1,414 research outputs found

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    New developments in the theory of Groebner bases and applications to formal verification

    Get PDF
    We present foundational work on standard bases over rings and on Boolean Groebner bases in the framework of Boolean functions. The research was motivated by our collaboration with electrical engineers and computer scientists on problems arising from formal verification of digital circuits. In fact, algebraic modelling of formal verification problems is developed on the word-level as well as on the bit-level. The word-level model leads to Groebner basis in the polynomial ring over Z/2n while the bit-level model leads to Boolean Groebner bases. In addition to the theoretical foundations of both approaches, the algorithms have been implemented. Using these implementations we show that special data structures and the exploitation of symmetries make Groebner bases competitive to state-of-the-art tools from formal verification but having the advantage of being systematic and more flexible.Comment: 44 pages, 8 figures, submitted to the Special Issue of the Journal of Pure and Applied Algebr

    When a Patch is Not Enough - HardFails: Software-Exploitable Hardware Bugs

    Full text link
    In this paper, we take a deep dive into microarchitectural security from a hardware designer's perspective by reviewing the existing approaches to detect hardware vulnerabilities during the design phase. We show that a protection gap currently exists in practice that leaves chip designs vulnerable to software-based attacks. In particular, existing verification approaches fail to detect specific classes of vulnerabilities, which we call HardFails: these bugs evade detection by current verification techniques while being exploitable from software. We demonstrate such vulnerabilities in real-world SoCs using RISC-V to showcase and analyze concrete instantiations of HardFails. Patching these hardware bugs may not always be possible and can potentially result in a product recall. We base our findings on two extensive case studies: the recent Hack@DAC 2018 hardware security competition, where 54 independent teams of researchers competed world-wide over a period of 12 weeks to catch inserted security bugs in SoC RTL designs, and an in-depth systematic evaluation of state-of-the-art verification approaches. Our findings indicate that even combinations of techniques will miss high-impact bugs due to the large number of modules with complex interdependencies and fundamental limitations of current detection approaches. We also craft a real-world software attack that exploits one of the RTL bugs from Hack@DAC that evaded detection and discuss novel approaches to mitigate the growing problem of cross-layer bugs at design time

    High-level verification flow for a high-level synthesis-based digital logic design

    Get PDF
    Abstract. High-level synthesis (HLS) is a method for generating register-transfer level (RTL) hardware description of digital logic designs from high-level languages, such as C/C++/SystemC or MATLAB. The performance and productivity benefits of HLS stem from the untimed, high abstraction level input languages. Another advantage is that the design and verification can focus on the features and high-level architecture, instead of the low-level implementation details. The goal of this thesis was to define and implement a high-level verification (HLV) flow for an HLS design written in C++. The HLV flow takes advantage of the performance and productivity of C++ as opposed to hardware description languages (HDL) and minimises the required RTL verification work. The HLV flow was implemented in the case study of the thesis. The HLS design was verified in a C++ verification environment, and Catapult Coverage was used for pre-HLS coverage closure. Post-HLS verification and coverage closure were done in Universal Verification Methodology (UVM) environment. C++ tests used in the pre-HLS coverage closure were reimplemented in UVM, to get a high initial RTL coverage without manual RTL code analysis. The pre-HLS C++ design was implemented as a predictor into the UVM testbench to verify the equivalence of C++ versus RTL and to speed up post-HLS coverage closure. Results of the case study show that the HLV flow is feasible to implement in practice. The flow shows significant performance and productivity gains of verification in the C++ domain when compared to UVM. The UVM implementation of a somewhat incomplete set of pre-HLS tests and formal exclusions resulted in an initial post-HLS coverage of 96.90%. The C++ predictor implementation was a valuable tool in post-HLS coverage closure. A total of four weeks of coverage work in pre- and post-HLS phases was required to reach 99% RTL coverage. The total time does not include the time required to build both C++ and UVM verification environments.Korkean tason verifiointivuo korkean tason synteesiin perustuvalle digitaalilogiikkasuunnitelmalle. Tiivistelmä. Korkean tason synteesi (HLS) on menetelmä, jolla generoidaan rekisterisiirtotason (RTL) laitteistokuvausta digitaalisille logiikkasuunnitelmille käyttäen korkean tason ohjelmointikieliä, kuten C-pohjaisia kieliä tai MATLAB:ia. HLS:n suorituskykyyn ja tuottavuuteen liittyvät hyödyt perustuvat ohjelmointikielien tarjoamaan korkeampaan abstraktiotasoon. HLS:ää käyttäen suunnittelu- ja varmennustyö voi keskittyä ominaisuuksiin ja korkean tason arkkitehtuuriin matalan tason yksityiskohtien sijaan. Tämän diplomityön tavoite oli määritellä ja implementoida korkean tason verifiointivuo (HLV-vuo) C++:lla kirjoitetulle HLS-suunnitelmalle. HLV-vuo hyödyntää ohjelmointikielien tarjoamaa suorituskykyä ja korkeampaa abstraktion tasoa kovonkuvauskielien sijaan ja siten minimoi RTL:n varmennukseen vaadittavaa työtä. HLV vuo implementoitiin tapaustutkimuksessa. HLS-suunnitelma varmennettiin C++ -verifiointiympäristössä, ja Catapult Coveragea käytettiin kattavuuden analysointiin. RTL-kattavuutta mitattiin universaalilla verifiointimetodologialla (UVM) tehdyssä ympäristössä. C++ varmennuksessa käytetyt testivektorit implementoitiin uudelleen UVM-ympäristössä, jotta RTL-kattavuuden lähtötaso olisi korkea ilman manuaalista RTL-analyysiä. C++-suunnitelma implementoitiin prediktorina (referenssimallina) UVM-testipenkkiin koodikattavuuden parantamiseksi. Tapaustutkimuksen tulokset osoittavat, että määritelty HLV-vuo on toteutettavissa käytännössä. Vuota käyttämällä saavutetaan merkittäviä suorituskyky- ja tuottavuusetuja C++ -testiympäristössä verrattuna UVM-ympäristöön. 90.60% koodikattavuuden saavuttavien C++ testivektoreiden uudelleenimplementoiti UVM-ympäristössä tuotti 96.90% RTL-kattavuuden. C++-predictorin implementointi oli merkittävä työkalu RTL-kattavuustavoitteen saavuttamisessa

    PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog

    Get PDF
    We develop a process algebraic framework PAFSV for the formal specification and analysis of IEEE 1800TM SystemVerilog designs. The formal semantics of PAFSV is defined by means of deduction rules that associate a time transition system with a PAFSV process. A set of properties of PAFSV is presented for a notion of bisimilarity. PAFSV may be regarded as the formal language of a significant subset of IEEE 1800TM SystemVerilog. To show that PAFSV is useful for the formal specification and analysis of IEEE 1800TM SystemVerilog designs, we illustrate the use of PAFSV with a multiplexer, a synchronous reset D flip-flop and an arbiter

    Virtual Cycle-accurate Hardware and Software Co-simulation Platform for Cellular IoT

    Get PDF
    Modern embedded development flows often depend on FPGA board usage for pre-ASIC system verification. The purpose of this project is to instead explore the usage of Electronic System Level (ESL) hardware-software co-simulation through the usage of ARM SoC Designer tool to create a virtual prototype of a cellular IoT modem and thereafter compare the benefits of including such a methodology into the early development cycle. The virtual system is completely developed and executed on a host computer, without the requirement of additional hardware. The virtual prototype hardware is based on C++ ARM verified cycle-accurate models generated from RTL hardware descriptions, High-level synthesis (HLS) pre-synthesis SystemC HW accelerator models and behavioural models which implement the ARM Cycle-accurate Simulation Interface (CASI). The micro-controller of the virtual system which is based on an ARM Cortex-M processor, is capable of executing instructions from a memory module. This report documents the virtual prototype implementation and compares both the software performance and cycle-accuracy of various virtual micro-controller configurations to a commercial reference development board. By altering factors such as memory latencies and bus interconnect subsystem arbitration in co-simulations, the software cycle-count performance of the development board was shown possible to reproduce within a 5% error margin, at the cost of approximately 266 times slower execution speed. Furthermore, the validity of two HLS pre-synthesis hardware models is investigated and proven to be functionally accurate within three clock cycles of individual block latency compared to post-synthesis FPGA synthesized implementations. The final virtual prototype system consisted of the micro-controller and two cellular IoT hardware accelerators. The system runs a FreeRTOS 9.0.0 port, executing a multi-threaded program at an average clock cycle simulation frequency of 10.6 kHz.-Designing and simulating embedded computer systems virtually. Cellular internet of things (IoT) is a new technology that will enable the interconnection of everything: from street lights and parking meters to your gas or water meter at home, wireless cellular networks will allow information to be shared between devices. However, in order for these systems to provide any useful data, they need to include a computer chip with a system to manage the communication itself, enabling the connection to a cellular network and the actual transmission and reception of data. Such a chip is called an embedded chip or system. Traditionally, the design and verification of digital embedded systems, that is to say a system which has both hardware and software components, had to be done in two steps. The first step consists of designing all the hardware, testing it, integrating it and producing it physically on silicon in order to verify the intended functionality of all the components. The second step thus consists of taking the hardware that has been developed and designing the software: a program which will have to execute in complete compliance to the hardware that has been previously developed. This poses two main issues: the software engineers cannot begin their work properly until the hardware is finished, which makes the process very long, and the fact that the hardware has been printed on silicon greatly restricts the possibility of doing changes to accommodate late system requirement alterations; which is quite likely for a tailor-made application specific system such as a cellular IoT chip. A currently widespread technology used to mitigate the previously mentioned negative aspects of embedded design, is the employment of field-programmable gate array (FPGA) development boards which often contain a micro-controller (with a processor and some memories), and a gate array connected to it. The FPGA part consists of a lattice of digital logic gates which can be programmed to interconnect and represent the functionality of the hardware being designed. The processor can thus execute software instructions placed on the memories and the hardware being developed can be programmed into the gate array in order to integrate and verify a full hardware and software system. Nevertheless, this boards are expensive and limit the