
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 729786, 13 pages
doi:10.1155/2012/729786

Research Article

Efficient Execution of Networked MPSoC Models by
Exploiting Multiple Platform Levels

Christoph Roth, Joachim Meyer, Michael Rückauer, Oliver Sander, and Jürgen Becker

Karlsruhe Institute of Technology (KIT), Institute for Information Processing Technology (ITIV), 76131 Karlsruhe, Germany

Correspondence should be addressed to Christoph Roth, christoph.roth@kit.edu

Received 21 February 2012; Revised 3 June 2012; Accepted 21 July 2012

Academic Editor: Massimo Conti

Copyright © 2012 Christoph Roth et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Novel embedded applications are characterized by increasing requirements on processing performance as well as the demand for
communication between several or many devices. Networked Multiprocessor System-on-Chips (MPSoCs) are a possible solution
to cope with this increasing complexity. Such systems require a detailed exploration on both architectures and system design.
An approach that allows investigating interdependencies between system and network domain is the cooperative execution of
system design tools with a network simulator. Within previous work, synchronization mechanisms have been developed for
parallel system simulation and system/network co-simulation using the high level architecture (HLA). Within this contribution, a
methodology is presented that extends previous work with further building blocks towards a construction kit for system/network
co-simulation. The methodology facilitates flexible assembly of components and adaptation to the specific needs of use cases in
terms of performance and accuracy. Underlying concepts and made extensions are discussed in detail. Benefits are substantiated
by means of various benchmarks.

1. Introduction

Today, two major trends can be observed in the embedded
domain. (1) Multiprocessor System-on-Chips (MPSoCs)
become more and more popular for embedded systems
since functionality is evermore integrated directly into a
single device. Besides that, this trend towards multicore is
driven by the need to optimize performance per watt which
results in an increase of parallelism instead of the clock
frequency. (2) Applications of embedded systems evermore
rely on communication between several or many devices.
When considering, for example, the vision of the so-called
Cyber-Physical Systems (CPS), this trend will continue or
rather become much more intense in future [1]. CPS are
characterized by their high adaptability and the capability
of very tight coupled interaction among each other as well
as the environment. In many imaginable scenarios, such
networked embedded devices must meet hard requirements
like high performance and low power consumption due to
their autonomy in the field of application.

Due to the high degree of parallelism provided by net-
worked MPSoCs system design, verification and validation
become increasingly complex. Usually, system development
starts on higher abstraction levels. The system is then
iteratively refined until reaching the register transfer level
(RTL) implementation. During each refinement step, often
simulation makes a significant contribution to verify and
validate the current system architecture. With increasing
model fidelity such simulations can become an extremely
time-consuming task.

We believe, simulation of multiple networked devices on
multiple abstraction levels is essential for a comprehensive
evaluation of networked MPSoCs since (1) the dynamic
impact of network communication on alternative system
configurations and vice versa needs to be considered, (2) a
network-wide optimization of single nodes regarding size,
power consumption, performance, and so forth demands for
detailed simulations of several nodes in parallel, (3) a step
by step refinement process including reuse of intellectual
property (IP) cores directly induces simulation at various

2 International Journal of Reconfigurable Computing

abstraction levels, and (4) verification and validation of
the system with respect to possible network and traffic
conditions is important through all steps of system design,
even in late phases, when the system model approaches the
final implementation. In order to meet these requirements,
new simulation tools and methodologies are necessary which
support the process of system design by flexibly combining
advantages of both system and network domain and by
having special regard on simulation performance at the same
time.

In this work, a methodology is presented which facilitates
efficient execution of system/network co-simulation on
different abstraction levels. Main part of the methodol-
ogy is a construction-kit-like simulation platform that is
divided into several platform levels. This approach allows
flexibly interconnecting system domain tools (e.g., OSCI
SystemC kernel or Modelsim [2]) with network domain tools
(e.g., OMNET++ [3] or ns-3 [4]) and exploiting different
hardware components like workstations and FPGA-based
rapid prototyping systems for efficient co-simulation and
co-emulation. In previous work, parallel simulation of a
single MPSoC [5] as well as synchronization algorithms for
system/network co-simulation [6] has been considered for
applicability with a high-level-architecture- (HLA-) based
simulation backbone. In contrast, key contributions of this
work are as follows.

(i) Introduction of the co-simulation methodology.

(ii) Embedding of a realistic MPSoC model called
HeMPS [7] into the methodology by extending
it with wireless networking capabilities through a
virtual network interface.

(iii) Extension of the platform of [6] towards a multilevel
construction kit by equipping it with a co-emulation
interface for fast execution of detailed RTL-based
system models.

(iv) Benchmarking and functional verification of the
simulation platform by means of the newly integrated
HeMPS system using different abstraction levels.

The remainder of this paper is organized as follows.
Section 2 summarizes fundamentals and presents related
works in the fields of parallel discrete event simulation and
network/system modeling and design as well as combined
approaches. The proposed simulation methodology is pre-
sented in Section 3. Extensions on targeted simulation mod-
els as well as the implementation of the simulation platform
are described in Sections 4 and 5. In Section 6 performance
of different platform configurations is evaluated followed by
a demonstration of applicability on a realistic scenario in
Section 7. Finally, in Section 8 the work is concluded and an
outlook is given to possible further work.

2. Fundamentals and Related Work

2.1. Parallel and Distributed Discrete Event Simulation. Par-
allel and distributed discrete event simulation (PDES and
DDES) is a research topic for more than three decades now. It

denotes a technology that enables execution of discrete event
simulations (DES) on parallel and/or distributed platforms.
Major objectives are the following [8]:

(i) reduction of execution time,

(ii) enabling larger simulations by incorporating dis-
tributed resources,

(iii) reuse in terms of integration of possibly spatially
distributed simulators of different types.

