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Abstract

This research proposes a 4D-Var ensemble-based data assimilation framework for wind energy

potential estimation. In this formulation, in the 4D-Var context, the intrinsic need of adjoint

models is avoided via the use of an ensemble of model realizations. These ensembles are

employed to build control spaces onto which analysis increments are estimated. Control spaces

are built via a modi�ed Cholesky decomposition. The particular structure of this estimator

allows for a matrix-free implementation of the proposed �lter formulation. Experimental tests

are performed, making use of wind turbines catalogs and the Atmospheric General Circulation

Model Speedy. The results reveal that our proposed framework can properly estimate wind

energy potential capacities within reasonable accuracies in terms of Root-Mean-Square-Error,

and even more, these estimations are better than those of traditional 4D-Var ensemble-based

methods. Besides, Wind Turbine Generators (WTGs) with low rate-capacity are the ones which

provide homogeneous behavior of error estimations around the globe. As the rate-capacity

increases, the potential energy increases as well, but the error dispersion of ensemble members

grow, which can di�cult decision-making processes. Of course, rate-capacity is just a single

parameter of many in the WTG context, and we do not consider, for instance, economic aspects

in our study, which can be crucial for deciding whether or not to employ green sources of

energy.
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1 Introduction

The Nature Conservancy (TNC) [TNC19], an international NGO responsible for promoting

trends that mitigate the negative e�ect on the environment, states that Colombia at 2050 will, at

least, duplicate its energy consumption. Thus, it requires to develop a smart strategy to deploy

a Data Assimilation method to produce wind power. Latin American and Caribbean (LAC)

countries are widely known for their massive power generation capacity using renewable

energies, which makes them highly attractive for clean energy investment [FAF
+

17]. Recent

studies indicate that the full deployment of this capacity can be almost seven times larger

than the current world installed one, and even more, it can constitute a near-zero carbon

emissions option for countries in development path [DRB08]. As [VIR
+

14] states, “this could

provide substantial societal bene�ts, including energy security, local and global environmental

bene�ts, domestic job creation, and improved balance of payments, amongst others”. Given

Colombia’s geography, wind turbines (wind farms) can be exploited for having clean energy

sources. Economic bene�ts of wind farms are better than those of traditional sources such as

solar parks, which make them the �rst option desirable for long-term plans at national levels.

The proper planning and scheduling of wind power systems can lead to almost no impact

on Colombian ecosystems, nor visual or audible. Besides, this can serve as a complement of

the hydro-dominated electricity grids [MWOH17], as the winds are stronger during the dry

season when hydroelectric generation is most limited. Moreover, wind farms provide a full

or complementary source of energy in some areas of di�cult access; the application of wind

turbines is primarily in windmills that are used to generate electricity [GJSAGJ17]. These wind

turbines can be used to avail o�-grid electricity in remote regions (i.e., some islands). Even

more, in some cases, they are the only potential source of energy. Nowadays, some government

agencies provide decades of useful information about global weather variables such as wind

components, temperatures, and humidity. For instance, the amount of data on the US National

Oceanic and Atmospheric Administration (NOAA) website range in the order of petabytes.

This can be exploited by using Data Assimilation methods to estimate the economic bene�ts of

wind farm placements in Colombia, for instance. Hence, a data assimilation method is required

to forecast wind components and wind velocity to estimate energetic power in Colombia. With

these forecasts, we can identify highly windy areas to get the most of power availability.

This document is organized as follows: Section 1.1 discusses topics related to Data Assimila-

tion in ensemble-based and variational contexts. In Section 1.2, we present some wind turbines

catalogs to be employed in this research for wind-potential-energy estimation. Section 1.3

presents some relevant issues found during this exploratory step. In section 1.4, the expected

outcomes of this research are detailed. Section 1.6 states the objective of this research. In

Section 1.6, the steps to accomplish the objectives are denoted. Lastly, Section 1.7 show the

advances of our research so far as well as the numerical model to be employed during the

experimental part.
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1 Introduction

1.1 Data Assimilation

Data Assimilation (DA) is the process by which an imperfect numerical forecast {xb
k
}G
k=0

is

adjusted according to real noisy observations {yk}Gk=0 [NR18, NRCB18], where xb
k
∈ Rn×1 and

yk ∈ Rm×1 are the background state and the observations at step k , for 0 ≤ k ≤ G , respectively,

n is the model size (model resolution), m denotes the number of observations per assimilation

step, and G is the size of the assimilation window (the number of times wherein observations

are available). The elements of DA are shown in �gure 1.1.
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Figure 1.1: Data Assimilation Components

In strong constraint Four-Dimensional Variational (4D-Var) methods, cost function of the

form:

J (x0) =
1

2

·
x0 − xb02B−1 + 1

2

·

G∑
k=0

‖yk −H (xk)‖2R−1 , (1.1)

where:

x0 − xb0 ∼ N (0, B) , and

yk −H(xk) ∼ N (0, R) ,

2



1 Introduction

are employed to perform the assimilation process, where B ∈ Rn×n and R ∈ Rm×m are the

background error covariance matrix and the estimated data error covariance matrix, respectively.

xb and Bmust be estimated. Likewise,

xf =Mtf −1→tf

(
xf −1

)
, for 1 ≤ f ≤ G , (1.2)

whereM : Rn×1 → Rn×1 is a numerical model which, for instance, mimics the behavior of

the ocean and/or the atmosphere and even more, we assume that the model can predict wind

components (or wind-speed). We then seek the initial condition which best �t the data:

xa
0
= arg min

x0
J(x0) , subject to (1.2) . (1.3)

To solve (1.3), for instance, we can make use of adjoint models or an ensemble of model

realizations. Regardless of which one is chosen, we think that 4D-Var DA can be exploited in

the context of Wind Turbine Generators (WTG). For instance, we can make use of numerical

models to estimate wind components in areas (regions) of interests, then by using variables

from wind turbines such as cut-in speed, cut-out speed, and rated capacity, we can forecast their

WTG capacities. This can be exploited in places such as the Latin American and Caribbean

(LAC) countries, speci�cally, Colombia.

1.1.1 Data Assimilation: Sequential vs Variational

Consider G observations, ie, {yk}Gk=0, and xk =Mxk−1→xk (xk−1).

• Sequential method: it corrects the model estimate as observations are available, and then,

propagate the estimate. Mathematically,

P (xk |yk) ∝ P (xk) · L (xk |yk)

The Analysis at time k is given by:

xak = arg max

x
P (xk |yk) .

This process can be seen in �gure 1.2.

3
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Figure 1.2: Sequential Data Assimilation for an Assimilation Window.

• Variational method: performs then optimization process in a single shot, it means using

all observations at once.

P

(
x0 | {yk}Gk=0

)
∝ P (x0) ·

G∏
k=0

L (xk |yk)

The Analysis at time 0:

xa
0
= arg max

x0
P

(
x0 | {yk}Gk=0

)
.

The smoothing process can be seen in �gure 1.3.
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(a) Observations (b) Forecast

(c) Initial Analysis

Figure 1.3: Smoothing Data Assimilation for an Assimilation Window.

1.1.2 Ensemble-basedmethods

• Ensemble Kalman Filter (EnKF):

The ensemble Kalman �lter (ENKF) is a sequential Monte Carlo method for parameter

and state estimation of highly non-linear models [Eve06]. The popularity of the EnKF

obeys to his simple formulation and relatively ease implementation [GMC
+

06]. In the

EnKF, an ensemble of N model realizations,

Xb =
[
xb[1], xb[2], . . . , xb[N ]

]
∈ Rn×N , (1.4a)

where xb[e] ∈ Rn×1 denotes the e-th ensemble member, for 1 ≤ e ≤ N , is utilized in order

to estimate the moments of the prior error distribution,

x ∼ N
(
xb, B

)
,

5



1 Introduction

via the empirical moments of the ensemble,

xb ≈ xb =
1

N
·

N∑
e=1

xb[e] ∈ Rn×1 , (1.4b)

and

B ≈ Pb =
1

N − 1
· ∆X · ∆XT ∈ Rn×n , (1.4c)

where xb and Pb are the ensemble mean and the ensemble covariance matrix, respectively.

Likewise, ∆X ∈ Rn×N is the matrix of member deviations,

∆X = Xb − xb · 1T , (1.4d)

where 1 is a vector of a consistent dimension whose components are all ones. The

assimilation process, for instance, can be stochastically performed as follows,

Xa = Xb + Pb · HT ·
[
R + H · Pb · HT

]−1
· Γ ∈ Rn×N

Or, equivalently

Xa = Xb +
[ [
Pb

]−1
+ HT · R−1 · H

]−1
· ∆Y ∈ Rn×N , (1.5)

whereH ′(x) ≈ HT ∈ Rn×m is a linearized observation operator (with the linearization

performed about the background stateH(x) ≈ H(xb) + H ·
[
x − xb

]
), ∆Y ∈ Rn×m is the

scaled matrix of innovations on the synthetic observations,

∆Y = HT · R−1 ·
[
y · 1T + R1/2 · E −H

(
Xb

)]
,

where the e-th column of Γ ∈ Rm×1 is:

d[e] = y + ε[e] −H
(
xb[e]

)
∈ Rm×1, with ε[e] ∼ N (0, R) .

and the columns of matrix E ∈ Rm×N are samples from a multivariate standard Nor-

mal distribution. Since current model resolutions range in the order of the millions

while ensemble sizes does it in the hundreds, the ensemble covariance (1.4c) is typically

rank-de�cient. To counteract the e�ects of sampling noise, localization methods have

been proposed [Kep00, NRMR18]. These have triggered the formulation and the imple-

mentation of e�cient EnKF based methods [BT99, OHS
+

04, NRSA14]. A recent EnKF

implementation relies on the Bickel and Levina estimator [BP14] in order to estimate

background error correlations: the EnKF based on a modi�ed Cholesky decomposition

6



1 Introduction

(EnKF-MC) [NRSD15, NSD16, NRSD17, NRMC17]. In this method, for each model com-

ponent 1 ≤ i ≤ n, a neighbourhood P(i , δ ) is de�ned based on its predecessors according

to some labelling of model components and a radius of in�uence δ ∈ R+, therefore

[NRSD18],

j ∈ P(i, δ ) ⇔ d
(
xi, xj

)
2

≤ δ 2, and j < i ,

where d(•, •) denotes a consistent distance function. Notice, each model component is

conditionally correlated only with its predecessors given all components, from here, a

sparse precision matrix for the background distribution can be estimated as follows,

B̂−1 = V̂T · Γ̂
−1
· V̂ ∈ Rn×n , (1.6)

where the diagonal entries of the factor V̂ ∈ Rn×n are all ones while its non-zero elements

of row i are given by �tting models of the form,

[
x[i]

]T
=

∑
j∈P(i, δ )

−

{
V̂
}
i,j
·
[
x[j]

]T
+ ξ [i] , for 1 ≤ i ≤ n ,

where x[i] ∈ RN×1 denotes the i-th row of matrix, {V̂}i,j ∈ R is the (i, j)-th element

of matrix V̂, and the components of ξ [i] ∈ RN×1 are described by a zero-mean Normal

distribution with unknown variance σ 2
. Likewise, Γ ∈ Rn×n is a diagonal matrix whose

diagonal entries are the empirical variances v̂ar(•) of the residuals,

{
Γ̂
}
i,i
= v̂ar ©«

[
x[i]

]T
−

∑
j∈P(i, δ )

{
−V̂

}
i,j
·
[
x[j]

]T ª®¬ ≈ σ 2 , (1.7)

for 2 ≤ i ≤ n, with

{
Γ̂
}
1,1
= v̂ar

(
x[1]

)
. By replacing (1.6) in (1.5) the EnKF-MC is

obtained. Another e�cient EnKF implementation which exploits the structure of B̂−1

is the Posterior EnKF (P-EnKF) [NR17]. On its square root formulation, the P-EnKF

approximates the posterior covariance matrix by a sequence of rank-one updates over

the prior factors in (1.6),

7
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Â(0) =
[
V(0)

]T
· Γ(0) ·

[
V(0)

]
= VT · Γ · V = B̂−1 ,

Â(1) = Â(0) +ω[1] ·
[
ω[1]

]T
=

[
V(1)

]T
· Γ(1) ·

[
V(1)

]
,

Â(2) = Â(1) +ω[2] ·
[
ω[2]

]T
=

[
V(2)

]T
· Γ(2) ·

[
V(2)

]
,

...

Â(m) = Â(m−1) +ω[m] ·
[
ω[m]

]T
=

[
V(m)

]T
· Γ(m) ·

[
V(m)

]
= V̂T · Γ̂ · V̂ = Â−1 ,

where V(0) ∈ Rn×n and Γ(0) ∈ Rn×n are the Cholesky factors of B̂−1, and ω[j] is the j-th
column of matrix Ω = HT · R−1/2, for 1 ≤ j ≤ m. The posterior ensemble can then be

simply built by drawing samples from the distribution,

Xa = xa · 1TN +
[
V̂T · Γ̂

1/2
]−1
· E ∈ Rn×N , (1.8)

where the columns of E ∈ Rn×N are formed by samples from a multivariate standard

Normal distribution, note that, the inversion of matrix V̂T · Γ̂
1/2
∈ Rn×n is not actually

performed since V̂T is an upper triangular matrix while Γ̂
1/2

is diagonal and therefore,

forward substitutions are su�cient in order to solve the subjacent linear system.

There are many other methods in the context of ensemble-based formulations for (nearly)

linear observation operators, which we do not discuss further here. Recently, a complete

survey of those is detailed by Bannister in [Ban16].

• Ensemble Square-Root Filters (EnSRF): The use of perturbed observations ys makes

the �lter statistically consistent, but it induces sampling errors. The EnSRF are ensemble

methods that do not make use of synthetic data. We match the moments as follow:

xa = xb + ∆Xb · VT ·
[
R + V · VT

]−1
· d ∈ Rn×1

Pa =
[
I − Pb · HT ·

[
R + H · Pb · HT

]−1
· H

]
· Pb ∈ Rn×n

Xa = xa ⊗ 1TN + ∆X
a ∈ Rn×N , Pa =

1

N − 1
∆Xa · [∆Xa]

T .

Where ∆y = y − H · xb ∈ Rm×1. V is a matrix square root of the covariance matrix, and

o�er us a way to perform calculations without using the full precision matrix, preserving

all its properties.

• Issues of the ensemble-based methods

1. The ensemble size is constrained by the computational cost (N � n).

8
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2. The sampling error impacts the estimation of the prior moments. Localization

techniques can be exploited to reduce those e�ects, though those techniques are a

matter of study yet.

3. Synthetic observations make the �lter statistically consistent, but induces sampling

errors.

4. Localization and in�ation of the covariance matrix are mandatory steps. In practice,

it is not clear how to set these parameters.

1.1.3 Variational Methods

Consider the 4D-Var cost function:

J(x0) =
x0 − xb02B−1

0

+

G∑
k=0

‖yk −Hk (xk)‖2R−1k
,

then:

xa
0
= arg min

x0
J (x0) ≡ xa

0
= arg max

x0
P

(
x0 | {yk}Gk=0

)
,

xk = Mk,k−1 (xk−1) strong constrain .

The solution of this problem requires the use of adjoints:Mk,k−1(x) ≈ M (xk−1) +Mk,k−1 ·

[x − xk−1]. Adjoints are computationally expensive (at run) and sensitive to human errors. The

validation of Mk,k−1 can take several years.

1.1.4 Hybrid methods

To solve the optimization problem (1.3), we can employ adjoint models for gradient approx-

imations. However, these models can be labor-intensive to develop and computationally

expensive to run. For instance, the adjoint model of the High-Resolution Limited Area Mod-

elling (HIRLAM) 4D-Var [GB14, SUL
+

09] was developed in 10 years in which most of the time

was spent to detect and to �x errors in the tangent and the adjoint models [Gus07]. To avoid

the use of adjoint models, we can employ an ensemble of model realizations [NRS15] as follows

[HM98, SKW18]:

Xb
k =

[
xb[1]
k
, xb[2]

k
, . . . , xb[N ]

k

]
∈ Rn×N (1.9)

where xb[e]
k
∈ Rn×1 stands for the e-th ensemble member, for 1 ≤ e ≤ N , at time k , for 0 ≤ k ≤ G .

Then, the ensemble mean:

xbk =
1

N
·

N∑
e=1

xb[e]
k
∈ Rn×1 , (1.10)

and the ensemble covariance matrix:

Pbk =
1

N − 1
· ∆Xb

k ·
[
∆Xb

k

]T
∈ Rn×n , (1.11)

9
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act as estimates of the forecast state xb
k

and the forecast error covariance matrix Bk , respectively,

where the matrix of member deviations reads:

∆Xb
k = Xb

k − x
b
k · 1

T ∈ Rn×N . (1.12)

The model trajectory in (1.1) can be constrained to the space spanned by the background

ensemble members (1.9), this is:

xk = xbk + ∆Xk ·w , (1.13)

where w ∈ RN×1 is a vector in redundant coordinates to be determined later. This is equivalent

to:

xk − xbk ∈ range {∆Xk} ≈ range
{
B1/2

k

}
,

therefore, the estimation of analysis increments is performed onto the sub-space given by a

low-rank square root approximation of the background error covariance matrices (1.11) at

observation times. By replacing (1.13) into the equation (1.1) one obtains:

J(x0) = J
(
xb
0
+ ∆X0 ·w

)
= Ĵ (w) =

(N − 1)

2

· ‖w‖2 +
1

2

·

G∑
k=0

‖dk − Qk ·w‖2R−1k
, (1.14)

where dk = yk − Hk · xbk ∈ R
m×1

is the innovation vector and Qk = Hk · ∆Xb
k
∈ Rm×N . Note

that, this cost function does not rely in the numerical model (1.2) anymore. The optimal value

of the control variable w is then seek:

w∗ = arg min

w
Ĵ (w) . (1.15)

The gradient of (1.14) equals:

∇wĴ (w) = (N − 1) ·w −
G∑
k=0

QT
k · R

−1
k · [dk − Qk ·w]

=

[
(N − 1) · I +

G∑
k=0

QT
k · R

−1
k · Qk

]
·w −

G∑
k=0

QT
k · R

−1
k · dk ∈ R

N×1 , (1.16)

and from here, the optimal weight (1.15) can be approximated as follows:

w∗ =

[
(N − 1) · I +

G∑
k=0

QT
k · R

−1
k · Qk

]−1
·

G∑
k=0

QT
k · R

−1
k · dk ∈ R

N×1 , (1.17)

10
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from which the initial analysis state can be estimated:

xa
0
= xb

0
+ ∆Xb

0
·w∗ . (1.18)

Since in (1.13), xa
k

represents an approximation rather than an exact analysis trajectory, the

initial analysis is recovered and then, it is evolved in time by using the numerical model (1.2)

from which we obtain an estimate of the optimal trajectory of (1.3). Note that, all computations

are performed onto the ensemble space (1.13) and therefore, the computational cost of estimating

(1.18) is linearly bounded regadring n andm [NRS16]:

O
(
N · n ·m + N 2 ·m

)
.

