51 research outputs found

    Measuring atmospheric scattering from digital images of urban scenery using temporal polarization-based vision

    Get PDF
    Suspended atmospheric particles (particulate matter) are a form of air pollution that visually degrades urban scenery and is hazardous to human health and the environment. Current environmental monitoring devices are limited in their capability of measuring average particulate matter (PM) over large areas. Quantifying the visual effects of haze in digital images of urban scenery and correlating these effects to PM levels is a vital step in more practically monitoring our environment. Current image haze extraction algorithms remove all the haze from the scene and hence produce unnatural scenes for the sole purpose of enhancing vision. We present two algorithms which bridge the gap between image haze extraction and environmental monitoring. We provide a means of measuring atmospheric scattering from images of urban scenery by incorporating temporal knowledge. In doing so, we also present a method of recovering an accurate depthmap of the scene and recovering the scene without the visual effects of haze. We compare our algorithm to three known haze removal methods from the perspective of measuring atmospheric scattering, measuring depth and dehazing. The algorithms are composed of an optimization over a model of haze formation in images and an optimization using the constraint of constant depth over a sequence of images taken over time. These algorithms not only measure atmospheric scattering, but also recover a more accurate depthmap and dehazed image. The measurements of atmospheric scattering this research produces, can be directly correlated to PM levels and therefore pave the way to monitoring the health of the environment by visual means. Accurate atmospheric sensing from digital images is a challenging and under-researched problem. This work provides an important step towards a more practical and accurate visual means of measuring PM from digital images

    Visibility in underwater robotics: Benchmarking and single image dehazing

    Get PDF
    Dealing with underwater visibility is one of the most important challenges in autonomous underwater robotics. The light transmission in the water medium degrades images making the interpretation of the scene difficult and consequently compromising the whole intervention. This thesis contributes by analysing the impact of the underwater image degradation in commonly used vision algorithms through benchmarking. An online framework for underwater research that makes possible to analyse results under different conditions is presented. Finally, motivated by the results of experimentation with the developed framework, a deep learning solution is proposed capable of dehazing a degraded image in real time restoring the original colors of the image.Una de las dificultades más grandes de la robótica autónoma submarina es lidiar con la falta de visibilidad en imágenes submarinas. La transmisión de la luz en el agua degrada las imágenes dificultando el reconocimiento de objetos y en consecuencia la intervención. Ésta tesis se centra en el análisis del impacto de la degradación de las imágenes submarinas en algoritmos de visión a través de benchmarking, desarrollando un entorno de trabajo en la nube que permite analizar los resultados bajo diferentes condiciones. Teniendo en cuenta los resultados obtenidos con este entorno, se proponen métodos basados en técnicas de aprendizaje profundo para mitigar el impacto de la degradación de las imágenes en tiempo real introduciendo un paso previo que permita recuperar los colores originales

    Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal

    Get PDF
    Underwater imaging has been widely used as a tool in many fields, however, a major issue is the quality of the resulting images/videos. Due to the light's interaction with water and its constituents, the acquired underwater images/videos often suffer from a significant amount of scatter (blur, haze) and noise. In the light of these issues, this thesis considers problems of low-resolution, blurred and noisy underwater images and proposes several approaches to improve the quality of such images/video frames. Quantitative and qualitative experiments validate the success of proposed algorithms

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Image processing and synthesis: From hand-crafted to data-driven modeling

    Get PDF
    This work investigates image and video restoration problems using effective optimization algorithms. First, we study the problem of single image dehazing to suppress artifacts in compressed or noisy images and videos. Our method is based on the linear haze model and minimizes the gradient residual between the input and output images. This successfully suppresses any new artifacts that are not obvious in the input images. Second, we propose a new method for image inpainting using deep neural networks. Given a set of training data, deep generate models can generate high-quality natural images following the same distribution. We search the nearest neighbor in the latent space of the deep generate models using a weighted context loss and prior loss. This code is then converted to the clean and uncorrupted image of the input. Third, we study the problem of recovering high-quality images from very noisy raw data captured in low-light conditions with short exposures. We build deep neural networks to learn the camera processing pipeline specifically for low-light raw data with an extremely low signal-to-noise ratio (SNR). To train the networks, we capture a new dataset of more than five thousand images with short-exposed and long-exposed pairs. Promising results are obtained compared with the traditional image processing pipeline. Finally, we propose a new method for extreme-low light video processing. The raw video frames are pre-processed using spatial-temporal denoising. A neural network is trained to move the error in the pre-processed data, learning to perform the image processing pipeline and encourage temporal smoothness of the output. Both quantitative and qualitative results demonstrate the proposed method significantly outperform the existing methods. It also paves the way for future research on this area
    • …
    corecore