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a b s t r a c t

We present foundational work on standard bases over rings and on Boolean Gröbner bases
in the framework of Boolean functions. The research was motivated by our collaboration
with electrical engineers and computer scientists on problems arising from formal
verification of digital circuits. In fact, algebraic modelling of formal verification problems
is developed on the word-level as well as on the bit-level. The word-level model leads
to Gröbner basis in the polynomial ring over Z/2n while the bit-level model leads to
Boolean Gröbner bases. In addition to the theoretical foundations of both approaches, the
algorithms have been implemented. Using these implementations we show that special
data structures and the exploitation of symmetries make Gröbner bases competitive to
state-of-the-art tools from formal verification but having the advantage of being systematic
and more flexible.

© 2008 Elsevier B.V. All rights reserved.

0. Introduction

It has become common knowledge inmany parts of mathematics and in some neighbouring fields that Gröbner bases are
a universal tool for any kind of problem which can be modelled by polynomial equations. However, quite often the models
involve too many unknowns and equations making it unfeasible to carry out the corresponding Gröbner basis computation.
This is, for example, the case for most real-world problems from discrete optimisation or from formal verification of

digital systems, two areas of eminent practical importance. Because of their importance the community working in these
fields is much bigger than the Gröbner basis community and, moreover, there exist highly specialised commercial tools
making it unrealistic to believe that Gröbner bases can be of comparable practical efficiency in these areas.
One of the purposes of this paper is to show that, in many cases Gröbner bases can be used to find solutions for formal

verification problems. In this way, this forms a good complement to existing techniques, like simulators and SAT-solver,
which are suited for identification of counter examples (falsification).
A significant advantage is, that Gröbner bases provide a mathematically proven systematic and very flexible tool

while many engineering solutions inside commercial verification tools rely on ad hoc heuristics for special cases.
However, the success of Gröbner basis methods, reported in this paper, could not be achieved with existing generic
Gröbner basis algorithms and implementations. On the contrary, it relies on the theory of Gröbner bases in Boolean rings
and improvements of algorithms for this case, both being developed by the authors and described here for the first time.
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The Boolean Gröbner basis formulation of a verification problem comes from a modelling on the bit-level. We describe
here also another approach based on amodelling on theword-level, leading toGröbner basis computations in the polynomial
ring over the ring Z2n of integers modulo 2n where n is the word length, that is, the number of bits used by each signal. This
approach has the advantage that it leads to a more compact formulation with less variables and equations. On the other
hand, it has the disadvantage that Z2n is not a field for n > 1, but a ring with zero divisors. Moreover, we show that an
arbitrary verification problem cannot, in general, be modelled by a system of polynomial equations over the ring Z2n and,
furthermore, we can in general only prove non-satisfiability but not satisfiability. Nevertheless, a combination of the word-
level with the bit-level model could overcome these difficulties by preserving some of the advantages of the word-level
approach. However, this is not yet fully explored and hence not presented in this paper.
The paper is organized as follows. In Section 1 we describe the formal verification of digital circuits and its algebraic

modelling via word-level and bit-level encoding. We do also discuss the advantages and disadvantages of both approaches.
The second section presents foundational results about standard bases in polynomial rings over arbitrary rings, allowing

monomial orderingswhich are notwell-orderings. Newnormal formalgorithms and criteria for s-polynomials are presented
in the case of weakly factorial principal ideal rings. This includes the case Zm which is of interest in the application to formal
verification.
In Section 3 the theory of Boolean Gröbner bases is developed in the framework of Boolean functions. Mathematically

the ring of Boolean functions Zn2 → Z2 is isomorphic to Z2[x1, . . . , xn]/〈FP〉 where FP is the set of field polynomials x2i + xi,
for i = 1, . . . , n. Boolean Gröbner bases are Gröbner bases of ideals in Z2[x] containing FP, modulo the ideal 〈FP〉 . The usual
data structure for polynomials in Z2[x] is, however, not adequate.
We propose to encode Boolean polynomials as zero-suppressed binary decision diagrams (ZDDs) and describe the

necessary algorithms for polynomial arithmetic which takes advantage of the ZDD data structures. Besides the polynomial
arithmetic the whole environment for Gröbner basis computations has to be developed. In particular, we describe efficient
comparison algorithms for the most important monomial orderings. A central observation, which is responsible for the
success of our approach (besides the efficient handling of the new data structures), is the appearance of symmetries
in systems of Boolean polynomials coming from formal verification. The notion of a symmetric monomial ordering is
introduced and an algorithm making use of the symmetry is presented.
The presented algorithms have all been implemented, either in Singular or in the PolyBoRi-framework.
In the last chapter we present some implementation details and explicit timings, comparing the new algorithms with

state-of-the-art implementations of either Gröbner basis algorithms or SAT-solvers. Moreover, we discuss open problems,
in particular for polynomial systems over Z2n .

1. Algebraic models for formal verification

1.1. Formal verification

The presented research was spurred by a joint project on formal verification with the electrical engineering department
at the University of Kaiserslautern. An important goal pursued in modern circuit design flows is to avoid the introduction
of bugs into the circuit design in every stage of the process. We do not go into detail here, but just mention, that formal
verification of hard and software is a huge field of research with an overwhelming amount of literature. We refer to [1–3]
for more details and references.
Property checking is a technique for functional verification of the initial register transfer level (RTL) description of a

circuit design. The initial specification of the design that is often given as a more or less informal human readable document
is formalized by a set of properties. A systematic methodology ensures that the complete intended behavior of the circuit
is covered by the resulting property suite. However, each property describes the required circuit behavior in a well-defined
scenario. This allows for an early evaluation for parts of the design as soon as they are completed.
Classicalmethods for design validation include the simulation of the systemwith respect to suitable input stimuli, aswell

as, tests based on emulations, whichmay use simplified prototypes. The lattermay be constructed using field programmable
gate arrays (FPGAs). Due to a large number of possible settings, these approaches can never cover the overall behaviour of
a proposed implementation. In the worst case, a defective system is manufactured and delivered, which might result in
a major product recall and liability issues. Therefore simulation methods are more and more replaced by formal methods
which are based on exact logical and mathematical algorithms for automated proving of circuit properties.

1.2. Design flow

The circuit design starts with an informal specification of a microchip (Fig. 1) by some tender documents which are
usually given in a human readable text or presentation format. In a first step the specification may be translated in a high-
level modelling language. One possibility is to use high-level synthesis for generating a register transfer level (RTL) design
which describes the flow of signals between registers in terms of a hardware description language [4]. But this is rarely
used in practice as it does constrain the freedom of the design. Instead, designers manually create the RTL design in a
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Fig. 1. Digital system design flow.

hardware description language. Concurrently, intended behavior specified by the informal specification is formalized by
formal properties. Automatic tools are used to ensure that the RTL design fulfills these conditions.
After passing property checking a netlist is generated semi-automatically from the RTL. The latter is used to derive the

actual layout of the chipmask. The validation that different circuit descriptions arising from the last two steps emit the same
behaviour, is called equivalence checking. Since this can be handled accurately, setting of the RTL design is the most crucial
part. Errors at this level may become very expensive, as they may lead to unusable chip masks or even defective prototypes.
The present paper is concerned with this critical level.
The ability of checking the validity of a proposed design restricts the design itself: a newly introduced design approach

may not be used for an implementation as long as its verification cannot be ensured. In particular, this applies to digital
systems consisting of combined logic and arithmetic blocks, which may not be treated with specialised approaches. Here,
dedicated methods from computer algebra may lead to more generic procedures, which help to fill the design gap.

1.3. Problem formulation and encoding in algebra

The verificationproblem is definedby a set of axiomsM representing the circuitw.r.t. givendecision variables. In addition,
a set of statements P represents the property to be checked. For instance, ifMmodels amultiplication unit, a suitable P would
be the condition that after a complete cycle the output ofM is the product of its inputs.
The question, whether the circuit represented by M fulfills P can be reformulated in the following way: First of all, we

may assume, thatM is consistent, i.e. there are no contradictions inherent in the axioms, since the axioms describe a circuit.
Then the new set of axiomsM ∧¬P is contradictable if and only ifM implies P . Hence the desired property P will be proven
by showing, thatM ∧ ¬P has no valid instance, i.e. one fulfilling the axioms and not the property.
In the following we encode this logical system into a system of algebraic equations in two ways, on word-level and

on bit-level. The word-level model will lead to consider Gröbner bases over the ring Z2n while the bit-level will lead to
Gröbner basis over Boolean rings. Here and in the following Zm denotes the finite ring Z/mZ form ∈ Z \ {0}.

1.3.1. Word-level encoding
We illustrate, how the problemof formal verification can be encoded in a systemof algebraic equations using polynomials

over the ring Z2n . Let n be the word length of the circuit, i.e. the number of bits used by each signal (in typical applications
we have n ∈ {16, 32, 64}). Then the RTL description displayed in Fig. 2(a) is equivalent to the following set of algebraic
equations

M = {b+ c = d, a · d = e} (1)

where b + c − d, a · d − e are polynomials in Z2n [a, b, c, d, e, f ]. Of course, the two equations in M are equivalent to
a · (b+ c) = e, but in general the latter input–output form is infeasible due to its complexity. Also, there can be more than
one output per block and only some of these outputs may be used further.
For example, Fig. 2(b) presents the property

P = {b = 0, a · c = f }. (2)
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(a) RTL diagram. (b) Property.

Fig. 2. RTL design and property.

In this case, the statement that M implies P is equivalent to the assertion that M ∪ P ∪ {f 6= e} has no solution. Since
the set {f 6= e} is not a closed algebraic set, we replace f 6= e by s · (f − e) = 2n−1, where s is a new variable. Indeed, it is
easy to see that a value s ∈ Z2n fulfills this equation if and only if f 6= e (since the ring Z2n has zero-divisors, f 6= e cannot
be encoded by s(f − e) = 1). Let I be the ideal

〈
{b+ c − d, a · d− e, b, a · c − f , s · (f − e)− 2n−1}

〉
in Z2n [a, b, c, d, e, f , s].

Then the question reduces to the question whether

V (I) := {(a, b, c, d, e, f , s) ∈ Z72n | p(a, b, c, d, e, f , s) = 0, for all p ∈ I}

is empty. There are no solutions for the ideal I (i.e. V (I) = ∅) if and only if M ∧ ¬P is contradictable, that is, P is satisfied
byM .
Oneway of tackling this problem is to compute aGröbner basis of I in the ring R/I0, where I0 denotes the ideal of vanishing

polynomials in R, i.e. polynomials evaluating to zero at any point of Z72n . Due to the zerodivisors in this ring the ideal I0 has
more structure than in the finite field case and even its Gröbner basis can become huge (cf. [5]).