Readily, posterior (initial) members can be estimated via the implicit covariance matrix in

(1.17):

xa(e)
0
= xb

0
+ ∆Xb

0
·w(e) , for 1 ≤ e ≤ N ,

where:

w(e) ∼ N ©«w∗,
[
(N − 1) · I +

G∑
k=0

QT
k · R

−1
k · Qk

]−1ª®¬ .
In practice, model dimensions range in the order of millions while ensemble sizes are con-

strained by the hundreds and as a direct consequence, undersampling degrades the quality

of analysis corrections onto the space spanned by (1.12). To counteract the e�ects of sam-

pling noise, localizations methods are commonly employed [GKM
+

11, CO10], in practice. For

instance, methods such as covariance matrix localization (B-localization) [LWB18], domain

localization, and observation localization (R-localization) [And01, HZS18, And19] are employed

under operational DA scenarios. Yet another possible choice is to make use of precision co-

variance matrix estimation. In this context, for instance, the use of the spatial-predecessors
concept can be employed to obtain sparse estimators of precision matrices [LRZ

+
08]. The

predecessors of model component i , from now on Π(i, δ ), for 1 ≤ i ≤ n and a radius of in�uence

δ ∈ Z+, are given by the set of components whose labels are lesser than that of the i-th one. Of

course, this will depend on the format employed to label components on a numerical grid. In

practice, column major and row major format are commonly employed. This idea is exploited

in the EnKF formulation proposed in [NRSD17, NRSD18] wherein the following estimator is

employed to approximate precision covariances [BL
+

08c]:

B̂−1k = V̂Tk · Γ̂
−1

k · V̂k ∈ R
n×n , (1.19)

where the Cholesky factor Lk ∈ Rn×n is a lower triangular matrix,

11
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{
V̂k

}
i,д
=


−βi,д,k , д ∈ P(i, δ )

1 , i = д

0 , otherwise

, (1.20)

whose (sub-diagonal) elements βi,д,k are estimated by �tting linear models:

xT
[i]k
=

∑
д∈Π(i, δ )

βi,д,k · xT[д]k +γ ik ∈ R
N×1 , 1 ≤ i ≤ n , (1.21)

where xT
[i]k
∈ RN×1 denotes the model component i from the ensemble (1.9). Likewise, γ ik ∈

RN×1 ∼ N
(
0, σ 2 · I

)
, where the variance σ 2

k
is unknown, and the diagonal matrix Γk ∈ R

n×n

holds the variance of residuals:

{Γk}i,i = v̂ar ©«xT[i]k −
∑

д∈Π(i, δ )

βi,д,k · xT[j]k
ª®¬
−1

(1.22)

≈ var
(
γ ik

)−1
=

1

σ 2

k

> 0 , with {Γk}1,1 = v̂ar
(
xT
[1]k

)−1
, (1.23)

where the empirical and the actual variances are denoted by v̂ar(•) and var(•), respectively.

To summarize:

• Exploits the best of both ensemble-based methods, as it posses a �ux dependent covariance

(i.e., it mimics the model dynamic) and the robustness of the assimilation of many

observations at once.

• States are limited to the ensemble space:

xk = xk + ∆Xb
k ·w , where Pbk =

1

N − 1
∆Xb

k ·
[
∆Xb

k

]T
,

w ∈ RN×1 belongs to the control space (ensemble space).

• The 4D-Var function in the ensemble espace, with Qk = Hk · ∆Xb
k
:

J(x0) = J
(
xb
0
+ ∆Xb

0
·w

)
=

N − 1

2

· ‖w‖2

+

G∑
k=0

‖dk − Qk ·w‖2R−1k
, with ∆yk = yk −H

(
xbk

)
.

• The optimization problem reads:

wa = arg min

w
J

(
xb
0
+ ∆Xb

0
·w

)
.

12



1 Introduction

which do not require adjoints!, so, the solution is:

[
(N − 1) · I +

G∑
k=0

QT
k · R

−1
k · Qk

]
·wa =

[
G∑
k=0

QT
k · R

−1
k · dk

]
,

estimation: xa
0
= xb

0
+ ∆Xb

0
·wa

.

• This methods are sensitive to sampling errors (n � N ). Localization of ∆Xb
k

is not trivial.

1.2 Wind Potential Estimation

The e�ects of climate change have triggered alarms to employ alternatives and to reduce

Carbon Dioxide (CO2) emissions around the world. In many countries, regulation and CO2
reduction goals promote the substitution of fossil energy sources with Renewable Energy

Sources (RES) [KST17]. For instance, China, the largest energy consumer worldwide, has an

economic motivation to execute such substitution [Liu17]: traditional power systems (mainly

composed of nuclear, hydro, and thermal generators) are drastically decreasing, and now, they

are trying to integrate RES as a shock absorber of this situation. However, RES integration is

not straightforward since it brings new issues and challenges that need to be analyzed and

addressed. One of the main challenges comes from the intermittency of RES [VDVDH17].

Intermittency combines variability and uncertainty. The former is produced by the movement

of large cloud systems owing to high and low-pressure areas. Uncertainty, also known as

unpredictability, comes from the forecast error, which in turn depends on the numerical model

(1.2). Thus, uncertainty ampli�cation relies on model errors (i.e., physics simpli�cations to

make it computationally feasible). For instance, if the accuracy of the numerical model is

poor, and no Data Assimilation is performed, the bias on the resulting estimate will be large

concerning the actual wind speed. Thus, wind speeds can be poorly estimated, and as a direct

consequence, wind energy potentials can be underestimated. Hence, Data Assimilation can be

employed in this context to mitigate the impact of poor potential energy estimations via real

noisy observations of wind speeds. The potential energy p(v) in MegaWatts (MW ) of a wind

turbine given a wind speed v (km/h) can be estimated as follows:

p(v) =


Pnom ·

(
v3−v3c
v3r−v

3

c

)
vc ≤ v ≤ vr

Pnom vr ≤ v ≤ v f

0 otherwise

, (1.24)

where vc , vr , v f , and vp are the cut-in wind speed, the rated wind speed, the cut-out wind

speed, and the rated power of wind turbine, respectively. Table 1.1 shows the 12 wind turbine

generators types assumed and utilized in many case studies [XB10]. The outage rate of each

wind turbine reads 0.04. Commonly, the useful life of a wind turbine is about 25 years; this

does not depend on its size. It is ubiquitous to assume an interest rate of 0.08 for turbines. We

also report the capital cost, and the maintenance and operating cost for each turbine, these are

taken from [W
+

08, Mas13].
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Type R.C. (MW ) vc (km/h) vr (km/h) v f (km/h) C.C. M&O
1 0.5 10 40 80 1350 36

2 0.5 10 45 70 1350 36

3 1 12 40 80 1250 35

4 2 12 30 55 1120 30

5 1 13 33 60 1220 33

6 1 14 40 90 1250 32

7 2 15 33 50 1100 35

8 2 15 33 60 1100 30.5

9 1 15 37 70 1200 32

10 1 18 48 70 1250 32

11 2 18 45 70 1100 30

12 2 18 35 75 1100 30

Table 1.1: WTG Unit Parameters

1.3 Problem Statement

The previous cutting-edge research throw the following issues into the Data Assimilation

community:

1.3.1 Current Limitations

1. Conceptual/Theoretical:

• Meteorological Simulations demand high computational e�orts.

• Ensemble-based methods are highly sensitive to sampling noise.

• Variational methods demand the use of adjoint models, which are expensive to run

and hard to develop. They are very sensitive to human errors. Years can be taken

for their proper validation.

• Hybrid methods can be sensitive to sampling noise since ensemble sub-space is

employed to estimate analysis increments.

• High model resolutions can di�cult the analysis of wind components in the Colom-

bian national territory.

2. Operational:

• No real-time is accessible in Colombia. Data is commonly requested by governmen-

tal agencies (INVEMAR e IDEAM), and then it is available weeks later.

• There are no numerical models to estimate wind components in Colombia (and to

exploit our knowledge about our ecosystems).
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1.4 Expected Main Contributions

To be concise, we expect with our research:

• to develop an Adjoint-Free 4D-Var method which mitigates the impact of sampling noise

(advance the cutting-edge of data assimilation),

• to reduce the uncertainty in wind-potential-energy forecasts, and

• to develop Colombian maps with wind-potential-energy potential estimations per regions

constrained by numerical model resolutions.

1.5 Objectives

1.5.1 Main Objective

To design and implement a Four-Dimensional Variational Data Assimilation method for wind-

energy-potential estimation.

1.5.2 Specific Objectives

1. To design and implement an Adjoint-Free Four-Dimensional Variational Data Assimila-

tion method for wind component estimations.

2. To map wind-�elds to wind-speeds and wind-energy potentials.

3. To validate the proposed method by employing real and synthetic observations.

4. To analyze, statistically, the wind-energy potentials for the employed wind turbines.

1.6 Methodology

In this section, we brie�y describe the steps to accomplish the objectives in Section .

1. To de�ne a control space via a modi�ed Cholesky decomposition.

• To build an ensemble of model realizations via an Atmospheric General Circulation

Model (AT-GCM).

• To estimate square root approximation of background error covariances via a

modi�ed Cholesky decomposition.

2. To implement the proposed method via a scienti�c computational language.

3. To employ synthetic data and real data (from the National Oceanic and Atmospheric

Administration - NOAA [CTW
+

94]) to validate the proposed variational method.

• Data can be downloaded from the NOAA website, for free, via FTP.

• Space interpolation is needed to adjust the NOAA data to the SPEEDY model.
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4. To map wind-�elds to wind-potential estimations via non-linear mappings.

5. To design Colombian maps for wind-potential estimations and di�erent wind turbines.

1.7 Advances - Proposed Method: Hybrid 4D-Var DA Method for
Wind Energy Potential Estimation in Colombia

In this section, we show our advances in the proposed adjoint-free 4D-Var method for potential

energy estimation. The variational �lter is divided into four stages. First, we build an ensemble

of snapshots at assimilation times. Second, these snapshots are employed to build control

spaces via a modi�ed Cholesky decomposition. Third, analysis increments are computed onto

control spaces. Lastly, wind components are employed to estimate wind speeds, which allow

us to approximate potential energies of wind turbines. We also develop a matrix-free analysis

formulation to avoid the direct inversion of linear systems during assimilation steps. All these

stages are clearly detailed next.

1.7.1 Building an Ensemble of Snapshots

Snapshots of an ensemble of model realizations (1.9) are taken at G + 1 observation times. At

step k , for 0 ≤ k ≤ G. The background ensemble Xb
k

is then employed to estimate a full-rank

square-root approximation of the precision covariance matrix B−1
k

via a modi�ed Cholesky

decomposition (1.19):

B̂−1/2
k
= V̂Tk · Γ̂

−1/2

k ∈ Rn×n . (1.25)

This square-root estimation serves as a control space onto which analysis increments can be

estimated:

xk − xbk ∈ range
{
B̂1/2

k

}
,

or equivalently:

xk = xbk + B̂
1/2

k
· α ∈ Rn×1 , (1.26)

where α ∈ Rn×1 is a vector in redundant coordinates to be determined later. We assume that:

range
{[
V̂Tk · Γ̂

−1/2

k

]−1}
≈ range

{
B1/2

k

}
.

Note that, since the square root approximations (1.25) are full-rank, the dimension of the spaces

(1.26) equal those of the range of B1/2
. We then expect to capture all error dynamics onto the

spaces (1.25). Since the initial background error covariance matrix B0 onto the control space

(1.26) is nothing but the identity matrix, the following error statistics hold for the prior weights

αb(e)
:

αb(e) ∼ N (0, I) , for 1 ≤ e ≤ N .
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Due to this, the 4D-Var cost function (1.1) onto the space (1.26) can be written as follows:

J (x0) = J
(
xb
0
+ B̂1/2

0
· α

)
= J̃ (α ) =

1

2

· ‖α ‖2 +
1

2

·

G∑
k=0

̃dk − Q̃k · α
2
R−1k
, (1.27)

where d̃k = yk − H · xbk ∈ R
m×1

, and Q̃k = H · B̂1/2

k
∈ Rm×n. Again, this cost function does not

rely on the numerical model (1.2).

1.7.2 Adjoint-Free 4D-Var Optimization

Consider the cost function (1.27), the adjoint-free optimization problem to solve reads:

αa = arg min

α
J̃ (α ) . (1.28)

The gradient of the cost function (1.27) can be written as follows:

∇α J̃ (α ) =

[
I +

G∑
k=0

Q̃T
k · R

−1
k · Q̃k

]
· α −

G∑
k=0

Q̃T
k · R

−1
k · d̃k ,

whose root reads:

αa =

[
I +

G∑
k=0

Q̃T
k · R

−1
k · Q̃k

]−1
·

[
G∑
k=0

Q̃T
k · R

−1
k · d̃k

]
, (1.29)

and therefore an estimate of the initial analysis state (1.3) can be computed as follows:

xa
0
= xb

0
+ B̂1/2

0
· αa ,

whose model trajectory provides a forecast which accounts for the given data into the assim-

ilation window. The posterior ensemble onto the control space can then be built by using a

square root approximation of the information matrix, its can be easily shown that the posterior

error statistics read:

αa[e] ∼ N
©«αa,

[
I +

G∑
k=0

Q̃T
k · R

−1
k · Q̃k

]−1ª®¬ , for 1 ≤ e ≤ N , (1.30)

with corresponding analysis members in the model space:

xa[e]
0
= xb + B̂1/2

0
· αa[e] .

Given the special structure of our estimator B−1
k

woodbury matrix identities can be exploited

to avoid direct inversions [RSA15]. We denote this �lter implementation Four Dimensional
Variational Data Assimilation via a Modi�ed Cholesky Decomposition (4D-Var-MC).
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1.7.3 Matrix-Free Formulation of the 4D-Var-MC

Following the ideas discussed in [NR17], we can develop a matrix-free equation for the analysis

step of the 4D-Var-MC implementation. We can proceed as follows, consider:

Ω = [Ω0, Ω1, . . . , ΩG] ∈ R
n×O

where Ωk = Q̃k · R
−1/2

k
∈ Rn×m, and O =m ·G , the precision covariance matrix in (1.30) can be

written as follows,

Â−1 = I + Ω · ΩT = TT · C · T + Ω · ΩT = TT · C · T +
O∑
o=1

·ω[o] ·
[
ω[o]

]T
, (1.31)

where ω[o] ∈ Rn×1 is the o-th column of matrix Ω, for 0 ≤ o ≤ O , and I = TT · C · T is the

Cholesky decomposition of I (all factors equal the identity matrix). Consider the sequence of

matrices,

Â(0) =
[
V(0)

]T
· Γ(0) ·

[
V(0)

]
= TT · C · T = I ,

Â(1) = Â(0) +ω[1] ·
[
ω[1]

]T
=

[
V(1)

]T
· Γ(1) ·

[
V(1)

]
,

Â(2) = Â(1) +ω[2] ·
[
ω[2]

]T
=

[
V(2)

]T
· Γ(2) ·

[
V(2)

]
,

...

Â(O) = Â(O−1) +ω[O] ·
[
ω[O]

]T
=

[
V(O)

]T
· Γ(O) ·

[
V(O)

]
= V̂T · Γ̂ · V̂ = Â−1 ,

where V(0) ∈ Rn×n and Γ(0) ∈ Rn×n are the factors of the Cholesky decomposition of the identity

matrix I. Among iteration steps o, for 0 ≤ o ≤ O , one can see that:

Â(o) =
[
V(o−1)

]T
· Γ(o−1) ·

[
V(o−1)

]
+ω[o] ·

[
ω[o]

]T
=

[
V(o−1)

]T
·

[
Γ(o−1) +γ (o) ·

[
γ (o)

]T ]
·

[
V(o−1)

]
, (1.32)

where

[
V(j−1)

]T
· γ (j) = ω[j] ∈ Rn×1. Via the Cholesky factors of,

Γ(o−1) +γ (o) ·
[
γ (o)

]T
=

[
Ṽ(o−1)

]T
· Γ(o) ·

[
Ṽ(o−1)

]
, (1.33)

and, by considering equation (1.32), the matrix Â(j) can be decomposed as follows,

Â(o) =
[
Ṽ(o−1) · V(o−1)

]T
· Γ(o) ·

[
Ṽ(o−1) · V(o−1)

]
=

[
V(o)

]T
· Γ(o) ·

[
V(o)

]
,

where V(o) = Ṽ(o−1) · V(o−1) ∈ Rn×n. By taking a close look at equation (1.33), the elements of

factors Ṽ(o−1) and Γ̃
(o)

can be easily related to those of Γ(o−1) and γ (o) via the Dolittle’s method

for matrix factorization, for instance, we can note that:[
Ṽ(o−1)

]T
· Γ(o) ·

[
Ṽ(o−1)

]
i,b
= δi,b · Γ

(o−1)
i,i +γ (o)i · γ

(o)
b
,
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and therefore, the next relations hold:

Γ(o)n,n =
[
γ (o)n

]
2

+ Γ(o−1)n,n , (1.34a)

Ṽ(o−1)
i,b
=

1

Γ(o)i,i
·

γ (o)i · γ (o)b −
∑

q∈Π(i, δ )

Γ(o)q,q · Ṽ
(o−1)
q,i · Ṽ(o−1)

q,b

 , (1.34b)

and

Γ(o)i,i =
[
γ (o)i

]
2

+ Γ(o−1)i,i −
∑

q∈Π(i, δ )

Γ(o)q,q ·
[
Ṽ(o−1)q,i

]
2

, (1.34c)

for 1 ≤ i ≤ n − 1 and b ∈ Π(i, δ ), where the Kronecker delta function δi,j equals 1 for i = j

and 0 otherwise, and the diagonal entries of matrix Ṽ(o−1) are all equal to one. In algorithm 1,

we show how the Cholesky factors V(o) and Γ(o) can be updated with the information brought

by the rank-one matrixω[o] ·
[
ω[o]

]T
, the general updating process of factors V̂ and Γ for the

estimation of Â−1 are detailed in algorithm 2. The number of long computations is reported as

well for each step of our proposed updating process. We let by φ the largest number of non-zero

elements per row in the V(o) factor. This value will depend on chosen radius of in�uence δ
during assimilation steps, and intuitively φ � n. Note that, V(o−1) and Ṽ(o−1) hold the same

structure since this is given by the predecessors of k . Thus, the structure (form) of V(o−1) is

preserved in V(o). Consequently, we can hold a desired structure in the resulting estimator V̂,

for instance, this can be equal to that of V. Note that, the number of long computations in the

4D-Var-MC reads:

O
(
φ2 ·O · n +O · φ

)
.

