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Abstract

This Master Dissertation is integrated in the SimCelerate project (result from a partnership be-
tween FZI - Forschungszentrum Informatik, ITI GmbH and SET Powersystems GmbH) whose
main focus is the development of an automated approach for transforming a Modelica model into
a hardware design for FPGAs. In the context, FZI developed a framework consisting of a .NET
library intended for high-level synthesis of physical simulation for FPGA-based real-time execu-
tion, and for the description of real-time embedded systems (system level description language).
The name of the framework is System#.

After Modelica compilation of a model, System# performs high-level synthesis and generates
a RTL specification of the system, which can then be used for simulation and verification, prior
to FPGA integration. As the simulation/verification loop with System# or VHDL generated code
present some performance drawbacks, an alternative simulation procedure is needed. SystemC
simulation appears to be a faster alternative, but demands the integration of automatic SystemC
code generation on System#.

On the other hand, the technological advances on embedded systems caused the increasing
of systems complexity and the emergence of heterogeneous systems, which can include subsys-
tems designed with different languages. To co-simulate these subsystems together is a challenge in
nowadays embedded systems project. Being also a recent SLDL, it would be beneficial to System#
to have some degree of interoperability with a popular and widely-used SLDL such as SystemC.
So, the main goals of this Master Dissertation are: implementing automatic SystemC code gener-
ation from System# projects and developing a SystemC/System# co-simulation mechanism.

System# already provides a synthesizable VHDL code generation engine. In order to enlarge
its high-level synthesis capabilities, the VHDL code generation procedure was studied and adapted
towards SystemC code generation. Facing the challenge of SystemC/System# co-simulation, it
was divided in two parts: communication and synchronization between SystemC and System#.
The communication part was implemented using an IPC mechanisms (named pipes), while the
synchronization part was attacked with a conservative synchronization algorithm - an adaptation
of the conditional-event approach.

The SystemC code generation developed cover the main SystemC constructs, the code gener-
ated for the tested projects showed to produce correct results and its simulation ran faster. The
fact that the code generation is integrated in System# framework makes it easy to use during the
high-level synthesis stage and the simulation/verification loop.

The co-simulation mechanism implemented proved to produce accurate simulation results and
presents a modular nature, using various test models/systems. Thus, it is an initial contribution to
the Interoperability between both SLDLs considered: SystemC and System#.

Keywords: System Level Description Languages, heterogeneous systems, SystemC, System#,
SystemC code generation, parallel/distributed discrete-event co-simulation
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Resumo

Esta Dissertação surge no âmbito do projeto SimCelerate (fruto de uma parceria entre o FZI -
Forschungszentrum Informatik, a ITI GmbH e a SET Powersystems GmbH), cujo principal ob-
jetivo é a automatização do processo de transformação de um modelo descrito em Modelica
numa descrição de hardware a implementar numa FPGA. Neste contexto, o FZI desenvolveu uma
plataforma (System#) que consiste numa biblioteca .NET destinada à síntese de alto nível (high-
level synthesis) de simulações físicas em tempo real usando FPGAs, bem como à descrição de
sistemas embarcados que operam em tempo real (system level description language).

Após a compilação em Modelica, o System# executa high-level synthesis e gera uma especi-
ficação RTL do sistema, que pode ser depois utilizada para a simulação e verificação do sistema
antes da sua integração numa FPGA. Como a execução do ciclo de simulação/verificação com
System# ou VHDL apresenta uma performance lenta, um procedimento de simulação alternativo
seria conveniente. A simulação com SystemC aparenta ser uma alternativa mais rápida, mas requer
a integração de geração automática de código SystemC na plataforma System#.

Por outro lado, os avanços tecnológicos na área dos sistemas embarcados causaram um au-
mento da complexidade dos sistemas e provocaram a emergência dos sistemas heterogéneos, que
podem incluir subsistemas projetados em linguagens diferentes. Cossimular estes subsistemas é
um desafio atual no projeto de sistemas embarcados. Sendo também uma SLDL recente, seria
benéfico para o System# ter algum grau de interoperabilidade com uma SLDL largamente uti-
lizada como o SystemC. Assim, os objetivos principais desta Dissertação são: a implementação
da geração automática de código SystemC a partir de projetos desenvolvidos em System# e o
desenvolvimento de um mecanismo de cossimulação entre SystemC e System#.

O System# já inclui um mecanismo de geração de código VHDL sintetizável. Para alargar as
suas capacidades de high-level synthesis, o mecanismo de geração de código VHDL foi estudado e
adaptado para a geração de código SystemC. A cossimulação entre SystemC e System# foi dividida
em duas partes: comunicação e sincronização entre SystemC e System#. A parte de comunicação
foi implementada recorrendo a um mecanismo de IPC (named pipes), enquanto que a sincroniza-
ção foi atingida com um algoritmo conservativo - uma adaptação do algoritmo conditional-event.

A geração de código SystemC desenvolvida cobre os principais conceitos do SystemC. O
código gerado para os sistemas de teste produziu resultados corretos e a sua simulação mostrou ser
mais rápida. O facto de o mecanismo de geração de código SystemC estar integrado na plataforma
System# facilita o seu uso durante a fase de high-level synthesis e durante o ciclo de simulação/ver-
ificação.

O mecanismo de cossimulação implementado produz resultados de simulação corretos para os
sistemas testados e apresenta uma natureza modular. É, portanto, uma contribuição inicial para a
interoperabilidade entre as SLDS consideradas: SystemC e System#.

Palavras-chave: System Level Description Languages, sistemas heterogéneos, SystemC, Sys-
tem#, geração de código System#, cossimulação de eventos discretos paralela/distribuída

iii



iv



Acknowledgements

My first acknowledgement words go to my family. To my parents for their unconditional and
constant love and support. Without them, this dissertation would not have been possible. Also, a
special gratitude to my grandparents for all the intangible knowledge they gave me and for the life
examples they represent to me.

I would like to thank to my university friends with who I shared the ups and downs of the
academic path. This experiences exchange resulted in a sharp contribution to my personal devel-
opment.

I would like to express my appreciation and gratitude to my supervisors, Christian Köllner and
João Canas Ferreira, for their support, availability and patience. Their guidance and suggestions
were determinant to this dissertation.

Thank you very much! Muito Obrigado!

Mário Lopes Ferreira

v



vi



“Tudo neste mundo tem uma resposta.
O que leva é tempo para se formular as perguntas.”

“Everything in this world can volunteer some reply,
what takes up time is posing the questions.”

José Saramago
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Chapter 1

Introduction

In this introductory chapter, the context as well as the motivation which sustain the developed

work are presented. A document structure description is also given in the end of the chapter.

1.1 SimCelerate project contextualization

This Master dissertation is part of the Integrated Master in Electrical and Computers Engineering

(Mestrado Integrado em Engenharia Electrotécnica e de Computadores ) from the Faculty of Engi-

neering of the University of Porto (Faculdade de Engenharia da Universidade do Porto). The work

covered by this dissertation is within the scope of the SimCelerate project which results from a

partnership between FZI - Forschungszentrum Informatik - Research Center for Information Tech-

nology (based in Karlsruhe), ITI GmbH (based in Dresden) and SET Powersystems GmbH (based

in Wangen). Before diving on the details about the developed work, a general contextualization of

the SimCelerate project will be done.

In the automotive industry, testing electrified drive-trains of a vehicle is a very important part

regarding the device safety. So, during development phase, electrified drive-trains are exhaustively

tested in order to figure out whether the system meets the desired requirements and behaviour. One

can test an algorithm using a purely mathematical model describing the system behaviour. How-

ever, another approach has gained popularity in the automotive industry within the last 25 years:

Hardware-in-the-loop (HiL) simulation [5]. Shortly, HiL simulation consists in the integration

of a part of the real hardware in the simulation loop. HiL simulation also makes it possible to

perform real-time simulation. Considering the case of testing an electronic motor controller, one

can use the real controller, in order to achieve a higher accuracy, and replace the surrounding envi-

ronment (motor and vehicle mechanics) by a virtual device - the Electric Motor Emulator (EME).

Usually, the starting point for the creation of an EME is a Modelica description of the system

one wants to simulate. Modelica [6] is an object-oriented, equation-based language intended for

modelling of complex systems of different kinds (e.g. electrical, electronic, mechanical, control,

thermal, hydraulic). In Modelica, models are mathematically described using differential, alge-

braic and discrete equations. A key difference of Modelica regarding to typical object-oriented

1



2 Introduction

programming languages has to do with the compilation process: Modelica classes are translated

into objects and afterwards theses objects are operated by the simulation engine. The industry pro-

vides EMEs covering synchronous, asynchronous and DC machines with power up to 300kW [7].

These emulators also allow the recreation of the high voltages and currents (Power Hardware-in-

the-loop, P-HiL), running at sampling rate up to 800kHz. Consequently, a real-time simulation

of an electric motor running at a cycle time around 1µs is needed. This real-time requirement is

hard to achieve with processor-based systems due to the unpredictable time overhead introduced

by the I/O operations required for the HiL simulation. So, the state-of-the-art emulators execute

the motor simulation on an FPGA. The great concern regarding to the Modelica-to-FPGA design

flow is the high engineering effort needed to execute it. Consequently, the entire process becomes

very expensive. It was in this context that the SimCelerate project arose. This project focuses on

the development of an automated approach for transforming a Modelica model into an hardware

design for FPGAs. The main emphasis is given to the domain of electric motor controllers. The

key aspects of this project are:

• Design of hardware architectures for efficient real-time calculation of numerical simula-

tions;

• Identification and implementation of domain-specific hardware modules (e.g. parallel solu-

tion of Systems of Linear Equations);

• Design of an integrated transformation process.

In order to face the challenge of automating the Modelica-to-FPGA design flow, one frame-

work was developed by FZI: System#. This framework is one of the most important domains

studied and used during the Master dissertation development. As a first reference, System# is a

.NET library which is intended for both high-level synthesis of physical simulation for FPGA-

based real-time execution and for the description of real-time embedded systems.

1.2 Motivation

The general approach used in SimCelerate project for the Modelica-to-FPGA procedure comprises

3 main stages: Modelica compilation, high-level synthesis and FPGA design implementation [1].

High-level synthesis is executed by System# and during this stage a complete RTL system spec-

ification is produced. Then, it can be used for system verification and simulation or synthesiz-

able VHDL generation. Before FPGA system implementation, the design should be iteratively

simulated and verified. It is possible to do it using VHDL or System# but both of them are not

satisfactory in terms of performance. As it is a recent framework, System# can still be improved

in order to render a better simulation performance. Indeed, some work is currently being done at

FZI seeking for these improvements. However, it would be also beneficial to have an alternative

to VHDL and System# simulation. In turn, this alternative should be integrated in the high-level

synthesis tool - System# - so that the design flow is kept automated.
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Although System# is being referred as a high-level synthesis framework it is also intended

for the description of real-time embedded systems, as stated in the end of the previous section.

System# provides constructs and proper design rules needed for designing and modelling complex

electronic systems from the scratch. In other words, System# can also be viewed as a system level

description language (SLDL) based on the .NET framework. In the past decades, technological

progresses in the field of embedded systems made it possible to produce more complex systems

which wrap different subsystems. These subsystems can vary in function and form (hardware or

software) - heterogeneous systems.

In this context, SLDLs arose as well-suitable platforms for designing, modelling and simulat-

ing complex electronic systems. Several SLDLs are available nowadays, being SystemC the most

popular and accepted one among industry and academy. However, given the increasing complexity

and heterogeneity of embedded systems, it is plausible that the different system subcomponents

are modelled and simulated individually, using different languages or frameworks. Nevertheless,

global simulation and verification of heterogeneous systems assumes particular importance dur-

ing the project and production cycle. So, interoperability and co-simulation mechanisms between

different subsystems composing a broader system are needed. The targeted SLDLs in this Master

dissertation are SystemC and System#.

1.3 Document Structure

Apart from the introductory chapter, this document includes other seven chapters. In Chap-

ter 2, a description of the problem and objective which sustain the Master Dissertation are pre-

sented. Furthermore, a short overview of the methodology adopted is shown together with a

list of tasks performed and technologies used. A bibliographic revision is made in Chapter 3,

presenting the fundamental knowledge required and the state-of-the-art of co-simulation and in-

teroperability between discrete-event simulators. Chapter 4 and Chapter 5 target the implemented

work within this Master Dissertation: SystemC code generation from System# projects and co-

simulation/interoperability between SystemC and System#, respectively. After, the implemented

work is evaluated and results are shown - Chapter 6. Chapter 7 focuses on conclusions, contribu-

tions from the developed work and future work proposals. Then, Appendix A shows some code

examples for co-simulation. Finally, bibliographic references are presented.
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Chapter 2

Problem and Objectives

This chapter addresses the problem targeted by this Master dissertation, its objectives and general

considerations on the methodology adopted. First, a more detailed description of the problem is

presented. Then, the intended objectives of this work are exposed. Finally, remark about method-

ology, tasks to perform and technologies and tool used during the developed work are presented.

2.1 Problem Description

In section 1.2, the motivation behind the developed work was shortly presented. In this section, a

more detailed overview of the targeted problem is exposed.

In figure 2.1, there is an overview of the SimCelerate project approach for the Modelica-to-

FPGA design flow. It is possible to identify three main stages.

The first stage culminates with the Modelica compilation, resulting in a calculation rule which

includes all computations required to execute a single integration step. The Modelica compiler

employs in-line integration [8] to produce a compact calculation rule suitable for hardware map-

ping. In this case, the intermediate representation resulting from Modelica compilation is not C

code, but a XML-based format consisting of: system interface description, control and dataflow

graph in assembler-like language and special support for fixed-point arithmetic and mathematical

functions.

It is this intermediate representation produced by the Modelica compiler which is the input

of the second stage of the Modelica-to-FPGA design flow: high-level synthesis. This stage is

performed by System#. After assigning instructions to clock cycles, binding them to hardware

resources and allocating data transfers to intermediate storage registers, a control path is con-

structed. In turn, this control path can provide a complete RTL specification of the system intended

for simulation. This RTL specification can be used for verification and simulation as well as for

synthesizable VHDL generation.

The third and last stage of the design flow consists of simulation and verification of the system

description provided by the high-level synthesis, and also the design implementation on an FPGA.

There are two alternatives to perform system simulation and verification. One consists of taking

5
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Figure 2.1: Modelica-to-FPGA design flow [1]

the previously produced RTL specification and simulating it using System#. The other consists

of performing VHDL code generation from the RTL specification (using System#) followed by

VHDL-based simulation and verification.

One practical problem arises from the described design flow. Before integrate the design on

an FPGA, it is desirable to be able to simulate and verify it in an expedited manner. However,

the VHDL-based simulation is slow and requires user interaction. On the other hand, the System#-

based simulation can be done automatically but it is even slower, as it is a recent framework not

fully optimized.

One possible approach to address this problem can be the automatic generation of a SystemC

model which is used for exhaustive numerical verification. Once the verification results are ac-

ceptable, VHDL code is generated and a new verification procedure is done but now focused on

aspects such as timing and I/O operations. The advantage of using a SystemC model for simu-

lation and verification resides on the higher performance of SystemC simulator, compared with

System#/VHDL-based simulation, and only a C++ compiler is required to do so. In order to keep

the complete design flow automated, the SystemC code generation should be integrated in the

high-level synthesis tool - System#.

From a SLDL domain perspective, another problem arises. The increasing complexity of

embedded systems may require the use of different languages or Models of Computation (MOC)

to design a whole heterogeneous system. If one wants to simulate and verify the whole system, a

homogeneous approach can be taken by using a single language to describe the whole system [9]

[10]. However, it is hard to have a language able to cover the semantics of all MOCs in a given
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embedded system.

The heterogeneous approach describes the models in their native languages, keeping the con-

ceptual differences of each domain [11]. Considering a system composed by SystemC and Sys-

tem# modules, the challenge consists of developing and validating concepts of SystemC/System#

co-design and co-simulation.

Additionally, SystemC has a large community of users and associated software tools, contrast-

ing with the recent System#. So, some degree of interoperability between both domains would

clearly improve System#’s perception.

2.2 Objectives

Considering the problem described before, the work developed within this Master Dissertation

aims the development and validation of co-design and co-simulation concepts between two SLDLs

- SystemC and System# - in order to achieve some degree of interoperability between projects

and/or components designed in both frameworks. Thereafter, this Master dissertation has two

main objectives:

• Implement SystemC code generation from System# projects: from a high-level synthesis

tool perspective, System# must be able to automatically generate SystemC code from an

elaborated System# model. As the generated code may be used to speed-up the simulation

and verification loop, it should provide a correct description of the original system and thus,

produce correct simulation results;

• Develop a SystemC/System# co-simulation mechanism: both simulation domains - Sys-

temC and System# - must be able to communicate and transfer data related with events

affecting the remote domain. Apart from it, the co-simulation mechanism requires time

synchronization between the simulation domains in order to the coherency and accuracy of

the process. This way, the co-simulation environment comprises a communication mecha-

nism and a synchronization algorithm.

2.3 Methodology

Having in mind the objectives stated in section 2.2, a brief description of the methodology used to

attack the problems referred in section 2.1 is now presented.

As stated before, the SystemC code generation engine must be integrated in System# platform.

So, the chosen approach was the study of the VHDL code generation engine already present in

System# and its adaptation towards SystemC code generation. The study of the code generation

engine required the understanding of how concepts like components, ports, channels or processes

are internally represented in System#. The particular study of the VHDL code generation proce-

dure was also useful through the identification and comparison of common elements and concepts

between VHDL and SystemC, and the verification of how the VHDL syntax for those elements or
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concepts is produced. However, as SystemC is a broader language than VHDL, the implementa-

tion of procedures for the syntax generation of specific SystemC concepts was also required. Other

important issues were the data types equivalence and compatibility.

