
Workshop on Verification and Theorem Proving for Continuous Systems

(NetCA Workshop 2005)
Kanovich, Max; White, Graham; Gottliebsen, Hanne; Oliva, Paulo

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/5043

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30696831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/5043

Workshop on Verification and Theorem Proving

for Continuous Systems (NetCA Workshop 2005)

Editors: Max Kanovich, Graham White, Hanne Gottliebsen and

Paulo Oliva

ISSN 1470-5559

RR-05-06 August 26 2005

Oxford, UK
Department of Computer Science

Workshop on Verification and Theorem Proving for
Continuous Systems (NetCA Workshop 2005)

Editors: Max Kanovich, Graham White, Hanne Gottliebsen and Paulo Oliva

Abstract: The UK Network in Computer Algebra (NETCA) organised a workshop on
various aspects of continuous systems verification, mainly with the focus on theorem
proving. The workshop provides a forum for work in progress on new and emerging
areas to be presented and discussed, and experiences to be shared.

Contents Page
Invited talk:
An Algebraic Analysis Approach to Mathematical System Theory………………………1
Alban Quadrat, INRIA

Symbolic Analysis of Control Systems…………………………………………………...8
Ruth Hardy, University of St Andrews

Transfer Principle Proof Tactic for Nonstandard Analysis……………………………....18
Brian Huffman, Oregon Health and Sciences University

Towards a Hoare Logic for Continuous Systems……………………………………..…27
Erik Mathiesen, Queen Mary University of London

Invited talk:
Incorporating Formal Methods in the Design Flow of DSP Systems….………………...31
Sofiène Tahar, Concordia University

On the formal Analysis of Analog Systems using Interval Abstraction…………………42
Mohamed Zaki, Concordia University

Formal Verification of Spacing Properties of an Air Traffic Management Concept…....57
Cesar Munoz, National Institute of Aerospace

Invited talk:
Certification of Complex Systems………………………………………………………70
Nicholas Tudor, Qinetiq

An algebraic analysis approach to

mathematical system theory

A. Quadrat,

INRIA Sophia Antipolis,

CAFE project,

2004 Route des Lucioles BP 93,

06902 Sophia Antipolis Cedex, France.

Alban.Quadrat@sophia.inria.fr

http://www-sop.inria.fr/cafe/Alban.Quadrat/index.html

This work has been done in collaboration with:

F. Chyzak,

INRIA Rocquencourt,

ALGO project,

Domaine de Voluceau, BP 105,

78153 Le Chesnay Cedex, France,

frederic.chyzak@inria.fr,

D. Robertz,

Lehrstuhl B für Mathematik RWTH - Aachen,

Templergraben 64, Aachen, Germany,
daniel@momo.math.rwth-aachen.de.

Keywords: Mathematical system theory, control theory, algebraic analy-
sis, effective algebra, symbolic computation.

In the seventies, the study of transfer matrices of time-invariant linear
systems of ordinary differential equations (ODEs) led to the development of
the polynomial approach [19, 21, 41]. In particular, the univariate polynomial
matrices play a central role in this approach (e.g., Hermite, Smith and Popov
forms, invariant factors, primeness, Bézout/Diophantine equations).

In the middle of the seventies, while generalizing linear systems defined
by ODEs to differential time-delay systems, ODEs with parameters, 2-D
and 3-D filters. . . , one had to face the case of systems described by means
of matrices with entries in multivariate commutative polynomial rings. All
these new systems were called 2-D or 3-D linear systems and, more generally,

1

n-D systems or multidimensional linear systems with constant coefficients
[4, 15]. It was quickly realized that no canonical forms such as Hermite,
Smith and Popov forms existed for polynomial matrices with two and three
variables (i.e., with entries in k[x1, x2, x3], where k is a field such as Q, R,
C). Moreover, more than only one type of primeness was needed in order to
classify n-D systems (e.g., factor/minor/zero primeness [45, 46]). Hence, it is
not very much surprising that, in the eighties, Gröbner bases were introduced
in the study of multidimensional linear systems with constant coefficients
[4, 15]. A Gröbner basis defines normal forms for polynomials with respect
to a certain monomial order of the variables xi [2, 16, 22]. Given a Gröbner
basis, there is a simple algorithm to effectively compute these normal forms.
In many ways, the computation of these normal forms can be seen as an
extension of the Gaussian elimination algorithm to commutative polynomial
rings [2, 16].

In a pioneering work, R. E. Kalman developed a module-theoretic ap-
proach to time-invariant ordinary differential linear systems [20]. In his
PhD thesis under the supervision of R. E. Kalman, Y. Rouchaleau con-
sidered Kalman-type systems where the entries of (A,B,C,D) belong to a
commutative ring. In particular, he studied their structural properties us-
ing module theory. Such systems are nowadays called systems over rings

and they have been considerably studied in the literature [40] since. An
extension of the geometric approach [43] to linear systems over rings has
also been recently developed [1, 12, 17, 18]. Using effective algebra methods
(Gröbner bases, characteristic sets), the computational aspects of the sys-
tems over rings (e.g., differential time-delays systems) were firstly studied
by L. Habets in [17, 18].

In the nineties, U. Oberst developed a general module-theoretic approach
to multidimensional linear systems with constant coefficients [27]. Using
B. Malgrange’s approach [23], in which a finitely presented D-module M is
associated with a linear system of equations over a polynomial ring D, he
showed how some structural properties of the system corresponded to alge-
braic properties of the D-module M . He then was able to develop a complete
duality between his module-theoretic approach and the behavioural approach

developed by J. C. Willems [29]. Based on U. Oberst’s ideas, the behavioural
approach to multidimensional linear systems has been successfully developed
in the recent years. See [29, 28, 35, 44, 46] and the references therein.

Within a similar module-theoretic approach, the concepts of flatness

and π-freeness were introduced in [14, 25] for differential time-delay linear
systems with constant coefficients. As it is shown in [25, 26] on different
concrete examples, the detection of such structural properties is important
for the study of the motion planning problem. In the behavioural approach,
the concept of flatness corresponds to the existence of an observable image

representation for the multidimensional system [31, 39].
In the same years as [27], J.-F. Pommaret studied under-determined

2

systems of partial differential equations (PDEs) coming from mathematical
physics and differential geometry (e.g., elasticity, electromagnetism, hydro-
dynamics, general relativity). See also [3]. In particular, he showed how his
mathematical approach was a generalization of U. Oberst’s module-theoretic
approach for multidimensional (linear) systems with varying coefficients. See
[30] for more details and references. In particular, the problem of checking
whether or not a multidimensional linear system described by PDEs with
varying coefficients could be formally parametrized was solved within the
theory of differential operators. Moreover, the work of M. Fliess on linear
systems defined by ODEs with variable coefficients also illustrated the need
to pass from the commutative polynomial viewpoint to the non-commutative
one [13].

Based on B. Malgrange’s approach [23], algebraic analysis has been de-
veloped in mathematics in order to study general linear systems of PDEs
with variable coefficients using module theory, algebraic geometry, homo-
logical algebra and functional analysis. Algebraic analysis has recently been
introduced in control theory in [37] in order to study multidimensional linear
systems defined by PDEs with varying coefficients. This approach extends
the one previously developed by J.-F. Pommaret for underdetermined lin-
ear systems of PDEs. In particular, using the formal theories of PDEs
(Spencer’s, Riquier-Janet’s theories), it was shown in [30, 31, 32, 33, 36, 37]
how some structural properties of systems could be checked by means of
effective algorithms.

Finally, using the homological algebra approach developed in [37], we
have recently shown in [9, 11, 38, 39] how the previous results could be
generalized to some classes of multidimensional linear systems with vary-
ing coefficients encountered in the literature (e.g., ODEs, PDEs, differential
time-delay systems, multidimensional discrete systems, partial differential
delay systems). In order to do that, the concept of multidimensional linear
systems over Ore algebras was introduced in [9, 11]. An Ore algebra is a
ring of non-commutative polynomials in functional operators with polyno-
mial or rational coefficients [5, 6, 7, 24]. The characterization of algebraic
structural properties such as, for instance, controllability, parametrizability
and flatness were obtained.

The recent progress of Gröbner bases over Ore algebras (i.e., over some
classes of non-commutative polynomial rings) [5, 6, 7, 22] allows us to ef-
fectively test the algebraic properties of general multidimensional linear
systems (e.g., controllability, observability, parametrizability, flatness) and
compute different types of parametrizations and to propose feedback laws
(motion planning, tracking, Bézout equations, optimal control).

In this presentation, we shall develop the following methodology for the
study of multidimensional linear systems over Ore algebras (see also [11]):

1. A linear system is defined by means of a (q×p)-matrix R with entries in

3

an Ore algebra D, i.e., it corresponds to a system of linear equations
R z = 0, where z is composed of the system variables (e.g., inputs,
outputs, states, latent variables).

2. We associate the finitely presented left D-module M = D1×p/(D1×q R)
with the system R z = 0.

3. We develop a dictionary between the structural properties of the sys-
tem and the properties of the left D-module M . Using module theory,
we can then classify the properties of the left D-module M .

4. Homological algebra permits to check these properties of the left D-
module M using extension and torsion functors [42].

5. Gröbner bases over Ore algebras allow to develop effective algorithms
which check the properties of the left D-module M , and thus, of the
system R z = 0.

6. Implementations of these algorithms in the package OreModules for
the computer algebra system Maple.

Finally, we shall give an introduction to the package OreModules [8]
for Maple which offers symbolic methods to investigate the structural prop-
erties of multidimensional linear systems over Ore algebras. The advantage
of describing these properties in the language of homological algebra carries
over to the implementation of OreModules: up to the choice of the do-
main of operators which occur in a given system, all algorithms are stated
and implemented in sufficient generality such that ODEs, PDEs, differential
time-delay systems, discrete systems with constant, polynomial or rational
coefficients. . . are covered at the same time.

References

[1] Assan, J. (1999) Analyse et synthèse de l’approche géométrique pour
les systèmes linéaires sur un anneau, PhD thesis. Ecole Centrale de
Nantes (France).

[2] Becker, T., Weispfenning, V. (1993) Gröbner Bases. A Computational
Approach to Commutative Algebra. Springer.

[3] Bender, C. M., Dunne, G. V., Mead, L. R. (2000) Underdetermined
systems of partial differential equations. J. Mathematical Physics
41:6388–6398.

[4] Bose, N. K. (1985) Multidimensional Systems Theory: Progess, Direc-
tions, and Open Problems. D. Reidel Publishing Company.

4

[5] Chyzak, F. (1998) Fonctions holonomes en calcul formel. PhD thesis.
Ecole Polytechnique (France).

[6] Chyzak, F. Mgfun Project. http://algo.inria.fr/chyzak/mgfun.html.

[7] Chyzak, F., Salvy, B. (1998) Non-commutative elimination in Ore alge-
bras proves multivariate identities. J. Symbolic Computation 26:187–
227.

[8] Chyzak, F., Quadrat, A., Robertz, D. (2002). OreModules project.
http://wwwb.math.rwth-aachen.de/OreModules/.

[9] Chyzak, F., Quadrat, A., Robertz, D. (2003) Linear control sys-
tems over Ore algebras: Effective algorithms for the computation
of parametrizations. CDRom of the Workshop on Time-Delay Sys-

tems (TDS03), IFAC Workshop, INRIA Rocquencourt (France) (08-
10/09/03).

[10] Chyzak, F., Quadrat, A., Robertz, D. (2004) OreModules: A sym-
bolic package for the study of multidimensional linear systems, pro-
ceedings of the MTNS04, Leuven (Belgique) (05-09/07/04).

[11] Chyzak, F., Quadrat, A., Robertz, D. (2004) Effective algorithms for
parametrizing linear control systems over Ore algebras. INRIA Report
5181, available at http://www.inria.fr/rrrt/rr-5181.html, to ap-
pear in Applicable Algebra in Engineering, Communication and Com-
puting (AAECC).

[12] Conte, G., Perdon, A. M. (2000) Systems over rings: geometric theory
and applications, Annual Reviews in Control 24:113–124.

[13] Fliess, M. (1991) Controllability revisited, in Mathematical System
Theory. The influence of R. E. Kalman, A. C. Antoulas ed., Springer.

[14] Fliess, M., Mounier, H. (1998) Controllability and observability of lin-
ear delay systems: an algebraic approach. ESAIM COCV 3:301–314.

[15] Galkowski, K., Wood, J. ed. (2001) Multidimensional Signals, Circuits
and Systems, Taylor and Francis.

[16] Greuel, G.-M., Pfister, G. (2002) A Singular Introduction to Commu-
tative Algebra, Springer.

[17] Habets, L. (1994) Algebraic and computational aspects of time-delay
systems. PhD thesis. University of Eindhoven (The Netherlands).

[18] Habets, L. (1996) Computational aspects of systems over rings − re-
actability and stabilizability, CWI Quarterly 9:85–95.

5

[19] Kailath, T. (1980) Linear Systems, Prentice-Hall.

[20] Kalman, R. E., Falb, P. L., Arbib, M. A. (1969) Topics in Mathematical
Systems Theory, McGraw-Hill.

[21] Kučera, V. (1979) Discrete Linear Control: The Polynomial Equation
Approach, Wiley.

[22] Li, H. (2002) Non-commutative Gröbner Bases and Filtered-Graded
Transfer, Lecture Notes in Mathematics 1795, Springer.

[23] Malgrange, B. (1963) Systèmes à coefficients constants, Séminaire
Bourbaki 1962/63, 246:1–11.

[24] McConnell, J. C., Robson, J. C. (2000) Noncommutative Noetherian
Rings. American Mathematical Society.

[25] Mounier, H. (1995) Propriétés structurelles des systèmes linéaires à
retards: aspects théoriques et pratiques. PhD Thesis. University of
Orsay (France).

[26] Mounier, H., Rudolph, J., Fliess, M., Rouchon, P. (1998) Tracking
control of a vibrating string with an interior mass viewed as delay
system. ESAIM COCV 3:315–321.

[27] Oberst, U. (1990) Multidimensional constant linear systems. Acta
Appl. Math. 20:1–175.

[28] Pillai, H. K., Shankar, S. (1998) A behavioral approach to control of
distributed systems. SIAM J. Control and Optimization 37:388–408.

[29] Polderman, J. W., Willems, J. C. (1998) Introduction to Mathematical
Systems Theory. A Behavioral Approach. TAM 26, Springer.

[30] Pommaret, J.-F. (2001) Partial Differential Control Theory. Kluwer.

[31] Pommaret, J.-F., Quadrat, A. (1998) Generalized Bezout Identity,
Applicable Algebra in Engineering, Communications and Computing
9:91–116.

[32] Pommaret, J.-F., Quadrat, A. (1999) Localization and parametriza-
tion of linear multidimensional control systems. Systems and Control
Letters 37:247–260.

[33] Pommaret, J.-F., Quadrat, A. (1999) Algebraic analysis of linear multi-
dimensional control systems. IMA J. Control and Optimization 16:275–
297.

[34] Pommaret, J.-F., Quadrat, A. (2000) Equivalences of linear control
systems, proceedings of MTNS 2000, Perpignan (France), CDRom.

6

[35] Pommaret, J.-F., Quadrat, A. (2003) A functorial approach to the
behaviour of multidimensional control systems, Applied Mathematics
and Computer Science 13:7–13.

[36] Pommaret, J.-F., Quadrat, A. (2004) A differential operator approach
to multidimensional optimal control, International Journal of Control
77:821–836.

[37] Quadrat, A. (1999) Analyse algébrique des systèmes de contrôle
linéaires multidimensionnels. PhD thesis. Ecole Nationale des Ponts
et Chaussées (France).

[38] Quadrat, A., Robertz, D. (2005) Parametrizing all solutions of un-
controllable multidimensional linear systems. Proceedings of the 16th

IFAC World Congress, Prague (04-08/07/05).

[39] Quadrat, A., Robertz, D. (2005) On the blow-up of stably-free be-
haviours, to appear in the proceedings of CDC-ECC05, Seville (12-
15/12/05).

[40] Sontag, E. (1976) Linear systems over commutative rings: a survey,
Ricerche Automat. 7:1–34.

[41] Rosenbrock, H. H. (1970) State Space and Multivariable Theory, J.
Wiley.

[42] Rotman, J. J. (1979) An Introduction to Homological Algebra. Aca-
demic Press.

[43] Wonham, M. (1985) Linear Multivariable Control: a Geometric Ap-
proach, Springer.

[44] Wood, J. (2000) Modules and behaviours in nD systems theory. Mul-
tidimensional Dimensional Systems and Signal Processing 11:11–48.

[45] Youla, D. C., Gnavi, G. (1979) Notes on n-dimensional system theory,
IEEE Trans. Circuits and Systems 26:259-294.

[46] Zerz, E. (2000) Topics in Multidimensional Linear Systems Theory.
Lecture Notes in Control and Information Sciences 256, Springer, Lon-
don.

7

Symbolic Analysis of Control Systems

Ruth Hardy
School of Computer Science
University of St Andrews

August 2005

Abstract

This paper introduces a method for formal and symbolic analysis of
single–input single–output continuous–time control systems. The method
is based on traditional control engineering analysis using Nichols plots
and thus focuses on the properties of gain (amplitude) and phase–shift.
We reduce Nichols plot requirements to a decision problem and present
a procedure to decide problems of this type. An implementation of this
procedure requires efficient symbolic manipulation and validated numeri-
cal calculation. A prototype tool has been developed using the computer
algebra system Maple, the formal theorem prover PVS and the QEPCAD
tool for quantifier elimination.

1 Introduction

Control systems are used to augment modern man–made dynamical systems,
such as aeroplanes, cars and CD–players. The process for designing control
systems is well established and well documented [5], [16], [17]. In traditional
control engineering mathematical formulae modelling the behaviour of dynam-
ical and control systems are developed, often as difference or differential equa-
tions. These models are considered specifications for systems, which may later
be implemented in software or hardware. The models are analysed with respect
to some design criteria to ensure they display the correct behaviour before im-
plementation is performed. This design verification traditionally uses numeric
techniques, often involving the visual inspection of a number of plots, or the
performance of a number of simulations. Control systems are becoming more
complex and are being relied upon more heavily in safety and mission critical
situations during which it is vital to maintain various properties, such as sta-
bility, fast response time, or efficient energy usage. It is now widely accepted
that traditional informal design verification techniques are no longer sufficient
to establish the correctness of the behaviour of systems.

Research into integrating formal or symbolic methods into the development
of control systems tends to fall into one of two categories: formal or symbolic
methods integrated into classical system development and analysis; (in)finite
state or hybrid systems and model checking. Quantifier elimination has been
used in the stability analysis of difference schemes in [14]. Various algebraic tech-
niques are used in the traditional analysis of control systems in [10]. A Hoare
logic for single–input single–output continuous–time control systems, which is

8

used to infer properties of the gain and phase–shift of a system based on prop-
erties of its subsystems is presented in [6]. An algorithmic approach to the
specification and verification of systems as hybrid automata is presented in [2].
A series of abstractions for hybrid automata resulting in discrete transition sys-
tems that can be analysed using traditional model checking tools is presented
in [19]. The UCLID [7] verification tool for infinite state systems was devel-
oped for the analysis of models of both hardware and software systems. The
Vapor [4] tool was developed to eliminate the errors that can be introduced by
manually translating discrete models into finite state system representations by
automatically abstracting models described using behavioural RTL Verilog into
the CLU language used by the UCLID tool.

The work described in this paper focuses on integrating formal analysis tech-
niques, including symbolic reasoning, higher order theorem proving, and quanti-
fier elimination, into classical control system analysis, in particular, Nichols plot
analysis. In Section 2 Nichols plot analysis is introduced. Section 3 formulates
Nichols plot requirements as a decision problem and introduces a set of condi-
tions that can be used in formal and symbolic Nichols plot analysis. Section
4 discusses the need for efficient symbolic computation and validated numeric
computation in the automation of formal and symbolic Nichols plot analysis
and presents a prototype implementation in the Maple–PVS–QEPCAD system.
The work described in this paper is presented in more detail in a forthcoming
Calculemus workshop and will be published in the proceedings as a volume of
the ENTCS [11].

2 Traditional Nichols Plot Analysis

Nichols plots are a classical method for analysing systems in the frequency do-
main. A continuous system F (jω), where F is a Laplace transform, j is

√
−1

and ω is (non–negative real–valued) frequency, is exposed to a sinusoidal in-
put with varying frequency.1 The result produced is a sinusoid. A Nichols
plot is a parametric plot of the gain (the factor by which the amplitude of
the output sinusoid increases the amplitude of the input sinusoid) in decibels

20 log10(|F (jω)|) against the change in phase arctan(Im(F (jω))
Re(F (jω)))± kπ. The con-

trol system is considered to meet its requirements if the parametric plot stays
within or out with a specified region on the graph (for example see Figure 1).
This is confirmed visually by the analyst.