Note that, this bound increases linearly regarding the number of model components.

Algorithm 1 Rank-one update of factors V(o−1) and Γ(o−1) via Doolittle’s method.

1: function Update_Rank_One(V(o−1), Γ(o−1),ω[o]) . COST
2: Solve

[
V(o−1)

]T
· p(o) = ω[o]. . O (φ · n)

3: Compute Γ(o)n,n via equation (1.34a). . O (1)
4: for i = n − 1→ 1 do . O

(
φ2 · n

)
5: Let Ṽ(o−1)i,i ← 1. . O (1)

6: for k ∈ Π(i, δ ) do . O
(
φ2

)
7: Compute Ṽ(o−1)

i,k
according to (1.34b). . O (φ)

8: end for
9: Compute Γ(o)i,i via equation (1.34c). . O (φ)

10: end for
11: Let V(o) ← Ṽ(o−1) · V(o−1). . O

(
φ2 · n

)
12: return V(o), Γ(o)

13: end function
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Algorithm 2 Computing the posterior factors V̂ and Γ of Â−1 = V̂T ·Γ ·V̂ = I+
∑G

k=0 Q̃
T
k
·R−1

k
·Q̃k .

1: function Compute_Posterior_Cholesky_Factors(V(0), Γ(0), H, R) . COST
2: Let Ω ←

[
HT
0
· R−1/2

0
, HT

1
· R−1/2

1
, . . . , HT

G · R
−1/2

G

]
. . O (O · n)

3: Let O ←m ·G
4: for j = 1→ O do . O times line 4, O

(
φ2 ·O · n

)
5: Let [V(j), Γ(j)] ← Update_Rank_One

(
V(j−1), Γ(j−1), ω[j]

)
. O

(
φ2 · n

)
6: end for
7: return V(O) as V̂, Γ(O) as Γ.

8: end function

1.7.4 Post-Processing of Data, Potential Energy Estimation

Once the model trajectory is computed for each ensemble member, we proceed to map wind

�elds to wind energy potentials in two steps:

1. whenever is necessary, the wind components of ensemble members are mapped to

wind-speeds,

2. this subset of information is exploited to estimate the wind energy potential of each

analysis ensemble member:

x̂a(e)
k
= f

(
xa(e)
k

)
, for 1 ≤ e ≤ N , and 0 ≤ k ≤ G , (1.35)

where f : Rn×1 → Rh×1 is a function that maps model states to potential energy states

(this is, for each ensemble member, its wind-speed components are mapped to wind

energy potentials), where h is the number of wind-speed components (with h ≤ n), and

x̂a(e)
k
∈ Rh×1 is the k-th transformed member. The mapping process depends on the wind

turbine employed.

Once ensemble members are mapped to wind energy potentials, empirical moments of

these samples can be exploited to estimate mean and standard deviations of wind powers.

Besides, covariances of such samples can be estimated via a modi�ed Cholesky decomposition

to understand better (and to estimate) their uncertainties.

1.7.5 Surrogate Model to be Employed for Wind Speed Estimation

The SPEEDY model is a general circulation model that mimics the behavior of the atmosphere

across di�erent pressure levels [BKKM04, Miy11]. The number of numerical layers in this

model is 7, and we employ a T-30 spectral model resolution (96 × 48 grid components) for the

space discretization of each model layer [Mol03, KMB06]. The number of physical variables is

5. These are detailed in the Table 1.2 with their corresponding units and number of layers.
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Name Notation Units Number of Layers

Temperature T K 7

Zonal Wind Component u m/s 7

Meridional Wind Component v m/s 7

Speci�c Humidity Q д/kд 7

Pressure T K 1

Table 1.2: Physical variables of the SPEEDY model.

Note that the total number of model components to be estimated reads n = 133, 632. We

let the number of model realizations (ensemble size) as N = 30 for all experimental scenarios.

Besides, the SPEEDY model has more than 15 post-processing physical variables that can be

employed for further research. Some model snapshots are shown in �gure 1.4.

(a) Chi (b) Omega

(c) Pressure

Figure 1.4: Some post-processing model variables

1.8 Organization of this document

This thesis is organized as follows: in Chapter 2, we discuss an e�cient ensemble Kalman �lter

implementation based on a modi�ed Cholesky decomposition. Chapter 3 discusses an e�cient
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and matrix-free implementation of the ensemble Kalman �lter based on a posterior sampling

method. In Chapter 4, the space spanned by the proposed ensemble based formulations is

exploited to obtain matrix-free Four-Dimensional-Variational optimization problems and to

estimate wind potential at di�erent regions of the world. Conclusions of this research are

stated in Chapter 5.
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2 A Posterior EnKF Based On AModified
Cholesky Decomposition

In this chapter, we propose a posterior ensemble Kalman �lter (EnKF) based on a modi�ed

Cholesky decomposition. The main idea behind our approach is to estimate the moments of

the analysis distribution based on an ensemble of model realizations. The method proceeds as

follows: initially, an estimate of the precision background error covariance matrix is computed

via a modi�ed Cholesky decomposition and then, based on rank-one updates, the Cholesky

factors of the inverse background error covariance matrix are updated in order to obtain an

estimate of the inverse analysis covariance matrix. The special structure of the Cholesky factors

can be exploited in order to obtain a matrix-free implementation of the EnKF. Once the analysis

covariance matrix is estimated, the posterior mode of the distribution can be approximated

and samples about it are taken in order to build the posterior ensemble. Experimental tests are

performed making use of the Lorenz 96 model in order to assess the accuracy of the proposed

implementation. The results reveal that, the accuracy of the proposed implementation is similar

to that of the well-known local ensemble transform Kalman �lter and even more, the use of

our estimator reduces the impact of sampling errors during the assimilation of observations.

To be concise, Data Assimilation is the process by which imperfect numerical forecasts are

adjusted according real noisy observations [Eve03]. In practice, Gaussian errors are commonly

assumed for background and observational errors during the assimilation of observations

[Eve06]. While observational errors can be well-estimated in the context of operational data

assimilation, background error correlations can be hard to approximate, mainly, owing to

the size of the vector state which, typically, ranges in the order of millions [Zup09]. In the

ensemble Kalman �lter (EnKF), an ensemble of model realizations is utilized in order to estimate

the moments of the underlying background error distribution [GMC
+

06]. Since the ensemble

size is constrained by computational aspects, localization methods can be utilized in order to

mitigate the impact of sampling errors [JFW14, And12]. E�cient formulations of the EnKF

account for some sort of implicit localization during the analysis step in order to damp out

spurious correlations [Kep00, TAB
+

03, AA99, NRSA14]. For instance, in the EnKF based on a

modi�ed Cholesky decomposition [BL08b], a band estimate of the inverse background error

covariance matrix can be obtained, on the �y, during the assimilation of observations. Even

more, this precision matrix can be expressed in terms of Cholesky factors which are composed

by a diagonal matrix and a band lower triangular matrix. We think that, these factors can be

updated in order to estimate the Cholesky factors of the inverse analysis covariance matrix.

This covariance matrix can be estimated by applying a series of rank-one updates on the

Cholesky factors of the inverse background error covariance matrix. With such covariance

matrix, samples from the posterior error distribution can be approximately taken with low-

computational e�orts.
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This paper is organized as follows: in section 2.1 e�cient EnKF formulation are discussed,

section 2.2 presents the proposed EnkF implementation, in section 2.3 the accuracy of the

proposed EnKF is assessed and compared with well-known EnKF formulations and �nally,

conclusions are stated in section 2.4.

2.1 Preliminaries

In this section, e�cient EnKF implementations in order to avoid the impact of sampling errors

on the analysis innovations are discussed. In�ation aspects and other sources of misestimation

of model states and ensemble collapsing are well-studied in [LKM09, And07].

In the ensemble Kalman �lter, an ensemble of model realizations,

Xb =
[
xb[1], xb[2], . . . , xb[N ]

]
∈ Rn×N , (2.1)

is utilized in order to estimate, the moments of the background error distribution,

x ∼ N
(
xb ,B

)
,

via the empirical moments of the ensemble (2.1), therefore,

xb ≈ xb =
1

N
·

N∑
i=1

xb[i] ∈ Rn×1 , (2.2a)

and

B ≈ Pb =
1

N − 1
· ∆X · ∆XT ∈ Rn×n , (2.2b)

where n is the model dimension, N is the ensemble size, xb[i] ∈ Rn×1 is the i-th ensemble

member, for 1 ≤ i ≤ N , xb ∈ Rn×1 is well-known as the background state while B ∈ Rn×n

stands for background error covariance matrix, xb is the ensemble mean, and Pb is the ensemble

covariance matrix. Likewise, the matrix of member deviations ∆X ∈ Rn×N reads,

∆X = Xb − xb · 1TN .∆X ∈ R
n×N

(2.3)

When an observation y ∈ Rm×1 is available, the analysis ensemble can be computed as follows,

Xa = Xb + Ω ∈ Rn×N , (2.4)

where Ω ∈ Rn×N can be obtained by the solution of the linear system of equations,[ [
Pb

]−1
+ HT · R−1 · H

]
· Ω = HT · R−1 · ∆Y (2.5)

where H ∈ Rm×n is a linearized observational operator, R ∈ Rm×m is the estimated data-error

covariance matrix, the matrix of innovations on the observations ∆Y ∈ Rm×N reads,

∆Y = y · 1TN + E − H · X
b , (2.6)
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and the columns of E ∈ Rm×N are samples from a zero-mean Normal distribution with covari-

ance matrix R. The forecast is the approximated by propagating the ensemble (2.4) until new

observations are available,

xb[i]
next
=Mtcurrent→tnext

(
xa[i]
current

)
, for 1 ≤ i ≤ N , (2.7)

where xa[i] ∈ Rn×1 denotes the i-th analysis member, andMcurrent→next : R
n×1 → Rn×1 is an

imperfect numerical model (i.e., a model which mimics the behaviour of the ocean and/or

atmosphere).

In operational data assimilation, ensemble members comes at high computational e�orts

[Ler07, LR99] and therefore, the ensemble moments (2.2) are corrupted by sampling noise

[EWH13]. Hence, localization methods are commonly utilized in the EnKF context in order

to mitigate the impact of sampling errors. One of the best EnKF implementations is the local

ensemble transform Kalman �lter (LETKF) [BT99, OHS
+

04]. In the LETKF, the analysis is

approximated in the ensemble space,

xa = xb + ∆X ·wa ∈ Rn×1 ,

where,

wa = Q · VT · R−1 ·
[
y − H · xb

]
∈ RN×1 , (2.8)

V = H · ∆X ∈ Rm×N , and an estimate of the analysis covariance matrix in such space reads,

Q =
[
(N − 1) · I + VT · R−1 · V

]−1
∈ RN×N ,

with I ∈ RN×N being the identity matrix in the ensemble space. This covariance matrix can

then be utilized in order to build an ensemble about the posterior model of the distribution. In

this context, localization methods are performed by using domain decomposition [OHS
+

08]:

each model component is surrounded by a local box of radius δ and only local information

(i.e., observed components) are utilized during the assimilation step. Examples of local boxes

for di�erent radii of in�uences are shown in �gure 2.1. The global analysis is obtained by

assembling all local analysis states onto the global domain.

(a) δ = 1 (b) δ = 2 (c) δ = 3

Figure 2.1: Local domains for di�erent radii of in�uence δ . The red dot is the model component

to be assimilated, blue components are within the scope of δ , and black model

components are unused during the local assimilation process.
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In the ensemble Kalman �lter based on a modi�ed Cholesky decomposition (EnKF-MC)

[NRSD15] background error correlations are estimated via the Cholesky decomposition pro-

posed by Bicket and Levina in [BL08a]. This provides an estimate of the inverse background

error covariance matrix of the form,

B̂−1 = VT · Γ · V ∈ Rn×n , (2.9)

where V ∈ Rn×n is an unitary lower-triangular matrix, and Γ ∈ Rn×n is a diagonal matrix.

Even more, when only local e�ects are considered during the estimation of B̂−1, in addition,

the matrix V is sparse with only a few non-zero elements per row. Typically, the number

of non-zero elements are some function of the radius of in�uence during the estimation of

background error correlations. For instance, in the one-dimensional case, the radius of in�uence

denotes the maximum number of non-zero elements, per row, in V. The EnkF-MC is then

obtained by plugging in the estimator (2.9) in (2.4). Given the structure of the Cholesky factors,

the EnKF-MC can be seen as a matrix-free implementation of the EnKF.

Recall that, the precision analysis covariance matrix reads,

A−1 = B−1 + HT · R−1 · H ∈ Rn×n . (2.10)

and since HT · R−1 · H ∈ Rn×n can be written as a sum of m rank-one matrices, the factors (2.9)

can be updated in order to obtain an estimate of the inverse analysis covariance matrix. In the

next section, we propose an ensemble Kalman �lter implementation based on this idea.

2.2 Proposed Method

Before we start, we make the assumptions [TAB
+

03, MB06] that, in practice, the data error

covariance matrix R has a simple structure, the observation operator H is sparse and therefore,

it can be applied e�ciently, and that the number of model components n is several times the

ensemble size N . We want to estimate the moments of the analysis distribution,

x ∼ N (xa, A) ,

based on the background ensemble (2.1), where xa is the analysis state and A ∈ Rn×n is the

analysis covariance matrix. Consider the estimate of the inverse background error covariance

matrix (2.9), the precision analysis covariance matrix (2.10) can be approximated as follows,

A−1 ≈ Â−1 = B̂−1 + X · XT , (2.11)

where X = HT · R−1/2 ∈ Rn×m. The matrix (2.11) can be written as follows,

Â−1 = VT · Γ · V +
m∑
i=1

xi · xTi ,

where xi denotes the i-th column of matrix X, for 1 ≤ i ≤ m. Consider the sequence of factors

updates

V(i)
T
· Γ(i) · V(i) =

[
V(i−1)

]T
· Γ(i−1) · V(i−1) + xi · xTi

=
[
V(i−1)

]T
·

[
Γ(i−1) + pi · pTi

]
· V(i−1)

=
[
L̃(i−1) · V(i−1)

]T
· D̃(i−1) ·

[
L̃(i−1) · V(i−1)

]
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where V(i−1) · pi = xi ∈ Rn×1, for 1 ≤ i ≤ m, B̂−1 =
[
V(0)

]T
· Γ(0) · V(0), and

Γ(i−1) + pi · pTi =
[
L̃(i)

]T
· D̃(i) · L̃(i) ∈ Rn×n . (2.12)

We can make use of the Dolittle’s method in order to compute the factors D̃(i) and L̃(i) in (2.12),

it is enough to note that,

1
˜l21 ˜l31 . . . ˜ln1

0 1
˜l32 . . . 0

0 0 1 . . . ˜ln2
...
...
...
. . . ˜ln3

0 0 0 . . . 1

︸                      ︷︷                      ︸
L̃(i) T

·



˜d1 0 0 . . . 0

0
˜d2 0 . . . 0

0 0
˜d3 . . . 0

...
...
...
. . . 0

0 0 0 . . . dn

︸                      ︷︷                      ︸
D̃(i)

·



1 0 0 . . . 0

˜l21 1 0 . . . 0

˜l31 ˜l32 1 . . . 0

...
...
...
. . . 0

˜ln1 ˜ln2 ˜ln3 . . . 1

︸                       ︷︷                       ︸
L̃(i)

=



d1 + p
2

1
p1 · p2 p1 · p3 . . . p1 · pn

p2 · p1 d2 + p
2

2
p2 · p3 . . . p2 · pn

p3 · p1 p3 · p2 d3 + p
2

3
. . . p3 · pn

...
...

...
. . .

...
pn · p1 pn · p2 pn · p3 . . . dn + p

2

n

︸                                                 ︷︷                                                 ︸
Γ(i)+pi ·pTi

.

After some math simpli�cations, the next equations are obtained,

˜dk = p
2

k + dk −
n∑

q=k+1

˜dq · ˜l
2

qi , (2.13a)

and

˜lkj =
1

˜dk
·

pk · pj −
n∑

q=k+1

˜dq · ˜lqi · ˜lqj

 , (2.13b)

for 1 ≤ k ≤ n, and 1 ≤ j ≤ k − 1. The set of equations (2.13) can be used in order to derive

an algorithm for rank-one update of Cholesky factors, the updating process is shown in the

Algorithm 3.

Algorithm 3 can be used in order to update the factors of B̂−1 for all column vectors in X,

this process is detailed in the Algorithm 2. Once the updating process has been performed, the

resulting factors form an estimate of the inverse analysis covariance matrix,

Â−1 =
[
V(m)

]T
· Γ(m) · V(m) ∈ Rn×n . (2.14a)

From this covariance matrix, the posterior mode of the distribution can be approximated as

follows,

xa = xb +ω ∈ Rn×1 , (2.14b)

27



2 A Posterior EnKF Based On A Modi�ed Cholesky Decomposition

Algorithm 3 Rank-one update for the factors V(i−1) and Γ(i−1).

1: function Upd_Cholesky_factors(V(i−1), Γ(i−1), xi )
2: Compute pi from V(i)T · pi = xi .
3: for k = n → 1 do
4: Compute

˜dk via equation (2.13a).

5: Set lkk ← 1.

6: for j = 1→ k − 1 do
7: Compute

˜lkj according to (2.13b).

8: end for
9: end for

10: Set V(i) ← L̃(i−1) · V(i−1) and Γ(i) ← D̃(i).
11: return V(i), Γ(i)

12: end function

Algorithm 4 Computing the factors V(m) and Γ(m) of Â−1 = V(m) T · Γ(m) · V(m).

1: function Compute_analysis_factors(V(0), Γ(0), H, R)

2: Set X← HT · R−1/2.
3: for i = 1→m do
4: Set [V(i), Γ(i)] ← Upd_Cholesky_factors

(
V(i−1), Γ(i−1), xi

)
5: end for
6: return V(m), Γ(m)

7: end function
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where [
V(m)

]T
· Γ(m) · V(m) ·ω = q (2.14c)

with q = HT · R−1 ·
[
y − H · xb

]
∈ Rn×1. Notice, the linear system (2.14c) involves lower and

upper triangular matrices and therefore, xa can be estimated without the needing of matrix

inversion. Once the posterior mode is computed, the analysis ensemble is built about it. Note

that, Â reads,

Â =
[
V(m)

]−1
·

[
Γ(m)

]−1
·

[
V(m)

]−T
and therefore a square root of Â can be approximated as follows,

Â1/2 =
[
V(m)

]−1
·

[
Γ(m)

]−1/2
∈ Rn×n , (2.15)

which can be utilized in order to build the analysis ensemble,

Xa = xa · 1TN + ∆X
a , (2.16)

where ∆Xa ∈ Rn×N is given by the solution of the linear system,

V(m) ·
[
Γ(m)

]
1/2

· ∆Xa =W ∈ Rn×N , (2.17)

and the columns of W ∈ Rn×N are formed by samples from a multivariate standard normal

distribution. Again, since V(m) is lower triangular, the solution of (2.17) can be obtained readily.