1.3.2. Bit-level encoding
An alternative approach is to encode the problem at the bit-level, that is, as polynomials over Z2. This approach is based

on the fact that every value of x in Z2n can be encoded uniquely to the base 2, i.e. in its bits:

x = x0 + x12+ · · · + xn−12n−1, xi ∈ {0, 1}. (3)

In the example abovewe can express each variable a, b, c, d, e, f analogously to Eq. (3)with newvariables ai, bi, ci, di, ei, fi ∈
{0, 1}, i = 0, . . . , n − 1. Then Eqs. (1) and (2) must be rewritten, which yields n equations for each of them. Gathering all
corresponding polynomials and adding the polynomial

∏
(1− fi + ei), which is equivalent to f 6= e, we obtain an ideal I

over R := Z2[a0, . . . , fn−1] in 6 n variables.
For instance, the bits p0, . . . , pn−1 ∈ {0, 1} of the product p = a·b are given by equations pj = aj ·b0+

∑j−1
i=0(ai ·bj−i+ti,j−i)

over Z2, where the tk,l mark rather complicated bit-level expressions in the sk,l ∈ {0, 1}, which fulfill pk + sk,12 + · · · +
sk,n−12n−1 = ak · b0 +

∑k−1
i=0 (ai · bk−i + si,k−i) in Z2n . For example, for n = 4, we get

p3 = a3 b0 + a2 b1 + a1 b2 + a0 b3 + a2 a1 a0 b1 b0
+ a2 a1 b1 b0 + a2 a0 b2 b0 + a1 a0 b2 b1 b0 + a1 a0 b2 b1 + a1 a0 b1 b0

p2 = a2 b0 + a1 b1 + a0 b2 + a1 a0 b1 b0
p1 = a1 b0 + a0 b1
p0 = a0 b0.

Again let I0 be the ideal of vanishing polynomials in R. In this case, the ideal I0 is generated by the field equations x2−x = 0
for every variable x. Nowwe compute a Gröbner basis of I in the ring R/I0. In this ring every ideal is principal (cf. Theorem60)
and hence its reduced Gröbner basis will consist of just one polynomial. Moreover, I = 〈1〉 if and only if its reduced
Gröbner basis is {1} and this is equivalent to the zero set of all polynomials in I being empty, and therefore if and only
if the property P holds.

1.3.3. Modelling advantages and disadvantages
Both modelling approaches presented in Sections 1.3.1 and 1.3.2 have strengths and weaknesses. On the one hand, the

word-level formulation of verification problems as polynomial systems over Z2n leads to fewer variables and equations. The
equations of arithmetic blocks, like multiplier and adder blocks, are given in a natural and human readable way. However,
not all formulae on word-level (for example bitwise and, or, and exclusive-or) may be coded by polynomial equations.
Therefore, full strength will need bit-level encoding of some variables. Another drawback are the coefficients from Z2n ,
which is a ring with zero-divisors and not a field. Hence, one cannot rely on valuable properties of fields, like the algebraic
closure.
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Since Z2 is a field, these restrictions do not exists for polynomials over Z2, which can be used for formulation of arbitrary
bit-level equations. Moreover, since the coefficients are restricted to be one or zero, they need not to be stored at all. Hence,
a specialised data structure is possible, which is tailored to suit this application task. On the other hand, contrary to the
word-level case, bit-level formulations carry many variables and equations. The number of them may grow exponentially
even for some applications which can be handled easily over Z2n .
As a result from these considerations, research was done for both approaches. In the following, we present the different

strategies and solutions for both, the word-level and bit-level approach, in the appropriate algebraic setting.

2. Standard bases over rings

2.1. Basic definitions

In this paragraph we outline the general theory of standard bases for ideals or modules over a polynomial ring
C[x1, . . . , xn]where C is any commutative Noetherian ring with 1. We do not require that the monomial ordering is a well-
ordering, that is we treat the case of standard bases in the localization of C[x1, . . . , xn] as well (for a full treatment cf. [6]).
Gröbner bases over C[x1, . . . , xn] (i.e. the case of well-orderings) have been treated previously (cf. [7,8]) but never for non-
well-orderings. Since we are mainly interested in the case C = Z2n we allow C to have zero-divisors. Moreover, since we
are interested in practical application to real-world formal verification problems, we have to develop the theory for C = Zm
with special care. The ring Zm allows special algorithms which dramatically improves the performance of Gröbner bases
computations against generic implementations for general rings.
We recall some algebraic basics, including classical notions for the treatment of polynomial systems, as well as basic

definitions and results from computational algebra. For an exhaustive textbook about the subject, when the ground ring C
is a field, we refer to [9] and the references therein.
Let C[x] = C[x1, . . . , xn] be the polynomial ring over C , equipped with an arbitrary monomial ordering <, i.e. global

(well-ordering), local or mixed (cf. [9]). Further C[x]< denotes the localization of C[x] by the multiplicatively closed
set

S< = {f ∈ C[x] \ {0} | LM (f ) = 1 ∧ LC (f ) ∈ C∗},

where C∗ is the group of units of C and LM respectively LC denote the leading monomial respectively the leading coefficient
w.r.t.<, as defined in [9]. Then

R := C[x]< =
{
f
g

∣∣∣∣ f ∈ C[x], g ∈ S<} .
Also, consider a partition of the ring variables {x, y} = {x1, . . . , xn, y1, . . . , ym}. A monomial ordering over C[x, y] is

called an elimination ordering for x, if xi > t for each i and for every monomial t in C[y].

Definition 1. Let I ⊂ R = C[x]< be an ideal and f an element in R. Choose u ∈ S< such that LC (u) = 1 and u · f is a
polynomial a0 · xα0 + · · · + an · xαn ∈ C[x] with a0 6= 0 and xα0 > xαi for all i 6= 0 with ai 6= 0 (which is always possible).
Then we define

LT (f ) = a0 · xα0 leading term of f
LM (f ) = xα0 leading monomial of f
LC (f ) = a0 leading coefficient of f
LE (f ) = α0 leading exponent of f
L (I) = 〈LT (f ) | f ∈ I〉C[x] leading ideal of I
LM (I) = 〈LM (f ) | f ∈ I〉C[x] leading monomials ideal of I
V (I) = {x | ∀f ∈ I : f (x) = 0} common zeroes or variety of I
I(V ) = {f | ∀x ∈ V : f (x) = 0} vanishing ideal of V ⊂ Cn

supp(f ) = {xαi | ai 6= 0} support of f
tail(f ) = f − LT (f ) tail of f .

If the monomial order < is global then u = 1. If < is not global the leading coefficients and the leading terms are well
defined, independent of the choice of u.

Definition 2. Let I ⊂ R = C[x]< be an ideal. A finite set G ⊂ R is called a standard basis of I if

G ⊂ I and L (I) = L (G) .

That is, G is a standard basis, if the leading terms of G generate the leading ideal of I . G is called a strong standard basis if, for
any f ∈ I \ {0}, there exists a g ∈ G satisfying LT (g) |LT (f ). If < is global we will call standard bases also Gröbner bases.
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A finite set G ⊂ R is called standard resp. Gröbner basis, if G is a standard resp. Gröbner basis of 〈G〉R, the ideal generated
by G.

Remark 3. If C is a field, than L (I) = LM (I), but due to non-invertible coefficients, in general only L (I) ⊂ LM (I)
holds.

Next, the notion of t-representations is introduced, as formulated in [10]. While this notion is mostly equivalent to using
syzygies, it helps to understand the correctness of the algorithms.

Definition 4 (t-Representation). Let t be a monomial and consider elements

f , g1, . . . , gm, h1, . . . , hm ∈ C[x]< = R

with f =
∑m
i=1 hi · gi. Then the sum is called a t-representation of f with respect to g1, . . . , gm if

LM(hi · gi) ≤ t for all iwith hi · gi 6= 0.

Example 5. Let the monomials of C[x, y] be lexicographically ordered (x > y) and g1 = x2, g2 = x5 − y, f = y. Then
f = x3g1 − g2 is a x5y5-representation of f .

Notation 6. Given a representation p =
∑m
i=1 hi · fi with respect to f1, . . . , fm, we may shortly say that p has a non-trivial

t-representation, if a t-representation of p exists with

t < max{LM(hi · fi)|hi · fi 6= 0}.

Note that there exists no t-representations with t < LM(p). Further, we say that an arbitrary g has a standard representation
with respect to {fi}, if it has a LM (g)-representation.

2.2. Normal forms

Definition 7. Let G be the set of all finite subsets G of R = C[x]<. A map

NF : R× G→ R, (f ,G) 7→ NF ( f | G)

(i) is called a normal form on R if, for all G ∈ G,
(0) NF (0 | G) = 0, and, for all f ∈ R and G ∈ G,
(1) NF ( f | G) 6= 0⇒ LT (NF ( f | G)) 6∈ L (G) and
(2) r := f − NF ( f | G) has a standard representation with respect to G.

(ii) is called a weak normal form, if instead of r we just require that the polynomial r ′ = uf − NF ( f | G) for a unit u ∈ R∗
has a standard representation with respect to G.

(iii) is called polynomial weak normal form if it is a weak normal form and whenever f ∈ C[x] and G ⊂ C[x], there exists
a unit u ∈ R∗ ∩ C[x], such that uf − NF ( f | G) has a standard representation

∑n
i=1 aigi w.r.t. G = {g1, . . . , gn} with

ai ∈ C[x].

Remark 8. Polynomial weak normal forms exists for arbitrary Noetherian rings and are computable if linear equations over
C are solvable (Theorem 11).

Definition 9. We call a normal form NF ( · | ·) reduced, if for all f ∈ R and G ∈ G the leading terms of elements from G do
not divide any term of NF ( f | G). Further we call G a reduced Gröbner basis, if no term from tail(g) for any g ∈ G is divisible
by a leading term of an element of G.

Now we introduce an algorithm for computing a polynomial weak normal form for any monomial ordering, given we
are able to solve an arbitrary linear equation in the coefficient ring C . To ensure correctness and termination we need to
introduce the concept of the ecart of a polynomial.

Definition 10. Let f ∈ R \ {0} be a polynomial. Then the ecart is defined by

ecartf = deg f − deg LM (f ) .

We introduce a monomial order<h on C[t, x]where t is a new variable via

tpxα <h tqxβ :⇐⇒ p+ |α| < q+ |β| or
(
p+ |α| = q+ |β| and xα < xβ

)
.

This is a well-ordering as there are only finitely many monomials with a given total degree.