An integral part of PDES research deals with the so-called
synchronization problem [9] since the chosen synchronization
mechanism in combination with the underlying hw/sw
platform fundamentally influences performance. Basically,
a PDES is made up of several logical processes (LP) that
maintain separate event queues. Within each LP time
progress is controlled by a scheduler that always selects the
smallest time stamp event for execution. Whenever causal
dependence between local events in the queue and events
generated by other LPs cannot be excluded, the LPs must
also consider these remote events during event scheduling.
Various algorithms have been proposed for this issue in
the literature. They can be divided into conservative and
optimistic approaches. In short, conservative synchroniza-
tion algorithms avoid violating the causality relationships
between LPs by always guaranteeing event delivery and exe-
cution in the correct time order. The approaches in [10–12]
are examples of conservative algorithms. Also the method
we proposed in [6] for system/network co-simulation is a
conservative approach. In contrast, optimistic approaches
allow violating the causality relationships but provide for
mechanisms to restore already past points in time (e.g., [13]
or [14]).

Simulator interoperability is another major research
topic that directly derives from the afore-mentioned “reuse”
objective. Up to now, standards like HLA [15] have mainly
addressed the syntatic interoperability between different
simulation systems. One major reason why PDES/DDES is
still not really established for common use is the lack of
adequate tools that automate the process of configuring and
setting up a distributed simulation for efficient execution.
In this context, Strassburger et al. mention in [16] as one
of the main research challenges and compelling problems
in the field of distributed simulation systems the need of a
technical approach for true plug-and-play capability between
simulation packages of different domains.

2.2. Network Modeling and Design. For modeling and design
of computer networks, there exists a wide range of so-
called network simulation tools. Well-known examples are
OMNET++ [3], ns-2 [17], ns-3 [4], or JiST [18]. These
tools generally facilitate specification and simulation of
the behavior of complete protocol stacks referring to the
ISO/OSI reference model. A network model typically consists
of several or many devices being interconnected by virtual
wired or wireless links. Each device implements the func-
tional description of the targeted network protocol including
protocol state machines, packet structure, and data manip-
ulations. Beyond that, possible environmental influences

International Journal of Reconfigurable Computing 3

on communication behaviour like mobility or obstacles
can also be defined. During simulation execution, device
models interact with each other through virtual network
channels. Typical observable parameters are network traffic,
transmission latencies, packet loss, or link failures. The so-
called network emulation introduced by Fall [19] tries to
increase realism and precision of generated network traffic
by integrating physical systems with a network simulation.
Since the approach of Fall demands for real-time execution,
recent work [20] introduced an approach for synchronized
network emulation using virtual machines.

Generally, the main drawback of network simulation
tools is their ineptitude for detailed system modeling,
since they do not reproduce behavior and interaction of
underlying hardware and software components accurately.

2.3. Simulation Platforms for Embedded Systems. Today,
simulation plays a major role during both design space
exploration (DSE) of embedded systems as well as software
development for such systems. OVP [21] and GEM-5 [22]
are two well-known simulation platforms in the embedded
domain. OVP is optimized for very fast execution and targets
the provision of virtual prototypes for software development.
Due to the lack of enough accuracy, models provided by
OVP are typically not suitable for a DSE. GEM-5 is a
simulator for computer architecture research with which
microarchitectural characteristics like pipelines, caches, or
interconnects can be modeled and simulated, making it
suitable for a DSE.

In a typical DSE process, a basic architecture platform
consisting of hardware and software is assumed, that is,
parameterizable to a certain extend. Starting from a given
target application, the architecture platform is iteratively
refined towards the final implementation. In the domain
of MPSoCs, recent approaches employ multiaccuracy sim-
ulation models that allow choosing between faster or more
accurate simulation. In this context, Moreno et al. [23]
propose an MPSoC design flow that integrates NoC models
of different accuracy. Indrusiak et al. [24] propose, a layered
approach that allows obtaining accurate figures for com-
munication latency from an abstract application model. In
[25], a model-based methodology and supporting toolset is
presented that lets designers estimate application-specific
network on chip power dissipation at early stages of the
design flow. Authors employ a unified model and define
different application-mapping platform layers. Last but not
least, an example of a simulation platform that can accelerate
DSE by exploiting parallelism provided by SMP workstations
is described in [26].

The presented frameworks and methodologies for DSE
all target evaluation and analysis of embedded system
architectures. However, they focus on optimization of single
systems without considering interaction with an outer
network.

2.4. Network Centric Development of Embedded Systems. Pio-
neering work in the area of system/network co-simulation
has been done by Fummi et al., for example, in [27, 28],

reporting about a co-simulation environment for SystemC
and ns-2. In [28], the authors show by means of several appli-
cation examples that using system/network co-simulation
reduces the modeling effort of networked devices and allows
easy design verification and validation. In [27], they focus
on timing accurate integration and synchronization and
describe necessary kernel extensions for a tightly simulator
coupling by linking the kernels together. Recent work from
the same authors [29] introduces a TLM-based methodology
for system/network design-space exploration of networked
embedded systems which extends the traditional transaction
level modeling [30] refinement process with a new dimen-
sion to represent network configuration alternatives. They
derive a general criterion to map functionalities to system
and network models and apply the proposed methodology
to the design of a Voice-over-IP client which is partially
refined down to RTL level. An example for a co-simulation
framework based on a loosely coupling of SystemC and
OMNET++ is given in [31] which is motivated by the
evaluation of automotive IT architectures and the fact that
in the automotive industries predominantly so-called “rest
bus” simulations are state of the art which rely on real
working hardware, and therefore, can only take place in late
design phases. Finally, the approaches in [32, 33] examples
for co-simulation platforms in the domain of wireless sensor
networks. The former focusses on the evaluation of hard-
ware/network interactions in WSNs in general, whereas the
approaches in [33] focusses on investigating the application
of reconfigurable hardware in the WSN context. Thereby, the
authors explicitly model on cycle accurate level in order to
reproduce hardware behaviour in detail.

Except this work, there exists no research paper targeting
a system/network co-simulation environment that can be
specialized towards different use cases and allows integration
of simulation tools in a construction kit-like manner. Fur-
thermore, none of the related work supports co-simulation,
co-emulation, and parallel/distributed execution at the same
time.

3. Simulation Methodology

The proposed simulation methodology describes the way of
proceeding for a network centric evaluation of embedded
MPSoCs using various abstraction levels. It is illustrated in
Figure 1.

The methodology is composed of three steps.