2.2.1 Exploiting the structure ofV

Readily, the computational e�orts of the Algorithms 3 and 4 are bounded by O
(
m · n3

)
long

computations which can be quite impractical given grid resolutions in current operational data

assimilation models. However, the use of conditional independence of background errors among

distant model components can be exploited in order to reduce the computational complexity

during the rank-one updates, for instance, we can consider only local neighbourhoods for each

model component in order to approximate the analysis error correlations. This implies that,

error correlations of distant model components regarding some radius of in�uence δ can be

neglected. Note that, this preserves the structure of V in (2.9) and potentially, the impact of

spurious correlations. In the one-dimensional case, for instance, the set of equations (2.13) can

be written as follows,

˜dk = p
2

k + dk −
k+r∑

q=k+1

˜dq · ˜l
2

qi , (2.18a)

and

˜lkj =
1

˜dk
·

pk · pj −
k+r∑

q=k+1

˜dq · ˜lqi · ˜lqj

 . (2.18b)
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Algorithm 5 Modi�ed rank-one update for the factors V(i−1) and Γ(i−1).

1: function Upd_Cholesky_factors(V(i−1), Γ(i−1), xi )
2: Compute pi from V(i)T · pi = xi .
3: for k = n → 1 do
4: Compute

˜dk via equation (2.18a).

5: Set lkk ← 1.

6: for j = k − r → k − 1 do
7: Compute

˜lkj according to (2.18b).

8: end for
9: end for

10: Set V(i) ← L̃(i−1) · V(i−1) and Γ(i) ← D̃(i).
11: return V(i), Γ(i)

12: end function

Algorithm 4 can be modi�ed in order to account for only local e�ects, this modi�cation is

re�ected in Algorithm 5. The computational e�ort of the Algorithm 5 is then O
(
m · n · δ 2

)
which is linear regarding the number of observed componentsm and the model dimensionn. For

general dimensions, one can think in some computational e�ort of the form O
(
m · n · f (δ )2

)
where f (δ ) is some function of the radius of in�uence with, intuitively, f (δ ) � n.

Putting it all together, the posterior ensemble Kalman �lter based on a modi�ed Cholesky

decomposition (P-EnKF) proceeds as follows:

1. Based on the samples (2.1), compute an estimate of B−1 = VT · Γ ·V based on the modi�ed

Cholesky decomposition [NRSD15].

2. Update V and Γ according to the Algorithm 4.

3. Compute the analysis state (2.14b).

4. Build the analysis ensemble (2.16).

5. Propagate the analysis members until new observations are available.

2.3 Experimental Results

In this section, we assess the accuracy of the P-EnKF and compare it against that of the LETFK

implementation proposed by Hunt in [OHS
+

04]. The numerical model is the Lorenz 96 model

[FVE04] which mimics the behaviour of the atmosphere. This model is described by the next

set of ordinary di�erential equations:

dxk
dt
= −xk−1 · (xk−2 − xk+1) − xk + F , for 1 ≤ k ≤ n , (2.19)

where n is the number of model components and F is an external force. It is well-known that

when F equals 8.0, the Lorenz 96 model exhibits a chaotic behaviour [KP10] which makes it

attractive as a toy problem for testing weather prediction methods [FHH07]. The experimental

settings are described below:
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• An initial random solution x+−3 is propagated for a while in time making use of the model

(2.19) and a 4th order Runge Kutta method in order to obtain a vector state x∗−2 whose

physics are consistent with the dynamics of such numerical model. This vector state

serves as our reference solution.

• The reference solution is perturbed making use of samples from a Normal distribution

with parameters N (0, σB · I). Three di�erent values for σB are considered during the

numerical experiments σB ∈ {0.05, 0.10, 0.15}. This perturbed state is propagated in

time in order to make it consistent with the physics and dynamics of the numerical model

(2.19). From here, an initial background state xb
−1

is obtained.

• A similar procedure is performed in order to build a perturbed ensemble about xb
−1

. The

ensemble members are propagated in time from where an ensemble of model realizations{
xb[i]
0

}N
i=1

of (2.19) is obtained.

• The assimilation windows consists of 15 equidistant observations. The frequency of

observations is 0.5 time units which represents 3.5 days in the atmosphere.

• The dimension of the vector state is n = 40. The external force of the numerical model is

set to F = 8.0.

• The number of observed components is 50% the dimension of the vector state.

• Three ensemble sizes are tried during the experiments N ∈ {20, 40, 60}.

• As a measure of quality, the L-2 norm of the analysis state and the reference solution is

computed across assimilation steps.

• 100 runs are performed for each pair (N , σB). For each run, a di�erent initial random

vector is utilized in order to build the initial perturbed reference solution x+−3 (before the

model is applied x∗−2). This yields to di�erent initial ensembles as well as synthetic data

for the di�erent runs of each con�guration (pair).

The average of the error norms of each pair (N , σB) for the LETKF and the P-EnKF imple-

mentations are shown in the Table 2.1. As can be seen, in average across 100 of runs, the

performance of the proposed EnKF implementation outperforms that of the LETKF in terms of

L − 2 norm of the error. Even more, the P-EnKF seems to be invariant to the initial background

error σB since, in all cases, when the ensemble size is increased a better estimation of the refer-

ence state x∗ at di�erent observation times is obtained. This can also obey to the estimation

of background error correlations via the modi�ed Cholesky decomposition [BL08a] since it

is drsaticaly improved whenever the ensemble size is increased as is pointed out by Bickel

and Levina in [BP14]. In such case, the error decreases by O (log(n)/N ). This is crucial in the

P-EnKF formulation since estimates of the precision analysis covariance matrix are obtained

by rank-one updates on the inverse background error covariance matrix. On the other hand, in

the LETKF context, increasing the ensemble size can improve the accuracy of the method but,

that is not better than the one shown by the P-EnKF.
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Some plots of the L-2 norm of error for the P-EnKF and the LETKF across di�erent con-

�gurations and runs can be seen in �gure 2.2. Note that, the error of the P-EnKF decreases

aggressively since the earlier iterations. In the LETKF context, the accuracy is similar to that of

the P-EnKF only at the end of the assimilation window.

σB N LETKF P-EnKF

0.05

20

40

60

22,6166 21,2591

20,5671 18,2548

20,0567 17,8824

0.10

20

40

60

23,1742 21,0725

20,9513 18,3542

18,5048 17,8240

0,15

20

40

60

24,8201 20,9059

21,1314 18,1731

20,8487 17,7590

Table 2.1: Average of L − 2 norm of errors for 100 of runs of each con�guration (σB, N ) for the

compared �lter implementations.

2.4 Conclusions

We propose a posterior ensemble Kalman �lter based on a modi�ed Cholesky decomposition.

The proposed method estimates the posterior moments of the error distribution based on an

ensemble of model realizations. An estimate of the inverse background error covariance matrix

via a modi�ed Cholesky decomposition is updated making use of rank-one matrices with

information brought by the data error correlations in order to estimate the precision covariance

matrix. This matrix is utilized in order to compute the posterior mode of the error distribution

and then, samples are taken about it. This implementation is matrix-free making it attractive

for practical implementations. Experimental settings are performed making use of the Lorenz

96 model and di�erent observations and ensemble con�gurations. The results obtained by the

proposed method are compared against those obtained by the local ensemble transform Kalman

�lter (LETKF). The results reveal that, the use of the proposed implementation can mitigate the

impact of sampling errors and even more, the accuracy of the proposed EnKF implementation

is similar to that of the LETKF.
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(a) LETKF σB = 0.05, N = 60
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(b) P-EnKF σB = 0.05, N = 60
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(c) LETKF σB = 0.10, N = 60
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(d) P-EnKF σB = 0.10, N = 60

0 2 4 6 8 10 12 14 16
5

10

15

20

25

30

35

40

45

Assimilation Step(k)

|
|
X

k
 
−

 
X

* k
|
|

 

 

Background

Analysis

(e) LETKF σB = 0.15, N = 60
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(f) P-EnKF σB = 0.15, N = 60

Figure 2.2: L − 2 norm of the error for the LETKF and the P-EnKF implementations at di�er-

ent observation times. For each con�guration, 100 of runs are performed. The

assimilation window consists of 15 equidistant observations.
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3 A Matrix-Free Posterior Ensemble Kalman
Filter Implementation Based On AModified
Cholesky Decomposition

In this chapter, we propose a posterior ensemble Kalman �lter (EnKF) based on a modi�ed

Cholesky decomposition. The main idea behind our approach is to estimate the moments of

the analysis distribution based on an ensemble of model realizations. The method proceeds as

follows: initially, an estimate of the precision background error covariance matrix is computed

via a modi�ed Cholesky decomposition and then, based on rank-one updates, the Cholesky

factors of the inverse background error covariance matrix are updated in order to obtain an

estimate of the inverse analysis covariance matrix. The special structure of the Cholesky factors

can be exploited in order to obtain a matrix-free implementation of the EnKF. Once the analysis

covariance matrix is estimated, the posterior mode of the distribution can be approximated

and samples about it are taken in order to build the posterior ensemble. Experimental tests are

performed making use of the Lorenz 96 model in order to assess the accuracy of the proposed

implementation. The results reveal that, the accuracy of the proposed implementation is similar

to that of the well-known local ensemble transform Kalman �lter and even more, the use of

our estimator reduces the impact of sampling errors during the assimilation of observations.

3.1 The Need of Covariance Matrix Localization

Data Assimilation is the process by which imperfect numerical forecasts and sparse observa-

tional networks are fused in order to estimate the state x∗ ∈ Rn×1 of a system [Lor86, SB11a]

which (approximately) evolves according to some model operator,

x∗p =Mtp−1→tp

(
x∗p−1

)
, for 1 ≤ p ≤ G , (3.1)

where, for instance,M : Rn×1 → Rn×1 is a numerical model which mimics the ocean and/or

the atmosphere dynamics, n is the number of model components, G is the number of observa-

tions (which form the assimilation window), and p denotes time index at time tp . Sequential

and smoothing methods are commonly utilized in order to perform the estimation process

[BHC
+

10a, BHC
+

10b, CSS05]. In the context of sequential data assimilation, when Gaussian

assumptions are done over background and observational errors, based on Bayes rule, the

posterior mode of the error distribution can be computed as follows:

xa = xb + A · HT · R−1 ·
[
y −H

(
xb

)]
∈ Rn×1 , (3.2a)
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where xa ∈ Rn×1 is known as the analysis state, the analysis covariance matrix reads,

A =
[
B−1 + HT · R−1 · H

]−1
∈ Rn×n , (3.2b)

m is the number of observed components from the model domain, H : Rn×1 → Rm×1 is the

observation operator, B ∈ Rn×n is the unknown background error covariance matrix, and

R ∈ Rm×m stands for the data error covariance matrix. Likewise, H ′(x) ≈ HT ∈ Rn×m is a

linearized observation operator (with the linearization performed about the background state).

Typically, the moments of the prior distribution,

x ∼ N
(
xb, B

)
, (3.3)

can be estimated based on an ensemble of model realizations [NRS15]. However, since ensemble

members come at high computational costs owing to current operational data assimilation

settings (i.e., numerical grid resolutions), ensemble sizes are bounded by the hundreds while

their underlying error distributions range in the order of billions [And12]. Consequently,

sampling errors can impact the quality of the analysis state [JFW14]. In practice, localization

methods can be utilized in order to mitigate the impact of sampling errors during the assimila-

tion steps [Bue05]. For instance, in the EnKF implementation based on a modi�ed Cholesky

decomposition (EnKF-MC) [NRSD15, NRSD17], the covariance matrix estimator proposed by

Bickel and Levina in [BL08b] and the conditional independence of model components regarding

their spatial distances are exploited in order to obtain sparse Cholesky factors of the precision

background error covariance matrix, to reduce the computational cost of the analysis step,

and to mitigate the impact of spurious correlations during the assimilation of observations.

Given the relation between A−1 and B−1 in (3.2b) and by using the Bickel and Levina estimator,

we think that sparse estimators of the analysis covariance matrix can be obtained without

the needing of actually computing (3.2b), and therefore, e�cient assimilation steps can be

proposed.

This chapter is organized as follows: in section 3.2, e�cient implementations of the EnKF

which account for localization are discussed, section 3.3 presents a matrix-free posterior

ensemble Kalman �lter implementation based on a modi�ed Cholesky decomposition; in

section 3.4, experimental tests are performed making use of the Lorenz-96 model in order to

assess the accuracy of the proposed method, and �nally, section 3.5 states the conclusions of

this research.

3.2 Preliminaries

3.2.1 The ensemble Kalman filter

The ensemble Kalman �lter (EnKF) is a sequential Monte-Carlo method for parameter and state

estimation in highly non-linear models [Eve03]. The popularity of the EnKF owes to his simple

formulation and relatively ease implementation [Lor03b]. In the EnKF context, an ensemble of

model realizations is utilized,

Xb =
[
xb[1], xb[2], . . . , xb[N ]

]
∈ Rn×N , (3.4a)
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in order to estimate the moments of the background error distribution (3.3) via the empirical

moments of the ensemble,

xb ≈ xb =
1

N
·

N∑
e=1

xb[e] ∈ Rn×1 , (3.4b)

and,

B ≈ Pb =
1

N − 1
· ∆X · ∆XT ∈ Rn×n , (3.4c)

where N is the number of ensemble members, xb[e] ∈ Rn×1 denotes the e-th ensemble member,

for 1 ≤ e ≤ N , xb is the ensemble mean, Pb is the ensemble covariance matrix, and

∆X = Xb − xb · 1T ∈ Rn×N , (3.4d)

is the matrix of member deviations with 1 being a vector of consistent dimension whose

components are all ones. When an observation y becomes available, the analysis ensemble can

be computed as follows,

Xa = Xb + Pa · ∆Y ∈ Rn×N , (3.5a)

where the scaled matrix of innovations on the perturbed observations ∆Y reads,

∆Y = HT · R−1 ·
[
y · 1T + R1/2 · E − H · Xb

]
∈ Rn×N , (3.5b)

the columns of matrix E ∈ Rm×N are samples from a multivariate standard Normal distribution,

and

Pa =
[ [
Pb

]−1
+ HT · R−1 · H

]−1
∈ Rn×n , (3.5c)

is the analysis ensemble covariance matrix.

3.2.2 Localizationmethods

As we mentioned before, the ensemble size is much lower than the model resolution (N � n)

and as a consequence, Pb is rank-de�cient which implies that, the precision covariance matrix

(3.5c) can not be computed. In practice, localization methods are commonly utilized in order to

arti�cially increase the rank of Pb and to mitigate the impact of spurious correlations during

the analysis steps [HWS01]. In general, we can think in two di�erent �avours of localization:

covariance matrix localization [CJAS10, CEK
+

13], and spatial localization [Kep00, NRS15].

In the context of covariance matrix localization, a decorrelation matrix Λ ∈ Rn×n is typically

utilized in order to dissipate spurious correlations between distant model components,

P̂b = Λ ◦ Pb ∈ Rn×n , (3.6)
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where ◦ denotes component-wise multiplication, P̂b is a localized covariance matrix, and the

components of the localization matrix Λ, for instance, reads,

{Λ}i,j = exp

(
−
1

2

·
d (i, j)2

δ 2

)
, for 1 ≤ i, j ≤ n ,

where δ is the localization radius, andd (i, j) stands for the spatial distance between components

i and j.
In spatial localization schemes, each model component is surrounded by a local box of radius

δ and all the information contained within such box is utilized in order to perform a local

assimilation step [Bue11]. All local analysis components are then mapped back to the global

domain from where a global analysis state is estimated. Some examples of spatial localization

are shown in �gure 3.1 for a two dimensional domain. In general, radius sizes can vary among

di�erent model components.

(a) δ = 1 (b) δ = 2 (c) δ = 3

Figure 3.1: Local domains for di�erent radii of in�uence δ . The red dot is the model component

to be assimilated, the red square denotes components within the scope of δ , and

components outside the region are unused during the local assimilation process.

It is important to note that, covariance matrix localization and spatial localization are

equivalent computations [SB11b] and their use during the assimilation of observations should

rely, mainly, on computational aspects.

3.2.3 E�icient EnKF implementations: accounting for localization

One of the best EnKF formulations in the context of spatial localization is the local ensemble

transform Kalman �lter (LETKF) which belongs to the family of deterministic EnKF formulations

[TAB
+

03, BT99, OHS
+

04, HKS07]. This method has been sucesfully tested in operational data

assimilation centres for weather forecast [OHS
+

08]. In the LETKF, the mode of the analysis

distribution is estimated in the ensemble space as follows,

xa = xb + ∆X ·wa ∈ Rn×1 , (3.7a)

where wa = P̃a · [H · ∆X]T ·
[
y −H

(
xb

)]
∈ RN×1, and P̃a ∈ RN×N is a projection of the analysis

covariance matrix (3.5c) onto such space wherein the ensemble covariance matrix (3.4c) is

well-conditioned. The analysis ensemble is then built about the estimated state (3.7a) as follows,

Xa = xa · 1T +
√
N − 1 · ∆X · P̃a

1/2
∈ Rn×N . (3.7b)
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The assimilation step (3.7) is applied to each model component for a given radius of in�uence δ
from where the global analysis state is obtained. Hence, since the most expensive computation

is the inversion of P̃a , the computational e�ort of the LETKF reads,

O
(
φ · n · N 3

)
,

where φ denotes the local box sizes.