Regarding to System#/SystemC co-simulation, the problem was divided in two parts: commu-

nication between SystemC and System# and synchronization between SystemC and System#. The

first part has to do with the IPC mechanism used and the characteristics of the data transferred

between both domains. The second part is related to the algorithm that controls and synchronizes

the simulation flow in both domains.

When deciding which approaches to choose for both communication and synchronization

problems, a trade-off between available work time, complexity and performance was taken into

account. So, a review of the available APIs for IPC mechanisms in the used operating system

was done. With respect to simulation coupling and synchronization, it was decided to avoid the

modification of the SLDLs kernels, for sake of compatibility between different versions. Given

the time constraints imposed for the Master dissertation development, the adopted synchronization

was of conservative nature. On the other hand, this approach does not require as many memory

and processor resources as the optimistic approaches.

2.4 List of Tasks

The Table 2.1 enumerates and describes the tasks which composed the work developed. These

generic tasks formed a guideline to better organize and manage the available work time.

Task ID Task Description
1 Study of fundamental knowledge and state-of-the-Art
2 SystemC code generation engine implementation
3 Design of a SystemC/System# co-simulation environment

comprising communication and synchronization procedures
4 Implementation of the co-simulation environment designed
5 Evaluation of code generation engine and/or

co-simulation engine correctness and performance
6 Thesis writing

Table 2.1: List of tasks performed during the project

2.5 Technologies and Tools

For the development of this Master dissertation, a computer equipped with a Microsoft Windows

operating system was used. As the two main domains of this project, the SLDLs System# and

SystemC (version 2.3) were tools exhaustively used. The use of System# also requires the use of

the .NET framework. The Windows APIs for IPC was employed.



2.5 Technologies and Tools 9

The IDE used for programming tasks within this project was the Microsoft Visual Studio (2012

edition). At the same time, the documentation related with this Master dissertation was produced

in LaTex.



10 Problem and Objectives



Chapter 3

Background Information and State of
Art

In this chapter, fundamental knowledge about SLDL (particularly SystemC and System#) and

discrete-event simulation is presented. Co-simulation and interoperability of discrete-event simu-

lators state-of-the-art and related work is also referred.

3.1 System Level Description Languages

Recent trends in SoC projects move towards an increasing complexity of systems composed by

hardware and software components and the need of third-party IP integration. Under this scenario,

the traditional hardware/software co-design approach, in which languages like C/C++ are used

for software design and HDLs are used for hardware design, introduces a big separation between

both design levels. This situation is difficult to overtake if one wants to generate synthesizable

code. This way, the gap between the system complexity and the engineering effort required for the

system conception - productivity gap - substantially increases.

It was in this context SLDL emerged as tools or frameworks intended for complex electronic

systems modelling, design and verification. These languages provide a suitable environment for

the co-design of hardware and software components in an heterogeneous system, supplying appro-

priate data types, libraries and simulation mechanisms, as well as supporting several abstraction

levels like RTL (typically used by HDLs) and ESL.

Several SLDLs were presented and introduced over last years, being SystemC the most widely

used. SpecC [12] is another SLDL example. Although they are closer to hardware verifica-

tion languages than to SLDLs, platforms as SystemVerilog [13], OpenVera [14] and e [15] try to

present some typical features from object-oriented programming languages, while keeping typi-

cal properties from HDLs [16]. For example, in SystemVerilog there is an extension of Verilog

functionalities, being Verilog one of the most largely used HDLs together with VHDL.

11
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Recently, taking advantage of the features provided by .NET [17] software development frame-

work, specially the ability of a program to observe and/or modify its structure in run time - reflec-

tion - [18] new SLDL proposals have been presented. Examples of these new SLDLs are System#

and ESys.NET [19].

In the scope of this Master dissertation, SystemC and System# are the studied and used SLDLs.

3.1.1 SystemC

SystemC [20] consists of a ANSI C++ library intended for electronic systems design, modelling

and verification. Beyond inherited features from C++ (Object-oriented language) which allow

software modelling, SystemC also provides adequate concepts and constructs for hardware mod-

elling (modular hierarchy, notion of time and concurrent execution, hardware data types) and

system architecture modelling (interfaces and communication channels, models with several ab-

stractions levels - Gate level, RTL and ESL).

According to the report elaborated by Doulos [21], SystemC is mainly used in performance

modelling, architectural exploration, Transaction-level Modelling [22] and hardware/software co-

simulation. Nevertheless, SystemC is also widely used for verification and testbench creation,

surpassing some languages/platforms specially directed for this kind of tasks, as Vera and e.

The SystemC announcement and presentation was done in 1999 by the Open SystemC Initiative

- OSCI and since then, the popularity of this tool considerably increased. This is visible due to the

big community of users, both in industry and academy, and the variety of support tools available.

Several elements contributed to the big SystemC popularity. Besides of having been accepted as

an IEEE norm (IEEE 1666 R©), SystemC includes an Open Source simulator which only requires

a C++ compiler to run (ensuring high flexibility regarding to the Operating System in which it is

used) and is easily integrable with C/C++.

Next, some contents extracted from [20] will be exposed, aiming a better understanding of

SystemC structure and functionalities.

In order to effectively deal with systems complexity, SystemC calls upon the separation be-

tween functionality (specification level) and architecture (implementation level) and between com-

putation and communication. Towards the computation/communication separation, computation

is performed by processes associated to system modules, while communication is ensured by com-

munication channels. The connection between both domains is done by the connection of ports,

contained in modules, to interfaces provided by channels.

SystemC library includes classes which fall in one of four categories: Core Language, Prede-

fined channels, Utilities and SystemC Data Types.

Among the most used functional constructs in SystemC, one can highlight: modules, processes,

ports, events, channels and interfaces.

A module (macro SC_MODULE) is the basic structural block of a system described in Sys-

temC. A generic system is constituted by a hierarchy of modules which are connected. A module

can contain ports, processes, events, channels and other modules.
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Processes describe a module functionality and present concurrent execution. There are three

types of processes: SC_METHOD (similar to C++ functions; executes when a certain condition

is verified and its execution cannot be interrupted), SC_THREAD (executes only once, but can be

kept active through the inclusion of an infinite loop; can be interrupted) and SC_CTHREAD (its

execution is similar to SC_METHOD one, but it is triggered by clock impulses).

Ports supply an abstraction which permits the isolation of a module implementation from the

surrounding environment. They allow the communication between modules or channels and can

be unidirectional or bidirectional. The most common port types are the unidirectional built-in

ports sc_in and sc_out. Still, it is possible to create and define ports according to the project needs.

Events (sc_event) consist of flexible low-level synchronization primitives. They can be used

to build other forms of synchronization.

SystemC provides some built-in channels which can model signals (sc_signal), clock signals

(sc_clock), mutexes (sc_mutexes), semaphores (sc_semaphore) or FIFO queues (sc_fifo). Together

with these primitive channels, interfaces which define a set of channel access methods are avail-

able, making channels useful for communication between modules. There is also the possibility

to define hierarchic channels, in order to model more complex behaviours. Shortly, a hierarchical

channel consists of a module which implements methods declared in an interface.

With respect to data types, SystemC supports native C/C++ data types, as well as specific

data types suitable to system modelling: integers of variable dimension, logic values, logic values

vectors or fixed-point numerical values. Table 3.1 reproduces a table from [20] which shows the

SystemC specific data types.

Class Template Base class Generic base class Representation Precision
sc_int sc_int_base sc_values_base signed integer limited

sc_uint sc_uint_base sc_values_base unsigned integer limited
sc_bigint sc_signed sc_values_base signed integer finite

sc_biguint sc_unsigned sc_values_base unsigned integer finite
sc_fixed sc_fix sc_fxnum signed fixed-point finite
sc_ufixed sc_ufix sc_fxnum unsigned fixed-point finite

sc_fixed_fast sc_fix_fast sc_fxnum_fast signed fixed-point limited
sc_ufixed_fast sc_ufix_fast sc_fxnum_fast unsigned fixed-point limited

sc_fxval fixed-point variable
sc_fxval_fast fixed-point limited-variable

sc_logic single bit
sc_bv sc_bv_base bit vector
sc_lv sc_lv_base logic vector

Table 3.1: SystemC specific data types

The execution of a SystemC application comprises two fundamental steps: elaboration and

simulation. During elaboration, a hierarchical structure of the system is created, including the in-

stantiation of modules and channels, as well as the connection between ports and channels. Once

the structure is created, it cannot be changed during the rest of elaboration and simulation. The
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simulation is performed by SystemC scheduler. During this step, the scheduler manages the ex-

ecution of different processes, creating the illusion of a concurrent execution. The beginning of

simulation is triggered by calling the function sc_start(). To perform elaboration and simulation,

it is required to run the application code and the SystemC simulation kernel code, which con-

sists of a part of classes from SystemC library where the scheduler and fundamental elaboration

functionalities are implemented.

SystemC simulation kernel implements a discrete-event simulation system and presents a non-

preemptive task manager mechanism - cooperative multitasking. This simulation kernel presents

some features similar to the ones from VHDL simulation mechanism like, for example, the de-

terministic behaviour of the simulation (the simulation result must not depend on the order by

each process is executed, for a given simulation step). The basis for the deterministic behaviour

is the concept of delta cycle. A delta cycle consists of a scheduler control cycle comprehend-

ing an evaluation phase followed by an update phase. It is the alternation between computation

(evaluation phase) and communication (update phase) that guarantees the deterministic behaviour.

A delta cycle is a zero-time step. In other words, it does not contribute to the simulation time

advancement.

The simulation features referred before are typical from hardware simulation. However, as

SystemC aims to be a language suitable for hardware/software systems modelling, its simulation

kernel also exhibits some non-deterministic features which allow correct software modelling. The

use of events and notifications between processes and primitive channels intended for critical sec-

tions access control are examples of features which add non-determinism to SystemC simulation

kernel.

Then, a brief description of each execution step performed by SystemC simulation kernel is

presented [23]:

• Initialization: execution of all processes (except SC_CTHREADs) in an undefined order

until they reach the first synchronization point (if any);

• Evaluation: a process ready to run is selected and its execution is resumed. This can cause

immediate event notifications which may turn some processes ready to run;

• The previous step is repeated until there are no more processes ready to run;

• Update: execution of all pending update requests (calls to update()), as a result from calls

to request_update() made during last evaluation phase;

• If event notifications made during current delta cycle exist, processes are inspected in order

to know which ones are ready to run due to all those events. Proceed to another evaluation

phase;

• If there are no timed events, simulation is finished. Otherwise, simulation time is advanced

to the time of the earliest pending timed event notification;
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• Determination of which processes are ready to run as consequence of all timed events (cur-

rent time) and execution of another evaluation phase.

Below, figure 3.1 presents a flowchart illustrating the scheduler execution.

Figure 3.1: SystemC scheduler operation flowchart [2]

3.1.2 System#

As stated in Section 1.2, System# is a high-level synthesis framework and also a SLDL. In this

section, the main features and constructs of System#, as an SLDL, will be targeted.

System# consists of an open source C# library (.NET framework) which provides structures

suitable to the description and simulation of real-time embedded systems. Being a platform which

addresses the design of FPGA-based systems, System# includes a mechanism for synthesizable

VHDL code generation. This SLDL supports RTL descriptions as well as some synthesizable

TLM concepts. System# was presented in 2012 [4] by the Embedded Systems and Sensors En-

gineering (ESS) research division of FZI, within the scope of SimCelerate project. Thus, it is a

recent tool and, consequently, is not so mature as SystemC.
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Regarding to the synthesizable VHDL generation, System# makes use of .NET framework

typical features - reflection and decompilation of assembly code (CIL) - to build an AST, taking

into account the system structure. In turn, the built AST obeys to a Document Object Module -

DOM - for describing component-based reactive systems: SysDOM. The transition from an AST

to VHDL code is done through an unparsing process.

Modelling a system with System# is similar to do it with SystemC. There is also the base

concept of separation between computation (modules) and communication (channels). As it was

previously done with SystemC, basic concepts and functionalities which allow systems description

and modelling with System# will be presented. Most of these contents were extracted from [24].

A system described in System# typically presents a hierarchy of components which represent

and describe the operation of some system parts. A component consists of a C# class derived from

Component (namespace SystemSharp.Components) and can contain instances of other components

in the system.

The interaction between a component and the surrounding environment is done through ports.

In System#, ports are actually C# properties. Examples of input and output ports are In<data_type>

and Out<data_type>, respectively. Ports merely represent a communication interface between a

component and the exterior. In order to perform this communication, ports must be connected to

channels.

By storing information exchanged between ports, a channel models the concept of communica-

tion and is represented in System# by the abstract class Channel. This class is used in the definition

of every kind of channel. One of the most common channels in System# is Signal<data_type>,

which represents a signal.

As in SystemC, a process describes the module functionality. In a system, processes execute

concurrently. There are three types of processes in System#: Triggered process (executes due

to some event(s) described in a sensitivity list; it consumes no simulation time; its registration

is done through AddProcess()), Threaded process (starts its single execution in the beginning of

simulation; can be pause due to some event and is registered with AddThread()) and Clocked

thread (a special thread intended for synthesizable synchronous FSMs modelling; is sensitive to

an edge of a clock signal; AddClockedThread() registers this kind of processes).

System# also provides data types suitable for embedded systems modelling, namely bit-accurate

data types and resolved logic. These hardware data types belong to the SystemSharp.DataTypes

namespace.

Resolved logic data types in System# are StdLogic and StdLogicVector. StdLogic is a nine-

value data type equivalent to the std_logic data type in VHDL and StdLogicVector is simply a

vector whose elements are from StdLogic type.

Regarding to bit-accurate data types, arbitrary-length integers can be represented by the types

Signed and Unsigned, while fixed-point arithmetic is provided by data types SFix and UFix.

As in SystemC, the execution of a System# application includes elaboration phase and simu-

lation phase. During elaboration, the system design is not only prepared for simulation, but also

for analysis and program transformation (for example: VHDL code generation). This phase is
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triggered by the instruction DesignContext.Instance.Elaborate() and after that, the system struc-

ture or functionality cannot be changed. Simulation is performed by the instruction DesignCon-

text.Instance.Simulate(). An example for the call of Simulate/Elaborate functions is presented in

Figure 3.2 System# simulation kernel also performs discrete-event simulation and its operation

is similar to the one in SystemC. The main difference resides in the management of thread pro-

cesses: while in SystemC we have cooperative multitasking, System# maps thread processes to

tasks through the Task Parallel Library from .NET framework. So, System# simulation kernel

assume characteristics of a parallel discrete-event simulator (PDES).

Figure 3.2: Calls to Elaboration and Simulation in System#

In terms of performance, System# simulation is slower than SystemC one. Being System#

a young tool, some efforts within SimCelerate project are currently in course aiming a better

simulation performance. At the time this document writing, some work on using the new C# 5.0

features to improve System# performance is in progress.

Apart from taking advantage of .NET features like reflection and providing VHDL code gen-

eration, System# presents other distinctive features comparing with other SLDLs: synthesizable

sequential descriptions and IP-based Design. The first of these features is related with the usual

need for FSMs specification in FPGA design. Sometimes this task can become troublesome. Fac-

ing this, System# enables the generation of synthesizable FSMs from clocked threads. If one wants

to derive a FSM from a cloked thread, the C# attribute TransformIntoFSM must be placed before

the method implementation.
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Usually, FPGA vendors furnish their FPGA design tools with an IP core library. Having this

IP cores in mind, the designer have to customize parameters and store them in a proprietary file

format. Right now, System# only supports a limited set of cores from the Xilinx FPGA toolchain.

However, System# can be extended in order to support other FPGA vendors tool-chains.

3.2 Discrete-Event Simulation

During the process of designing and evaluating a system, one may want to know how the system

will react under certain circumstances in order to figure out if it serves the purposes for what it is

being designed. One of the most broadly used techniques of imitating the operation of a system

over time is simulation. To simulate a system, an abstraction is needed and it usually takes the

form of a model. In turn, a model describes and represents the target system through mathematical

or logical relationships. Often during a system project, there is a big interest in studying the system

response to time constraints. This way, the evolution of the system state must be well defined in

the model.

If the state of the system one wants to simulate changes continuously over time, it is classified

as a continuous system. On the other hand, if the system state only changes at specific points

of time, it is called a discrete system. There are also hybrid systems comprising continuous and

discrete components.

Taking into account how the system state evolves over time, suitable simulation progression

of time must be implemented. Therefore, there are time-driven (or time-stepping) simulation and

event-driven (or discrete-event) simulation. In the former, time is incremented and measured in

small steps, giving the illusion of a continuous time evolution; in the later, time jumps through

different points of time (events), making the system operation to be a chronological sequence of

events. By their definitions, it is possible to discern that time-driven simulation suits better to

continuous systems, whereas discrete-event simulation suits better to discrete systems.

Due to the context of this dissertation and the SystemC/System# simulation nature, special

attention will be given to discrete-event simulation (DES).

A discrete-event simulation has 3 main elements: state variables, an event-list and a clock

variable [25]. The state variables store information about the state of the system. The event list

is a data structure basically consisting of a priority queue that orders events according to their

scheduled time and the clock variable keeps track of current simulation time.

The discrete-event simulation operation is described by the simulation cycle. Though it may

vary from simulator to simulator, there is a common basic execution structure which consist of a

loop. In this loop, the simulator repeatedly extracts an event with the smallest timestamp from the

event list, updates the clock variable to this event timestamp and then processes the event. The

event processing can change the model state and give origin to future events that may be inserted

into the event list. This loop continuously executes until an ending condition is met.

Traditional discrete-event simulators are characterized by presenting a cooperative multitask-

ing (also referred as non-preemptive multitasking), meaning that a process/thread can self-interrupt



3.2 Discrete-Event Simulation 19

and voluntarily give control to other process/thread. This approach highly simplifies the commu-

nication through events and the access to variables in shared memory. On the other hand, the

available parallelism in recent multi-core CPUs is wasted [26], as well as the possibility to per-

form simulation through different computers spatially separated.