(1) Scenario Definition. A scenario is defined for which
a system analysis by means of simulation should
be performed. The scenario definition is given by a
specification of the communication protocol includ-
ing the target application and the environmental
context (e.g., node position, distance, mobility, etc.)
in which the application will be executed. The
scenario definition is done in the network domain
using a respective network simulation tool, since
such tools inherently provide support for defining a
scenario in a formal way using a specification file.

4 International Journal of Reconfigurable Computing

System models

Sy
st

em
 d

om
ai

n
N

et
w

or
k

do
m

ai
n

(3) Simulation platform

(1) Scenario definition

Network model

mapping and execution

1 2 3

()

Network model

1 2 3

(2) Abstraction level
selection

Figure 1: Simulation methodology.

(2) Abstraction Level Selection. A cross-domain simulation
model (CSM) is generated that links the network
domain to the system domain. Therefore, it is
defined, which of the nodes of the scenario definition
remain an abstract artifact in the network domain
model and which of them are modeled in more detail.
In the latter case, an abstract artifact in the network
domain needs to be linked with an associated detailed
artifact in the system domain (system domain model).
In Figure 1, only cycle accurate and register transfer
level are illustrated. Other abstraction levels or even
mixed abstraction levels within a single node are
also imaginable. In [6], the foundation for dividing
a node into network and system domain artifacts
is described. From the communication protocol
perspective nodes can be either local nodes or remote
nodes. Local nodes implement the complete protocol
stack of the network protocol that is simulated within
the network domain. Remote nodes only implement
lower protocol layers within the network domain.
Upper protocol layers are implemented in the system
domain. The position of the cut between protocol
layers determines the data that needs to be exchanged
between network and system domain artifacts of
a remote node. The decision whether a node is

extended to a remote node depends on the tar-
geted design or verification use case (e.g., network-
wide optimization of several node architectures or
verification of a single node). Basically a nodes

internal hardware/software interactions need to be
reproduced in detail if there is the necessity of gaining
information about hw/sw-system characteristics, for
example, in terms of latency and throughput.

(3) Simulation Platform Mapping and Execution. The
CSM is mapped and executed on an appropri-
ate instance of the Simulation Platform (SP) (see
Figure 2). The SP is made up of two platform levels
(not to be confused with abstraction levels of step
two) called simulator interoperability level (SIL) and
execution platform Level (EPL). Each platform level
is assigned a distinct task. The SIL provides the
simulation infrastructure for the CSM in terms of
interconnected and correctly synchronized domain
specific simulators. The EPL is the execution infras-
tructure in terms of different workstations, rapid
prototyping systems, and local area network (LAN).
Different manifestations of the platform levels can
be combined in a construction kit-like manner. A
concrete manifestation again depends on the targeted
use case, characteristics of the CSM like number of
system domain models and execution performance
requirements.

4. Target Cross-Domain Simulation Models

The targeted cross-domain simulation models consist of
instances of the HeMPS MPSoC [7] in the system domain
and a 802.11 wireless network model in the network domain.

International Journal of Reconfigurable Computing 5

Cross-domain simulation model (CSM)

Simulator interoperability level (SIL)

Execution platform level (EPL)

Simulation platform

Figure 2: Simulation platform.

HeMPS

Ta
sk

re

po
si

to
ry

R R

R R

PE

Master PE

PEN

R

PE

R

PE

R

R

R

PE

PE

PE

RAM

P
E

-N
E

T N
et

w
or

k
in

te
rf

ac
e DMA

Plasma

R
A

M

Virtual network
interface

RTOS

Task 1

Task n
...

Figure 3: HeMPS with virtual network interface extension.

In the following, HeMPS itself as well as newly made interface
extensions for integration of the model into a CSM are
described. Besides that, details of interface extensions of the
network model that have not been treated in previous work
[6] are also shortly explained.

4.1. System Domain Model. HeMPS is a homogeneous
MPSoC that consists of a configurable number of processing
elements (PE) being interconnected by an NoC with mesh
structure. It is completely available in SystemC and can
be executed with the OSCI system kernel or modelsim. In
contrast to the models used in previous work [6], HeMPS
is much more realistic. Figure 3 gives an overview of the
HeMPS architecture.

Main hardware components of HeMPS are the HERMES
NoC [34] and the MIPS processor plasma [35]. The plasma
cores execute a multithreaded real-time operating system
(RTOS). Applications running on HeMPS are modeled using

Output
buffer

Input
buffer

Register interface

Control
block

To plasma

Figure 4: Virtual network interface.

task graphs. They are stored in an external memory named
task repository and are allocated by a master to the remaining
PEs (also called slaves). HeMPS has been chosen since it also
fulfills the following requirements:

(i) scalability of the NoC size,

(ii) availability of RTL models and faster models on cycle
accurate level (CAL) of the processing elements,

(iii) easy configurability (size, task mapping, routing
strategy, etc.) and model generation,

(iv) HeMPS is open source.

The model has been extended with a virtual network
interface (VNI) that can be connected to any of the PEs
within the whole HeMPS array. The VNI is accessed from
the SIL via a model adaptor (see Section 5.1) and forms
the basis for data exchange with a network domain artifact
on MAC layer. In Figure 4, the inner structure of the VNI
is depicted. By means of a register interface, the peripheral
is integrated into the address space of the plasma core. To
exchange data with the SIL, input and output buffers are
present. Both can hold 1024 bytes of data. Access to the
buffers is directed by the control block which gathers the
buffer states for generation of respective status signals and
accepts read/write commands from the remaining model and
the SIL.

4.2. Network Domain Model. Typically, nodes in network
simulators are represented by hierarchically nested modules
that communicate by passing messages to each other. Module
nesting allows users to reflect the logical structure of network
protocols. The modular approach of network simulation
tools is exploited for instantiation of an invisible dummy
module called VNI Master which can be accessed by the
model adaptor of the SIL. It is the counterpart to the VNI in
the system domain. The VNI Master acts as a kind of gateway
and forwards network packets from the SIL to network
domain artifacts (remote nodes). In turn, it also forwards
network packets from network domain artifacts to the SIL.
The approach of using a dummy module can be applied
in any available network simulator since basic concepts
are equivalent. However, due to its good extensibility,
OMNET++ together with the MiXiM framework has been
used.