Another e�cient EnKF implementation based on covariance matrix localization is the en-

semble Kalman �lter based on a modi�ed Cholesky decomposition (EnKF-MC) [NRSD15]. In

this context, the posterior ensemble is computed as follows:

Xa = Xb + Â · ∆Y ∈ Rn×N , (3.8a)

where the analysis error covariance matrix reads,

Â =
[
B̂−1 + HT · R−1 · H

]−1
∈ Rn×n , (3.8b)

and B̂−1 ∈ Rn×n is an estimate of the precision background error covariance matrix via the

Bickel and Levina estimator [BL08b],

B̂−1 = VT · Γ−1 · V ∈ Rn×n , (3.8c)

the Cholesky factor V ∈ Rn×n is a lower triangular matrix,

{V}i,j =


−βi,j , j ∈ P(i, δ )

1 , i = j

0 , otherwise

, (3.9)

whose non-zero sub-diagonal elements are obtained by �tting models of the form,

xT
[i] =

∑
j∈P(i, δ )

βi,j · xT[j] +γ i ∈ R
N×1 , 1 ≤ i ≤ n , (3.10)

where xT
[i]
∈ RN×1 denotes the i-th row (model component) of the ensemble (3.4a), components

of vectorγ i ∈ R
N×1

are samples from a zero-mean Normal distribution with unknown variance

σ 2
, and Γ ∈ Rn×n is a diagonal matrix whose diagonal elements read,

{Γ}i,i = v̂ar ©«xT[i] −
∑

j∈P(i, δ )

βi,j · xT[j]
ª®¬
−1

≈ var
(
γ i

)−1
=

1

σ 2
> 0 , with {Γ}

1,1 = v̂ar
(
xT
[1]

)−1
,(3.11)

where var(•) and v̂ar(•) denote the actual and the empirical variances, respectively. Likewise,

P(i, δ ) stands for the predecessors of model component i with regard to δ and some ordering

of components. For instance, �gure 3.2 shows an example for a two dimensional domain when

δ = 1, i = 6, and model components are labelled by using column-major format. Since the

number of predecessors of model components depend on δ , the resulting factor (3.9) can be

sparse, this implies huge savings in terms of memory usage under current operational data
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assimilation settings wherein n can be very large. Besides, B̂−1 can be represented in terms of

his Cholesky factors and therefore, e�cient manners to compute the ensemble (3.8a) can be

derived [NRSA14]. Since the number of predecessors is some multiple of the local box sizes,

the computational e�ort of the analysis step in the EnKF-MC can be expressed as follows,

O
(
φ2 ·m · n + φ2 · n

)
,

which is linear with regard to n andm. Note that, the EnKF-MC and the LETKF provide similar

computational costs.

(a) In blue, local box for the model com-

ponent 6 when δ = 1.

(b) In blue, predecessors of the model com-

ponent 6 for δ = 1.

Figure 3.2: Local model components (local box) and local predecessors for the model component

6 when δ = 1. Column-major ordering is utilized to label the model components.

We think that, by updating the Cholesky factors of (3.8b) it is possible to obtain an approxi-

mation of the precision analysis covariance matrix in terms of sparse Cholesky factors which

can be exploited during the assimilation step (3.8a) in order to avoid the explicit solution of the

linear system, [
B̂−1 + HT · R−1 · H

]
· Ω = ∆Y ,

and yet, to derive another e�cient implementation of the assimilation cycle. The next section

presents an EnKF implementation based on this general idea.

3.3 A Posterior Ensemble Kalman Filter Based OnModified
Cholesky Decomposition

Before we start the derivation of our �lter implementation, we assume that, the observational

operator is nearly linear and/or it can be easily applied [SEB10], the data error covariance

matrix possesses a simple structure and/or it can be easily decomposed [Eve09], and that

observational networks are sparse [And01].

To be concise, we want to obtain an estimate of the precision analysis covariance matrix

(3.8b) of the form,

Â−1 = B̂−1 + HT · R−1 · H = VT · Γ · V + HT · R−1 · H = V̂T · Γ · V̂ ∈ Rn×n , (3.12)

where V̂ ∈ Rn×n is a sparse lower triangular matrix whose diagonal elements are all ones and

Γ̂ ∈ Rn×n is a diagonal matrix. In this manner, we can approximate the posterior mode of the
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error distribution,

xa = xb +
[
B̂−1 + HT · R−1 · H

]−1
· ∆y = xb + ∆xa , (3.13)

via the solution of lower and upper triangular systems of equations,

V̂T · Γ · V̂ · ∆xa = ∆y ∈ Rn×1 ,

which can be solved by using forward and backward substitutions, where ∆y = HT · R−1 ·[
y −H

(
xb

)]
∈ Rn×1 is the scaled innovation vector on the observations. Note that, by using

xa and A, an estimate of the posterior error distribution can be proposed as follows:

x ∼ N
(
xa, Â

)
, (3.14)

and therefore, the posterior ensemble (the analysis ensemble members) can be approximated

by either

1. drawing samples from the Normal distribution (3.14),

Xa = xa · 1TN + Â
1/2 · E = xa · 1TN + V

a , (3.15)

where Va ∈ Rn×N is given by the solution of an upper triangular system of equations,

Â−1/2 · Va = V̂T · Γ1/2 · Va = E ∈ Rn×N ,

and the columns of E ∈ Rn×N are samples from a multivariate standard Normal distribu-

tion, or

2. using the synthetic data (3.5b),

Xa = xb · 1TN + Â · ∆Y = xb · 1TN + V̂
a , (3.16)

where V̂a ∈ Rn×N is given by the solution of the next linear system of equations,

V̂T · Γ̂ · V̂ · V̂a = ∆Y .

The approximation (3.15) is named the posterior ensemble Kalman �lter (P-EnKF) since the

analysis ensemble is built based on samples from the posterior distribution (3.14) while the

approximation (3.16) is called the synthetic posterior ensemble Kalman �lter (P-EnKF-S) since

synthetic data is utilized in order to compute the analysis increments as is commonly done in

stochastic EnKF formulations.

Details about the computations of V̂ and Γ are discussed next.
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3.3.1 Computing the Cholesky factors of the precision analysis covariance

By letting Ω = HT · R−1/2 ∈ Rn×m in (3.12), the precision analysis covariance matrix can be

written as follows,

Â−1 = B̂−1 + Ω · ΩT = VT · Γ · V + Ω · ΩT = VT · Γ · V +
m∑
j=1

·ω[j] ·
[
ω[j]

]T
, (3.17)

whereω[j] ∈ Rn×1 is the j-th column of matrix Ω ∈ Rn×m, for 1 ≤ j ≤ m. Consider the sequence

of matrices,

Â(0) =
[
V(0)

]T
· Γ(0) ·

[
V(0)

]
= VT · Γ · V = B̂−1 ,

Â(1) = Â(0) +ω[1] ·
[
ω[1]

]T
=

[
V(1)

]T
· Γ(1) ·

[
V(1)

]
,

Â(2) = Â(1) +ω[2] ·
[
ω[2]

]T
=

[
V(2)

]T
· Γ(2) ·

[
V(2)

]
,

...

Â(m) = Â(m−1) +ω[m] ·
[
ω[m]

]T
=

[
V(m)

]T
· Γ(m) ·

[
V(m)

]
= V̂T · Γ̂ · V̂ = Â−1 ,

whereV(0) ∈ Rn×n and Γ(0) ∈ Rn×n are the Cholesky factors of B̂−1, note that, at any intermediate

step j, for 1 ≤ j ≤ m, we have,

Â(j) =
[
V(j−1)

]T
· Γ(j−1) ·

[
V(j−1)

]
+ω[j] ·

[
ω[j]

]T
=

[
V(j−1)

]T
·

[
Γ(j−1) +γ (j) ·

[
γ (j)

]T ]
·

[
V(j−1)

]
, (3.18)

where

[
V(j−1)

]T
· γ (j) = ω[j] ∈ Rn×1. By computing the Cholesky decomposition of,

Γ(j−1) +γ (j) ·
[
γ (j)

]T
=

[
Ṽ(j−1)

]T
· Γ(j) ·

[
Ṽ(j−1)

]
, (3.19)

from equation (3.18), Â(j) can be written as follows,

Â(j) =
[
Ṽ(j−1) · V(j−1)

]T
· Γ(j) ·

[
Ṽ(j−1) · V(j−1)

]
=

[
V(j)

]T
· Γ(j) ·

[
V(j)

]
,

where V(j) = Ṽ(j−1) · V(j−1) ∈ Rn×n. In equation (3.19), the components of the factors Ṽ(j−1) and

Γ̃
(j)

can be easily computed from the elements of Γ(j−1) and γ (j) based on the Dolittle’s method

for matrix factorization, it is enough to note that,{[
Ṽ(j−1)

]T
· Γ(j) ·

[
Ṽ(j−1)

]}
i,k

= δi,k ·
{
Γ(j−1)

}
i,i
+

{
γ (j)

}
i
·

{
γ (j)

}
k
,

from which, the next equations are then obtained,{
Γ(j)

}
n,n
=

[{
γ (j)

}
n

]
2

+
{
Γ(j−1)

}
n,n
, (3.20a)
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{
Ṽ(j−1)

}
i,k
=

1{
Γ(j)

}
i,i

·


{
γ (j)

}
i
·

{
γ (j)

}
k
−

∑
q∈P(i, δ )

{
Γ(j)

}
q,q
·

{
Ṽ(j−1)

}
q,i
·

{
Ṽ(j−1)

}
q,k

 , (3.20b)

and {
Γ(j)

}
i,i
=

[{
γ (j)

}
i

]
2

+
{
Γ(j−1)

}
i,i
−

∑
q∈P(i, δ )

{
Γ(j)

}
q,q
·

[{
Ṽ(j−1)

}
q,i

]
2

, (3.20c)

for n − 1 ≥ i ≥ 1 and k ∈ P(i, δ ), where δi,j is the Kronecker delta function, and the diagonal

elements of Ṽ(j−1) are all ones. In algorithm 6 the updating process for a columnω[j] is detailed

while the computations of factors V̂ and Γ for Â−1 are shown in algorithm 7. We also report an

estimate of the number of multiplications performed by the di�erent steps of the algorithms. φ
denotes the maximum number of predecessors across all model components. Typically, it will

be a function of the radius of in�uence δ with φ � n. Note that, since the index k is constrained

to the predecessors of component i , the structure of V(j−1) is replicated in Ṽ(j−1) and therefore,

the structure of V(j−1) is preserved in V(j). Consequently, the sparsity pattern of V̂ equals that

of V.

Algorithm 6 Rank-one update for the factors V(j−1) and Γ(j−1).

1: function Upd_Cholesky_factors(V(j−1), Γ(j−1),ω[j]) . COST
2: Compute p(j) from

[
V(j−1)

]T
· p(j) = ω[j]. . O (φ · n)

3: Compute

{
Γ(j)

}
n,n

via equation (3.20a). . O (1)

4: for i = n − 1→ 1 do . n − 1 times lines 5–9, O
(
φ2 · n

)
5: Set

{
Ṽ(j−1)

}
i,i
← 1. . O (1)

6: for k ∈ P(i, δ ) do . φ times line 7, O
(
φ2

)
7: Compute

{
Ṽ(j−1)

}
i,k

according to (3.20b). . O (φ)

8: end for
9: Compute

{
Γ(j)

}
i,i

via equation (3.20c). . O (φ)
10: end for
11: Set V(j) ← Ṽ(j−1) · V(j−1). . O

(
φ2 · n

)
12: return V(j), Γ(j)

13: end function

3.3.2 Computational cost of the analysis step

Once the Cholesky factors of the precision analysis covariance matrix (3.12) are estimated, the

posterior state (3.13) can be computed and the analysis ensemble (3.15) can be built. Putting

it all together, the assimilation step of the P-EnKF is detailed in algorithm 8. Based on the

algorithms 6 and 7, it is clear that, the computational e�ort of the P-EnKF is,

O
(
φ2 ·m · n + φ2 · n

)
,

42



3 A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based On A Modi�ed
Cholesky Decomposition

Algorithm 7 Computing the factors V̂ and Γ of Â−1 = V̂T · Γ · V̂.

1: function Compute_analysis_factors(V(0), Γ(0), H, R) . COST
2: Set Ω ← HT · R−1/2. . O (m · n)
3: for j = 1→m do .m times line 4, O

(
φ2 ·m · n

)
4: Set [V(j), Γ(j)] ← Upd_Cholesky_factors

(
V(j−1), Γ(j−1), ω[j]

)
. O

(
φ2 · n

)
5: end for
6: return V(m) as V̂, Γ(m) as Γ.

7: end function

which is linear with regard to the number of model components n and the number of observed

components from the model domain m. This computational e�ort obeys, mainly, to the special

structure of the Cholesky factors V(j) and Ṽ(j), for 1 ≤ j ≤ m, and how these structures can be

exploited in practice in order to reduce the overall computational e�ort of the analysis step,

for instance, the backward substitution in line 2 of algorithm 6 can be e�ciently performed as

follows, {
γ (j)

}
n−i+1

= ω[j] −
∑

k∈P(i,δ )

{
γ (j)

}
k
·

{[
V(j−1)

]}
i,k
, for 1 ≤ i ≤ n ,

and therefore, the number of multiplications in this computation is bounded by O (φ · n) while

the matrix multiplication in line 11 can be performed as follows,{
V(j)

}
i,k
=

∑
q∈P(i,δ )∩P(k,δ )

{
Ṽ(j−1)

}
i,q
·

{
V(j−1)

}
q,k
, for 1 ≤ i ≤ n, and k ∈ P(i, δ ) ,

where, evidently, the maximum number of elements in P(i, δ ) ∩ P(k, δ ) is bounded by φ and

therefore, the total number of multiplications is bounded by O
(
φ2 · n

)
. Notice, since the

matrices V(j) and Ṽ(j) are sparse and lower triangular, their non-zero bands can represented by

vectors. In this manner, for instance, the computations derived for the elements of V(j) and Ṽ(j)

can be performed on the elements of such vectors. E�cient matrix storage schemes are now

proposed by the literature [SGV05, LT16] as well as scienti�c computational languages which

exploit such structures in order to speed-up matrix computations and to save memory usage

[DDO13]. From here, matrix-free implementations of the P-EnKF can be easily derived in order

to make it practical under operational data assimilation settings. Readily, the computational

Algorithm 8 Assimilation of observations via the posterior ensemble Kalman �lter (3.15).

1: function Analysis_P-EnKF(Xb
, V, Γ , y, H, R) . Having, B̂−1 = VT · Γ · V.

2: Set [V̂, Γ] ← Compute_Analysis_factors (V, Γ, H, R).
3: Compute xa according to equation (3.13).

4: Compute the posterior ensemble Xa
based on equation (3.15).

5: return Xa
.

6: end function

e�ort of the P-EnKF-S is similar to that of the P-EnKF. We detail the assimilation step of the

P-EnKF-S in algorithm 9.
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Algorithm 9 Assimilation of observations via the posterior ensemble Kalman �lter (3.16) .

1: function Analysis_P-EnKF(Xb
, V, Γ , y, H, R) . Having, B̂−1 = VT · Γ · V.

2: Set [V̂, Γ] ← Compute_Analysis_factors (V, Γ, H, R).
3: Compute the posterior ensemble Xa

based on equation (3.16).

4: return Xa
.

5: end function

3.3.3 Inflation aspects

While localization methods reduce the impact of spurious correlations, covariance in�ation

mitigates the impact of under-estimation of sample variances [Wes16, LW17, LMQ16, PXJ
+

17].

Typically, ensemble members are in�ated prior the forecast step in order to enrich the back-

ground error information for the next assimilation cycle and to reduce the odds of ensemble

collapsing. For instance, after the assimilation step of EnKF, the ensemble members (3.5a) are

in�ated by a factor of ρ > 1 about the analysis mean,

Xa,ρ = xa · 1T + ρ · ∆Xa ,

where ∆Xa = Xa − xa · 1T ∈ Rn×N are the innovations about the analysis mean. Thus, the (co)

variances in Pa are in�ated by a factor of ρ2. This idea can be incorporated in the P-EnKF by

noting that, the estimated precision analysis covariance matrix can be in�ated as follows,

ρ2 · Â⇔
1

ρ2
· Â−1 = V̂T ·

[
1

ρ2
· Γ

]
· V̂ ,

and therefore, the in�ation can be performed before the analysis members are drawn from the

distribution (3.14),

Xa,ρ = xa · 1T + Ẑ ,

where Ẑ ∈ Rn×N is given by the solution of the sparse upper triangular system of equations,

V̂T ·
[
1

ρ
· Γ1/2

]
· Ẑ = E .

Recall that, the columns of matrix E are samples from a multivariate standard Normal distribu-

tion. Note that, the use of covariance in�ation does not increase the computational e�ort of the

P-EnKF. Similarly, in�ation can be applied to the assimilation step in the P-EnKF-S formulation.

3.3.4 Main di�erences between the EnKF-MC, the P-EnKF, and the P-EnKF-S

In essence, the EnKF-MC, the P-EnKF, and the P-EnKF-S are stochastic �lters based on a

modi�ed Cholesky decomposition [BL08b]. Nevertheless, the manner how they operate is

quite di�erent. Consider again the analysis covariance matrix (3.12),

Â =
[
B̂−1 + HT · R−1 · H

]−1
,
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technically speaking, in the context of the EnKF-MC, the posterior ensemble is built by solving

the linear system of equations,

Â · Ẑ = ∆Y , with ∆Y = HT · R−1 ·
[
y · 1T + R1/2 · E − H · Xb

]
,

where the columns of E ∈ Rn×N follows a standard Normal distribution. Ẑ can be computed by

using the iterative Sherman Morrison formula [RSA15] in order to avoid the direct inversion

of Â while the trivial linear system,

V̂T · Γ̂
1/2
· Va = E ,

is the one to solve in order to compute the analysis increments for the background members in

the P-EnKF formulation. Likewise, the linear system to solve in the P-EnKF-S case depends on

the Cholesky factors and the synthetic data (3.5b),

V̂T · Γ̂ · V̂ · V̂a = ∆Y ,

whose solution can be obtained by using backward and forward substitutions. Yet another

important di�erence is that, in the P-EnKF, the computation of the posterior mode is similar to

that of square root �lter formulations,

xa = xb + ∆xa , with V̂T · Γ̂ · V̂ · ∆xa = HT · R−1 ·
[
y −H

(
xb

)]
,

while the analysis mean,

xa =
1

N
·

N∑
e=1

xa[e] ∈ Rn×1 ,

provides the estimator of xa in the EnKF-MC and the P-EnKF-S methods.

3.4 Experimental Results

In this section, we tests the proposed EnKF implementations and compare our results with

those obtained by the EnKF-MC and the LETKF implementations discussed in section 3.2. We

make use of the Lorenz-96 model [Lor05] as our surrogate model during the experiments. The

Lorenz-96 model is described by the following set of ordinary di�erential equations [FHH07]:

dxj

dt
=


(x2 − xn−1) · xn − x1 + F for j = 1,(
xj+1 − xj−2

)
· xj−1 − xj + F for 2 ≤ j ≤ n − 1,

(x1 − xn−2) · xn−1 − xn + F for j = n,

(3.21)

where F is external force and n = 40 is the number of model components. Periodic boundary

conditions are assumed. When F = 8 units the model exhibits chaotic behavior, which makes

it a relevant surrogate problem for atmospheric dynamics [KP10, GM05]. A time unit in the

Lorenz-96 represents 7 days in the atmosphere. The experimental settings are described below:
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• An initial random solution is integrated over a long time period in order to obtain an

initial condition x∗−2 ∈ R
n×1

dynamically consistent with the model (3.21).