The region to be avoided (the exclusion region) or conversely the region
in which the curve must remain (the desired region) depends on the specific
requirements for the system, though it can often be specified in terms of linear
functions of x that bound it in particular intervals. In their simplest form, these
requirements can be reduced to ensuring that in a given interval [a, b] the curve
determined by the set of parametric equations y = Y (ω) and x = X(ω) lies
above or below the bounds li(x) of the exclusion/desired region(s). The Nichols
plot can be considered an informal and graphical method for solving problems
of this type, which provides no guarantee of correct results.

1Control engineers conventionally use j rather than i to represent the complex constant
and that practice is followed here

9

Figure 1: Nichols plot showing an example [9] of a desired region (shaded).

3 Formal and Symbolic Nichols Plot Analysis

In order to perform formal or symbolic analysis of Nichols plot requirements,
the requirements must be expressed in some formal manner. Nichols plot re-
quirements can be expressed as conditions on the curve determined by the set
of parametric equations for gain y = Y (ω) and phase–shift x = X(ω) on a
number of disjoint intervals [ai, bi]. These conditions state that the curve must
lie within a number of regions in appropriate intervals. Each of these region
can be described as a conjunction of inequalities on the bounds li of the exclu-
sion/desired regions. In the intervals [ai, bi] the curve may lie in one or more
regions. Thus, in each interval the conditions can be organised as a disjunction
of conjunctions.

Many procedures exist to decide whether conjunctions and disjunctions of
(in)equalities hold. Most of these procedures apply only to real closed fields [8]
or to very specific problems involving trigonometric [3] or transcendental func-
tions [20]. Existing procedures do not provide appropriate support to decide
problems involving arctan, the natural logarithm or logarithm to the base ten.
When the inputs to these three functions are rational functions their derivatives
are rational functions (considering ln(10) as a bounded constant) and proce-
dures for real closed fields can easily be applied to (in)equalities involving these
derivatives.

A set of conditions allowing one to reason about a curve based on the deriva-
tive and second derivative of the function that defines it have been developed.
These conditions examine the convexity of a function2 along with the value of
the function at a number of carefully determined points in a closed interval.

2A twice differentiable function f : R → R is convex in intervals in which its second
derivative is non–negative (for example x2) and concave in intervals in which the second
derivative is non–positive. A curve {(x, y) : y = f(x)} defined by a function f : R → R is
convex/concave in the intervals in which the function is convex/concave.

10

The conditions for convex curves are detailed below and are illustrated for
a twice differentiable function f : R → R in the interval D = [a, b]. Only the
cases for a convex curve f(x) in a closed interval are detailed as concave cases
are symmetric to this and can be omitted by looking at −f(x) in appropriate
intervals.

1. The curve is positive on x ∈ D if and
only if one of the following two mu-
tually exclusive conditions holds:

(a) the gradient of the curve is equal
to zero at some point within the
interval and the curve is positive
at that point, i.e, ∃x. f ′(x) = 0 ∧
f(x) > 0

f(x)

a b

0

(b) the gradient of the curve does not
equal zero at any point within
D and the curve is positive at
the limits of the interval, i.e,
∀x. f ′(x) 6= 0, f(a) > 0, and
f(b) > 0

0

f(x)

ba

f(x)

ba

0

2. The curve is negative on x ∈ D if and
only if the curve is negative at the limits
of D, i.e, f(a) < 0, and f(b) < 0

0
f(x)

a b

If none of the above conditions hold for a convex curve then there is at least
one point within the interval at which the function defining the curve is equal
to zero.

For functions with a finite number of intervals of convexity or concavity
(finitely inflective functions) any interval of interest can be split into a finite
number of intervals over which the curve is either convex or concave and the
conditions can be applied in each of these intervals.

11

4 A Prototype Tool

In order to use the conditions described in Section 3 one must be able to reliably
calculate the points of inflection of functions, the convexity of the corresponding
curve and the sign of the function at given points. This requires not only
powerful symbolic manipulation whose results are guaranteed correct but also
validated numerical calculation.

Computer algebra systems (CASs) provide a powerful method for symbolic
manipulation and analysis of mathematical formulae and are ideal for perform-
ing the transformations and calculations required. However, they can not al-
ways guarantee correct results, often ignoring assumptions and side conditions
and producing floating point errors during numerical calculation. Formal the-
orem provers provide powerful methods for formal analysis but lack the ability
to perform symbolic manipulation or numerical calculations efficiently. The
Maple–PVS [1] tool provides a link between the CAS Maple [15] and the theo-
rem prover PVS [13]. This system allows the calculations performed by Maple
to be formally verified by PVS, providing efficient and reliable mathematics.
The onus is on Maple to formulate the lemmas to be proved and pass them to
PVS along with the proof steps to be taken, usually by invoking some high level
PVS strategies.

Decision procedures and quantifier elimination algorithms for real closed
fields provide a powerful and efficient method for simplifying or solving lem-
mas involving polynomials. The QEPCAD–PVS [18] tool allows QEPCAD [12]
quantifier elimination routines to be accessed by PVS in the form of PVS strate-
gies. These routines can be used within PVS proofs and the results are consid-
ered reliable by PVS.

The Maple–PVS system has been extended to allow the automatic loading
of the QEPCAD shared object file into PVS (see Figure 2). This allows Maple
to access QEPCAD routines via PVS.

External Interface Foreign Function CallPVS Interface

Maple PVS
Object File

QEPCAD
Shared

Figure 2: Maple–PVS–QEPCAD.

The prototype tool is implemented in the Maple–PVS–QEPCAD system.
The front end of the prototype tool is provided by Maple via Maplets. These
provide a Java applet–like graphical user interface into which the input is en-
tered and any results or error messages are displayed. The input is a system
represented via the Laplace transform along with a list representing the exclu-
sion/desired region(s) in each of the intervals of interest in terms of a disjunction
of conjunctions of inequalities on the bounds of the region. A simple type check
mechanism ensures that the input is of the correct type and format. Maple
processes the input to form the appropriate lemmas for the application of the
conditions of Section 3 and invokes PVS, which in turn may invoke QEPCAD,
to perform the required verification. Once the process is complete Maple dis-

12

plays the results of the analysis and a plot showing the bounding lines for the
specified region along with the plot of the curve.

The following describes the steps taken by the prototype tool when consid-
ering a system F (s) and an exclusion/desired region, described in terms of a
number of disjoint intervals [ai, bi], in which there are a number of disjoint re-
gions (e.g, of the form lij(x) < y < lik(x)) described in terms of the lines lin(x)
bounding them.

1. The user supplied input is type checked and if it is not of the correct
format an error message is produced and the prototype tool halts.

2. Maple calculates the equations for gain y = Y (ω) and phase–shift x =
X(ω) of the system F (jω).

3. Maple functions are used to calculate, rewrite and simplify the first and
second derivatives (expressed as functions of ω) of y (with respect to x)
given the set of parametric equations y = Y (ω) and x = X(ω). To en-
sure that no important side conditions have been ignored when perform-
ing these calculation PVS is called. PVS attempts to confirm that the
function is well defined, is twice differentiable and the derivatives are as
specified by Maple. This is a relatively simple task for PVS, which uses
the custom built libraries and powerful general purpose simplification and
rewrite strategies such as GRIND to provide the relevant proofs. If PVS
fails to provide the required proof then the prototype tool produces an
appropriate error message and halts.

4. To calculate whether the curve is convex or concave in the intervals of
interest the interval(s) over ω that correspond to ai ≤ X(ω) ≤ bi must first
be calculated. To calculate these intervals Maple uses inbuilt functions to
solve equalities and evaluate floating point numbers to find all solutions ωik

to ai = X(ω) or bi = X(ω). All non–real and non–positive solutions are
discarded, the results are sorted into ascending order, then a point between
each X(ωik) is examined to determine the corresponding intervals. Maple
does this using numerical calculation and can suffer from the problem of
inexact arithmetic caused by floating point error and may also fail to find
all solutions.
Maple must ensure that the ‘solutions’ found are good approximations to
the actual solutions and that good approximations to all solutions with
in [ai, bi] have been found. Letting Di represent small intervals around
each of Maple’s solution then it must be shown that 1) in each Di there
is exactly one solution and 2) each solution lies within one of the intervals
Di. The tool essentially reapplies the steps described here to provide
reassurance that these conditions hold. Since neither of these problems
involve parametric equations this is much simpler and does not require
step 4; this also means that there will not be any uncontrolled recursion.
Also, since the intervals of interest are so small in the first problem it is
unlikely that there will be any points of inflection to cause the intervals
to be split into subinterval as described in steps 5 and 6, which again
simplifies this application.
To compensate for Maple’s inexact arithmetic the solutions are adjusted
by a small value to give ‘safe’ bounds for the interval; for example, if Maple

13

calculates ωik and ωi(k+1) such that [ai, bi] ' [X(ωik), X(ωi(k+1))] then
Maple adjust by some δ such that [ai, bi] ⊆ [X(ωik − δ), X(ωi(k+1) + δ)].
Maple calls PVS to verify that the solutions are indeed ‘safe’. If PVS fails
to provide any of the required proof then the prototype tool produces an
appropriate error message and halts.

5. Maple calculates the points of inflection of Y (ω)−lij(X(ω)), including any
points at which it becomes vertical, in the intervals [ωik − δ, ωi(k+1) + δ].
This is achieved using numerical methods to find points at which the
second derivative of Y (ω) − lij(X(ω)) with respect to x is zero and as a
consequence is subject to errors due to inexact arithmetic. In an attempt
to avoid this problem Maple calculates small intervals [pikm − δ, pikm + δ]
in which these points should lie (referred to as intervals of inflection).
PVS is called to confirm not only that these intervals contain true points
of inflection rather than points of zero curvature between two regions both
strictly convex or concave but also that each of these points is the only
point of inflection in an interval and that the derivative of Y (ω)−lij(X(ω))
does not equal zero in the interval unless it is exactly at the point of
inflection. This is a relatively difficult problem for PVS to solve but since
the derivative and second derivative of Y (ω) − lij(X(ω)) are rational it
is ideal for quantifier elimination. PVS uses the QEPCAD–PVS link to
invoke the QEPCAD strategies to verify Maple’s results. If PVS fails to
provide the required proof then the prototype tool produces an appropriate
error message and halts.

6. The intervals [ωik − δ, ωi(k+1) + δ] are split into [ωik − δ, pikm − δ] [pikm −
δ, pikm + δ] [pikm + δ, ωi(k+1) + δ] over which the curve is either convex or
concave, or is an interval of inflection.

7. Maple formulates the lemmas to be solved by PVS in the form λω ∈
[an, bn]. Y (ω) − lij(X(ω))(ω) ∼ij 0, where ∼i,j is the inequality sign
indicating whether the curve should lie above (>) or below (<) the line and
[an, bn] are the intervals calculated in step 6. PVS is called by Maple to
prove these lemmas; either determining whether the desired case from the
set of conditions holds or in the case of intervals of inflection determining,
when necessary, the sign of Y (ω)− lij(X(ω)) at the bounds of the interval
(due to the nature of these intervals the maximum and minimum of Y (ω)−
lij(X(ω)) must lie on the bounds). Whether the curve lies out with/within
any given region in any interval is determined by the conjunction of the
truth of the appropriate lemmas.

8. The truth of whether the system meets its Nichols plot requirements in
each interval is built up from the disjunction of the truth values for the
curve remaining out with/within each of the regions within the interval.
The truth of whether the system meets its Nichols plot requirements is
then built up from the conjunction of the truth values in each interval.
The prototype tool produces an appropriate message stating whether the
formula is true or false.

9. Maple displays the truth of this formula along with a plot of the lines and
the parametric plot of the curve.

14

PVS uses custom built libraries containing lemmas concerning the differ-
entiability of various functions important in control system analysis, such as
arctan, natural logarithm, logarithm to the base 10, arbitrary rational func-
tions and parametric functions, along with high level strategies and external
function calls to QEPCAD to provide the proofs required in the prototype tool.
These libraries contain definitions of the natural logarithm and arctan as Taylor
series, which allows bounds on the value of these functions for any given input
to be defined and numerical calculations using these functions to be validated.

5 Conclusions

The method presented in this paper allows the formal and symbolic analysis
of control systems in terms of their Nichols plot requirements. The method
requires reliable and efficient mathematics and a prototype tool to automating
this method takes advantage of the existing Maple–PVS link to provide reliable
mathematics and the QEPCAD–PVS link to utilise existing efficient quantifier
elimination techniques. The tool provides a reliable and rigorous analysis of
systems allowing the user of the tool to have little or no knowledge of formal
methods.

6 Acknowledgements

Thanks go to Richard Boulton and Ursula Martin for their help and guidance,
especially in the early stages of this work, also to Roy Dyckhoff and Steve Linton
for their continuing help and guidance. Additional thanks go to John Hall, Rick
Hyde and Yoge Patel for sharing their insights into control engineering, and to
Rob Arthan, Tom Kelsey and Colin O’Halloran for many helpful discussions.

References

[1] A Adams, M Dunstan, H Gottliebsen, T Kelsey, U Martin, and S Owre.
Computer algebra meets automated theorem proving: Integrating Maple
and PVS. In R. J Boulton and P. B Jackson, editors, Proceedings of the
14th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2001), volume 2152 of Lecture Notes in Computer Science, pages
27–42. Springer–Verlag, 2001.

[2] R Alur, C Courcoubetis, T. A Henzinger, and P. H Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid
systems. In R. L Grossman, A Nerode, A. P Ravn, and H Rischel, editors,
Hybrid Systems, volume 736 of Lecture Notes in Computer Science, pages
209–229. Springer, 1993.

[3] H Anai and V Weispfenning. Deciding linear–trigonometric problems. In
C Traverso, editor, ISSAC ’00: Proceedings of the 2000 international sym-
posium on Symbolic and algebraic computation, pages 14–22. ACM Press,
2000.

15

[4] Z. S Andraus and K. A Sakallah. Automatic abstraction and verification
of Verilog models. In S Malik, L Fix, and A. B Kahng, editors, DAC ’04:
Proceedings of the 41st annual conference on Design automation, pages
218–223. ACM Press, 2004.

[5] O. H Bosgra, H Kwakernaak, and G Meinsma. Design Methods for Control
Systems: Notes for a course of the Dutch Institute of Systems and Control,
Winter term 2001–2002. Department of Systems, Signals and Control,
University of Twente, 2001.

[6] R Boulton, R Hardy, and U Martin. A Hoare logic for single–input single–
output continuous–time control systems. In A Pnueli and O Maler, ed-
itors, Proceedings of the 6th International Workshop on Hybrid Systems:
Computation and Control (HSCC 2003), volume 2623 of Lecture Notes in
Computer Science, pages 113–125. Springer, 2003.

[7] R. E Bryant, S. K Lahiri, and S. A Seshia. Modeling and verifying systems
using a logic of counter arithmetic with lambda expressions and uninter-
preted functions. In E Brinksma and K Guldstrand Larsen, editors, CAV
’02: Proceedings of the 14th International Conference on Computer Aided
Verification, pages 78–92. Springer–Verlag, 2002.

[8] B. F Caviness and J. R Johnson, editors. Quantifier elimination and cylin-
drical algebraic decomposition. Springer Wien NewYork, 1998.

[9] Action Group FM(AG08). Robust flight control design challenge problem
formulation and manual: the high incidence research model (HIRM). Tech-
nical Report TP–088–4, version 3, Group for Aeronautical Research and
Technology in Europe (GARTEUR), 1997.

[10] K Forsman. Constructive commutative algebra in nonlinear control theory.
PhD thesis, Linköping University, 1991.

[11] R Hardy. Interactions between PVS and Maple in symbolic analysis of con-
trol systems. In J Carette and W. M Farmer, editors, Proceedings of the
12th Symposium on the Integration of Symbolic Computation and Mecha-
nized Reasoning (Calculemus 2005). ENTCS, 2005.

[12] H Hong. Qepcad. Available at http://www.cs.usna.edu/~qepcad/B/

QEPCAD.html.

[13] SRI International. PVS. Available at http://pvs.csi.sri.com.

[14] R Liska and S Steinberg. Applying quantifier elimination to stability anal-
ysis of difference schemes. Comput. Journal, 36(5):497–503, 1993.

[15] M. B Monagan, K. O Geddes, K. M Heal, G Labahn, S. M Vorkoetter,
J McCarron, and P DeMarco. Maple 7 programming Guide. Waterloo
Maple Inc, 2001.

[16] K Ogata. Modern control engineering. Prentice–Hall, third edition, 1997.

16

[17] R. W Pratt, editor. Flight control systems: Practical issues in design and
implementation, volume 57 of IEE Control Engineering Series. The Institu-
tion of Electrical Engineers, 2000. Copublished by The American Institute
of Aeronautics and Astronautics.

[18] A Tiwari. PVS–QEPCAD. Available at http://www.csl.sri.com/users/
tiwari/qepcad.html.

[19] A Tiwari and G Khanna. Series of abstractions for hybrid automata. In
C. J Tomlin and M. R Greenstreet, editors, Hybrid Systems: Computation
and Control HSCC, volume 2289 of LNCS, pages 465–478. Springer, March
2002.

[20] V Weispfenning. Deciding linear–exponential problems. SIGSAM Bullettin,
34(1):30–31, 2000.

17

Transfer Principle Proof Tactic for Nonstandard

Analysis

Brian Huffman∗

3rd August 2005

Abstract

This paper describes a type constructor for nonstandard extensions
of arbitrary types, generalizing the previous formalization of nonstandard
analysis in Isabelle by Fleuriot and Paulson [1]. In addition to numeric
types, nonstandard extensions of function spaces and set types also prove
useful—they provide an elegant way to define internal functions and in-
ternal sets.

The paper also describes an implementation of the transfer principle
of nonstandard analysis as an Isabelle proof tactic. When applied to
an appropriate subgoal, the transfer tactic replaces the subgoal with a
logically equivalent one that does not refer to nonstandard types. The
tactic produces a proof of the equivalence; it does not generate any new
axioms.

1 Introduction

Nonstandard analysis [2] was developed in the 1960s by Abraham Robinson to
provide a rigorous foundation for the use of infinitesimal numbers in mathe-
matics. Nonstandard analysis introduces an extension of the reals called the
hyperreals, which includes infinitesimal and infinite numbers in addition to the
standard reals. The hyperreals also preserve many properties of the reals, ac-
cording to the transfer principle: Any true first order statement involving arith-
metic on the reals may be reinterpreted as a true first order statement about
the hyperreals.

Most calculus textbooks define derivatives and other notions of calculus using
the epsilon-delta definition of limits. The hyperreal numbers require more work
to formalize, but they offer significant advantages. First, using infinitesimals is
often more intuitive: For example, in nonstandard analysis we can interpret the
derivative dy

dx
as an actual ratio of two infinitesimal numbers. Second, by avoid-

ing epsilon-delta limits, nonstandard analysis reduces the number of quantifiers
we must deal with in proofs. This is especially important for automation in a
theorem prover, where quantifiers are notoriously difficult to handle.

∗OGI School of Science and Engineering at OHSU, Beaverton, OR 97006

18

1.1 Isabelle/HOL

Isabelle is a generic interactive theorem prover, which can be instantiated with
various kinds of object-logics. Isabelle/HOL is an instantiation of higher order
logic.

The formula syntax in Isabelle/HOL includes standard logical notation for
connectives, quantifiers, and set operations. In addition, Isabelle has separate
syntax for the meta-level logic:

∧
, =⇒, and ≡ represent meta-level universal

quantification, implication, and equality. There is also notation for nested meta-
level implication: [[P1; . . . ; Pn]] =⇒ R is short for P1 =⇒ · · · =⇒ Pn =⇒ R.
Other specialized Isabelle syntax will be introduced as it is used.

The syntax of types is similar to the language ML, except that Isabelle uses
a double arrow (⇒) for function types. Some binary type constructors are
written infix, as in the product type nat × bool; other type constructors are
written postfix, as in bool list or nat set. Finally, ′a and ′b denote free type
variables.

Isabelle theories declare new constants with the consts keyword. Defini-
tions may be supplied later using defs; alternatively, constants may be declared
and defined at once using constdefs. Theories introduce new types with the
typedef command, which defines a type isomorphic to a given non-empty set.
The keywords lemma and theorem introduce theorems.

1.2 HOL-Complex

Fleuriot and Paulson [1] have already developed a theory of nonstandard anal-
ysis in Isabelle/HOL: Their development comprises the HOL-Complex theory,
which is part of the Isabelle distribution. The HOL-Complex theory has several
parts. First, it includes a formalization of a few ordinary numeric types, includ-
ing the rationals and the reals. Next, there is a formalization of free ultrafilters,
which are used to define nonstandard types. Three separate nonstandard types
are defined, each with their own specific set of operations: hyperreals, hyper-
naturals, and the hypercomplex numbers. Finally, these nonstandard types are
used to formalize various concepts in real analysis.