6 International Journal of Reconfigurable Computing

Local area network

Network simulation

1 2 3

Network model

FPGA
MPSoC 3

PE1

PE3

PE2

PEN

System emulation

Sy
st

em
 m

od
el

HLA runtime
infrastructure (RTI)

SPLib

SPLib

Local node

Remote node

System simulation

Sy
st

em
 m

od
el

s
SPLib

Core
1

Core
3

Core
2

Core
4

MPSoC 1

PE1

PE3

PE2

PEN

Core
1

Core
3

Core
2

Core
4

MPSoC 2

PE1

PE3

PE2

PEN

V
W

I
M

as
te

r

Figure 5: Simulation model and platform instance.

5. Simulation Platform

The construction kit-like design of the simulation platform
facilitates

(i) assembly of different CSM, SIL, and EPL compo-
nents,

(ii) reuse of domain specific simulation tools and models,

(iii) adaptation to specific use cases.

Figure 5 provides an overall view of an instantiation of
the simulation platform that is feasible with the currently
available components on the EPL and the SIL. Regarding
the EPL, execution of either network or system simula-
tors is done on Linux workstations. Emulation of system
models is done on FPGA-based rapid prototyping sys-
tems called Hardware-Prototyping and Emulation System—
Industrial Reference Platform (IRP) [36]. Since co-emulation
has not yet been considered in previous work [6], SIL and
EPL are described with a special regard on emulation and
the difference to simulation. For the sake of completeness,
available synchronization mechanisms on the SIL, as they
were already described in [6], are shortly depicted.

5.1. Simulation Interoperability Level. The implementation
of the SIL is given by the Simulation Platform Library (SPLib).
The SPLib encapsulates an HLA simulation backbone called
CERTI [37]. The SPLib complements the HLA with domain

specific interfaces that facilitate controlled data exchange
between domain specific models. The link that is formed by
the SPLib between HLA, simulators, emulators, and models
is basically fixed but parameterizable within certain degrees
of freedom, that is,

(i) type of network simulator,

(ii) number and type of system simulators,

(iii) number of system emulators,

(iv) number of models per system simulator or emulator,

(v) synchronization method used for controlling data
flow between models.

The library structure is illustrated in Figure 6.
It consists of the following:

(i) different types of adaptors for model connection,

(ii) different types of controllers implementing different
synchronization methods,

(iii) a database for configuring the library regarding
different use cases,

(iv) ambassadors that access the HLA services.

A model adaptor interacts via function calls with the
connected model. However, while the OMNET++ and
SystemC model adaptors directly access the VNI Master res-
pectively, VNI (see Section 4), the functions of the emulator

International Journal of Reconfigurable Computing 7

Simulation platform library

HLA RTI

System model Network model System model

Runtime
configuration

database

HLA ambassadors

VWI VWI

SystemC interface

B
as

ic
co

n
tr

ol
le

r

Sl
av

e
co

n
tr

ol
le

r

OMNET++ interface

B
as

ic
co

n
tr

ol
le

r

M
as

te
r

co
n

tr
ol

le
r

IRP interface

B
as

ic
co

n
tr

ol
le

r

Sl
av

e
co

n
tr

ol
le

r

SystemC model
adaptor

OMNET++ model
adaptor

IRP model
adaptor

VWI Master

Figure 6: Simulation platform library.

adaptor need to be able to access the emulation hardware.
As will be described in more detail in Section 5.2, the
IRP emulation system consists of an Atom processor that
connects to a FPGA via PCIe. The SPLib runs on the
Atom while the model runs on the FPGA. Because of that,
the adaptor functions have been equipped with routines
that allow reading and writing from/to the PCIe bus by
means of a PCIe driver and thus accessing the model
indirectly.

Different synchronization methods are implemented by
means of different controller instances. In case of SystemC
or OMNET++ simulation, a controller implementation
performs time advancement of the respective kernel by
directly interacting with its scheduler. In contrast, in case of
emulation, time advancement of the model that is running
on the FPGA is controlled by accessing a special cycle register
via PCIe that allows model execution for a configurable
amount of cycles. Currently, basic symmetric as well as
master/slave based asymmetric controllers are available for
simulation and emulation. For the sake of completeness,
their implementation is shortly summarized in the following.

5.1.1. Symmetric Conservative Synchronization. Symmetric
conservative synchronization is already inherently supported
by the HLA. CERTI provides two conservative algorithms for
this purpose, the Null Message Algorithm (NMA) [10] and the
Null Prime Message Algorithm (NPMA) [11], an improved
version of the NMA. Regardless of whether the NMA or the
NPMA is configured in CERTI, the HLA API remains the
same. As has been shown in our previous work [6], when
relying on system models of a very fine time granularity of
events, symmetric synchronization can become a strong bot-
tleneck in co-simulation since it incorporates all events that
are generated in the system and the network domain. Most
of the generated synchronization cycles are superfluous since
no causal dependencies between simulators are generated.

5.1.2. Asymmetric Conservative Synchronization. The asym-
metric synchronization method was proposed in [6]. It
takes advantage of communication delays between simu-
lated devices as guarantee for model independence. Time
advancement is exclusively controlled by the network sim-
ulator which acts as master. It specifies how far system
simulators (slaves) are allowed to run ahead. Hence, the
amount of synchronization no longer depends on the fine
time granularity of cycle accurate system models, but on
network characteristics like message rate and transmission
delays being of much higher scale. The only disadvantage
of the asymmetric approach is that “node internal” events
are possibly delayed. Internal events are events that are
transmitted from one domain to another and that effect an
immediate event in the opposite direction. For instance, a
parameter request from an upper protocol layer simulated in
the system domain to lower protocol layers simulated in the
network domain is such a internal event.