As systems complexity grows, issues related with simulation speed and memory usage arise.

In order to face these challenges, parallel and distributed DES became an interesting and rele-

vant research area combining modelling and simulation concepts with high-performance comput-

ing [27]. Several surveys, reviews or books about this topic were published by different authors

like Misra [28], Fujimoto [25], Liu [27] or Ferscha [3].

Although the terms parallel DES and distributed DES are sometimes used indiscriminately,

some authors make a distinction between both concepts. According to Ferscha [3], parallel DES

refers to a SIMD environment in which a set of processors execute similar operations (fetched

from a central control unit) on different data. This central control unit ensures the synchroniza-

tion between independent computations. On the other hand, distributed DES is characterized by

MIMD environment. In this case, the system event structure is decomposed and different pro-

cesses operate "asynchronously in parallel". Here, communication between processes is required

with the intention of exchange data and correctly synchronize each process.

Fujimoto [29] makes a slightly different distinction: a parallel DES consists of the execution

of a single simulation program through a group of tightly coupled processors, as in a shared mem-

ory multiprocessor architecture; in a distributed DES there is an execution of a single simulation

program on a set of loosely coupled processors, as in a computer network.

Fujimoto also refers an alternative approach which targets the execution of several, indepen-

dent simulations concurrently on different processors - replicated trials. Although it is a simple

approach, it has the disadvantage of not providing any kind of speed-up and of requiring each pro-

cessor to have enough memory space for simulation. It is also an approach which is not adequate

for interactive environments.

Usually, in a parallel or distributed DES the events are distributed among a collection of com-

municating logical processes (LPs) in order to divide a global simulation task and exploit paral-

lelism through the concurrent execution of these processes. Ferscha [3] classifies these simulation

strategies as logical process simulation (LP simulation) and presents a basic architecture of it

(Figure 3.3).

LP simulation is easily understandable if one views a simulation as a set of events characterized

by a temporal coordinate (timestamp) and a spatial coordinate (the location of the state variables

affected by the event). This space-time view of simulation was presented in 1989 by Chandy and

Sherman [30]. The space-time spectre is then divided into different regions which are assigned

to different LPs. Each LP keeps and maintains its own local clock and event list, and executes

local events through its Simulation Engine. The execution of local events can affect other LPs,

generating remote events. These remote events also need to be processed by the affected LPs. So,

an LP needs to exchange their local data in order to perform event notification regarding to other

LPs and also to let them know about its local simulation time. The Communication System makes
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Figure 3.3: Architecture of an LP simulation [3]

this data sharing between LPs possible. An LP can access the Communication System thanks to

the Communication Interface attached to the Simulation Engine.

In order to guarantee the logic coherency and consistency of a DES, events have to be pro-

cessed in a non-decreasing timestamp order, because an event with a smaller timestamp can po-

tentially affect the system state and consequently also affect future events. This DES requirement

is called causality constraint and involves a total ordering of events.

In LP simulation, the global event list is spread among the LPs local event lists. Although

the Simulation Engine of each LP can ensure the causality constraint for all local events - local

causality constraint - it cannot predict the arrival of remote events from other LPs or the timestamp

of these remote events. This way, it can happen that, while an LP is processing a local event, a

remote event with a smaller timestamp arrives. So, this remote event with a smaller timestamp

will be processed out of timestamp order, breaking the causality constraint for that LP. In other

words, not processing events on timestamp order can cause "the computation for one event to affect

another event in its past" [29]. These failures are called causality errors and the problem caused by

these errors is the synchronization problem. Liu [27] shortly describes the challenge arising from

the synchronization problem as "the difficulty of preserving the local causality constraint at each

LP without the use of a global simulation clock". In turn, Fujimoto [25] points to the complexity

and high data dependency of the constraints that command the order in which operations have to

be performed relative to each other.

To address the synchronization problem, a collection of algorithms has been developed - syn-

chronization algorithms. A review of some of these algorithms will be present in the next section.
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3.3 Synchronization in Discrete-Event simulation

Synchronization in parallel/distributed DES can be achieved through two algorithm categories:

conservative and optimistic. Conservative synchronization algorithms do not allow the occurrence

of any causality error by blocking an LP from processing its next event until it is certain that this

event will not generate out-of-order event processing due to later events from other LPs. On the

other hand, optimistic synchronization algorithms allow causality errors to occur. However, this

class of algorithms has the ability to detect causality errors and recover from them, by invoking a

rollback mechanism. Rollback requires state saving and recovery mechanisms.

3.3.1 Conservative Synchronization

Chandy and Misra [31], as well as Bryant [32] independently presented the first parallel/distributed

DES algorithm which is commonly known as the CMB algorithm. In this algorithm, LPs are con-

nected via directional links used to exchange events between LPs in a non-decreasing timestamp

order. For each incoming link at an LP there is an input queue used to place the received events.

A clock variable is attached to each input queue and its value is the timestamp of first event in

the queue, if any. If the queue is empty the clock variable assumes the value of the last processed

event, which is initially zero. An LP iteration first selects the input queue with the smallest clock

value and then processes its first event. If the queue is empty, the LP blocks until the arrival of an

event in that queue. Once it arrives, the LP execution continues to the next iteration.

Given the nature of this algorithm, the occurrence of a blocking cycle among all LPs is possi-

ble, driving to a deadlock situation. To avoid these situations, CMB algorithm uses null messages

which do not represent any event but only transport a timestamp. This timestamp can be seen as a

guarantee from the sending LP that it will not send futures events with a timestamp smaller than

the null message timestamp. The LP’s input queue which receives a null message can advance

its clock variable and notify other LPs about this time advancement (also using null messages).

So, the null message protocol is a deadlock avoidance mechanism. There are also some protocols

which allow deadlock to occur, being this occurrences detected and recovered [33].

The null message synchronization remarks to a fundamental property common to all conser-

vative synchronization algorithms - lookahead. It is related with the capacity of determining if

the next event in a simulator is safe to process. According to Liu [27], lookahead is the "amount

of simulation time that an LP can predict into the simulated future". Nicol [34] presents another

definition of lookahead: considering two processes, p and q, process p has lookahead regarding

to process q if, being the simulation clock of p at time s, process p can determine that there is no

way it will insert/delete an event in/from process q event list with timestamp t > s. Apart from this

definition, Nicol also presents some subtleties of lookahead.

There are other conservative synchronization protocols beyond the null message protocol.

In [35] and [36], Nicol and Reynolds present the appointment protocol. It is an adaptation of

the null message protocol, but replaces the null messages for appointments which consist of a

promise by the sending LP to not send any message with a timestamp larger than the appointment
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time. Although it seems to be the same mechanism as the one from the null message protocol,

there is one main difference. A null message is enqueued and is only processed when the LP’s

clock reaches the null message timestamp. In contrast, the appointment information can be imme-

diately used by the receiving LP. Thus, at any time, an LP can access the appointment information

in order to calculate lookahead and eventually notify other LPs.

Based on the appointment algorithm and taking into account the LP topology, the time-of-

next-event algorithm was presented by Groselj and Tropper [37]. It computes the lower bound on

the time of the next message sent from one LP to the other - link time. To do so, the algorithm

considers the time of next event in each LP, existing link times, the minimum delay an LP takes to

process a message and the shortest path algorithm. The link times can be viewed as appointments.

Until now, the synchronization algorithms presented are asynchronous in the sense that each

LP locally computes its lookahead, based on its data and data received from other LPs. However,

there are some algorithms in which there is a global lookahead calculation across all processors

in order to identify, for each LP, a time instant up to which it is safe to advance. The bounded

lag algorithm [38] is an example of this class of algorithms. Assuming a static LP topology, a

time interval B - lag - is used to compute a sphere of influence: a group of LPs that might affect

an LP within B simulation time units. The LPs belonging to the sphere of influence need to be

considered to determine if a certain LP with timestamp between the current simulation time T and

T+B can be processed in a safe way.

Another example of a synchronous algorithm is the conditional event approach [39] presented

by Chandy and Sherman. In a sequential simulation, all the events on an event list, except the

one with the smaller timestamp, are conditional. It means that the only event which cannot be

preempted, removed or changed - unconditional - is the earliest event and the simulator can safely

advance to its timestamp. In a parallel/distributed simulation, the event list from an LP can have

conditional events, unconditional events and events which do not affect other events in this local

event list. However, the event with the smallest timestamp in one LP is not necessarily uncondi-

tional because it can be affected by events with a smaller timestamp from other LPs.

Through the conditional event algorithm, each LP determines its conditional event with the

smallest timestamp and delivers it to a global reduction operation which returns the timestamp of

the earliest conditional event in the whole system. This returned timestamp defines the simulation

time up to which all LPs can concurrently simulate.

3.3.2 Optimistic Synchronization

The most widely known optimistic synchronization approach is the Time Warp [40] [41]. In this

approach, each LP stores events received from other LPs in an input queue, while the events sent

to other LPs are stored in an output queue. Before an event is processed, an LP saves the state

variables in a state queue. When an event with a timestamp smaller than the current simulation

clock arrives - strangler event - the LP must rollback to the saved state immediately before the

strangler event timestamp. In addition, it is required that all actions (with a timestamp bigger

than the strangler event timestamp) which affected other LPs are cancelled. This is accomplished
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through the use of anti-messages. These messages correspond to the original messages saved in the

output queue. An LP which receives an anti-message should remove the corresponding message

from its input queue. It can happen that the timestamp of the received anti-messasge is smaller

that the LP’s current simulation clock. This means that the anti-message corresponds to an event

already processed, and thus it is also a strangler event. Under these circumstances, the LP which

received the anti-message must perform rollback as well.

A problem can arise from this approach: rollback cannot be applied to irrevocable operations

(such as I/O). So, the algorithm must define when these operations can be performed. These

operations must be executed at a point of time T such that the system will never rollback to a time

earlier than T. This point of time T is known as the Global Virtual Time (GVT) and is defined as

the minimum timestamp among all events and messages (including anti-messages) in the system

at a certain point of time. The computation of GVT is a primary source of overhead in the Time

Warp algorithm [27].

3.3.3 Conservative vs. Optimistic Synchronization

Conservative algorithms are usually easier to implement than the optimistic ones. That happens

because the state saving and recovery mechanisms required by optimistic algorithms are code

intensive tasks. Additionally, these mechanisms ask for more memory and processor resources.

On the other hand, optimistic algorithms have the advantage of allowing the simulator to exploit

parallelism in a better way, by permitting situations where causality errors are possible but actually

do not occur. Qualitative comparison of conservative and optimistic algorithms is a sensitive point.

The performance of a given model relies on the strategy followed in the implementation, as well

as on the platform targeted. Thereon, Ferscha states that "General rules of superiority cannot

be formulated, since performance [...] cannot be sufficiently characterized by models, although

exceptions do exist." [3].

3.4 Interprocess Communication mechanisms

In parallel/distributes DES, the labour associated with the global simulation is divided among dif-

ferent processes which need to communicate and exchange data between them. The methods or

mechanisms which allow such operations are named Interprocess Communication (IPC) mecha-

nisms.

Usually, processes or applications which use IPC mechanisms are categorized as clients or

servers. A client is viewed as a process or application that requests a service from other process

or application, while a server is a process or application which replies to a client request. It is also

possible that a process/application acts as client and server.

There is a considerable variety of IPC methods and in this section just few of them will be

briefly referred.

A common way to perform exchange data between two processes is the use of shared memory.

It consists of a portion of memory attached to some well-known address. Knowing this address,
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two or more processes can access the shared memory and perform read or write operations. In

order to maintain data integrity among all processes, some memory access control mechanism has

to be employed to avoid race conditions - accesses to a shared memory space by two or more

processes at the same time.

Sockets are other IPC mechanism which allow information exchange between processes on

the same machine or in different machines across a network. A socket is basically a connection

endpoint with a given name and address. A socket is also characterized by the transport protocol

used in communication (such as TCP/IP or UDP). The communication via sockets can be unidirec-

tional or bidirectional. Several implementation of sockets have been presented, being the Berkeley

sockets one of the most popular ones.

Consisting of FIFO communication channels with two endpoints, pipes are another IPC ap-

proach. Pipes can be classified in two categories: anonymous pipes or named pipes. Anonymous

pipes are unnamed and one-way pipes typically used for data exchange between a parent process

and a child process. They can only be used by processes in the same machine. In contrast, named

pipes are named, one-way or duplex pipes usually used in a client/server configuration. A named

pipe server can be accessed by multiple instances of client pipes. This category of pipes is suitable

for communication between processes running in the same machine or in different machines.

Message passing is an IPC mechanism in which messages are transferred between processes.

The messages content can vary from complex data structures to small quantities of bytes. One

of the most broadly used message passing implementations is the MPI which is a language-

independent protocol that provides communication functionalities between a group of processes

previously mapped to nodes or computer instances.

3.5 Related Work

The advent of SLDLs, the demand for high simulation performance and the need of running sim-

ulators spatially separated drove to the development of several attempts to integrate techniques of

parallel and distributed DES into hardware/software projects.

Although they belong to the domain of continuous/discrete systems co-simulation, [42] and

[43] contain some interesting heterogeneous systems design concepts, by presenting frameworks

which allow automated co-simulation between SystemC and Simulink components.

Bombana and Bruschi [44] focus on SystemC/VHDL co-simulation in order to mix different

abstraction levels. This approach combines co-simulation with synthesis through a design flow

that allows the automatic generation of VHDL test benches from SystemC code. In [45], SystemC

simulation in multiprocessor systems is targeted. The authors propose some approaches for co-

simulation between GDB (GNU Debugger)-based ISSs and SystemC modules running in different

processes.

Heterogeneous models are targeted by Dubois and Aboulhamid [46], who show approaches

for simulators interconnection based on interoperability and managed code. In this work, different

communication mechanisms (such as shared memory, TCP/IP, COM) are explored having in mind
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the co-simulation between different tightly synchronized simulators. The presented case studies

cover ESys.NET/SystemC and Simulink/ESys.NET co-simulation. Simulation speed measurements

are performed, being COM the fastest approach and shared memory the slowest one.

An alternative procedure for heterogeneous systems co-simulation is proposed in [9] and [10].

Instead of keeping the different system components in their native languages, all models in the

system are translated to common and unique format/language. In fact, the original heterogeneous

system is transformed in a homogeneous system. This approach comprises three major phases:

"AST generation", "Dependency Analysis and Scheduling" and "Code Generation".

Trams [47] developed a plug-in library intended for distributed simulation, to be used with

SystemC. The system setup and partitioning is done manually through library calls. As Trams had

no intention to modify SystemC kernel, a conservative synchronization approach is chosen and

explicit lookahead is implemented. This way, the lookahead values are defined and known at the

latest in the beginning of the simulation. Therefore, this approach only targets a class of systems

with a regular behaviour whose signals vary in a predictable way. The data transmission between

the distributed modules is done using TCP/IP.

Exploring parallel DES techniques, Cox [48] developed a distributed version of the SystemC

simulation environment. This approach tries to minimize user interaction and performs modifi-

cations on SystemC kernel. The distributed SystemC models communicate via MPI. As opposed

to the previously work developed by Trams, Cox has the intention to cover a wide variety of sys-

tems and rejects explicit lookahead. The synchronization algorithm used is an adaptation of the

conditional event approach.

Chopard et al. [49] also propose a parallelization of SystemC kernel using a conservative al-

gorithm. In this implementation, a new construct is added to SystemC - sc_node_module. It is

actually a new kinf of sc_module which comprises all sc_modules belonging to a given node of

the entire system. A sc_node_module cannot include other sc_node_modules and it can be viewed

as an entity similar to an LP. All local schedulers synchronize with each other at the end of every

delta-cycle and two kinds of synchronization are considered: channel synchronization and time

synchronization. The later one is performed by a master node which gathers the timestamp of the

earliest event in every node in the system, computes the next simulation time and informs all nodes

about it. As a continuation of this work, Combes et al. [50] seek for some strategies to face the

high level of synchronization which can affect the overall performance.

Recently, Roth et al. [51] presented a distributed SystemC environment based on the HLA in-

ternational standard [52]. HLA was originally developed by the Defense Modeling and Simulation

Office for the U.S. Department of Defense. It was intended for military training simulations and

consists of a software architecture which combines all the components needed for parallel DES.

This chapter provided fundamental knowledge which constituted a useful and important basis

to understand the following chapters. Particularly, the informations contained in this chapter can

be considered the cornerstones for the implemented work presented in the next two chapters.
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Chapter 4

SystemC code generation from System#
projects

This chapter draws the attention to one of the two main goals of this Master dissertation: im-

plementation of SystemC code from System# projects. This way, System# will be viewed from a

high-level synthesis (HLS) tool perspective. It is intended to use the system representation pro-

duced by System# compilation in order to generate the corresponding SystemC code.

4.1 System# as a High-Level Synthesis Tool

According to McFarland et al. [53] high-level synthesis consists of moving from "an algorithmic

level specification of the behaviour of a digital system to a register-transfer level structure that

implements that behaviour". The authors also clarify the meanings of behaviour (how is the inter-

action between the system/its components and the surrounding environment?) and structure (what

are the system’s components and how are they interconnected?)

Although section 3.1.2 describes System# as a SLDL, it is also a HLS framework which has

the ability to convert an elaborated model to synthesizable VHDL code. However, the VHDL code

generation itself is merely the final step which makes use of a system representation built during

the System# design flow. The design flow is illustrated in Figure 4.1.

After System# compilation of a design system, a CIL representation of the whole system (in-

cluding code relative to processes and methods) is produced. The CIL code is the input of the

System# design flow. Through model reflection, System# framework is able to perform structural

analysis on an elaborated system model. In practice, each element presented in the system model

is reflected by a suitable descriptor object belonging to the SystemSharp.Meta namespace. Exam-

ples of these object descriptors are shown in Table 4.1. All the descriptor classes and interfaces

derive directly or indirectly from DescriptorBase class, and are defined in the SystemSharp.Meta

namespace.