Theorem 11. The Algorithm 1 terminates and computes a norm form, if we can solve linear equation in the coefficient ring C.
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Algorithm 1 Calculating a normal form over coefficient rings
Input: f ∈ R a polynomial, G ⊂ R finite,> a monomial ordering
Output: A normal form of f
T := G
while f 6= 0 and LT (f ) ∈ L (T ) do

solve LT (f ) =
s∑
i=1
ci xαiLT (gi)

with xβiLM (gi) = LM (f ),
gi ∈ T and max{ecart gi}minimal

ifmax{ecart gi} > 0 then
T := T ∪ {f }

f := f −
s∑
i=1
ci xβigi

return f

Remark 12. In many cases it is not necessary to solve linear equations during the normal form computation. These include
coefficient fields (the classical case), weak 1-factorial rings or principal ideal domains. The latter case was already treated
in [7]. Further cases can also be computed without solving linear equations if we require G to be a strong Gröbner
basis.

2.2.1. Weak factorial rings
In rings with zero-divisors we have in general no decomposition into irreducible elements. For example in Z12 we have

6 = 3 · 6 = 3 · 3 · 6 = · · ·. Therefore the concept of factoriality does not make sense. But there exists a notion of weak
factorial rings where every element can be written as a = n · ar11 · . . . · a

rk
k , ri ≥ 0 (n not necessarily a unit), such that

a | b = m · as11 · . . . · a
sk
k iff ri ≤ si. This will be formalized below.

Let C be a commutative Noetherian ring with 1 and C∗ the group of units. Denote further by N (C) = {a ∈ C | ∃b 6= 0 :
a · b = 0}, the zero-divisors and by NE (C) = C \ C∗ the non-units in C .

Definition 13. An element factorization (ν, P) or just ν for a ring C consists of a subset P ⊂ NE (C) and a map ν = (νp)p∈P :
C → NP , νp : C → N, such that for all a ∈ C there exists an element n ∈ C with

a = n ·
∏
p∈P

pνp(a) =: n · pν(a)

and νp(a) 6= 0 only for finitely many p ∈ P .
A ring C with an element factorization ν is called P-weak factorial or just weak factorial if, for all a, b ∈ C

a | b⇐⇒ ν(a) ≤ ν(b).

That is, divisibility in C is given by the natural order relation of NP . If we want to emphasise the number of elements in P
(elements in P are also called ‘‘primes’’), we say weak |P|-factorial ring where |P| is the cardinality of P .

Example 14. (1) If C is a factorial domain and P the set of irreducible elements then C is P-weak factorial.
(2) The ring of integers modulo a power of a prime number p is a weak 1-factorial ring with P = {p}.
(3) The ring Zm is weak factorial with P = {p ∈ P | p | m}, where P denotes the set of prime numbers.
(4) The ring Z is a weak∞-factorial ring with P = P and ν = νZ the map which associate to a ∈ Z the exponents of the
prime decomposition of a.

(5) The ring K[[x]], K a field, is weak factorial with P = {x}.

Remark 15. For the case of Zm withm = p
e1
1 · · · p

en
n , we define ν as

νpi(a) := νi(a) = min{ν
Z
pi(a), ei}

where a ∈ Z represents a ∈ Zm. E.g. in Z12 we have 12 = 22 · 31 and therefore ν3(9) = 1 and 9 = 3 · 3 = n · 31. Further in
this case ν has the following properties:

Proposition 16. Let ν be defined for Zm as in Remark 15. Then we have

(1) ν is well defined, that is ν(a) = ν(a+ k ·m) for all a, k,m ∈ Z.
(2) ν is saturated multiplicative, that is νi(a · b) = min{νi(a) · νi(b), ei},
(3) νi(a+ b) = 0 if νi(a) > 0 and νi(b) = 0,
(4) ν(a) = 0⇔ a ∈ Zm∗ and
(5) ν is nice weak factorial, that is, ∀a ∈ Zm ∃u ∈ Zm∗ : a = u · pν(a).
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Proof. The first four properties follow easily from the valuation properties of Zwith νZ. For the last one let a = n · pν(a). At
first notice, that νpi(n) > 0 is only possible, if νpi(a) = ei. Hence consider

u = n+
m

pν(a)
·

∏
ei>0
pi - n

pi.

Now ν(u) = 0 and therefore u ∈ Zm∗. Further u · pν(a) = a. �

Remark 17. One can show that in our definition the elements of P are irreducible and that C is a weak unique factorization
ring (UFR) in the sense of Agargün [11] and therefore a generalisation of the notions from Bouvier–Galovich [12,13] and
Fletcher [14] (cf. [11]). Nevertheless we prefer our definition, as it emphasis the divisibility relation.

Remark 18. If C is a principal ideal ring, then it is isomorphic to a finite product [15] of principal ideal domains, hence
factorial domains, and finite-chain rings (cf. [15]), which are weak 1-factorial. Therefore we can compute Gröbner basis in
polynomials rings over the factors and lift them to C[x]. This is described in the work of Norton and Salagean [16]. Below
we show that computation in the ring itself is feasible.

Definition 19. Let C be a weak factorial ring and a1, . . . , an ∈ C . Then we define (with max,min componentwise)

gcd (a1, . . . , an) = pmin{ν(a1),...,ν(an)} and
lcm (a1, . . . , an) = pmax{ν(a1),...,ν(an)}.

Remark 20. This definition of gcd and lcm fulfills the universal properties of the greatest common divisor and the least
common multiple. But notice that, for arbitrary rings, the gcd and lcm are not unique up to units. However, in the case of
Zm this holds:

a|b ∧ b|a⇒ ∃u ∈ Zm∗ : a = u · b.

Lemma 21. Let C be a weak factorial principal ring. Then

〈a1, . . . , an〉 = 〈gcd (a1, . . . , an)〉 ,
〈a1〉 ∩ · · · ∩ 〈an〉 = 〈lcm (a1, . . . , an)〉 .

Proof. Follows directly from the definition of weak factorial and gcd, respectively lcm, and their universal properties. �

Lemma 22. Let C be a weak 1-factorial principal ring with prime η and let c, a1, . . . , as ∈ C \ {0}. Then the following are
equivalent.

• The equation c = a1x1 + · · · + asxs is solvable.
• There exist a j ∈ {1, . . . , s} and x ∈ C, such that c = ajx, i.e. aj|c.

Proof. The first statement is equivalent to

c ∈ 〈a1, . . . , an〉 ⇔ gcd (a1, . . . , an) | c
⇔ min {ν(a1), . . . , ν(an)} ≤ ν(c)
⇔ ∃ai : ν(ai) ≤ ν(c), as Im (ν) ⊂ N
⇔ c ∈ 〈ai〉

which is equivalent to the second statement. �

Corollary 23. Let C be a weak 1-factorial principal ring. Then, solving linear equations over C can be reduced to tests for
divisibility. Moreover, every standard basis over C[x]< is a strong standard basis.

2.3. Computing standard bases

Let C be a commutative Noetherian ring with 1.

Definition 24. Let R be a ring and A ∈ Rs×t a matrix considered as a linear map Rs → Rt . The kernel of A is a submodule of
Rs. It is called the syzygy module of A. If A = (f1, f2, . . . , fs) ∈ Rs×1, then

Syz (f1, . . . , fs) = ker(A) =
{
(h1, . . . , hs) ∈ Rs |

∑
hifi = 0

}
.
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Theorem 25 (Buchberger’s Criterion). Let I ⊂ R = C[x]< be an ideal and G = {g1, . . . , gs} ⊂ I . Further let NF (− | G) be a
weak normal form on R with respect to G. Then the following statements are equivalent:

(1) G is a standard basis of I.
(2) NF ( f | G) = 0 for all f ∈ I .
(3) Each f ∈ I has a standard representation with respect to G.
(4) G generates I and for every element h with

h ∈ Syz (LT (gi) |i = 1, . . . , s) ,

NF (h1g1 + · · · + hsgs | G) = 0.

Proof. The implications 1⇒ 2⇒ 3⇒ 4⇒ 1 can be shown as in the classic case. The classical proof can be found either
in [9] (general orderings) or in [7] (global orderings). �

To specialize further for the case of weak factorial principal rings we modify the classical notion of an s-polynomial.

Definition 26. Let f , g ∈ R \ {0}. We define the s-polynomial of f and g to be

spoly (f , g) :=
lcm (LT (f ) , LT (g))

LT (f )
f −

lcm (LT (f ) , LT (g))
LT (g)

g.

Remark 27. This definition is not equivalent to

spolyr (f , g) = LC (g)
lcm (LM (f ) , LM (g))

LM (f )
f − LC (f )

lcm (LM (f ) , LM (g))
LM (g)

g.

For example let f = 2 x − 2 y, g = 2 y − z in Z4[x, y, z]. Then we get spolyr (f , g) = x z 6= −2 y + z x = spoly (f , g). That
is, we can loose terms just by multiplying with a constant, e.g. if 2 x+ y ∈ I for some ideal I , then 2 y ∈ L (I). Therefore we
have to look for further generators of the syzygies, the classical s-polynomials are not sufficient.

Definition 28. Let C be a principal ring and a ∈ C . The annihilator of a, Ann(a) = {n ∈ C | a · n = 0} is an ideal in C and is
hence generated by one element, which we denote by NT (a).

Due to zero-divisors we define the s-polynomial also for pairs (f , g)with one component being 0.

Definition 29. Let f ∈ R \ {0}. We define the extended s-polynomial of f to be

spoly (0, f ) = spoly (f , 0) := NT (LC (f )) · f .

Algorithm 2 Computes a standard basis of I
Input:
I a finite set of polynomials,
> a monomial ordering, NF a weak normal form

Output: G is a standard basis of I
G := I
P := {(f , g) | f , g ∈ S, f 6= g} ∪ {(0, f ) | f ∈ G}, the pair set
while P 6= ∅ do
choose (f , g) ∈ P
P := P\{(f , g)}
h := NF ( spolyf , g | G)
if h 6= 0 then
P := P ∪ {(h, f ) | f ∈ G} ∪ {(0, h)}
G := G ∪ {h}

return G

2.3.1. Buchberger’s criterion and the syzygy theorem
In the following we assume C to be a weak factorial principal ring. Termination of Algorithm 2 is an easy consequence

of the Noetherian property of the ring R. To present the theorem, which implies the correctness of Algorithm 2 we need to
introduce some terminology. We fix a set of generators G = {f0, f1, . . . , fk} of an ideal I with f0 = 0.
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First assume that a set J ⊂ {(i, j) | 0 ≤ j < i ≤ k} is given with

NF
(
spoly

(
fi, fj

) ∣∣ G) = 0 for (i, j) ∈ J.

For 0 ≤ i < j ≤ k let LT (fi) = cixαi and define:

mji =
lcm

(
ci, cj

)
ci

·
lcm (xαi , xαj)

xαi
=
lcm

(
LT (fi) , LT

(
fj
))

LT (fi)
m0i = NT (ci)
spoly

(
fi, fj

)
= mjifi −mijfj

spoly (fi, f0) = m0ifi as f0 = 0 (set alsomi0 = 0)

spoly
(
fi, fj

)
=

k∑
ν=1

a(ij)ν fν the standard representation for (i, j) ∈ J

sij = mjiei −mijej −
k∑
ν=1

a(ij)ν eν ∈ Syz (I) for (i, j) ∈ J.