The development described in the remainder of this paper may be considered
as a potential replacement for the middle part of the HOL-Complex theory. It
reuses much of the first part of HOL-Complex, including the formalization of
standard numeric types and free ultrafilters. The remainder of the development
consists of a framework for defining nonstandard types, defining operations on
nonstandard types, and proving properties about them.

2 Type Constructor for Nonstandard Analysis

The theory starts with the definition of the star type constructor. The type ′a

star is defined as the set of equivalence classes of the starrel relation. (Note that
double-slash // is Isabelle syntax for the set quotient operator.) In turn, starrel

is defined in terms of an arbitrary free ultrafilter over the natural numbers, using
Hilbert’s indefinite choice operator. The development of nonstandard analysis is
non-constructive, with the existence of a free ultrafilter proven using the axiom
of choice. (See Appendix A for a review of free ultrafilters.)

19

constdefs

FreeUltrafilterNat :: nat set set (U)
U ≡ SOME U . FreeUltrafilter U

constdefs

starrel :: ((nat ⇒ ′a) × (nat ⇒ ′a)) set

starrel ≡ {(X ,Y). {n. X n = Y n} ∈ U}

typedef ′a star = (UNIV :: (nat ⇒ ′a) set) // starrel

The typedef command generates functions Rep-star and Abs-star to con-
vert between the new type ′a star and the representation type (nat ⇒ ′a) set.
Given a value of type ′a star, Rep-star returns its equivalence class of sequences;
Abs-star is the inverse mapping. The result is undefined when Abs-star is ap-
plied to a set that is not an equivalence class.

Abs-star is not very convenient to use by itself, so we now define some other
basic functions to construct values of type ′a star. The function star-n returns
the value corresponding to the equivalence class of a given sequence. It is not
injective, but it is surjective, which means that star-n may be used for doing case
analysis on values of type ′a star. The function star-of is an injective function
that returns “standard” values of type ′a star, which correspond to constant
sequences.

constdefs

star-n :: (nat ⇒ ′a) ⇒ ′a star

star-n X ≡ Abs-star {Y . (X ,Y) ∈ starrel}

star-of :: ′a ⇒ ′a star

star-of x ≡ star-n (λn. x)

The HOL-Complex theory defines lifted versions of many functions on real
numbers. For example, addition on reals (of type real ⇒ real ⇒ real) is lifted
to addition on hyperreals (of type hypreal ⇒ hypreal ⇒ hypreal). The HOL-
Complex theory defines a large number of these lifted functions, all in a similar
way.

To generalize over this basic pattern of definition, we now define a function
Ifun that is essentially a lifted version of the two-argument application function
(λf x . f x). It is called Ifun because its range is exactly the set of internal
functions. It is similar to the function starfun-n from HOL-Complex, but instead
of taking a sequence of functions as an argument, it takes a value of type (′a ⇒
′b) star, which represents an equivalence class of such sequences.

constdefs

Ifun :: (′a ⇒ ′b) star ⇒ ′a star ⇒ ′b star (infixl ? 300)
Ifun f ≡ λx . Abs-star

(
⋃

F∈Rep-star f .
⋃

X∈Rep-star x . {Y . (λn. F n (X n), Y) ∈ starrel})

lemma Ifun-star-n: star-n F ? star-n X = star-n (λn. F n (X n))

lemma Ifun [simp]: star-of f ? star-of x = star-of (f x)

Using star-of and Ifun as basic combinators, it is possible to define lifted
versions of functions of any arity. It takes some non-trivial reasoning using the

20

definition of starrel to establish the basic properties of Ifun, but we only have
to do this once: For any function defined in terms of Ifun, we can then easily
derive its properties from the Ifun lemmas.

One more useful combinator function is unstar, which converts from type
bool star to type bool. It comes in very handy for defining lifted versions of
predicates.

constdefs

unstar :: bool star ⇒ bool

unstar b ≡ b = star-of True

lemma unstar-star-n: unstar (star-n P) = ({n. P n} ∈ U)

lemma unstar [simp]: unstar (star-of p) = p

Next we use star-of, Ifun, and unstar to define several useful functions for
defining lifted functions and predicates.

constdefs

Ifun-of :: (′a ⇒ ′b) ⇒ (′a star ⇒ ′b star)
Ifun-of f ≡ Ifun (star-of f)

Ifun2 :: (′a ⇒ ′b ⇒ ′c) star ⇒ (′a star ⇒ ′b star ⇒ ′c star)
Ifun2 f ≡ λx y . f ? x ? y

Ifun2-of :: (′a ⇒ ′b ⇒ ′c) ⇒ (′a star ⇒ ′b star ⇒ ′c star)
Ifun2-of f ≡ λx y . star-of f ? x ? y

Ipred :: (′a ⇒ bool) star ⇒ (′a star ⇒ bool)
Ipred P ≡ λx . unstar (P ? x)

Ipred-of :: (′a ⇒ bool) ⇒ (′a star ⇒ bool)
Ipred-of P ≡ λx . unstar (star-of P ? x)

Ipred2 :: (′a ⇒ ′b ⇒ bool) star ⇒ (′a star ⇒ ′b star ⇒ bool)
Ipred2 P ≡ λx y . unstar (P ? x ? y)

Ipred2-of :: (′a ⇒ ′b ⇒ bool) ⇒ (′a star ⇒ ′b star ⇒ bool)
Ipred2-of P ≡ λx y . unstar (star-of P ? x ? y)

We can also use star-of, Ifun, and unstar to define a function that produces
internal sets. It is similar to the function starset-n from HOL-Complex, but like
Ifun it takes a value of type ′a set star as an argument instead of a sequence.

constdefs

Iset :: ′a set star ⇒ ′a star set

Iset A ≡ {x . Ipred2-of (op ∈) x A}

Iset-of :: ′a set ⇒ ′a star set

Iset-of A ≡ Iset (star-of A)

lemma Iset-star-n:
(star-n X ∈ Iset (star-n A)) = ({n. X n ∈ A n} ∈ U)

Finally, we can define many standard overloaded constants for the star type
constructor, using the lifting functions defined above.

21

defs (overloaded)
star-zero-def : 0 ≡ star-of 0

star-one-def : 1 ≡ star-of 1

star-number-def : number-of b ≡ star-of (number-of b)
star-add-def : (op +) ≡ Ifun2-of (op +)
star-diff-def : (op −) ≡ Ifun2-of (op −)
star-minus-def : uminus ≡ Ifun-of uminus

star-mult-def : (op ∗) ≡ Ifun2-of (op ∗)
star-divide-def : (op /) ≡ Ifun2-of (op /)
star-inverse-def : inverse ≡ Ifun-of inverse

star-le-def : (op ≤) ≡ Ipred2-of (op ≤)
star-less-def : (op <) ≡ Ipred2-of (op <)
star-abs-def : abs ≡ Ifun-of abs

star-div-def : (op div) ≡ Ifun2-of (op div)
star-mod-def : (op mod) ≡ Ifun2-of (op mod)
star-power-def : (op ˆ) ≡ λx n. Ifun-of (λx . x ˆ n) x

3 Transfer Tactic

The transfer principle is a meta-mathematical theorem, which says that many
propositions over nonstandard types are logically equivalent to syntactically
similar propositions over standard types. Such a principle cannot be encoded
as a single theorem in Isabelle because it quantifies over valid theorems, which
are not first class entities in Isabelle’s object logic. Instead, we can encode it as
an algorithm that can generate any of an entire family of theorems.

In this development, the transfer principle is implemented as a proof tactic.
When applied to an appropriate subgoal, it replaces the subgoal with a logically
equivalent one that does not refer to the star type constructor. The tactic
produces a proof of the equivalence; it does not generate any new axioms.

3.1 Stating the Equivalence

When the transfer tactic is first called, it obtains a syntactic representation of
the current subgoal as an ML term datatype. The term is expected to represent
a proposition about star types. The job of the tactic is to replace the subgoal
with an equivalent one that does not mention star types.

Therefore, the first thing that the tactic does is to traverse the term, remov-
ing all references to the star type constructor from the types of constants, and
also completely removing any constants like Ifun, star-of, Iset, etc. Hopefully
the resulting term will still be type-correct: The types of constants like Ifun

and star-of reduce to the type of an identity function when un-starred, so they
can safely be removed. Any other constant whose type mentions star should be
polymorphic, so that it will still work at the un-starred instance. For example,
the equality operator is valid at both type ′a star ⇒ ′a star ⇒ bool and type
′a ⇒ ′a ⇒ bool.

Next, the tactic creates a new term that states an equivalence between the
original term and its un-starred version. If this equivalence term type checks,
then the tactic will attempt to prove the equivalence.

22

3.2 Starting the Equivalence Proof

We start with an equivalence between terms of type prop, which is the type
of truth values in Isabelle’s meta-logic. The first step is to reduce this to an
equivalence between terms of type bool, the type of truth values in the object
logic. Therefore we unfold a set of rewrite rules that convert all of the meta-level
quantification, implication, and equalities to ordinary object-level constructs.

The next step involves unfolding a few different sets of definitions. First of
all, the tactic unfolds all of the definitions for the overloaded constants listed in
the previous section, including star-zero-def, star-add-def, star-le-def, etc. The
tactic also unfolds the definitions of constants like Ifun-of, Ipred, and star-of.
After all this unfolding, the remaining equivalence subgoal should only mention
the constants Ifun, Iset, star-n, boolean operators, quantifiers, and a few other
constants that the transfer principle knows about.

Once the equivalence has been reduced to a manageable form, the following
introduction rule starts the remainder of the proof. (Trueprop is the function
in Isabelle that maps from type bool to type prop—it is usually implicit.)

lemma transfer-start :
P ≡ {n. Q} ∈ U =⇒ Trueprop P ≡ Trueprop Q

3.3 Transfer Introduction Rules

The remaining steps of the proof are completely syntax-directed. At each step,
the top-level connective determines an appropriate introduction rule to apply.
Each argument to the top-level connective generates a new subgoal, each of
which also takes the form of an equivalence.

The transfer introduction rules for unary negation, conjunction, and exis-
tential quantification over star types are all proven using the properties of free
ultrafilters. Similar introduction rules for other boolean operators and quanti-
fiers can be derived from these rules.

lemma transfer-not :
[[p ≡ {n. P n} ∈ U]] =⇒ ¬ p ≡ {n. ¬ P n} ∈ U

lemma transfer-conj :
[[p ≡ {n. P n} ∈ U ; q ≡ {n. Q n} ∈ U]]

=⇒ p ∧ q ≡ {n. P n ∧ Q n} ∈ U

lemma transfer-ex :
[[
∧

X . p (star-n X) ≡ {n. P n (X n)} ∈ U]]
=⇒ ∃ x :: ′a star . p x ≡ {n. ∃ x . P n x} ∈ U

The above introduction rules only deal with equivalences between booleans.
However, it is usually the case that some subterms will have non-boolean types,
for example star types or sets. Rules for constants with these other types are
similar, but have a different form on the right hand side: For star types the
right side contains an application of star-n, and for sets the right hand side
starts with Iset.

lemma transfer-eq :
[[x ≡ star-n X ; y ≡ star-n Y]] =⇒ x = y ≡ {n. X n = Y n} ∈ U

23

lemma transfer-if :
[[p ≡ {n. P n} ∈ U ; x ≡ star-n X ; y ≡ star-n Y]]

=⇒ (if p then x else y) ≡ star-n (λn. if P n then X n else Y n)

lemma transfer-mem:
[[x ≡ star-n X ; a ≡ Iset (star-n A)]]

=⇒ x ∈ a ≡ {n. X n ∈ A n} ∈ U

lemma transfer-set-eq :
[[a ≡ Iset (star-n A); b ≡ Iset (star-n B)]]

=⇒ a = b ≡ {n. A n = B n} ∈ U

Each application of one of these introduction rules results in a smaller sub-
goal. Eventually, the left hand side of the subgoals will reduce to an atomic
term, which can be discharged by one of the following rules.

lemma transfer-star-n: star-n X ≡ star-n (λn. X n)

lemma transfer-bool : p ≡ {n. p} ∈ U

After the equivalence proof is done, the transfer tactic uses the resulting
equivalence theorem as a rewrite rule to replace the old subgoal with the new,
un-starred version.

3.4 Using the Transfer Tactic

I have used the transfer tactic to convert two large collections of theorems from
ordinary types to star types. First, it is easily proved that the star type con-
structor inherits membership in a large number of axiomatic type classes from
its argument type; for example, for any ordered field ′a, ′a star is also an or-
dered field. For each class axiom, invoking the transfer tactic reduces the proof
obligation at type ′a star to type ′a, which may be discharged by applying the
class axiom at that type.

One axiomatic type class that presents a slight difficulty is the recpower

class, whose axioms assert that the exponentiation operator (op ˆ :: ′a ⇒ nat

⇒ ′a) is defined in a standard way. When we try to prove that ′a star inherits
the recpower class from ′a, we get the following two subgoals:

∧
(a:: ′a star). a ˆ 0 = 1∧
(a:: ′a star) (n::nat). a ˆ Suc n = a ∗ a ˆ n

The transfer tactic handles the first subgoal just fine, because it only uses
universal quantification over star types. Indeed, this is the situation for the vast
majority of numeric class axioms. However, the second subgoal also quantifies
over type nat, which the transfer tactic does not handle. The workaround is
to prove, as a lemma, a modified version of the second subgoal where only a is
universally quantified, and n is a free variable.

The second major use case is the conversion of the entire Isabelle/HOL
natural number theory into the nat star type. For each theorem in the original
theory file, a new version is stated that uses type nat star in place of nat, and
Ifun-of Suc in place of Suc. It is also necessary to add explicit meta-universal
quantifiers for each free variable of type nat star in each theorem, because
the transfer tactic is not allowed to change the types of free variables in the

24

middle of a proof. (This does not affect the resulting theorem, because Isabelle
automatically discharges meta-universal quantifiers after the end of any proof.)
The proof script for each of the theorems is a one-liner: First apply the transfer
tactic, and then apply the original rule from the theory of natural numbers.

The only theorems from the natural number theory that require extra mod-
ifications are the induction rules, because they involve universal quantification
over predicates P :: nat ⇒ bool. In other presentations of nonstandard analy-
sis, the transfer principle produces induction rules for nat star with extra side
conditions that restrict P :: nat star ⇒ bool to be an internal predicate. In this
development, however, no side conditions are necessary: The transfer tactic can
generate induction rules that quantify over P :: (nat ⇒ bool) star, whose type
can represent only internal predicates.

4 Conclusion

The development described in this paper borrows much from the HOL-Complex
theory. My definition of a type constructor for nonstandard types is a straight-
forward generalization of the definitions of nonstandard types in the HOL-
Complex theory. I have also reused its formalization of free ultrafilters, and
its formalization of the real number system.

One original contribution of this work is to refactor the common patterns of
definitions into a few basic combinators, from which many other concepts may
be defined. Together with the transfer principle, this allows reasoning about
nonstandard types without ever having to look at how they are represented
in terms of sequences using ultrafilters. To the end user, it is almost as if
nonstandard analysis had been formalized axiomatically.

The primary benefit to this work, however, is the degree of automation that
it brings to the formalization of nonstandard analysis. Many theorems that
previously required complex proofs can now be done in a straightforward and
almost trivial manner.

References

[1] Jacques D. Fleuriot and Lawrence C. Paulson. Mechanizing nonstandard
real analysis. In LMS J. Comput. Math., pages 140–190, 2000.

[2] Abraham Robinson. Non-standard Analysis. Princeton Landmarks in Math-
ematics. Princeton University Press, 1996.

A Free Ultrafilters

This section is a quick overview of free ultrafilters and how they are used to
define the hyperreal numbers. Let U be a set of sets of naturals, and let the
elements of U be called the “large” sets. Here are some properties of large sets
that we might like to have:

1. The set of all naturals is large, and the empty set is not.

2. If A and B are large, then so is A ∩ B.

25

3. If A is large and A ⊆ B, then B is large.

4. If A is not large, then the complement of A is large.

5. If A is finite, then A is not large.

If U satisfies the first three properties, then we say that U is a filter. If U
additionally satisfies Property 4, then U is an ultrafilter ; and if U satisfies all
five then U is a free ultrafilter. Using Zorn’s Lemma (an equivalent form of the
axiom of choice) it is possible to prove the existence of a free ultrafilter over the
natural numbers.

We can use a free ultrafilter to define the hyperreal numbers as equivalence
classes of sequences of real numbers. We will say that two sequences X and
Y are equivalent (X ∼ Y) if their agreement set {n. X(n) = Y (n)} is large.
Properties 1–3 ensure that this is an equivalence relation.

We can also use the ultrafilter to define a less-than relation on sequences of
reals. We will say that X < Y if the set {n. X(n) < Y (n)} is large. Proper-
ties 1–3 ensure that the less-than relation respects the equivalence relation on
sequences. Property 4 ensures that the order trichotomy of reals is preserved:
For any sequences X and Y , exactly one of X < Y , Y < X , or X ∼ Y must
hold.

Given any real number x, we can define a corresponding“standard”hyperreal
as the equivalence class of the constant sequence (x, x, x, . . .). Property 1 ensures
that this is an injective mapping. Property 5 is used to show that this mapping
is not surjective. Consider the sequence (1, 2, 3, . . .) which does not contain
more than one occurrence of any number. This sequence is not equivalent to
any constant sequence, since the agreement set between the two is finite, and
thus not large. In fact, the hyperreal corresponding to the sequence (1, 2, 3, . . .)
is greater than any standard number.

26

Towards a Hoare logic for abstract systems

Erik Arne Mathiesen

Queen Mary College, University of London

1 Introduction

With the ever-increasing complexity of systems in the fields of engineering and
computer science, testing by traditional methods, such as simulation, very often
fails to address all functional issues and bugs. This has led to an increasing need
for formal verification techniques to determine whether or not systems in ques-
tion uphold safety-critical properties. Formal approaches to system verification
is wide-spread now in safety-critical hardware and software design, although it
is virtually unexplored outside these areas.

By an abstract system we mean a framework describing a collection of systems.
We propose a framework for reasoning about abstract systems using a logical
framework in the style of Hoare logic [3]. This framework can be used to for-
mally prove properties of abstract systems. The approach we take is a direct
extension of previous work done on linear control systems [7]. The setting of our
abstract systems will be the mathematical language of category theory [1, 5].
Using category theory we will define our notion of abstract systems as well as
our notion the computational behavior of such. With this general setting we will
show how to extract some concrete logical frameworks for reasoning about tra-
ditional systems, in particular systems described by linear differential equations,
as instantiations of our abstract framework.

2 System theories and computational theories

We choose to make a distinction between what we call the statics of the systems,
described by the system theories, and the dynamics of the systems, described
by the computational theories. In other words, the system theory describes
the structure of the systems, whereas the computational theory describes how
they interact. A system theory can have many different computational theo-
ries describing the dynamics of the systems, although ultimately, these different
computational theories should be representations of the same behavior.

Formally we define a system theory to be a subcategory of the category Rel

of relations and sets and view each system of the system theory simply as
a morphism in the category, i.e. as a relation between two sets. We define
our computational theories to be traced monoidal subcategories [4] of Rel and
we link the two together with a functor, called a computational interpretation,
which maps a system theory to a computational theory and which hits all objects
and morphisms in its codomain.

27

3 A Hoare logic for computational theories

Having defined our quite basic notions of system theories and computational the-
ories we can define a logical framework for reasoning about the computational
behavior of a class systems, in other words a logical framework for reasoning
about computational theories. Our framework will be Hoare logic-styled in the
sense that we will define a notion of Hoare triples for the morphisms of our
computational theories.

To be able to define Hoare triples of morphisms we need to be able to talk about
restrictions of morphisms to subsets of its source and target, since we are work-
ing on the category of relations and sets this is not to difficult to archive, but
note that the construction used could quite easily be generalized to arbitrary
categories.

In the following let C be an arbitrary subcategory of Rel. If x ∈ C0 then we
define the powerset mapping P : C0 → Set to be

P(x) = {y ∈ Rel0 | y ⊆ x}

If f : x → y ∈ C1 then we define the powerset extension f ∗ : P(x) → P(y) of f

to be
f∗(p) = {a ∈ y | ∃b ∈ p(bfa)}

for all p ∈ P(x). This way we can talk about restrictions of a morphism with
regards to it source and target and we can hence define the Hoare triple of
morphism similar to the traditional case. Note that if f : x → y ∈ C1 then
intuitively the Hoare-triple {p}f{q} holds whenever f ∗(p) ⊆ q for all objects
p ∈ P(x) and q ∈ P(y).