The structural analysis also infers the relationships between model elements and uses the ob-

ject descriptors previously referred to make these relationships perceptible.

27
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Figure 4.1: System# design flow [4]

Apart from the structural analysis, the CIL code is also analysed in order to identify in-

structions and recover a control flow graph which characterizes the system/component operation.

Several classes from the SystemSharp.SysDOM namespace represent statements and control flow

structures common in a wide range of programming languages. Table 4.2 presents some of those

classes. The classes names are self-explanatory.

In turn, the existing loops and conditional statements are inspected and an AST is constructed.

This AST follows the SysDOM, a document object model for code which is limited to a small

group of imperative language elements, but also includes system and hardware modelling domain

elements. At the end of System# design flow, a complete representation of the system structure

and behaviour is produced. This system representation (AST following SysDOM model) is, in

fact, the starting point for the VHDL code generation.

So, the code generation task shortly consists of extracting from the system representation

informations about the system (for example: name of a component, list of its sub-components,

list of input/output ports, etc.) and using those informations to write the corresponding code in a

target file, according to a given language syntax (VHDL, SystemC, Verilog, etc.)

4.2 SystemC code generation

The implementation of SystemC code generation is actually an adaptation of the VHDL code gen-

eration. As stated in the previous section, the code generation is just a final step which uses the

final system representation produced during System# design flow. More precisely, it consists in the

AST unparsing. The system representation is independent of the desired generated code language.

The first step towards SystemC code generation was the inspection of the VHDL code gen-

eration engine. This included the run of the example projects included on the System# version

available in [24], the study of the VHDL generated code for these projects and also the study and

understanding of the System# core files present in the Systemsharp/Synthesis/VHDLGen folder.

Then, a manual code pattern analysis was made through observation and comparison between

System# project code and VHDL generated code. Moreover, code generation functions (from
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Descriptor class Entity represented
ComponentDescriptor Component/Module

PortDescriptor Port
SignalDescriptor Channel
FieldDescriptor Variable/Constant/Field

ProcessDescriptor Process
MethodDescriptor Method

Table 4.1: Examples of System# element descriptor classes and entities represented

System# core code files present in Systemsharp/Synthesis/VHDLGen folder) were inspected in

order to map them to the respective generated code section. The next step consisted in studying

the typical SystemC code structure and identifying structural similarities and differences between

SystemC code sections and their System#/VHDL counterparts. Concurrently, particular SystemC

code features were pointed out.

An initial map between common SystemC code sections and code generation functions was

created. Some of the code generation functions were adapted from the ones present in VHDL code

generation and others were created to cover some specific SystemC features (for example, the

concept of constructor exists in SystemC, but not in VHDL). The code generation implementation

itself started with the creation of the SystemSharp/Synthesis/SystemCGen folder and its files. The

folder and its contents were mirrored from the SystemSharp/Synthesis/VHDLGen folder. Two files

were created:

• SystemCGen.cs: contains the functions responsible for generating SystemC syntax related

with module header files (whose structure is illustrated in Figure 4.2) and the main.cpp file;

• SystemCTypes.cs: contains functions responsible for generating SystemC syntax related

with data type values and conversions;

These files were then edited and developed in order to implement the code required to achieve

the SystemC code generation from System# projects.

4.2.1 SystemC modules structure and generation

As referred in section 3.1.1, a module is the basic structural block in SystemC. It is used to im-

plement the concept of Hierarchy, which is tremendously important to deal with large designs in

system-level design. A module allows the designer to work on a piece of design separately. Usu-

ally, one defines a SystemC module in a C++ header file. An example of a typical structure of a

header file which implements a SystemC module is shown in Figure 4.2.

Next, and following the SystemC pseudo-code from the previous figure, an overview of the

main aspects, classes and functions involved in SystemC modules code generation is presented.

The majority of System# methods involved in the generation of a SystemC module code belongs

to the SystemCGenerator class defined in the SystemSharp/Synthesis/SystemCGen/SystemCGen.cs

file.
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Class
IfStatement

CaseStatement
BreakLoopStatement

GotoStatement
NopStatement
StoreStatemet

LoopBlock
Table 4.2: Examples of System# classes representing statements and control flow structures

The C++ header file intended for a SystemC module implementation is created by the method:

void GenerateComponent(IProject project, ComponentDescriptor cd)

This method adds the new created file to the current working project - IProject project - and

writes SystemC code on it. This code corresponds to the current working module which is rep-

resented by cd. To perform Code generation, this method calls other methods from the SystemC-

Generator class.

Pre-Processing directives and the Dependencies section are generated by:

void GeneratePreProcDir(ComponentDescriptor cd, IndentedTextWriter tw)

and

void GenerateDependencies(ComponentDescriptor desc, IndentedTextWriter tw, string)

, respectively. This later method inspects code dependencies in order to figure out which

C++/SystemC libraries are required to successfully compile the final code. Actually, before the

call to GenerateComponent(), System# performs reflection over the targeted system and creates a

collection of libraries needed, due to the use of certain data types or functions. So, once Generat-

eDependencies() is called, a list of dependencies already exists. This way, this method has to go

over the pre-existent list of libraries and generate the corresponding #include comands. Obviously,

the header files related to SystemC sub-modules which are a constituent part of the current working

module must be also considered as dependencies. The ComponentDescriptor object representing

the current working module provides a list of ComponentDescriptors, which corresponds to its

sub-modules.

The code section starting by the macro SC_MODULE is generated within:

void DeclareAndGenerateModule(ComponentDescriptor cd, IndentedTextWriter tw)

The method argument cd plays a crucial role here, once it comprises information about all

structural and functional constructs of a module, as well as other information like the component

name. All those informations are reachable through a set of methods implemented by Component-

Descriptor.
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// Pre-Processing directives 
 
// Dependencies section 
#include "dependency_1_name" 
#include "dependency_2_name" 
//... 
 
SC_MODULE(module_name) { 
 
 Port Declaration; 
 Sub-Modules Instantiation; 
 Local Channels declaration; 
 Variables and Constants declaration;  
 Processes Declaration/Implementation; 
 Other Methods declaration/implementation; 
  
 // Constructor 
 SC_CTOR(module_name): instance_nameA("A"), instance_nameB("B") ... 
 { 
  Ports initialization; 
  Processes Registration and Sensitive list; 
  Module Variables/Constants Initialization; 
  Local Channel Initialization; 
  Port Binding; 
 } 
}; 

 

Figure 4.2: Structure of a SystemC module header file

Several methods are sequentially called in DeclareAndGenerateModule() body, in order to

generate sections of the pseudo-code from Figure 4.2 (for example, Sub-Modules Instantiation,

Processes Declaration/Implementation, Constructor, etc).

The declaration of a module’s ports is in charge of the following method:

void DeclarePortList(ComponentDescriptor cd, IndentedTextWriter tw, bool extScope)

In turn, this method calls the method GetPorts() (supported by ComponentDescriptor objects)

which returns an iterable set of PortDescriptor objects - one for each module port. A PortDe-

scriptor object encapsulates informations like port name, direction and data type exchanged on

the port.

Then, one proceeds to the instantiation of sub-modules contained by the current working mod-

ule. To know which sub-modules must be instantiated, another method implemented in Compo-

nentDescriptor is called - GetChildComponents() (returns an iterable set of ComponentDescrip-



32 SystemC code generation from System# projects

tors corresponding to the sub-modules which constitute the current working module). Each sub-

module is then instantiated in the current working header file.

Similarly to GetPorts(), there are other methods which return information about local chan-

nels, module variables and constants: GetSignals() (returns a set of SignalDescriptor objects),

GetVariables() and GetConstants() (both return a set of FieldDescriptor objects), respectively.

Afterwards, code related with the module’s behaviour is generated. A set of ProcessDescrip-

tor objects, representing the processes executed by the current working module, is provided by

GetProcesses(). For each ProcessDescriptor returned, a call to

void DeclareProcess(ProcessDescriptor pd, IndentedTextWriter tw)

is performed. In this method, code relative to a given process is generated including pro-

cess header, local variables declaration and process body. The method GenerateMethodBody()

performs the generation of method bodies in both processes and local module methods. The infor-

mation required to generate code for a given process is provided by a ProcessDescriptor object.

An analogous procedure is executed to generate the code correspondent to other methods

present in the module. Here, the set of MethodDescriptor objects is returned by the GetAc-

tiveMethods().

SC_MODULE is a macro for the base C++ class sc_module. Following the logic of object-

oriented programming, objects usually need to initialize variables or define dynamic memory

issues at the time they are created. In SystemC, a SC_MODULE constructor is responsible for sig-

nificant actions like process registration and port binding. A common way to declare the construc-

tor for a SystemC module is using the macro SC_CTOR. The generation of a module’s constructor

code is carried out by the method:

void GenerateCtor(ComponentDescriptor cd, IndentedTextWriter tw)

After the code segment SC_CTOR(module_name), an initializer list is generated if there are

sub-modules or arrays of ports/channels in the current working module. The survey of these ele-

ments is done through the same methods previously used to declare ports/channels and instantiate

sub-modules (GetPorts(), GetSignals() and GetChildComponents()). Next, output ports having

an initial value defined are initialized. Once one gets the PortDescriptor object referring to a

port intended for initialization, it is possible to get its initial value through the PortDescriptor C#

property InitialValue.

Regarding to processes, declaring and implementing them is not enough in SystemC. Apart

from the functional meaning, processes distinguish themselves from other methods within a mod-

ule by being registered in the simulation kernel. This registration allows a function/method to

be recognized as a SystemC process and is performed in a module constructor. To generate the

SystemC code which executes this action, one uses the method:

InitializeProcess(ProcessDescriptor pd, IndentedTextWriter tw)
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Within this method, the ProcessDescriptor passed as an argument is analized in order to know

its kind. This information is stored in the ProcessDescriptor C# property Kind. Evaluating it,

it is possible to generate the correct process macro (SystemC process macros were referred in

section 3.1.1). InitializeProcess() not only generates the code for process registration, but also

generates the static sensitivity list for SC_METHODs and SC_THREADs. The C# property Sensi-

tivity from ProcessDescriptor provides a set of signals or ports to which a given process is sensi-

tive. Using again GetConstants() and GetVariables() methods to gather the existing constants and

variables, one proceeds to the initialization of those elements. For each FieldDescriptor element

gathered, a call to

InitializeField(FieldDescriptor fd, IndentedTextWriter tw)

is made. In this method, the FieldDescriptor C# property ConstantValue is used to produce

the syntax for the initialization of a given constant/variable.

In a similar way, Local Channels initialization code is generated through:

InitializeSignal(SignalDescriptor sd, IndentedTextWriter tw)

Here, C# property InitialValue (from SignalDescriptor class) allows the generation of the

signal initialization.

The port binding code generation is performed by the method

PortBinding(ComponentDescriptor cd, IndentedTextWriter tw)

, which is called for each sub-module contained by the current working module. This method

gets a set of ports of each sub-module and for each port (PortDescriptor object) looks for the signal

bound to that port, using the C# property BoundSignal (defined in PortDescriptor class). Having

this information, the task of generating the correct SystemC syntax for port binding operation is

simplified.

In order to concretize what was previously exposed, an example of SystemC code generated

for a counter module is presented in Figure 4.3. The original System# class representing the same

counter is shown in Figure 4.4.

4.2.2 main.cpp file generation

The only entry point to a SystemC application is the function:

int sc_main(int argc, char* argv[])

This function is not declared inside any module and has no representation within the System#

internal representation of a given system. One of the most important tasks of the sc_main() func-

tion is triggering elaboration and simulation. Actually, elaboration starts once sc_main() starts

its execution and finishes at the point immediately before the first call to the sc_start() function.
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So, the instantiation of the module(s) intended for simulation must be done within the elaboration

phase. In turn, sc_start() triggers the simulation phase. As a HLS tool, System# hierarchizes a

system in a way such that the whole system is encapsulated in a top module. This top module

includes, directly or indirectly, instances for all system elements. This way, during the elabora-

tion phase in sc_main(), it is enough to instantiate only the top module. For this reason, the C++

source file which includes the sc_main() function - main.cpp - is generated immediately after the

generation of the top module header file generation. It means that main.cpp is generated in the end

of GenerateComponent() function if, and only if, the current working module is the top module.

Once this condition is met, a call to:

void GenerateMainFile(IProject project, ComponentDescriptor cd

is made. The ComponentDescriptor passed as an argument refers to the top module. This

method creates a C++ source file named main.cpp and adds it to the current working project.

Then, it generates code dependencies (in this case, the most relevant dependency is the #include

referring to the top module header file) and the sc_main() code. Basically, the sc_main() function

comprises and instantiation of the top module and a call to sc_start(). Figure 4.5 illustrates the

aspect of the main.cpp file generated. The System# Main function in which code generation is

triggered is presented in Figure 4.6.

4.2.3 Data types operations

An important issue during SystemC code generation from System# projects had to do with data

types conversion between System# and SystemC, as well as the operations supported by each data

type. When studying both SLDLs, a comparison between data types from both domains was made.

Not all System# data types have a SystemC counterpart which fully represents the same type of

data and provides the same data operations. Taking these factors into account, a correspondence

table was built, seeking for the most accurate symmetry between System# and SystemC data types.

Table 4.3 exposes the data type correspondence settled.

Issues with respect to data type operations were notorious when dealing with logic data types

- StdLogic/sc_logic and StdLogicVector/sc_lv. Internally, System# represents a Bitwise Not (op-

erator ’∼’) operation of a logic value as a BoolNot operation (operator ’!’). So, the following

situation can be generated:

sc_logic x = ’0’, y;

...

y = !x;

This will originate a syntax error, once the sc_logic data type does not support the ’!’ operator.

To overtake this situation, the operator ’!’ was overloaded to be used with sc_logic values. In

fact, the ’!’ operator was overloaded to return the same result as the sc_logic Bitwise Not operator

would return. So, in the code example previous shown, the instruction:



4.2 SystemC code generation 35

System# SystemC
bool bool
sbyte sc_int<8>
byte sc_uint<8>
short short
ushort unsigned short int

int int
uint unsigned int
long sc_int<64>
ulong sc_uint<64>
float float

double double
char char

string string
StdLogic sc_logic

StdLogicVector sc_lv
Signed sc_bigint

Unsigned sc_biguint
SFix sc_fixed
UFix sc_ufixed
Time sc_time

Table 4.3: Correspondence table between System# and SystemC data types

y = !x;, will actually perform y =∼ x;

Apart from the ’!’ operator overloading, the concatenation function (concat()) was also over-

loaded in order to be able to perform concatenation between two sc_logic values, resulting in a

sc_lv<2> value:

sc_lv<2> concat(sc_logic a, sc_logic b)

These two operations were declared and implemented in a header file whose name is sc_logic_add_ons.h

and a file using its functions must include it.

In System# arithmetic operations over arrays of logic values (StdLogicVector) are allowed,

while SystemC does not support this kind of operations. To overcome this problem, the arithmetic

operators (+, -, *, / ) were overloaded in order to be used with sc_lv variables.

System# also allows the conversion from a StdLogicVector value to a fixed-point value (SFix

or UFix), using a single instruction. On the other hand, in SystemC these procedure requires more

than one instruction. Once generating SystemC code, it is practical to have a 1-to-1 direct mapping

between instructions. Therefore, two functions were implemented aiming the conversion from

sc_lv to sc_fixed and sc_ufixed data types:

sc_fixed<W, IW> lv_to_fixed(sc_lv<W> value, sc_fixed<W, IW> arg)

sc_ufixed<W, IW> lv_to_ufixed(sc_lv<W> value, sc_ufixed<W, IW> arg)
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The arithmetic operators for sc_lv and the function which perform conversion from logic vec-

tors to fixed-point values are defined and implemented in the file sc_lv_add_ons.h.

4.2.4 Implementation details

During the code generation implementation, some issues arose because the system representation

internally produced by System# is target language-independent and some constructs or elements

have no direct mapping between the system representation and the SystemC syntax. Due to this,

the generated code produced is not exactly the same code a system designer would ideally write.

However, the main concern was to correctly translate the semantics of a System# project to Sys-

temC code. Some implementation options taken during this process will be described next.

In the System# internal representation, two instances of a given component are viewed as in-

stances of two different components which have the same structure and behaviour but different

names. For instance, considering a bus arbitration system with ten bus masters, instead of gen-

erating one header file containing the structure and behaviour description of a system module

representing a bus master which can then be instantiated ten times, the code generation engine

will produce ten header files, each one describing a bus master.

The System# arrays of signals and ports are translated to SystemC using the sc_vector con-

struct, which is a feature introduced in the last SystemC released version - IEEE 1666-2011. The

use of this construct has the advantage of turning the port binding code section easier to imple-

ment.

Regarding to processes - the entities which describe the behaviour of a module - the internal

system representation only considers the existence of two types of processes: Triggered processes

(EProcessKind.Triggered) and Threaded processes (EProcessKind.Threaded). However, both Sys-

temC and System# SLDLs allow a third kind of process: the Clocked Thread process. A Clocked

Thread process from a given System# module is internally represented as a Triggered process

which is sensitive to a clock edge. In practice, this means that a System# Clocked Thread process

is translated to SystemC as a SC_METHOD - the SystemC keyword used to register a Triggered

Process.

There are also some particularities related with functions/processes body code. When per-

forming system behaviour analysis, System# internally represents the majority of control flow

statements (such as while-loops, do-while-loops or for-loops) using if-then-else statements and un-

conditional jumps (goto <label>). The only control flow statements which is not represented this

way are the swith-case statements, which are crucial constructs heavily used for Synthesizable Se-

quential Descriptions that is, the automatic transformation of cycle-accurate sequential behaviour

into FSMs (a feature provided by System# intended for synthesizable FSMs specification in FPGA

designs).