• A perturbed background solution x∗b−2 is obtained at time t−2 by drawing a sample from

the Normal distribution,

x∗b−2 ∼ N
(
x∗−2, 0.05

2 · I
)
,

this solution is then integrated for 10 time units (equivalent to 70 days in the atmosphere)

in order to obtain a background solution xb
−1

consistent with the numerical model.

• An initial perturbed ensemble is built about the background state by taking samples from

the distribution,

x∗b [̂e]
−1
∼ N

(
xb−1, 0.05

2 · I
)
, for 1 ≤ ê ≤ N̂ ,

and in order to make them consistent with the model dynamics, the ensemble members

are propagated for 10 time units, from which the initial ensemble members xb [̂e]
0
∈ Rn×1

are obtained. We create the initial pool X̂b
0 of N̂ = 10

6
members.

• The assimilation window consists ofG = 25 observations. These are taken every 3.5 days

and their error statistics are associated with the Gaussian distribution,

yk ∼ N
(
Hk · x∗k , 0.01

2 · I
)
, for 1 ≤ k ≤ G .

where the number of observed components from the model space is m = 30. The

components are randomly chosen at the di�erent assimilation steps. Thus, Hk is randomly

formed at the di�erent assimilation cycles.

• Values of the in�ation factor ρ are ranged in 1 ≤ ρ ≤ 1.1.

• We try di�erent values for the radii of in�uence δ , these range in 1 ≤ δ ≤ 7.

• The ensemble size for the benchmarks is N = 20. These members are randomly chosen

from the pool X̂b
0 for the di�erent pairs (δ , ρ) in order to form the initial ensemble Xb

0

for the assimilation window. Evidently, Xb
0
⊂ X̂b

0.

• The assimilation steps are also performed by the EnKF with full size of X̂b
0 in order to

obtain a reference solution regarding what to expect from the EnKF formulations. Note

that, the ensemble size is large enough in order to dissipate the impact of sampling errors.

No in�ation is needed as well.

• The L-2 norm of the error is utilized as a measure of accuracy at the assimilation step p,

λp =

√[
x∗p − xap

]T
·
[
x∗p − xap

]
, (3.22)

where x∗p and xap are the reference and the analysis solutions, respectively.
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• The Root-Mean-Square-Error (RMSE) is utilized as a measure of performance, in average,

on a given assimilation window,

ϵ =

√√√
1

G
·

G∑
p=1

λ2p .

In �gure 3.3, the results are shown in terms of L − 2 error norms and assimilation steps (p)

for the compared methods, we group the results by radius sizes. As can be seen, there are

parameter values for δ and ρ in which the results proposed by the �lters are comparable with

those obtained by the EnKF with a large ensemble size of N = 10
6
. This supports the theory

that, all �lters can provide good approximations of posterior states with just a few ensemble

members. However, the performance of the LETKF degrades as the radius size is increased, this

can be explained as follows: in the LETKF, local background error correlations are estimated

based on a local ensemble covariance matrix, therefore, sampling noise can easily impact the

sample covariance matrix when the ensemble size is not much larger than the number of

components within the local boxes. Such cases are not evident in the EnKF implementations

based on a modi�ed Cholesky decomposition. All these �lters perform remarkably well and in

all cases, the initial error (uncertainty) is decreased. The importance of having �lters which

are not so sensible to the parameters δ and ρ is that, in practice, such parameters can be hard

to tune. Thus, one can prefer �lter formulations whose accuracy is not highly impacted by

changes in those parameters.

We can analyze the results in terms of RMSE values as well. Those are reported in �gure 3.4.

Note that, as we mentioned before, the accuracy of the LETKF can be sensible to the radius

size regardless the in�ation factor. After δ = 3, the quality of the analysis obtained by this

�lter is clearly impacted by sampling errors. On the other hand, the proposed �lters behave

similarly to the EnKF-MC since their background error correlations are estimated making use

of the same estimator (3.8c). However, we can see that, there are always con�gurations of the

parameters for all �lters which provide accurate enough approximations.
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Figure 3.3: Experimental results with the Lorenz-96 model (3.21). The results are grouped by

values of δ . in�ation factors are ranged in 1 ≤ ρ ≤ 1.1 for each group.
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Figure 3.4: Experimental results with the Lorenz-96 model (3.21). The RMSE values are shown

for the compared �lter implementations for di�erent values of δ and ρ.

3.5 Conclusions

This chapter proposes a posterior ensemble Kalman �lter based on a modi�ed Cholesky decom-

position which works as follows: the precision background error covariance matrix is estimated

in terms of Cholesky factors via a modi�ed Cholesky decomposition, the factors of the posterior

precision covariance are then obtained by rank-one updates over the background factors and

from there, the posterior mode of the error distribution can be estimated. By using the analysis

factors, the posterior ensemble can be built by either sampling from the posterior distribution

or making use of synthetic data. Besides, sparse estimators of the precision analysis covariance

can be obtained by exploiting the conditional independence of model components regarding

some radius of in�uence as is done in the EnKF-MC context. The computational e�ort of the

proposed method is similar to that of the EnKF-MC. Experimental tests are performed in order

to assess the accuracy of the proposed method as the in�ation factor and the radius of in�uences

are varied. The numerical model operator utilized during the experiments is the Lorenz-96

model. The results reveal that, the accuracy in terms of root-mean-square-error of the proposed

method is similar to that of one of the best EnKF implementations from the current literature.
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Besides, the results obtained by the proposed implementation are comparable to those of the

EnKF with large ensemble sizes.
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4 A Four Dimensional Variational Data
Assimilation Framework for Wind Energy
Potential Estimation

In this paper, we propose a Four-Dimensional Variational (4D-Var) data assimilation framework

for wind energy potential estimation. The framework is de�ned as follows: we choose a

numerical model which can provide forecasts of wind speeds then, an ensemble of model

realizations is employed to build control spaces at observation steps via a modi�ed Cholesky

decomposition. These control spaces are utilized to estimate initial analysis increments and to

avoid the intrinsic use of adjoint models in the 4D-Var context. The initial analysis increments

are mapped back onto the model domain from which we obtain an estimate of the initial

analysis ensemble. This ensemble is propagated in time to approximate the optimal analysis

trajectory. Wind components are post-processed to get wind speeds and to estimate wind

energy capacities. A matrix-free analysis step is derived from avoiding the direct inversion

of covariance matrices during assimilation cycles. Numerical simulations are employed to

illustrate how our proposed framework can be employed in operational scenarios. A catalogue

of twelve Wind Turbine Generators (WTGs) is utilized during the experiments. The results

reveal that our proposed framework can properly estimate wind energy potential capacities for

all wind turbines within reasonable accuracies (in terms of Root-Mean-Square-Error) and even

more, these estimations are better than those of traditional 4D-Var ensemble-based methods.

Moreover, large variability (variance of standard deviations) of errors are evidenced in forecasts

of wind turbines with the largest rate-capacity while homogeneous variability can be seen in

wind turbines with the lowest rate-capacity.

4.1 Hybrid 4D-Var Methods for Wind Power Estimation

Data Assimilation (DA) is the process by which an imperfect numerical forecast {xb
k
}G
k=0

is

adjusted according to real noisy observations {yk}Gk=0 [NR18, NRCB18], where xb
k
∈ Rn×1 and

yk ∈ Rm×1 are the background state and the observations at step k , for 0 ≤ k ≤ G , respectively,

n is the model size (model resolution), m denotes the number of observations per assimilation

step, andG is the size of the assimilation window (the number of times wherein observations are

available). In strong constraint Four-Dimensional Variational (4D-Var) methods, cost functions

of the form [Lor03b, Lor03a]:

J (x0) =
1

2

·
x0 − xb02B−1

0

+
1

2

·

G∑
k=0

‖yk −H (xk)‖2R−1k
, (4.1)
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are employed to perform the assimilation process, where B0 ∈ R
n×n

and Rk ∈ Rm×m are the

covariance matrix of the initial background errors and the estimated data error covariance

matrix at step k , respectively. Likewise,

xf =Mtf −1→tf

(
xf −1

)
, for 1 ≤ f ≤ G , (4.2)

whereM : Rn×1 → Rn×1 is a numerical model which, for instance, mimics the behavior of

the ocean and/or the atmosphere and even more, we assume that the model can predict wind

components (or wind speeds). We then seek the initial condition which best �t the data:

xa
0
= arg min

x0
J(x0) , subject to (4.2) . (4.3)

To solve the optimization problem (4.3), for instance, we can make use of adjoint models

(i.e., transpose of linearization of the numerical model) or an ensemble of model realizations.

Regardless of which one is chosen, the initial condition (4.3) can provide a forecast of relevant

physical variables (depending on the numerical model) such as wind components, temperature,

and humidity. Forecasts of wind components can be exploited in the context of Wind Turbine

Generators (WTGs) to estimate the potential energy capacities of wind turbines and then to

employ green sources of energy in cities, countries, and even more, remote places wherein these

are the unique option. Hence, we can make use of numerical models and 4D-Var optimization

problems to estimate wind components (in particular, wind speeds since they are key inputs

to size WTG), then by using parameters from wind turbines such as cut-in speed, cut-out

speed, and rated wind speed, we can estimate their potential wind power capacity for a speci�c

place. WTG parameters allow choosing the best WTG for a speci�c place according to its wind-

speed values. This can be exploited in places such as the Latin American and the Caribbean

(LAC) countries since these are widely known for their large power generation capacity using

renewable energies. This makes them highly attractive for clean energy investment [FAF
+

17].

Recent studies indicate that the full deployment of this capacity can be almost seven times

larger than the current world installed one, and even more, it can constitute a near-zero carbon

emissions option for developing countries [DRB08]. This could provide substantial societal

bene�ts, including energy security, local and global environmental bene�ts, domestic job

creation, and improved balance of payments, amongst others [VIR
+

14]. Given LAC geography,

wind turbines (wind farms) can be exploited as clean energy sources. The economic bene�ts of

wind farms are better than those of traditional sources such as solar farms, which make the �rst

option desirable for long-term plans at national levels. The proper planning and scheduling of

wind power systems can lead to almost no impact on LAC ecosystems, neither visual or audible.

Besides, this can serve as a complement of the hydro-dominated electricity grids [MWOH17],

as the winds are stronger during the dry season when hydroelectric generation is most limited.

Moreover, wind farms can provide a full or complementary source of energy in some areas

of di�cult access; the application of wind turbines is primarily in windmills that are used to

generate electricity [GJSAGJ17]. These wind turbines can be used to avail o�-grid electricity

in remote regions (i.e., some islands).

The structure of this Chapter is as follows: Section 4.2 discusses DA formulations and wind

turbine generators (WTG). In Section 4.3, we propose a novel framework for electrical power

estimation via WTGs and 4D-Var ensemble DA. In Section 4.4, numerical simulations are
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employed to show how our framework can be employed; we generate synthetic scenarios by

using an Atmospheric General Circulation Model. Lastly, Section 4.5 states the conclusions of

this research.

4.2 Preliminaries

In this section, we brie�y discuss concepts related to 4D-Var ensemble DA and wind turbine

generators. We primarily focus on the necessary topics for the derivation of our 4D-Var

ensemble-based method.

4.2.1 Data Assimilation

To solve the optimization problem (4.3), we can employ adjoint models to approximate gradients

and to condunct optimization steps via, for instance, line-search or trust region methods.

However, these models can be labor-intensive to develop and computationally expensive to

run. For instance, the adjoint model of the High Resolution Limited Area Modelling (HIRLAM)

4D-Var [GB14, SUL
+

09] was developed in 10 years in which most of the time was spent to detect

and to �x errors in the tangent and the adjoint models [Gus07]. To avoid the use of adjoint

models, we can employ an ensemble of model realizations [NRS15] as follows [HM98, SKW18]:

Xb
k =

[
xb[1]
k
, xb[2]

k
, . . . , xb[N ]

k

]
∈ Rn×N (4.4a)

where xb[e]
k
∈ Rn×1 stands for the e-th ensemble member, for 1 ≤ e ≤ N , at time k , for 0 ≤ k ≤ G .

Then, the ensemble mean:

xbk =
1

N
·

N∑
e=1

xb[e]
k
∈ Rn×1 , (4.4b)

and the ensemble covariance matrix:

Pbk =
1

N − 1
· ∆Xb

k ·
[
∆Xb

k

]T
∈ Rn×n , (4.4c)

act as estimates of the forecast state xb
k

and the forecast error covariance matrix Bk , respectively,

where the matrix of member deviations reads:

∆Xb
k = Xb

k − x
b
k · 1

T ∈ Rn×N . (4.4d)

The model trajectory in (4.1) can be constrained to the space spanned by the background

ensemble members (4.4a), this is:

xk = xbk + ∆Xk ·w , (4.5)

where w ∈ RN×1 is a vector in redundant coordinates to be determined later. This is equivalent

to:

xk − xbk ∈ range {∆Xk} ≈ range
{
B1/2

k

}
,
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therefore, the estimation of analysis increments is performed onto the sub-space given by a

low-rank square root approximation of the background error covariance matrices (4.4c) at

observation times (times where observations are available). By replacing (4.5) into the equation

(4.1) one obtains [GAVL15]:

J(x0) = J
(
xb
0
+ ∆X0 ·w

)
= Ĵ (w) =

(N − 1)

2

· ‖w‖2 +
1

2

·

G∑
k=0

‖dk − Qk ·w‖2R−1k
, (4.6)

where dk = yk − Hk · xbk ∈ R
m×1

is the innovation vector and Qk = Hk · ∆Xb
k
∈ Rm×N . Note

that, this cost function does not rely in the numerical model (4.2) anymore. The optimal value

of the control variable w is then seek:

w∗ = arg min

w
Ĵ (w) . (4.7a)

The gradient of (4.6) equals:

∇wĴ (w) = (N − 1) ·w −
G∑
k=0

QT
k · R

−1
k · [dk − Qk ·w]

=

[
(N − 1) · I +

G∑
k=0

QT
k · R

−1
k · Qk

]
·w −

G∑
k=0

QT
k · R

−1
k · dk ∈ R

N×1 , (4.7b)

and from here, the optimal weight (4.7a) can be approximated as follows:

w∗ =

[
(N − 1) · I +

G∑
k=0

QT
k · R

−1
k · Qk

]−1
·

G∑
k=0

QT
k · R

−1
k · dk ∈ R

N×1 , (4.7c)

from which the initial analysis state can be estimated:

xa
0
= xb

0
+ ∆Xb

0
·w∗ . (4.7d)

Since in (4.5), xa
k

represents an approximation rather than an exact analysis trajectory, the

initial analysis is recovered and then, it is evolved in time by using the numerical model (4.2)

from which we obtain an estimate of the optimal trajectory of (4.3):

xaf =Mtf −1→tf

(
xaf −1

)
, for 1 ≤ f ≤ G . (4.7e)

Notice, in the 4D-EnKF, all computations are performed onto the ensemble space (4.5) and

therefore, the computational cost of estimating (4.7d) is linearly bounded regadring n andm
[NRS16]:

O
(
N · n ·m + N 2 ·m

)
.
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Readily, posterior ensemble members at the initial time can be estimated via the implicit

covariance matrix in (4.7c):

xa(e)
0
= xb

0
+ ∆Xb

0
·w(e) , for 1 ≤ e ≤ N ,

where:

w(e) ∼ N ©«w∗,
[
(N − 1) · I +

G∑
k=0

QT
k · R

−1
k · Qk

]−1ª®¬ .
In practice, model dimensions range in the order of millions while ensemble sizes are con-

strained by the hundreds and as a direct consequence, undersampling degrades the quality

of analysis corrections onto the space spanned by (4.4d). To counteract the e�ects of sam-

pling noise, localizations methods are commonly employed [GKM
+

11, CO10], in practice. For

instance, methods such as covariance matrix localization (B-localization) [LWB18], domain

localization, and observation localization (R-localization) [And01, HZS18, And19] are employed

in operational DA scenarios. Yet another possible choice is to make use of precision matrix

estimation. In this context, for instance, the use of the spatial-predecessors concept can be

employed to obtain sparse estimators of precision matrices [LRZ
+

08]. The predecessors of

model component i , from now on Π(i, δ ), for 1 ≤ i ≤ n and a radius of in�uence δ ∈ Z+, are

given by the set of components whose labels are lesser than that of the i-th one. Of course,

this will depend on the format employed to label components on a numerical grid. In practice,

column major and row major format are commonly employed. This idea is exploited in the EnKF

formulation proposed in [NRSD17, NRSD18] wherein the following estimator is employed to

approximate precision matrices [BL
+

08c]:

B̂−1k = V̂Tk · Γ̂
−1

k · V̂k ∈ R
n×n , (4.8a)

where the Cholesky factor Lk ∈ Rn×n is a lower triangular matrix,{
V̂k

}
i,д
=


−βi,д,k , д ∈ P(i, δ )

1 , i = д

0 , otherwise

, (4.8b)

whose (sub-diagonal) elements βi,д,k are estimated by �tting linear models:

xT
[i]k
=

∑
д∈Π(i, δ )

βi,д,k · xT[д]k +γ ik ∈ R
N×1 , 1 ≤ i ≤ n , (4.8c)

where xT
[i]k
∈ RN×1 denotes the model component i from the ensemble (4.4a). Likewise,

γ ik ∈ R
N×1 ∼ N

(
0, σ 2 · I

)
, where the variance σ 2

k
is unknown, and the diagonal matrix

Γk ∈ R
n×n

holds the variance of residuals:

{Γk}i,i = v̂ar ©«xT[i]k −
∑

д∈Π(i, δ )

βi,д,k · xT[j]k
ª®¬
−1

≈ var
(
γ ik

)−1
=

1

σ 2

k

> 0 , with {Γk}1,1 = v̂ar
(
xT
[1]k

)−1
, (4.8d)

where the empirical and the actual variances are denoted by v̂ar(•) and var(•), respectively.
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4.2.2 Wind Energy Potential

The e�ects of climate change have triggered alarms to employ alternatives and to reduce

Carbon Dioxide (CO2) emissions around the world. In many countries, regulation and CO2
reduction goals promote the substitution of fossil energy sources with Renewable Energy

Sources (RES) [KST17]. For instance, China, the largest energy consumer worldwide, has an

economic motivation to execute such substitution [Liu17]: traditional power systems (mainly

composed of nuclear, hydro, and thermal generators) are drastically decreasing, and now, they

are trying to integrate RES as a shock absorber of this situation. However, RES integration is

not straightforward since it brings new issues and challenges that need to be analyzed and

addressed. One of the main challenges comes from the intermittency of RES [VDVDH17].