The elementsm0i and si0 correspond to the new s-polynomials, which occur due to zero divisors.

Theorem 30 (Buchberger’s Criterion). Let G = {f0, f1, . . . , fk} be a set of generators of I ⊂ R with f0 = 0. Further let
J ⊂ {(i, j) | 0 ≤ i < j ≤ k} be such that

〈
mijej | (i, j) ∈ J

〉
=
〈
mijej | 0 ≤ j < i ≤ k

〉
. If

NF
(
spoly

(
fi, fj

) ∣∣ Gij) = 0 for (i, j) ∈ J

and some Gij ⊂ G then

(a) G is a standard basis of I (Buchberger’s criterion) and
(b) S := {sij | (i, j) ∈ J} generates Syz (I).

For a proof we refer to [6].

Remark 31. The set S is a standard basis of Syz (I)with respect to the Schreyer ordering (definition of the Schreyer ordering
cf. [9]).

Corollary 32. Algorithm 2 terminates and is correct.

Remark 33. If f and I are polynomial and if NF is a polynomial weak normal form in Algorithm 2 than G is a standard basis
of 〈I〉R consisting of polynomials.

Also, the t-representations of Definition 4 can be utilised for a standard basis test as given below.

Theorem 34. Let F = (0, f1, . . . , fk), fi ∈ C[x], be a polynomial system. If spoly (f , g) has a non-trivial t-representationw.r.t. F
for each f , g ∈ F , then F is a Gröbner basis.

Proof. The theorem can be proved similar as in [10]. A more sophisticated version of this theorem can be formulated and
proven likewise to [9, p. 142]. �

2.3.2. Criteria for s-polynomials
In order to compute non-trivial standard bases in practice, we like to have criteria to omit unnecessary critical pairs. This

improves the time and space requirement of the Buchberger algorithm as in the classical case.

Lemma 35 (Product Criterion). Let f , g ∈ R = C[x]< with LM (f ) and LM (g) relatively prime. Further let LC (f ) and LC (g) be
a unit, then

NF ( spoly (f , g) | {f , g}) = 0.

Proof. No change of the classical proof is needed. However, the strong product criterion, which gives an if and only if
statement, is not extendable to the general case. �

Example 36. The polynomials 4x+ y and y2+ 2 z ∈ Z8[x, y, t]will reduce to zero by a sharper product criterion (not given
here). In contrast 4 y+ x3 + 1 and x5 + 2 x2 will reduce to 2 x2, which is not reducible by either of the polynomials nor their
extended s-polynomials.



1622 M. Brickenstein et al. / Journal of Pure and Applied Algebra 213 (2009) 1612–1635

Lemma 37 (Chain Criterion). With the notations of Theorem 30 let LT (fi) = ci xαi , LT
(
fj
)
= cj xαj , and LT (fl) = cl xαl with

i > j > l. If cj xαj divides lcm (ci xαi , cl xαl) then mli ei ∈
〈
mji ei

〉
. In particular, if sij, sjl ∈ S then S \ {sil} is already a standard

basis of Syz (I) and S \ {sil} generates Syz (I).

Proof. The divisibility of lcm (ci xαi , cl xαl) by cj xαj implies

lcm
(
ci xαi , cj xαj

)
| lcm (ci xαi , cl xαl) .

Dividing both sides by ci xαi yieldsmji | mli. �

The following criterion is new and quite useful in practice.

Lemma 38. With the notations of Theorem 30 let LT (fi) = ci xαi and LT (fl) = cl xαl with i > l. If NT (ci) divides lcm (ci, cl)
then mli ei ∈ 〈m0i ei〉. In particular, if the special si0 ∈ S (corresponding to an s-polynomial with one zero entry) then S \ {sil} is
already a standard basis of Syz (I).

Proof. Follows fromm0i = NT (ci). �

3. Boolean Gröbner basis

In the following, we present methods for treating the bit-level formulation of digital systems as introduced in
Section 1.3.2. First, the notion of Boolean polynomials is given, and a suitable data structure is motivated. The next part
is addressed to effective algorithms for operations on these polynomials. Then recent results in the theory of Boolean
Gröbner bases are presented, including new criteria, which minimise the number of critical pairs. Finally, we sketch a new
approach, which improves the algorithms by exploiting symmetries in the polynomial system.

3.1. Boolean polynomials

In this section we model expressions from propositional logic as polynomial equations over the finite field with two
elements. In this algebraic language the problem of satisfiability can be approached by a tailored Gröbner basis computation.
We start with the polynomial ring Z2[x] = Z2[x1, . . . , xn].
Since the considered polynomial functions take only values from Z2, the condition x = x2 holds for all x ∈ Z2. Hence, it

is reasonable to simplify a polynomial in Z2[x]w.r.t. the field equations

x21 = x1, x22 = x2, . . . , x2n = xn. (4)

Let FP = {x21 + x1, . . . , x
2
n + xn} denote the corresponding set of field polynomials. The field equations yield a degree bound

of one on all variables occurring in a polynomial in Z2[x]modulo FP.

Definition 39 (Boolean Polynomials). Let p ∈ Z2[x] be a polynomial, s. th.

p = a1 · x
ν11
1 · · · · · x

ν1n
n + · · · + am · x

νm1
1 · · · · · x

νmn
n (5)

with coefficients ai ∈ {0, 1}. If νij ≤ 1 for all i, j, then p is called a Boolean polynomial.
The set of all Boolean polynomials in Z2[x] is denoted by B.

Note that Boolean polynomials can be uniquely identified with a subset of the power set of {x1, . . . , xn}:

Lemma 40. Let R = Z2[x], and P = P (x1, . . . , xn) be the power set of the set of variables of R. Then the power set P (P)
of P is in one-to-one correspondence with the set of Boolean polynomials in R via the mapping f : P (P) → R defined by
S 7→

∑
s∈S

(∏
xν∈s xν

)
.

Proof. It is obvious, that
∑
s∈S

(∏
xν∈s xν

)
∈ B for each subset S of P . On the other hand,with the notation of Eq. (5), a Boolean

polynomial p is uniquely determined by the fact, whether a term xνi11 ·. . .·x
νin
n occurs in it, because its coefficients lie in {0, 1}.

Moreover, each term is determined by the occurrences of its variables. Hence, one can assign the set Sp = {s1, . . . , sm} to
p ∈ B, where sk ⊆ {x1, . . . , xn} is the set of variables occurring in the kth term of p. �

For practical applications it is reasonable to assume sparsity, i.e. the set S is only a small subset of the power set over
the variables. Even the elements of S can be considered to be sparse, as usually only few variables occur in each term.
Consequently, the strategies of the proposed algorithms try to preserve this kind of sparseness.
The following statements are not difficult to prove, but essential for the whole theory.

Theorem 41. The composition B ↪→ Z2[x] � Z2[x]/〈FP〉 is a bijection. That is, the Boolean polynomials are a canonical system
of representatives of the residue classes in the quotient ring of Z2[x] modulo the ideal of the field polynomials 〈FP〉 . Moreover,
this bijection provides B with the structure of a Z2-algebra.
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Proof. The map is certainly injective. Since any polynomial can be reduced to a Boolean polynomial using FP, the map is
also surjective. �

Definition 42. A function f : Zn2 → Z2 is called a Boolean function.

Proposition 43. Polynomials in the same residue class modulo 〈FP〉 generate the same function.

Proof. Let p, q be polynomials with p− q ∈ 〈FP〉 . By Theorem 41 we have

p = b+ fp, q = b+ fq,

where the first summand b is a common Boolean polynomial and the second summand lies in 〈FP〉 . The latter evaluates to
zero at each point in Zn2. �

Theorem 44. Themap from B to the set of Boolean functions {f : Zn2 → Z2} bymapping a polynomial to its polynomial function
is an isomorphism of Z2-vector-spaces. Even more, it is an isomorphism of Z2-algebras.

Proof. The map is clearly a Z2-algebra homomorphism. Injectivity follows from Theorem 41 together with Proposition 43.
For surjectivity it suffices to see, that both sides have dimension 2n. �

Corollary 45. Every Boolean polynomial p 6= 1 has a zero over Z2. Every Boolean polynomial p 6= 0 has a one over Z2, that
is p+ 1 has a zero.

Recalling Definition 1, for I ⊆ Z2[x] the algebraic set inZn2 defined by I is denoted by V (I) = {x ∈ Zn2 | ∀f ∈ I : f (x) = 0}.

Corollary 46. There is a natural one-to-one correspondence between Boolean polynomials and algebraic subsets of Zn2, given by
p 7→ V (〈p, FP〉 ). Moreover, every subset of Zn2 is algebraic.

Proof. Since Zn2 is finite, every subset is algebraic. Let χS be the characteristic function of a subset S ⊆ Zn2, that is χS(x) = 1
if and only if x ∈ S. By Theorem 44 there is a p ∈ B defining 1+ χS . Hence, the map is surjective. Moreover, since both sets
have the same cardinality, the results follows. �

After showing the correspondence between Boolean functions and Boolean polynomials we have a look at Boolean
formulas, the kind of formulas defining Boolean functions.

Definition 47. Wedefine amapφ from formulas in propositional logic to Boolean functions, by providing a translation from
the basis system not (¬), or (∨), true (True). For any formulas p, qwe define the following rules

φ(p ∨ q) := φ(p) · φ(q)
φ(¬p) := 1− φ(p)
φ(True) := 0.

(6)

Recursively every formula in propositional logic can be translated into Boolean functions, as {∨,¬, True} forms a basis
system in propositional logic.

Remark 48. (1) It is quite natural to identify 0 and True in computer algebra, as we usually associate to a polynomial f the
equation f = 0, and f being zero is equivalent to the equation being fulfilled.

(2) For every Boolean function f there exists a formula p in propositional logic, s. th. φ(p) = f . Together with Theorem 44
we obtain that every formula give rise to a Boolean polynomial, generated by rules corresponding to those of Eq. (6).

We are interested in a representation of Boolean polynomials, whose storage space scales well with the number of terms
and still allows to carry out vital computations for Gröbner basis computation in reasonable time. In the next section, a data
structure with the desired properties is presented. Therefore, it can be used to store and handle the construction of Boolean
polynomials proposed in Lemma 40.

3.2. Zero-suppressed binary decision diagrams

Binary decisiondiagrams (BDDs) arewidely used in formal verification andmodel checking for representing large sets. For
instance, they arise from configurations of Boolean functions and states of automatawhich cannot be constructed efficiently
by an enumerative approach. One of the advantages of BDDs is the performance of basic operations like intersection and
complement. Another major benefit are equality tests, which can be carried out immediately, as BDDs allow a canonical
form. For a more detailed treatment of the subject see [17,18].
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(a) Initial diagram. (b) Subdiagrams
merged.