This way, the generated code often employs the goto control flow statement which is "consid-

ered harmful" by many computer scientists [54]. Once again, the main concern of code generation

was the achievement of a correct code semantics rather than and ideal syntax.
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In C++ (SystemC), only integer, enumeration and char data types are allowed in switch-case

statements. However, System# system behaviour analysis also considers the existence of switch-

case statements which evaluate string values. To overcome this situation, before a switch-case

statement is generated, the data type of the expression evaluated is inspected. If it isn’t one of the

C++ mentioned before, the switch-case statement is converted in a if-then-else statement. This

conversion is performed by the method

IfStatement ConvertToIfStatement()

, which belongs to the class CaseStatement from the SystemSharp.SysDOM namespace.
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#ifndef M_M_CTR_H 
#define M_M_CTR_H 
#define SC_INCLUDE_FX 
#include "systemc" 
#include <iostream> 
#include "sc_lv_add_ons.h" 
#include "sc_logic_add_ons.h" 
using namespace sc_core; 
using namespace sc_dt; 
using namespace std; 
 
SC_MODULE(m_m_ctr) 
{ 
 sc_in<sc_logic> Clk; 
 sc_out<sc_lv<10>> Ctr; 
 
 sc_signal<sc_lv<10>> m_ctr; 
 
 void Processing() 
 { 
  if (Clk.posedge()) 
  { 
   Ctr.write(m_ctr.read()); 
   m_ctr.write(m_ctr.read() + sc_lv<1>("1")); 
  } 
 } 
 
 SC_CTOR(m_m_ctr) 
 { 
  Ctr.initialize(sc_lv<10>("UUUUUUUUUU")); 
 
  SC_METHOD(Processing); 
  sensitive << Clk; 
 
  m_ctr.write(sc_lv<10>("1111111111")); 
 
 } 
}; 
#endif 

 

Figure 4.3: SystemC generated code for a counter



4.2 SystemC code generation 39

class Counter : Component 
{ 
     public In<StdLogic> Clk { private get; set; } 
     public Out<StdLogicVector> Ctr { private get; set; } 
 
     private SLVSignal _ctr; 
             
     public Counter(int width) 
     { 
         _ctr = new SLVSignal(StdLogicVector._1s(width)); 
     } 
 
     [TransformIntoFSM] 
     private async void Processing() 
     { 
         await Tick; 
         Ctr.Next = _ctr.Cur; 
         _ctr.Next = _ctr.Cur + "1";    
     } 
 
     protected override void Initialize() 
     { 
         AddClockedThread(Processing, Clk.RisingEdge, Clk); 
     } 
} 

Figure 4.4: System# code for a counter
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#define SC_INCLUDE_FX 
#include "systemc" 
#include "top0.h" 
#include <iostream> 
#include "sc_lv_add_ons.h" 
#include "sc_logic_add_ons.h" 
using namespace sc_core; 
using namespace sc_dt; 
using namespace std; 
 
 
int sc_main(int argc, char* argv[]) 
{ 
  sc_report_handler::set_actions (SC_WARNING, SC_DO_NOTHING); 
   
  top0 top0("top0"); 
   
  sc_start(1000, SC_NS); 
   
  return 0; 
} 

Figure 4.5: Generated main.cpp file
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class Program 
{ 
    static void Main(string[] args) 
    { 
        int cycles = 100; 
 
        SimpleCounterTestbench tb = new SimpleCounterTestbench(); 
        DesignContext.Instance.Elaborate(); 
 
        DesignContext.Instance.Simulate(cycles *  
                             SimpleCounterTestbench.ClockPeriod); 
 
        //Now convert the design to VHDL and  
        //embed it into a Xilinx ISE project 
        XilinxProject project = new XilinxProject(@".\hdl_output", 
                                                 "SimpleCounter"); 
        project.PutProperty(EXilinxProjectProperties.DeviceFamily, 
                                          EDeviceFamily.Spartan3); 
        project.PutProperty(EXilinxProjectProperties.Device,  
                                               EDevice.xc3s1500l); 
        project.PutProperty(EXilinxProjectProperties.Package,  
                                                  EPackage.fg676); 
        project.PutProperty(EXilinxProjectProperties.SpeedGrade, 
                                                  ESpeedGrade._4); 
        project.PutProperty(EXilinxProjectProperties.PreferredLanguage,  
                                                       EHDL.VHDL); 
 
        VHDLGenerator codeGen = new VHDLGenerator(); 
        SynthesisEngine.Create(DesignContext.Instance, 
                                       project).Synthesize(codeGen); 
        project.Save(); 
 
        //Now convert the design to SystemC 
        XilinxProject project_SC = new XilinxProject(@".\SystemC_output ",  
                                                         "SimpleCounter"); 
 
        SystemCGenerator codeGen_SC = new SystemCGenerator(); 
        SynthesisEngine.Create(DesignContext.Instance,  
                                 project_SC).Synthesize(codeGen_SC); 
        project_SC.Save();                 
   } 
} 

Figure 4.6: System# Main function
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Chapter 5

Co-Simulation and Interoperability
between SystemC and System#

The main topic of this chapter is the implementation of a SystemC/System# co-simulation mech-

anism/environment, which is one of the main goals of this Master dissertation, besides SystemC

code generation from System# projects.

Dubois and Aboulhamid [46] present a concept of co-simulation: "the ability to link different

simulators in order to make them communicate and interoperate". In turn, interoperability is "the

ability of two or more systems or components to exchange information and to use the information

exchanged" [55].

Before diving into the implementation details, some co-simulation mechanism requirements

are exposed. Then, special focus is given to the co-simulation mechanism implemented, including

aspects related with communication and synchronization between the two considered SLDLs.

The whole co-simulation mechanism implementation was developed in a computer equipped

with a Microsoft Windows operating system and the used IDE was Microsoft Visual Studio 2012.

5.1 Co-Simulation mechanism requirements

Prior to co-simulation mechanism implementation, some requirements were defined. First of all,

the co-simulation of SystemC and System# models should produce correct and accurate results. As

a term of comparison, the co-simulation results should be equal to the results one would obtain by

performing a traditional simulation procedure, that is, a full system simulation using SystemC or

System#. This characteristic can be denominated as accuracy.

It is desirable to be able to co-simulate previously written SystemC or System# models with-

out any required modification to the models source code. Under these circumstances, the model

designer can develop system models without being concerned about the way models will be sim-

ulated (single engine/language simulation or co-simulation of models written in different lan-

guages). This provides some modularity to the co-simulation mechanism and also some compati-

bility between previously written models and the co-simulation environment.

43
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These requirements were the primary concerns during the co-simulation mechanism imple-

mentation. However, it is possible to point out other interesting characteristics for the mechanism

to implement. Some of these characteristics are described next.

Ideally, from a user perspective, it is convenient that the execution of an heterogeneous system

simulation (system modules described in different languages) would be similar to the execution

of an homogeneous system simulation (system modules described in one language). This means

that the system designer would have minimum interaction with the co-simulation mechanism -

transparency.

Nowadays, one of the biggest embedded systems industry concerns is the reduction of design

cycle duration, in order to meet time-to-market constraints. So, speed and performance are impor-

tant and, as a relevant process during a system design, (co-)simulation should ideally be as fast as

possible.

It is hard to reach a point where all of this characteristics meet each other. Moreover, some

of these features can conflict. Knowing this, some trade-off’s needed to be made during the co-

simulation mechanism design and implementation.

With respect to speed and performance, it highly relies on the synchronization algorithm em-

ployed. However, while choosing an algorithm, one must have in mind the particular simulation

kernel properties of the considered simulators. The use of a certain synchronization algorithm may

require changes in a given simulation kernel and this can drive to conflicts with different versions

of the corresponding SLDL. Among synchronization algorithms, the optimistic ones would require

more simulation kernel changes in order to implement state saving and recovery algorithms.

Regarding to transparency, some interaction between the system designer and the co-simulation

environment, like the definition of simulation parameters, is hard to avoid.

All the trade-off’s made during implementation favoured the priority requirements first re-

ferred (accuracy and modularity/compatibility) rather the later referred co-simulation characteris-

tics (transparency and performance).

5.2 Co-Simulation mechanism design and implementation

Considering the implementation driving forces exposed in the previous sections, a co-simulation

mechanism approach was designed. The general architecture of the co-simulation environment is

shown in Figure 5.1.

The analysis of the purposed design can be divided in two components: the physical topology

of the whole system and the logic topology of each Simulation Domain (SystemC/System#).

The physical topology of the co-simulation environment is quite simple: two Simulation Do-

mains (SD) are linked via a Communication Channel. Recalling Figure 3.3, it is possible to iden-

tify some similarities between the architecture of an LP simulation and the general architecture of

the co-simulation environment. Each SD can be viewed as an LP with its own local clock and event
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Figure 5.1: Co-Simulation mechanism general architecture

list, whose events are executed by its simulation engine (in this case, the SystemC/System# simu-

lation kernel). The SDs (LPs) communicate through a Communication System - Communication

Channel, in the purposed architecture.

Time synchronization information, as well as information related with the value of signals

common to both SDs - shared signals - are transmitted through the Communication Channel. Sub-

section 5.2.1 exposes in detail the Communication Channel constitution and operation, including

the IPC API which allows data exchange between SDs.

Each SD is characterized by a logic topology constituted by three hierarchical levels:

• Sub-Modules Level: consists of the SystemC modules/System# components one wants to

(co-)simulate;

• Top Module Level: consists of a SystemC module/System# component - Top Module -

which contains instances of modules/components from the Sub-Modules Level, instances of

shared signals, as well as processes, methods and variables responsible for the update of

shared signal values;

• Main Level: contains an instance of the Top Module, simulation parameters and the main

co-simulation cycle. Communication operations between SDs occur in this level.

These levels are better described in subsection 5.2.2.

5.2.1 Communication between SystemC and System#

The problematic of communication between SystemC and System# consists, in fact, in achieving

communication between two different processes: a discrete-event simulator written in C++ and

another written in C#. For this, an IPC mechanism available in both programming languages is

required. The existence of an API for the chosen IPC mechanism would be convenient.
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Among different IPC mechanisms available in Microsoft Windows operating system, named

pipes were chosen. Microsoft Windows provides a named pipes API for C++ (in windows.h header

file) and C# (in System.IO.Pipes namespace).

An advantage of named pipes is their FIFO nature which ensures the order of received/sent

data and this characteristic is useful in the co-simulation mechanism. Named pipes also allow

different modes to write/read data: message mode (data is written to/read from the pipe as a stream

of messages) or byte mode (data is written to/read from the pipe as a stream of bytes).

After choosing the IPC mechanism, the Communication Channel between both SDs was de-

signed and implemented. The IPC operations introduce computation overhead to the co-simulation

system and, as the operating system resources are limited, the number of used Named Pipes is also

limited. Taking this into account, the implementation of a Communication Channel composed by

one pipe for each shared signal in the co-simulation system doesn’t seem to be an efficient and

scalable solution.

The description of the communication between SystemC and System# implemented is divided

in three parts: the Communication Channel topology, the structure/protocol of the transmitted data

messages and the implemented API used to perform communication task between both SDs.

5.2.1.1 Communication Channel topology

Considering the factors previously referred, a physical topology for the Communication Channel

was designed. It is composed by named pipes falling in two categories:

• Signal data pipes: pipes which transfer information relative to shared signals values;

• Temporal data pipes: pipes which transfer temporal information, more precisely, informa-

tion about the time-of-next-event in the local SD.

The pipes categorization allows the separation of co-simulation information according to the

information type. In turn, this allows a better data organization and helps in the data protocol

simplification.

Three named pipes compose the Communication Channel:

• one signal data pipe for the SystemC−→ System# data flow;

• one signal data pipe for the System#−→ SystemC data flow;

• one temporal data pipe (bidirectional data flow).

Regarding to pipe write/read mode, all pipes in Communication Channel use the message

mode. As the data transmitted through the pipes mainly consists of signal values and timestamps,

the information related to events is usually composed by more than one byte. The message mode

use frees the programmer from the task of inspecting the limits of a given message. Again, this

leads to a better data organization and simplifies the data protocol.
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5.2.1.2 Data Messages Structure/Protocol

The data transmission protocol used in the messages transmitted between both SDs is rather sim-

ple. With respect to the data transmitted through signal data pipes, it carries information about

the new values of one or more shared signals. As it is possible that, for a given simulation point,

several signals change their values, a message can contain information relative to more than one

shared signal. Under these circumstances, an SD which receives a message containing information

about several shared signals must figure out which information corresponds to which signal. This

way, an identification of each shared signal is required and this identification must be unique in

the whole co-simulation environment (a shared signal must have the same identification in both

SDs).

Apart from it, an SD which receives a message with multiple signal values must discern which

part of the message refers to a signal value and which part refers to the following signal value. This

can be achieved if one knows the amount of bytes/elements which constitute the signal value (for

example, the int data type has a size of 4 bytes, both in C++ and C#). Thus, a message transmitted

in a signal data pipe follows the structure/protocol illustrated in Figure 5.2.

ID

1 byte

NB/NE

1 byte

Value

n bytes

ID NB/NE Value (...)

Figure 5.2: Data protocol used in signal data pipes

From the figure above, one can see that a signal data message consists of a stream of one or

more ID,NB/NE,Value triplets, in which:

• ID is one byte representing an unsigned integer ranging from 0 (0x00) to 254 (0xFE) (the

value 0xFF is reserved for null messages). Shared signal IDs must be unique in the whole

co-simulation system;

• NB/NE is one byte representing an unsigned integer ranging from 0 (0x00) to 255 (0xFF)

which represents the amount of bytes or elements which constitute the signal value;

• Value consists of a variable number of bytes which represents the new value of a shared

signal.

The read operations on pipes are blocking, meaning that, at certain moments during co-

simulation, one SD will wait for a message from the other SD. It can happen that, at that moment,

there are no signal changes to report. In order to avoid deadlock situations, null messages are

passed between SDs when there is no data to transfer. A null message is composed by a single

byte whose value is 255 (0xFF).

Regarding to the data transmitted through temporal data pipes, the messages only contain a

timestamp which consists of a double value. This data types is similar in C++ and C#, and in both
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languages the double data type size is 8 bytes. This value represents an amount of time units. The

time unit considered in both SDs in the pico-second (ps).

5.2.1.3 Communication API

The functions intended for communication between SDs are defined and implemented in the files

cosim.h and cosim.cpp (SystemC counterpart) and the IPC class from CoSimulation namespace

(System# counterpart). The most relevant functions are similar in both languages and make use of

the corresponding Windows Named Pipes APIs:

• CreateAndConnectPipe(): this function is responsible for the communication set-up and

establishment. Pipe parameters like read/write mode, read operation nature (blocking or

non-blocking) or pipe buffer size are defined within this function;

• ReadFromPipe(): it performs a read operation from a given pipe. A message consisting of

a bytes stream is read and the read operation is blocking. The read message was previously

written in the opposite pipe end;

• WriteToPipe(): this function writes a bytes stream into a given pipe. The message can be

read in the opposite pipe end;

• ClosePipe(): flushes and disconnects a pipe.

This implementation considers that the SystemC counterpart behaves as a server and the Sys-

tem# behaves as a client. It means that the SystemC domain creates the pipe and waits for the

System# domain connection to the created pipe. To avoid mistakes regarding to pipe identifica-

tion, pipe names are uniquely defined in both SDs. All the Communication operations within

the co-simulation mechanism are performed on the Main Level in both SDs. These operations

include: pipe names and handle variables definition, connection set-up and establishment, all data

transactions between SDs (read/write operations on pipes) and pipes closure.

5.2.2 Synchronization between SystemC and System#

In the developed work, synchronization between SystemC and System# was implemented through

an adaptation of the conditional-event approach [39]. This adaptation is actually an algorithm

simplification which assumes that, for every simulation time, all events within the co-simulation

environment are conditional events (that is, they can be affected by another event), with the ex-

ception of the event with the lowest timestamp across all LPs, which is the only unconditional and

safe event. In fact, this is equivalent to the conditional-event approach worst case.

In the co-simulation environment considered, there are only two LPs - SDs: SystemC and

System#. So, for a given simulation time, the only event which is safe to process is the one with

the smallest timestamp among all events present in SystemC and System# event-lists.
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The implemented synchronization algorithm considers that the local clock variables from both

SDs assume the same initial value (0 seconds) and evolve in the same way during the whole co-

simulation period. This is an important issue regarding to Synchronization and it confers a tightly

coupling and synchronization between both SDs:

tSIM(co− simulation) = tSIM(SystemC) = tSIM(System#)

(for the whole simulation period)

, being tSIM(co− simulation) the simulation time of the whole co-simulation mechanism,

tSIM(SystemC) the simulation time in SystemC domain and tSIM(System#) the simulation time in

System# domain.

For a given simulation time, the co-simulation mechanism must be able to compute the amount

of time simulation can be safely advanced in both SDs - Lookahead. From a generic perspective,

one can consider two variables which help to define and compute lookahead in the developed

approach: Time-to-Next-Local-Event (TNLE) and Time-to-Next-Remote-Event (TNRE).