5.2. Execution Platform Level. The execution platform level
(EPL) is the lower level of the simulation platform. In
the current implementation, two types of components are
available, workstations with Linux OS as well as the newly
supported IRP-based emulation systems which can be used
for direct FPGA-based execution of RTL system models
without the need of a simulator within the SIL. Basically, the
choice between system simulation and emulation depends
on both, use case and performance requirements. Exploiting
IRPs for emulation is much more performant compared
to workstation-based simulation (see Section 6); however,
emulation is only possible if the system model is present as
synthesizable RTL description and its resource requirements
do not exceed available resources on the FPGA. Besides
that, it is basically limited to use cases in the context
of functional verification and application development or
in which realistic traffic needs to be generated efficiently

8 International Journal of Reconfigurable Computing

Altera Arria FPGA

P
C

Ie
br

id
ge

A
H

B

PLL

Model
clk

HeMPS MPSoC

Emulator
adaptor

Cycles

SM

en

V
ir

tu
al

n

et
w

or
k

in
te

rf
ac

e

Intel ATOM x86 CPU

SPLib

E
m

u
la

to
r

ad
ap

to
r

H
LA

 A
m

b

PCIe HLA

Figure 7: Emulator setup.

Execute

Pause Stop

cycles = 0

cmd = run &&

obuf = empty

cycles! = 0 &&

obuf! = empty

cmd = run &&

obuf = empty

Figure 8: Hardware adaptor state machine.

(keyword synchronized network emulation). If the design use
case demands, for example, for determination of the power
consumption, then simulation on higher abstraction levels
including a power estimation model is probably the best
choice in order to do this.

The structure of the IRP together with the extensions
towards emulation is illustrated in Figure 7. The IRP consists
of a 1.6 GHz Intel Atom processor and an Altera Arria FPGA.
Both are interconnected via a PCIe interface. The Atom
runs the SPLib on top of a Gentoo Linux distribution and
serves as mediator between FPGA, and HLA. On the FPGA
the synthesized system model as well as some additional
hardware components are executed. The model adaptor of
the SPLib is complemented with a hardware counterpart that
is connected to PCIe via AHB bus and accesses the model via
the VNI.

In order to enable synchronized model execution and
data exchange with the HLA, time advancement must
be performed in a well-controlled manner which means
regular start and automatic suspension of execution after a
configurable number of clock cycles. For that reason, the
hardware part of the model adaptor is equipped with a cycle
register that allows specifying the number of clock cycles the
model is allowed to run ahead. Activation and deactivation
of the model clock is subject to the state machine illustrated
in Figure 8.

During the execute state, the PLL clock is interconnected
to the model and the cycle register is counted down with

Table 1: Variable benchmark parameters.

Parameter Location

HeMPS abstraction level CSM

Clock frequency CSM

NoC size CSM

Remote node fraction CSM/SIL

Synchronization method SIL

Execution platform EPL/SIL

Workstation cores EPL

the processing frequency fp until either reaching zero or a
message is available in the output buffer. In the first case,
the state machine switches to stop and waits for a new clock
cycle value as well as a run command. In the second case, the
output buffer must first be read out before the state machine
can switch back to execute. The processing frequency fp
must not be confused with the model frequency fm. The
model frequency fm expresses the “virtual” clock frequency
of the system in relation to simulation time instead of the
wall-clock time. When neglecting the communication and
synchronization overhead between FPGA and Atom/HLA,
the overall wallclock time T(Δt) needed for executing a RTL
model for a simulation time delta of Δt can be expressed as a
relation of fm and fp times Δt

T(Δt) = fm
fp
× Δt. (1)

The maximum value of fp depends on factors like FPGA
type, synthesis tool, and size of the model. Its value typically
ranges in the order of several tens/hundreds of MHz.

6. Performance Evaluation

In the following, performance characteristics of the platform
are evaluated. While focus in previous work [6] was on
the comparison of different synchronization methods, the
following evaluations target a more comprehensive consid-
eration and evaluation of performance benefits of the overall
simulation platform when using different

(i) abstraction levels on the CSM,

(ii) configurations on the SIL and EPL.

Hence, advantages of the construction kit-like design
are emphasized. Starting point is a wireless communication
scenario. From this, three different benchmarks are derived.
Each benchmark covers one or several realistic use cases.
Adjustable parameters that are applied in the benchmarks are
summarized in Table 1.

6.1. Scenario Specification. Within the considered scenario,
64 nodes communicate via a 11 Mbps 802.11b wireless chan-
nel. They are arranged in a mesh structure. Neighbouring
nodes have a distance of 20 m to each other. Each node
transmits broadcast packets with a frequency of 100 Hz. Pure
local nodes implement the broadcast application by means of
a simple traffic generator that is triggered every millisecond.

International Journal of Reconfigurable Computing 9

NET

APP 1 APP 2 APP NApplication
layer

Network
layer

· · ·

Figure 9: HeMPS software structure.

0

2000

4000

6000

8000

RTL

R
u

n
ti

m
e

(s
)

Abstraction level

CAL

1× 2
2× 2
3× 3

Figure 10: Results abstraction benchmark.

6.2. Additional Requirements for the CSM. Since the cut
between network and system domain artifacts is done
on MAC layer, the HeMPS systems need to implement
application and network layer. Therefore, the MPSoCs run
a network layer task that is regularly triggered by an
application task pipeline in order to transmit the broadcast
packets (see Figure 9). The application tasks in the pipeline
simply generate workload in an endless loop.

Measurements have been performed with the OSCI
SystemC kernel V2.2.0 and OMNET++ 4.1. Beside that, the
CERTI null prime message algorithm (NPMA) is taken as
basis for all measurements. The EPL was composed of a linux
workstation (2.0 GHz QuadCore CPU, 8 GB RAM), an IRP
system and a 100 MBit/s local area network.

6.3. Abstraction Benchmark. In this benchmark, a single
remote node is co-simulated with 63 local nodes. This co-
simulation use case is motivated by the need to analyse
hw/sw characteristics of a single node (e.g., number of
processing elements, task distribution, etc.) with respect
to certain network traffic with the remaining nodes. RTL
processing elements are needed if, for example, a detailed
exploration of different types of MPSoC processing elements
should be done. CAL processing elements can be used if only
processing performance of the whole MPSoC with regard
to network traffic shall be evaluated in detail. Symmetric
synchronization is used for maintaining full accuracy also
for node internal events. Sequential execution is necessary
in the case that only a single workstation core is available.
Parameters are summarized in Table 2.