(c) Zero-suppressed.

Fig. 3. Different kinds of binary decision diagrams representing the polynomial a c + c. Solid/dashed connections marking then/else-edges, respectively.

Definition 49 (Binary Decision Diagram). A binary decision diagram (BDD) is a rooted, directed, and acyclic graph with two
terminal nodes {0, 1} and decision nodes. The latter have two ascending edges (high/low or then/else), each of which
corresponding to the assignment of true or false, respectively, to a given Boolean variable. In case that the variable order is
constant over all paths, we speak of an ordered BDD.

This data structure is compact, but easy to describe and implement. Also, the subset of the power set represented by a
BDD can be recovered easily, by following then- and else-edges.

Definition 50. Let b be a binary decision diagram.

• The decision variable associated to the root node of b is denoted by top(b). Furthermore, then(b) and else(b) indicate
the (sub-)diagrams, linked to then- and else-edge, respectively, of the root node of b.
• For two BDDs b1, b0, which do not depend on the decision variable x, the if–then–else operator ite(x, b1, b0) denotes the
BDD c , which is obtained by introducing a new node associated to the variable x, s. th. then(c) = b1, and else(c) = b0.

A Boolean polynomial p can be converted to an ordered BDD using the following approach. Having variables x1, . . . , xn
the polynomial p can be written as p = x1 · p1+ p0, where p1 and p0 are Boolean polynomials depending on x2, . . . , xn only.
Therefore, if we have diagrams b1, b0 representing p1 and p0, respectively, the whole diagram is generated by ite(x1, b1, b0).
But b1, b0 can be obtained by recursive application of the procedure with respect to x2, . . . , xn. The recursion ends up by
a constant polynomial, which is to be connected to the corresponding terminal node. Fig. 3(a) illustrates such a decision
diagram for the polynomial a c + c = a · (b · (c · 0 + 0) + (c · 1 + 0)) + b · (c · 0 + 0) + c · 1 + 0. From this example,
one can already see, that it is useful to identify equivalent subdiagrams in such a way that those edges which point to equal
subgraphs are actually linked to the same subdiagram instances. The merging procedure is sketched in Fig. 3(b).
For efficiency reasons, one may omit variables, which are not necessary to reconstruct the whole set. This leads to

even more compact representations, which are faster to handle. A classic variant for this purpose is the reduced-ordered
BDD (ROBDD, sometimes referred to as ‘‘the BDD’’). These are ordered BDDs with equal subdiagrams merged. Furthermore,
a node elimination is applied, if both descending edges point to the same node. While the last reduction rule is useful for
describing numerous Boolean-valued vectors, it is gainless for treating sparse sets. For this case, another variant, namely the
ZDD (sometimes also called ZBDD or ZOBDD), has been introduced.

Definition 51 (ZDD). Let z be an ordered binary decision diagram with equal subdiagrams merged. If those nodes are
eliminated whose then-edges point to the 0-terminal, then z is called a zero-suppressed binary decision diagram (ZDD).

Note, in this case elimination means that a node n is removed from the diagram and all edges pointing to it are linked to
else(n). In Fig. 3(b) the then-edge of the right node with decision variable c is pointing to the 0-terminal. Hence, it can be
safely removed, without losing information. As a consequence, the then-edge of the b-node is now connected to zero, and
hence can also be eliminated. The effect of the complete zero-suppressed node reduction can be seen in Fig. 3(c). Note, that
the construction guarantees canonicity of resulting diagrams, see [17].
The structure of the resulting ZDD highly depends on the order of the variables, as Fig. 4 illustrates. Hence, a suitable

choice of the variable order is always a crucial point, when modelling a problem using sets of Boolean polynomials.
Reinterpreting valid paths of a ZDD as terms of a polynomial, the latter can be accessed in a lexicographical manner, by

using the natural succession arising from the next definition.

Definition 52. Let b be a ZDD.

• Let n1, n2, . . . , nm+1 be a series of connected nodes starting at the root node of b with nm+1 = 1. Then the
sequence (n1, n2, . . . , nm) is called a path of b.
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(a) a, b, c . (b) a, c, b.

Fig. 4. ZDD representing the polynomial a c + b c + c for two different variable orders. Solid/dashed connections marking then/else-edges, respectively.

• Let x1 > x2 > · · · > xn be the fixed order of the decision variables. For two paths P = (n1, n2, . . . , np) and Q =
(ñ1, ñ2, . . . , ñq), the natural path ordering < is given as:
P < Q ⇐⇒ there exists a j ∈ {1, . . . ,m+ 1},m = min(p, q) such that

x(ni) = x(ñi) for 1 ≤ i < j and
{
x(nj) < x(ñj) if j ≤ m
p < q if j = m+ 1,

where x(n) denotes the decision variable of a node n.
• The ordered sequence (P1, P2, . . . , Ps) of all paths in b, is called the natural path sequence of b.

Note, that the natural path sequence (()) of the 1-terminal consists of the empty path only, while path sequence () of the
0-terminal is empty itself.
One can easily iterate over all paths of a given ZDD. The first path starts at the root node and follows the then edges,

until the 1-terminal is reached. For a given path P = (n1, . . . , nm) the next path in the natural path sequence, the successor
succ P of P , can be computed follows: let nt be the first element of P , with else(ni) = 0, for all i > t , and let the
sequence (ñ1, . . . , ñr) denote the first path in else(nt), then succ P = (n1, . . . , nt−1, ñ1, . . . ñr).
Although graph-based approaches using decision diagrams for polynomials were already proposed before, they were

not capable of handling algebraic problems efficiently. This was mainly due to the fact that the attempts were applied to
very general polynomials, which cannot be represented efficiently as binary decision diagrams. For instance, a proposal for
utilizing ZDDs for polynomials with integer coefficients can be found in [19]. But Boolean polynomials can be mapped to
ZDDs very naturally, since the polynomial variables are in one-to-one correspondence with the decision variables in the
diagram. By abuse of notation, we may write in the following p for the ZDD of a Boolean polynomial p.
Also, the importance of non-trivial monomial orderings prevented the use of ZDDs so far. In order to enable fast access to

leading terms and efficient iterations over all polynomial terms, these are usually stored as sorted lists,with respect to a given
monomial ordering [20]. In contrast, the natural path sequence in binary decision diagrams is given in a lexicographical way.
Fortunately, it is possible to implement a search for the leading term and term iterators withmoderate effort. Moreover, the
results of basic operations like polynomial arithmetic do not depend on the ordering. Hence, these can efficiently be done
by using basic set operations.

3.3. Boolean polynomial arithmetic

Polynomial addition and multiplication are an essential prerequisite for the application of Gröbner-based algorithms
and related procedures. In the case of Boolean polynomials, these operations can be implemented as set operations. As
mentioned in Section 3.1, Boolean polynomials p, q ∈ B can be identified with sets Sp, Sq ∈ P (P (x1, . . . , xn)), s. th. p =∑
s∈Sp

(∏
xν∈s xν

)
and q =

∑
s∈Sq

(∏
xν∈s xν

)
.

Addition is then just given as p+q =
∑
s∈Sp+q

(∏
xν∈s xν

)
, where Sp+q is computed as Sp+q = (Sp∪Sq)\ (Sp∩Sq). All three

operations – union, complement, and intersection – are already available as basic ZDD operations. For practical applications
it is appropriate to avoid large intermediate sets like Sp ∪ Sq and repeated iterations over the arguments. Hence, it is more
preferable to have a specialised addition procedure. Algorithm 3 below shows a recursive approach for such an addition.
Right after the initial if-statements, which handle trivial cases, the procedure also includes a cache lookup. The lookup

can be implemented cheaply, because polynomials have a unique representation as ZDDs. Hence, previous computations
of the sums of the form f + g can be reused. The advantage of a recursive formulation is, that this also applies to those
subpolynomials, which are generated by then(f ) and else(f ). It is very likely, that common subexpressions can be reused
during Gröbner base computation, because of the recurring multiplication and addition operations, which are used in
Buchberger-based algorithms for elimination of leading terms and the tail-reduction process.
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Algorithm 3 Recursive addition h = f + g
Input: f , g ∈ B
if f = 0 then
h = g

else if g = 0 then
h = f

else if f = g then
h = 0

else
if isCached(+, f , g) then
h = cache(+, f , g)

else
set xν = top(f ), xµ = top(g)
if ν < µ then
h = ite(xν, then(f ), else(f )+ g)

else if ν > µ then
h = ite(xµ, then(g), f + else(g))

else
h = ite(xν, then(f )+ then(g), else(f )+ else(g))

cache(+, f , g) = h
return h

In a similar manner Boolean multiplication is given in Algorithm 4. Note that the procedure computes the unique
representative of the Boolean product (modulo the field equations). This multiplication is denoted by ? in the following,
while · means the usual multiplication. If variables of right- and left-hand side polynomials are distinct, both operations
coincide.

Algorithm 4 Recursive multiplication h = f ?g
Input: f , g ∈ B
if f = 1 then
h = g

else if f = 0 or g = 0 then
h = 0

else if g = 1 or f = g then
h = f

else
if isCached(?, f , g) then
h = cache(?, f , g)

else
xν = top(f ), xµ = top(g)
if ν < µ then
set p1 = then(f ), p0 = else(f ), q1 = g , q0 = 0

else if ν > µ then
set p1 = then(g), p0 = else(g), q1 = f , q0 = 0

else
set p1 = then(f ), p0 = else(f ), q1 = then(g), q0 = else(g)

h = ite(xmin(ν,µ), p0?q1 + p1?q1 + p1?q0, p0?q0)
cache(?, f , g) = h

return h

3.4. Monomial orderings

While the operations treated in Section 3.3 are independent of the actual monomial ordering, many operations used in
Gröbner algorithms require such an ordering. Using ZDDs as basic data structure already yields a natural ordering on Boolean
polynomials as the following theorem shows.