Let’s consider a co-simulation system comprising two SDs - SDA and SDB - each one having

its own event list - lA and lB, respectively. The earliest events (the ones with the lowest timestamp)

on lA and lB are eA and eB and their timestamps t(eA) and t(eB). For a given simulation time tSIM,

in SDA, the Time-to-Next-Local-Event is:

T NLE(A) = t(eA)− tSIM

and the Time-to-Next-Remote-Event is:

T NRE(A) = t(eB)− tSIM

Following the same reasoning, for SDB, we have:

T NLE(B) = t(eB)− tSIM

T NRE(B) = t(eA)− tSIM

Taking into account the adaptation of the conditional-event approach described above, the

lookahead is computed in the following way:

Lookahed = min(T NLE(A),T NRE(A)) = min(T NRE(B),T NLE(B))

From a practical point of view, the synchronization algorithm implemented requires both SDs

simulation kernels to be able to perform single-step simulation (in other words, delta-cycle by

delta-cycle simulation). Beyond this, the SLDLs used should supply functions which provide

information about the simulation scheduler. These functions should turn it possible to know if

there is pending activity to perform at current or future simulation time, as well as the simulation

time left until the next activity to be performed.
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During implementation, an important question had to do with possible required changes on

the SDs simulation kernels, in order to be integrated in the co-simulation environment. The im-

plemented approach was designed having in mind the avoidance of modifications in SystemC and

System# simulation kernels.

However, some changes in System# simulation kernel were actually performed. As System#

simulation kernel didn’t support single-step simulation, it was adapted towards the inclusion of

that simulation feature. Apart from single-step simulation, the required functions for providing

information about the simulation scheduler were added.

As System# is a recent framework, currently at a early development stage, the added simulation

features can be viewed as improvements to the framework, which are useful to generic simulation

purposes and not only for co-simulation purposes.

With respect to SystemC, modifications were avoided in order to keep the co-simulation mech-

anism compatible with future SystemC versions. Indeed, no SystemC simulation kernel changes

were performed during the co-simulation mechanism implementation. All the required functional-

ities related with single-step simulation and scheduler information functions were already provided

by the last released version of SystemC (IEEE 1666-2011).

Recalling SD’s hierarchical levels presented in Figure 5.1, synchronization will be described

in more detail by explaining them. It will be a top-down exposition, starting from the Main Level

and finishing wih the Sub-Modules Level.

5.2.2.1 The Main Level

The Main Level of an SD is the highest hierarchical level concerning the co-simulation mecha-

nism architecture. It comprises the Top Module Level, the Sub-Modules Level and also its own

constructs. In terms of form, the SystemC Main Level consists of the sc_main() function, while

System# counterpart consists of the Program.Main() function.

The Main Level’s generic structure is similar in both SDs. First, pipe variables (pipe names and

handlers) and simulation parameters, like simulation temporal duration, are declared and defined.

Regarding to these elements, coherency between both SDs is required, since some variables must

be uniquely defined within the whole co-simulation mechanism. Then, the Top Module, which

contains sub-systems one wants to co-simulate (Sub-Modules Level), is instantiated.

After Top Module instantiation, the "heart" of co-simulation - co-simulation cycle - is defined.

Shortly, the co-simulation cycle operates a follows: for a given simulation time instant (the same in

both SDs) both simulators perform delta-cycle-by-delta-cycle simulation (single-step simulation)

until there is no more pending activity in both SDs. Once this point is reached, both SDs exchange

information in order to compute the amount of simulation time both can safely progress. After

time advancement, both SDs perform again single-step simulation.

This cycle is repeated until a certain end condition is met - when simulation time reaches

the simulation temporal length initially defined. A more detailed co-simulation cycle analysis is

exposed next, by following the flowchart presented in Figure 5.3.
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Figure 5.3: Co-simulation main cycle flowchart
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The co-simulation cycle starts by verifying if the End of Simulation (EOS) was reached. If so,

the co-simulation is finished. Otherwise, the cycle execution advances and checks if the current

cycle iteration is the first one. Being the first cycle iteration, means that the local SD simulation has

not yet started and some scheduler variables, which give information about scheduler activity, were

not initialized. In order to initialize a SD’s simulation process, a single delta-cycle is executed. If

the current cycle iteration is not the first one, the initialization delta-cycle is skipped.

Then, the co-simulation cycle proceeds to an important stage, where the SDs exchange their

TNLEs. To get the TNLE value, the SD makes use of constructs which provide information about

scheduler activity. In SystemC, one can obtain the time until the earliest pending activity through

the function:

sc_time sc_core::sc_time_to_pending_activity()

, while in System# this information is given by the following C# property:

Time DesignContext.Instance.TimeToPendingActivity

The TNLE exchange between both SDs is performed by the implemented function ExchangeTNE().

This function is defined and implemented in cosim.h and cosim.cpp files (SystemC counterpart)

and in CoSimulation.Synchronization class (System# counterpart). In turn, ExchangeTNE() makes

use of the Named Pipes API described in section 5.2.1.3 to read and write information. The data

related with TNLE exchange flows in the temporal data pipe.

After TNLE exchange, SDs compute the Global Time-to-Next-Event (Global_TNE), that is

the amount of time both SDs can safely advance - Lookahead. This amount of simulation time

is calculated using another function implemented in cosim.cpp and CoSimulation.Synchronization

class: Lookahead(). The lookahead computation is done the same way that was presented in

section 5.2.2.

If Global_TNE is greater than zero, it means that there is no more activity to perform at current

simulation time. Thus, the simulation time from both SDs can be advanced by Global_TNE time

units. On the other hand, if Global_TNE is not greater than zero (meaning that it is equal to zero),

there is some activity to perform at current simulation time in one or both SDs. Faced with this

scenario, both SDs will perform single-step simulation until there is no more activity to perform

in the co-simulation system at the considered simulation time.

After a delta-cycle simulation, both SDs write a message to the opposite SD, on the cor-

responding outbound pipe, containing information about eventual changes on outbound shared

signals. Likewise, both SDs read, from the corresponding inbound pipe, a message from the op-

posite SD, which contains information about eventual changes on inbound shared signals values.

These data transactions are performed on signal data pipes. The perception of inbound/outbound

pipes, shared signals or messages is dual. For example, the signal data pipe dedicated to the

SystemC −→ System# data flow is the inbound pipe for the System# domain and the outbound

pipe for the SystemC domain. The same happens with shared signals or messages. A signal which
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is connected to a SystemC module output and to a System# component input is viewed as a Sys-

temC outbound signal and as a System# inbound signal.

The received inbound message is copied to a buffer from the Top Module and is inspected in

order to figure out if it corresponds to a null message. If it is not a null message, a function defined

in the Top Module is called. This function - UpdateStatus() - is responsible to set the conditions

which allow the shared signals update when the simulation is resumed.

Afterwards, each SD computes again the simulation lookahead. However, before calling the

function ExchangeTNE() and Lookahead, the SDs recall the outbound message previously sent.

If the outbound message sent is different from the null message, this means that the SD sent a

message containing information about new values on some shared signals. These new values can

trigger events in the remote SD which, in turn, can affect the local SD at current simulation time.

A SD cannot predict the effects an outbound message will have in the remote SD. Therefore, the

implemented algorithm assumes that, each time a SD sends an outbound message different from

the null message, the SD’s TNLE is set to zero. On the other hand, if the outbound message is

a null message, the TNLE is computed using sc_core::sc_time_to_pending_activity() or Design-

Context.Instance.TimeToPendingActivity.

This algorithm assumption can force the execution of empty delta-cycles if an SD has no

activity to perform while waits for possible effects from a not-null outbound message previously

sent.

After TNLE definition, SDs proceed to TNLE exchange and lookahead computation. The new

lookahead value (Global_TNE) is then inspected: if it is zero, Single-Step simulation runs once

again; if not, a new co-simulation cycle iteration is started from the beginning.

Examples of the Main Level code for SystemC and System# are shown in Appendix A. The

system considered in the example is the Squirrel-Cage induction machine used for evaluation in

Chapter 6.

5.2.2.2 The Top Module Level

Both in SystemC and System# domains, the Top Module Level takes the shape of a typical mod-

ule/componente in those languages. For a given SD, this module/component - Top Module - en-

capsulates the system’s physical configuration. So, it contains the actual modules and components

one wants to co-simulate, as well as the connections between them.

The Top Module itself has no input/output ports. The shared signals in the co-simulation

environment are represented by auxiliary local channels (one for each shared signal). There are

also two byte buffers - InboundBuffer and OutboundBuffer - which are accessible from the Main

Level and are actually the bridge between that level and the Top Module Level. New values

in outbound shared signals are inserted in the OutboundBuffer in the correct format, while new

inbound shared signal values can be accessed through the InboundBuffer.

A Top Module declares an auxiliary variable and an event variable (an instance of sc_event

in SystemC; an instance of SystemSharp.Components.Event in System#) for each inbound shared

signal. The auxiliary variables store the new value of the respective inbound shared signal. The
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data type of these auxiliary variables is the data type of the correspondent signal, with the excep-

tion of logic values - the auxiliary variable is a char - and data types whose size is defined by the

designer (for example, logic vectors, fixed-point values and arbitrary-length integers) - the auxil-

iary variable is a char* in SystemC and a StdLogicVector in System#. The event variables are used

to notify the system about new values in inbound shared signals and to trigger certain processes

responsible for shared signals update.

Apart from the previously referred local channels and auxiliary variables declarations, the Top

Module comprises instances of modules/components belonging to the Sub-Modules Level and also

processes and other methods involved in operations over shared signals.

For each outbound shared signal, there is an associated triggered process sensitive to the re-

spective signal. In other words, every time the value of an outbound shared signal changes, the

triggered process associated to that signal is executed. By convention, these processes have the

following prototype:

void out_<signal_name>()

, being <signal_name> the shared signal name to which the process is sensitive. Once trig-

gered, these processes write the respective new outbound shared signal values in OutboundBuffer,

according to the protocol described in 5.2.1.2.

For each inbound shared signal, there is a triggered process sensitive to an event associated to

the respective inbound shared signal. The prototype of these processes is

void write_<signal_name>()

, where <signal_name> is the shared signal name associated to the event which triggers the

process. A write_<signal_name>() process writes a new value, previously stored in an auxiliary

variable, in the target shared signal.

Besides the referred processes, the Top Module from both SDs contains a routine whose pro-

totype is

void UpdateStatus()

It is called by the Main Level during the co-simulation cycle, more precisely, after the delta-

cycle simulation and the read/write operations on named pipes. This routine inspects Inbound-

Buffer, seeking for new inbound shared signal values, puts them in auxiliary variables and notifies

the event responsible for triggering the process associated with the inbound shared signal whose

values has changed. The event notification is scheduled for the next delta-cycle in the simulation.

The UpdateStatus() routine cannot change directly the shared signal values because it is called

when simulation is paused, and signal values can only be modified when simulation is running.

Appendix A presents code examples for the Top Module Level in SystemC and System#. Again,

the system considered is the the Squirrel-Cage induction machine used for evaluation in Chapter 6.
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5.2.2.3 The Sub-Modules Level

The co-simulation mechanism is completely transparent to the Sub-Modules Level. Thus, this

level simply consists of SystemC modules/System# components. All the operations related with

communication and synchronization between SDs are contained in Top Module Level and Main

Level which were described in the two previous subsections.
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Chapter 6

Evaluation and Results

After developing the work aiming at this Master dissertation main goals, the obtained results were

evaluated. That is what this chapter addresses. Similarly to the implemented work, which was

divided in two parts, the results and evaluation were also divided in two parts, each one corre-

sponding to one of the implementation tasks performed: SystemC code generation from System#

projects and SystemC/System# co-simulation mechanism implementation.

6.1 SystemC code generation from System# projects

Regarding to SystemC code generation from System# projects, the milestone initially defined was

the correct generation of SystemC code for a set of System# example projects included in the

System# available for download at [24]. The example projects consist of:

• a system which computes the greatest common divisor (GCD) of two numbers;

• a counter. Different versions of the counter were considered by varying the counter data

type: StdLogicVector, arbitrary-length integers (Signed and Unsigned) and fixed-point data

types (SFix and UFix);

• a bus arbitration system where multiple bus masters issue arbitration requests and hold the

grant for a variable amount of time;

• a bit serializer/deserializer (Ser/Des) system. For this project, SystemC code was also gen-

erated by treating the system as a FSM (using the System# ability to automatically generate

FSMs from Clocked Threads). So, two versions of the Ser/Des system were generated: FSM

and no-FSM versions.

• a Squirrel-Cage induction machine, which is a rotor used in the most ordinary form of an

AC induction motor. The model used consists on the induction machine considered in [56].

Some of these example systems have a low level of complexity. However, this milestone

seemed to be reasonable taking into account the available time window to develop the Master

dissertation, as well as the fact that SystemC code generation is not the only goal of this thesis.

57
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Using the code generation engine developed in Chapter 4, SystemC code was generated for

all target projects previously referred. The generated code was successfully compiled and run for

all projects. Additionally, the simulation results obtained with the generated SystemC code were

exactly the same results obtained with the original System# projects.

Focusing on simulation performance, SystemC generated code performance showed to be bet-

ter than System# projects performance, for all targeted projects. Table 6.1 presents average execu-

tion time from 10 simulation runs for some previously referred projects, in both in SystemC and

System#. Performance evaluation was checked for the following projects: Bus Arbitration system

with 10 bus masters and Ser/Des system (no-FSM version).

Project simulation clock cycle System# average Generated SystemC
duration execution time (ms) average execution time (ms)

Bus Arbitration 100µs 10ns 280.8 14.9
system
Ser/Des 7500ns 10ns 37.3 1.2
system
Table 6.1: Comparison of average execution time in System# and generated SystemC

The generated code performance for the Squirrel-Cage project was also measured. However,

unlike the previous System# projects, the Squirrel-Cage project does not execute RTL simulation

of the intended system. It still produces an RTL specification of the system, but only performs

algorithmic simulation in which communication and computation are approximate-timed. This

speeds up simulation and makes the comparison with RTL SystemC simulation unfair. So, regard-

ing to the Squirrel-Cage project, the simulation of generated SystemC code was compared with

the simulation of generated VHDL code (also obtained through System# framework). Once again,

ten simulation runs of the project were executed and average execution time computed. Table 6.2

presents the results.

Project simulation clock cycle Generated VHDL Generated SystemC
duration avr. execution time (s) avr. execution time (s)

Squirrel-Cage 8µs 4ns 6.6 3.5
induction machine

Table 6.2: Comparison of average execution time in VHDL and generated SystemC

In all situations tested, the simulation using the generated SystemC code showed to be faster

than VHDL or System# RTL simulations. The SystemC code generation engine is integrated in

System# framework (similarly to the VHDL code generation engine), rather than being an inde-

pendent and separate body. This makes it easier to embed SystemC code generation into System#

design flow and to use it for system simulation and verification.

Indeed, the targeted System# projects, in which SystemC code generation was tested, do not

cover all System# syntax. So, once the milestone initially defined was achieved, an important

question arose: which System# constructs are/aren’t covered by the SystemC code generation
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engine?. To have an overview about the SystemC code generation comprehensiveness, System#

modelling properties were divided in three domains and the ability to generate correct SystemC

code for each domain was evaluated. The considered domains were:

• Components, Channels and Ports: this domain covers the basic modelling principle of

separation between computation and communication. Components are correctly identified

and translated to SystemC. Regarding to communication, System# built-in channels Signal,

SLSignal and SLVSignal were correctly translated to SystemC. The concept of port and the

port binding procedure are also covered by SystemC code generation engine;

• Concurrent Behaviour: the concurrent behaviour is represented by processes. Both Sys-

temC and System# support three kinds of processes: triggered processes, threaded processes

and clocked thread processes. All of these kinds of processes are supported by SystemC

code generation engine. The only remark has to do with the System# internal representation

for clocked threads, which affects the way this kind of processes is generated in SystemC

(as stated in 4.2.4);

• Data Types: more emphasis within this domain was given to Bit-Accurate data types and

resolved logic, once these data types are commonly used in the project of embedded sys-

tem. System# resolved logic data types (StdLogic and StdLogicVector) and its operations are

covered by the implemented code generation engine. Operations and data type conversions

involving arbitrary-length integers and fixed-point values were tested in some counter ver-

sions and more exhaustively in the Squirrel-Cage project. The produced results were correct

for these data types.

6.2 SystemC/System# co-simulation mechanism

The co-simulation mechanism implemented was tested in three different test systems. The first

one, which is illustrated in Figure 6.1, is composed by three modules. Two modules belong to

SystemC SD - (Producer and Logger) - and one belongs to System# SD - (Op). There are two

signals shared across both SDs: value (connected to Producer’s output port and Op’s input port)

and result (connected to Op’s output port and Logger’s input port).

The system operation is simple. Every clock cycle, the Producer generates a new value and

passes it to the Op, which performs an operation on it. The result from this operation is, in turn,

passed to the Logger. This module simply prints in the console the values received from the Op.

In the whole co-simulation system, the only module which is fed by a clock signal is the Producer.

The remaining modules react to changes on their inputs values.

The main purpose of this test system - called Producer-Op-Logger - was not stressing the co-

simulation mechanism, in order to challenge its accuracy. Instead, the main concern was to inspect

if signal values were correctly transferred and understood in the remote SD. This test system was

co-simulated for different scenarios:
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Producer
(SystemC)

Op
(System#)

value

resultLogger
(SystemC)

Figure 6.1: Scheme of test system 1: Producer-Op-Logger

1. the Producer generates a numeric value which is multiplied by 2 in Op and then passed to the

Logger. The numeric value data type was varied: int, arbitrary-length integers(sc_bigint/Signed)

and fixed-point values (sc_fixed/SFix);

2. the Producer generates a logic vector (sc_lv/StdLogicVector) and the Op module simply

passes it to the Logger, without transforming it;

3. the Producer generates a logic value (sc_logic/StdLogic) which is logically inverted in Op

and the passed to the Logger.

The second test system was a Bus Arbitration system with multiple bus masters shown is

Figure 6.2. The Arbiter and the clock signal generator are modelled in System#, while the bus

masters are implemented in SystemC. Regarding to shared signals and apart from Clk (all the bus

masters are fed by the clock signal generated in System# domain), each bus master introduces more

two shared signals: Request_n (connecting Bus Master n’s output port to one of the Arbiter’s input

ports) and Grant_n (connecting one of the Arbiter’s outputs to a Bus Master n’s input). In all the

shared signals, the transferred values are logic values (sc_logic/StdLogic).