Table 2: Abstraction benchmark configuration.

Parameter Range

HeMPS abstraction level RTL, CAL, NET

Clock frequency 100 MHz

NoC size 1× 2, 2× 2, 3× 3

Remote node fraction 1/64

Synchronization method Symmetric

Execution platform 1 workstation

Workstation cores 1

Results are illustrated in Figure 10. The simulation has
been executed for 20 ms. As can be seen, in both cases, RTL
and CAL, the runtime of co-simulation increases with the
model size. However, when raising the abstraction level and
using CAL instead of RTL, speedups of 1.3 (for the 1 ×
2 system) to 1.65 (for the 3 × 3 system) are gained. The
value of the speedup increases with the model size, since with
increasing model size the computational overhead prevails
the communicational overhead, introduced by the sym-
metric synchronization method. As a comparison, when
simulating all 64 nodes as local nodes (pure network
simulation, the most abstract case), the simulation only lasts
three seconds instead of 2600 to 8000 seconds that were
measured in case of co-simulation.

6.4. Parallelization Benchmark. In this benchmark, several
remote nodes are co-simulated with several local nodes. This
co-simulation use case is motivated by the need to analyse
performance of a distributed application that is mapped onto
different processing elements of distributed MPSoCs. The
focus thereby would be on the mutual impact of selected
MPSoC systems. CAL is used, since performance of each
MPSoC as a whole is of interest. Parallel execution is possible
in the case that several workstation cores are available.
Parameters are summarized in Table 3.

Measured speedups are illustrated in Figure 11. In case of
two, three, and four workstation cores, the network model
was always executed separately on a single workstation core.
As can be seen, except the 1 × 2 case, the speedup gener-
ally increases with increasing the degree of parallelization
from two to three or four workstation cores. In case of
a model size of 1 × 2 and four workstation cores, the
computational overhead is obviously too low in order to
provide an additional gain compared to three workstation
cores. Beside that, the speedup provided by two workstation
cores compared to a single one is marginal and partially
even smaller than one. This is due to the fact that the
network simulation always has been executed on a separate
core and the bulk of computational overhead is generated
by the system simulation. Thus, the network simulation is
idle most of the time. However, for example, in case of a
1 × 2 model and three workstation cores (one running the
network model exclusively), a larger speedup than two is
measured. This in turn can be traced back to cache effects
within the memory hierarchy of the used processors. When
using a single workstation core for execution, the amount

10 International Journal of Reconfigurable Computing

8 of 64
16 of 64

0

1

2

3

4

Sp
ee

du
p

2 to 1 3 to 1 4 to 1

1× 2

8 of 64
16 of 64

0
0.5

1
1.5

2
2.5

3

Sp
ee

du
p

2× 2

2 to 1 3 to 1 4 to 1

8 of 64
16 of 64

0
0.5

1
1.5

2
2.5

3

Sp
ee

du
p

3× 3

Parallelization (deg)

2 to 1 3 to 1 4 to 1

Parallelization (deg)Parallelization (deg)

Figure 11: Results parallelization benchmark.

0

2000

4000

6000

8000

Asymmetric

R
u

n
ti

m
e

(s
)

Synchronization method

Symmetric

CAL simulation

RTL simulation

RTL emulation

(a)

0

5000

10000

15000

20000

25000

30000

R
u

n
ti

m
e

(s
)

CAL simulation

RTL simulation

RTL emulation

Asymmetric

Synchronization method

Symmetric

(b)

Figure 12: Results emulation benchmark (100 MHz (a) and 500 MHz (b)).

Table 3: Parallelization benchmark configuration.

Parameter Range

HeMPS abstraction level CAL

Clock frequency 100 MHz

NoC size 1× 2, 2× 2, 3× 3

Remote node fraction 8, 16 of 64

Synchronization method Symmetric

Execution platform 1 Workstation

Workstation cores 1–4

of data that needs to be processed obviously outvalues the
amount of fast cache memory. If increasing the number of
workstation cores, more fast cache memory is available for
holding data. This reduces the number of slow RAM accesses
and provides the performance gain.

6.5. Emulation Benchmark. In this benchmark, a single
remote node is co-emulated with 63 local nodes. This co-
emulation use case is motivated by the need to speedup
execution of detailed RTL models and to evaluate a hardware
prototype of a single node with respect to its behaviour
under realistic network traffic conditions. Asymmetric syn-
chronization can be used without a loss of accuracy if no
node internal events occur. Parameters are again summarized

Table 4: Emulation benchmark configuration.

Parameter Range

HeMPS abstraction level RTL

Clock frequency 100 MHz, 500 MHz

NoC size 2× 2

Remote node fraction 1/64

Synchronization method Symmetric, asymmetric

Execution platform 1 workstation, 1 IRP

Workstation cores 1

in Table 4. For the purpose of comparison, the same
measurements are also done using co-simulation.

Execution times for 20 ms of simulation time are shown
in Figure 12. The following characteristic can be observed
in case of simulation. Raising the simulated clock frequency
from 100 MHz to 500 MHz goes along with an increase of the
execution time by a factor of about five. This characteristic
is observed for both RTL and CAL simulation. Also the
synchronization method has no significant influence on
this characteristic. Both RTL- and CAL-based processing
elements obviously provide enough computational overhead
to hide the synchronizational overhead.

In case of emulation, the following can be observed.
When using asymmetric synchronization co-emulation

International Journal of Reconfigurable Computing 11

APP
5APP

4APP
3

APP
2

M M M

APP
1

NET
IN

APP
2

APP
3

APP
4

APP
5

APP
1NET

IN

APP
5

APP
4

APP
3

APP
2

APP
1

NET
IN

APP
5APP

4

APP
2

M

APP
1NET

IN
APP

3

1× 2 2× 2a 2× 2b 3× 3

Figure 13: MPSoC configurations.

0

20

40

60

80

100

Complexity

Pa
ck

et
 lo

ss
 (

%
)

500 1000 2000 4000 8000

1× 2

2× 2a

2× 2b

3× 3

(a)

Pa
ck

et
 lo

ss
 (

%
)

Complexity

500 1000 2000 4000 8000

1× 2

2× 2a

2× 2b

3× 3

0

20

40

60

80

100

(b)

Figure 14: Dummy application: 500 Pkt/s (a) and 1000 Pkt/s (b).