Using the above notion of a Hoare triple we define a logical framework of infer-
ence rules with which one can reason about morphisms of any computational
theory. The logical framework consists of a set of inference rules, shown below,
one for each operation of the computational theories, i.e. composition, monoidal
product and trace, and one axiom scheme, axiomatising the intuitive meaning
of Hoare triples, as discussed above.

• Composition
{p}f{q} {q}g{r}

(◦)
{p}g ◦ f{r}

where f : x → y, g : y → z and p ∈ P(x), q ∈ P(y), r ∈ P(z).

• Monoidal product
{p}f{q} {r}g{s}

{p ⊗ r}f ⊗ g{q ⊗ s}

where f : x → y, g : z → w and p ∈ P(x), q ∈ P(y), r ∈ P(z), s ∈ P(w).

• Trace
{p ⊗ z}f{q ⊗ z}

{p}Trz

x,y
(f){q}

where f : x × z → y × z and p ∈ P(x), q ∈ P(y).

28

As mentioned the logical systems has one axiom scheme, as shown below, which
is defined for all objects in theory and all morphisms which are in the set I of
so-called atomic systems.
We introduce the notion of atomic systems as an abstraction of basic constructs
as known from actual systems, e.g. assignments in program languages, registers
and scalar-multiplication in stream circuits etc. We define a Hoare computa-
tional theory to be a computational theory with a set of atomic systems such
that every morphism of the theory can be constructed using a finite series of
atomic systems and the basic operations of the theory. Furthermore a Hoare
computational theory must for all pairs of objects include a subset inclusion
morphism between these, this provides us with weakening and strengthening
rules as special cases of our composition rule.

4 Instantiations

Several instantiations of the framework are currently under investigation, these
include stream calculus and stream circuits [8], while programs [3], linear con-
trol systems [6] and the geometry of interaction [2]. These instantiations of the
general framework into actual system theories provides an interesting setting
for examining the system theories in question and particularly the behavior of
feedbacks in these systems. An interesting result of the instantiations is the
observation that the instantiation of the language of while programs actually
instantiates as the original Hoare logic. This shows that our framework is in-
deed a generalisation of Hoare logic in the setting of abstract systems.

Acknowledgments

This research is being done in collaboration with Dr. Paulo Oliva and Prof.
Ursula Martin and is being supported by EPSRC grant GR/S31242/01 and
carried out as part of the project ”Logical Structures for Control” under the
supervision of Prof. Ursula Martin.

References

[1] Samuel Eilenberg and Saunders MacLane. General theory of natural equiv-
alences. Transactions of the American Mathematical Society, 58(2):231–294,
1945.

[2] Jean-Yves Girard. Towards a geometry of interaction. In J. W. Gray and
A. Scedrov, editors, Categories in Computer Science and Logic, pages 69–
108. American Mathematical Society, 1989. Proceedings of the AMS-IMS-
SIAM Joint Summer Research Conference, June 14–20, 1987, Boulder, Col-
orado; Contemporary Mathematics Volume 92.

[3] C. A. R. Hoare. An axiomatic basis for computer programming. Communi-

cations of the ACM, 12(10):576–585, 1969.

[4] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Proc. Camb.

Phil. Soc., 119:447–468, 1995.

29

[5] Saunders MacLane. Categories for the Working Mathematician. Springer,
1971.

[6] Katsuhiko Ogata. Modern Control Engineering. Prentice-Hall, 3rd edition,
1997.

[7] Ruth Hardy & Ursula Martin Richard Boulton. A Hoare Logic for Single-
Input Single-Output Continuous-Time Control Systems . In Proceedings

6th International Workshop on Hybrid Systems, Computation and Control,
volume 2623 of Lecture Notes in Computer Science, pages 113–125. Springer,
2003.

[8] J. J. M. M. Rutten. Behavioural differential equations: a coinductive cal-
culus of streams, automata, and power series. Theor. Comput. Sci., 308(1-
3):1–53, 2003.

30

Incorporating Formal Methods in the Design Flow of DSP Systems

Behzad Akbarpour and Sofiène Tahar

Dept. of Electrical and Computer Engineering, Concordia University

1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada

Email: {behzad,tahar}@ece.concordia.ca

Abstract

In this paper we propose a framework for the incorporation of formal methods in the design flow of DSP
(Digital Signal Processing) systems in a rigorous way. In the proposed approach we model and verify
DSP descriptions at different abstraction levels using higher-order logic based on the HOL (Higher Order
Logic) theorem prover. This framework enables the formal verification of DSP designs which in the
past could only be done partially using conventional simulation techniques. To this end, we provide a
shallow embedding of DSP descriptions in HOL at the floating-point, fixed-point, RTL (Register Transfer
Level), and netlist gate levels. We make use of existing formalization of floating-point theory in HOL
and introduce a parallel one for fixed-point arithmetic. The high ability of abstraction in HOL allows
a seamless hierarchical verification encompassing the whole DSP design path, starting from top level
floating- and fixed-point algorithmic descriptions down to RTL, and gate level implementations. We
illustrate the new verification framework using different case studies such as digital filters and FFT (Fast
Fourier Transform) algorithms.

1 Introduction

Digital system design is characterized by ever increasing system complexity that has to be implemented
within reduced time, resulting in minimum costs and short time-to-market. These characteristics call for a
seamless design flow that allows to perform the design steps on the highest suitable level of abstraction. For
most digital signal processing systems, the design has to result in a fixed-point implementation. This is due
to the fact that these systems are sensitive to power consumption, chip size and price per device. Fixed point
realizations outperform floating-point realizations by far with regard to these criteria. Figure 1 illustrates a
general DSP design flow as used nowadays in leading industry design projects.

Bench

HDL
Behavioral

RTL
Capture

Schematic HDL Editors

Netlist

Route
Place and

Synthesis
Logic

Test

Hardware
Architecture

Algorithm
Fixed-Point

Compilers
Datapath

Theoretical Design

External Tools
IC Design Using

System Design
Using DSP Tool

Specification
Ideal Real

Floating-Point
 Algorithm

Figure 1: DSP design flow

The design of digital signal processing systems starts from an ideal real number specification. In theoreti-
cal analysis of digital systems, we generally assume that signal values and system coefficients are represented

31

in the real number system and expressed to infinite precision. This allows to ignore the effects of finite
wordlengths and fixed exponents and to abstract from all implementation details. When implemented in
special-purpose digital hardware or as a computer algorithm, we must represent signals and coefficients in
some digital number system that must always be of finite precision. In this case, attention must be paid to the
effects of using finite register lengths to represent all relevant design parameters [26]. Despite the advantages
offered by digital networks, there is an inherent accuracy problem associated with digital signal processing
systems, since the signals are represented by a finite number of bits and the arithmetic operations must be
carried out with an accuracy limited by the finite word length of the number representation. Depending on
the type of arithmetic used in the system algorithm, the type of quantization used to reduce the word length
to a desired size, and the exact system structure used, one can generally estimate how system performance is
affected by these finite precision effects. There are several types of arithmetics used in the implementation of
digital systems. Among the most common are floating-point and fixed-point. At the floating- and fixed-point
levels, all operands are represented by a special format or assigned a fixed word length and a fixed exponent,
while the control structure and the operations of the ideal program remain unchanged. The transformation
from real (numbers) to floating- and fixed-point is quite tedious and error-prone. On the implementation
side, the fixed-point model of the algorithm has to be transformed/synthesized into the best suited target
description, either using a hardware description language (HDL) or a programming language. Meeting the
above (sometimes conflicting) requirements is a great challenge in any DSP design project.

The above design process can be aided by a number of specialized CAD tools such as SPW (Cadence) [7],
CoCentric (Synopsys) [8], Matlab-Simulink (Mathworks) [24], and FRIDGE (Aachen UT) [22]. The confor-
mance of the fixed-point implementation with respect to the descriptions in floating-point or real algorithm
on one hand, and the RT (Register Transfer) and gate levels on the other hand is verified by simulation
techniques. Simulation, however, is known to provide partial verification as it cannot cover all design errors,
especially for large systems. On the other hand, adopting formal verification in system design generally
means using methods of mathematical proof rather than simulation to ensure the quality of the design, to
improve the robustness of a design and to speed up the development.

In this paper we propose a methodology for applying formal methods to the design flow of DSP systems
in a rigorous way. The corresponding commutating diagram is shown in Figure 2.

FP Error

FP Real Value
(HOL)

(HOL)

FP
(HOL)

FXP

FP

(Convert)

(Convert) Analysis

REALREAL
Shallow

Shallow

Shallow Valuation

Valuation

Embedding

Embedding

Embedding

Analysis
FXP Error

(HOL)
FXP Real ValueFXP

(HOL)

Analysis
FP to FXP Error

Embedding

(Synthesize)

RTL

(Synthesize)
Implication
Logical

(HOL)

Netlist

Shallow

Shallow Netlist
(HOL)Embedding

Implication
Logical

RTL

Figure 2: Proposed DSP specification and verification approach

Thereafter, we model the ideal real specification of the DSP algorithms and the corresponding floating-
point (FP) and fixed-point (FXP) representations as well as the RT and gate level implementations as
predicates in higher-order logic. The overall methodology for the formal specification and verification of
DSP algorithms will be based on the idea of shallow embedding of languages [6] using the HOL theorem
proving environment[13]. In the proposed approach, we first focus on the transition from real to floating-
and fixed-point levels. For this, we make use of existing theories in HOL on the construction of real [14] and
complex [17] numbers, the formalization of IEEE-754 standard [18] based floating-point arithmetic [15, 16],
and the formalization of fixed-point arithmetic [4]. We use valuation functions to find the real values of the
floating- and fixed-point DSP outputs and define the error as the difference between these values and the

32

corresponding output of the ideal real specification. Then we establish fundamental lemmas on the error
analysis of floating- and fixed-point roundings and arithmetic operations against their abstract mathemat-
ical counterparts. Finally, based on these lemmas, we derive expressions for the accumulation of roundoff
error in floating- and fixed-point DSP algorithms using recursive definitions and initial conditions. While
theoretical work on computing the errors due to finite precision effects in the realization of DSP algorithms
with floating- and fixed-point arithmetics has been extensively studied since the late sixties [21], this paper
contains the first formalization and proof of this analysis using a mechanical theorem prover, here HOL. The
formal results are found to be in good agreement with the theoretical ones.

After handling the transition from real to floating- and fixed-point levels, we turn to the HDL representa-
tion. At this point, we use well known techniques to model the DSP design at the RTL level within the HOL
environment. The last step is to verify this level using a classical hierarchical proof approach in HOL [25].
In this way, we hierarchically prove that the DSP RTL implementation implies the high level fixed-point
algorithmic specification, which has already been related to the floating-point description and the ideal real
specification through the error analysis. The verification can be extended, following similar manner, down
to gate level netlist either in HOL or using other commercial verification tools as depicted in Figure 2.

The rest of the paper is organized as follows: Section 2 describes the fixed-point arithmetic and the details
of its formalization in higher-order-logic. Section 3 describes the error analysis of digital filters using HOL
theorem proving. Section 4 presents the verification of FFT algorithms in HOL from real specification to
gate level implementation. Finally, Section 5 concludes the paper and outlines the future research directions.

2 Formalization of Fixed-Point Arithmetic in HOL

In this section, the objective is to formalize the fixed-point arithmetic in higher-order logic as a basis for
checking the correctness of the implementation of DSP designs against higher level algorithmic descriptions
in floating-point and fixed-point representations.

2.1 Fixed-Point Numbers

We first describe the fixed-point arithmetic definitions on which we base our formalization. Unlike floating-
point arithmetic which is standardized in IEEE-754 [18] and IEEE-854 [19], current fixed-point arithmetic
does not follow any particular standard and depends on the tool and the language used to design the
DSP chip. While we tried to keep these definitions as general as possible, the fixed-point numbers format,
arithmetic operations, overflow and quantization modes, and exception handling adopted are to some extent
influenced by the fixed-point arithmetic defined by Cadence SPW [7] and Synopsys SystemC [27].

A fixed-point number has a fixed number of binary digits and a fixed position for the decimal point with
respect to that sequence of digits. Fixed-point numbers can be either unsigned (always positive) or signed
(in two’s complement representation). Fixed-point numbers are expressed as a pair consisting of a binary
string and a set of attributes. The attributes specify how the binary string is interpreted. Generally, the
attributes consists of three parameters to represent the total word length, the integer word length, and the
sign format. Operations performed on fixed-point data types are done using arbitrary and full precision.
After the operation is complete, the resulting operand is cast to fit the fixed-point data type object. The
casting operation applies the quantization behavior of the target object to the new value and assigns the new
value to the target object. Then, the appropriate overflow behavior is applied to the result of the process
which gives the final value. In addition to the parameters corresponding to the input operands and output
result, the arithmetic operations take specific parameters defining the overflow and quantization modes.
These parameters are the Quantization mode, Overflow mode, and Number of saturated bits. Quantization
effects are used to determine what happens to the LSBs of a fixed-point type when more bits of precision
are required than are available. The quantization modes are: Quantization to Plus Infinity, Quantization
to Zero, Quantization to Minus Infinity, Quantization to Infinity, Convergent Quantization, Truncation, and
Truncation to Zero. In addition to quantization modes, we can use overflow modes to approximate a higher
range for fixed-point operations. Usually, overflow occurs when the result of an operation is too large or
too small for the available bit range. Specific overflow modes can then be implemented to reduce the loss
of data. Overflow modes are: Saturation, Saturation to Zero, Symmetrical Saturation, Wrap-Around, and
Sign Magnitude Wrap-Around.

33

2.2 Fixed-point Formalization in HOL

In this section, we present formalization of the fixed-point arithmetic in higher-order logic, based on the
general purpose HOL theorem prover. HOL’s basic types include the natural numbers and booleans. It also
includes other specific extensions like John Harrison’s reals library [14] which proved to be essential for our
fixed-point arithmetic formalization.

Fixed point numbers are modeled in HOL as a pair of elements composed of a bit string and a set of
attributes. The bit string is represented by a boolean word and the set of attributes is itself a combination
of six elements representing the word length, integer word length, sign type, rounding mode, overflow mode,
and the number of saturation bits. The fixed-point numbers are then partitioned using special predicates
into signed and un-signed numbers. The validity of a fixed-point number and a set of attributes is defined
using special predicates. Then we defined the actual HOL type for the fixed-point numbers. The valuation
function is then defined to specify a real value to fixed-point numbers using separate formulas for signed
and unsigned numbers. The constants for the smallest and largest fixed-point numbers for a given format
together with their corresponding real values are also defined using specific functions. Then, we defined
enumerated data types for seven rounding modes and five overflow modes in fixed-point arithmetic. The
rounding function is then defined case by case on the rounding and overflow modes. Then, we defined the
operations on fixed-point numbers which are performed using the arbitrary precision in real domain and
then the result is casted to the output format.

2.3 Verification of Fixed-Point Operations

According to the discussion in the previous section, each fixed-point number has a corresponding real number
value. The correctness of a fixed-point operation can be specified by comparing its output with the true
mathematical result, using the valuation function value that converts a fixed-point to an infinitely precise
number. For example, the correctness of a fixed-point adder fxpAdd is specified by comparing it with its
ideal counterpart +. That is, for each pair of fixed-point numbers (a,b), we compare value (a) + value (b)
and value (fxpAdd (a,b)). In other words, we check if the diagram in Figure 3 commutes.

value

fxpAdd (a,b)

value

value (a) + value (b)
~~ ?

value (fxpAdd (a,b))

+

a , b
fxpAdd

value (a) , value (b)

Figure 3: Correctness criteria for fixed-point addition

Therefore, the correctness of fixed-point operations can be specified by comparing the operation’s output
with the true mathematical result. Since the operations are defined as if they first performed using infinite
precision and then the result is rounded to fit in the destination format, the verification of operations is
closely related to bounding the error in rounding function. The steps in analysis of fixed-point rounding
error in HOL are as follows:

• Lemmas for Analyzing the Fixed-Point Rounding Operation: We first proved lemmas con-
cerning with the approximation of a real number with a fixed-point number. We proved that in a finite
nonempty set of fixed-point numbers we can find the best approximation to a real number based on
a given valuation function. Then, we proved that the chosen best approximation to a real number
satisfying a property p from a finite and non empty set of fixed-point numbers is unique and is itself
a member of the set. Finally, we proved that the chosen best approximation to a real number satisfy-
ing a property p from the set of all valid fixed-point numbers with a given attributes is itself a valid
fixed-point number.

• Rounding Error in Fixed-Point Arithmetic Operations: Then, we defined the error resulting
from rounding a real number to a fixed-point value. Then, we established the first main theorems on

34

the correctness of fixed-point arithmetic operations. According to these theorems, if the input fixed-
point operands and the output attributes are valid then the result of fixed-point operations is valid.
Also the result of the operations is related to the real result considering the error.

• General Fixed-Point Error Bound Theorem: In the next step, we established the second main
theorem on fixed-point rounding error analysis which concerns bounding the error. According to this
theorem, the error in rounding a real number which is in the range representable by a given set of
attributes X is less than the quantity 1/2fracbits(X), where fracbits is the number of bits that are to
the right of the binary point in the given fixed-point format X. To explain the theorem, we consider the
distribution of fixed-point number on the real axis as shown by Figure 4. Thereafter, the representable
range of fixed-point numbers is divided into 2N equispaced quantization steps with the distance between
two successive steps equal to 1/2b. Suppose that x ∈ R is approximated by a fixed-point number a.
The position of these values are labeled in the figure. The error | x − a | is hence less than the length
of one interval, or 1/2b, as mentioned in the second theorem. The details can be found in [4].

MIN

1/2b p/2b (2N − 1)/2b(2N − 2)/2b0

x a MAX

b) Signed

−2N−1/2b (2N−1 − 1)/2bp/2b2/2b1/2b (2N−1 − 2)/2b0(−2N−1 + 1)/2b

ax MAXMIN

a) Unsigned

2/2b

Figure 4: Fixed-Point Values on the Real Axis

3 Error Analysis of Digital Filters

Digital filters are a particularly important class of DSP (Digital Signal Processing) systems. A digital filter
is a discrete time system that transforms a sequence of input numbers into another sequence of output,
by means of a computational algorithm [20]. Digital filters are used in a wide variety of signal processing
applications, such as spectrum analysis, digital image and speech processing, and pattern recognition. Due to
their well-known advantages, digital filters are often replacing classical analog filters. The three distinct and
most outstanding advantages of the digital filters are their flexibility, reliability, and modularity. Excellent
methods have been developed to design these filters with desired characteristics. The design of a filter is
the process of determination of a transfer function from a set of specifications given either in the frequency
domain, or in the time domain, or for some applications, in both. When a digital filter is realized with
floating-point or fixed-point arithmetics, errors and constraints due to finite word length are unavoidable.
In this section, as the first case study for our verification methodology, we show how these errors can be
mechanically analyzed using the HOL theorem prover. We first model the ideal real filter specification and
the corresponding floating-point and fixed-point implementations as predicates in higher-order logic. We
use valuation functions to find the real values of the floating-point and fixed-point filter outputs and define
the error as the difference between these values and the corresponding output of the ideal real specification.
Fundamental analysis lemmas have been established to derive expressions for the accumulation of roundoff
error in parametric Lth-order digital filters, for each of the three basic forms of realization: direct, parallel,
and cascade. The HOL formalization and proofs are found to be in a good agreement with existing theoretical
paper-and-pencil counterparts.

3.1 Error Analysis Models

In this section we introduce the fundamental error analysis theorems [28, 11], and the corresponding lemmas
in HOL for the floating-point [15, 16] and fixed-point arithmetics [4]. These theorems are then used in the
next sections as a model for the analysis of the roundoff error in digital filters.

In analyzing the effect of floating-point roundoff, the effect of rounding will be represented multiplicatively.
Letting ∗ denote any of the arithmetic operations +, -, × , /, it is known [11, 28] that, if p represents the

35

precision of the floating-point format, then

fl (x ∗ y) = (x ∗ y)(1 + δ), where |δ| ≤ 2−p. (1)

The notation fl (.) is used to denote that the operation is performed using floating-point arithmetic.
The theorem relates the floating-point arithmetic operations such as addition, subtraction, multiplication,
and division to their abstract mathematical counterparts according to the corresponding errors.

While the rounding error for floating-point arithmetic enters into the system multiplicatively, it is an
additive component for fixed-point arithmetic. In this case the fundamental error analysis theorem for
fixed-point arithmetic operations against their abstract mathematical counterparts can be stated as

fxp (x ∗ y) = (x ∗ y) + ε, where |ε| ≤ 2−fracbits (X). (2)

The notation fxp (.) is used to denote that the operation is performed using fixed-point arithmetic. We
have proved equations (1) and (2) as theorems in higher-order logic within HOL. The theorems are proved
under the assumption that there is no overflow or underflow in the operation result. This means that the
input values are scaled so that the real value of the result is located in the ranges defined by the maximum
and minimum representable values of the given floating-point and fixed-point formats.