Intermittency combines variability and uncertainty. The former is produced by the movement

of large cloud systems owing to high and low-pressure areas. Uncertainty, also known as

unpredictability, comes from the forecast error, which in turn depends on the numerical model

(4.2). Thus, uncertainty ampli�cation relies on model errors (i.e., physics simpli�cations to

make numerical models computationally feasible to run). For instance, if the accuracy of the

numerical model is poor, and no Data Assimilation is performed, the bias on the resulting

estimate will be large concerning the actual wind speed. Thus, wind speeds can be poorly

estimated, and as a direct consequence, wind energy potentials can be underestimated. Hence,

Data Assimilation can be employed in this context to mitigate the impact of poor potential

energy estimations via real noisy observations of wind speeds. The potential energy p(v) in

MegaWatts (MW ) of a wind turbine given a wind speed v (km/h) can be estimated as follows:

p(v) =


Pnom ·

(
v3−v3c
v3r−v

3

c

)
vc ≤ v ≤ vr

Pnom vr ≤ v ≤ v f

0 otherwise

, (4.9)

where vc , vr , v f , and vp are the cut-in wind speed, the rated wind speed, the cut-out wind

speed, and the rated power of wind turbine, respectively. Table 4.1 shows the 12 wind turbine

generators types assumed and utilized in many case studies [XB10]. The outage rate of each

wind turbine reads 0.04. Commonly, the useful life of a wind turbine is about 25 years, this

does not depend on its size. We also report the capital cost, and the maintenance and operating

cost for each turbine, these are taken from [W
+

08, Mas13].
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Type Rated capacity (MW ) vc (km/h) vr (km/h) v f (km/h) Capital cost M&O
WTG 1 0.5 10 40 80 1350 36

WTG 2 0.5 10 45 70 1350 36

WTG 3 1 12 40 80 1250 35

WTG 4 2 12 30 55 1120 30

WTG 5 1 13 33 60 1220 33

WTG 6 1 14 40 90 1250 32

WTG 7 2 15 33 50 1100 35

WTG 8 2 15 33 60 1100 30.5

WTG 9 1 15 37 70 1200 32

WTG 10 1 18 48 70 1250 32

WTG 11 2 18 45 70 1100 30

WTG 12 2 18 35 75 1100 30

Table 4.1: WTG Unit Parameters

Based on the Table 4.1, places with wind speeds below 10 km/h do not have the chance to

generate electrical power from wind speeds since these are lower than the minimum cut-in wind

speed across all Wind Turbine Generators (WTGs). Similarly, places with wind speeds greater

than 90 km/h cannot produce electrical power because wind speeds exceed the maximum

cut-out wind speed (i.e., WTG 6). Although, we do not consider economic impacts of wind-farm

placements, it is important to note that wind-speed constraints have economic implications.

For instance, for a place with bimodal wind speeds of 40 km/h and 11 km/h, WTGs 1 and 2

can be employed while the rest of them must be discarded in spite of the last are cheaper.

4.3 Proposed Framework

In this section, we develop an adjoint-free 4D-Var framework for potential energy estimation.

The framework is divided into four stages. First, we build an ensemble of snapshots at obser-

vation times by employing a numerical model which can forecast wind components. Second,

these snapshots are employed to build control spaces via a modi�ed Cholesky decomposition.

Third, the control spaces are utilized to obtain initial conditions whose wind forecasts �t a set

of time spaced observations. Lastly, forecasts of wind components are employed to estimate

forecasts of wind speeds, which in turn allow us to forecast potential energies of Wind Turbine

Generators (WTGs). Since, in practice, model resolutions range in the order of the millions,

we develop a matrix-free analysis formulation to avoid the direct inversion of linear systems

during assimilation steps. All these stages are clearly detailed next.

4.3.1 Building an Ensemble of Snapshots

Initially, we choose a numerical model which mimics the dynamics of wind components

in places of interest. For this purpose, numerical models such as the Atmospheric General

Circulation Model (AT-GCM Speedy) [AKW11] and the Weather Research Forecast (WRF)

Model [MDG
+

05, MCD
+

01] can be employed. Once the numerical model is chosen, snapshots
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of an ensemble of model realizations (4.4a) are taken at G + 1 observation times. At step

k , for 0 ≤ k ≤ G, the background ensemble Xb
k

(4.4a) is employed to estimate a full-rank

square-root approximation of the precision matrix of background errors B−1
k

via a modi�ed

Cholesky decomposition (4.8a):

B̂−1/2
k
= V̂Tk · Γ̂

−1/2

k ∈ Rn×n . (4.10)

At this step, we choose a radius of in�uence (localization radius) δ to compute the factor V̂T
k

.

Beyond the scope of this radius (and the predecessors of model components) all components

of V̂T
k

are assumed zero. We exploit the fact that, when the error correlations of two model

components are conditionally independent (given a radius of in�uence δ ), their corresponding

entry in the precision matrix of background errors is zero. This results in a sparse Cholesky

factor V̂T
k

and even more, a localized square-root precision matrix. In this manner, the impact of

sampling errors can be mitigated in the square-root approximations (4.10). Some structures of

V̂k are shown in �gure 4.1 for a one dimensional grid and di�erent values of δ , cyclic boundary

conditions are assumed for physics/dynamics.
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Figure 4.1: Structure of the Cholesky factor V̂k as a function of the localization radius δ .

The square-root approximations (4.10) serve as control spaces onto which analysis increments

can be estimated, therefore, the analysis increment at observation time k can be written as

follows:

xk − xbk ∈ range
{
B̂1/2

k

}
,

or equivalently:

xk = xbk + B̂
1/2

k
· α ∈ Rn×1 , (4.11)

where B̂1/2

k
=

[
V̂T
k
· Γ̂
−1/2

k

]−1
∈ Rn×n, and α ∈ Rn×1 is a vector in redundant coordinates to be

determined later. We assume that:

range
{[
V̂Tk · Γ̂

−1/2

k

]−1}
≈ range

{
B1/2

k

}
.

58



4 A Four Dimensional Variational Data Assimilation Framework for Wind Energy Potential
Estimation

Note that, since the square root approximations (4.10) are full-rank, the dimension of the

spaces (4.11) equal those of the range of B1/2
. This di�ers from what is usually employed in

the literature: a control space whose dimension equals the ensemble size (4.5) and therefore,

analysis increments can be highly impacted by sampling noise. We then expect to capture all

error dynamics onto the spaces (4.10).

Since the initial background error covariance matrix B0 onto the control space (4.11) is

nothing but the identity matrix, the following error statistics hold for the prior weights αb(e)
:

αb(e) ∼ N (0, I) , for 1 ≤ e ≤ N .

Due to this, the 4D-Var cost function (4.1) onto the control space (4.11) can be written as follows:

J (x0) = J
(
xb
0
+ B̂1/2

0
· α

)
= J̃ (α ) =

1

2

· ‖α ‖2 +
1

2

·

G∑
k=0

̃dk − Q̃k · α
2
R−1k
, (4.12)

where d̃k = yk − H · xbk ∈ R
m×1

, and Q̃k = H · B̂1/2

k
∈ Rm×n. Again, this cost function does not

rely on the numerical model (4.2).

4.3.2 Adjoint-Free 4D-Var Optimization

Once the control spaces are estimated across observation times, the adjoint-free optimization

problem to solve reads:

αa = arg min

α
J̃ (α ) . (4.13a)

The gradient of this cost function can be written as follows:

∇α J̃ (α ) =

[
I +

G∑
k=0

Q̃T
k · R

−1
k · Q̃k

]
· α −

G∑
k=0

Q̃T
k · R

−1
k · d̃k ,

whose root reads:

αa =

[
I +

G∑
k=0

Q̃T
k · R

−1
k · Q̃k

]−1
·

[
G∑
k=0

Q̃T
k · R

−1
k · d̃k

]
, (4.13b)

and therefore an estimate of the initial analysis state (4.3) can be computed as follows:

xa
0
= xb

0
+ B̂1/2

0
· αa , (4.13c)

whose model trajectory provides a forecast which accounts for the given data into the assimi-

lation window. Note that, the closed form expression (4.13b) for the optimal weights (4.13a)

is possible since we consider linear observation operators in our formulation. The posterior

ensemble onto the control space can then be built by using a square root approximation of the

information matrix in (4.13b), it can be easily shown that the posterior error statistics read:

αa[e] ∼ N
©«αa,

[
I +

G∑
k=0

Q̃T
k · R

−1
k · Q̃k

]−1ª®¬ , for 1 ≤ e ≤ N , (4.14)
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with corresponding analysis members in the model space:

xa[e]
0
= xb + B̂1/2

0
· αa[e] .

Then, the analysis members of the initial ensemble are propagated in time

xa[e]
f
=Mtf −1→tf

(
xa[e]
f

)
, for 1 ≤ f ≤ G and 1 ≤ eleN ,

from which an estimate of the optimal trajectory

xak ≈ xak =
1

N
·

N∑
e=1

xa[e]
k
, (4.15)

and his uncertainty (i.e., by employing a modi�ed Cholesky decomposition on the ensemble

members at time k) can be obtained. Note that, the posterior mode (4.13c) can be written as

follows:

xa
0
− xb

0
= B̂1/2

0
·

[
I +

G∑
k=0

Q̃T
k · R

−1
k · Q̃k

]−1
·

[
G∑
k=0

Q̃T
k · R

−1
k · d̃k

]
,

which is nothing but a linear transformation of the prior increment to the posterior one. In

this sense, the analysis step is similar to that of square root �lter formulations. However, we

compute the analysis increments of the initial ensemble members by using synthetic data,

which is statistically consistent with the posterior error distribution:

xa[e]
0
− xb[e]

0
=

[
V̂T · Γ̂

−1/2
]
·

αa +

[
I +

G∑
k=0

Q̃T
k · R

−1
k · Q̃k

]−1/2
· ξ [e]

 , with ξ [e] ∼ N (0, I) .

Readily:

xa
0
− xb

0
= E

(
1

N
·

N∑
e=1

xa[e]
0
− xb[e]

0

)
,

and therefore, in spite of the posterior mode of the analysis distribution can be estimated via

a linear transformation of the initial background increments, the analysis increments of the

initial ensemble are actually computed by employing synthetic data. This places our proposed

�lter formulation into the family of stochastic formulations of data assimilation methods.

Notice, given the special structure of our estimator B−1/2
k

, the Woodbury matrix identity can

be exploited to avoid direct inversions [RSA15]. We denote this �lter implementation Four
Dimensional Variational Data Assimilation via a Modi�ed Cholesky Decomposition (4D-Var-MC).

4.3.3 Post-Processing of Data, Potential Energy Estimation

Once the model trajectory is computed for each ensemble member, we proceed to map wind

�elds to wind energy potentials in two steps:
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1. whenever is necessary, the wind components of ensemble members are mapped to

wind-speeds,

2. this subset of information is exploited to estimate the wind energy potential of each

analysis ensemble member:

x̂a[e]
k
= w

(
xa[e]
k

)
, for 1 ≤ e ≤ N , and 0 ≤ k ≤ G , (4.16)

where w : Rn×1 → Rh×1 is a function that maps model states to potential energy states

(this is, for each ensemble member, its wind-speed components are mapped to wind

energy potentials), where h is the number of wind-speed components (with h ≤ n), and

x̂a[e]
k
∈ Rh×1 is the k-th transformed member. The mapping process depends on the wind

turbine employed, for instance, one can consider the wind turbines discussed in Section

4.2.2.

Note that, the empirical moments of the samples (4.16) can be exploited to estimate mean and

standard deviations of wind energy potential capacities. Besides, covariances of such samples

can be estimated via a modi�ed Cholesky decomposition to understand better (and to estimate)

their uncertainties.

4.3.4 Further Comments: Matrix-Free Formulation of the 4D-Var-MC

In practice, the number of model components n range in the order of the millions and there-

fore, matrix computations can be constrained by computational resources. For instance, the

direct inversion of (4.13b) is prohibitive. Thus, it is mandatory to count with a matrix-free

implementation of any data assimilation process. Following the ideas discussed in [NR17], we

can develop a matrix-free equation for the analysis step of the 4D-Var-MC implementation. We

can proceed as follows, consider:

Ω = [Ω0, Ω1, . . . , ΩG] ∈ R
n×O

where Ωk = Q̃k · R
−1/2

k
∈ Rn×m, and O =m ·G, the precision matrix in (4.14) can be written as

follows,

Â−1 = I + Ω · ΩT = TT · C · T + Ω · ΩT = TT · C · T +
O∑
o=1

·ω[o] ·
[
ω[o]

]T
, (4.17)

where ω[o] ∈ Rn×1 is the o-th column of matrix Ω, for 0 ≤ o ≤ O , and I = TT · C · T is the

Cholesky decomposition of I (all factors equal the identity matrix). Consider the sequence of

matrices,

Â(0) =
[
V(0)

]T
· Γ(0) ·

[
V(0)

]
= TT · C · T = I ,

Â(1) = Â(0) +ω[1] ·
[
ω[1]

]T
=

[
V(1)

]T
· Γ(1) ·

[
V(1)

]
,

Â(2) = Â(1) +ω[2] ·
[
ω[2]

]T
=

[
V(2)

]T
· Γ(2) ·

[
V(2)

]
,

...

Â(O) = Â(O−1) +ω[O] ·
[
ω[O]

]T
=

[
V(O)

]T
· Γ(O) ·

[
V(O)

]
= V̂T · Γ̂ · V̂ = Â−1 ,
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where V(0) ∈ Rn×n and Γ(0) ∈ Rn×n are the factors of the Cholesky decomposition of the identity

matrix I. Among iteration steps o, for 0 ≤ o ≤ O , one can see that:

Â(o) =
[
V(o−1)

]T
· Γ(o−1) ·

[
V(o−1)

]
+ω[o] ·

[
ω[o]

]T
=

[
V(o−1)

]T
·

[
Γ(o−1) +γ (o) ·

[
γ (o)

]T ]
·

[
V(o−1)

]
, (4.18)

where

[
V(j−1)

]T
· γ (j) = ω[j] ∈ Rn×1. Via the Cholesky factors of,

Γ(o−1) +γ (o) ·
[
γ (o)

]T
=

[
Ṽ(o−1)

]T
· Γ(o) ·

[
Ṽ(o−1)

]
, (4.19)

and, by considering equation (4.18), the matrix Â(j) can be decomposed as follows,

Â(o) =
[
Ṽ(o−1) · V(o−1)

]T
· Γ(o) ·

[
Ṽ(o−1) · V(o−1)

]
=

[
V(o)

]T
· Γ(o) ·

[
V(o)

]
,

where V(o) = Ṽ(o−1) · V(o−1) ∈ Rn×n. By taking a close look at equation (4.19), the elements of

factors Ṽ(o−1) and Γ̃
(o)

can be easily related to those of Γ(o−1) and γ (o) via the Dolittle’s method

for matrix factorization, for instance, we can note that:[
Ṽ(o−1)

]T
· Γ(o) ·

[
Ṽ(o−1)

]
i,b
= δi,b · Γ

(o−1)
i,i +γ (o)i · γ

(o)
b
,

and therefore, the next relations hold:

Γ(o)n,n =
[
γ (o)n

]
2

+ Γ(o−1)n,n , (4.20a)

Ṽ(o−1)
i,b
=

1

Γ(o)i,i
·

γ (o)i · γ (o)b −
∑

q∈Π(i, δ )

Γ(o)q,q · Ṽ
(o−1)
q,i · Ṽ(o−1)

q,b

 , (4.20b)

and

Γ(o)i,i =
[
γ (o)i

]
2

+ Γ(o−1)i,i −
∑

q∈Π(i, δ )

Γ(o)q,q ·
[
Ṽ(o−1)q,i

]
2

, (4.20c)

for 1 ≤ i ≤ n − 1 and b ∈ Π(i, δ ), where the Kronecker delta function δi,j equals 1 for i = j and

0 otherwise, and the diagonal entries of matrix Ṽ(o−1) are all equal to one. In algorithm 10, we

show how the Cholesky factors V(o) and Γ(o) can be updated with the information brought by

the rank-one matrixω[o] ·
[
ω[o]

]T
, the general updating process of factors V̂(0) and Γ(0) for the

estimation of Â−1 are detailed in algorithm 11. The number of long computations is reported as

well for each step of our proposed updating process. We let by φ the largest number of non-zero

elements per row in the V(o) factor. This value will depend on chosen radius of in�uence δ
during assimilation steps, and intuitively φ � n. Note that, V(o−1) and Ṽ(o−1) hold the same
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structure since this is given by the predecessors of i . Thus, the structure (form) of V(o−1) is

preserved in V(o). Consequently, we can hold a desired structure in the resulting estimator V̂,

for instance, this can be equal to that of V. Note that, the number of long computations in the

4D-Var-MC reads:

O
(
φ2 ·O · n +O · φ

)
,

which increases linearly regarding the number of model components. This makes the pro-

posed �lter implementation attractive in operational scenarios where the number of model

components ranges in the order of millions.

Algorithm 10 Rank-one update of factors V(o−1) and Γ(o−1) via Doolittle’s method.

1: function Update_Rank_One(V(o−1), Γ(o−1),ω[o]) . COST
2: Solve

[
V(o−1)

]T
· p(o) = ω[o]. . O (φ · n)

3: Compute Γ(o)n,n via equation (4.20a). . O (1)
4: for i = n − 1→ 1 do . O

(
φ2 · n

)
5: Let Ṽ(o−1)i,i ← 1. . O (1)

6: for k ∈ Π(i, δ ) do . O
(
φ2

)
7: Compute Ṽ(o−1)

i,k
according to (4.20b). . O (φ)

8: end for
9: Compute Γ(o)i,i via equation (4.20c). . O (φ)

10: end for
11: Let V(o) ← Ṽ(o−1) · V(o−1). . O

(
φ2 · n

)
12: return V(o), Γ(o)

13: end function

Algorithm11Computing the posterior factors V̂ and Γ of Â−1 = V̂T ·Γ ·V̂ = I+
∑G

k=0 Q̃
T
k
·R−1

k
·Q̃k .

1: function Compute_Posterior_Cholesky_Factors(V(0), Γ(0), H, R) . COST
2: Let Ω ←

[
HT
0
· R−1/2

0
, HT

1
· R−1/2

1
, . . . , HT

G · R
−1/2

G

]
. . O (O · n)

3: Let O ←m ·G
4: for j = 1→ O do . O times line 4, O

(
φ2 ·O · n

)
5: Let [V(j), Γ(j)] ← Update_Rank_One

(
V(j−1), Γ(j−1), ω[j]

)
. O

(
φ2 · n

)
6: end for
7: return V(O) as V̂, Γ(O) as Γ.