Pa
ck

et
 lo

ss
 (

%
)

1× 2

2× 2a

2× 2b

3× 3

8× 8 blocks/Pkt

0

20

40

60

80

100

1 2 4 8

(a)

Pa
ck

et
 lo

ss
 (

%
)

1× 2

2× 2a

2× 2b

3× 3

8× 8 blocks/Pkt

1 2 4 8

0

20

40

60

80

100

(b)

Figure 15: MPEG decoder: 500 Pkt/s (a) and 1000 Pkt/s (b).

12 International Journal of Reconfigurable Computing

strongly outperforms co-simulation for both simulation
clock frequencies. Reasons are the independence of asym-
metric synchronization of the time granularity [6] and the
reduced computational overhead through FPGA execution
(after logic synthesis the 2 × 2 RTL model runs with a
processing clock frequency fp of 25 MHz on the FPGA).
In contrast, symmetric co-emulation generates even worse
results than any co-simulation benchmark. This can be
traced back to the additional delay of the LAN that connects
the IRP system to the workstation.

7. Functional Simulator Verification

In order to verify that the simulation platform is working
correct and appropriate for the intended objectives, a further
example scenario has been set up. By the help of this, the
effect of different network packet rates and different MPSoC
configurations on the packet loss within the virtual network
interface is exemplarily investigated.

7.1. Scenario Specification. A number of nodes are arranged
in a circle having a diameter of 20 m. In the middle of the
circle is an additional local node that stimulates the others
via a 11 Mbps 802.11b channel at different packet rates.

7.2. Additional Requirements for the CSM. Each node around
the circle is a remote node. Used MPSoC configurations are
characterized by a certain number of available processing
elements in combination with a certain kind of task mapping
which results in varying throughput constraints. Measure-
ments are performed by means of two types of applications,
a five task dummy application, and a realistic five task MPEG
decoder, both based on the pipelined software structure
of Figure 9. Applied configurations and task mappings are
illustrated in Figure 13.

Beside the packet loss of 1% that is induced by the
wireless channel model, each MPSoC configurations induces
an additional packet loss within the virtual network interface.
This packet loss is measured.

7.3. Dummy Application. In case of the dummy application,
each received network packet is assigned a certain amount
of workload w in terms of integer multiply operations. Each
application task processes 1/5 of the overall workload w by
executing 1/5 × w integer multiply operations. Benchmark-
ing results are illustrated in Figure 14.

As can be seen, the hw/sw configuration strongly influ-
ences throughput and therewith the packet loss. In case of
500 pkt/s, the 1 × 2 system is able to cope with a packet
complexity of 500 integer multiply operations, whereas the
3 × 3 system can process complexities of 4000 operations
without packet loss. Doubling the packet rate to 1000 pkt/s
expectably results in a left shift of the diagram.

7.4. MPEG Decoder. The same analysis has been performed
by means of a realistic MPEG decoder consisting of an
initiator task (INIT) that divides network packets into 8 × 8
MPEG blocks, a variable length decoder task (VLC), an

inverse quantization task (IQUANT), an inverse discrete
cosine transformation task (IDCT), and an output task
(OUT) for data printing. Each received network packet
contains a configurable number of 8 × 8 blocks of an
encoded MPEG stream which is forwarded into the pipeline.
As measurement results in Figure 15 reveal, variant 2 × 2b
is the most appropriate since it can cope with 4 blocks/pkt
at 500 pkt/s and 2 blocks/pkt at 1000 pkt/s. The additionally
emerging communication overhead of the 3 × 3 system is
obviously too large to further speedup MPEG processing.
This results in an increase of the packet loss compared to
the 2 × 2b system of 21%, respectively, 13% for 500 pkt/s,
respectively, 1000 pkt/s.

8. Conclusion

We presented a methodology that enables efficient execution
of cross-domain simulation models on different abstraction
levels. Basis of the methodology is a construction kit-
like simulation platform that allows assembly of different
components and eases adaptation to different design and
verification use cases. The usefulness of the methodology and
its underlying simulation platform have been demonstrated
by performance benchmarks that included consideration of
different abstraction levels, parallelization and emulation.
Beside that, the platform has been functionally verified
by a realistic use case. We are sure, the methodology can
support productivity and efficiency during development of
networked embedded systems like future Cyber-Physical
Systems.

Further research will focus on automatization of the
simulation platform mapping step that is part of the method-
ology. Therefore, the development of an online profiling
tool is planned which allows discovering bottlenecks during
simulation execution. Results shall serve as basis for the
development of a formal model of the platform that allows
estimating performance. In this context, system/network co-
simulation shall also be combined with distributed simula-
tion of single systems. In addition, further abstraction levels
are planned to be integrated into the HeMPS MPSoC model.

References

[1] P. Tabuada, Cyber-Physical Systems: Position Paper, 2006.

[2] “Modelsim,” http://www.model.com/.

[3] A. Varga, “The OMNeT++ discrete event simulation system,”
in Proceedings of the European Simulation Multiconference
(ESM ’01), June 2001.

[4] “ns-3,” http://www.nsnam.org/.

[5] C. Roth, G. Almeida, O. Sander et al., “Modular framework for
multilevel multi-device MPSoC simulation,” in Proceedings of
the 25th IEEE International Parallel and Distributed Processing
Symbposium, 2011.

[6] C. Roth, O. Sander, and J. Becker, “Flexible and efficient cosi-
mulation of networked embedded devices,” in Proceedings of
the 24th Symposium on Integrated Circuits and Systems Design
(SBCCI ’11), pp. 61–66, ACM, New York, NY, USA, 2011.

International Journal of Reconfigurable Computing 13

[7] E. A. Carara, R. P. de Oliveira, N. L. V. Calazans, and F. G.
Moraes, “HeMPS—a framework for NoC-based MPSoC gen-
eration,” in Proceedings of the IEEE International Symposium
on Circuits and Systems (ISCAS ’09), pp. 1345–1348, May 2009.