3.2 Error Analysis of Digital Filters in HOL

In this section, the principal results for the roundoff accumulation in digital filters using the mechanized
theorem proving are derived and summarized. We shall employ the models for the floating-point and fixed-
point roundoff errors in HOL presented in the previous section.

The class of digital filters considered in this paper is that of linear constant coefficient filters specified by
the difference equation:

wn =

M
∑

i=0

bi xn−i −

L
∑

i=1

ai wn−i (3)

where {xn} is the input sequence and {wn} is the output sequence. L is the order of the filter, and M can be
any positive number less than L. There are three basic forms of realizing a digital filter, namely the direct,
parallel, and cascade forms. If the output sequence is calculated by using the equation (3), the digital filter is
said to be realized in the direct form. In parallel form, the entire filter is visualized as the parallel connection
of the simpler filters of a lower order. In cascade form, the filter is visualized as a cascade of lower filters.

There are three common sources of errors associated with the filter of the equation (3), namely [23]:
input quantization, coefficient inaccuracy, and round-off accumulation. Therefore, for the digital filter of the
equation (3) the actual computed output reference is in general different from {wn}. We denote the actual
floating-point and fixed-point outputs by {yn} and {vn}, respectively. Then, we define the corresponding
errors at the nth output sample as en, e′n and e′′n, where en and e′n are defined as the errors between the
actual floating-point and fixed-point implementations and the ideal real specification, respectively. e′′n is the
error in the transition from the floating-point to fixed-point levels.

The corresponding flowgraph showing the effect of roundoff error using the fundamental error analysis
theorems according to the equations (1) and (2), is given by Figure 5, which also indicates the order of
the calculation. The quantities δ, εn,k, ζn,k, ηn,k, and ξn in Figure 5 are errors caused by the floating-point
roundoff at each arithmetic step. The corresponding error quantities for the fixed-point roundoff (shown in
parentheses) are δ′n,k, ε′n,k, ζ ′n,k, η′

n,k, and ξ′n.
For the error analysis, we need to calculate the yn and vn sequences, and compare them with the ideal

output sequence wn specified by the equation (3) to obtain the corresponding errors en, e′n, and e′′n. Therefore,
we derived the difference equations for the errors between the different levels showing the accumulation of
the roundoff error in HOL. Similar analysis is performed for the parallel and cascade forms of realization
based on the corresponding error flowgraphs. The details can be found in [3].

4 Verification of FFT algorithm

The fast Fourier transform (FFT) [5, 9] is an algorithm to compute the discrete Fourier transform with a
substantial time saving over conventional methods. FFT algorithms are based on the fundamental principle

36

1 + ηn,2

(a3vn−3)(η′

n,3)

(aLvn−L)

yn

1 + εn,2

1 + εn,L

1 + εn,3

1 + ηn,3

1 + ξn

1 + ζn,1

1 + ζn,2

b0xn

bMxn−M

b0xn−1

b0xn−2

1 + δn,1

1 + δn,2

1 + δn,M

1 + δn,0

(η′

n,2)

1 + εn,1

(ξ′n)

(δ′n,M)

(δ′n,2)
(ζ ′n,2)

(δ′n,1)
(ζ ′n,1)

(δ′n,0)

(ε′n,L)

(ε′n,3)

(ε′n,2)

1 + ζn,M 1 + ηn,L

(η′

n,L)(ζ ′n,M)

(vn)

aLyn−L

a3yn−3

a2yn−2

a1yn−1

(a1vn−1)
(ε′n,1)

(a2vn−2)

Figure 5: Error flowgraph for Lth-order filter (Direct form)

of decomposing the computation of the discrete Fourier transform of a sequence of length N into successively
smaller discrete Fourier transforms. The manner in which this principle is implemented leads to a variety of
different algorithms, all with comparable improvements in computational speed. Two basic classes of FFT
algorithms are the decimation-in-time (DIT) [10] and decimation-in-frequency (DIF) [12]. As the second case
study in this project, we considered the formal verification of FFT algorithms. We used our methodology
to derive expressions for the accumulation of roundoff error in floating- and fixed-point FFT algorithms
by recursive definitions and initial conditions, considering the effects of input quantization and inaccuracy
in the coefficients. Based on the extensively studied theoretical work on computing the errors due to finite
precision effects in the realization of FFT algorithms with floating- and fixed-point arithmetics, we performed
a similar analysis using the HOL theorem proving environment. The formal results are found to be in good
agreement with the theoretical ones.

4.1 Error Analysis of FFT Algorithms in HOL

In this section, the principal results for roundoff accumulation in FFT algorithms using HOL theorem
proving are derived and summarized. For the most part, the following discussion is phrased in terms of the
decimation-in-frequency form of radix-2 algorithm. The results, however, are applicable with only minor
modification to the decimation-in-time form. Furthermore, most of the ideas employed in the error analysis
of the radix-2 algorithms can be utilized in the analysis of other algorithms.

Let {Ak(p)}N−1
p=0 denote the N complex numbers calculated at the kth step. Then the decimation in

frequency (DIF) FFT algorithm can be expressed as [21]

Ak+1(p) =

{

Ak(p) + Ak(p + 2m−1−k) if pk = 0
[Ak(p − 2m−1−k) − Ak(p)] wk(p) if pk = 1

(4)

where wk(p) is a power of the principle roots of unity, and N = 2m, where m is an integer value. Equation
(4) is carried out for k = 0, 1, 2, . . . , m−1, with A0(p) = x(p), where {x(n)}N−1

n=0 is the set of input sequence.
It can be shown [12] that at the last step {Am(p)}N−1

p=0 are the discrete Fourier coefficients in rearranged
order.

There are three common sources of errors associated with the FFT algorithms, namely: input quanti-
zation, coefficient inaccuracy, and round-off accumulation. Therefore, the actual array computed by using
equation (4) is in general different from {Ak(p)}N−1

p=0 . We denote the actual floating- and fixed-point com-

puted arrays by {A′

k(p)}N−1
p=0 and {A′′

k(p)}N−1
p=0 , respectively. Then, we define the corresponding errors of the

pth element at step k as ek(p), e′k(p), and e′′k(p), where ek(p) and e′k(p) are defined as the error between the
actual floating- and fixed-point implementations and the ideal real specification, respectively. e′′k(p) is the
error in transition from floating- to fixed-point levels.

In equation (4) the {Ak(p)} are complex numbers, so their real and imaginary parts are calculated sepa-
rately. We define the real and imaginary of Ak(p) and wk(p) as Bk(p), Ck(p) and Uk(p), Vk(p), respectively.
Similarly, we express the real and imaginary parts of A′

k(p), B′(p) and C ′

k(p), and A′′

k(p), B′′

k (p) and C ′′

k (p),

37

B′′
k(q)

C ′
k(p)

C ′′
k (p)

C ′
k(q)

C ′′
k (q)

1 + ε′′k,pεk,p

Uk −Vk Uk Vk

pk = 1

1 + ζ ′′k,p 1 + η′′
k,p

λk,p 1 + λ′
k,p λ′′′

k,p

B′
k(q)

γ ′′′
k,p 1 + γ ′′

k,p

B′
k+1(p) C ′

k+1(p)

γk,p 1 + γ ′
k,p

pk = 0

C ′′
k+1(p)B′′

k+1(p)

B′
k(p)

B′′
k(p)

1 + λ′′
k,p

−1

B′
k(r)

B′′
k(r)

B′
k(p)

B′′
k(p)

C ′
k(r)

C ′′
k (r)

C ′
k(p)

C ′′
k (p)

C ′
k(r)

C ′′
k (r)

C ′
k(p)

C ′′
k (p)

B′
k(r)

B′′
k(r)

B′
k(p)

B′′
k(p)

−1

B′
k+1(p) C ′

k+1(p)

1 + ε′k,p ε′′′k,pδ′′′k,p1 + δ′k,p 1 + δ′′k,pδk,p

1 + η′
k,p

ηk,p η′′′
k,pζk,p ζ ′′′k,p

1 + ζ ′k,p

C ′′
k+1(p)B′′

k+1(p)

−1−1

Figure 6: Error flowgraph for decimation-in-frequency FFT

using the floating- and fixed-point operations, respectively. The corresponding error flowgraph showing the
effect of roundoff error using the fundamental floating- and fixed-point error analysis theorems according to
the equations (1) and (2), respectively, is given in Figure 6, which also indicates the order of the calculation.

The quantities γ′, γ′′, δ′, δ′′, ε′, ε′′, ζ ′, ζ ′′, η′, η′′, λ′, and λ′′ in Figure 6 are errors caused by floating-point
roundoff at each arithmetic step. The corresponding error quantities for fixed-point roundoff are γ, γ ′′′, δ,
δ′′′, ε, ε′′′, ζ, ζ ′′′, η, η′′′, λ, and λ′′′.

Therefore, we derived in HOL, expressions for the accumulation of roundoff error for FFT algorithm by
recursive equations and initial conditions. The details can be found in [2].

4.2 FFT Design Implementation Verification

In this section, we describe the application of the proposed approach for the verification in HOL of the
transition from real, floating- and fixed-point specifications to RTL implementation of an FFT algorithm.
We have chosen the case study of a radix-4 pipelined 64-point complex FFT core available as VHDL RTL
model in the Xilinx Coregen library [29]. All proofs have been conducted in HOL, hence establishing
a correctness of the FFT design implementation with respect to its high level algorithmic specifications.
Figure 7 shows the overall block diagram of the Radix-4 64-point pipelined FFT design.

Input
Buffer
Memory

STAGE 1

D
E
L
A
Y

M
U
X Bitreverse

CONTROL

OUTPUT
E
L
A
Y

M
U
X

D

Coefficient
Memory

STAGE 2

CONTROL

STAGE 3

Output

CONTROL
Coefficient

Memory
CONTROL

INPUT

CONTROL

E
L
A
Y

M
U
X

D

Coefficient
Memory

Buffer
Radix_4

Dragonfly
Radix_4

Dragonfly
Radix_4

Dragonfly

Figure 7: Radix-4 64-point pipelined FFT implementation

The basic elements are memories, delays, multiplexers, and dragonflies. In general, the 64-point pipelined
FFT requires the calculation of three radix-4 dragonfly ranks. Each radix-4 dragonfly is a successive combi-
nation of a radix-4 butterfly with four twiddle factor multipliers. The FFT core accepts naturally ordered
data on the input buses in a continuous stream, performs a complex FFT, and streams out the DFT samples
on the output buses in a natural order. These buses are respectively the real and imaginary components of

38

the input and output sequences. An internal input data memory controller orders the data into blocks to
be presented to the FFT processor. The twiddle factors are stored in coefficient memories. The real and
imaginary components of complex input and output samples and the phase factors are represented as 16-bit
2’s complement numbers. The unscrambling operation is performed using the output bit-reversing buffer.

In HOL, we first modeled the RTL description of a radix-4 butterfly as a predicate in higher-order logic.
The block takes a vector of four complex input data and performs the operations, to generate a vector of
four complex output signals. The real and imaginary parts of the input and output signals are represented
as 16-bit Boolean words. We defined separate functions in HOL for arithmetic operations such as addition,
subtraction, and multiplication on complex two’s complement 16-bit Boolean words. Then, we built the
complete butterfly structure using a proper combination of these primitive operations.

Thereafter, we described a radix-4 dragonfly block as a conjunction of a radix-4 butterfly and four 16-bit
twiddle factor complex multipliers. Finally, we modeled the complete RTL description of the radix-4 64-point
structure in HOL. The FFT block is defined as a conjunction of 48 instantiations of radix-4 dragonfly blocks.
Proper time instances of the input and output signals are applied to each block, according to Figure ??.

Following similar steps, we described the radix-4 64-point FFT structures as fixed-point, floating-point,
and real domains in HOL using the corresponding complex data types and arithmetic operations.

The formal verification of the radix-4 decimation in frequency FFT algorithm case study was performed
based on the commutating diagram in Figure 2, in that we proved hierarchically that the FFT Netlist im-
plies the FFT RTL; and then proved that the FFT RTL description implies the corresponding fixed-point
model. The proof of the FFT block is then broken down into the corresponding proof of the dragonfly block,
which itself is broken down into the proofs of butterfly and primitive arithmetic operations. We used the
data abstraction functions to convert a complex vector of 16-bit two’s complement Boolean words into the
corresponding fixed-point vector.

Then, we proved three theorems encompassing the error analysis of the radix-4 decimation in frequency
FFT algorithm. The first lemma represents the error between the real number specification and the floating-
point specification. The second lemma represents the error between the real number and the fixed-point
specifications. The third lemma represents the error between floating-point and fixed-point specifications.
According to these lemmas, the floating-point and fixed-point implementations and the real specification of
a radix-4 decimation in frequency FFT algorithm are related to each other based on the corresponding data
abstraction, and error analysis functions.

Finally, using the obtained theorems, we easily deduced our ultimate theorem proving the correctness
of the real specification from the RTL implementation, taking into account the error analysis computed
beforehand. A complete list of the derived HOL definitions and theorems can be found in [1].

5 Conclusions

In this paper, we described a methodology for the formal specification and verification of DSP systems
designs at different abstraction levels. We proposed a shallow embedding of DSP descriptions at different
levels in HOL. For the verification of the transition from floating- to fixed-point levels, we proposed an
error analysis approach in which we consider the effects of finite precision in the implementation of DSP
systems. These include errors due to the quantization of input samples and system coefficients, and also
roundoff accumulation in arithmetic operations. The verification from fixed-point to RTL and netlist levels is
performed using traditional hierarchical verification in HOL. In this paper we demonstrated our methodology
using the case studies of digital filters and the fast Fourier transform algorithms. The approach covers three
basic forms (direct, parallel, and cascade) of realization of the digital filters, and the two canonical forms
(decimation-in-time, and decimation-in-frequency) of realization of the FFT algorithm using real, floating-,
and fixed-point arithmetic as well as their RT implementations, each entirely specified in HOL. We proved
lemmas to derive expressions for the accumulation of roundoff error in floating- and fixed-point designs
compared to the ideal real specification. Then we proved that the FFT RTL implementation implies the
corresponding specification at the fixed-point level using classical hierarchical verification in HOL, hence
bridging the gap between hardware implementation and high levels of mathematical specification. In this
work we also have contributed to the upgrade and application of established real, complex real, floating- and
fixed-point theories in HOL to the analysis of errors due to finite precision effects, and applied them on the
realization of the FFT algorithms. Error analyses using theoretical paper-and-pencil proofs did exist since
the late sixties while design verification is exclusively done by simulation techniques. We believe this is the

39

first time a complete formal framework has been proposed for the specification and verification of the DSP
algorithms at different levels of abstraction. The methodology presented in this paper opens new avenues
in using formal methods for the verification of digital signal processing (DSP) systems as complement to
traditional theoretical (analytical) and simulation techniques. We are currently investigating the verification
of complex wired and wireless communication systems, whose building blocks, heavily make use of several
instances of the FFT algorithms. As a future work, we also plan to extend the error analyses to cover
worst-case, average, and variance errors. Finally, we plan to link HOL with computer algebra systems to
create a sound, reliable, and powerful system for the verification of DSP systems.

References

[1] B. Akbarpour, “Modeling and Verification of DSP Designs in HOL,” Ph.D. Thesis, Concordia University,
Department of Electrical and Computer Engineering, Montreal, Canada, March 2005.

[2] B. Akbarpour and S. Tahar, “A Methodology for the Formal Verification of FFT Algorithms in HOL,”
In Formal Methods in Computer-Aided Design, LNCS 3312, pp. 37-51, Springer-Verlag, 2004.

[3] B. Akbarpour and S. Tahar, “Error Analysis of Digital Filters using Theorem Proving,” In Theorem
Proving in Higher Order Logics, LNCS 3223, pp. 1-16, Springer-Verlag, 2004.

[4] B. Akbarpour, S. Tahar, and A. Dekdouk, “Formalization of Fixed-Point Arithmetic in HOL,” Formal
Methods in Systems Design, 27: 173-200, 2005.

[5] E. O. Brigham, “The Fast Fourier Transform,” Prentice Hall, 1974.

[6] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van-Tassel, “Experience with Em-
bedding Hardware Description Languages in HOL,” In Theorem Provers in Circuit Design, pp. 129-156,
North-Holland, 1992.

[7] Cadence Design Systems, Inc., “Signal Processing WorkSystem (SPW) User’s Guide,” USA, July 1999.

[8] Synopsys, Inc., “CoCentricTM System Studio User’s Guide,” USA, Aug. 2001.

[9] W. T. Cochran et. al., “What is the Fast Fourier Transform,” IEEE Transactions on Audio and Elec-
troacoustics, AU-15: 45-55, Jun. 1967.

[10] J. W. Cooley, J. W. Tukey, “An Algorithm for Machine Calculation of Complex Fourier Series,” Math-
ematics of Computation, 19: 297-301, Apr. 1965.

[11] G. Forsythe and C. B. Moler, “Computer Solution of Linear Algebraic Systems,” Prentice-Hall, 1967.

[12] W. M. Gentleman and G. Sande, “Fast Fourier Transforms - For Fun and Profit,” In AFIPS Fall Joint
Computer Conference, Vol. 29, pp. 563-578, Spartan Books, Washington, DC, 1966.

[13] M. J. C. Gordon and T. F. Melham, “Introduction to HOL: A Theorem Proving Environment for
Higher-Order Logic,” Cambridge University Press, 1993.

[14] J. R. Harrison, “Constructing the Real Numbers in HOL,” Formal Methods in System Design, 5 (1/2):
35-59, 1994.

[15] J. R. Harrison, “A Machine-Checked Theory of Floating-Point Arithmetic,” In Theorem Proving in
Higher Order Logics, LNCS 1690, pp. 113-130, Springer-Verlag, 1999.

[16] J. R. Harrison, “Floating-Point Verification in HOL Light: The Exponential Function,” Formal Methods
in System Design, 16 (3): 271-305, 2000.

[17] J. R. Harrison, “Complex Quantifier Elimination in HOL,” In Supplemental Proceedings of the Interna-
tional Conference on Theorem Proving in Higher Order Logics, pp. 159-174, Edinburgh, Scotland, UK,
Sep. 2001.

40

[18] IEEE, Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, The Institute
of Electrical and Electronic Engineers, Inc., 345 East 47th Street, New York, NY 10017, USA, 1985.

[19] The Institute of Electrical and Electronic Engineers, Inc., “IEEE, Standard for Radix-Independent
Floating-Point Arithmetic,” ANSI/IEEE Std 854, USA, 1987.

[20] J. F. Kaiser, “Digital Filters,” In System Analysis by Digital Computer, F. F. Kuo and J. F. Kaiser,
Eds., pp. 218-285, Wiley, 1966.

[21] T. Kaneko and B. Liu, “Accumulation of Round-Off Error in Fast Fourier Transforms,” Journal of
Association for Computing Machinery, 17 (4): 637-654, Oct. 1970.

[22] H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE: A Fixed-Point Design and Simulation
Environment,” In Proceedings Design Automation and Test in Europe Conference, pp. 429-435, Paris,
France, February 1998.

[23] B. Liu, and T. Kaneko, “Error Analysis of Digital Filters Realized with Floating-Point Arithmetic,”
Proceedings of the IEEE, 57: 1735-1747, October 1969.

[24] Mathworks, Inc., “Simulink Reference Manual,” USA, 1996.

[25] T. Melham, “Higher Order Logic and Hardware Verification,” Cambridge Tracts in Theoretical Com-
puter Science 31, Cambridge University Press, 1993.

[26] A. V. Oppenheim and C. J. Weinstein, “Effects of Finite Register Length in Digital Filtering and the
Fast Fourier Transform,” Proceedings of the IEEE, 60 (8): 957-976, August 1972.

[27] Open SystemC Initiative, “SystemC Language Reference Manual,” USA, 2004.

[28] J. H. Wilkinson, “Rounding Errors in Algebraic Processes,” Prentice-Hall, 1963.

[29] Xilinx, Inc., “High-Performance 64-Point Complex FFT/IFFT V2.0, Product Specification,” USA, Aug.
2000, http://xilinx.com/ipcenter.

41

On the Formal Analysis of Analog Systems using

Interval Abstraction

Mohamed H. Zaki, Ali Habibi, Sofiène Tahar and Guy Bois §

Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada

§Genie Informatique, Ecole Polytechnique de Montreal
Pavillon Decelles, 5255 Avenue Decelles, Montreal, QC H3T 2B1, Canada

{mzaki,habibi,tahar}@ece.concordia.ca, guy.bois@polymtl.ca

Abstract. Formal methods have been advocated for the verification of
digital design where correctness is proved mathematically. In contrast
to digital designs, the verification of analog and mixed signal (AMS)
systems is a challenging task that requires lots of expertise and deep
understanding of their behavior. In this paper, we intend to present an
ongoing project for developing an approach for the analysis of analog
systems using formal methods. The proposed method is based on the
computation of finite-state conservative abstraction of the design. For
this purpose, we use abstract interpretation, which is a theoretical frame-
work for the analysis of infinite state systems and in this paper we choose
interval arithmetics as the basis of the abstraction. To test and validate
our methodology, we have used interval arithmetic tool AWA to describe
the behavior of tunnel diode oscillator.