design to the hardware components available commercially in the different off-the-shelf models, e.g. a specific processor which might not be the desired one. Now imagine there is a way to design hardware components such as processors in the traditional way, however once the hardware has been implemented it can be integrated together with software without the need of printing a physical silicon chip specifically for this purpose. That would be extremely convenient and would save lots of time, would it not? Fortunately, this is already possible due to Electronic System Level (ESL) design, which is compilation of techniques that allow to design, simulate and partially verify a digital chip, all within any normal laptop or desktop computer. Moreover, some ESL tools such as the one investigated in this project, allow you to even simulate a program code written specifically for this hardware; this is known as virtual hardware software co-simulation. The reliability of simulation must however be considered when compared to a traditional two-step methodology or FPGA board usage to verify a full system. This is because a virtual hardware simulation can have several degrees of accuracy, depending on the specificity of component models that make up the virtual prototype of the digital system. Therefore, in order to use co-simulation techniques with a high degree of confidence for verification, the highest accuracy degree should be employed if possible to guarantee that what is being simulated will match the reality of a silicon implementation. The clock cycle-accurate level is one of the highest accuracy system simulation methods available, and it consists of representing the digital states of all hardware components such as signals and registers, in a cycle-by-cycle manner. By using the ARM SoC Designer ESL tool, we have co-designed and co-simulated several microcontrollers on a detailed, cycle-accurate level and confirmed its behaviour by comparing it to a physical reference target development board. Finally, a more complex virtual prototype of a cellular IoT system was also simulated, including a micro-controller running a a real-time operating system (RTOS), hardware accelerators and serial data interfacing. Parts of this virtual prototype where compared to an FPGA board to evaluate the pros and cons of incorporating virtual system simulation into the development cycle and to what extent can ESL methods substitute traditional verification techniques. The ease of interchanging hardware, simplicity of development, simulation speed and the level of debug capabilities available when developing in a virtual environment are some of the aspects of ARM SoC Designer discussed in this thesis. A more in depth description of the methodology and results can be found in the report titled "Virtual Cycle-accurate Hardware and Software Co-simulation Platform for Cellular IoT"

    Hardware Acceleration Using Functional Languages

    Get PDF
    Cílem této práce je prozkoumat možnosti využití funkcionálního paradigmatu pro hardwarovou akceleraci, konkrétně pro datově paralelní úlohy. Úroveň abstrakce tradičních jazyků pro popis hardwaru, jako VHDL a Verilog, přestáví stačit. Pro popis na algoritmické či behaviorální úrovni se rozmáhají jazyky původně navržené pro vývoj softwaru a modelování, jako C/C++, SystemC nebo MATLAB. Funkcionální jazyky se s těmi imperativními nemůžou měřit v rozšířenosti a oblíbenosti mezi programátory, přesto je předčí v mnoha vlastnostech, např. ve verifikovatelnosti, schopnosti zachytit inherentní paralelismus a v kompaktnosti kódu. Pro akceleraci datově paralelních výpočtů se často používají jednotky FPGA, grafické karty (GPU) a vícejádrové procesory. Praktická část této práce rozšiřuje existující knihovnu Accelerate pro počítání na grafických kartách o výstup do VHDL. Accelerate je možno chápat jako doménově specifický jazyk vestavěný do Haskellu s backendem pro prostředí NVIDIA CUDA. Rozšíření pro vysokoúrovňovou syntézu obvodů ve VHDL představené v této práci používá stejný jazyk a frontend.The aim of this thesis is to research how the functional paradigm can be used for hardware acceleration with an emphasis on data-parallel tasks. The level of abstraction of the traditional hardware description languages, such as VHDL or Verilog, is becoming to low. High-level languages from the domains of software development and modeling, such as C/C++, SystemC or MATLAB, are experiencing a boom for hardware description on the algorithmic or behavioral level. Functional Languages are not so commonly used, but they outperform imperative languages in verification, the ability to capture inherent paralellism and the compactness of code. Data-parallel task are often accelerated on FPGAs, GPUs and multicore processors. In this thesis, we use a library for general-purpose GPU programs called Accelerate and extend it to produce VHDL. Accelerate is a domain-specific language embedded into Haskell with a backend for the NVIDIA CUDA platform. We use the language and its frontend, and create a new backend for high-level synthesis of circuits in VHDL.
    corecore