The system operates as follows: the bus masters issue arbitration requests to the Arbiter and

hold the received grant for a variable amount of time. Actually, this system is a replica of the bus

arbitration system implemented in one of the System# example projects used for testing SystemC

code generation. Furthermore, the code for the SystemC bus masters was obtained from the code

generation engine. All modules in the system share the same clock signal and 10 bus master were

considered in the design.

The third test system evaluated involved the Squirrel-Cage induction machine (Figure 6.3).

Here, the system partition was the following: the SystemC SD comprises the whole rotor model,

while the System# SD contains the clock signal generator and a test-bench which provides stimuli

to the Squirrel-Cage model.
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Figure 6.2: Scheme of test system 2: Bus Arbitration

This system partitioning tries to reflect a situation likely to happen in real systems design:

develop a test-bench in a given language in order to stimulate a system/model projected in another

language.

Testbench
(System#)

Squirrel-Cage
Model

(SystemC)

DIn

Clock
(System#)

Clk

Cmd

DOut

Clk

Figure 6.3: Scheme of test system 3: Squirrel-Cage

This way, the shared signals in the System#−→ SystemC data flow are:

• DIn: Squirrel-Cage model input data. Corresponds to voltage values applied to the rotor.

This data assumes the form of a logic vector with 56 elements;

• Cmd: a command which defines the action to perform by the rotor (define voltage values,

fetch current values, etc.). The values of Cmd consist of enumeration values;
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Project simulation length Clock Cycle co-simulation
average execution time (ms)

Bus Arbitration 100µs 10ns 2014.4
system

Squirrel-Cage 8µs 4ns 4631.1
induction machine

Table 6.3: Co-Simulation average execution time for Bus Arbitration and Squirrel-Cage systems

• Clk: the clock signal. Assumes a logic value.

In the opposite data flow direction, we have:

• DOut: Squirrel-Cage model output data. Consists of current values and others, produced

by the rotor. Similarly to DIn, the values of this signal are logic vectors with 56 elements.

The code used for the Squirrel-Cage model in the SystemC SD was obtained through code

generation engine previously developed.

The implemented co-simulation mechanism was employed to co-simulate the previously pre-

sented SystemC/System# heterogeneous systems. In all of them, the co-simulation results matched

to the expected ones. The timing constraints inherent to systems operation were respected and

both simulation domains showed to be correctly synchronized. In the case of the Bus Arbitration

system and the Squirrel-Cage induction machine, the co-simulation results were the same as the

ones obtained through the simulation of the equivalent System# project.

Comparing the implemented approach with the co-simulation mechanism features presented

in 5.1, it is possible to state that the primary requirements defined were achieved. So, the co-

simulation results showed to be accurate and correct, and the modules/components written in one

of the considered SLDLs need not to be changed in order to be used in co-simulation. For example,

the SystemC generated code used in the Bus Arbitration and Squirrel-Cage systems didn’t suffer

any change before being integrated in the test system.

Some performance measurements were also done for the Bus Arbitration and Squirrel-Cage

systems. Co-simulation was run 10 times and the average execution time was computed. The

execution time for a co-simulation run is the maximum between the execution times of SystemC

and System# simulators. The results obtained from these measurements are shown in Table 6.3.

Comparing the execution times of co-simulation and single-engine simulation with System#

and SystemC (Table 6.1) for the equivalent systems, it is possible to observe that co-simulation

presents a substantially worse performance than the single-engine simulation. Some reasons may

be cited as causes for the poor co-simulation mechanism performance:

• high conservative nature of the synchronization algorithm implemented: the introduc-

tion of empty delta-cycles is an example of extra computation added to the system due to

high conservative synchronization;
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• communication operations overhead: performance analysis shows that a higher percent-

age of execution time is associated with pipe read/write operations and between them, the

ReadFromPipe() function is the one which absorbs a higher percentage of execution time

(its blocking nature can contribute to this). Moreover, the null messages exchanged due to

empty delta-cycles provoke the increasing of the amount of pipe operations performed;

• tight coupling nature of some tested system: the performance of distributed simulation or

co-simulation mechanism is highly dependent on how the whole system is partitioned. If the

system is appropriately partitioned, by assigning well balanced workloads to the different

system parts, better performance is expected. In the case of the Bus Arbitration system

tested, one SD (System#) comprises more modules and more scheduled activity than the

other SD. Additionally, the system clock tree requires the clock signal to be spread across

all SDs and components, introducing a signal data flow for every clock edge.

The implemented co-simulation mechanism requires considerable interaction with the user in

order to configure the co-simulation environment in the desired way. From the three levels which

constitute the co-simulation architecture, only the Sub-Modules Level does not require interaction

with the user. In the Main Level, some named pipes and simulation parameters have to be manu-

ally defined. Port binding to shared signals, processes, methods and event definitions need to be

configured by the user in the Top Module Level. Thus, the co-simulation mechanism has lack of

transparency.

6.3 A design guideline: split the clock signal by both SDs

Recalling the co-simulation performance driving forces previously referred, a small design change

was executed in the systems to co-simulate (Bus Arbitration and Squirrel-Cage). Instead of sharing

the clock signal across both SDs, two instances of the clock signal were considered (one for each

SD) - split-clock. To keep the coherency of the system, both clock signals must have the same

behaviour. This design change aims to reduce the communication operations overhead in the co-

simulation system, once it decreases, at least, the amount of data transferred between both SDs

(one less shared signal in the system). At the first glance, this change seems to not represent

a meaningful impact on the co-simulation performance because the main problem regarding to

Communication overhead is not related with data throughput, but with the amount of calls to

read/write operations on named pipes.

The split-clock approach was applied to the Bus Arbitration and Squirrel-Cage systems and

the number of null messages and non-null messages sent by each SD was inspected. The obtained

values were then compared to the ones from the co-simulation version where the clock-signal is

shared among both SDs - shared-clock approach.

While co-simulating the Bus Arbitration system, the number of bus masters - N - was varied

and the simulation length was adjusted in order to allow every bus master to acquire and release

the bus once. The clock cycle (10ns) was kept constant while changing the number of bus masters.
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N simulation length SD Shared-clock Split-clock
2 100ns # null msgs sent SystemC 106 54

System# 85 53
# non-null msgs sent SystemC 4 4

System# 25 5
3 150ns # null msgs sent SystemC 157 77

System# 126 76
# non-null msgs sent SystemC 5 5

System# 36 6
4 250ns # null msgs sent SystemC 258 126

System# 205 123
# non-null msgs sent SystemC 6 6

System# 59 9
5 300ns # null msgs sent SystemC 309 149

System# 246 146
# non-null msgs sent SystemC 7 7

System# 70 10
10 1000ns # null msgs sent SystemC 1019 475

System# 810 466
# non-null msgs sent SystemC 17 17

System# 226 26
Table 6.4: Messages flow for the Bus Arbitration system co-simulation

Some observations can be made from Table 6.4. In the shared-clock configuration, the number

of null messages sent is bigger in the SystemC SD. However, this fact has to do with the system

partitioning. In fact, the activity in SystemC domain highly depends on the clock signal that is

generated in the System# domain. Thus, SystemC is often waiting for information about the clock

signal in order to trigger its processes. While there is no triggered activity, SystemC SD simply

sends null messages.

Comparing the messages flow for shared-clock and split-clock situations, one can observe that

the amount of null messages sent decreases in both SDs. So, it means that the amount of pipe

operations also decreases. Furthermore, in the split-clock case, the number of non-null messages

sent remains the same in SystemC domain, but considerably decreases in the System# domain. The

nature of shared-clock and split-clock configurations can help to understand this reduction on non-

null messages sent. In shared-clock situation, the clock signal is generated in the System# SD and

is treated as another shared signal. So, whenever there is a change in the clock signal, a non-null

message containing the new clock value is sent. On the other hand, in the split-clock situation,

the clock signal is not a shared signal and changes on its value are not transmitted. This way, the

non-null messages which would be sent every clock edge, and whose content only consists of the

clock signal value, do not exist any more in the co-simulation system.

In the Bus Arbitration system, the Request_N and Grant_N signals only change their value

on positive clock edges. Thereby, the write operations on these signals occur, at least, one delta

cycle after the execution of the write operation on the clock signal (the new clock value is only
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N simulation Shared-clock Split-clock Performance
length average execution time (ms) average execution time (ms) improvement

2 100ns 1763.3 1115.1 36.8%
3 150ns 1777.1 1144.1 35.6%
4 250ns 1828.3 1165.2 36.3%
5 300ns 1875.1 1199.3 36.0%
10 1000ns 2003.4 1322.2 34.0%

Table 6.5: Co-Simulation average execution time for Bus Arbitration, considering the shared-clock
and split-clock situations

available in the next delta cycle). As the messages exchange in the co-simulation mechanism take

place after every delta cycle execution, the messages sent due to an event on the clock signal only

contain information about the clock signal.

Actually, one can verify that the difference between the number of non-null messages sent by

System# domain in shared-clock and split-clock situations is equal to the number of clock edges

which occur within the simulation length. For example, considering the situation for N = 5:

Simulation length = 300ns; Clock cycle = 10ns

# clock edges = 2 * (Simulation length / Clock cycle) = 60

non-null messages reduction = 70 - 10 = 60

Having observed the impact on the amount of messages exchanged between both SDs de-

creases introduced by the split-clock situation, performance measurements were executed for the

Bus Arbitration system co-simulation. Ten co-simulation runs were performed and the average

execution time calculated. Table 6.5 present the obtained results.

A similar procedure regarding to the study of messages flow and performance (average execu-

tion time from 10 co-simulation runs) was done for the Squirrel-Cage system. Tables 6.6 and 6.7

present the results.

Simulation length SD Shared-clock Split-clock
8µs # null msgs sent SystemC 26896 15038

System# 22875 15017
# non-null msgs sent SystemC 54 54

System# 4075 75
Table 6.6: Messages flow for the Squirrel-Cage system co-simulation

simulation Shared-clock Split-clock Performance
length average execution time (ms) average execution time (ms) improvement

8µs 4631.1 4255.4 8.1%
Table 6.7: Co-Simulation average execution time for Squirrel-Cage, considering the shared-clock
and split-clock situations
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The split-clock variation presented before cannot be viewed as a performance improvement to

the co-simulation system, once the communication and synchronization mechanisms remain un-

changed. Instead, it can be viewed as a design guideline: clock signals or signals whose behaviour

is well known and defined from the beginning of the co-simulation procedure should not be shared

across SDs.



Chapter 7

Conclusions and Outlook

The current chapter summarizes the main conclusions from the developed work, refers its contri-

butions and point future work directions.

7.1 Conclusions

The work developed within this Master Dissertation is mainly related with two domains - system

level description languages and discrete-event (co-)simulation - and the goals initially defined are

deeply attached to those domains. SystemC and System# were the SLDLs considered in this work.

The former is a popular and well-established hardware/software simulation tool and the later is a

newcomer platform which extends its functionalities towards high-level synthesis, aiming the ac-

celeration and automatization of the Modelica-to-FPGA design flow. The goal related with SLDL

domain was to furnish System# with the ability to generate SystemC code for a given System#

project. This feature was implemented and integrated in the System# framework and thus can be

used during the System# design flow. Since performance measurements presented show the Sys-

temC executes simulation faster than System#, the SystemC code generation feature can be used

to address the problem related with the time-consuming nature of the simulation/verification loop

done by System# prior to FPGA integration.

Being a recent design and simulation tool, System# still has a considerable improvement mar-

gin. In fact, at the time of this dissertation development, an FZI student was working on improving

System# simulation performance using the new C# 5.0 features [57]. Nevertheless, the SystemC

code generation is still an interesting feature which contributes to enlarge the high-level synthesis

capabilities of System#.

The advent of heterogeneous systems came along with the increasing complexity of embedded

systems. Consequently, the need for running a simulation procedure which in turn comprises sim-

ulators written in different languages arose. Ultimately, this is a problem of parallel/distributed

discrete-event simulation. To face the challenge of simulating systems composed by elements

designed in SystemC and System#, a co-simulation mechanism was implemented. The primary re-

quirements of accuracy and modularity were successfully achieved by the implemented approach,

67
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through a high conservative synchronization algorithm and the existence of a Top Module level

in each Simulation Domain which encapsulates the modules/components to co-simulate. Com-

munication between SDs is performed using named pipes. The drawbacks of the implemented

co-simulation mechanism are the lack of transparency for the user and the poor performance.

The co-simulation mechanism developed within this Master dissertation was the first attempt

to co-simulate systems composed of SystemC and System# parts. However, it can be compared

with some developed work in the field of parallel/distributed SystemC. The works from Trams [47],

Cox [48] and Chopard et. al [49] are more related with the work developed within this project.

In all of them, conservative synchronization is employed. In the SystemC/System# co-simulation,

the synchronization algorithm implemented is similar to the ones used by Cox and Chopard et. al,

but is different from Trams approach. Unlike Trams, the implemented synchronization algorithm

is not constrained to systems with a regular and predictable behaviour. In his work, Cox actually

modifies the SystemC kernel in order to produce a distributed version of it. On the other hand,

Chopard et. al present a new SystemC construct used to partition the system to simulate. Instead,

in this Master dissertation work, no changes were performed on SystemC kernel for sake of com-

patibility issues with future versions. The features added to System# kernel did not have a radical

impact on the existing structure, but contributed to add some useful constructs related with single-

step simulation. Regarding to communication between SDs, the implemented approach differs

from the related referred work, once it employs named pipes instead of MPI or TCP/IP.

7.2 Future Work

The developed work has a considerable margin of progress. The SystemC code generation engine

should be kept updated, following future new SystemC features. As referred in Chapter 6, more

relevance was given to bit-accurate data types. So, the code generation engine should be exhaus-

tively tested with a bigger variety of systems, dealing with different data types. An interesting

contribution involving code generation would be the development of the ability to generate Sys-

temC code at simulation time, seeking for possible benefits from convenient modelling and better

simulation performance.

Regarding to SystemC/System# co-simulation mechanism the improvement window is wide.

As referred before, the main drawbacks of the implemented approach are the lack of transparency

and performance. Encapsulate the shared channels and all the communication and synchronization

constructs in SLDLs constructs with a easy-to-use interface would clearly improve the usability

and transparency of the whole co-simulation environment. From a user perspective, it would be

convenient that the execution of a co-simulation run would look similar to a single-engine simula-

tion. The development of a simulation platform, whose inputs would simply be the modules/com-

ponents to co-simulate, and that would automatically set the co-simulation up and run it, would be

a ultimate contribution for the simulation of heterogeneous systems and also for distributed/paral-

lel simulation of homogeneous systems.
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The co-simulation performance is a target for future work. The causes of poor co-simulation

performance were identified in Chapter 6. Two of them - high conservative nature of synchro-

nization algorithm and communication overhead - are intrinsically related with the co-simulation

architectures and operation. These two causes drive to two different directions on improving sys-

tem performance:

• Adapt or change the synchronization algorithm in order to relax the synchronization without

affecting the co-simulation accuracy;

• Optimize the communication between SDs, using different communication mechanisms or

adapting existing ones to this particular application.
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Appendix A

Appendix A - Examples of
co-simulation code

The Main Level assumes the shape of a .cpp file in SystemC and a class in System#.. Here, the

communication between Simulation Domains is established, simulation parameters are defined,

the Top Mudule instantiated and the co-simulation cycle is implemented.