1 Introduction

Formal methods have been advocated for the verification of digital design where
correctness is proved mathematically. In contrast to digital designs, the veri-
fication of analog and mixed signal (AMS) systems is a challenging task that
requires lots of expertise and deep understanding of their behavior. The func-
tionality of analog circuits is defined directly in terms of continuous electrical
quantities and is usually sensitive to environment factors like signal noise, cur-
rent leakage, temperature, etc, in addition to higher order physical effects when
designing in deep submicron. Traditionally simulation techniques have been used
as the main verification tool in the AMS design process, however the limitation
of simulation in terms of coverage affect the confidence in the verification re-
sults. Symbolic analysis have been developed as a complementary to numerical
simulation, where the effect of parameters variations on the system behavior
is analyzed. Although successful, challenging problems (like non linear effects)
make this techniques only suitable for simple designs.

The last decade saw the emergence of a new engineering field known as
hybrid system theory where researchers have developed formal techniques for
the design and analysis automation of systems with real time and continuous

42

behavior and which are described by a composition of continuous time systems
and discrete time systems. Model checking tools such as HyTech [3], CheckMate
[2] and d/dt [1] were successful in the verification of hybrid systems with different
degrees of complexity. Motivated by the success of the application of formal
verification methods for real-time and hybrid systems, researchers started in
recent years studying the applicability of such techniques for the verification of
analog and mixed signal systems. In this paper, we intend to present an ongoing
project for developing an approach for the analysis of analog systems using
formal methods. The proposed method is based on the computation of finite-
state conservative abstraction of the design. The methodology should guarantee
that the verification on the abstract model is conservative. For this purpose, we
use abstract interpretation, which is a theoretical framework for the analysis of
infinite state systems and in this paper we choose interval arithmetics as the basis
of the abstraction. In the hybrid system theory context, abstract interpretation
was only used with simple systems with linear dynamics while other heuristic
methods were applied for the abstraction of the nonlinear dynamics. In contrast,
we propose a methodology for abstracting nonlinear dynamics using abstract
interpretation, which will guarantee property preservation. To test and validate
our methodology, we have used interval arithmetic tool AWA [10] to describe
the behavior of tunnel diode oscillator.

The rest of the paper is organized as follows: In section 2, we give a brief
overview of the project, followed by some preliminaries definitions in section 3.
The abstraction methodology is described in section 4, with primary experimen-
tal results in 5. Related work is presented in 6 and finally, we conclude the paper
with section 7.

2 Methodology

We present in this section our methodology for modeling and verification of con-
tinuous time systems. The basic idea is to adopt a multi abstraction technique
in order to generate a compact model that can be automatically verified us-
ing model checking techniques, yet a conservative one as we need to guarantee
property preservation. We start by solving the system of differential equations
symbolically. As a start, we choose interval based methods proposed by Moore
[11] which was developed to guarantees solution inclusion for differential equa-
tions, and used by Cousot and Cousot in software execution analysis [7]. The
symbolic execution is monitored by temporal properties with predicates repre-
senting properties on the continuous state variables. These predicates form the
base of the abstract model which is generated at the back end. Each abstract
state is represented by region representing a conjunction of satisfied predicates.
The advantage of this method is the accuracy of the analysis as symbolic meth-
ods are more accurate than qualitative methods avoiding the imprecision of these
techniques. On the other hand, generation of the abstract model by monitoring
the solution, once proved sound and conservative, avoids the cost of expensive

43

model checking of the whole discretized continuous behavior. Figure 1 gives an
overview about the methodology.

Constraints

Envirement and Timing

(ODEs)

Dynamical System Domain

Abstraction

Numerical

Methods

Bounded Model Checking

(Temporal Logic)

AbstractionProperty based

Transformation

Refined
Constraints

Abstract
Model

Refined Property

Verified Counter Example Refine

Monitoring Automata

Property Specification

Fig. 1. Proposed verification methodology for continuous systems

In this paper, we focus only on part concerning the solution of differential
equation using interval arithmetic. We demonstrate how to use this theory in
order to infer reachability properties of non linear dynamical systems.

3 Modeling Continuous Systems

In this section we describe the class of non linear continuous systems represented
by a system of ordinary differential equations. This modeling is suitable for
describing analog systems behavior.

Definition 1. A continuous dynamical system is a triple CS = (X, X0, f) with
X ⊆ Rn is the continuous state space, X0 ⊆ X and f : X→ Rn is the continuous
vector field.

The behavior of a continuous dynamical system is governed by the differen-
tial equation ẋ = f(x). We assume that the differential equation has a unique
solution for each initial value X(0) ∈ X0, where X0 ⊆ X is the set of initial

44

continuous space. The continuous system is deterministic in the sense that from
a given point it generates a unique trajectory.

Definition 2. The semantics of a continuous dynamical system CS = (X, X0, f)
over a continuous time period (an interval) Tc = [τ0, τ1] ⊆ R+ can be described
as Trajectory. A trajectory of a continuous dynamical system is a continuous
behavior Φx : Tc → X for x ∈ X0 such that Φx(t) is the solution of equation
ẋ = f(x) with initial condition Φx(0) = x and t ∈ TC, is a time point and Tc is
the continuous time domain.

We can present the behavior of the continuous system by a transition system
as follows:

Definition 3. A dynamical continuous system can be considered as a transition
system Tc = (Q, Q0, σ, L) where:

– q ∈ Q is a configuration (x, Γ), where x ∈ X and set of intervals Γ = {t0, . . .}
such that ∪i≥0ti ⊆ R+, where i ⊆ N∪{∞}. We have t1, t2 ∈ Γ for Φx′(t1) =
Φx′′(t2) = x and x′, x′′ ∈ X0 .

– q ∈ Q0, when t0 ∈ Γ and Φx(t0) = x and t0 is the interval [0, 0],

– L is an interpretation function such that L : Q→ R
n × 2R

+

.
– σ ⊆ Q × Q is a transition relation such that (qn, qm) ∈ σ iff ∃tn ∈ Γn,
∃tm ∈ Γm. tn < tm and limtn→tm

Φqn

x (tn) = Φqm

x (tm), x ∈ X0.

The set of reachable states of a continuous system can be defined as follows:

Definition 4. For a continuous dynamical system, the set of reachable states
Reach ∈ Γ can be defined as:

– Reach(0) := Q0

– Reach := {q′ ∈ Q|∃q ∈ Reach(0), t ∈ LΓ (q′), x′ = Lx(q′), x = Lx(q) such
that Φx(t) = x′}

Given a transition system C and a set of (un)safe states B ⊆ X, whether
Reach ∩ B is empty or not.

Remark 1. We have considered Γ associated with each state, as a set of closed
time intervals and with a slight abuse of notations, we have referred to a trajec-
tory between two time points as

Φx : Ii → Rn

: [t1, t2] 7→ x

We can described a discrete system as a transition system as follows:

Definition 5. A transition system is a triple DS = (S, S0, σ) with S is the set
of states, S0 ⊆ S is the set of initial states and σ ⊆ S×S is a relation capturing
transitions.

45

Definition 6. The semantics of discrete system can be defined as a set of traces,
where trace of a transition system DS = (S, S0, σ) is a sequence π : N→ S such
that π(0) ∈ So and ∀k ≥ 0 : (π(k), π(k + 1)) ∈ π and N is the natural number
domain.

Usually the analytic solution for the differential equation is not possible and
approximate methods are used instead. Given a CS with a configuration C; to
describe a correspondence between discrete evolution π : N → C and continu-
ous evolution Φ : [0,∞) → Q, Tiwari et.al [31] defined the notion of sufficient
complete discretization. This can be understood as sampling criteria that cap-
tures all the different states in the given continuous evolution. It can be formally
defined as follows:

Definition 7. A discrete evolution π : N → C is a sufficiently complete dis-
cretization of a continuous evolution Φ : [0,∞) → Q, if π(i) = Φq

x0
(ti) = x

where x = Lx(q) = Lx(c), q ∈ Q, c ∈ C, i ∈ LΓ (c), ti ∈ LΓ (q), x0 = LX(q0)
and q0 ∈ Q0, for all i ∈ N and

⋃

i≥0 ti = R
+

Note: Practically, discretization is based on choosing time steps 4t, which
can be varied or fixed and can be chosen in domains other than N (e.g. values
of 4t are in Q or rounded R)

4 Abstract Interpretation

Given the concrete D[and abstract D] semantics domains of the system un-
der analysis. A soundness relation σ is used to reason about the correspondence
between a concrete and abstract semantics. A soundness relation can be for-
mulated as σ ∈ ℘(D[×D]). We say there exists an abstract approximation if
we assume that for every concrete semantics we have an abstract approxima-
tion: ∀s ∈ D[.∃t ∈ D] : (s, t) ∈ σ. More closely, to ensure the soundness of
the methodology, we use Galois connection between D[and D]. By associating
partial order relation with the semantics domain (i.e. (D[, v), (D], �) which
are partial order set), we say (α, γ) is a Galois connection between D[and D],
iff α : D[→ D], γ : D] → 2D[and∀s ∈ D[, t ∈ D], α(s) � t ⇔ s v γ(t). To
build an abstract state space S], which is an overapproximation of the concrete
state space S[, that is ∀s ∈ S[.∃t ∈ S].t = α(s). As we build our abstraction, it
is essential that all transitions of the concrete system are preserved in the ab-
stract, but the concretization of abstract transitions does not result in spurious
transitions.

Note. Imposing the existence of Galois connection between concrete and
abstract domains is a tight requirement as sometimes it is not easy of even
impossible to find the abstract α function. Cousot [8], proposed relaxing this
requirement by only working with concretization function like in the case of
Interval domain as shown below.

46

4.1 Abstraction

Definition 8. Let CS be a continuous dynamical system and DS be a discrete
transition system with configurations Q (with domain X) and A (with domain A)
respectively. We say DS is an abstraction for CS, if there exists a concretization
mapping γ : A→ 2Q, such that :

– A = (a, τ) is a configuration where a ∈ A and τ is the set of time intervals,
such that every interval is an increasing sequence of time steps during which
the state is not varied.

– A0 = {a ∈ A|∃x ∈ γ(a) ∧ x ∈ X0}, A0 = (a, τ) and t0 ∈ τ where t0 is the
singular interval.

– For every continuous evolution Φ, if π is a sufficiently discretization of α(Φ),
then π is a discrete trace of DS.

– σ ⊆ A × A is a relation capturing abstract transitions; {a →′ a′|∃x ∈
γ(a), t ∈ R : x′ = Φx(t) ∈ γ(a′) ∧ x→ x′}

Lemma 1. For a concrete transition system with transition relation → and a
corresponding abstract transition system with transition relation →

′

, we have
→⊆ γ(→′)

The set of successor states of a ∈ A is Post(a) = {a′ ∈ A|a→′ a′} and the set
of reachable states Reach of a transition system can then be defined as follow:

Definition 9. For a transition system, the set of reachable states AReach ⊆ A

is defined as:

– AReach(0) := A0

– AReachinc(i) := Post(AReach(i)), ∀i > 0
– AReach :=

⋃

i≥0 AReach(i)

The verification problem is stated as follows: Given a transition system DS
and a set of (un)safe states B ⊆ A, is there a trace starting from A0 that can
reach B; whether AReach ∩ B is empty or not. We say that AReach is an over
approximation of Reach

Lemma 2. Let CS be a continuous dynamical system and DS a discrete tran-
sition system as its abstraction, we have: Reach ⊆ {q ∈ Q |∃a ∈ AReach ∧ q ∈
γ(a)}

4.2 Interval Abstract Domain

In this paper, we choose intervals as the numerical abstract domains with which
we compute the abstract semantics of continuous systems. We will briefly outline
constructing the abstract domain by following the modular approach presented
by Mine in [9] were he propose starting from a basis representing abstraction of
state variables as well as basic operations and using lifting of the concretization
and abstraction functions to sets and functions representing expressions and

47

transfer functions. The interval abstract domain Dι is based on the classical
concept of interval arithmetics [11] and was adapted by Cousot and Cousot in
[7].

The relation between the concrete and abstract domain can be described by

a partial Galois connection (℘(R),≤) −−−→←−−−α

γ
(B,v]

B) with:
Interval Basis Bι. B is a set of intevals with bounds in R, where B :

{⊥ι
B} ∪ {[a, b]|a ∈ R∪ {−∞}, b ∈ R∪ {∞}, a ≤ b}. We say Bι contains [−∞,∞]

which denote the whole set R, the singletons [a, a], when a ∈ R, and the empty
interval denoted by ⊥ι

B .
Interval Basis Structure The partial ordervι

B is defined as [a, b]vι
B[a′, b′] ,

a ≥ a′ and b ≤ b′ and ⊥ι
B is the smallest element. The basis concretization γι

B

is defined as γι
B ([a,b]) , {x ∈ R|a ≤ x ≤ b}andγι

B(⊥ι
B) , 0.

Interval Basis Operators. We define the required operators for a basis the
following way:

– ∪ι
B and ∪ι

B :

X]∪ι
BY] ,







[min(a, a′), max(b, b′)] if X] = [a, b]andY] = [a′, b′]
X] ifY] = ⊥ι

B

Y] ifX] = ⊥ι
B

X]∩ι
BY] ,







[max(a, a′), min(b, b′)] if X] = [a, b] and Y] = [a′, b′]
and max(a, a′) ≤ min(b, b′)

⊥ι
B otherwise

– In general, abstraction for arithmetics operators can be described as follows:
• ¬] :B → B such thatγι

B(¬]X]) ⊇ {¬x|x ∈ γι
B(X])}

• ♦] :B2 → B such thatγι
B(X] ♦]Y]) ⊇ {x♦y|x ∈ γι

B(X], y ∈ γι
B(Y])}

and ♦ ∈ {+,−,×,÷}
For interval arithmetics we have the following:

[a,b]ι , [a+b]

[a,b] +ι[a′, b′] , [a+a’, b+b’]

[a,b] -ι[a′, b′] , [a-b’, b-a’]

[a,b] ×ι[a′, b′] , [min (aa’, ab’, ba’, bb’), max (aa’, ab’, ba’, bb’)]

1 ÷[a, b] , [1 ÷b, 1 ÷ a] if 0 /∈ [a, b]

[a, b] ÷[a′, b′] , [a,b] ×1 ÷ [a′, b′]

Note We use αι and γι also to denote liftings of the functions αι
B and γι

B to
sets, relations and functions (e.g, expression evaluation, variables assignments,
etc.).

Interval domain I is a conservative domain which overapproximate the origi-
nal one R. We can describe the discrete interval transition systems as following:

48

Definition 10. A discrete interval transition system is a discrete transition sys-
tem Tc = (A, A0, σ, L) with domain I

n, where n is the dimension of the state
space, where:

– I = (a, τ) is a configuration where a ∈ I and τ is the set of time intervals,
such that every interval is an increasing sequence of time steps during which
the state is not varied.

– I0 = {a ∈ I|∃x ∈ γ(a)∧x ∈ X0}, I0 = (a, τ) and t0 ∈ τ where t0 is the initial
singular interval.

– σ ⊆ I×I is a relation capturing abstract transitions; {a→ a′|∃x ∈ γ(a), t ∈
R : x′ = Φx(t) ∈ γ(a′) ∧ x→ x′}

We can therefore deduce the following theorem:

Theorem 1. Let CS be a continuous system and DS be a discrete Interval Tran-
sition system, as defined above. Then DS is an abstraction for CS.

5 Application: Tunnel Diode Oscillator

Several interval arithmetic implementation for the the initial value problem have
been developed, see for instance [12] for an overview. We have used in this report,
AWA tool developed by Lohner [10], it has the advantage of efficiently dealing
with the wrapping effect (error resulting from enclosing non rectangular regions
by rectangular ones, which can lead to exponential growth in overapproximation,
hence reducing the precision). To illustrate our methodology, we used the tunnel
diode oscillator (see Figure2).

Tunnel diode oscillator circuit has attracted the interest of many researchers
working on the verification of AMS designs. See for instance [27, 23, 15]. This
is largely due to its wide usage in analog system designs (i.e.,the most com-
mon application of a tunnel diode is in high-frequency oscillator circuits) and
technically because of its non linear behavior from which several properties can
be deduced. Tunnel diodes exploit a phenomenon called resonant tunneling to
provide interesting forward-bias characteristics, due to its negative resistance
characteristic at very low forward bias voltages. That means that for some range
of voltages, the current decreases with increasing voltage. This is in contrast
with conventional diodes have a nonlinear I-V characteristic, but the slope of
the curve is always positive. This characteristic makes the tunnel diode useful as
oscillator. When a small forward-bias voltage is applied across a tunnel diode, it
begins to conduct current. As the voltage is increased, the current increases and
reaches a peak value called the peak current. If the voltage is increased a little
more, the current actually begins to decrease until it reaches a low point called
the valley current. If the voltage is increased further yet, the current begins to
increase again, this time without decreasing into another valley.

In this section, we present results from experiments with the tunnel-diode
oscillator circuit. We focus on the current IL and the voltage VC across the

49

tunnel diode in parallel with the capacitor of a serial RLC circuit (see Figure 2).
The state equations of the circuits are given as follows:

V̇ C =
1

x
(−Id(VC) + IL) and İ =

1

L
(−VC −

1

G
IL + Vin)

V
V c

I l

in
−

+

Fig. 2. Oscillation

Where Id(VC) describes the non-linear tunnel diode behavior. We analyze
the circuits in two modes. The first when the circuit is in stable oscillation for a
given set of parameters, the other case when this oscillation dies out. The kind
of properties we are interested to verify can be for example: The system behavior
will be the same for the set of initial condition, or For which set of parameters
values, circuit oscillates?. In this paper, we limits ourself with properties of
the first type, similar to the one verified in [23, 15]. We use a variant of ACTL
temporal logic extended with predicates of Real and time intervals restricting
temporal operators, see [13] for more details.

We chose these two different set of parameters values of the oscillator circuit
{C = 1000e−12, L = 1e−6, G = 5000e−3, V in = 0.3} and {C = 1000e−12,
L = 1e−6, G = 2000e−3, V in = 0.3} along with the set of initial values
of voltages [0.8 V, 0.9 V] and currents 0.04 mA and the analysis region of
interest −1 V ≤ VC ≤ 1 V and 0.01 mA ≤ IL ≤ 0.9 mA. By using interval
based analysis, with the first set of parameters, we can find out that the circuit is
oscillating for the given set of initial conditions (see Figure 3.a). By applying the
reachability analysis in Definition 9, we verify that for the given initial conditions,
the trajectory will be within the analysis region. Suppose we want to verify the
following property on the set of trajectories[23]:

∀�[0,1e−6](∀♦(IL ≤ 0.02)) ∧ ∀�[0,1e−6](∀♦(IL ≥ 0.06))

Which can be understood as within the time interval [0, 1e−6] on every com-
putation path, first predicate is true at some future time as well as for the second
predicate. This property checks for oscillation behavior. We can divide the state
space into 3 states, each corresponding to a set of predicate inequalities extracted

50

(a. Oscillation) (b. No Oscillation)

Fig. 3. Oscillation

from the monitors in addition to the initial condition (as shown in figure 4.a).
It is abvious that within the specified time interval, the property in verified.

Sin S1 S2

S3

Sin S1 S2

S3

(a. Oscillation TS) (b. Non Oscillating TS)

Fig. 4. Transition Systems

Which can be understood as within the time interval [0, 1e−6] on every com-
putation path, first predicate is true at some future time as well as for the
second predicate. This property checks for oscillation behavior. We divide the
state space into 3 states in addition to the initial condition, each corresponding
to a set of predicate inequalities extracted from the formulas (P1 = IL ≤ 0.02,
P2 = 0.02 < IL < 0.06 , P3 = IL ≥ 0.06), as shown in Figure 4.a. We can use
a labeling function Prop associating a set of atomic propositions to each state;
Prop : Q → 2AP . For example, Prop(S1) = {P̄1, P2, P̄3}. Monitors synthesized
from the temporal logic can be used similar to threshold detection. Each time a
condition is changed, monitors triggers a change of states of the abstract tran-

51

sition system. For example, there is a transition between state S1 and state S2,
as the trajectories generated by interval analysis and monitored by a monitor-
ing automata cross the region satisfying the conjunction of atomic propositions
P̄1 ∧ P2 ∧ P̄3 to the region satisfying P1 ∧ P̄2 ∧ P̄3. In order, to verify oscillation
condition using model checking on the abstract model , we translate CT-CTL
properties to TCTL properties. The model checking procedure is then straight
forward and model checking tools like SMV or Hytech can be used to check such
properties.