Theorem 53. Let f be a Boolean polynomial and z the corresponding ZDD. If P is a path in z, then m =
∏
nν∈P x(nν), with x(n)

denoting the decision variable of a node n, is a term (andmonomial) in f . Furthermore, the natural path sequence (P1, P2, . . . , Ps)
yields the monomials of f in lexicographical order, and the first path of z determines the lexicographical leading monomial of f .
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Proof. First note, that for a given path (n1, n2, . . . , nm), its ordered sequence of decision variables (x(n1), x(n2), . . . , x(nm))
denotes a formalword in x1, . . . , xn, which can be identifiedwith themonomial given by the product x(n1)·x(n2)·. . .·x(nm).
The first statement is then a consequence of the representation of polynomials as decision diagrams and thenode elimination
rule of ZDDs. The natural ordering of Definition 52 defines then an ordering on the corresponding formal words. The latter
coincides with the lexicographical ordering, by comparison of the definitions. Therefore, the natural path sequence yields
the monomials of a polynomials lexicographically ordered, starting with the leading term. �

Monomials can be represented as single-path ZDDs. This enables procedures of monomials, analogously to an
implementation using linked lists, but due to the canonicity of the binary decision diagram, equality check is immediate.
From the implementation point of view, it is not always necessary to generate a ZDD-based representation for a monomial.
In case, that just some properties are to be checked, and the monomial is not used in the further procedure, these tests can
also be done on a stacked sequence of nodes, representing a path in the ZDD. This kind of stack is used in procedures, which
iterate over all terms w.r.t. the natural path sequence of a ZDD. Hence, in this case it is already available without additional
costs.

3.4.1. Degree and block orderings
Support of degree orderings are important for Gröbner algorithms, for two reasons. First of all, they are necessary for

certain algorithms, and second, because of their better performance in most cases. A naïve approach would be unrolling all
possible paths first, generating all monomials, and selecting the first among those of maximal degree. But this procedure
could not be cached efficiently. For a Boolean polynomial p = x · p1 + p0 with top variable x a recursive formula is

LM(p) =
{
x · LM(p1) if deg(LM(p1))+ 1 ≥ deg(LM(p0))
LM(p0) else. (7)

But still this variant accumulates many single-serving terms. This can be avoided by calculating deg(f ) =

max( deg(then(f ))+1, deg(else(f )) ) separately. Caching deg(f )makes the degree available for all recursively generated
subpolynomials. Algorithm5utilises this for computing LM(f ). Similarly,monomial comparisons and path sequenceswhich

Algorithm 5 Degree-lexicographical leading term LM(f )
Input: f ∈ B

if deg(f ) = 0 then return 1
if not isCached(LM, f ) then

if deg(f ) = deg(then(f ))+ 1 then
cache(LM, f ) = top(f ) · LM(then(f ))

else
cache(LM, f ) = LM(else(f ))

return cache(LM, f )

yield polynomial terms in degree-lexicographical order can be implemented.
A degree-reverse-lexicographical ordering can be handled in a similar manner. But for this purpose, it is more efficient to

reverse the order of the variables, and the search direction as well. In particular, the leading monomial corresponds to last
path in the natural path sequence with maximal cardinality, and Algorithm 5 can easily be adapted to this case by replacing
the condition (deg(f ) = deg(then(f ))+ 1) by (deg(f ) 6= deg(else(f ))).
Another important feature are block orderings made of degree orderings. For this purpose, a block degree can be

computed by equipping the degree-computation with a second argument, which marks the end of the current block (i.e.
that block containing the top variable). Having such a blockdeg functionality at hand the leading term computation for
a composition of degree-lexicographical orderings can be obtained by extending Algorithm 5 with an iteration over all
blocks.

3.5. Theory of Boolean Gröbner bases

In this section, we present the theory of Gröbner bases over Boolean rings. In the following, we always assume, that
the monomial ordering is global (so LM(x2 + x) = x2 for every variable x). Since B ∼= Z2[x]/〈FP〉 this is mathematically
equivalent to the theory of Gröbner bases over the quotient ring. In the classical setting this would mean to add the field
polynomials FP to the given generators S ⊆ B of a polynomial ideal and compute a Gröbner basis of 〈S, FP〉 in Z2[x]. This
general approach is not well suited for the special case of ideals representing Boolean reasoning systems. Therefore, we
propose and develop algorithmic enhancements and improvements of the underlying theory of Gröbner bases for ideals
over Z2[x] containing the field equations. Using Boolean multiplication this is implementable directly via computations
with canonical representatives in the quotient ring. The following theorems shows, that it suffices to treat the Boolean
polynomials introduced in Section 3.1 only.
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Theorem 54. Let S ⊆ Z2[x] be a generating system of some ideal, such that FP ⊆ S ⊆ B ∪ FP. Then all polynomials created in
the classical Buchberger algorithm applied to S are either Boolean polynomials or field polynomials, if a reduced normal form is
used.

Proof. All input polynomials fulfill the claim. Furthermore, every reduced normal formof an s-polynomial is reduced against
FP, so it is Boolean. Moreover, using Boolean multiplication every polynomial inside the normal form algorithm is Boolean.
Using Boolean multiplication at this point is equivalent to usual multiplication and a normal form computation against the
ideal of field equations afterwards. �

Remark 55. Using this theorem we need field equations only in the generating system and the pair set. On the other hand,
we can implicitly assume, that all field equations are in our polynomial set, and then replace the pair (xi, p) (using Boolean
multiplication) by the Boolean polynomial given as xi ? p = NF(spoly(xi, p)|FP). In this way we can eliminate the field
equations completely. A more efficient implementation would be to represent the pair by the tuple (i, p), as this still allows
the application of the criteria, but delays the multiplication.

Lemma 56. The set of field equations FP is a Gröbner basis.

Proof. Every pair of field equations has a standard representation by the product criterion. Hence FP is a Gröbner basis by
Buchberger’s Criterion [9, Theorem 1.7.3] �

Theorem 57. Every I ⊆ Z2[x] with I ⊇ 〈FP〉 is radical.

Proof. Consider p ∈ Z2[x], w.l.o.g. assume p is reduced against the leading ideal L(I). In particular LM(p) is a Boolean
polynomial. Let n > 0 and q be the unique reduced normal form of pn w.r.t. the field ideal. So q is also a Boolean polynomial.
Since pn − q is a linear combination of field equations, pn − q is the zero function over Z2. By Corollary 45 we get p = q,
since pn and p define the same Boolean function. Suppose now pn ∈ I . Then we have p = q = pn − (pn − q) ∈ I , since
I ⊃ 〈FP〉 . �

Note that for FP ⊆ I ⊆ Z2[x] the algebraic set V (I) is equal to the a priori larger set {x ∈ Z2 n|f (x) = 0∀f ∈ I}, where Z2
denotes the algebraic closure of Z2. Hence we have

Corollary 58. For ideals I ⊆ Z2[x] with I ⊇ 〈FP〉 the following stronger version of Hilbert’s Nullstellensatz holds:
(1) I = 〈1〉 ⇐⇒ V (I) = ∅,
(2) I(V (I)) = I.

Lemma 59. If I = 〈p, FP〉 then V (I) = V (p) and every polynomial q ∈ Z2[x] with V (q) ⊃ V (p) lies in I.

Proof. Simple application of Hilbert’s Nullstellensatz. �

It is an elementary fact, that systems of logical expressions can be described by a single expression, which describes the
whole system behaviour. Hence, the one-to-one correspondence of Boolean polynomials and Boolean functions given by
the mapping defined in Definition 47 motivates the following theorem.

Theorem 60. Every ideal in Z2[x]/〈FP〉 is generated by the equivalence class of one unique Boolean polynomial. In particular,
Z2[x]/〈FP〉 is a principal ideal ring (but not a domain).

Proof. We use the one-to-one correspondence of ideals in the quotient ring and ideals in Z2[x] containing 〈FP〉 . Therefore,
let 〈FP〉 ⊂ I ⊂ Z2[x]. By Corollary 46 there exists a Boolean polynomial p s. th. V (〈p, FP〉 ) = V (I). By Corollary 58 we get
I = I(V (〈p, FP〉 )) = 〈p, FP〉 . Suppose, there exists a second Boolean polynomial qwith I = 〈q, FP〉 . Then

V (p) = V (I) = V (q).

So p and q define the same characteristic function, which means that they are identical Boolean polynomials. �

Hence, using Theorem 44, Corollaries 46 and 58, we have the following bijections:

B ↔ {Boolean functions}
↔ {ideals I ⊆ Z2[x] with FP ⊆ I}
↔ {algebraic subsets of Zn2}
↔ {subsets of Zn2}.

Definition 61. For any subset H ⊆ Z2[x], call

BI(H) := 〈H, FP〉 ⊆ Z2[x]

the Boolean ideal of H. We call a reduced Gröbner basis of BI(H) the Boolean Gröbner basis of H , short BGB(H).
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Recall from Theorem 54 that BGB(H) consists of Boolean polynomials and can be extended to a reduced Gröbner basis of
BI(H) by adding some field polynomials.

Theorem 62. Let p, q ∈ B with V (p) ⊂ V (q). Then 〈p, FP〉 ⊃ 〈q, FP〉 and we say p implies q. This implication relation forms
a partial order on the set of Boolean polynomials.

Proof. Since both ideals are radical, Hilbert’s Nullstellensatz gives the ideal containment. The implication is a partial order
by the one-to-one correspondence between Boolean polynomials and sets. It corresponds itself to the inclusion of sets. �

3.6. Criteria

Criteria for keeping the set of critical pairs in the Buchberger algorithm small are a central part of any Gröbner basis
algorithm aiming at practical efficiency. In most implementations the chain criterion and the product criterion or variants
of them are used.
These criteria are of quite general type, and it is a natural question, whether we can formulate new criteria for Boolean

Gröbner bases. Indeed, this is the case. There are two types of pairs to consider: Boolean polynomials with field equations,
and pairs of Boolean polynomials. We concentrate on the first kind of pairs here.

Theorem 63. Let f ∈ B be of the form f = l · g, l a polynomial with linear leading term xi, and g ∈ Z2[x] be any polynomial.
Then spoly(f , x2i + xi) has a non-trivial t-representation against the system consisting of f and the field equations.

The theorem was proved by Brickenstein in [21].

Lemma 64. Let G be a Gröbner basis, f a polynomial, then {f · g|g ∈ G} is Gröbner basis.

Remark 65. This lemma is trivial, we just want to show the difference to the next theorem.

Theorem 66. Let G be a Boolean Gröbner basis, l ∈ B with deg(LM(l)) = 1 and supp(l) ∩ supp(g) = ∅ for all g ∈ G. Then
{l · g|g ∈ G} is a Boolean Gröbner basis that is, {l · g|g ∈ G} ∪ FP is a Gröbner basis. In other words, we get a Gröbner basis again
by multiplying the Boolean polynomials, but not the field equations with the special polynomial l.

