized applications, in all applications we achieve provide

successful solutions and get good results. Meanwhile, new problems and new methods

in wireless communication and signal processing field are appearing from time to time.

It seems not surprised at all that some of the results presented during the course of this
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work are superseded by other results presented later. We hope the work presented in

this thesis may help other researchers explore new aspects in this area that were not

considered before.

8.2 Future Works

Despite its apparent simplicity, the PSO presents formidable challenges to those inter-

ested in understanding swarm intelligence through theoretical analysis. So, to date a fully

comprehensive mathematical model of particle swarm optimization is still not available.

We would like to explore the theoretical side of PSO algorithm and gain more insight on

PSO. The research on PSO and its application in the following directions are going to be

useful:

8.2.1 Mathematical Explanation of PSO Algorithm

Although PSO’s application has been proved to be effective, its theoretical foundation is

rather weak. Clerc and Kennedy [72] make a analysis on the convergence of the method

from the point of maths. By analyzing the stability of the condition transmitting matrix,

they find the limited conditions where the particle can move stably. Based on this, Bergh

makes the further analysis on it. Lebesgue and Borel explore the effect of casualty on the

locus of the particle, and analyze the convergence from the point of measuring space.

Still, there is no mathematically proved about the convergence and the speed of the

convergence. The most optimist solution of PSO can not be ensured in theory.
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8.2.2 Hybridization of PSO with other intelligent optimization algo-

rithm

Another important area of active research is the hybridization of PSO with other compu-

tational intelligence techniques. This is often used to solve complex real-world problems

where one technique is typically used to fix the weaknesses of the other. Another popular

paradigm of swarm intelligence is called ant colony optimization (ACO). The algorithm is

inspired by the stigmergistic communication system employed by ants to evaluate alter-

native choices and take decisions in dynamic optimization problems. We are particularly

interested in combining PSO and ACO to see if the hybridization can lead to much more

effective algorithms. Blending PSO with ACO means combining the advantages of the

PSO with the advantages of ACO to create the compound algorithm that has more prac-

tical value.

8.2.3 Expanding the application area of PSO

In wireless communication area, issues of node deployment, localization, energy-aware

clustering, and data-aggregation are often formulated as optimization problems. Most an-

alytical methods suffer from slow or lack of convergence to the final solutions. This calls

for fast optimization algorithms that produce quality solutions utilizing less resources.

PSO has been a popular technique used to solve optimization problems in wireless sen-

sor networks due to its simplicity, high quality of solution, fast convergence and insignif-

icant computational burden. Although the PSO algorithm has been used widely, it will

be very meaningful to explore the developing area further. Areas in wireless sensor

networks and mobile networks that PSO suits are cross-layer optimization, multi-target

tracking, heterogeneous resources allocation, multi-objective optimized routing and so

on.
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More generally, most research on PSO aim at the coordinate system nowadays. Al-

though in practical usage, it is used in non-coordinate system, scattered system and

compound optimization system, there is less research on the PSO algorithm application

in these systems.
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