By following the same procedure for the system with the second set of pa-
rameters, but with the same initial conditions, we can find out that the circuit is
non oscillating. When the circuit starts up, the energy of the system is lost due
to the positive circuit resistance. Starting from any point in the analysis region,
the oscillations die down to the equilibrium point (see Figure 3.b). By applying
the reachability analysis in Definition 9, we verify, however, that for the given
initial conditions, the trajectory will be within the analysis region. If we want
to verify the oscillation property, we start by creating the abstract transition
system as shown in Figure 4.b. and by applying model checking algorithms, we
find out that the condition is not holding. This can be inferred by looking at
the transition system in Figure 4.b, as there is no transition out from S3, which
can be interpreted as once the system reaches S3, it remains deadlocked there
during the verification period.

6 Related Work

An important issue of algorithmic methods in formal verification and model
checking of AMS circuits are the solution of continuous systems; that is, the
collection of continuous time trajectories starting from a set of initial continuous
states where in practice the initial conditions are usually not known exactly
but only known to lie within some range. Several methods for approximating
reachable sets for continuous dynamics have been proposed. These methods rely
on the discretization of the continuous state space. Among the most important
approximations are those based on cubical and polyhedral representation. This
approaches were pursued by Kurshan and McMillan in [19] and Greenstreet [20,
21] respectively were they proposed verifying digital properties at the transistor
level. A variant approach of polyhedral based analysis was adapted by Dang and
Maler [1] and implemented in the tool d/dt and by Chutinan and Krogh and
implemented in their tool Checkmate [2] which supports in addition temporal
verification. In [22], Dang et. al, Dang and Maler, used d/dt for the verification
of analog systems described with differential algebraic equations (DAEs) and
apply it to the verification of a biquad low-pass filter. In addition they proposed
using techniques from optimal control (i.e hybrid constrained optimization) in
order to find bounds of the reachability and they applied this technique to the
verification of first order ∆ − Σ modulator. In [23], the authors used Checkmate
tool for the verification of AMS designs, i.e, tunnel diode oscillator and ∆ − Σ
modulator

52

In [15], Hartong et. al proposed discretizing the whole state space into vari-
able sized regions to represent the state space and he used some kind of esti-
mation techniques to describe possible transitions between partitions. The dis-
cretized state space is then encoded and CTL based model checking is applied.
The paper gave no proof of soundness and It is not clear how the whole CTL
is supported as in general approximation can only preserves a subset namely
the ACTL. The proposed approach was implemented in a tool called Amcheck,
developed at University of Hannover. in [16], they extended their methodology
for the verification of time properties (i.e rise and fall time) of analog circuits.

Several abstraction techniques have been proposed for continuous and Hybrid
systems. One of the early work for applying abstract interpretation to Hybrid
systems was proposed by Halbwachs et.al [28] as extension to a previous work
with Cousot [14]. In this work, convex approximation of linear equations is de-
scribed. A variant of this work is latter implemented in HyTech [3]. The main
limitation of this approach is the applicability only for linear systems, which
practically restrict the class of systems under verification. Hypertech [4], is an
extended version of Hytech, where they add an interval library to support ver-
ification of non linear systems. The idea presented is similar to our proposal,
however we diverge from them in that we propose combining interval analysis
with property guided abstraction which can lead to efficient analysis of the non
linear systems. Henzinger et. al [5] present a methodology for algorithmically an-
alyzing nonlinear hybrid systems by first translating the system to linear hybrid
automata, and then using automated model-checking tools. In a linear hybrid
automaton, the continuous environment is partitioned into a finite number of
classes such that within each class, the continuous variables are governed by a
constant polyhedral differential inclusions. Although, the idea is very interest-
ing, generated linear hybrid automata are still large enough to be easily model
checked. One other problem of this approach is the linearization of the dynamics
which results in losing information which might be of importance like the effect
of external disturbance for example, make it impractical for the verification of
analog circuits.

Predicate abstractions [30] have been successful in the verification of infinite
systems. I have been extended to the abstraction of verification of hybrid systems
with different complexity, see for instance the work by Alur et. al [6], Ahish et.
al [31]. One main problem in this approach is in choosing the correct predicate.
In our proposed methodology, we plan to use predicates in temporal logic as a
mean to build the abstract state space, by monitoring the execution, each set of
solutions satisfying certain predicates are represented by a certain discrete state
and finally, Clarke et. al [32], extended the Checkmate verification toolbox with
an abstraction refinement methodology.

Program monitoring have been applied sucessffuly for hardware and software
analysis. Motivated with the success of PSL assertion languages for hardware
verification, Maler et. al. [26] proposed a simple methodology for monitoring the
simulation of continuous signals by extending the PSL logic to support predicates
over the reals (signals) , the goal is to verify continuous and analog systems.

53

Monitoring was applied within the Charon design framework [25] where timed
automata and linear hybrid automaton can be used to monitor real-time and
hybrid behavior. Recently similar ideas using hybrid automata as monitors have
been integrated with the PHVAR a hybrid system analysis tool [27] that provides
sound verification results based on linear hybrid automata approximations and
was used to verify properties of piecewise models of oscillator like amplitude
bounds and phase jitter.

Interval and affine arithmetics have been used in the analysis of analog cir-
cuits like in [17], were the authors presents an approach for equivalence checking
of linear analog circuits with parameter tolerances. The goal is to prove that an
actual circuit fulfills a specification in a given frequency interval for all parame-
ter variations and in [18], affine arithmetics was used to for helping in the circuit
sizing.

7 Conclusion

The lack of methods for computing reachable sets of continuous dynamics has
been the main obstacle towards an algorithmic verification methodology for hy-
brid systems. This motivated us to tackle first the reachability problem of con-
tinuous systems. Unlike the conventional approaches which attempt to find exact
solutions and are thus limited by undecidability of most non-trivial systems, our
approach is based on an efficient method for abstracting the continuous behavior
using combination of techniques from numerical methods, abstract interpreta-
tion, and program monitoring.

Future Work. The description of the methodology presented in this section
was general. Different issues will be raised throughout the development. We
present below some issues we think are of important interests:

– Extends the methodology for other domains like affine arithmetics which
have been developed to enhance precision.

– Explore more complex case studies; currently we are working on the verifi-
cation of phase locked loop designs and scmitt trigger.

– Extends the methodology for Hybrid systems.

References

1. Eugene Asarin, Thao Dang, Oded Maler: The d/dt Tool for Verification of Hybrid
Systems. in Computer Aided Verification, LNCS 2404, Springer, 2002, pp. 365-370.

2. A. Chutinan and B. H. Krogh, Computational techniques for hybrid system veri-
fication. IEEE Trans. on Automatic Control, vol. 48, no. 1, 2003, pp. 64-75.

3. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model Checker for Hybrid
Systems. Software Tools for Technology Transfer 1:110-122, 1997.

4. Thomas A. Henzinger, Benjamin Horowitz, Rupak Majumdar, Howard Wong-Toi:
Beyond HYTECH: Hybrid Systems Analysis Using Interval Numerical Methods.
HSCC 2000: 130-144

54

5. Thomas A. Henzinger, Pei-Hsin Ho: Algorithmic Analysis of Nonlinear Hybrid
Systems. CAV 1995: 225-238

6. R. Alur, T. Dang, and F. Ivancic. Counter-example guided predicate abstraction
of hybrid systems, Ninth International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2003

7. P. Cousot, R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238252, Los Angeles, California, 1977. ACM
Press, New York, NY, USA.

8. Patrick Cousot, Radhia Cousot: Abstract Interpretation Frameworks. J. Log. Com-
put. 2(4): 511-547 (1992)

9. A. Mine, Weakly Relational Numerical Abstract Domains. PhD thesis Report,
Computer Science Department, the Ecole Normal Suprieure , France, Dec. 2004

10. R. J. Lohner, Enclosing the solutions of ordinary initial and boundary value prob-
lems, in Computer Arithmetic: Scientific Computation and Programming Lan-
guage, Wiley-Teubner Series in Computer Science, Stuttgart, 1987, 255-286

11. R. E. Moore Methods and Applications of Interval Analysis, Society for Industrial
Applied Mathematics, Philadelphia, 1979, ISBN 0898711614.

12. R. B. Kearfott. Interval computations: Introduction, uses, and resources. Euromath
Bulletin, 2(1):95-112, 1996.

13. M. Zaki, S. Tahar, G. Bois, Formal Verification of Analog and Mixed Signal Sys-
tems. In preparation

14. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In Proceedings of the 5th Annual ACM Symposium on Prin-
ciples of Programming, pages 84–97, 1978.

15. W. Hartong, R. Klausen, L. Hedrich, ”Formal Verification for Nonlinear Analog
Systems: Approaches to Model and Equivalence Checking,” Advanced Formal Ver-
ification, R. Drechsler, ed., Kluwer Academic Publishers, Boston, January 2004,
pp. 205-245.

16. D. Grabowski, D. Platte, L. Hedrich, and E. Barke, Time Constrained Verifica-
tion of Analog Circuits using Model-Checking Algorithms,Workshop on Formal
Verification of Analog Circuits, 2005.

17. L. Hedrich and E. Barke,A Formal Approach to Verification of Linear Analog
Circuits with Parameter Tolerances. Design, Automation and Test in Europe, 1998,
pp. 649-654.

18. Andreas C. Lemke, Lars Hedrich, Erich Barke: Analog circuit sizing based on
formal methods using affine arithmetic. ICCAD 2002: 486-489

19. R.P. Kurshan and K.L. McMillan. Analysis of digital circuits through symbolic
reduction. IEEE Trans. on Computer-Aided Design 10:13501371, 1991.

20. Mark R. Greenstreet, Ian Mitchell: Reachability Analysis Using Polygonal Projec-
tions. HSCC 1999: 103-116

21. Mark R. Greenstreet, Ian Mitchell: Integrating Projections. HSCC 1998: 159-174

22. Thao Dang, Alexandre Donze, O.M.: Verification of analog and mixed-signal cir-
cuits using hybrid system techniques. In: Formal Methods in Computer-Aided De-
sign (FMCAD 2004), Austin, Texas, November 14-17, 2004. (2004)

23. Gupta, S.; Krogh, B.H.; Rutenbar, R.A.:Towards formal verification of analog de-
signs, IEEE/ACM International Conference on Computer Aided Design, 2004.
ICCAD-2004. , 7-11 Nov. 2004 Page(s):210 - 217

55

24. A. Bemporad and M. Morari Verification of hybrid systems via mathematical pro-
gramming.In F.W. Vaandrager and J.H. van Schuppen, editors, Hybrid Systems:
Computation and Control, volume 1569 of Lecture Notes in Computer Science,
pages 31–45. Springer Verlag, 1999.

25. Li Tan, Jesung Kim, Insup Lee: Testing and Monitoring Model-based Generated
Program. Electr. Notes Theor. Comput. Sci. 89(2): (2003)

26. Oded Maler, Dejan Nickovic: Monitoring Temporal Properties of Continuous Sig-
nals. FORMATS/FTRTFT 2004: 152-166

27. G. Frehse, B. Krogh, R. Rutenbar, O. Maler Time Domain Verification of Oscillator
Circuit Properties, Workshop on Formal Verification of Analog Circuits, 2005

28. N. Halbwachs, P. Raymond, and Y. Proy. Verification of linear hybrid systems by
means of convex approximations. In B. LeCharlier, editor, Proceedings of Interna-
tional Symposium on Static Analysis, volume 864 of Lecture Notes in Computer
Science. Springer-Verlag, September 1994.

29. T. A. Henzinger and P. Ho. A note on abstract-interpretation strategies for hybrid
automata. In Hybrid Systems II, Lecture Notes in Computer Science 999, Springer-
Verlag, 1995, pp. 252-264.

30. Susanne Graf, Hassen Sai”di: Construction of Abstract State Graphs with PVS.
CAV 1997: 72-83

31. Ashish Tiwari, Gaurav Khanna: Series of Abstractions for Hybrid Automata.
HSCC 2002: 465-478

32. Edmund M. Clarke, Ansgar Fehnker, Zhi Han, Bruce H. Krogh, Olaf Stursberg,
Michael Theobald: Verification of Hybrid Systems Based on Counterexample-
Guided Abstraction Refinement. TACAS 2003: 192-207

56

Formal Verification of Spacing Properties of an Air Traffic

Management Concept∗

César A. Muñoz† Gilles Dowek‡

August 3, 2005

Abstract

We propose a mathematical model to verify continuous safety properties of the NASA’s Small Aircraft
Transportation–Higher Volume Operations (SATS–HVO) concept. The technique described in this paper
allows for an exhaustive generation of nominal aircraft operations and mechanical verification of spacing
properties, which are critical to the concept safety. Additionally, the formal model yields analytical
formulas to compute spacing minima on arrival approaches. These formulas, which are parameterized
by the geometry of the SATS–HVO terminal area and the performance of the aircraft, can be used to
configure a baseline procedure for self separation. The mathematical development presented in this paper
has been formally verified in the Prototype Verification System (PVS).

Acronyms

AMM Airport Management Module

ATM Air Traffic Management

CONOPS Concept for Nominal Operations

HVO Higher Volume Operations

IAF Initial Approach Fix

IMC Instrument Meteorological Conditions

MAHF Missed Approach Holding Fix

PVS Prototype Verification System

SATS Small Aircraft Transportation System

SCA Self Controlled Area

1 Introduction

The safety objective of an Air Traffic Management (ATM) concept is to keep aircraft sufficiently separated.
This is accomplished trough a set of operational procedures, on-board equipment, and aerospace restrictions.
All these elements form the concept for nominal operations (CONOPS). The safety assumption of an ATM
system is that aircraft flying in compliance with the CONOPS are separated from each other.

Emerging and more reliable surveillance and communication technologies enable air-ground distributed
ATM concepts where pilots and air traffic controllers share the responsibility for traffic separation. One
of such concepts is the NASA’s Small Aircraft Transportation System (SATS) [5]. The SATS program
aims to increase access to small airports in the US during instrument approach operations. The concept
of operation, which is known as Higher Volume Operation (SATS–HVO) [1], consists of four components:

∗This work was supported by the National Aeronautics and Space Administration under NASA Cooperative Agreement
NCC-1-02043.

†National Institute of Aerospace (NIA), 100 Exploration Way, Hampton, VA 23666, USA. Email: munoz@nianet.org .
‡Laboratoire d’Informatique (LIX), École polytechnique, 91128 Palaiseau Cedex, France. Email:

Gilles.Dowek@polytechnique.fr .

57

munoz@nianet.org
Gilles.Dowek@polytechnique.fr

(1) a designated airspace surrounding the airport called the Self Controlled Area (SCA); (2) a centralized
automated system called the Airport Management Module (AMM); (3) aircraft to aircraft and aircraft to
AMM data communication; and, (4) distributed on-board navigation tools.

A key aspect of the SATS–HVO concept is that, under nominal operations, aircraft in the SCA are
self separated, i.e., pilots are responsible for separation without assistance of an air traffic controller. Self
separation is achieved by a baseline procedure where an aircraft in a holding fix delays its final approach
initiation until it meets a spacing safety threshold with respect to its lead aircraft. The threshold guarantees
a minimum separation until the aircraft lands or leaves the SCA. In this paper, the term spacing refers to
linear separation of an aircraft with respect to its lead aircraft in the landing/departing sequence.

The task of showing that the design of the SATS–HVO concept is correct is accomplished using formal
mathematical analysis. A high level mathematical model of the concept is described in [2]. The mathemat-
ical model is a conservative abstraction of the real concept. It considers all type of aircraft performances,
including some that may not be physically possible. This conservative abstraction yields a discrete finite
transition system that enables exhaustive state exploration of nominal operations. The model was mechan-
ically checked [4] in the verification system PVS [6]. For example, it has been formally verified that the
SATS–HVO concept allows up to four concurrent arrival operations in the SCA, which is better than the
current one-in one-out restriction for this type of operations, and that eventually all arrival aircraft land,
i.e., there are no deadlocks.

The discrete model does not support verification of spacing properties as these properties require a more
precise modeling of the geometry of the SCA and of the aircraft performance parameters. This papers
proposes a hybrid model that extends the discrete model presented in [2]. In contrast to the original
model, the proposed model enables the verification of continuous safety properties of nominal SATS–HVO
operations. To this end, aircraft performances, such as ground speed ranges, and information about the SCA
geometry, such as length of the approach segments, are integrated into the original model. Thus, in the new
model, the concept of operations is described by the continuous dynamics of aircraft and the discrete events
within the SCA.

2 SATS–HVO CONOPS

The SATS–HVO concept of operations [1] is a collection of rules and procedures which, when followed, will
provide separation assurance during transition to the SCA, approach, missed approach, landing, takeoff,
departure, and transition out of the SCA. On board navigation tools will provide advisories to aid pilots in
following these procedures. The other components of the concept are the Self Controlled Area (SCA) and
the Airport Management Module (AMM).

The SCA is an airspace volume surrounding the airport facility. The design of the SCA is similar to a
GPS T approach [3], were pilots are required to fly by latitude/longitude points in the space, called fixes, in
order to perform a landing approach or a departure. In a T approach, the fixes are geographically arranged
as a T. Some of these fixes are holding fixes. Under particular circumstances, an aircraft is allowed to fly
around a holding fix waiting for another aircraft to go first in a landing approach. A missed approach holding
fix is a holding fix to which an aircraft will proceed in case it executes a missed approach.

Figure 1 shows a top view of a nominal SCA. The fixes are the right and left initial arrival fixes (IAF-R,
IAF-L), intermediate fix (IF), final approach fix (FAF), and right and left departure fixes (DF-R, DF-L).1

Moreover, there are right and left missed approach holding fixes (MAHF-R, MAHF-L) at 2000 feet and at
3000 feet.

The AMM is an automated system which will typically reside at the airport grounds. It serves as an
arbiter and sequencer of the SCA. It receives state information from aircraft in the vicinity of the airport and
communicates with aircraft via data link. The AMM minimally supports flight operations by implementing
entry rules, providing follow notifications, and assigning missed approach holding fixes.

1As it is usually depicted, right and left are relative to the pilot facing the runway, i.e., opposite from the reader point of
view.

58

Missed
Appraoch
Path

IFIAF−R

IAF−L

FAF

runway

side view

departure fixdeparture fix

Figure 1: Top view of SCA

There are two types of entry into the SCA: vertical entry and lateral entry. In a vertical entry, an aircraft
flies to the IAF at an altitude above the SCA. The aircraft holds at the IAF above the SCA until entry is
granted by the AMM. The aircraft then descends over the IAF flying a race track trajectory through 4000
to the 3000 feet holding fix. A lateral entry is possible when there are no aircraft at or assigned to the
IAF. In this case, the aircraft proceeds to the IAF in a flight trajectory to arrive at the IAF at or above
2000 feet. When an entry is granted by the AMM, the aircraft receives a follow notification and a missed
approach holding fix assignment. The follow notification is either none, if it is the first aircraft in the landing
sequence, or the identification of a lead aircraft. An aircraft should proceed from the IAF to the IF, and
from there to the FAF and, finally, to the runway threshold, soon after some spacing criteria with respect to
the lead aircraft are satisfied. In case of a missed approach, the aircraft flies to its assigned missed approach
holding fix at the lowest available altitude (2000 or 3000 feet). Then, it re-initiates the approach and either
follows a normal landing procedure or leaves the SCA. Missed approaches are assigned by the AMM in an
alternating basis. This technique ensures that consecutive aircraft on missed approach are not flying to the
same missed approach holding fix.

For the analysis presented in this paper, we only consider arrival operations. This simplification does not
affect the result of the formal verification as arriving aircraft are geographically separated from departing
aircraft.

3 Discrete Model

The discrete model of the SATS–HVO concept is a non-deterministic, asynchronous, state transition system
that describes nominal operations in the SCA. We refer to [2] for a detailed description of the model.

The global discrete state of the system is composed by the state of the AMM and the sate of the SCA.
The state of the AMM includes the next available landing sequence and the next alternating missed approach
holding fix. Landing sequences are natural numbers (starting from 1), missed approach holding fixes are
either left or right. The SCA is logically divided into 12 zones (see Figure 2):

• holding3(left) and holding3(right): Left and right holding patterns at 3000 feet.

59

base()left

runway

final

holding3()right

holding2()right

right

right

left

left

left

left

base()

lez()lez()right

maz()

maz()

holding3()

holding2()

Figure 2: SCA 12 zones

• holding2(left) and holding2(right): Left and right holding patterns at 2000 feet.

• lez(left) and lez(right): Left and right lateral entry zones.

• base(left) and base(right): Left and right base segments.

• maz(left) and maz(right): Left and right missed approach zones.