Proof. We show, that every s-polynomial has a non-trivial t-representation. We have to consider three types of pairs. If p,
q are both field polynomials, spoly(p, q) has a standard representation by the product criterion. If p, q are both Boolean
polynomials, then spoly(l · p, l · q) has a standard representation by multiplying the standard representation of spoly(p, q)
by l. Now let p be a Boolean polynomial and q a field polynomial, say q = x2 + x. If LM(l) = x, then spoly(l · p, q) has a non-
trivial t-representation by Theorem 63. If x occurs in LM(p), then by Lemma 64 spoly(l ·p, l ·q) has a standard representation
against {l · g|g ∈ G} ∪ {l · e|e ∈ FP}, so also against the set {l · g|g ∈ G} ∪ FP. Hence, we just have to show, that the difference
to spoly(l · p, l · q) has a t-representation with t < LM(p) · LM(l) · x := c. Setting

h := spoly(l · p, l · (x2 + x))− spoly(l · p, x2 + x) = tail(l) · (x2 + x)

we get that x2+x divides h, and LM(h) = LM((x+1)·tail(l))·x < c , since LM(p) contains x. So h has standard representation
against x2+ x. If x does neither occur in LM(f ) nor in LM(l) the product criterion applies. Reducedness follows from the fact,
that l does not share any variables with G. �

3.7. Symmetry and Boolean Gröbner bases

In this section we will show how to use the theory presented in the previous section to build faster algorithms by using
symmetry and simplification by pulling out factors with linear leads.
For a polynomial pwe denote by vars(p) the set of variables actually occurring in the polynomial.

Definition 67. Let p be a polynomial inZ2[x]with a givenmonomial ordering>, |vars(p)| = k, I = vars(p) = {xi1 , . . . , xik},
and J = {xj1 , . . . , xjk} be any set of k variables. We call a morphism of polynomials algebras over Z2,

f : Z2[I] → Z2[J] : xis 7→ xjs for all s,

a suitable shift for p, if and only if for all monomials t1, t2 ∈ Z2[I] the relation t1 > t2 ⇐⇒ f (t1) > f (t2) holds.

Remark 68. In the followingwe concentrate on the problemof calculating BGB(p) for one Boolean polynomial p (non-trivial,
as field equations are implicitly included). So, if we know BGB(q) for a Boolean polynomial q and if there exists a suitable
shift f with f (q) = p, then f (BGB(q)) = BGB(p). Hence, we can avoid the computation of BGB(p). Adding all elements of
BGB(p) to our systemmeans that we can omit all pairs of the form (p, x2i +xi). A special treatment (using caching and tables)
of this kind of pairs is a good idea, because this is a often reoccurring phenomenon. As these pairs depend only on p (the
field equations are always the same), this reduces the number of combinations significantly.
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Remark 69. Note, that the concept of Boolean Gröbner bases fits very well here, as BGB(p) is the same in Z2[vars(p)] as in
Z2[x], although the last case refers to a Gröbner basis with more field equations.

Definition 70. We define the relation p∼pre q, if and only if there exists a suitable shift between p and q or if there exists
an lwith deg(LM(l)) = 1 and p = l · q. From∼pre we derive the relation∼sym as its reflexive, symmetric, transitive closure
(the smallest equivalence relation containing∼pre).

Remark 71. For all p and q in an equivalence class of∼sym the Boolean Gröbner basis BGB(p) can be mapped to BGB(q) by
a suitable variable shift and pulling out (or multiplying) by Boolean polynomials with linear lead. In practice, we can avoid
complete factorizations by restricting ourselves to detect factors of the form x or x+ 1. Using these techniques it is possible
to avoid the explicit calculation of many critical pairs.

Definition 72. A monomial ordering is called symmetric, if the following holds. For every k, and every two subsets of
variables I = {xi1 , . . . , xik}, and J = {xj1 , . . . , xjk}with iz < iz+1, jz < jz+1 for all z the Z2-algebra homomorphism

f : Z2[I] → Z2[J] : xiz 7→ xjz
defines a suitable shift.

Algorithm 6 Calculating BGB(p) in a symmetric order
Input: p ∈ B,> a monomial ordering
Output: BGB(p)
pull out as many factors with linear lead as possible
calculate a more canonical representative q of the equivalence class of p in∼sym by shifting p to the first variables
if q lies in a cache or table then
B := BGB(q) from cache

else
B := BGB(q) by Buchberger’s algorithm

shift B back to the variables of p
multiply B by the originally pulled out factors
return B

For a symmetric ordering it is always possible to map a polynomial p to the variables x1, . . . , x|vars(p)| by a suitable shift.
This is utilised in Algorithm 6 for speeding up calculation of Boolean Gröbner bases. In the following we assume that the
representative chosen in the algorithm is canonical (in particular uniquely determined in the equivalence class in∼sym), if
every factor with linear lead is pulled out.

Remark 73. From the implementation point of view, it turned out to be useful to store the BGBof all 216 Booleanpolynomials
in up to four variables in a precomputed table, for more variables we use a dynamic cache (pulling out factors reduces the
number of variables). Using canonical representatives increases the number of cache hits.
The technique for avoiding explicit calculations can be integrated in nearly every algorithm similar to the Buchberger’s

algorithm. Best results were made by combining these techniques with the algorithm slimgb [22], we call this combination
symmgbGF2. For our computations the strategy in slimgb for dealing with elimination orderings is quite essential.

3.7.1. Practical meaning of symmetry techniques
The real importance of symmetry techniques should not only be seen in avoiding computations in leaving out some

pairs. In contrast, application of the techniques described above changes the behaviour of the algorithm completely. Having
a Boolean polynomial p, the sugar value [23] of the pair (p, x2 + x) is usually deg(p)+ 1, which corresponds to the position
in the waiting queue of critical pairs. It often occurs that in BGB(p) polynomials with much smaller degree occur.
Having these polynomials earlier, we can avoid many other pairs in higher degree. This applies quite frequently in this

area, in particular, when we have many variables, but the resulting Gröbner basis looks quite simple (for example linear
polynomials). The earlier we have these low degree polynomials, the easier the remaining computations are, resulting in
less pairs and faster normal form computations.

4. Applications

The algorithmsdescribed in Section 2 resp. 3 have been implemented in Singular [24] resp. the PolyBoRi framework [21].
We use these implementations to test our approach by computing realistic examples from formal verification. We compare
the computations with other computer algebra system and with SAT-solvers, all considered to be state-of-the-art in their
field.
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Table 1
Computation of a Gröbner basis in Z210 with degree-reverse-lexicographical ordering. Randomly generated examples on an AMD Dual Opteron 2.2 GHz,
16 GB RAM.

#vars. #polys. maxdeg #mons.
#polys. #GB Singular Magma

2 5 15 69.2 3 0.40 s 4.11 MB 68.16 s 13.57 MB
3 3 10 6.7 254 8.50 s 17.23 MB 1287.80 s 19.60 MB
3 3 15 7.4 599 204.82 s 146.98 MB time out after 1 h
4 4 10 2.8 120 0.04 s 0.87 MB 10.68 s 9.52 MB
4 4 10 3.0 361 20.36 s 32.24 MB time out after 1 h
5 5 10 2.4 584 0.15 s 1.09 MB 455.35 s 30.07 MB
5 5 10 2.8 1043 1.11 s 2.34 MB time out after 1 h
7 5 10 2.0 614 0.14 s 1.14 MB 40.06 s 35.35 MB
7 5 10 2.2 2547 2.23 s 3.03 MB time out after 1 h
10 10 4 1.9 436 0.11 s 1.09 MB 92.45 s 16.75 MB
10 10 4 3.0 11734 963.39 s 341.70 MB time out after 1 h
12 10 3 2.3 5536 18.40 s 16.75 MB time out after 1 h
12 10 3 3.0 1940 3.69 s 13.12 MB time out after 1 h

Moreover, we state open questions and conjectures, in particular in the case of Gröbner bases over rings, an area which
is not very much explored.
The application of Gröbner bases over Z2n is still under development. Here we mention mainly problems in connection

with the proposed applications. On the other hand we show that the improvements developed in Sections 2.2 and 2.3 for
Gröbner bases over weak factorial principal rings are extremely useful for computations over these rings.

4.1. Standard bases over rings

Let us recapitulate the original problem first, which was posed in Section 1.3.1.

Problem 74. Given a finite set of polynomials {fi} ⊂ Z2n . Does a common zero of the system {fi = 0} exist, i.e. is V (〈fi〉) 6= ∅?

To answer this question with the help of computer algebra and Gröbner bases theory, the following key problems have
to be solved.

Problem 75. (1) An efficient algorithm1 to compute Gröbner bases over Z2n .
(2) A way to handle vanishing polynomials, i.e. polynomials evaluating to zero everywhere.
(3) A suitable Nullstellensatz equivalent forZ2n [x], or at least a simple Gröbner basis criterion for the existence of a common
zero over some extension ring.

In Section 2 we explained, how an efficient algorithm for Problem 75(1) can be instantiated. In order to optimise the
algorithm in the case of Z2n we can replace all greatest common divisor computations by fast divisibility tests.
We implemented the algorithm in the kernel of the computer algebra system Singular [24] and compared the

performance to Magma, the only other system we found to be capable of computing Gröbner bases in Z2n . As we could not
solve industrial-sized problems due to time and space explosionwe compared the implementations with random instances.
In Table 1 we present only a few concrete runtimes, but they give an overall impression of the data. The table shows that
the special algorithms for Zm (apparently not contained in Magma) pay off substantially.
To deal with problem (2), that is with the ideal of vanishing polynomials in Zm withm ∈ Nwe determined the minimal

Gröbner basis G0 of

I0 := {f ∈ Zm | ∀x : f (x) = 0}

combinatorially (cf. [5]). The size of G0 grows roughly with SM(m)#variables, where SM(m) is the Smarandche function [25].
Hence, for a typical application instance of formal verification just listing the ideal G0 becomes infeasible. We therefore
devised a method of constructing only the necessary elements of G0 for s-polynomial and normal form computations, but
even their number grows exponentially in the number of variables.
Another obstacle, related to this one, arises while investigating the modeling strength of polynomials functions in

comparison to arbitrary functions from Znm → Zm. Here we have the following

Observation 76 ([5]). There are many more functions Znm → Zm than polynomial functions and many more subsets of Znm
than varieties if m is not a prime number. The quotient of all functions by polynomial functions grows at least double-
exponentially in the number of variables. If m is a prime, then all functions respectively subsets of Znm are polynomial,
respectively algebraic.

1 Here and in the following efficient refers to practical performance and not to the complexity of the algorithms.



1632 M. Brickenstein et al. / Journal of Pure and Applied Algebra 213 (2009) 1612–1635

The following conjecture was verified for smallm, n.

Conjecture 77. A functionZnm → Zm is polynomial if and only if Newton interpolationworks. This means that the division during
the algorithm is possible, but not necessarily unique.

With respect to Problem 75(3) we mention the following lemma which is a negative result.

Lemma 78. Let C be a ring with zero divisors. There exists no ring Ĉ ⊃ C, such that every non-constant polynomial of C[x] has
a zero in Ĉ .