8: end function

Now, we are ready to test our proposed framework.

4.4 Numerical Results

In this section, we employ our proposed framework by using the Atmospheric General Cir-

culation Model (AT-GCM) Speedy [BKKM04]. This model is a general circulation model that
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mimics the behavior of the atmosphere across di�erent pressure levels [Miy11]. The number of

numerical layers in this model is 7, and we employ a T-30 spectral model resolution (96×48 grid

components) for the space discretization of each model layer [Mol03, KMB06]. The number of

physical variables is 5. These are detailed in the Table 4.2 with their corresponding units and

number of numerical layers.

Name Notation Units Number of Layers

Temperature T K 7

Zonal Wind Component u m/s 7

Meridional Wind Component v m/s 7

Speci�c Humidity Q д/kд 7

Pressure T K 1

Table 4.2: Physical variables of the AT-GCM Speedy model.

Note that the total number of model components to be estimated reads n = 133, 632. We let

the number of model realizations (ensemble size) as N = 30 for all experimental scenarios. In

this case, the model resolution is approximately 4, 454 times larger than the sample size (n � N ),

which is very common in operational DA scenarios. Additional details of the experimental

settings are described below, some of them are similar to those detailed in [MKI14]:

• Starting with a system in equilibrium, the model is integrated over a long time period

to obtain an initial condition whose dynamics are consistent with those of the SPEEDY

model.

• The initial condition is perturbed N times and propagated over a long-time period from

which the initial background ensemble is obtained.

• We employ the trajectory of the initial condition as the reference one. This reference

trajectory serves to build synthetic observations. Besides, we will consider that the actual

potential capacities of WTGs are based on this solution.

• We let the standard deviations of errors in the observations as follows:

– Temperature 1K .

– Zonal Wind Component 1m/s .

– Meridional Wind Component 1m/s .

– Speci�c Humidity 10
−3 д/kд.

– Pressure 100hPa.

• 50% of model components are observed during assimilation steps. This linear observation

operator is shown in �gure 4.2.

• Observations are available every six hours (6 h).
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Figure 4.2: Linear observation operator during assimilation steps. Shaded regions denote

observed components (observations) from the model state. The operator is replicated

across all numerical layers.

• The experiments are performed under perfect model assumptions.

• The number of assimilation steps reads G = 15. Thus, the simulation times is 7.5 days.

• We use the wind turbines discussed in section 4.2.2 for computing wind potential energies.

• To estimate wind speeds, the wind �elds (zonal and meridional components) are taken

from the numerical grid at the pressure level 100mb.

• Our results are compared with those obtained by the 4D-EnKF formulation.

• We employ the L − 2 error norm as a measure of accuracy for the estimation of wind

energy potential:

ζk =
pk(v) − p∗k(v) , (4.21)

where p∗(v)k is the reference wind energy potential, and pk(v) is the estimated one by a

�lter implementation. Likewise, k stands for observation time and v for wind speed.

• The Root-Mean-Square-Error (RMSE) provides an estimate of the performance of a �lter

for a given assimilation window:

RMSE =

√
1

G
· ζ 2

k
.

• We estimate the potential energy capacities of Wind Turbines Generators (WTGs) dis-

cussed in section 4.2.2.

• Our numerical results are compared with those of the 4D-EnKF formulation discussed in

Section 4.2.
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4.4.1 Results withp = 50% of observations from themodel state

The L − 2 error norms (4.21) of wind-energy-potential estimations for an ensemble size of

N = 20 is shown in �gure 4.3. We employ a log scale in the y axis to render the text easier

to read. As can be seen, for all WTGs, the compared �lter implementations provide better

estimates of potential generations than those obtained by pure forecasts, as should be expected.

Thus, regardless of the employed DA method, the accuracy of forecasts can be improved by

injecting real observations of the dynamical system. This can be bene�cial for taking actions on

whether to employ or not green sources of energy during, for instance, industrial operations. In

all cases, on average, the estimated analysis trajectories in the 4D-Var-MC context outperform

those computed by the 4D-EnKF formulation. In the 4D-Var-MC, the dimension of control

spaces equals those of model one; therefore, we have enough degrees of freedom to capture

most of the directions where errors grow faster. This allows our proposed implementation to

properly correct initial background states with the information brought by observations in

time. Besides, the initial analysis state (initial condition of the initial value problem) relies on

the quality of the estimated background error correlations:∆xa
0


B−1
0

≈
xa − xbB̂−1

0

≈
xa − xb2[

V̂T
0
·Γ̂
−1

0
·V̂0

]−1 .
As is proven in [NRSD18, Theorem 1], the precision matrix estimator (4.8a) converges to the

actual precision matrix B−1
0

as long as log(n)/N goes to zero. This value, under the current

experimental settings, reads ∼ 0.170, which can explain as well why the accuracy of the 4D-

EnKF-MC method is better than that of the 4D-EnKF. On the other hand, the control space in

the 4D-EnKF formulation relies on the ensemble size, whose dimension is much lesser than

that of the model one. Consequently, this sub-space can be highly sensitive to sampling noise,

which can create spurious correlations among distant model components. Besides, there is

no guaranty that such sub-space can capture the leading directions where errors grow faster.

This results in the poor estimation of the analysis increments of the initial ensemble mean

and, as a direct consequence, the analysis members of the initial ensemble. For this reason,

the bene�ts of increasing the number of model realizations are just evident in the 4D-EnKF

context; for instance, the accuracy of this formulation improves drastically as the ensemble size

increases. The Table 4.3 provides an overview of the compared �lter implementations in terms

of performance (RMSE values) and all parameter con�gurations, RMSE values are computed

based on the analysis trajectory (estimated initial condition). It is clear that, on average, our

proposed �lter implementation outperforms the traditional 4D-EnkF one in terms of accuracy.

In general, both �lters formulations can improve their performance as the ensemble size is

increased.

In �gure 4.4, snapshots of the estimated initial wind-energy-potential are shown for the

proposed 4D-Var-MC method. Their corresponding standard deviations of errors (based on

analysis ensembles) are shown in �gure 4.5. Recall that this initial state is our estimate of

the initial condition in the optimization problem (4.3). As can be expected, most of the wind-

energy-potential is produced on the ocean where wind speeds get the largest rise for all wind

turbines. This serves as a validation test since no wind farms (turbines) can be placed under

such a place. However, countries well-known for their potential capacities are just evident in

these results, for instance, countries such as those from Latin American and the Caribbean and
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Africa. Moreover, by taking a close look at standard deviations, one can see that forecasts are

obtained with low uncertainties for all �lter implementations. This, together with the RMSE

results, show that the proposed framework can be employed to estimate wind energy potentials

with high accuracy and low variations.

Notice, green sources of energy such as those based on wind speeds are impacted by three

observable conditions (which can be implicitly evidenced in our numerical results): variability,

unpredictability, and placement. Variability obeys to the fact that as time moves forward, wind

speeds can drastically vary, this impacts the potential energy that can be generated by WTGs.

Regardless the DA method employed to estimate wind potential capacities, unpredictability

is always present: numerical forecasts are imperfect and even more, uncertain. Placement of

WTGs is crucial, as can be seen in �gure 4.4, no all WTGs can properly work in di�erent zones

of the globe, this is, electrical power via WTGs can drastically vary from one place to other. We

can stood out the importance of employing WTGs as sources of energy based on wind speeds

in di�erent regions of the globe but, we cannot argue which turbine is better than others. To do

this analysis, we should consider other relevant factors such as wind speed variability, WTGs

constraints, and economic considerations, the last two are out of the scope of our analysis.

Consider, again, the WTG parameters reported in the Table 4.1 and the initial snapshots

reported in �gures 4.4 and 4.5. Note that, in most places in the globe, WTGs 1 and 2 can

be installed to guaranty electrical power from wind speeds; these WTGs are the ones with

rate-capacity 0.5. Note that, as the cut-in wind speed and the rate-capacity increase, the

electrical energy generation of WTGs can be impacted. For instance, near the poles, the power

generation is almost null for WTGs with the largest cut-in wind speed parameters. WTGs with

rated-capacity of 1 are the ones that have large variability across di�erent places in the world.

Lastly, the largest amount of energy across di�erent places in the domain can be obtained for

WTGs with the largest rate-capacity values. However, WTGs with low rate-capacity values

are the ones whose numerical forecasts are obtained with lesser variability (i.e., in �gure

4.5 the standard deviation of errors has a homogeneous behavior across di�erent regions of

the domain). As the rate-capacity increases, the variance of the standard deviation of errors

increases as well. This means, more variability of errors can be evidenced across di�erent parts

of the world. Thus, WTGs with large rate capacities provide forecasts with a large amount of

clean energy, but these come with large uncertainties in certain regions of the world, which

can di�cult decision making.
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(a) Wind Turbine 1
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(b) Wind Turbine 2
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(c) Wind Turbine 3
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(d) Wind Turbine 4
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(e) Wind Turbine 5
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(f) Wind Turbine 6
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(g) Wind Turbine 7

0 5 10 15
Time Step (ℓ)

3.5

3.6

3.7

3.8

3.9

4

lo
g
(‖
p(
v)

ℓ
−
p(
v)

∗ ℓ
‖)

4D-Var-MC
4D-EnKF
Background

(h) Wind Turbine 8
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(i) Wind Turbine 9
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(j) Wind Turbine 10
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(k) Wind Turbine 11
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(l) Wind Turbine 12

Figure 4.3: Error norms of wind energy potential estimations for the compared �lter implemen-

tations. The ensemble size reads N = 20. 12 wind turbines are employed for the

experiments. Units are in MW .
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N
20 40

Wind Turbine Generator (WTG) 4D-EnKF 4D-Var-MC 4D-EnKF 4D-Var-MC

WTG 1 0.11713 0.09927 0.11211 0.10098

WTG 2 0.11481 0.10391 0.11143 0.10596

WTG 3 0.23608 0.20008 0.22597 0.20354

WTG 4 0.67597 0.58524 0.65088 0.59049

WTG 5 0.31010 0.27093 0.29692 0.27475

WTG 6 0.22808 0.19058 0.21876 0.19488

WTG 7 0.69412 0.60609 0.67170 0.61034

WTG 8 0.62901 0.54901 0.60232 0.55692

WTG 9 0.26503 0.23305 0.25554 0.23756

WTG 10 0.22425 0.20466 0.21797 0.20872

WTG 11 0.47221 0.42631 0.45824 0.43497

WTG 12 0.55006 0.47031 0.52981 0.47967

Table 4.3: Root-Mean-Square-Error values of wind energy potential estimations. Two ensemble

sizes are tried during the experiments.
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(a) WTG 1 (b) WTG 2 (c) WTG 3

(d) WTG 4 (e) WTG 5 (f) WTG 6

(g) WTG 7 (h) WTG 8 (i) WTG 9

(j) WTG 10 (k) WTG 11 (l) WTG 12

Figure 4.4: Mean of wind energy potentials for the 4D-Var-MC implementations. The number

of ensemble members N = 20. White regions denote no wind-energy-potential

generation.
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(a) WTG 1 (b) WTG 2 (c) WTG 3

(d) WTG 4 (e) WTG 5 (f) WTG 6

(g) WTG 7 (h) WTG 8 (i) WTG 9

(j) WTG 10 (k) WTG 11 (l) WTG 12

Figure 4.5: Mean of wind energy potentials for the 4D-Var-MC implementations. The number

of ensemble members N = 20. White regions denote no wind-energy-potential

generation.
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4.4.2 Single observations across observation times

In this section, we brie�y discuss the performance of our proposed 4D-EnKF-MC method by

using a single observation test. We hold the same experimental settings as those in Section

4.4.1 and report the estimation errors in the initial conditions via L − 2 norms (4.21). The single

observation, across all observation times, is placed as is shown in �gure 4.6.

Figure 4.6: Observation operator across assimilation steps. A single observation (red cross) is

placed during the experiments.

In the Table 4.4, we can clearly seen the advantages of employing the control space (4.11)

instead of the traditional approach based on the ensemble sub-space (4.5). For instance, for

WTG with low rate-capacity, error di�erences are of one order of magnitude. In �gures 4.7

and 4.8, we report the potential energy estimation and the uncertainty of each component

(as the standard deviation of errors from the initial members of the analysis ensemble). As

can be seen, low-rate capacity WTGs such as the WTG 1 and the WTG2 provide estimates

whose error dispersion is small. Again, as the rate-capacity increases, the spread of ensemble

members grow. The accuracy of the proposed method obeys to the fact that the precision

matrix is full-rank, well-conditioned, and even more localized. Thus, the impact of spurious

correlations is mitigated in the analysis increments of the initial ensemble.
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Data Assimilation Method

Wind Turbine Generator (WTG) 4D EnKf 4D EnKf-Cho

WTG 1 10.4452 8.5893

WTG 2 10.3149 8.4186

WTG 3 21.0570 17.3117

WTG 4 58.1186 49.0419

WTG 5 27.2986 22.9304

WTG 6 20.4388 16.4551

WTG 7 59.4296 50.3057

WTG 8 55.3220 46.4524

WTG 9 23.5265 19.2920

WTG 10 20.2342 16.5172

WTG 11 42.4308 34.6328

WTG 12 48.3756 40.4795

Table 4.4: L− 2 error norms of wind energy potential estimations at the initial analysis member.

Two ensemble sizes are tried during the experiments.
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(a) WTG 1 (b) WTG 2 (c) WTG 3

(d) WTG 4 (e) WTG 5 (f) WTG 6

(g) WTG 7 (h) WTG 8 (i) WTG 9

(j) WTG 10 (k) WTG 11 (l) WTG 12

Figure 4.7: Mean of wind energy potentials for the 4D-Var-MC implementations. The number

of ensemble members N = 20. White regions denote no wind-energy-potential

generation. The number of observations reads 1.
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(a) WTG 1 (b) WTG 2 (c) WTG 3

(d) WTG 4 (e) WTG 5 (f) WTG 6

(g) WTG 7 (h) WTG 8 (i) WTG 9

(j) WTG 10 (k) WTG 11 (l) WTG 12

Figure 4.8: Mean of wind energy potentials for the 4D-Var-MC implementations. The number

of ensemble members N = 20. White regions denote no wind-energy-potential

generation. The number of observations reads 1.
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4.5 Conclusions

We propose a 4D-Var ensemble-based data assimilation framework for wind energy potential

estimation. In this formulation, in the 4D-Var context, the intrinsic need of adjoint models

is avoided via the use of an ensemble of model realizations. These ensembles are employed

to build control spaces onto which analysis increments are estimated. Control spaces are

built via a modi�ed Cholesky decomposition. The particular structure of this estimator allows

for a matrix-free implementation of the proposed �lter formulation. Experimental tests are

performed, making use of wind turbines catalogs and the Atmospheric General Circulation

Model Speedy. The results reveal that our proposed framework can properly estimate wind

energy potential capacities within reasonable accuracies in terms of Root-Mean-Square-Error,

and even more, these estimations are better than those of traditional 4D-Var ensemble-based

methods. Besides, Wind Turbine Generators (WTGs) with low rate-capacity are the ones which

provide homogeneous behavior of error estimations around the globe. As the rate-capacity

increases, the potential energy increases as well, but the error dispersion of ensemble members

grow, which can di�cult decision-making processes. Of course, rate-capacity is just a single

parameter of many in the WTG context, and we do not consider, for instance, economic aspects

in our study, which can be crucial for deciding whether or not to employ green sources of

energy.
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To be concise, the contributions of the current work are detailed next:

1. We propose a posterior ensemble Kalman �lter based on a modi�ed Cholesky decompo-

sition. The proposed method estimates the posterior moments of the error distribution

based on an ensemble of model realizations. An estimate of the inverse background

error covariance matrix via a modi�ed Cholesky decomposition is updated making use

of rank-one matrices with information brought by the data error correlations in order to

estimate the precision covariance matrix. This matrix is utilized in order to compute the

posterior mode of the error distribution and then, samples are taken about it. This imple-

mentation is matrix-free making it attractive for practical implementations. Experimental

settings are performed making use of the Lorenz 96 model and di�erent observations and

ensemble con�gurations. The results obtained by the proposed method are compared

against those obtained by the local ensemble transform Kalman �lter (LETKF). The results

reveal that, the use of the proposed implementation can mitigate the impact of sampling

errors and even more, the accuracy of the proposed EnKF implementation is similar to

that of the LETKF.

2. This work proposes a posterior matrix-free ensemble Kalman �lter based on a modi-

�ed Cholesky decomposition which works as follows: the precision background error

covariance matrix is estimated in terms of Cholesky factors via a modi�ed Cholesky

decomposition, the factors of the posterior precision covariance are then obtained by

rank-one updates over the background factors and from there, the posterior mode of the

error distribution can be estimated. By using the analysis factors, the posterior ensemble

can be built by either sampling from the posterior distribution or making use of synthetic

data. Besides, sparse estimators of the precision analysis covariance can be obtained by

exploiting the conditional independence of model components regarding some radius of

in�uence as is done in the EnKF-MC context. The computational e�ort of the proposed

method is similar to that of the EnKF-MC. Experimental tests are performed in order

to assess the accuracy of the proposed method as the in�ation factor and the radius of

in�uences are varied. The numerical model operator utilized during the experiments is

the Lorenz-96 model. The results reveal that, the accuracy in terms of root-mean-square-

error of the proposed method is similar to that of one of the best EnKF implementations

from the current literature. Besides, the results obtained by the proposed implementation

are comparable to those of the EnKF with large ensemble sizes.

3. We propose a 4D-Var ensemble-based data assimilation framework for wind energy

potential estimation. In this formulation, in the 4D-Var context, the intrinsic need

of adjoint models is avoided via the use of an ensemble of model realizations. These

ensembles are employed to build control spaces onto which analysis increments are
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estimated. Control spaces are built via a modi�ed Cholesky decomposition. The particular

structure of this estimator allows for a matrix-free implementation of the proposed �lter

formulation. Experimental tests are performed, making use of wind turbines catalogs and

the Atmospheric General Circulation Model Speedy. The results reveal that our proposed

framework can properly estimate wind energy potential capacities within reasonable

accuracies in terms of Root-Mean-Square-Error, and even more, these estimations are

better than those of traditional 4D-Var ensemble-based methods. Besides, Wind Turbine

Generators (WTGs) with low rate-capacity are the ones which provide homogeneous

behavior of error estimations around the globe. As the rate-capacity increases, the

potential energy increases as well, but the error dispersion of ensemble members grow,

which can di�cult decision-making processes. Of course, rate-capacity is just a single

parameter of many in the WTG context, and we do not consider, for instance, economic

aspects in our study, which can be crucial for deciding whether or not to employ green

sources of energy.
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