[8] R. M. Fujimoto, “Parallel simulation: distributed simulation
systems,” in Proceedings of the 35th Conference on Winter
Simulation: Driving Innovation (WSC ’03), Winter Simulation
Conference, 2003.

[9] R. M. Fujimoto, Parallel and Distribution Simulation Systems,
John Wiley & Sons, New York, NY, USA, 1999.

[10] M. Chandy and J. Misra, “Distributed simulation: a case
study in design and verification of distributed programs,” IEEE
Transactions on Software Engineering SE-51979, no. 5, pp. 440–
452.

[11] J. Chaudron, E. Noulard, and P. Siron, “Design and modeling
techniques for real-time RTI time management,” in Proceed-
ings of the Spring Simulation Interoperability Workshop, 2011.

[12] B. D. Lubachevsky, “Efficient distributed event-driven sim-
ulations of multiple-loop networks,” Communications of the
ACM, vol. 32, no. 1, pp. 111–131, 1989.

[13] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and M.
Diloreto, “Time warp operating system,” in Proceedings of
the eleventh ACM Symposium on Operating systems principles
(SOSP ’87), vol. 21, no. 5, pp. 77–93, ACM, 1987.

[14] F. Mattern, “Efficient algorithms for distributed snapshots and
global virtual time approximation,” Journal of Parallel and
Distributed Computing, vol. 18, no. 4, pp. 423–434, 1993.

[15] “IEEE Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA),” IEEE Std 1516.x-2010, 2010.

[16] S. Strassburger, T. Schulze, and R. Fujimoto, “Future trends in
distributed simulation and distributed virtual environments:
results of a peer study,” in Proceedings of the Winter Simulation
Conference (WSC ’08), pp. 777–785, December 2008.

[17] “ns-2,” http://nsnam.isi.edu/nsnam/.
[18] R. Barr, Z. J. Haas, and R. van Renesse, “JiST: an efficient

approach to simulation using virtual machines: research
articles,” Software-Practice & Experience, vol. 35, no. 6, Article
ID 106016, pp. 539–576, 2005.

[19] “Network emulation in the vint/ns simulator,” in Proceedings
of the 4th IEEE Symposium on Computers and Communica-
tions, p. 244, IEEE Computer Society, 1999, http://dl.acm.org/
citation.cfm?id=876890.880459.

[20] E. Weingärtner, F. Schmidt, T. Heer, and K. Wehrle, “Synchro-
nized network emulation: matching prototypes with com-
plex simulations,” ACM SIGMETRICS Performance Evaluation
Review, vol. 36, no. 2, pp. 58–63, 2008.

[21] “Open Virtual Platform,” http://www.ovpworld.org/.
[22] “The gem5 simulator system,” http://www.m5sim.org.
[23] E. I. Moreno, K. M. Popovici, N. L. V. Calazans, and A.

A. Jerraya, “Integrating abstract NoC models within MPSoC
design,” in Proceedings of the 19th IEEE/IFIP International
Symposium on Rapid System Prototyping (RSP ’08), pp. 65–71,
June 2008.

[24] L. S. Indrusiak, L. C. Ost, F. G. Moraes et al., “Evaluating
the impact of communication latency on applications running
over on-chip multiprocessing platforms: a layered approach,”
in Proceedings of the 8th IEEE International Conference on
Industrial Informatics (INDIN ’10), pp. 148–153, July 2010.

[25] L. Ost, L. S. Indrusiak, G. M. Guindani, F. G. Moraes, and
S. Määttä, “Exploring NoC-based MPSoC design space with
power estimation models,” IEEE Design and Test of Computers,
vol. 28, no. 2, pp. 16–28, 2011.

[26] I. M. Pessoa, A. Mello, A. Greiner, and F. Pêcheux, “Parallel
TLM simulation of MPSoC on SMP workstations: influence

of communication locality,” in Proceedings of the Interna-
tional Conference on Microelectronics (ICM ’10), pp. 359–362,
December 2010.

[27] F. Fummi, P. Gallo, S. Martini, G. Perbellini, M. Poncino, and
F. Ricciato, “A timing-accurate modeling and simulation envi-
ronment for networked embedded systems,” in Proceedings of
the 40th Design Automation Conference, pp. 42–47, June 2003.

[28] N. Drago, F. Fummi, and M. Poncino, “Modeling network em-
bedded systems with ns-2 and systemc,” in Proceedings of the
1st IEEE on Circuits and Systems for Communications (ICCSC
’02), pp. 240–2245, 2002.

[29] N. Bombieri, F. Fummi, and D. Quaglia, “System/network
design-space exploration based on TLM for networked
embedded systems,” ACM Transactions on Embedded Comput-
ing Systems, vol. 9, no. 4, pp. 1–37, 2010.

[30] F. Ghenassia, Transaction-Level Modeling with Systemc: Tlm
Concepts and Applications for Embedded Systems, Springer,
Secaucus, NJ, USA, 2006.

[31] B. Müller-Rathgeber and H. Rauchfuss, “A cosimulation
framework for a distributed system of systems,” in Proceedings
of the IEEE 68th Vehicular Technology Conference (VTC-Fall
’08), pp. 1–5, September 2008.

[32] X. Deng, Y. Yang, and S. Hong, “A flexible platform for
hardware-aware network experiments and a case study on
wireless network coding,” in Proceedings of the 29th conference
on Information communications, March 2010.

[33] J. Zhang, Y. Tang, S. Hirve, S. Iyer, P. Schaumont, and Y.
Yang, “A software-hardware emulator for sensor networks,”
in Proceedings of the 8th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON ’11), pp. 440–448, June 2011.

[34] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost,
“HERMES: an infrastructure for low area overhead packet-
switching networks on chip,” Integration, the VLSI Journal, vol.
38, no. 1, pp. 69–93, 2004.

[35] “OpenCores,” http://www.opencores.org/.

[36] G. E. Research, Industrial Reference Platform, Whitepaper,
2009.

[37] E. Noulard, J.-Y. Rousselot, and P. Siron, “CERTI, an Open
Source RTI, why and how,” in Proceedings of the Spring
Simulation Interoperability Workshop, 2009.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