Proof. Let n ∈ C \ {0} be a zero divisor and consider f = nx − 1. Assume there exists a ring Ĉ ⊃ C which contains a root
r of f . Then f (r) = n · r − 1 = 0 and hence 1 = n · r . On the other hand, there exists an m 6= 0 with m · n = 0 and hence
m · 1 = m · n · r = 0, a contradiction. �

Remark 79. If C has no zero divisors then a ring Ĉ as in Lemma 78 exists. We may take Ĉ just as the algebraic closure of
the quotient field of C . If I is an ideal in C[x] we set V̂ (I) := {x ∈ Ĉn | f (x) = 0 ∀f ∈ I} and get the following answer to
Problem 75(3): Let G ⊂ C[x] be a Gröbner basis of I . Then V̂ (I) = ∅ iff G contains a non-zero element of C .
However, if C has zero divisors, it is not clear how a useful answer to Problem 75(3) should look like.

4.2. The PolyBoRi framework

We will give a brief description of the PolyBoRi framework [21] and the implemented algorithms. At the end of this
section, the time and space requirements of some benchmark examples are compared with those of other computer algebra
systems and a SAT-solver.
The core routines of PolyBoRi form a C++ library for Polynomials over Boolean Rings providing high-level data types

for Boolean polynomials and monomials, exponent vectors, as well as for the underlying Boolean rings. The ZDD structure,
which is used as internal storage for polynomials and monomials, is based on a data type from CUDD [26].
In addition, basic polynomial operations – like addition and multiplication – have been implemented and associated

to the corresponding operators. PolyBoRi ’s polynomials also provide ordering-dependent functionality, like leading-term
computations, and iterators for accessing polynomial terms in the style of Standard Template Library’s iterators [27]. This
is implemented by a stack, which holds a valid path. The corresponding monomial may be returned on user request, and
incrementing the iterator results in a search for a valid path, corresponding to next term in monomial order. The ordering-
dependent functions are currently available for the orderings introduced in Section 3.4 and block orderings thereof.
Issues regarding themonomial ordering and the internal data structure are hidden behind a user programming interface.

This allows the formulation of generic procedures in terms of computational algebra, without the need for caring about
internals. This will then work for any applicable and implemented Boolean ring.
Complementary, a complete Python [28] interface allows parsing of complex polynomial systems. Rapid prototyping

of sophisticated and easy extendable strategies for Gröbner base computations was possible by using this script language.
With the tool ipython the PolyBoRi data structures and procedures can be used interactively. In addition, interfaces to the
computer algebra system Singular [24] and the SAGE system [29] are under development.

4.3. Timings

This section presents some benchmarks comparing PolyBoRi to general purpose and specialised computer algebra
systems. The following timings have been done on a AMD Dual Opteron 2.2 GHz (all systems have used only one CPU) with
16 GB RAM on Linux. The used ordering was lexicographical, with the exception of FGb, where degree-reverse lexicographic
was used. PolyBoRi also implements degree orderings, but for the presented practical examples elimination orderings seem
to be more appropriate. A recent development in PolyBoRiwas the implementation of block orderings, which behave very
natural for many examples.
We compared the computation of a Gröbner basis for the following system releases with the development version of

PolyBoRi ’s symmgbGF2:

Maple 11.01, June 2007 Gröbner package, default options
FGb 1.34, Oct. 2006 via Maple 11.01, command: fgb_gbasis
Magma 2.13-10, Feb. 2007 command: GroebnerBasis, default options
Singular 3-0-3, May 2007 std, option(redTail)

Note, that this presents the state of PolyBoRi in the development version in August 2007 only. Since the project is very
young there is still room for major performance improvements. The examples were chosen from current research problems
in formal verification. All timings of the computations (lexicographical ordering) are summarised in Table 2.
The authors of this article are convinced, that the default strategy of Magma is not well suited for these examples

(walk, see [30], or homogenisation). However, when we tried a direct approach in Magma, it ran very fast out of memory
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Table 2
Timings and memory usage for benchmark examples. The∞ symbols in time and memory columns mark timeout after 1 h and out of memory at 15 GB.

Example Vars./Eqs. PolyBoRi FGb Maple Magma Singular

(s) (MB) (s) (MB) (s) (MB) (s) (MB) (s) (MB)

mult4× 4 55 48 0.00 54.54 1.76 5.50 1.96 4.87 0.91 10.48 0.02 0.66
mult5× 5 83 74 0.01 54.66 219.09 6.37 236.14 6.87 31.28 46.05 0.01 1.67
mult6× 6 117 106 0.03 54.92 Failed ∞ ∞ 4.28 21.19
mult8× 8 203 188 0.40 55.43 ∞ ∞ ∞ ∞

mult10× 10 313 294 18.11 85.91 ∞ ∞ ∞ ∞

Table 3
Timings and memory usage for Gröbner basis computations w.r.t. various orderings. The∞ symbols means timeout after 2 days, failed stopped with error
message, and dp_asc denotes dpwith reversed variable order.

Example Vars./Eqs. Order PolyBoRi Magma FGb

uuf50_10 50 218 lp 8.76 s 71.98 MB 9.77 s 28.21 MB
dlex 8.98 s 72.53 MB 10.35 s 32.71 MB
dp_asc 8.14 s 72.24 MB 8.40 s 27.42 MB 74.76 s 6.75 MB

uuf75_8 75 325 lp 843.38 s 819.80 MB 14 015.21 s 1633.62 MB
dlex 553.43 s 490.86 MB 14 291.45 s 2439.53 MB
dp_asc 448.53 s 472.04 MB 13 679.42 s 2539.24 MB 99721.46 s 8958.36 MB

uuf100_01 100 430 lp 44 779.77 s 12 309.79 MB ∞

dlex 11 961.86 s 6 101.43 MB ∞

dp_asc 10 635.72 s 6 146.47 MB ∞ Failed

Table 4
Deciding satisfiability with PolyBoRi using Gröbner basis computations in comparison with MiniSat, a state-of-the-art SAT solver.

Vars./Eqs. PolyBoRi MiniSat

hole8 72 297 1.88 s 56.59 MB 0.30 s 2.08 MB
hole9 90 415 8.01 s 84.04 MB 2.31 s 2.35 MB
hole10 110 561 44.40 s 97.68 MB 25.20 s 3.24 MB
hole11 132 738 643.14 s 130.83 MB 782.65 s 7.19 MB
hole12 156 949 10264.92 s 338.66 MB 22920.20 s 17.13 MB
mult4× 4 55 48 0.00 s 54.54 MB 0.00 s 1.95 MB
mult5× 5 83 74 0.01 s 54.66 MB 0.01 s 1.95 MB
mult6× 6 117 106 0.03 s 54.92 MB 0.03 s 1.95 MB
mult8× 8 203 188 0.40 s 55.43 MB 0.96 s 2.21 MB
mult10× 10 313 294 18.11 s 85.91 MB 22.85 s 3.61 MB

(at least in the larger examples). We can conclude, that the implemented Gröbner basis algorithm in PolyBoRi offers a
good performance combined with suitable memory consumption. Part of the strength in directly computing Gröbner bases
(without walk or similar techniques) is inherited from the slimgb algorithm in Singular. On the other hand our data
structures provide a fast way to rewrite polynomials, which might be of bigger importance than sparse strategies in the
presented examples.
In order to treat classes of examples, for which the lexicographical ordering is not the best choice, PolyBoRi is

also equipped with other monomial orderings. Although its internal data structure is ordered lexicographically, the
computational overhead of degree orderings is small enough such that the advantage of these orderings come into effect.
Table 3 illustrates this for a series of randomly generated unsatisfiable uniform examples [31]. The latter arise from
benchmarking SAT-solvers, which can handle them very quickly, as their conditions are easy to contradict. But they are
still a challenge for the algebraic approach. The strength of PolyBoRi is visible in the more complex examples, as it scales
better than the other systems in tests.
In addition the performance of PolyBoRi is compared with the freely available SAT-solver MiniSat2 (release date 2007-

07-21), which is state-of-the-art among publicly available solvers [32]. The examples consist of formal verification examples
corresponding to digital circuits with n-bitted multipliers and the pigeon hole benchmark, which is a standard benchmark
problem for SAT-solvers, e.g. used in [31]. The latter checks whether it is possible to place n+ 1 pigeons in n holes without
two of them being in the same hole (obviously, it is unsatisfiable).
Although the memory consumption of PolyBoRi is larger, Table 4 illustrates that the computation time of both

approaches is comparable for this kind of practical examples. (The first part of the table was computed using the
preprocessing motivated by Theorem 60.) In particular, it shows, that in our research area the algebraic approach is
competitive with SAT-solvers.
The advantages of PolyBoRi are illustrated by the examples above as follows: the fast Booleanmultiplication can be seen

in the pigeon hole benchmarks. The computations of the uuf problems include a large number of generators, consisting of
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initially short polynomials, which lead to large intermediate results. The algorithmic improvement of symmgbGF2 and the
optimised pair handling render the treatment of these example with algebraic methods possible.
In this way the initial performance of PolyBoRi is promising. The data show that the advantage of PolyBoRi grows with

the number of variables. For many practical applications this size will be even bigger. Hence, there is a chance, that it will be
possible to tackle some of these problems in future by using more specialised approaches. A key point in the development
of PolyBoRi is to facilitate problem specific and high performance solutions.

5. Conclusions

For efficient treatment of bit-level formulations of digital systems we have developed specialised methods for the
analysis of polynomial systems in Boolean rings, that is quotient rings of the form Z2[x]modulo the field polynomials. For
this purpose improvements were achieved on multiple levels. On the one hand, a tailored data structure was introduced
to represent Boolean polynomials which correspond to canonical representatives of the elements in the quotient ring.
This structure, which is derived from zero-suppressed binary decision diagrams (ZDDs), is compact and allows to apply
operations used in Gröbner basis computations in reasonable time. Further, enhancement were due to the specialised
Gröbner basis algorithm symmgbGF2 itself. Exploiting special properties in the Boolean case, special criteria for keeping the
set of critical pairs small were proposed. In addition, (recursive) caching of previous computations and utilising symmetry
makes it possible to efficiently reuse results arising from likewise polynomials. Also, the PolyBoRi system, a framework
for Boolean rings, was presented as reference implementation for symmgbGF2 and for the ZDD-based data structure
representing Boolean polynomials.
Word-level formulations of digital systems lead us to investigate Gröbner bases over rings. More generally, we developed

the theory of standard bases over rings for which systems of linear equations can be solved effectively. For weak factorial
principal ideal rings we developed special criteria for s-polynomials and for the normal form algorithm which proved
effective.
The PolyBoRi framework for Boolean Gröbner bases showed that – in particular if there are no immediate counter

examples – the proposed approach has already reached the same level as a state-of-the-art SAT-solver at least for some
standard benchmark examples. The advantage of an effective theory of Boolean Gröbner basis is, that they are a general and
flexible tool which opens the door to computational algebra over Boolean rings.
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