1,847 research outputs found

    Perceived Texture Segregation in Chromatic Element-Arrangement Patterns: High Intensity Interference

    Full text link
    An element-arrangement pattern is composed of two types of elements that differ in the ways in which they are arranged in different regions of the pattern. We report experiments on the perceived segregation of chromatic element-arrangement patterns composed of equal-size red and blue squares as the luminances of the surround, the interspaces, and the background (surround plus interspaces) are varied. Perceived segregation was markedly reduced by increasing the luminance of the interspaces. Unlike achromatic element-arrangement patterns composed of squares differing in lightness (Beck, Graham, & Sutter, 1991), perceived segregation did not decrease when the luminance of the interspaces was below that of the squares. Perceived segregation was approximately constant for constant ratios of interspace luminance to square luminance and increased with the contrast ratio of the squares. Perceived segregation based on edge alignment was not interfered with by high intensity interspaces. Stereoscopic cues that caused the squares composing the element arrangement pattern to be seen in front of the interspaces did not greatly improve perceived segregation. One explanation of the results is in terms of inhibitory interactions among achromatic and chromatic cortical cells tuned to spatial-frequency and orientation. Alternately, the results may be explained in terms of how the luminance of the interspaces affects the grouping of the squares for encoding surface representations. Neither explanation accounts fully for the data and both mechanisms may be involved.Air Force Office of Scientific Research (F49620-92-J-0334); Northeast Consortium for Engineering Education (A303-21-93); Office of Naval Research (N00014-91J-4100); CNPQ and NUTES/UFRJ, Brazi

    On the Computational Modeling of Human Vision

    Full text link

    Texture Segregation By Visual Cortex: Perceptual Grouping, Attention, and Learning

    Get PDF
    A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Texture Segregation, Surface Representation, and Figure-ground Separation

    Full text link
    A widespread view is that most of texture segregation can be accounted for by differences in the spatial frequency content of texture regions. Evidence from both psychophysical and physiological studies indicate, however, that beyond these early filtering stages,there are stages of 3-D boundary segmentation and surface representation that are used to segregate textures. Chromatic segregation of element-arrangement patterns as studied by Beck and colleagues - cannot be completely explained by the filtering mechanisms previously employed to account for achromatic segregation. An element arrangement pattern is composed of two types of elements that are arranged differently in different image regions (e.g., vertically on top and diagonally on bottom). FACADE theory mechanisms that have previously been used to explain data about 3-D vision and figure-ground separation are here used to simulate chromatic texture segregation data, in eluding data with equiluminant elements on dark or light homogenous backgrounds, or backgrounds composed of vertical and horizontal dark or light stripes, or horizontal notched stripes. These data include the fact that segregation of patterns composed of red and blue squares decreases with inereasing luminance of the interspaces. Asymmetric segregation properties under 3-D viewing conditions with the cquiluminant element;; dose or far arc abo simulated. Two key model properties arc a spatial impenetrability property that inhibits boundary grouping across regions with noncolinear texture elements, and a boundary-surface consistency property that uses feedback between boundary and surface representations to eliminate spurious boundary groupings and separate figures from their backgrounds.Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657, ONR N00014-91-J-4100); CNPq/Brazil (520419/96-0); Air Force Office of Scientific Research (F49620-92-J-0334

    Texture Segregation in Chromatic Element-Arrangement Patterns

    Full text link
    We compare the perceived segregation of element-arrangement patterns1 which are composed of two types of squanes arranged in vertical stripes in the top and bottom regions and in a checkerboard in the middle region. The squares in a pattern are either equal in luminance and differing in hue or equal in hue and differing in luminance. Perceived segregation of squares differing in hue is not predicted by their rated similarity, but rather by the square-root of the sum of the squares of the differences in the outputs of the L-M and L+M-S opponent channels. Adaptation to the background luminance affects judgements of perceived segregation but does not affect judgments of perceived similarity. For a given background luminance, perceived segregation is a linear function of cone contrasts. Perceived hue similarity is instead a linear function of cone excitations across the background luminances. High and low luminance backgrounds decrease the perceived segregation of patterns differing in luminance. A high luminance achromatic background decreases the perceived segregation of patterns differing in hue but a low luminance achromatic background does not. The results indicate that the adaptation luminance affects the contribution of luminance differences between the two types of squares to perceived segregation but not the contribution of hue differences. For element-arrangement patterns composed of squares of equal luminance that differ in hue, perceived segregation is associated with differences in the perceived brightness of the hues. The results are consistent with the findings that the perceived segregation in element-arrangement patterns is primarily a function of the early visual mechanisms that encode pattern differences prior to the specification of the forms of the squares and their properties.Office of Naval Research (N00014-91-J-4100, N00014-94-1-0597, N00014-95-1-0409); Advanced Research Projects Agency (N00014-92-J-4015); Air Force Office of Scientific Research (F49620-92-J-0334); National Science Foundation (IIU-94-01659