• final and runway: Final segment and runway.

The state of each of these zones is a list of aircraft states. The state of an aircraft is a record with 2 fields:
landing sequence and MAHF assignment. Aircraft identifications are implicit in this model. The lists of
aircraft states define time/space relations between aircraft. In particular, the order of aircraft in a list is
the order of arrival to the zone. Furthermore, zones behave as first-in first-out data structures: aircraft are
removed from the head of one zone and added to the tail of the next zone.

Operational rules are modeled as transitions over the global state of the system. Seventeen transitions
were identified: Vertical entry (left and right), Lateral entry (left and right), Descend from 3000 to 2000 feet
(left and right), Approach initiation for vertical entry (left and right), Approach initiation for lateral entry
(left and right), Transition from base segment to final segment (left and right), Landing, Taxiing, Missed
approach initiation, and Determination of lowest available altitude (left and right).

It has been shown that the concept satisfies, among many others, the following high-level safety properties:

• There are at most four concurrent arrival operations within the SCA.

• There is at most one aircraft at each initial approach fix at a given holding altitude.

• There are no more than two aircraft on missed approach flying to the same missed approach holding
fix.

• There is always a free missed approach holding fix for any aircraft on missed approach.

• Aircraft land according to their landing sequence.

• Arriving and departing aircraft eventually land or leave the SCA.

60

rightL ()b rightL ()b

B
A

a

b

Lf

Figure 3: Linear distance from IAF

4 The Spacing Problem, Formally

The geometry of the SCA is described by Lb(left), Lb(right), Lf , Lm(left), and Lm(right), which stand for the
linear lengths of the left and right base segments, final segment, and left and right missed approach zones,
respectively.

The position of an aircraft on final approach or missed approach is defined as the linear distance from
its IAF. We use DA(t) to denote the linear distance at time t of the aircraft A from its IAF. For example,
positions of aircraft A and B in Figure 3 are given by DA(t) = Lb(right) + a and DB(t) = Lb(right) + Lf + b.

The time when an aircraft A initiates the final approach, i.e., when it enters the base segment, is denoted
TA. Hence,

DA(TA) = 0. (1)

If A is on final approach or missed approach at time t:

TA ≤ t. (2)

Let iafA be the initial approach fix of A, and mahfA its missed approach holding fix assignment.

• If A is on the base segment:

0 ≤ DA(t) ≤ Lb(iafA). (3)

• If A is on the final segment:

Lb(iafA) ≤ DA(t) ≤ Lb(iafA) + Lf . (4)

• If A is on missed approach:

Lb(iafA) + Lf ≤ DA(t) ≤ Lb(iafA) + Lf + Lm(mahfA). (5)

We assume that the speed of an aircraft may vary with time in the interval [vmin, vmax]. Therefore, for
an aircraft A on final approach or missed approach at time t,

(t1 − t0)vmin ≤ DA(t1) − DA(t0) ≤ (t1 − t0)vmax, (6)

if TA ≤ t0 ≤ t1 ≤ t.
According to the concept of operations, the following properties also hold.

61

• Let B be the lead aircraft of A. If B is on final approach when A initiates the approach:

TB ≤ TA, and (7)

S0 + Lb(iafB) − Lb(iafA) ≤ DB(TA), (8)

where S0 is the initial procedural spacing that a trail aircraft has to meet in order to start its approach.

• If the aircraft B is on missed approach when A initiates the final approach:

Lb(iafB) + Lf ≤ DB(TA). (9)

If B is before A in the landing sequence, the spacing between A and B is defined as

SA→B(t) ≡ DB(t) − DA(t) + Lb(iafA) − Lb(iafB). (10)

Note that according to this definition, spacing of aircraft on opposite base segments is computed as if both
aircraft were in the same segment. In particular, if the base segments have the same length, two aircraft on
opposite IAFs have no spacing.

Propositions 1 and 2 specify the spacings properties we want to check.

Proposition 1. Under nominal operations, aircraft on final approach are spaced to their lead aircraft.
Formally, for any aircraft A and B on final approach at time t, such that B is the lead aircraft of A,

ST ≤ SA→B(t).

Proposition 2. Under nominal operations, aircraft on missed approach at the same fix are spaced. Formally,
for any aircraft A and B on missed approach at the same fix at time t, such that B is before A in the landing
sequence,

SMAZ ≤ SA→B(t).

The constants ST and SMAZ are the theoretical spacing that the concept guarantees on final approach
and missed approach, respectively. As we will see in Section 7, these constants are determined by the
performance of the aircraft, the geometry of the SCA, and the baseline self separation procedure:

ST ≡ S0 − (Lmax + Lf − S0)∆v , and (11)

SMAZ ≡ min(Lmin + Lf − Lmaz∆v, 2S0 − (Lmax + Lf + Lmaz − S0)∆v), (12)

where

Lmin ≡ min(Lb(left), Lb(right)), (13)

Lmax ≡ max(Lb(left), Lb(right)), (14)

Lmaz ≡ max(Lm(left), Lb(right)), and (15)

∆v ≡
vmax − vmin

vmin

. (16)

5 Hybrid Model

The hybrid model of the SATS–HVO concept extends the discrete state of the original model with the
following continuous variables:

• A global current time t that evolves in a continuous way.

• For each aircraft A on final approach or missed approach

62

– the absolute time TA when A initiated the approach, and

– the linear distance from its IAF, i.e., DA(t).

Discrete transitions are modified to handle the continuous variables as follows:

• Approach initiation for vertical entry (left and right) and approach initiation for lateral entry (left and
right). An aircraft A may initiate the approach when it is the first aircraft in the landing sequence or
its lead aircraft B is already on final approach, and

S0 + Lb(iafB) − Lb(iafA) ≤ DB(t). (17)

In this case, the variable TA is set to t.

• Merging. An aircraft A on the base segment turns to the final segment when it is the first aircraft in
the landing sequence or its lead aircraft is already on final approach, and

DA(t) = Lb(iafA). (18)

• Missed approach initiation. An aircraft A on the final segment may go to the missed approach zone
when it is the first aircraft in the landing sequence, and

DA(t) = Lb(iafA) + Lf . (19)

• Landing. An aircraft A on the final segment may land if it is the first aircraft in the landing sequence,
there is no other aircraft on the runway, and

DA(t) = Lb(iafA) + Lf . (20)

• Determination of lowest available altitude (left and right). An aircraft A on missed approach may go
to the holding fix at the lowest available altitude when

DA(t) = Lb(iafA) + Lf + Lm(mahfA). (21)

In this case, the variable TA is reset to an undefined value.

Formulas (17)–(21) are derived from formulas (1)–(9).
In the next section we show that the hybrid model described here satisfies propositions 1 and 2.

6 Verification

The verification of the hybrid model uses a state exploration tool called Besc2. Besc was originally developed
for the verification of the discrete model of the SATS–HVO concept [4]. Roughly speaking, Besc is a basic
explicit model checker, written and formally verified in PVS.

In order to write the specification of the hybrid model as a discrete transition system, the continuous
behavior has to be encoded symbolically. Therefore, the global state of the SCA is extended with a new
field eql, which is a list of symbolic expressions known to be valid at a given discrete time. These symbolic
expressions are formed by ≤-inequalities, additions, and continuous variables. The hybrid transition system
described in Section 5 is encoded as follows:

• Approach initiation for vertical entry (left and right) and approach initiation for lateral entry (left and
right). Let A be the aircraft that initiates the approach. The following symbolic properties are added
to eql:

2Besc is available from http://research.nianet.org/~munoz/Besc .

63

http://research.nianet.org/~munoz/Besc

– The fact that A is in the base segment, i.e,

TA ≤ t, and (22)

DA(t) ≤ Lb(iafA). (23)

– If B is the lead aircraft of A, the fact that the aircraft are spaced at time TA, i.e.,

TB ≤ TA, and (24)

S0 + Lb(iafB) ≤ DB(TA) + Lb(iafA). (25)

– For all aircraft C on missed approach,

Lb(iafA) + Lf ≤ DC(TA). (26)

• Merging. Let A be that aircraft that goes into the final segment. Formula (23) is removed from eql

and the fact that A is on the final segment is added to eql:

DA(t) ≤ Lb(iafA) + Lf . (27)

• Missed approach initiation. Let A be the aircraft that initiates the missed approach. Formula (27) is
removed from eql and the fact that A is on missed approach is added to eql:

DA(t) ≤ Lb(iafA) + Lf + Lm(mahfA). (28)

• Landing. Let A be the aircraft that is landing. All the inequalities related to A are removed from
eql except instances of formulas (24) and(25) when B, the previous lead aircraft of A, is on missed
approach.

• Determination of lowest available altitude (left and right). Let A be the aircraft that goes to the lowest
available altitude. All the inequalities related to A are removed from eql.

The resulting model is a finite discrete transition system that can be fully explored in PVS using Besc.
Indeed, the explicit model checker reports 2768 reachable states and the diameter 27. To complete the
verification, we consider all the states s in the set of reachable states:

• For each pair of aircraft A and B in s such that A and B are on the final approach and B is the lead
of aircraft A, the following lemma is generated:

eql(s) =⇒ ST ≤ SA→B(t). (29)

• For each pair of aircraft A and B in s such that they are on missed approach to the same fix and B is
before A in the landing sequence, the following lemma is generated:

eql(s) =⇒ SMAZ ≤ SA→B(t). (30)

Without counting repetitions, 117 lemmas were generated. From those, 73 lemmas are instances of
Formula (29) and the remaining 44 lemmas are instances of Formula (30). The first set of lemmas corresponds
to Proposition 1 and the second one corresponds to Proposition 2. All these lemmas were automatically
proved in PVS using two custom made strategies.

7 Theoretical Spacing

This section describes the analytical derivation of formulas (11) and (12).

64

7.1 Spacing on final approach

Let A and B be aircraft on final approach at time t such that B is the lead of aircraft A. Since B is on final
approach, by formulas (3) and (4),

DB(t) ≤ Lb(iafB) + Lf . (31)

Using Formula (8) on A and B yields

S0 + Lb(iafB) − Lb(iafA) ≤ DB(TA). (32)

Subtracting formulas (31) and (32), we get

DB(t) − DB(TA) ≤ Lb(iafA) + Lf − S0. (33)

Formula (2) states that TA ≤ t. Therefore, using Formula (6) on A and B,

(t − TA)vmin ≤ DB(t) − DB(TA), and (34)

DA(t) − DA(TA) ≤ (t − TA)vmax. (35)

But, DA(TA) = 0, by Formula (1). Therefore,

DA(t) ≤ (t − TA)vmax. (36)

From formulas (33) and (34),

t − TA ≤
Lb(iafA) + Lf − S0

vmin

. (37)

Hence, the theoretical spacing for two aircraft on final approach is given by

SA→B(t) = DB(t) − DA(t) + Lb(iafA) − Lb(iafB)

= DB(TA) + (DB(t) − DB(TA)) − DA(t) + Lb(iafA) − Lb(iafB)

≥ S0 + (DB(t) − DB(TA)) − DA(t), by Formula (32),

≥ S0 + (t − TA)vmin − (t − TA)vmax, by formulas (34) and (36),

≥ S0 − (Lb(iafA) + Lf − S0)
vmax − vmin

vmin

, by Formula (37),

≥ S0 − (Lmax + Lf − S0)∆v , by formulas (14) and (16).

The latter expression defines ST as given in Formula (11).

7.2 Spacing on missed approach

Let A and B be aircraft on missed approach at time t such that B is before A in the landing sequence. Since
B is on missed approach, by Formula (5),

DB(t) ≤ Lb(iafB) + Lf + Lm(mahfB). (38)

We consider two cases:

• When A initiated the approach, B was on missed approach. Using Formula (9) on A and B yields

Lb(iafB) + Lf ≤ DB(TA). (39)

Subtracting formulas (38) and (39), we get

DB(t) − DB(TA) ≤ Lm(mahfB). (40)

65

Formulas (34)–(36) are derived as in Section 7.1. From formulas (34) and (40),

t − TA ≤
Lm(mahfB)

vmin

. (41)

Hence, the theoretical spacing in this case is given by

SA→B(t) = DB(t) − DA(t) + Lb(iafA) − Lb(iafB)

= DB(TA) + (DB(t) − DB(TA)) − DA(t) + Lb(iafA) − Lb(iafB)

≥ Lb(iafA) + Lf + (DB(t) − DB(TA)) − DA(t), by Formula (39),

≥ Lb(iafA) + Lf + (t − TA)vmin − (t − TA)vmax, by formulas (34) and (36),

≥ Lb(iafA) + Lf − Lm(mahfB)
vmax − vmin

vmin

, by Formula (41),

≥ Lmin + Lf − Lmaz∆v , by formulas (13), (15), and (16).

• When A initiated the approach, aircraft B and X where on final approach, B was the lead of aircraft
X , and X was the lead aircraft of A. Using Formula (9) on A, X , and B, yields

S0 + Lb(iafB) − Lb(iafX) ≤ DB(TX), and (42)

S0 + Lb(iafX) − Lb(iafA) ≤ DX(TA). (43)

Subtracting formulas (38) and (42), we get

DB(t) − DB(TX) ≤ Lb(iafX) + Lf + Lm(mahfB) − S0. (44)

Formula (36) is derived as in Section 7.1. From Formula (7), TX ≤ TA, and from Formula (1),
DX(TX) = 0. Therefore, using Formula (6) on X ,

DX(TA) ≤ (TA − TX)vmax. (45)

From Formula (2), TX ≤ t. Using Formula (6) on B,

(t − TX)vmin ≤ DB(t) − DB(TX). (46)

From formulas (44) and (46),

t − TX ≤
Lb(iafX) + Lf + Lm(mahfB) − S0

vmin

. (47)

Hence, the theoretical spacing in this case is given by

SA→B(t) = DB(t) − DA(t) + Lb(iafA) − Lb(iafB)

= DB(TX) + (DB(t) − DB(TX)) − DA(t) + Lb(iafA) − Lb(iafB)

≥ S0 + Lb(iafA) − Lb(iafX) + (DB(t) − DB(TX)) − DA(t),

by Formula (42),

≥ S0 + Lb(iafA) − Lb(iafX) + (t − TX)vmin − (t − TA)vmax,

by formulas (36) and (46),

= S0 + Lb(iafA) − Lb(iafX) − (t − Tx)(vmax − vmin) + (TA − TX)vmax

≥ S0 + Lb(iafA) − Lb(iafX) − (t − Tx)(vmax − vmin) + DX(TA),

by Formula (45),

≥ 2S0 − (t − Tx)(vmax − vmin), by Formula (43),

≥ 2S0 − (Lb(iafX) + Lf + Lm(mahfB) − S0)
vmax − vmin

vmin

,

by Formula (47),

≥ 2S0 − (Lmax + Lf + Lmaz − S0)∆v , by formulas (14), (15), and (16).

66

In both cases,

SA→B(t) ≥ min(Lmin + Lf − Lmaz∆v , 2S0 − (Lmax + Lf + Lmaz − S0)∆v).

This expression defines SMAZ as given in Formula (12). Note that

SMAZ = 2S0 − (Lmax + Lf + Lmaz − S0)∆v , (48)

when

1 +
vmin

vmax

≤
Lmin + Lf

S0

. (49)

Furthermore,

St ≤ SMAZ , (50)

when

Lmaz∆v ≤ S0. (51)

8 Conclusion

We have presented analytical formulas to compute the minimum spacing on final approach and missed
approach for the SATS–HVO operational concept. Using theorem proving and model checking techniques,
we have exhaustively explored the set of nominal operations and mechanically verified the spacing properties.

From a practical point of view, the results presented in this paper can be used to configure a nominal
SCA and the parameters of the baseline procedure for self separation. For instance, consider a symmetrical
nominal SCA where Lb(left) = Lb(right) = 5 nm, Lf = 10 nm, and Lm(left) = Lm(right) = 13 nm. If the
initial separation S0 is 6 nm and vmin = 90 kt, vmax = 120 kt, then

Lmin = Lmax = 5 nm,

Lmaz = 13 nm, and

∆v =
120− 90

90
=

1

3
.

The value of ST is computed using Formula (11):

ST = 6 −
5 + 10− 6

3
= 3 nm.

This configuration of the SCA satisfies Formula (49). Therefore, the value of SMAZ can computed using
Formula (48):

SMAZ = 12 −
5 + 10 + 13 − 6

3
= 4.66 nm.

Hence, if the initial spacing of the trail aircraft with respect to the lead aircraft is 6 nm, the SATS–HVO
concept of operations guarantees a minimum spacing of 3 nm on final approach and 4.66 nm on missed
approach.

The geometrical analysis used in this paper can be extended to study Euclidean separation of aircraft on
final approach and missed approach. Figure 4 illustrates a nominal SCA where aircraft on missed approach
turn toward their missed approach zone α degrees with respect to the runway, fly a straight trajectory of M

nautical miles, and then turn to their MAHF. A geometrical analysis reveals that

M =
min(ST , SMAZ)

2
(52)

67

rightL ()b leftL ()b

fL

rightL () − Mm leftL () − Mm
α

M

Figure 4: Nominal SCA

achieves maximum separation for an arbitrary α. In this case, the minimum Euclidean distance Dα that the
concept guarantees for an aircraft on final approach and an aircraft on missed approach is given by

Dα = M
√

2(1 − cosα). (53)

In the example above, the optimal value of M , given by Formula (52), is 1.5 nm. The minimum Euclidean
distance between an aircraft on final approach and an aircraft on missed approach, for different values of α,
is computed using Formula (53):

• D60o = 1.5 nm.

• D90o = 2.12 nm.

• D120o = 2.59 nm.

Increasing the initial spacing S0 to 7 nm yields the following values: ST = 4.33 nm, SMAZ = 7 nm,
M = 2.16 nm, D60o = 2.16 nm, D90o = 3.06 nm, and D120o = 3.75 nm.

The mechanical verification is necessary to make sure that no cases were forgotten on the theoretical
derivation presented in Section 7. For instance, the case analysis on Section 7.2 was discovered by direct
inspection on the lemmas automatically generated from the set of reachable states. Formal proofs are the
ultimate guarantee that the mathematical development presented here is correct.

References

[1] T. Abbott, K. Jones, M. Consiglio, D. Williams, and C. Adams. Small Aircraft Transportation System,
High Volume Operation concept: Normal operations. Technical Report NASA/TM-2004-213022, NASA
Langley Research Center, NASA LaRC Hampton VA 23681-2199, USA, 2004.

[2] G. Dowek, C. Muñoz, and V. Carreño. Abstract model of the SATS concept of operations: Initial re-
sults and recommendations. Technical Report NASA/TM-2004-213006, NASA Langley Research Center,
NASA LaRC,Hampton VA 23681-2199, USA, March 2004.

[3] Federal Aviation Regulations/Aeronautical Information Manual, 1999.

[4] C. Muñoz, G. Dowek, and V. Carreño. Modeling and verification of an air traffic concept of operations.
Software Engineering Notes, 29(4):175–182, 2004. A long version appears as report NASA/TM-2004-
213006.

68

[5] SATS Program Office. Small aircraft transportation system program plan.
http://sats.larc.nasa.gov/documents.html, 2001.

[6] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In Deepak Kapur,
editor, 11th International Conference on Automated Deduction (CADE), volume 607 of Lecture Notes in
Artificial Intelligence, pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

69

Certification of Complex Systems

Nicholas Tudor
QinetiQ

The cost of testing in certification is significant; furthermore, there is evi-
dence that re-testing as designs mature can be up to 50% of the original test
cost with obvious consequences for the whole software life cycle cost. Testing is
particularly expensive in re-certification where test and test evidence has to be
re-factored or even discarded. Test evidence can be somewhat subjective in that
not all circumstances are examined. Through the use of formal methods and, in
particular, formal proof it should be possible to reduce the extent of verification
testing but still achieve at least the same assurance as test evidence in a more
objective manner. This presentation firstly assesses the extent of testing that is
necessary to achieve satisfactory evidence for certification and then shows that
formal methods can subsume some of that need in certifying systems. This com-
parison is presented in the form of a structured argument appropriate for the
certification of the software in a system to RTCA DO178B Level A. Typically,
formal methods have been thought of as slow, costly and inapplicable to indus-
trial scale projects. It is now possible under certain circumstances to formally
derive code from a Model Based Design automatically and, through the use
of mechanical proof techniques, show that the code implements the design. If
these techniques were then to be applied to typical Level A development, there
can be expected to be cost savings. The pen-ultimate part of this presentation
will outline the typical costs a typical development project and then, using the
ClawZ toolset as an exemplar, compare the same development using the auto-
mated formal techniques. Finally, there remains the question of validation and
confirmation that requirements are complete and consistent. Whilst tools like
CLawZ can assist, there always remains some continuous domain to be checked.
These are the challenges posed at the end of the presentation.

70