SystemC Main Level code

# d e f i n e SC_INCLUDE_FX

# i n c l u d e <sys temc >

# i n c l u d e " cosim . h "

# i n c l u d e < s t d l i b . h>

# i n c l u d e < i o s t r e a m >

# i n c l u d e " t o p . h "

# i n c l u d e " t ime . h "

u s i n g namespace s c _ c o r e ;

u s i n g namespace s c _ d t ;

u s i n g namespace s t d ;

i n t sc_main ( i n t s c _ a r g c , char∗ s c _ a r g v [ ] )

{

/ / Named P i p e s IPC v a r i a b l e s

HANDLE SyncPipe = INVALID_HANDLE_VALUE ;

HANDLE InboundP ipe = INVALID_HANDLE_VALUE ;

HANDLE OutboundPipe = INVALID_HANDLE_VALUE ;

BYTE∗ S y n c B u f f e r = (BYTE∗ ) c a l l o c ( BUFFER_SIZE , s i z e o f (BYTE) ) ;

LPCTSTR SyncPipeName = L" \ \ \ \ " SERVER_NAME L" \ \ p i p e \ \ sync " ;

LPCTSTR InPipeName = L" \ \ \ \ " SERVER_NAME L" \ \ p i p e \ \ p i p e 1 " ;
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LPCTSTR OutPipeName = L" \ \ \ \ " SERVER_NAME L" \ \ p i p e \ \ p i p e 2 " ;

/ / S y n c h r o n i z a t i o n v a r i a b l e s

s c _ t i m e TNE;

s c _ t i m e s i m _ l e n g t h = s c _ t i m e ( 8 , SC_US ) ;

s c _ t i m e t n l e , t n r e ;

/ / Aux v a r i a b l e s

BYTE∗ aux_buf = (BYTE∗ ) c a l l o c ( BUFFER_SIZE+8 , s i z e o f (BYTE) ) ;

boo l b e g i n = t r u e ;

c l o c k _ t s t a r t , end ;

/ / / / Cr ea t e and Connect Named P i p e s

i f ( ( SyncPipe = Crea t eAndConnec tP ipe ( SyncPipeName , " InOut " ) ) ==

INVALID_HANDLE_VALUE)

re turn −1;

i f ( ( InboundP ipe = Crea t eAndConnec tP ipe ( InPipeName , " InOut " ) ) ==

INVALID_HANDLE_VALUE)

re turn −1;

i f ( ( OutboundPipe = Crea t eAndConnec tP ipe ( OutPipeName , " InOut " ) )

== INVALID_HANDLE_VALUE)

re turn −1;

/ / I n s t a n t i a t e t h e p r o j e c t t o s i m u l a t e

t o p T ( " t o p " ) ;

s c _ r e p o r t _ h a n d l e r : : s e t _ a c t i o n s (SC_WARNING, SC_DO_NOTHING) ;

s t a r t = c l o c k ( ) ;

/ / Co−s i m u l a t i o n Cyc le

whi le ( s c _ t i m e _ s t a m p ( ) <= s i m _ l e n g t h )

{

i f ( b e g i n )

{

b e g i n = f a l s e ;
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s c _ s t a r t ( SC_ZERO_TIME ) ;

}

t n r e = ExchangeTNE ( SyncPipe , s c _ t i m e _ t o _ p e n d i n g _ a c t i v i t y

( ) , S y n c B u f f e r ) ;

TNE = LookAhead ( s c _ t i m e _ t o _ p e n d i n g _ a c t i v i t y ( ) , t n r e ) ;

i f (TNE > s c _ t i m e ( 0 , SC_PS ) )

{

s c _ s t a r t (TNE) ; / / Advance t i m e

}

e l s e
{

whi le (TNE == s c _ t i m e ( 0 , SC_PS ) )

{

s c _ s t a r t ( SC_ZERO_TIME ) ;

/ / Outbound Sync

i f ( T . o u t b u f s i z e > 0)

{

Wr i t eToPipe ( OutboundPipe , L"

Outbound " , T . OutboundBuffer ,

T . o u t b u f s i z e ) ;

}

e l s e
{

aux_buf [ 0 ] = 0 x f f ;

Wr i t eToPipe ( OutboundPipe , L"

Outbound " , aux_buf , 1 ) ;

}

/ / Inbound Sync

T . i n b u f s i z e = ReadFromPipe ( InboundPipe ,

L" Inbound " , T . I n b o u n d B u f f e r ) ;

/ / Update

i f ( T . i n b u f s i z e > 1)

T . U p d a t e S t a t u s ( ) ;

/ / Compute Lookahead
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i f ( T . o u t b u f s i z e == 0)

t n l e =

s c _ t i m e _ t o _ p e n d i n g _ a c t i v i t y ( )

;

e l s e
t n l e = s c _ t i m e ( 0 , SC_PS ) ;

T . o u t b u f s i z e = 0 ;

t n r e = ExchangeTNE ( SyncPipe , t n l e ,

S y n c B u f f e r ) ;

TNE = LookAhead ( t n l e , t n r e ) ;

}

}

}

end = c l o c k ( ) ;

C l o s e P i p e ( SyncPipe , S y n c B u f f e r ) ;

C l o s e P i p e ( InboundPipe , T . I n b o u n d B u f f e r ) ;

C l o s e P i p e ( OutboundPipe , T . Ou tboundBuf fe r ) ;

c o u t << e n d l << " E x e c u t i o n Time ( ms ) : " << ( 1 0 0 0∗ ( end− s t a r t ) ) /

CLOCKS_PER_SEC << e n d l ;

re turn 0 ;

}

System# Main Level code

c l a s s Program

{

s t a t i c vo id Main ( s t r i n g [ ] a r g s )

{

/ / Named P i p e s IPC v a r i a b l e s

NamedPipeCl i en tS t r eam SyncPipe ;

NamedPipeCl i en tS t r eam InboundP ipe ;

NamedPipeCl i en tS t r eam OutboundPipe ;

byte [ ] S y n c B u f f e r = new byte [ C o S i m u l a t i o n . IPC . B u f f e r S i z e

] ;
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s t r i n g SyncPipeName = " sync " ;

s t r i n g OutPipeName = " p i p e 1 " ;

s t r i n g InPipeName = " p i p e 2 " ;

/ / S y n c h r o n i z a t i o n v a r i a b l e s

Time t n l e , t n r e ;

Time TNE = new Time ( 0 , ETimeUnit . ps ) ;

Time s i m _ l e n g t h = new Time ( 8 , ETimeUnit . us ) ;

/ / Aux v a r i a b l e s

byte [ ] aux_buf = new byte [ C o S i m u l a t i o n . IPC . B u f f e r S i z e +

8 ] ;

bool b e g i n = t rue ;

/ / Cr ea t e and Connect Named P i p e s

SyncPipe = C o S i m u l a t i o n . IPC . Crea t eAndConnec tP ipe (

SyncPipeName , " InOut " ) ;

OutboundPipe = C o S i m u l a t i o n . IPC . Crea t eAndConnec tP ipe (

OutPipeName , " InOut " ) ;

InboundP ipe = C o S i m u l a t i o n . IPC . Crea t eAndConnec tP ipe (

InPipeName , " InOut " ) ;

P r o c e s s P o o l . M a x P a r a l l e l P r o c e s s e s P r e s e t = 4 ;

F i x e d P o i n t S e t t i n g s . G l o b a l D e f a u l t R a d i x = 1 0 ;

Top T = new Top ( 2 4 , 32) ;

D e s i g n C o n t e x t . I n s t a n c e . E l a b o r a t e ( ) ;

long s t a r t = DateTime . Now . T i c k s ;

/ / Co−S i m u l a t i o n Cyc le

whi le ( D e s i g n C o n t e x t . I n s t a n c e . CurTime <= s i m _ l e n g t h )

{

i f ( b e g i n )

{

b e g i n = f a l s e ;

D e s i g n C o n t e x t . I n s t a n c e . S i m u l a t e ( 0 ) ;

}
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t n r e = C o S i m u l a t i o n . S y n c h r o n i z a t i o n . ExchangeTNE (

SyncPipe , D e s i g n C o n t e x t . I n s t a n c e .

T imeToPend ingAc t iv i t y , S y n c B u f f e r ) ;

TNE = C o S i m u l a t i o n . S y n c h r o n i z a t i o n . LookAhead (

D e s i g n C o n t e x t . I n s t a n c e . T imeToPend ingAc t iv i ty ,

t n r e ) ;

i f (TNE . Value > 0)

{

D e s i g n C o n t e x t . I n s t a n c e . S i m u l a t e (TNE) ;

/ / Advance t i m e

}

e l s e
{

whi le (TNE . Value == 0)

{

D e s i g n C o n t e x t . I n s t a n c e . S i m u l a t e

( 0 ) ;

/ / Outbound Sync

i f ( T . o u t b u f s i z e > 0)

{

C o S i m u l a t i o n . IPC .

Wr i t eToPipe (

OutboundPipe , "

Outbound " , T .

OutboundBuffer , T .

o u t b u f s i z e ) ;

}

e l s e
{

aux_buf [ 0 ] = 0 x f f ;

C o S i m u l a t i o n . IPC .

Wr i t eToPipe (

OutboundPipe , "

Outbound " , aux_buf ,

1 ) ;

}
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/ / Inbound Sync

T . I n b o u n d B u f f e r = C o S i m u l a t i o n .

IPC . ReadFromPipe ( InboundPipe ,

" Inbound " ) ;

T . i n b u f s i z e = T . I n b o u n d B u f f e r .

Length ;

/ / Update

i f ( T . i n b u f s i z e > 1)

T . U p d a t e S t a t u s ( ) ;

/ / Compute Lookahead

i f ( T . o u t b u f s i z e == 0)

t n l e = D e s i g n C o n t e x t .

I n s t a n c e .

T i m e T o P e n d i n g A c t i v i t y

;

e l s e
t n l e = new Time ( 0 ,

ETimeUnit . ps ) ;

T . o u t b u f s i z e = 0 ;

t n r e = C o S i m u l a t i o n .

S y n c h r o n i z a t i o n . ExchangeTNE (

SyncPipe , t n l e , S y n c B u f f e r ) ;

TNE = C o S i m u l a t i o n .

S y n c h r o n i z a t i o n . LookAhead (

t n l e , t n r e ) ;

}

}

}

long execTime = DateTime . Now . T i c k s − s t a r t ;

C o S i m u l a t i o n . IPC . C l o s e P i p e ( SyncPipe ) ;

C o S i m u l a t i o n . IPC . C l o s e P i p e ( InboundP ipe ) ;

C o S i m u l a t i o n . IPC . C l o s e P i p e ( OutboundPipe ) ;

Conso le . W r i t e L i n e ( ) ;
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Conso le . W r i t e L i n e ( " E x e c u t i o n Time ( ms ) : {0} " , new
TimeSpan ( execTime ) . T o t a l M i l l i s e c o n d s . T o S t r i n g ( ) ) ;

}

}

The Top Module Level consists of a module/component in SystemC/System# which comprises

the declaration of auxiliary variables, shared signals, synchronization events, instantiation of the

modules belongign to the Sub-Modules Level, as well as processes and functions important during

co-simulation.

SystemC Top Module Level code

# d e f i n e SC_INCLUDE_FX

# i n c l u d e <sys temc >

# i n c l u d e " Sys temSharp_DataTypes . h "

# i n c l u d e " S q u i r r e l C a g e . h "

# i n c l u d e " System . h "

# i n c l u d e " m_clkGen . h "

# i n c l u d e " m_dut . h "

# i n c l u d e " cosim . h "

# i n c l u d e < i o s t r e a m >

# i n c l u d e " s c _ l v _ a d d _ o n s . h "

# i n c l u d e " s c _ l o g i c _ a d d _ o n s . h "

u s i n g namespace s t d ;

u s i n g namespace s c _ c o r e ;

u s i n g namespace s c _ d t ;

SC_MODULE( t o p )

{

/ / Co−S i m u l a t i o n aux s i g n a l s v a r i a b l e s

char c l k _ v a l u e ;

i n t cmd_value ;

char∗ d i n _ v a l u e ;

/ / Co−S i m u l a t i o n s i g n a l s

s c _ s i g n a l < s c _ l o g i c > _ c l k ;

s c _ s i g n a l < i n t > _cmd ;

s c _ s i g n a l < s c _ l v <56>> _d in ;

s c _ s i g n a l < s c _ l v <56>> _dou t ;

/ / S y n c h r o n i z a t i o n e v e n t s

s c _ e v e n t e_c lk , e_cmd , e _ d i n ;



Appendix A - Examples of co-simulation code 79

BYTE∗ I n b o u n d B u f f e r ;

BYTE∗ OutboundBuf fe r ;

i n t i n b u f s i z e , o u t b u f s i z e ;

/ / Sys tem components / sub−modules

m_dut m_dut_ ;

void w r i t e r _ c l k ( )

{

( _ c l k ) . w r i t e ( s c _ l o g i c ( c l k _ v a l u e ) ) ;

}

void w r i t e r _ c m d ( )

{

( _cmd ) . w r i t e ( cmd_value ) ;

}

void w r i t e r _ d i n ( )

{

( _d in ) . w r i t e ( s c _ l v <56 >( d i n _ v a l u e ) ) ;

}

void o u t _ d o u t ( )

{

i f ( ( _dou t ) . e v e n t ( ) )

{

s c _ l v O u t (0 x04 , &(m_dut_ . DOut ) , OutboundBuffer , &

o u t b u f s i z e ) ;

}

}

void U p d a t e S t a t u s ( )

{

i n t i = 0 ;

i f ( i n b u f s i z e > 1)

{

whi le ( i < i n b u f s i z e )
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{

sw i t ch ( I n b o u n d B u f f e r [ i ] )

{

case 0x01 :

{

UpdateSimpleType (

InboundBuf fe r , &i , &

c l k _ v a l u e , &e _ c l k ) ;

break ;

}

case 0x02 :

{

UpdateSimpleType (

InboundBuf fe r , &i , &

cmd_value , &e_cmd ) ;

break ;

}

case 0x03 :

{

UpdateBi tAccType (

InboundBuf fe r , &i ,

d i n _ v a l u e , &e _ d i n ) ;

break ;

}

}

}

}

}

SC_CTOR( t o p ) : m_dut_ ( " m_dut_ " )

{

m_dut_ . Clk ( _ c l k ) ;

m_dut_ . Cmd( _cmd ) ;

m_dut_ . DIn ( _d in ) ;

m_dut_ . DOut ( _dou t ) ;

SC_METHOD( w r i t e r _ c l k ) ;
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d o n t _ i n i t i a l i z e ( ) ;

s e n s i t i v e << e _ c l k ;

SC_METHOD( w r i t e r _ c m d ) ;

d o n t _ i n i t i a l i z e ( ) ;

s e n s i t i v e << e_cmd ;

SC_METHOD( w r i t e r _ d i n ) ;

d o n t _ i n i t i a l i z e ( ) ;

s e n s i t i v e << e _ d i n ;

SC_METHOD( o u t _ d o u t ) ;

s e n s i t i v e << _dou t ;

I n b o u n d B u f f e r = (BYTE∗ ) c a l l o c ( BUFFER_SIZE , s i z e o f (BYTE) )

;

Ou tboundBuf fe r = (BYTE∗ ) c a l l o c ( BUFFER_SIZE , s i z e o f (BYTE)

) ;

d i n _ v a l u e = ( char ∗ ) ma l lo c ( ( 5 6 + 1 ) ∗ s i z e o f ( char ) ) ;

i n b u f s i z e = 0 ;

o u t b u f s i z e = 0 ;

}

} ;

System# Top Module Level code

c l a s s Top : Component

{

p u b l i c s t a t i c r e a d o n l y Time ClockCyc le = new Time ( 4 . 0 , ETimeUnit

. ns ) ;

/ / Co−S i m u l a t i o n s i g n a l s

p u b l i c SLSigna l _ c l k = new SLSigna l ( ) ;

p u b l i c S i g n a l < T e s t b e n c h . ECmd> _cmd = new S i g n a l < T e s t b e n c h . ECmd

> ( ) ;

p u b l i c SLVSignal _d in ;

p u b l i c SLVSignal _dou t ;

/ / Co−S i m u l a t i o n aux v a r i a b l e s
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S t d L o g i c V e c t o r _ d o u t _ v a l u e ;

p r i v a t e Clock _ c l k g e n ;

p r i v a t e T e s t b e n c h S F i x t b ;

/ / Boundary b u f f e r s

p u b l i c b y t e [ ] OutboundBuf fe r ;

p u b l i c b y t e [ ] I n b o u n d B u f f e r ;

p u b l i c i n t i n b u f s i z e , o u t b u f s i z e ;

/ / S y n c h r o n i z a t i o n E v e n t s

Event e _d ou t ;

p u b l i c Top ( i n t iw , i n t fw )

{

_d in = new SLVSignal ( iw + fw ) ;

_dou t = new SLVSignal ( iw + fw ) ;

_d in . I n i t i a l V a l u e = new s t r i n g ( ’U’ , iw + fw ) ;

_dou t . I n i t i a l V a l u e = new s t r i n g ( ’U’ , iw + fw ) ;

_cmd . I n i t i a l V a l u e = T e s t b e n c h . ECmd . Nop ;

_ c l k . I n i t i a l V a l u e = ’U’ ;

_ c l k g e n = new Clock ( ClockCyc le )

{

Clk = _ c l k

} ;

t b = new T e s t b e n c h S F i x ( iw , fw )

{

Clk = _c lk ,

Cmd = _cmd ,

DIn = _din ,

DOut = _dou t

} ;

I n b o u n d B u f f e r = new b y t e [ C o S i m u l a t i o n . IPC . B u f f e r S i z e ] ;

Ou tboundBuf fe r = new b y t e [ C o S i m u l a t i o n . IPC . B u f f e r S i z e ] ;

i n b u f s i z e = 0 ;
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o u t b u f s i z e = 0 ;

_ d o u t _ v a l u e = new s t r i n g ( ’U’ , t b . IW + t b .FW) ;

e_ do u t = new Event ( t h i s ) ;

}

p r i v a t e void w r i t e r _ d o u t ( )

{

_dou t . Next = _ d o u t _ v a l u e ;

}

p r i v a t e void o u t _ c l k ( )

{

C o S i m u l a t i o n . B u f f e r O p e r a t i o n s . S tdLog icOut (0 x01 , _c lk , r e f

OutboundBuffer , r e f o u t b u f s i z e ) ;

}

p r i v a t e void out_cmd ( )

{

C o S i m u l a t i o n . B u f f e r O p e r a t i o n s . CppTypeOut (0 x02 , s i z e o f ( i n t ) ,

r e f OutboundBuffer , o u t b u f s i z e ) ;

Array . Copy ( B i t C o n v e r t e r . Ge tBy tes ( ( i n t ) _cmd . Cur ) , 0 ,

OutboundBuffer , o u t b u f s i z e + 2 , s i z e o f ( i n t ) ) ;

o u t b u f s i z e += 2 + s i z e o f ( i n t ) ;

}

p r i v a t e void o u t _ d i n ( )

{

C o S i m u l a t i o n . B u f f e r O p e r a t i o n s . StdLVOut (0 x03 , _din , r e f

OutboundBuffer , r e f o u t b u f s i z e ) ;

}

p u b l i c void U p d a t e S t a t u s ( )

{

i n t i = 0 ;

whi le ( i < i n b u f s i z e )

{
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sw i t ch ( I n b o u n d B u f f e r [ i ] )

{

case 0x04 :

{

C o S i m u l a t i o n . B u f f e r O p e r a t i o n s .

UpdateBi tAccType ( InboundBuf fe r , r e f i ,

r e f _ d o u t _ v a l u e , e_ do u t ) ;

break ;

}

}

}

}

p r o t e c t e d o v e r r i d e void I n i t i a l i z e ( )

{

AddProcess ( o u t _ c l k , _ c l k . ChangedEvent ) ;

AddProcess ( out_cmd , _cmd . ChangedEvent ) ;

AddProcess ( o u t _ d i n , _d in . ChangedEvent ) ;

AddProcess ( w r i t e r _ d o u t , e _d ou t ) ;

}

}
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