    Cortical Synchronization and Perceptual Framing

    Full text link
    How does the brain group together different parts of an object into a coherent visual object representation? Different parts of an object may be processed by the brain at different rates and may thus become desynchronized. Perceptual framing is a process that resynchronizes cortical activities corresponding to the same retinal object. A neural network model is presented that is able to rapidly resynchronize clesynchronized neural activities. The model provides a link between perceptual and brain data. Model properties quantitatively simulate perceptual framing data, including psychophysical data about temporal order judgments and the reduction of threshold contrast as a function of stimulus length. Such a model has earlier been used to explain data about illusory contour formation, texture segregation, shape-from-shading, 3-D vision, and cortical receptive fields. The model hereby shows how many data may be understood as manifestations of a cortical grouping process that can rapidly resynchronize image parts which belong together in visual object representations. The model exhibits better synchronization in the presence of noise than without noise, a type of stochastic resonance, and synchronizes robustly when cells that represent different stimulus orientations compete. These properties arise when fast long-range cooperation and slow short-range competition interact via nonlinear feedback interactions with cells that obey shunting equations.Office of Naval Research (N00014-92-J-1309, N00014-95-I-0409, N00014-95-I-0657, N00014-92-J-4015); Air Force Office of Scientific Research (F49620-92-J-0334, F49620-92-J-0225)

    A Self-Organizing Neural System for Learning to Recognize Textured Scenes

    Full text link
    A self-organizing ARTEX model is developed to categorize and classify textured image regions. ARTEX specializes the FACADE model of how the visual cortex sees, and the ART model of how temporal and prefrontal cortices interact with the hippocampal system to learn visual recognition categories and their names. FACADE processing generates a vector of boundary and surface properties, notably texture and brightness properties, by utilizing multi-scale filtering, competition, and diffusive filling-in. Its context-sensitive local measures of textured scenes can be used to recognize scenic properties that gradually change across space, as well a.s abrupt texture boundaries. ART incrementally learns recognition categories that classify FACADE output vectors, class names of these categories, and their probabilities. Top-down expectations within ART encode learned prototypes that pay attention to expected visual features. When novel visual information creates a poor match with the best existing category prototype, a memory search selects a new category with which classify the novel data. ARTEX is compared with psychophysical data, and is benchmarked on classification of natural textures and synthetic aperture radar images. It outperforms state-of-the-art systems that use rule-based, backpropagation, and K-nearest neighbor classifiers.Defense Advanced Research Projects Agency; Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    Preattentive texture discrimination with early vision mechanisms

    Get PDF
    We present a model of human preattentive texture perception. This model consists of three stages: (1) convolution of the image with a bank of even-symmetric linear filters followed by half-wave rectification to give a set of responses modeling outputs of V1 simple cells, (2) inhibition, localized in space, within and among the neural-response profiles that results in the suppression of weak responses when there are strong responses at the same or nearby locations, and (3) texture-boundary detection by using wide odd-symmetric mechanisms. Our model can predict the salience of texture boundaries in any arbitrary gray-scale image. A computer implementation of this model has been tested on many of the classic stimuli from psychophysical literature. Quantitative predictions of the degree of discriminability of different texture pairs match well with experimental measurements of discriminability in human observers

    How Is a Moving Target Continuously Tracked Behind Occluding Cover?

    Full text link
    Office of Naval Research (N00014-95-1-0657, N00014-95-1-0409
    • …
    corecore